WO2018120513A1 - 一种量子点复合材料、制备方法及半导体器件 - Google Patents

一种量子点复合材料、制备方法及半导体器件 Download PDF

Info

Publication number
WO2018120513A1
WO2018120513A1 PCT/CN2017/080615 CN2017080615W WO2018120513A1 WO 2018120513 A1 WO2018120513 A1 WO 2018120513A1 CN 2017080615 W CN2017080615 W CN 2017080615W WO 2018120513 A1 WO2018120513 A1 WO 2018120513A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
precursor
dot composite
compound
cadmium
Prior art date
Application number
PCT/CN2017/080615
Other languages
English (en)
French (fr)
Inventor
钱磊
杨一行
刘政
Original Assignee
Tcl集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl集团股份有限公司 filed Critical Tcl集团股份有限公司
Priority to US15/762,146 priority Critical patent/US11203715B2/en
Priority to KR1020197022339A priority patent/KR102286971B1/ko
Priority to EP17886578.8A priority patent/EP3564341B1/en
Publication of WO2018120513A1 publication Critical patent/WO2018120513A1/zh
Priority to US17/524,339 priority patent/US11746292B2/en
Priority to US17/524,347 priority patent/US11795394B2/en
Priority to US17/524,357 priority patent/US11746293B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • H10K85/146Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE poly N-vinylcarbazol; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/321Inverted OLED, i.e. having cathode between substrate and anode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention relates to the field of quantum dots, in particular to a quantum dot composite material, a preparation method and a semiconductor device.
  • Quantum dots are special materials that are limited to the order of nanometers in three dimensions. This remarkable quantum confinement effect makes quantum dots have many unique nano properties: the emission wavelength is continuously adjustable, and the emission wavelength is narrow. Wide absorption spectrum, high luminous intensity, long fluorescence lifetime and good biocompatibility. These characteristics make quantum dots have broad application prospects in the fields of flat panel display, solid state lighting, photovoltaic solar energy, and biomarkers. Especially in flat panel display applications, Quantum dot light-emitting diodes (QLEDs) based on quantum dot materials have been displaying image quality, device performance, and performance by virtue of the characteristics and optimization of quantum dot nanomaterials. Manufacturing costs and other aspects have shown great potential.
  • QLEDs Quantum dot light-emitting diodes
  • quantum dots have been researched and developed as a classic nanomaterial for more than 30 years, the research time of using quantum dots with excellent luminescent properties and applying them as quantum dot materials in QLED devices and corresponding display technologies is still very short. Therefore, the development and research of most of the current QLED devices are based on the quantum dot materials of the existing classical structural systems, and the corresponding quantum dot materials.
  • the criteria for screening and optimization are also basically based on the luminescent properties of the quantum dots themselves, such as the luminescence peak width of quantum dots, the solution quantum yield, and the like.
  • the above quantum dots are directly applied to the QLED device structure to obtain corresponding device performance results.
  • quantum dots exist in the form of solid-state films of quantum dot luminescent layers in QLED devices. Therefore, the luminescent properties of quantum dot materials originally obtained in solution may show significant differences after forming solid films: for example In the solid film, the luminescence peak wavelength will have different degrees of red shift (moving to long wavelength), the luminescence peak width will become larger, and the quantum yield will be reduced to different extents, that is, the quantum luminescent material has excellent luminescence in solution. Performance is not fully inherited into the quantum dot solid state film of QLED devices. Therefore, in designing and optimizing the structure and synthetic formulation of quantum dot materials, it is necessary to simultaneously consider the optimization of the luminescent properties of the quantum dot material itself and the luminescence inheritance of the quantum dot material in the state of the solid film.
  • the luminescence of quantum dot materials in QLED devices is achieved by electro-excitation, that is, energization of holes and electrons from the anode and cathode of the QLED device, respectively, and the transport of holes and electrons through the corresponding functional layers in the QLED device.
  • electro-excitation that is, energization of holes and electrons from the anode and cathode of the QLED device, respectively, and the transport of holes and electrons through the corresponding functional layers in the QLED device.
  • photons are emitted by means of radiation transitions to achieve luminescence. It can be seen from the above process that the luminescent properties of the quantum dots themselves, such as luminescence efficiency, only affect the efficiency of the radiation transition in the above process, and the overall luminescence efficiency of the QLED device is also affected by the charge of holes and electrons in the quantum dot material in the above process.
  • quantum dot materials Injection and transport efficiency, relative charge balance of holes and electrons in quantum dot materials, recombination of holes and electrons in quantum dot materials, and the like. Therefore, in designing and optimizing the structure of quantum dot materials, especially the fine core-shell nanostructures of quantum dots, it is also necessary to consider the electrical properties of quantum dots after forming solid films: for example, charge injection and conduction properties of quantum dots, fineness of quantum dots. Energy band structure, exciton lifetime of quantum dots, etc.
  • the solution method is prepared by, for example, inkjet printing. Therefore, the material design and development of the quantum dots need to consider the processing properties of the quantum dot solution, such as the dispersible solubility of the quantum dot solution or the printing ink, the colloidal stability, the print film forming property, and the like. . At the same time, the development of quantum dot materials is also coordinated with the other functional layer materials of QLED devices and the overall fabrication process and requirements of the devices.
  • the traditional quantum dot structure design which only considers the improvement of the quantum dot self-luminescence performance, can not meet the comprehensive requirements of QLED devices and corresponding display technologies for the optical properties, electrical properties and processing properties of quantum dot materials.
  • the fine core-shell structure, composition, energy level, etc. of quantum dot quantum dot materials need to be tailored to the requirements of QLED devices and corresponding display technologies.
  • a semiconductor shell layer containing another semiconductor material can be grown on the outer surface of the original quantum dot to form a core-shell structure of the quantum dot, which can significantly improve the luminescent properties of the quantum dot and increase the quantum. Point stability.
  • the quantum dot materials that can be applied to the development of high-performance QLED devices are mainly quantum dots with a core-shell structure, the core and shell components are respectively fixed and the core shell has a clear boundary.
  • quantum dots having a CdSe/ZnS core-shell structure J. Phys. Chem., 1996, 100(2), 468-471
  • quantum dots having a CdSe/CdS core-shell structure J. Am. Chem. Soc.
  • quantum dots with CdS/ZnS core-shell structure quantum dots with CdS/CdSe/CdS core+multilayer shell structure (Patent US 7,919,012B2), with CdSe/ Quantum dots of CdS/ZnS core + multilayer shell structure (J. Phys. Chem. B, 2004, 108 (49), 18826 - 18831) and the like.
  • the composition of the core and the shell is generally fixed and different, and is generally a binary compound system composed of a cation and an anion.
  • the boundary between the core and the shell is clear, that is, the core and the shell can be distinguished.
  • the development of such quantum-shell quantum dots greatly enhances the luminescence quantum effect of the original single-component quantum dots. Rate, monodispersity, and quantum dot stability.
  • quantum dots of the core-shell structure described above partially improve the quantum dot performance
  • both the design idea and the optimization scheme are based on the improvement of the luminous efficiency of the quantum dots themselves, and the luminescence performance needs to be improved, and the Consider the special requirements of semiconductor devices for other aspects of quantum dot materials.
  • the object of the present invention is to provide a quantum dot composite material, a preparation method and a semiconductor device, which aim to solve the problem that the luminescent property of the quantum dot material prepared by the existing preparation method needs to be improved and cannot satisfy the semiconductor device.
  • the problem of quantum dot composites is required.
  • a cation exchange reaction occurs between the first compound and the second compound to form a quantum dot composite, and the luminescent peak wavelength of the quantum dot composite exhibits one or more of blue shift, red shift, and constant.
  • the wavelength of the luminescence peak of the quantum dot composite material appears to be continuously blue-shifted.
  • the wavelength of the luminescence peak of the quantum dot composite material alternates blue shift and does not change.
  • the wavelength of the luminescence peak of the quantum dot composite material alternates with blue shift and red shift.
  • the method for preparing a quantum dot composite material wherein the quantum dot composite material is emitted
  • the wavelength of the light peak appears intermittent blue shift.
  • the wavelength of the luminescence peak of the quantum dot composite material is intermittently red-shifted.
  • the wavelength of the luminescence peak of the quantum dot composite material first appears blue shift and then does not change.
  • the wavelength of the luminescence peak of the quantum dot composite material is continuously red-shifted.
  • the method for preparing a quantum dot composite material wherein the first compound and/or the cationic precursor of the second compound comprises a precursor of Zn, and the precursor of the Zn is dimethyl zinc. Diethylzinc, zinc acetate, zinc acetylacetonate, zinc iodide, zinc bromide, zinc chloride, zinc fluoride, zinc carbonate, zinc cyanide, zinc nitrate, zinc oxide, zinc peroxide, zinc perchlorate or At least one of zinc sulfate.
  • the method for preparing a quantum dot composite material wherein the first compound and/or the cationic precursor of the second compound comprises a precursor of Cd, and the precursor of the Cd is dimethyl cadmium, Diethyl cadmium, cadmium acetate, cadmium acetylacetonate, cadmium iodide, cadmium bromide, cadmium chloride, cadmium fluoride, cadmium carbonate, cadmium nitrate, cadmium oxide, cadmium perchlorate, cadmium phosphate or cadmium sulfate One.
  • the method for preparing a quantum dot composite material wherein the anion precursor of the first compound and/or the second compound comprises a precursor of Se, and the precursor of the Se is Se ⁇ TOP, Se At least one of ⁇ TBP, Se ⁇ TPP, Se ⁇ ODE, Se ⁇ OA, Se ⁇ ODA, Se ⁇ TOA, Se ⁇ ODPA, or Se ⁇ OLA.
  • the method for preparing a quantum dot composite material wherein the anion precursor of the first compound and/or the second compound comprises a precursor of S, and the precursor of the S is S ⁇ TOP, S At least one of ⁇ TBP, S ⁇ TPP, S ⁇ ODE, S ⁇ OA, S ⁇ ODA, S ⁇ TOA, S ⁇ ODPA, S ⁇ OLA or alkylthiol.
  • the method for preparing a quantum dot composite material wherein the first compound and/or The anion precursor of the second compound includes a precursor of Te, and the precursor of the Te is Te ⁇ TOP, Te ⁇ TBP, Te ⁇ TPP, Te ⁇ ODE, Te ⁇ OA, Te ⁇ ODA, Te ⁇ TOA, At least one of Te ⁇ ODPA or Te ⁇ OLA.
  • the method for preparing a quantum dot composite material wherein the heating temperature is between 100 ° C and 400 ° C.
  • the method for preparing a quantum dot composite material wherein the heating time is between 2 s and 24 h.
  • the molar ratio of the cationic precursor to the anionic precursor is between 100:1 and 1:50.
  • the method for preparing a quantum dot composite material wherein, when synthesizing the second compound, the molar ratio of the cationic precursor to the anionic precursor is between 100:1 and 1:50.
  • a quantum dot composite material wherein the quantum dot composite material is prepared by the preparation method as described in any of the above.
  • a semiconductor device comprising the quantum dot composite as described above.
  • the semiconductor device wherein the semiconductor device is any one of an electroluminescent device, a photoluminescence device, a solar cell, a display device, a photodetector, a bioprobe, and a nonlinear optical device.
  • the quantum dot composite material prepared by the above preparation method not only realizes more efficient quantum dot composite material luminous efficiency, but also satisfies the comprehensive performance requirements of the semiconductor device and the corresponding display technology for the quantum dot composite material. It is an ideal quantum dot quantum dot composite suitable for semiconductor devices and display technologies.
  • FIG. 1 is a graph showing the energy level structure of a specific structure 1 of a quantum dot composite according to the present invention.
  • FIG. 2 is a graph showing the energy level structure of a specific structure 2 of a quantum dot composite according to the present invention.
  • FIG. 3 is a graph showing the energy level structure of a specific structure 3 of a quantum dot composite according to the present invention.
  • FIG 4 is a graph showing the energy level structure of a specific structure 4 of a quantum dot composite according to the present invention.
  • FIG. 5 is a graph showing the energy level structure of a specific structure 5 of a quantum dot composite according to the present invention.
  • FIG. 6 is a graph showing the energy level structure of a specific structure 6 of a quantum dot composite according to the present invention.
  • FIG. 7 is a graph showing the energy level structure of a specific structure 7 of a quantum dot composite according to the present invention.
  • Embodiment 8 is a luminescence peak wavelength diagram of a quantum dot according to Embodiment 10 of the present invention.
  • Figure 9 is a luminescence peak wavelength diagram of a quantum dot according to Embodiment 11 of the present invention.
  • Figure 10 is a luminescence peak wavelength diagram of a quantum dot according to Embodiment 12 of the present invention.
  • FIG. 11 is a schematic structural view of a quantum dot light emitting diode according to Embodiment 33 of the present invention.
  • FIG. 12 is a schematic structural view of a quantum dot light emitting diode according to Embodiment 34 of the present invention.
  • FIG. 13 is a schematic structural view of a quantum dot light emitting diode according to Embodiment 35 of the present invention.
  • FIG. 14 is a schematic structural view of a quantum dot light emitting diode in Embodiment 36 of the present invention.
  • FIG. 15 is a schematic structural view of a quantum dot light emitting diode according to Embodiment 37 of the present invention.
  • FIG. 16 is a schematic structural view of a quantum dot light emitting diode in Embodiment 38 of the present invention.
  • the present invention provides a quantum dot composite material, a preparation method, and a semiconductor device.
  • the present invention will be further described in detail below in order to clarify and clarify the objects, technical solutions, and effects of the present invention. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • the invention provides a preparation method of a quantum dot composite material, which comprises the steps of:
  • a cation exchange reaction occurs between the first compound and the second compound to form a quantum dot composite, and the luminescent peak wavelength of the quantum dot composite exhibits blue shift, red shift, and constant One or more.
  • the preparation method of the invention combines quantum dot SILAR synthesis method and quantum dot one-step synthesis method to generate quantum dots, in particular, using quantum dot layer-by-layer growth and quantum dot one-step synthesis method to form a graded component transition shell. That is, two thin layers of a compound having the same or different alloy compositions are successively formed at predetermined positions, and the alloy component distribution at a predetermined position is achieved by causing a cation exchange reaction between the two layers of compounds. Repeating the above process can continuously achieve the distribution of the alloy composition at a predetermined position in the radial direction.
  • the first compound and the second compound may be binary or binary compounds.
  • the quantum dot composite material prepared by the present invention comprising at least one quantum dot structural unit arranged in a radial direction, wherein the quantum dot structural unit is a gradient of a change in energy level width in a radial direction A homogeneous composition of the alloy component structure or a uniform energy level width in the radial direction.
  • each quantum dot structural unit has a single atomic layer or more than one layer of a single atomic layer at any position in the radial direction from the inside to the outside. It is a structure having an alloy component.
  • the quantum dot structural unit contains Group II and Group VI elements.
  • the Group II elements include, but are not limited to, Zn, Cd, Hg, Cn, etc.; the Group VI elements include, but are not limited to, O, S, Se, Te, Po, Lv, and the like.
  • the alloy composition of each quantum dot structural unit is Cd x Zn 1 ⁇ x Se y S 1 ⁇ y , where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and x and y are not 0 at the same time and At the same time it is 1. It should be noted that the above situation is preferred.
  • the components thereof are all alloy components; and for a quantum component structural unit of a uniform composition structure, the components thereof It may be an alloy component or a non-alloy component, but the present invention is preferably an alloy component, that is, the uniform component structure is a uniform alloy component structure, and more preferably, it comprises a Group II and VI group element,
  • the subsequent embodiments of the present invention are all described by taking the structure of the uniform alloy composition as an example, but it is obvious that the uniform composition of the non-alloy can also be carried out.
  • the radial direction here refers to the direction from the center of the quantum dot composite, for example,
  • the quantum dot composite of the present invention is a spherical or similar spherical structure, then the radial direction refers to the direction of the radius, and the center (or inner) of the quantum dot composite refers to the center of the physical structure, the surface of the quantum dot composite. (or external) refers to the surface of its physical structure.
  • the luminescent peak wavelength of the quantum dot composite exhibits a continuous blue shift to achieve a graded alloy composition distribution at a specified location.
  • the blue shift indicates that the illuminating peak shifts toward the short-wave direction, and the energy level width is widened.
  • the energy level width of the quantum dot structural unit is continuously widened (continuous blue shift).
  • the present invention provides a quantum dot composite material having a funnel-type energy level structure, and a quantum dot structural unit alloy component located inside the quantum dot composite material has a corresponding energy level width smaller than that located outside.
  • the quantum dot structural unit alloy composition corresponds to the energy level width; specifically, the quantum dot composite material prepared by the present invention comprises at least one quantum dot structural unit arranged in the radial direction, wherein the quantum dot structural unit is a graded alloy composition structure in which the width of the outer level is wider in the radial direction, and the energy level of the quantum dot structural unit of the graded alloy composition structure adjacent in the radial direction is continuous;
  • the energy level width of each adjacent quantum dot structural unit has a continuous structure, that is, the energy level width of each adjacent quantum dot structural unit has a continuous change characteristic, not a mutant structure, That is to say, the alloy composition of the quantum dots is also continuous, and the subsequent continuous structure principle is the same.
  • the energy level width of the quantum dot structural unit near the center is smaller than the energy level width of the quantum dot structural unit away from the center; that is, the quantum dot composite
  • the energy level width from the center to the surface is gradually widened, thereby forming a funnel-shaped structure in which the opening gradually becomes larger, wherein the opening gradually becomes larger in the energy level structure as shown in FIG.
  • the energy levels from the center of the composite to the surface of the quantum dot composite are continuous.
  • the energy levels of the respective adjacent quantum dot structural units are continuous, that is, the synthesized components of the quantum dots also have continuously changing characteristics, which The characteristics are more conducive to achieving high luminous efficiency.
  • the specific structure 1 of the quantum dot composite material is a quantum dot structure having a continuous gradual alloy composition from the inside to the outside in a radial direction; the quantum dot structure has composition components from the inside to the outside.
  • the characteristics of continuous change along the radial direction; correspondingly, the energy level distribution also has the characteristics of continuous change from the inside to the outside in the radial direction; the quantum dot structure continuously changes in composition and energy level distribution.
  • the quantum dot composite material of the invention not only facilitates more efficient luminous efficiency, but also satisfies the semiconductor device and corresponding display technology for the quantum dot composite material, compared with the relationship between the quantum dot core and the shell having a clear boundary.
  • the comprehensive performance requirement is an ideal quantum dot luminescent material suitable for semiconductor devices and display technologies.
  • the alloy composition of the point A is Cd x0 A Zn 1 - x0 A Se y0 A S 1 - y0 A
  • the alloy composition of the point B is Cd x0 B Zn 1 ⁇ x0 B Se y0 B S 1 ⁇ y0 B
  • point A is closer to the center of the quantum dot composite than point B
  • the composition of points A and B satisfies: x0 A > x0 B , y0 A > y0 B .
  • the alloy composition is preferably Cd x0 Zn 1 ⁇ x0 Se Y0 S 1 ⁇ y0 , wherein the alloy composition of point A is Cd x0 A Zn 1 ⁇ x0 A Se y0 A S 1 ⁇ y0 A , and the alloy composition of point B is Cd x0 B Zn 1 ⁇ x0 B Se y0 B S 1 ⁇ y0 B , where point A is closer to the center of the quantum dot composite than point B, and the composition of points A and B satisfies: x0 A > x0 B , y0 A > y0 B .
  • the alloy composition is preferably Cd x0 Zn 1 ⁇ x0 Se y0 S 1 ⁇ y0 , wherein point C
  • the alloy composition is Cd x0 C Zn 1 ⁇ x0 C Se y0 C S 1 ⁇ y0 C
  • the alloy composition at point D is Cd x0 D Zn 1 ⁇ x0 D Se y0 D S 1 ⁇ y0 D , where point C is relative to Point D is closer to the center of the quantum dot composite, and the composition of points C and D satisfies: x0 C ⁇ x0 D , y0 C ⁇ y0 D .
  • the wavelength of the luminescence peak of the quantum dot composite material alternates blue shift and does not change.
  • the blue shift indicates that the illuminating peak shifts toward the short-wave direction, and the energy level width becomes wider.
  • the red shift indicates that the illuminating peak shifts toward the long-wave direction, and the energy level width is narrowed. If the illuminating peak wavelength does not change, the energy level width is constant.
  • the alternating blue shift and invariance indicate that the energy level width is alternated, that is, as shown in FIG.
  • the energy level width is widened (blue shift) in the first interval, in the first
  • the width of the energy level in the second interval is constant (unchanged), and the width of the energy level is widened (blue shift) in the third interval.
  • the present invention also provides a composition having an internal alloy composition having a corresponding energy level width not greater than a corresponding energy level width of the outer alloy composition component, and at least the center and outermost regions of the quantum dot structure are at least a quantum dot composite material of a quantum dot structure unit having a uniform alloy composition structure; that is, the quantum dot composite material provided by the present invention comprises at least three quantum dot structural units arranged in a radial direction, wherein Among the at least three quantum dot structural units, the quantum dot structural unit at the center and the surface are both graded alloy composition structures having a wider outer-level width in the radial direction, and adjacent gradients in the radial direction The energy level of the quantum dot structural unit of the alloy component structure is continuous, and one quantum dot structural unit between the central and surface quantum dot structural units is a uniform alloy composition structure.
  • the structure of the quantum dot composite shown in FIG. 2 is referred to as a specific structure 2 in the subsequent embodiments.
  • the alloy component of any one point is a quantum dot structural unit of a uniform alloy composition structure between the central and surface quantum dot structural units.
  • Cd x1 Zn 1 ⁇ x1 Se y1 S 1 ⁇ y1 where 0 ⁇ x1 ⁇ 1, 0 ⁇ y1 ⁇ 1, and x1 and y1 are not 0 at the same time and 1 at the same time, and x1 and y1 are fixed values.
  • the alloy composition at a certain point is Cd 0.5 Zn 0.5 Se 0.5 S 0.5
  • the alloy composition at another point in the radial direction should also be Cd 0.5 Zn 0.5 Se 0.5 S 0.5
  • the structure of a uniform alloy composition A group of points in a quantum dot structure unit is divided into Cd 0.7 Zn 0.3 S
  • the alloy composition of another point in the quantum dot structure unit should also be Cd 0.7 Zn 0.3 S
  • a uniform alloy composition structure A group of points in a quantum dot structure unit is divided into CdSe
  • the alloy composition of another point in the unit of the quantum dot structure should also be CdSe.
  • the quantum dot structural unit at the center and the surface is a graded alloy composition structure in which the width of the outer level is wider in the radial direction, and the phase is in the radial direction.
  • the energy level of the quantum dot structural unit of the adjacent graded alloy component structure is continuous; that is, in the quantum dot structural unit having the structure of the graded alloy composition, the energy level corresponding to the alloy composition at any point in the radial direction
  • the width is greater than the energy level width of the alloy composition adjacent to and adjacent to another point in the center of the quantum dot structure.
  • the composition of the alloy component in the quantum dot structural unit having the structure of the graded alloy component is Cd x2 Zn 1 -x2 Se y2 S 1 ⁇ y2 , where 0 ⁇ x2 ⁇ 1, 0 ⁇ y2 ⁇ 1, and x2 and y2 are not It is 0 at the same time and 1 at the same time.
  • the alloy composition at a certain point is Cd 0.5 Zn 0.5 Se 0.5 S 0.5
  • the alloy composition at another point is Cd 0.3 Zn 0.7 Se 0.4 S 0.6 .
  • the luminescent peak wavelengths of the quantum dot composites exhibit alternating blue and red shifts to achieve a graded alloy composition distribution at a given location.
  • the blue shift indicates that the illuminating peak shifts toward the short-wave direction, and the energy level width becomes wider.
  • the red shift indicates that the illuminating peak shifts toward the long-wave direction, and the energy level width is narrowed. If the illuminating peak wavelength does not change, the energy level width is constant.
  • the alternating blue shift and red shift indicate that the energy level width is alternated, that is, as shown in FIG.
  • the energy level width is widened (blue shift) in the first interval, in the first In the second interval, the energy level width is narrowed (red shift), the energy level width is widened (blue shift) in the third interval, and the energy level width is narrowed (red shift) in the fourth interval, and the energy level is in the fifth interval.
  • the width is widened (blue shift).
  • the present invention also produces a quantum dot composite material having a fully graded alloy composition having a quantum well structure; that is, the quantum dot composite material prepared by the present invention includes two types of quantum.
  • Point structure unit A1 type and A2 type
  • the quantum dot structure unit of the A1 type is a graded alloy composition structure in which the width of the outer level is wider in the radial direction
  • A2 The type of quantum dot structural unit is a graded alloy composition structure in which the width of the outer level is narrower in the radial direction, and the two kinds of quantum dot structural units are alternately arranged in the radial direction and adjacent in the radial direction.
  • the energy levels of quantum dot structural units are continuous.
  • the quantum dot structure unit distribution of the quantum dot composite material may be: A1, A2, A1, A2, A1, ..., or A2, A1, A2, A1, A2, ..., that is, the starting quantum dot.
  • the structural unit can be of the A1 type or the A2 type.
  • the width of the energy level is wider toward the outside.
  • the width of the energy level is narrower toward the outside, and the two energy levels are as if The form of the wavy line extends in the radial direction, and the structure of the quantum dot composite shown in Fig. 3 is referred to as a specific structure 3 in the subsequent embodiment.
  • the wavelength of the luminescence peak of the quantum dot composite material exhibits a discontinuous blue shift.
  • a blue shift indicates that the illuminating peak moves in the short-wave direction, and the energy level width is widened.
  • the red shift of the luminescence peak wavelength indicates that the luminescence peak moves toward the long wave direction, the energy level width is narrowed, and if the luminescence peak wavelength does not change, the representative energy level width does not change.
  • the occurrence of intermittent blue shifts means that the energy level width between quantum dot structural units is abrupt rather than continuous, as shown in FIG.
  • the present invention also produces a quantum dot composite material having an alloy composition of a quantum well structure having a sudden change in energy level.
  • the quantum dot structural unit is oriented in the radial direction.
  • the wider the outer level, the wider the gradient alloy composition structure, and the energy levels of adjacent quantum dot structural units are discontinuous, that is, the energy level width of each adjacent quantum dot structural unit has a discontinuous change characteristic, that is,
  • the characteristics of the mutation, that is, the alloy composition of the quantum dot is also abrupt, and the subsequent structure of the mutant structure is the same; in the subsequent embodiment, the structure of the quantum dot composite shown in FIG. 4 is referred to as a specific structure 4.
  • the quantum dot composite material shown in FIG. 4 is formed by sequentially arranging a plurality of quantum dot structural units by means of abrupt changes, and the quantum dot structural unit is a gradient in which the width of the outer level is wider in the radial direction. Alloy component structure. Further, in the quantum dot composite material, the energy level width of the quantum dot structural unit near the center is smaller than the energy level width of the quantum dot structural unit away from the center.
  • the energy level width from the center to the surface is The funnel-shaped structure is gradually widened to form a discontinuous opening
  • the quantum dot composite material is not limited to the above manner, that is, the energy level width of the quantum dot structural unit away from the center may also be The energy level width of the quantum dot structural unit that is smaller than the center.
  • the energy level widths of adjacent quantum dot structural units have a staggered overlap.
  • the wavelength of the luminescence peak of the quantum dot composite material exhibits a discontinuous red shift.
  • a red shift indicates that the illuminating peak moves toward the long wave direction, and the energy level width is narrowed. If the blue shift of the luminescence peak wavelength indicates that the luminescence peak shifts toward the short-wave direction, the energy level width becomes wider, and if the luminescence peak wavelength does not change, the representative energy level width does not change.
  • the occurrence of intermittent red shifts means that the energy level width between quantum dot structural units is abrupt rather than continuous, as shown in FIG.
  • the present invention also prepares another quantum dot composite material having an alloy composition of a quantum well structure having a sudden change in energy level.
  • the quantum dot structural unit is in the radial direction.
  • a tapered alloy composition structure having a narrower outer layer width, and the energy levels of adjacent quantum dot structural units are discontinuous, that is, the energy level width of each adjacent quantum dot structural unit has a discontinuous change characteristic. That is, the characteristics of the mutation, that is, the alloy composition of the quantum dot is also abrupt, and the subsequent structure of the mutant structure is the same; in the subsequent embodiment, the structure of the quantum dot composite shown in FIG. 5 is referred to as a specific structure 5.
  • the quantum dot composite material shown in FIG. 5 is formed by sequentially arranging a plurality of quantum dot structural units by means of abrupt changes, and the quantum dot structural unit is a gradient in which the width of the outer energy level is narrower in the radial direction. Alloy component structure.
  • the energy level width of the quantum dot structural unit near the center is larger than the energy level width of the quantum dot structural unit away from the center. That is to say, in the quantum dot composite material, the energy level width from the center to the surface is gradually narrowed, thereby forming a funnel-shaped structure in which the intermittent opening gradually becomes smaller, of course, in the quantum dot composite material.
  • the energy level width of the quantum dot structural unit far from the center may also be larger than the energy level width of the quantum dot structural unit near the center, and the energy level of the adjacent quantum dot structural unit in this structure
  • the width has staggered overlaps.
  • the wavelength of the luminescence peak of the quantum dot composite material first appears blue shift and then does not change.
  • the blue shift indicates that the illuminating peak shifts toward the short-wave direction, and the energy level width becomes wider. If the illuminating peak wavelength does not change, the representative energy level width does not change, that is, as shown in FIG. 6, in the radial direction of the quantum dot, at the first
  • the width of the energy level in the interval is widened (blue shift), and the width of the energy level is constant (unchanged) in the second interval.
  • the present invention also prepares a quantum dot composite material, wherein the energy level width of the alloy composition located inside the quantum dot composite material gradually increases from the center to the outside, and the quantum dot structure is the most
  • the outer region is a uniform alloy component; specifically, the quantum dot composite material includes two quantum dot structural units (A3 type and A4 type), wherein the quantum dot structural unit of the A3 type is the outer level in the radial direction
  • the quantum dot structural unit of the A3 type is the outer level in the radial direction
  • the A4 type quantum dot structural unit is a uniform alloy composition structure
  • the interior of the quantum dot composite material includes quantum dot structural units including one or more graded alloy composition structures,
  • the energy level of the quantum dot structural unit of the graded alloy composition structure adjacent in the radial direction is continuous; the outer portion of the quantum dot composite material includes one or more quantum dot structural units of a uniform alloy composition structure
  • the structure of the quantum dot composite shown in FIG. 6 is referred to as a
  • the distribution of the quantum dot structural unit is A3...A3A4...A4, that is, the inside of the quantum dot composite is composed of A3 type quantum dot structural units.
  • the outside of the quantum dot composite is composed of A4 type quantum dot structural units, and the number of A3 type quantum dot structural units and the number of A4 type quantum dot structural units are both greater than or equal to 1.
  • the luminescent peak wavelength of the quantum dot composite material exhibits a continuous red shift.
  • a red shift indicates that the illuminating peak moves toward the long wave direction, and the energy level width is narrowed. If the blue shift of the luminescence peak wavelength indicates that the luminescence peak shifts toward the short-wave direction, the energy level width becomes wider, and if the luminescence peak wavelength does not change, the representative energy level width does not change.
  • the red shift indicates that the luminescence peak moves toward the long wave direction, and the energy level width is narrowed. As shown in Fig. 7, in the radial direction of the quantum dot, the energy level width of the quantum dot structural unit is narrowed (red shift).
  • the present invention further prepares another quantum dot composite material, wherein the alloy composition inside the quantum dot composite has a uniform energy level width, and the alloy is located outside the quantum dot.
  • the energy level of the constituents gradually increases from the center to the outside;
  • the quantum dot composite material comprises two quantum dot structural units (A5 type and A6 type), wherein the A5 type quantum dot structural unit is a uniform alloy composition structure, and the A6 type quantum dot structural unit is a radial direction.
  • FIG. 7 will be shown in the following embodiment.
  • the structure of a quantum dot composite is referred to as a specific structure 7.
  • the distribution of the monoatomic layer is A5...A5A6...A6, that is, the inside of the quantum dot composite is composed of A5 type quantum dot structural units, The outside of the quantum dot composite is composed of A6 type quantum dot structural units, and the number of A5 type quantum dot structural units and the number of A6 type quantum dot structural units are both greater than or equal to 1.
  • the quantum dot structural unit prepared by the present invention comprises a 2-20 layer monoatomic layer.
  • the quantum dot structural unit comprises 2-5 monoatomic layers, and the preferred number of layers can ensure that the quantum dots achieve good luminescence quantum yield and efficient charge injection efficiency.
  • the quantum dot light emitting unit comprises 1-10 layer cell layers, preferably 2-5 layer cell layers; the cell layer is the smallest structural unit, that is, the cell layer of each layer has an alloy composition of Fixed, that is, each cell layer has the same lattice parameter and element, and each quantum dot structural unit is a closed cell surface formed by connecting the cell layers, and the energy level width between adjacent cell layers has Continuous structure or mutant structure.
  • the cation precursor of the first compound and/or the second compound includes: a precursor of Zn, and the precursor of the Zn is dimethyl Zinc, diethyl zinc (diethyl Zinc) , Zinc acetate, Zinc acetylacetonate, Zinc iodide, Zinc bromide, Zinc chloride, Zinc fluoride, Zinc carbonate (Zinc carbonate), Zinc cyanide, Zinc nitrate, Zinc oxide, Zinc peroxide, Zinc perchlorate, Zinc sulfate, Zinc oleate or Zinc stearate At least one, but not limited to.
  • the cationic precursor of the first compound and/or the second compound includes a precursor of Cd, and the precursor of the Cd is dimethyl cadmium, diethyl cadmium, Cadmium acetate, cadmium acetylacetonate, cadmium iodide, cadmium bromide, cadmium chloride, cadmium fluoride, cadmium carbonate Cadmium carbonate), cadmium nitrate, cadmium oxide, cadmium perchlorate, cadmium phosphide, cadmium sulfate, cadmium oleate or hard At least one of cadmium stearate and the like, but is not limited thereto.
  • the anion precursor of the first compound and/or the second compound includes a precursor of Se, such as a compound formed by any combination of Se and some organic substances, and specifically may be Se ⁇ TOP (selenium ⁇ trioctylphosphine), Se.
  • Se such as a compound formed by any combination of Se and some organic substances, and specifically may be Se ⁇ TOP (selenium ⁇ trioctylphosphine), Se.
  • ⁇ TBP senium-tributylphosphine
  • Se ⁇ TPP senium ⁇ triphenylphosphine
  • Se ⁇ ODE senium ⁇ 1 ⁇ octadecene
  • Se ⁇ OA senium ⁇ oleic acid
  • Se ⁇ ODA senium ⁇ octadecylamine
  • Se ⁇ TOA At least one of (selenium-trioctylamine), Se ⁇ ODPA (selenium ⁇ octadecylphosphonic acid), or Se ⁇ OLA (selenium ⁇ oleylamine), and the like, but is not limited thereto.
  • the anion precursor of the first compound and/or the second compound includes a precursor of S, for example, a compound formed by any combination of S and some organic substances, specifically, S-TOP (sulfur-trioctylphosphine), S ⁇ TBP (sulfur-tributylphosphine), S ⁇ TPP (sulfur ⁇ triphenylphosphine), S ⁇ ODE (sulfur ⁇ 1 ⁇ octadecene), S ⁇ OA (sulfur ⁇ oleic acid), S ⁇ ODA (sulfur ⁇ octadecylamine), S ⁇ TOA (sulfur-trioctylamine), S-ODPA (sulfur-octadecylphosphonic acid) or S-OLA (sulfur-oleylamine), etc., but is not limited thereto; the precursor of S may also be an alkyl thiol, The alkyl mercaptan can Is hexanethiol, octane
  • the anion precursor of the first compound and/or the second compound includes a precursor of Te, and the precursor of the Te is Te ⁇ TOP, Te ⁇ TBP, Te ⁇ TPP, Te ⁇ ODE, Te ⁇ At least one of OA, Te ⁇ ODA, Te ⁇ TOA, Te ⁇ ODPA, or Te ⁇ OLA.
  • the above cationic precursor and anionic precursor may be selected according to the final quantum dot composite composition, for example, when a quantum dot composite of Cd x Zn 1 ⁇ x Se y S 1 ⁇ y needs to be synthesized, Therefore, a precursor of Cd, a precursor of Zn, a precursor of Se, and a precursor of S are required; if a quantum dot composite of Cd x Zn 1 -x S is required to be synthesized, a precursor of Cd and a precursor of Zn are required.
  • the precursor of S if it is necessary to synthesize a quantum dot composite of Cd x Zn 1 -x Se, a precursor of Cd, a precursor of Zn, and a precursor of Se are required.
  • the conditions under which the cation exchange reaction takes place are preferably carried out by heating, for example, a heating temperature of between 100 ° C and 400 ° C, and a preferred heating temperature of between 150 ° C and 380 ° C.
  • the heating time is between 2 s and 24 h, and the preferred heating time is between 5 min and 4 h.
  • the thickness range and extent of cation exchange directly determines the distribution of the graded alloy composition formed.
  • the distribution of the graded alloy composition formed by the cation exchange is also determined by the thickness of the binary or multicomponent compound quantum dot composite formed.
  • the molar ratio of the cationic precursor to the anionic precursor is from 100:1 to 1:50 (specifically, the molar ratio of the cation to the anion), for example, when the first layer of the compound is formed, the cationic precursor
  • the anion precursor has a molar ratio of 100:1 to 1:50; in forming the second layer
  • the molar ratio of the cationic precursor to the anionic precursor is from 100:1 to 1:50, and the preferred ratio is from 20:1 to 1:10.
  • the preferred molar ratio of the cationic precursor to the anionic precursor ensures the reaction rate. Within the scope of easy control.
  • the present invention also provides a quantum dot composite material, wherein the quantum dot composite material is prepared by the preparation method as described above.
  • the quantum dot composite prepared by the above preparation method has a luminescence peak wavelength ranging from 400 nm to 700 nm, and a preferred luminescence peak wavelength range is 430 nm to 660 nm, and a preferred quantum dot luminescence peak wavelength range can ensure quantum dots A luminescence quantum yield of greater than 30% is achieved in this range.
  • the quantum dot composite prepared by the above preparation method has a luminescence quantum yield ranging from 1% to 100%, and a preferred luminescence quantum yield range of 30% to 100%, and a quantum dot can be ensured within a preferred luminescence quantum yield range. Good applicability.
  • the half-peak width of the luminescence peak of the quantum dot composite material is from 12 nm to 80 nm.
  • the present invention also provides a semiconductor device comprising the nanocrystal of any of the above.
  • the semiconductor device is any one of an electroluminescent device, a photoluminescence device, a solar cell, a display device, a photodetector, a bioprobe, and a nonlinear optical device.
  • the quantum dot electroluminescent device QLED using the quantum dot composite material of the present invention as a light-emitting layer material is capable of achieving: 1) high efficiency charge injection, 2) high luminance, 3) low drive voltage, 4) high device efficiency and the like.
  • the quantum dot composite material of the invention has the characteristics of easy control and multi-level structure, and can fully satisfy and match the energy level structure of other functional layers in the device, so as to achieve matching of the overall energy level structure of the device, thereby Helps achieve efficient and stable QLED devices.
  • the photoluminescent device refers to a device that relies on an external light source to obtain energy, thereby generating excitation and causing light emission, and ultraviolet radiation, visible light, and infrared radiation can cause photoluminescence, such as phosphorescence and fluorescence.
  • the nanocrystal of the present invention can be used as a light-emitting material of a photoluminescent device.
  • the solar cell is also called a photovoltaic device, and the nanocrystal of the invention can be used as a light absorbing material of a solar cell, thereby effectively improving various performances of the photovoltaic device.
  • the display device refers to a backlight module or a display panel to which the backlight module is applied, and the display panel can be applied to various products, such as a display, a tablet, a mobile phone, a notebook computer, a flat-panel TV, and a wearable display. Equipment or other products that contain different sized display panels.
  • the photodetector refers to a device capable of converting an optical signal into an electrical signal.
  • the principle is that the conductivity of the material to be irradiated is changed by radiation, and the quantum dot composite material is applied in the photodetector, which has the following advantages:
  • the incident light is sensitive, the photoconductivity is high, the detection rate is high, the detection wavelength is continuously adjustable, and the temperature can be prepared at a low temperature.
  • the photogenerated electron-hole pairs generated by the quantum dot photosensitive layer ie, using the nanocrystal of the present invention
  • the built-in electric field which makes the photodetector
  • the structured photodetector has a lower drive voltage and can operate with low applied bias or even 0 applied bias and is easy to control.
  • the bioprobe refers to a device that modifies a certain type of material to have a labeling function, for example, coating the nanocrystal of the present invention to form a fluorescent probe, which is used in the field of cell imaging or substance detection, as opposed to
  • the traditional organic fluorescent dye probe adopts the biological probe prepared by the nanocrystal of the invention, and has the characteristics of high fluorescence intensity, good chemical stability and strong anti-photobleaching ability, and has wide application.
  • the nonlinear optical device belongs to the field of optical laser technology and is widely used, for example, for electro-optic light-on and laser modulation, for laser frequency conversion, laser frequency tuning, optical information processing, image quality improvement and beam quality; As a nonlinear etalon and bistable device; study the high-excited state of the material as well as the high-resolution spectrum and the internal energy and excitation transfer process of the material and other relaxation processes.
  • a precursor of a cationic Cd, a precursor of a cationic Zn, a precursor of an anion Se, and a precursor of an anion S are injected into a reaction system to form a Cd y Zn 1 ⁇ y Se b S 1 ⁇ b layer (where 0 ⁇ y) ⁇ 1, 0 ⁇ b ⁇ 1); the precursor of the cationic Cd, the precursor of the cationic Zn, the precursor of the anion Se, and the precursor of the anion S are continuously injected into the reaction system, in the above Cd y Zn 1 ⁇ y Se b
  • the surface of the S 1 - b layer forms a layer of Cd z Zn 1 ⁇ z Se c S 1 ⁇ c (where 0 ⁇ z ⁇ 1, and z is not equal to y, 0 ⁇ c ⁇ 1); at a certain heating temperature and heating time Under the same reaction conditions, the exchange of Cd and Zn ions in the inner and outer quantum dot composites (ie, the above two layers of compounds) occurs
  • Example 2 Preparation based on CdZnS/CdZnS quantum dots
  • the precursor of the cationic Cd, the precursor of the cationic Zn, and the precursor of the anion S are injected into the reaction system to form a Cd y Zn 1 -y S layer (where 0 ⁇ y ⁇ 1 ); the precursor of the cationic Cd is continued.
  • the precursor of the bulk, cationic Zn and the precursor of the anion S are injected into the reaction system to form a Cd z Zn 1 ⁇ z S layer on the surface of the above Cd y Zn 1 ⁇ y S layer (where 0 ⁇ z ⁇ 1, and z Not equal to y); under certain reaction conditions such as heating temperature and heating time, the exchange of Cd and Zn ions in the inner and outer quantum dot composites (ie, the above two layers of compounds) occurs; because the cation migration distance is limited and farther The migration probability is less likely to migrate, so a gradient alloy composition distribution of Cd content and Zn content is formed near the interface between the Cd y Zn 1 ⁇ y S layer and the Cd z Zn 1 ⁇ z S layer, ie Cd x Zn 1 - x S, where 0 ⁇ x ⁇ 1.
  • the precursor of the cationic Cd, the precursor of the cationic Zn, and the precursor of the anion Se are injected into the reaction system to form a layer of Cd y Zn 1 ⁇ y Se (where 0 ⁇ y ⁇ 1 ); the precursor of the cation Cd is continued.
  • the precursor of the cationic Zn and the precursor of the anion Se are injected into the reaction system to form a Cd z Zn 1 ⁇ z Se layer on the surface of the above Cd y Zn 1 ⁇ y Se layer (where 0 ⁇ z ⁇ 1, and z does not Equivalent to y); under certain reaction conditions such as heating temperature and heating time, the exchange of Cd and Zn ions in the inner and outer quantum dot composites occurs; the probability of migration due to the limited migration distance of the cations and the farther migration distance
  • the smaller, the gradual alloy composition distribution of Cd content and Zn content is formed near the interface between the Cd y Zn 1 ⁇ y Se layer and the Cd z Zn 1 ⁇ z Se layer, namely Cd x Zn 1 ⁇ x Se, where 0 ⁇ x ⁇ 1.
  • the precursor of the cationic Cd and the precursor of the anion S are injected into the reaction system to form a CdS layer; the precursor of the cationic Zn and the precursor of the anion S are continuously injected into the reaction system to form on the surface of the CdS layer.
  • ZnS layer under certain reaction conditions such as heating temperature and heating time, the Zn cation of the outer layer will gradually migrate to the inner layer and undergo cation exchange reaction with Cd cation, that is, Cd ion migrates to the outer layer, and Cd and Zn occur.
  • the precursor of the cationic Cd and the precursor of the anion Se are first injected into the reaction system to form a CdSe layer; the precursor of the cationic Zn and the precursor of the anion Se are continuously injected into the reaction system to form ZnSe on the surface of the CdSe layer.
  • the Zn cation of the outer layer gradually migrates to the inner layer and undergoes cation exchange reaction with Cd cations, that is, Cd ions migrate to the outer layer, and Cd and Zn ions occur.
  • the interchangeability of the cations due to the limited migration distance of the cations and the migration distance of the migration distance is smaller.
  • the Cd content near the interface between the CdSe layer and the ZnSe layer is gradually decreased along the radial direction, and the Zn content is gradually decreased.
  • the distribution of the graded alloy composition gradually increasing radially outward that is, Cd x Zn 1 - x Se, where 0 ⁇ x ⁇ 1 and x is monotonously decreasing from 1 to 0 from the inside to the outside (radial direction).
  • the precursor of the cationic Cd, the precursor of the anion Se, and the precursor of the anion S are injected into the reaction system to form a CdSe b S 1 -b layer (where 0 ⁇ b ⁇ 1); the precursor of the cationic Zn is continued,
  • the precursor of the anion Se and the precursor of the anion S are injected into the reaction system to form a layer of ZnSe c S 1 -c on the surface of the above CdSe b S 1 -b layer (where 0 ⁇ c ⁇ 1); at a certain heating temperature
  • the Zn cation of the outer layer gradually migrates to the inner layer and undergoes cation exchange reaction with the Cd cation, that is, the Cd ion migrates to the outer layer, and the exchange of Cd and Zn ions occurs;
  • the migration distance is limited and the migration distance of the migration distance is smaller.
  • the Cd content in the vicinity of the interface between the CdSe b S 1 ⁇ b layer and the ZnSe c S 1 ⁇ c layer gradually decreases along the radial direction.
  • Example 7 Preparation based on ZnS/CdS quantum dots
  • the precursor of the cationic Zn and the precursor of the anion S are first injected into the reaction system to form a ZnS layer; the precursor of the cationic Cd and the precursor of the anion S are continuously injected into the reaction system to form a CdS on the surface of the ZnS layer.
  • the Cd cation of the outer layer gradually migrates to the inner layer and undergoes cation exchange reaction with the Zn cation, that is, Zn ions migrate to the outer layer, and Cd and Zn ions occur.
  • Example 8 Preparation based on ZnSe/CdSe quantum dots
  • a precursor of a cationic Zn and a precursor of an anion Se are injected into the reaction system to form a ZnSe layer; and a precursor of a cationic Cd and a precursor of an anion Se are continuously injected into the reaction system to form a CdSe on the surface of the ZnSe layer.
  • the Cd cation of the outer layer gradually migrates to the inner layer and undergoes cation exchange reaction with the Zn cation, that is, Zn ions migrate to the outer layer, and Cd and Zn ions occur.
  • the interchangeability of the cations due to the limited migration distance of the cations and the migration distance of the migration distance is smaller.
  • the Zn content near the interface between the ZnSe layer and the CdSe layer gradually decreases along the radial direction, and the Cd content decreases.
  • a precursor of a cationic Zn, a precursor of an anion Se, and a precursor of an anion S are first injected into a reaction system to form a ZnSe b S 1 -b layer (where 0 ⁇ b ⁇ 1); the precursor of the cationic Cd is continued, The precursor of the anion Se and the precursor of the anion S are injected into the reaction system to form a layer of CdSe c S 1-c on the surface of the above ZnSebS1 ⁇ b layer (where 0 ⁇ c ⁇ 1); at a certain heating temperature and heating time Under the same reaction conditions, the Cd cation of the outer layer will gradually migrate to the inner layer and undergo cation exchange reaction with the Zn cation, that is, the Zn ion migrates to the outer layer, and the exchange of Cd and Zn ions occurs; the migration distance of the cation is limited.
  • the Zn content in the vicinity of the interface between the ZnSe b S 1 ⁇ b layer and the CdSe c S 1 ⁇ c layer will gradually decrease along the radial direction, and the Cd content will decrease.
  • cadmium oleate and zinc oleate precursor 1 mmol of cadmium oxide (CdO), 9 mmol of zinc acetate [Zn(acet) 2 ], 8 mL of oleic acid (Oleic acid), and 15 mL of octadecene (1 -Octadecene) were placed.
  • vacuum degassing was carried out at 80 ° C for 60 min. It is then switched to a nitrogen atmosphere and stored at this temperature for use.
  • 0.6 mmol of cadmium oxide (CdO), 0.6 mL of oleic acid (Oleic acid) and 5.4 mL of octadecene (1 -Octadecene) were placed in a 100 mL three-necked flask, and heated under reflux in a nitrogen atmosphere at 250 ° C for 120 min to obtain a transparent oleic acid.
  • Cadmium precursor 0.6 mmol of cadmium oxide (CdO), 0.6 mL of oleic acid (Oleic acid) and 5.4 mL of octadecene (1 -Octadecene)
  • the cadmium oleate and zinc oleate precursors were heated to 310 ° C under nitrogen atmosphere, and the thiooctadecene precursor was rapidly injected into the reaction system.
  • Cd x Zn 1 ⁇ x S rapidly nucleated and reacted for 10 min.
  • 3 mL of the trioctylphosphine sulfide precursor and 6 mL of the cadmium oleate precursor were simultaneously injected into the reaction system at a rate of 3 mL/h and 10 mL/h, respectively.
  • ⁇ x S as shown in Fig. 8, has an illuminating peak wavelength of 453 nm, and its absorbance gradually decreases as the wavelength increases.
  • Example 11 Preparation of green quantum dots Cd x Zn 1 ⁇ x Se y S 1 ⁇ y /Cd z Zn 1 ⁇ z S with specific structure 1
  • cadmium oleate and zinc oleate precursor 0.4 mmol of cadmium oxide (CdO), 8 mmol of zinc acetate [Zn(acet) 2 ], and 10 mL of oleic acid (Oleic acid) were placed in a 100 mL three-necked flask at 80 ° C. Vacuum degassing for 60 min. It is then switched to a nitrogen atmosphere and stored at this temperature for use.
  • CdO cadmium oxide
  • Zn(acet) 2 zinc acetate
  • Oleic acid 10 mL
  • the cadmium oleate and zinc oleate precursors were heated to 310 ° C under a nitrogen atmosphere, and the trioctylphosphine trisulfide sulfide trioctylphosphine precursor was rapidly injected into the reaction system, Cd x Zn 1 ⁇ x Se y S 1 -y was rapidly nucleated. After 10 min of reaction, 2 mL of the trioctylphosphine sulfide precursor was added dropwise to the reaction system at a rate of 8 mL/h until the precursor was injected.
  • the reaction solution was cooled to room temperature, and the product was repeatedly dissolved and precipitated with toluene and anhydrous methanol, and purified by centrifugation to obtain a green quantum dot Cd x Zn 1 - x having a funnel-type energy level structure with an opening gradually increasing.
  • Example 12 Preparation of red quantum dots Cd x Zn 1 ⁇ x Se y S 1 ⁇ y /CdzZn 1 ⁇ z S with specific structure 1
  • cadmium oleate and zinc oleate precursor 0.8mmol cadmium oxide (CdO), 12mmol B Zinc acid [Zn(acet) 2], 14 mL of oleic acid (Oleic acid) was placed in a 100 mL three-necked flask and vacuum degassed at 80 ° C for 60 min. It is then switched to a nitrogen atmosphere and stored at this temperature for use.
  • the cadmium oleate and zinc oleate precursors were heated to 310 ° C under nitrogen atmosphere, and the trioctylphosphine precursor was quickly injected into the reaction system.
  • Cd x Zn 1 ⁇ x Se rapidly nucleated and reacted for 10 min.
  • 2 mL of a trioctylphosphine selenide-trioctylphosphine sulfide precursor was added dropwise to the reaction system at a rate of 4 mL/h.
  • Example 13 Effect of cadmium oleate injection rate on blue quantum dot synthesis with specific structure 1
  • the slope of the gradient change of the composition of the quantum dot can be controlled, thereby affecting the change of the funnel-shaped energy level structure, and finally the regulation of the quantum dot emission wavelength is realized.
  • cadmium oleate and zinc oleate precursor 1 mmol of cadmium oxide (CdO), 9 mmol of zinc acetate [Zn(acet) 2], 8 mL of oleic acid (Oleic acid), and 15 mL of octadecene (1 ⁇ Octadecene) were placed.
  • vacuum degassing was carried out at 80 ° C for 60 min. It is then switched to a nitrogen atmosphere and stored at this temperature for use.
  • 0.6 mmol of cadmium oxide (CdO), 0.6 mL of oleic acid (Oleic acid) and 5.4 mL of octadecene (1 -Octadecene) were placed in a 100 mL three-necked flask, and heated under reflux in a nitrogen atmosphere at 250 ° C for 120 min to obtain a transparent oleic acid.
  • Cadmium precursor 0.6 mmol of cadmium oxide (CdO), 0.6 mL of oleic acid (Oleic acid) and 5.4 mL of octadecene (1 -Octadecene)
  • the cadmium oleate and zinc oleate precursors were heated to 310 ° C under nitrogen atmosphere, and the thiooctadecene precursor was rapidly injected into the reaction system.
  • Cd x Zn 1 ⁇ x S rapidly nucleated and reacted for 10 min.
  • 3 mL of the trioctylphosphine sulfide precursor was added dropwise to the reaction system at a rate of 3 mL/h, while the cadmium oleate precursor was added dropwise to the reaction system at different injection rates.
  • the injection rate of cadmium oleate precursor is adjusted to achieve quantum dot luminescence wavelength regulation as follows:
  • Cadmium oleate injection rate (mmol/h) Luminous wavelength (nm) 0.5 449 0.75 451 1 453 1.25 455 1.5 456
  • Example 14 Effect of cadmium oleate injection on the synthesis of blue quantum dots with specific structure 1
  • the interval of the gradient change of the composition of the quantum dot can be controlled, thereby affecting the change of the funnel-shaped energy level structure, and finally realizing the quantum dot illumination.
  • Wavelength regulation Based on the same core (alloy quantum dot luminescence peak) The wavelength of the alloy quantum dots at 447 nm) and the injection amount of different cadmium oleate precursors (1 mmol/h at the same injection rate), as shown in the following table:
  • Cadmium oleate injection amount (mmol) Luminous wavelength (nm) 0.4 449 0.5 451 0.6 453 0.8 454 1.0 455
  • cadmium oleate and zinc oleate precursor 1 mmol of cadmium oxide (CdO), 9 mmol of zinc acetate [Zn(acet) 2 ], 8 mL of oleic acid (Oleic acid) and 15 mL of octadecene (1 -Octadecene) were placed in 100 mL In a three-necked flask, vacuum degassing was carried out at 80 ° C for 60 min. It is then switched to a nitrogen atmosphere and stored at this temperature for use.
  • CdO cadmium oxide
  • Zn(acet) 2 zinc acetate
  • Oleic acid oleic acid
  • octadecene 1 -Octadecene
  • 0.6 mmol of cadmium oxide (CdO), 0.6 mL of oleic acid (Oleic acid) and 5.4 mL of octadecene (1 -Octadecene) were placed in a 100 mL three-necked flask, and heated under reflux in a nitrogen atmosphere at 250 ° C for 120 min to obtain a transparent oleic acid.
  • Cadmium precursor 0.6 mmol of cadmium oxide (CdO), 0.6 mL of oleic acid (Oleic acid) and 5.4 mL of octadecene (1 -Octadecene)
  • the cadmium oleate and zinc oleate precursors were heated to 310 ° C under a nitrogen atmosphere, and the thiooctadecene precursor was rapidly injected into the reaction system to form Cd x Zn 1 -x S. After 10 minutes of reaction, the reaction was carried out. The temperature of the system was lowered to 280 ° C, and then 2 mL of a trioctylphosphine sulfide precursor and 6 mL of a cadmium oleate precursor were simultaneously injected into the reaction system at a rate of 3 mL/h and 10 mL/h, respectively.
  • the temperature of the reaction system was raised to 310 ° C, and 1 mL of the trioctylphosphine sulfide precursor was injected into the reaction system at a rate of 3 mL/h.
  • the reaction solution was cooled to room temperature, and then toluene and no.
  • the product was repeatedly dissolved and precipitated by water methanol, and purified by centrifugation to obtain a blue quantum dot of a quantum well level structure.
  • cadmium oleate and zinc oleate precursor 0.4 mmol of cadmium oxide (CdO), 8 mmol of zinc acetate [Zn(acet) 2], 10 mL of oleic acid (Oleic acid) and 20 mL of octadecene (1 -Octadecene) were placed. In a 100 mL three-necked flask, vacuum degassing was carried out at 80 ° C for 60 min. It is then switched to a nitrogen atmosphere and stored at this temperature for use.
  • CdO cadmium oxide
  • Zn(acet) 2 zinc acetate
  • 0.6 mmol of cadmium oxide (CdO), 0.6 mL of oleic acid (Oleic acid) and 5.4 mL of octadecene (1 -Octadecene) were placed in a 100 mL three-necked flask, and heated under reflux in a nitrogen atmosphere at 250 ° C for 120 min to obtain a transparent oleic acid.
  • Cadmium precursor 0.6 mmol of cadmium oxide (CdO), 0.6 mL of oleic acid (Oleic acid) and 5.4 mL of octadecene (1 -Octadecene)
  • the cadmium oleate and zinc oleate precursors were heated to 310 ° C under a nitrogen atmosphere, and the trioctylphosphine trisulfide sulfide trioctylphosphine precursor was rapidly injected into the reaction system to form Cd x Zn 1 ⁇ x.
  • Se y S 1 ⁇ y after reacting for 10 min, the temperature of the reaction system was lowered to 280 ° C, and then 1.2 mL of the trioctylphosphine sulfide precursor and 6 mL of the cadmium oleate precursor were respectively at a rate of 2 mL/h and 10 mL/h. Inject into the reaction system until the precursor is injected.
  • the temperature of the reaction system was raised to 310 ° C, and 0.8 mL of a trioctylphosphine sulfide precursor was injected into the reaction system at a rate of 2 mL/h. After completion of the reaction, after the reaction solution was cooled to room temperature, the product was repeatedly dissolved and precipitated with toluene and anhydrous methanol, and purified by centrifugation to obtain a green quantum dot having a quantum well level structure.
  • cadmium oleate and zinc oleate precursor 0.8 mmol of cadmium oxide (CdO), 12 mmol of zinc acetate [Zn(acet) 2 ], 14 mL of oleic acid (Oleic acid) and 20 mL of octadecene (1 -Octadecene) were placed.
  • vacuum degassing was carried out at 80 ° C for 60 min. It is then switched to a nitrogen atmosphere and stored at this temperature for use.
  • Cadmium precursor 0.3 mmol of cadmium oxide (CdO), 0.3 mL of oleic acid (Oleic acid) and 2.7 mL of octadecene (1 -Octadecene) were placed in a 50 mL three-necked flask, and heated under reflux in a nitrogen atmosphere at 250 ° C for 120 min to obtain a transparent oleic acid.
  • Cadmium precursor 0.3 mmol of cadmium oxide (CdO), 0.3 mL of oleic acid (Oleic acid) and 2.7 mL of octadecene (1 -Octadecene) were placed in a 50 mL three-necked flask, and heated under reflux in a nitrogen atmosphere at 250 ° C for 120 min to obtain a transparent oleic acid.
  • Cadmium precursor 0.3 mmol of cadmium oxide (CdO)
  • oleic acid
  • the cadmium oleate and zinc oleate precursors were heated to 310 ° C under a nitrogen atmosphere, and the trioctylphosphine precursor was quickly injected into the reaction system to form Cd x Zn 1 -x Se. After 10 minutes of reaction, The temperature of the reaction system was lowered to 280 ° C, and then 1 mL of a trioctylphosphine sulfide-trioctylphosphine sulfide precursor and 3 mL of a cadmium oleate precursor were injected into the reaction system at a rate of 2 mL/h and 6 mL/h, respectively.
  • the temperature of the reaction system was raised to 310 ° C, and 1 mL of a trioctylphosphine selenide-trioctylphosphine sulfide precursor was injected into the reaction system at a rate of 4 mL/h.
  • the product was repeatedly dissolved and precipitated with toluene and anhydrous methanol, and purified by centrifugation to obtain a red quantum dot having a quantum well level structure.
  • cadmium oleate and zinc oleate precursor 1 mmol of cadmium oxide (CdO), 9 mmol of zinc acetate [Zn(acet) 2 ], 8 mL of oleic acid (Oleic acid), and 15 mL of octadecene (1 -Octadecene) were placed.
  • vacuum degassing was carried out at 80 ° C for 60 min. It is then switched to a nitrogen atmosphere and stored at this temperature for use.
  • 0.6 mmol of cadmium oxide (CdO), 0.6 mL of oleic acid (Oleic acid) and 5.4 mL of octadecene (1 -Octadecene) were placed in a 100 mL three-necked flask, and heated under reflux in a nitrogen atmosphere at 250 ° C for 120 min to obtain a transparent oleic acid.
  • Cadmium precursor 0.6 mmol of cadmium oxide (CdO), 0.6 mL of oleic acid (Oleic acid) and 5.4 mL of octadecene (1 -Octadecene)
  • the cadmium oleate and zinc oleate precursors were heated to 310 ° C under a nitrogen atmosphere, and the thiooctadecene precursor was rapidly injected into the reaction system, and the Cd x Zn 1 -x S was rapidly nucleated. After 10 minutes of reaction, the reaction was carried out for 10 min.
  • the cadmium oleate precursor and the trioctylphosphine sulfide precursor were continuously injected into the reaction system at a rate of 0.6 mmol/h and 4 mmol/h, respectively, for 20 min.
  • the cadmium oleate precursor, the trioctylphosphine sulfide precursor and the trioctylphosphine selenide precursor were successively injected into the reaction system at a rate of 0.4 mmol/h, 0.6 mmol/h and 0.2 mmol/h, respectively, for 1 h.
  • the product was repeatedly dissolved and precipitated with toluene and anhydrous methanol, and purified by centrifugation to obtain a blue quantum dot (CdZnS/CdZnS/CdZnSeS 3 ) having a quantum well level structure.
  • cadmium oleate and zinc oleate precursor 0.4 mmol of cadmium oxide (CdO), 6 mmol of zinc acetate [Zn(acet) 2 ], 10 mL of oleic acid (Oleic acid) and 20 mL of octadecene (1 -Octadecene) were placed. In a 100 mL three-necked flask, vacuum degassing was carried out at 80 ° C for 60 min. It is then switched to a nitrogen atmosphere and stored at this temperature for use.
  • CdO cadmium oxide
  • Zn(acet) 2 zinc acetate
  • Trioctylphosphine 0.1 mmol of Selenium powder and 0.3 mmol of sulfur powder (Sulfur powder) were dissolved in 2 mL of Trioctylphosphine to obtain trioctylphosphine selenide-trioctylphosphine sulfide precursor 2.
  • 0.6 mmol of cadmium oxide (CdO), 0.6 mL of oleic acid (Oleic acid) and 5.4 mL of octadecene (1 -Octadecene) were placed in a 100 mL three-necked flask, and heated under reflux in a nitrogen atmosphere at 250 ° C for 120 min to obtain a transparent oleic acid.
  • Cadmium precursor 0.6 mmol of cadmium oxide (CdO), 0.6 mL of oleic acid (Oleic acid) and 5.4 mL of octadecene (1 -Octadecene)
  • trioctylphosphine trisulfide sulfide trioctylphosphine precursor 1 was quickly injected into the reaction system to form Cd x Zn 1 ⁇ x SeyS 1 -y , after reacting for 5 min, 2 mL of trioctylphosphine selenide-trioctylphosphine sulfide precursor 2 was added dropwise to the reaction system at a rate of 6 mL/h.
  • trioctylphosphine selenide-trioctylphosphine sulfide precursor 3 and 6 mL of the cadmium oleate precursor were continuously added dropwise to the reaction system at a rate of 3 mL/h and 6 mL/h, respectively.
  • the reaction solution was cooled to room temperature, the product was repeatedly dissolved and precipitated with toluene and anhydrous methanol, and purified by centrifugation to obtain a green quantum dot having a quantum well level structure (CdZn 3 SeS 3 /Zn 4 SeS 3 / Cd 3 Zn 5 Se 4 S 4 ).
  • cadmium oleate and zinc oleate precursor 0.8 mmol of cadmium oxide (CdO), 12 mmol of zinc acetate [Zn(acet) 2 ], 14 mL of oleic acid (Oleic acid) and 20 mL of octadecene (1 -Octadecene) were placed.
  • vacuum degassing was carried out at 80 ° C for 60 min. It is then switched to a nitrogen atmosphere and stored at this temperature for use.
  • the cadmium oleate and zinc oleate precursors were heated to 310 ° C under a nitrogen atmosphere, and the trioctylphosphine precursor was quickly injected into the reaction system to form Cd x Zn 1 -x Se. After 10 minutes of reaction, 2 mL of a trioctylphosphine selenide-trioctylphosphine sulfide precursor was added dropwise to the reaction system at a rate of 2 mL/h. When injected for 30 min, 3 mL of a cadmium oleate precursor was simultaneously added dropwise to the reaction system at a rate of 6 mL/h.
  • cadmium oleate and zinc oleate precursor 1 mmol of cadmium oxide (CdO), 9 mmol of zinc acetate [Zn(acet) 2 ], 8 mL of oleic acid (Oleic acid), and 15 mL of octadecene (1 -Octadecene) were placed.
  • vacuum degassing was carried out at 80 ° C for 60 min. It is then switched to a nitrogen atmosphere and stored at this temperature for use.
  • 0.6 mmol of cadmium oxide (CdO), 0.6 mL of oleic acid (Oleic acid) and 5.4 mL of octadecene (1 -Octadecene) were placed in a 100 mL three-necked flask, and heated under reflux in a nitrogen atmosphere at 250 ° C for 120 min to obtain a transparent oleic acid.
  • Cadmium precursor 0.6 mmol of cadmium oxide (CdO), 0.6 mL of oleic acid (Oleic acid) and 5.4 mL of octadecene (1 -Octadecene)
  • the cadmium oleate and zinc oleate precursors were heated to 310 ° C under a nitrogen atmosphere, and the thiooctadecene precursor was rapidly injected into the reaction system to form Cd x Zn 1 -x S. After 10 minutes of reaction, the oil was oiled.
  • the cadmium acid precursor and the trioctylphosphine selenide precursor were continuously injected into the reaction system at a rate of 0.6 mmol/h and 0.6 mmol/h, respectively, for 20 min.
  • the cadmium oleate precursor and the trioctylphosphine sulfide precursor were continuously injected at a rate of 0.4 mmol/h and 6 mmol/h for 1 hour to the reaction system.
  • the product was repeatedly dissolved and precipitated with toluene and anhydrous methanol, and purified by centrifugation to obtain a blue quantum dot (CdZnS/CdZnSe/CdZnS) having a quantum well level structure.
  • cadmium oleate and zinc oleate precursor 1 mmol of cadmium oxide (CdO), 9 mmol of zinc acetate [Zn(acet) 2 ], 8 mL of oleic acid (Oleic acid), and 15 mL of octadecene (1 -Octadecene) were placed.
  • vacuum degassing was carried out at 80 ° C for 60 min. It is then switched to a nitrogen atmosphere and stored at this temperature for use.
  • Cadmium precursor 0.8 mmol of cadmium oxide (CdO), 1.2 mL of oleic acid (Oleic acid) and 4.8 mL of octadecene (1 -Octadecene) were placed in a 100 mL three-necked flask, and heated under reflux in a nitrogen atmosphere at 250 ° C for 120 min to obtain a transparent oleic acid.
  • Cadmium precursor 0.8 mmol of cadmium oxide (CdO), 1.2 mL of oleic acid (Oleic acid) and 4.8 mL of octadecene (1 -Octadecene) were placed in a 100 mL three-necked flask, and heated under reflux in a nitrogen atmosphere at 250 ° C for 120 min to obtain a transparent oleic acid.
  • Cadmium precursor 0.8 mmol of cadmium oxide (CdO)
  • oleic acid
  • the cadmium oleate and zinc oleate precursors were heated to 310 ° C under a nitrogen atmosphere, and the thiooctadecene precursor was rapidly injected into the reaction system to form Cd x Zn 1 -x S. After 10 minutes of reaction, the oil was oiled.
  • the cadmium acid precursor and the trioctylphosphine selenide precursor were continuously injected into the reaction system at a rate of 0.6 mmol/h and 0.6 mmol/h, respectively, for 40 min.
  • the cadmium oleate precursor and the trioctylphosphine sulfide precursor were continuously injected into the reaction system at a rate of 0.4 mmol/h and 6 mmol/h, respectively, for 1 hour.
  • the product was repeatedly dissolved and precipitated with toluene and anhydrous methanol, and purified by centrifugation to obtain a green quantum dot (CdZnS/CdZnSe/CdZnS) having a quantum well level structure.
  • cadmium oleate and zinc oleate precursor 0.8 mmol of cadmium oxide (CdO), 12 mmol of zinc acetate [Zn(acet) 2 ], 14 mL of oleic acid (Oleic acid) and 20 mL of octadecene (1 -Octadecene) were placed.
  • vacuum degassing was carried out at 80 ° C for 60 min. It is then switched to a nitrogen atmosphere and stored at this temperature for use.
  • the cadmium oleate and zinc oleate precursors were heated to 310 ° C under a nitrogen atmosphere, and the trioctylphosphine selenide-trioctylphosphine sulfide precursor 1 was injected into the reaction system to form Cd x Zn 1 ⁇ x. Se, after reacting for 10 min, 2 mL of a trioctylphosphine selenide precursor and 3 mL of a cadmium oleate precursor were added dropwise to the reaction system at a rate of 4 mL/h and 6 mL/h, respectively.
  • trioctylphosphine selenide-trioctylphosphine sulfide precursor 2 and 3 mL of cadmium oleate precursor were added dropwise to the reaction system at a rate of 2 mL/h and 3 mL/h, respectively.
  • the reaction solution is cooled to room temperature, the product is repeatedly dissolved and precipitated with toluene and anhydrous methanol, and purified by centrifugation to obtain a red quantum dot of a quantum well level structure (Cd x Zn 1 ⁇ x Se/CdZnSe/Cd). z Zn 1 ⁇ z SeS).
  • cadmium oleate and zinc oleate precursor 1 mmol of cadmium oxide (CdO), 9 mmol of zinc acetate [Zn(acet) 2 ], 8 mL of oleic acid (Oleic acid), and 15 mL of octadecene (1 -Octadecene) were placed.
  • vacuum degassing was carried out at 80 ° C for 60 min. It is then switched to a nitrogen atmosphere and stored at this temperature for use.
  • 0.6 mmol of cadmium oxide (CdO), 0.6 mL of oleic acid (Oleic acid) and 5.4 mL of octadecene (1 -Octadecene) were placed in a 100 mL three-necked flask, and heated under reflux in a nitrogen atmosphere at 250 ° C for 120 min to obtain a transparent oleic acid.
  • Cadmium precursor 0.6 mmol of cadmium oxide (CdO), 0.6 mL of oleic acid (Oleic acid) and 5.4 mL of octadecene (1 -Octadecene)
  • the cadmium oleate and zinc oleate precursors were heated to 310 ° C under a nitrogen atmosphere, and the thiooctadecene precursor was rapidly injected into the reaction system to form Cd x Zn 1 -x S. After 10 minutes of reaction, 3 mL was obtained.
  • the trioctylphosphine sulfide precursor was continuously injected into the reaction system at a rate of 3 mL/h for 1 h. When the trioctylphosphine sulfide precursor was injected for 20 min, 2 mL of the cadmium oleate precursor was injected into the reaction system at 6 mL/h.
  • cadmium oleate and zinc oleate precursor 0.4 mmol of cadmium oxide (CdO), 6 mmol of zinc acetate [Zn(acet) 2 ], 10 mL of oleic acid (Oleic acid) and 20 mL of octadecene (1 -Octadecene) were placed. In a 100 mL three-necked flask, vacuum degassing was carried out at 80 ° C for 60 min. It is then switched to a nitrogen atmosphere and stored at this temperature for use.
  • CdO cadmium oxide
  • Zn(acet) 2 zinc acetate
  • 0.6 mmol of cadmium oxide (CdO), 0.6 mL of oleic acid (Oleic acid) and 5.4 mL of octadecene (1 -Octadecene) were placed in a 100 mL three-necked flask, and heated under reflux in a nitrogen atmosphere at 250 ° C for 120 min to obtain a transparent oleic acid.
  • Cadmium precursor 0.6 mmol of cadmium oxide (CdO), 0.6 mL of oleic acid (Oleic acid) and 5.4 mL of octadecene (1 -Octadecene)
  • the cadmium oleate and zinc oleate precursors were heated to 310 ° C under a nitrogen atmosphere, and the trioctylphosphine trisulfide sulfide trioctylphosphine precursor was rapidly injected into the reaction system to form Cd x Zn 1 ⁇ x.
  • Se y S 1 ⁇ y after reacting for 10 min, 3 mL of the trioctylphosphine sulfide precursor was continuously injected at a rate of 3 mL/h for 1 h into the reaction system.
  • the trioctylphosphine sulfide precursor was injected for 20 min, 2 mL of oleic acid was added.
  • the cadmium precursor was injected into the reaction system at 6 mL/h.
  • the trioctylphosphine sulfide precursor was injected for 40 min, 4 mL of the cadmium oleate precursor was injected into the reaction system at 12 mL/h.
  • the product was repeatedly dissolved and precipitated with toluene and anhydrous methanol, and purified by centrifugation to obtain a green quantum dot (CdZnSeS/ZnS/CdZnS) having a quantum well level structure.
  • cadmium oleate and zinc oleate precursor 0.8 mmol of cadmium oxide (CdO), 12 mmol of zinc acetate [Zn(acet) 2 ], 14 mL of oleic acid (Oleic acid) and 20 mL of octadecene (1 -Octadecene) were placed.
  • vacuum degassing was carried out at 80 ° C for 60 min. It is then switched to a nitrogen atmosphere and stored at this temperature for use.
  • 0.6 mmol of cadmium oxide (CdO), 0.6 mL of oleic acid (Oleic acid) and 5.4 mL of octadecene (1 -Octadecene) were placed in a 100 mL three-necked flask, and heated under reflux in a nitrogen atmosphere at 250 ° C for 120 min to obtain a transparent oleic acid.
  • Cadmium precursor 0.6 mmol of cadmium oxide (CdO), 0.6 mL of oleic acid (Oleic acid) and 5.4 mL of octadecene (1 -Octadecene)
  • the cadmium oleate and zinc oleate precursors were heated to 310 ° C under a nitrogen atmosphere, and the trioctylphosphine precursor was quickly injected into the reaction system to form Cd x Zn 1 -x Se. After 10 minutes of reaction, The trioctylphosphine sulfide precursor was continuously injected into the reaction system at a rate of 6 mmol/h for 1 h. When S-TOP was injected for 20 min, 0.2 mmol of cadmium oleate precursor was injected into the reaction system at 0.6 mmol/h.
  • cadmium acid and zinc oleate precursors 1 mmol of cadmium oxide (CdO), 9 mmol of zinc acetate [Zn(acet) 2 ], 8 mL of oleic acid (Oleic acid), and 15 mL of octadecene (1 -Octadecene) in 100 mL
  • vacuum degassing was carried out at 80 ° C for 60 min. It is then switched to a nitrogen atmosphere and stored at this temperature for use.
  • 0.6 mmol of cadmium oxide (CdO), 0.6 mL of oleic acid (Oleic acid) and 5.4 mL of octadecene (1 -Octadecene) were placed in a 100 mL three-necked flask, and heated under reflux in a nitrogen atmosphere at 250 ° C for 120 min to obtain a transparent oleic acid.
  • Cadmium precursor 0.6 mmol of cadmium oxide (CdO), 0.6 mL of oleic acid (Oleic acid) and 5.4 mL of octadecene (1 -Octadecene)
  • the cadmium oleate and zinc oleate precursors were heated to 310 ° C under a nitrogen atmosphere, and the thiooctadecene precursor was rapidly injected into the reaction system to form Cd x Zn 1 -x S. After 10 minutes of reaction, the sulfide was vulcanized.
  • the trioctylphosphine precursor and the cadmium oleate precursor were added dropwise to the reaction system at a rate of 6 mmol/h and 0.6 mmol/h, respectively.
  • cadmium oleate and zinc oleate precursor 0.4 mmol of cadmium oxide (CdO), 8 mmol of zinc acetate [Zn(acet) 2 ], and 10 mL of oleic acid (Oleic acid) were placed in a 100 mL three-necked flask at 80 ° C. Vacuum degassing for 60 min. It is then switched to a nitrogen atmosphere and stored at this temperature for use.
  • CdO cadmium oxide
  • Zn(acet) 2 zinc acetate
  • Oleic acid 10 mL
  • the cadmium oleate and zinc oleate precursors were heated to 310 ° C under a nitrogen atmosphere, and the trioctylphosphine trisulfide sulfide trioctylphosphine precursor was rapidly injected into the reaction system to form Cd x Zn 1 ⁇ x.
  • Se y S 1 ⁇ y after reacting for 10 min, the temperature of the reaction system was lowered to 280 ° C, and the trioctylphosphine sulfide precursor was added dropwise to the reaction system at a rate of 4 mL/h.
  • cadmium oleate and zinc oleate precursor 0.8 mmol of cadmium oxide (CdO), 12 mmol of zinc acetate [Zn(acet) 2 ], and 14 mL of oleic acid (Oleic acid) were placed in a 100 mL three-necked flask at 80 ° C. Vacuum degassing for 60 min. It is then switched to a nitrogen atmosphere and stored at this temperature for use.
  • the cadmium oleate and zinc oleate precursors were heated to 310 ° C under nitrogen atmosphere, and the trioctylphosphine precursor was quickly injected into the reaction system.
  • Cd x Zn 1 ⁇ x Se rapidly nucleated and reacted for 10 min.
  • the temperature of the reaction system was lowered to 280 ° C, and a trioctylphosphine sulfide-trioctylphosphine sulfide precursor was added dropwise to the reaction system at a rate of 4 mL/h.
  • cadmium oleate first precursor 1 mmol of cadmium oxide (CdO), 1 mL of oleic acid (Oleic acid) and 5 mL of octadecene (1 -Octadecene) were placed in a 100 mL three-necked flask and vacuum degassed at 80 ° C for 60 mins. . It is then switched to a nitrogen atmosphere and stored at this temperature for use.
  • CdO cadmium oxide
  • Oleic acid oleic acid
  • octadecene 1 -Octadecene
  • cadmium oleate second precursor 0.6 mmol of cadmium oxide (CdO), 0.6 mL of oleic acid (Oleic acid) and 5.4 mL of octadecene (1 -Octadecene) were placed in a 100 mL three-necked flask at 250 ° C under nitrogen atmosphere. Heating under reflux for 120 mins gave a transparent second precursor of cadmium oleate.
  • CdO cadmium oxide
  • Oleic acid oleic acid
  • octadecene octadecene
  • the first precursor of cadmium oleate was heated to 310 ° C under nitrogen atmosphere, and the thiooctadecene precursor was rapidly injected into the reaction system to rapidly form CdS. After 10 mins of reaction, the zinc oleate precursor was completely injected into the reaction system. Subsequently, 3 mL of the trioctylphosphine sulfide precursor and 6 mL of the cadmium oleate precursor were simultaneously injected into the reaction system at a rate of 3 mL/h and 10 mL/h, respectively.
  • the reaction liquid is cooled to room temperature, the product is repeatedly used with toluene and anhydrous methanol. Dissolved, precipitated, and purified by centrifugation to obtain blue quantum dots having a quantum well level structure.
  • cadmium oleate precursor 0.4 mmol of cadmium oxide (CdO), 1 mL of oleic acid (Oleic acid) and 5 mL of octadecene (1 -Octadecene) were placed in a 100 mL three-necked flask and vacuum degassed at 80 ° C for 60 mins. It was then heated to reflux at 250 ° C under a nitrogen atmosphere and stored at this temperature for use.
  • CdO cadmium oxide
  • Oleic acid oleic acid
  • octadecene 1 -Octadecene
  • the cadmium oleate precursor was heated to 310 ° C under nitrogen atmosphere, and the trioctylphosphine precursor was quickly injected into the reaction system to rapidly form CdSe. After 5 mins, all the zinc oleate precursors were injected into the reaction. In the system, 2 mL of a trioctylphosphine selenide-trioctylphosphine sulfide precursor was added dropwise to the reaction system at a rate of 2 mL/h until the precursor was injected.
  • the product was repeatedly dissolved and precipitated with toluene and anhydrous methanol, and purified by centrifugation to obtain a green fluorescent quantum dot having a quantum well level structure.
  • cadmium oleate precursor 0.8 mmol of cadmium oxide (CdO), 4 mL of oleic acid (Oleic acid) and 10 mL of octadecene (1 -Octadecene) were placed in a 100 mL three-necked flask and vacuum degassed at 80 ° C for 60 mins. It was then heated to reflux at 250 ° C under a nitrogen atmosphere and stored at this temperature for use.
  • CdO cadmium oxide
  • Oleic acid oleic acid
  • octadecene 1 -Octadecene
  • Zinc oleate precursor preparation 12mmol zinc acetate [Zn(acet) 2 ], 10mL oleic acid (Oleic acid) and 10mL octadecene (1 ⁇ Octadecene) were placed in a 100mL three-necked flask and vacuum degassed at 80 ° C 60mins.
  • the cadmium oleate precursor was heated to 310 ° C under nitrogen atmosphere, and the trioctylphosphine precursor was quickly injected into the reaction system to rapidly form CdSe. After 10 mins of reaction, the zinc oleate precursor was injected into the reaction. In the system, 2 mL of a trioctylphosphine selenide-trioctylphosphine sulfide precursor was added dropwise to the reaction system at a rate of 4 mL/h.
  • the product was repeatedly dissolved and precipitated with toluene and anhydrous methanol, and purified by centrifugation to obtain a red fluorescent quantum dot having a quantum well level structure.
  • the quantum dot light emitting diode of this embodiment includes an ITO substrate 11, a bottom electrode 12, a PEDOT: PSS hole injection layer 13, a poly-TPD hole transport layer 14, and a quantum dot in this order from bottom to top.
  • the light-emitting layer 15, the ZnO electron transport layer 16, and the Al top electrode 17.
  • a quantum dot light-emitting layer is prepared on the poly-TPD hole transport layer 14. 15. The thickness was 20 nm, and then a 40 nm ZnO electron transport layer 16 and a 100 nm Al top electrode 17 were prepared on the quantum dot light-emitting layer 15.
  • the quantum dot composite of the quantum dot luminescent layer 15 is a quantum dot composite as described in Example 10.
  • the quantum dot light emitting diode in this embodiment includes: ITO from bottom to top. Substrate 21, bottom electrode 22, PEDOT: PSS hole injection layer 23, Poly (9-vinylcarbazole) (PVK) hole transport layer 24, quantum dot light-emitting layer 25, ZnO electron transport layer 26, and Al top electrode 27.
  • a quantum dot light-emitting layer 25 is prepared on the PVK hole transport layer 24, and the thickness is At 20 nm, a 40 nm ZnO electron transport layer 26 and a 100 nm Al top electrode 27 were subsequently prepared on the quantum dot light-emitting layer 25.
  • the quantum dot composite of the quantum dot light-emitting layer 25 is the quantum dot composite as described in Example 15.
  • the quantum dot light-emitting diode of this embodiment includes, in order from bottom to top, an ITO substrate 31, a bottom electrode 32, a PEDOT: PSS hole injection layer 33, a poly-TPD hole transport layer 34, and a quantum dot.
  • a quantum dot light-emitting layer is prepared on the poly-TPD hole transport layer 34.
  • 35, a thickness of 20 nm, and then a 30 nm TPBi electron transport layer 36 and a 100 nm Al top electrode 37 were prepared by vacuum evaporation on the quantum dot light-emitting layer 35.
  • the quantum dot composite of the quantum dot luminescent layer 35 is a quantum dot composite as described in Example 18.
  • the quantum dot light-emitting diode of this embodiment includes, in order from bottom to top, an ITO substrate 41, a bottom electrode 42, a ZnO electron transport layer 43, a quantum dot light-emitting layer 44, an NPB hole transport layer 45, and a MoO. 3 hole injection layer 46 and Al top electrode 47.
  • a bottom electrode 42 and a 40 nm ZnO electron transport layer 43 are sequentially prepared on the ITO substrate 41, and a quantum dot light-emitting layer 44 is formed on the ZnO electron transport layer 43 to a thickness of 20 nm, and then a 30 nm NPB space is prepared by a vacuum evaporation method.
  • the quantum dot composite of the quantum dot luminescent layer 44 is a quantum dot composite as described in Example 21.
  • the quantum dot light emitting diode of this embodiment includes, in order from bottom to top, a glass substrate 51, an Al electrode 52, a PEDOT: PSS hole injection layer 53, a poly-TPD hole transport layer 54, and a quantum dot.
  • a 100 nm Al electrode 52 was prepared on the glass substrate 51 by a vacuum evaporation method, and then a 30 nm PEDOT:PSS hole injection layer 53 and a 30 nm poly-TPD hole transport layer 54 were sequentially prepared, followed by a poly-TPD hole transport layer 54.
  • a quantum dot light-emitting layer 55 was prepared to have a thickness of 20 nm, and then a 40 nm ZnO electron transport layer 56 was prepared on the quantum dot light-emitting layer 55. Finally, 120 nm of ITO was prepared as a top electrode 57 by a sputtering method.
  • the quantum dot composite of the quantum dot luminescent layer 55 is the quantum dot composite as described in Example 24.
  • the quantum dot light-emitting diode of this embodiment includes, in order from bottom to top, a glass substrate 61, an Al electrode 62, a ZnO electron transport layer 63, a quantum dot light-emitting layer 64, an NPB hole transport layer 65, and a MoO. 3 hole injection layer 66 and ITO top electrode 67.
  • a 100 nm Al electrode 62 is prepared on the glass substrate 61 by a vacuum evaporation method, and then a 40 nm ZnO electron transport layer 63, a 20 nm quantum dot light emitting layer 64 is sequentially prepared, and then a 30 nm NPB hole transport layer 65 is prepared by a vacuum evaporation method. 5 nm MoO 3 hole injection layer 66, and finally 120 nm ITO was prepared as a top electrode 67 by a sputtering method.
  • the quantum dot composite of the quantum dot luminescent layer is the quantum dot composite as described in Example 27.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种量子点复合材料、制备方法及半导体器件。方法包括步骤:在预定位置处合成第一种化合物;在第一种化合物的表面合成第二种化合物,所述第一种化合物与所述第二种化合物的合金组分相同或者不同;第一种化合物和第二种化合物体之间发生阳离子交换反应形成量子点复合材料,所述量子点复合材料的发光峰波长出现蓝移、红移和不变中的一种或多种。利用量子点SILAR合成法精确控制量子点逐层生长以及利用量子点一步合成法形成渐变组分过渡壳。通过上述方法所制备的量子点复合材料,不仅实现了更高效的量子点复合材料发光效率,同时也更能满足半导体器件及相应显示技术对量子点复合材料的综合性能要求。

Description

一种量子点复合材料、制备方法及半导体器件 技术领域
本发明涉及量子点领域,尤其涉及一种量子点复合材料、制备方法及半导体器件。
背景技术
量子点是一种在三个维度尺寸上均被限制在纳米数量级的特殊材料,这种显著的量子限域效应使得量子点具有了诸多独特的纳米性质:发射波长连续可调、发光波长窄、吸收光谱宽、发光强度高、荧光寿命长以及生物相容性好等。这些特点使得量子点在平板显示、固态照明、光伏太阳能、生物标记等领域均具有广泛的应用前景。尤其是在平板显示应用方面,基于量子点材料的量子点电致发光二极管器件(Quantum dot light‐emitting diodes,QLED)借助于量子点纳米材料的特性和优化,已经在显示画质、器件性能、制造成本等方面展现出了巨大的潜力。虽然近年来QLED器件在各方面的性能不断得到提升,但无论是在器件效率还是在器件工作稳定性等基本器件性能参数上还与产业化应用的要求有相当的差距,这也大大阻碍了量子点电致发光显示技术的发展和应用。另外,不仅限于QLED器件,在其他领域中,量子点材料相对于传统材料的特性也被逐渐重视,例如光致发光器件、太阳能电池、显示器件、光电探测器、生物探针以及非线性光学器件等等,以下仅以QLED器件为例进行说明。
虽然量子点作为一种经典的纳米材料已经被研究和开发超过30年,但是利用量子点的优良发光特性并将其作为量子点材料应用在QLED器件及相应的显示技术中的研究时间还很短;因此目前绝大部分的QLED器件的开发和研究均是基于已有经典结构体系的量子点材料,相应的量子点材料的 筛选和优化的标准还基本是从量子点自身的发光性能例如量子点的发光峰宽、溶液量子产率等出发。将以上量子点直接应用于QLED器件结构中从而获得相应的器件性能结果。
但QLED器件及相应的显示技术作为一套复杂的光电器件体系,会有诸多方面的因素会影响器件的性能。单从作为核心发光层材料的量子点材料出发,所需权衡的量子点性能指标就会复杂得多。
首先,量子点在QLED器件中是以量子点发光层固态薄膜的形式存在的,因此量子点材料原本在溶液中所得到的各项发光性能参数在形成固态薄膜后会表现出明显的差异:例如在固态薄膜中发光峰波长会有不同程度的红移(向长波长移动)、发光峰宽度会变大、量子产率会有不同程度的降低,也就是说量子点材料在溶液中的优良发光性能并不能完全被继承至QLED器件的量子点固态薄膜中。因此在设计和优化量子点材料的结构和合成配方时,需同时考虑量子点材料自身的发光性能最优化以及量子点材料在固态薄膜状态下的发光性能继承最大化。
其次,在QLED器件中量子点材料的发光是通过电致激发来实现的,即分别从QLED器件的阳极和阴极通电注入空穴和电子,空穴和电子通过QLED器件中相应功能层的传输在量子点发光层复合后,通过辐射跃迁的方式发射光子即实现发光。从以上过程可以看出,量子点自身的发光性能例如发光效率只是影响上述过程中辐射跃迁的效率,而QLED器件的整体发光效率还会同时受到上述过程中空穴和电子在量子点材料中的电荷注入和传输效率、空穴和电子在量子点材料中的相对电荷平衡、空穴和电子在量子点材料中的复合区域等的影响。因此在设计和优化量子点材料的结构尤其是量子点的精细核壳纳米结构时,还需重点考虑量子点形成固态薄膜以后的电学性能:例如量子点的电荷注入和传导性能、量子点的精细能带结构、量子点的激子寿命等。
最后,考虑到QLED器件及相应显示技术未来将通过极具生产成本优势 的溶液法例如喷墨打印法进行制备,因此量子点的材料设计和开发需要考虑量子点溶液的加工性能,例如量子点溶液或打印墨水的可分散溶解性、胶体稳定性、打印成膜性等。同时,量子点材料的开发还要与QLED器件其他功能层材料以及器件的整体制备工艺流程和要求作协同。
总之,传统的仅从提升量子点自身发光性能考虑出发的量子点结构设计是无法满足QLED器件及相应显示技术对于量子点材料在光学性能、电学性能、加工性能等多方面的综合要求的。需要针对QLED器件及相应显示技术的要求,对量子点量子点材料的精细核壳结构、组分、能级等进行量身定制。
由于量子点的高表面原子比率,未与表面配体(Ligand)形成非共价键(Dangling bond)的原子将以表面缺陷态存在,这种表面缺陷态将会引起非辐射途径的跃迁从而使得量子点的发光量子产率大幅被降低。为解决这一问题,可以在原量子点外层表面生长包含另一种半导体材料的半导体壳层,形成量子点的核壳(core‐shell)结构,可以显著改善量子点的发光性能,同时增加量子点的稳定性。
可应用于高性能QLED器件开发的量子点材料主要为具有核壳结构的量子点,其核和壳成分分别固定且核壳具有明确边界。例如具有CdSe/ZnS核壳结构的量子点(J.Phys.Chem.,1996,100(2),468–471)、具有CdSe/CdS核壳结构的量子点(J.Am.Chem.Soc.1997,119,(30),7019‐7029)、具有CdS/ZnS核壳结构的量子点、具有CdS/CdSe/CdS核+多层壳层结构的量子点(Patent US 7,919,012B2)、具有CdSe/CdS/ZnS核+多层壳层结构的量子点(J.Phys.Chem.B,2004,108(49),18826–18831)等。在这些核壳结构的量子点中,通常来说核和壳的组成成分是固定并且不同的,且一般是由一种阳离子和一种阴离子组成的二元化合物体系。在这种结构中,由于核和壳的生长是独立分别进行的,因此核和壳之间的边界是明确,即核和壳可以区分的。这种核壳结构量子点的开发大大提升了原先单一成分量子点的发光量子效 率、单分散性以及量子点稳定性。
以上所述核壳结构的量子点虽然部分提高了量子点性能,但无论从设计思路还是从优化方案上均还是基于提升量子点自身的发光效率方面考虑,且发光性能还有待提高,另外也未综合考虑半导体器件对于量子点材料的其他方面特殊要求。
因此,上述技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种量子点复合材料、制备方法及半导体器件,旨在解决现有制备方法制备的量子点材料其发光性能有待提高、无法满足半导体器件对于量子点复合材料的要求的问题。
本发明的技术方案如下:
在预定位置处合成第一种化合物;
在第一种化合物的表面合成第二种化合物,所述第一种化合物与所述第二种化合物的合金组分相同或者不同;
第一种化合物和第二种化合物体之间发生阳离子交换反应形成量子点复合材料,所述量子点复合材料的发光峰波长出现蓝移、红移和不变中的一种或多种。
所述的量子点复合材料的制备方法,其中,所述量子点复合材料的发光峰波长出现连续蓝移。
所述的量子点复合材料的制备方法,其中,所述量子点复合材料的发光峰波长出现交替的蓝移和不变。
所述的量子点复合材料的制备方法,其中,所述量子点复合材料的发光峰波长出现交替的蓝移和红移。
所述的量子点复合材料的制备方法,其中,所述量子点复合材料的发 光峰波长出现间断的蓝移。
所述的量子点复合材料的制备方法,其中,所述量子点复合材料的发光峰波长出现间断的红移。
所述的量子点复合材料的制备方法,其中,所述量子点复合材料的发光峰波长先出现蓝移,而后不变。
所述的量子点复合材料的制备方法,其中,所述量子点复合材料的发光峰波长出现连续红移。
所述的量子点复合材料的制备方法,其中,所述第一种化合物和/或所述第二种化合物的阳离子前驱体包括Zn的前驱体,所述Zn的前驱体为二甲基锌、二乙基锌、醋酸锌、乙酰丙酮锌、碘化锌、溴化锌、氯化锌、氟化锌、碳酸锌、氰化锌、硝酸锌、氧化锌、过氧化锌、高氯酸锌或硫酸锌中的至少一种。
所述的量子点复合材料的制备方法,其中,所述第一种化合物和/或所述第二种化合物的阳离子前驱体包括Cd的前驱体,所述Cd的前驱体为二甲基镉、二乙基镉、醋酸镉、乙酰丙酮镉、碘化镉、溴化镉、氯化镉、氟化镉、碳酸镉、硝酸镉、氧化镉、高氯酸镉、磷酸镉或硫酸镉中的至少一种。
所述的量子点复合材料的制备方法,其中,所述第一种化合物和/或所述第二种化合物的阴离子前驱体包括Se的前驱体,所述Se的前驱体为Se‐TOP、Se‐TBP、Se‐TPP、Se‐ODE、Se‐OA、Se‐ODA、Se‐TOA、Se‐ODPA或Se‐OLA中的至少一种。
所述的量子点复合材料的制备方法,其中,所述第一种化合物和/或所述第二种化合物的阴离子前驱体包括S的前驱体,所述S的前驱体为S‐TOP、S‐TBP、S‐TPP、S‐ODE、S‐OA、S‐ODA、S‐TOA、S‐ODPA、S‐OLA或烷基硫醇中的至少一种。
所述的量子点复合材料的制备方法,其中,所述第一种化合物和/或所 述第二种化合物的阴离子前驱体包括Te的前驱体,所述Te的前驱体为Te‐TOP、Te‐TBP、Te‐TPP、Te‐ODE、Te‐OA、Te‐ODA、Te‐TOA、Te‐ODPA或Te‐OLA中的至少一种。
所述的量子点复合材料的制备方法,其中,在加热条件下使第一种化合物和第二种化合物之间发生阳离子交换反应。
所述的量子点复合材料的制备方法,其中,加热温度在100℃至400℃之间。
所述的量子点复合材料的制备方法,其中,加热时间在2s至24h之间。
所述的量子点复合材料的制备方法,其中,合成第一种化合物时,阳离子前驱体与阴离子前驱体的摩尔投料比为100:1到1:50之间。
所述的量子点复合材料的制备方法,其中,合成第二种化合物时,阳离子前驱体与阴离子前驱体的摩尔投料比为100:1到1:50之间。
一种量子点复合材料,其中,所述量子点复合材料采用如上任一所述的制备方法制备而成。
一种半导体器件,其中,包括如上所述的量子点复合材料。
所述的半导体器件,其中,所述半导体器件为电致发光器件、光致发光器件、太阳能电池、显示器件、光电探测器、生物探针以及非线性光学器件中的任意一种。
有益效果:本发明通过上述制备方法所制备的量子点复合材料,不仅实现了更高效的量子点复合材料发光效率,同时也更能满足半导体器件及相应显示技术对量子点复合材料的综合性能要求,是一种适合半导体器件及显示技术的理想量子点量子点复合材料。
附图说明
图1为本发明一种量子点复合材料具体结构1的能级结构曲线。
图2为本发明一种量子点复合材料具体结构2的能级结构曲线。
图3为本发明一种量子点复合材料具体结构3的能级结构曲线。
图4为本发明一种量子点复合材料具体结构4的能级结构曲线。
图5为本发明一种量子点复合材料具体结构5的能级结构曲线。
图6为本发明一种量子点复合材料具体结构6的能级结构曲线。
图7为本发明一种量子点复合材料具体结构7的能级结构曲线。
图8为本发明实施例10所述量子点的发光峰波长图。
图9为本发明实施例11所述量子点的发光峰波长图。
图10为本发明实施例12所述量子点的发光峰波长图。
图11为本发明实施例33中量子点发光二极管的结构示意图。
图12为本发明实施例34中量子点发光二极管的结构示意图。
图13为本发明实施例35中量子点发光二极管的结构示意图。
图14为本发明实施例36中量子点发光二极管的结构示意图。
图15为本发明实施例37中量子点发光二极管的结构示意图。
图16为本发明实施例38中量子点发光二极管的结构示意图。
具体实施方式
本发明提供一种量子点复合材料、制备方法及半导体器件,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供一种量子点复合材料的制备方法,其包括步骤:
在预定位置处合成第一种化合物;
在第一种化合物的表面合成第二种化合物,所述第一种化合物与所述第二种化合物的合金组分相同或者不同;
第一种化合物和第二种化合物体之间发生阳离子交换反应形成量子点复合材料,所述量子点复合材料的发光峰波长出现蓝移、红移和不变中的 一种或多种。
本发明的制备方法将量子点SILAR合成法结合量子点一步合成法生成量子点,具体为利用量子点逐层生长以及利用量子点一步合成法形成渐变组分过渡壳。即在预定位置处先后形成两层具有相同或者不同合金组分的化合物薄层,通过使两层化合物之间发生阳离子交换反应,从而实现在预定位置处的合金组分分布。重复以上过程可以不断实现在径向方向预定位置处的合金组分分布。
所述的第一种化合物和第二种化合物可以是二元或者二元以上化合物。
本发明所制备的量子点复合材料,所述量子点复合材料包括至少一个在径向方向上依次排布的量子点结构单元,所述量子点结构单元为径向方向上能级宽度变化的渐变合金组分结构或径向方向上能级宽度一致的均一组分结构。
也就是说本发明所制备的量子点复合材料中,每个量子点结构单元内部从内至外沿径向方向上任一位置上的一层单原子层或一层以上的单原子层范围内均为具有合金组分的结构。
进一步,在本发明中,所述量子点结构单元包含II族和VI族元素。所述II族元素包括但不限于Zn、Cd、Hg、Cn等;所述VI族元素包括但不限于O、S、Se、Te、Po、Lv等。具体地,每个量子点结构单元的合金组分组成为CdxZn1‐xSeyS1‐y,其中0≤x≤1,0≤y≤1,并且x和y不同时为0且不同时为1。需说明的是上述情况是优选情况,对于渐变合金组分结构的量子点结构单元而言,其组分均为合金组分;而对于均一组分结构的量子点结构单元而言,其组分可以是合金组分,也可以是非合金组分,但本发明优选的是合金组分,即所述均一组分结构为均一合金组分结构,更优选的是,包含II族和VI族元素,本发明后续实施例均以均一合金组分结构为例进行说明,但显然,对于非合金的均一组分结构同样可以实施。
此处的径向方向是指从量子点复合材料的中心向外的方向,例如假设 本发明的量子点复合材料为球形或类似球形结构,那么该径向方向即指沿半径的方向,量子点复合材料的中心(或内部)即指其物理结构的中心,量子点复合材料的表面(或外部)即指其物理结构的表面。
下面对本发明量子点复合材料存在的结构做详细的说明:
具体地,所述量子点复合材料的发光峰波长出现连续蓝移,以实现在指定位置处的渐变合金组分分布。出现蓝移代表发光峰向短波方向移动,能级宽度变宽,如图1所示,在量子点径向方向上,量子点结构单元的能级宽度连续变宽(连续蓝移)。
具体地,如图1所示,本发明制备得到一种具有漏斗型能级结构的量子点复合材料,位于所述量子点复合材料内部的量子点结构单元合金组成成分对应能级宽度小于位于外部的量子点结构单元合金组成成分对应能级宽度;具体地说,本发明制备得到的量子点复合材料包括至少一个在径向方向上依次排布的量子点结构单元,所述量子点结构单元为径向方向上越向外能级宽度越宽的渐变合金组分结构,且在径向方向上相邻的渐变合金组分结构的量子点结构单元的能级是连续的;后续实施例中将图1所示量子点复合材料的结构称为具体结构1。图1中的量子点复合材料,各个相邻的量子点结构单元的能级宽度具有连续结构,即各个相邻的量子点结构单元的能级宽度具有连续变化的特点,而非突变结构,也就是说量子点的合金组分也是具有连续性,后续的连续结构原理相同。
进一步,在径向方向上相邻的量子点结构单元中,靠近中心的量子点结构单元的能级宽度小于远离中心的量子点结构单元的能级宽度;也就是说,所述的量子点复合材料中,从中心到表面的能级宽度是逐渐变宽的,从而形成开口逐渐变大的漏斗型结构,其中的开口逐渐变大是指如图1所示的能级结构中,从量子点复合材料中心到量子点复合材料表面的能级是连续的。同时,本发明中的量子点复合材料,各个相邻的量子点结构单元的能级是连续的,也就是说量子点的合成组分也具有连续变化的特性,这 种特性更有利于实现高的发光效率。
也就是说,所述的量子点复合材料的具体结构1是具有从内到外沿径向方向的连续渐变合金组分的量子点结构;这种量子点结构在组成成分上具有从内到外沿径向方向连续变化的特点;相应的,在能级分布上也上具有从内到外沿径向方向连续变化的特点;这种量子点结构在组成成分上和能级分布上连续变化的特点,相对于具有明确边界的量子点核和壳的关系,本发明的量子点复合材料不仅有利于实现更高效的发光效率,同时也更能满足半导体器件及相应显示技术对量子点复合材料的综合性能要求,是一种适合半导体器件及显示技术的理想量子点发光材料。
进一步,如图1所示的量子点复合材料中,A点的合金组分为Cdx0 AZn1‐x0 ASey0 AS1‐y0 A,B点的合金组分为Cdx0 BZn1‐x0 BSey0 BS1‐y0 B,其中A点相对于B点更靠近量子点复合材料中心,且A点和B点的组成满足:x0 A>x0 By0 A>y0 B。也就是说,对于量子点复合材料中的任意两点A点和B点,且A点相对于B点更靠近量子点复合材料中心,那么x0 A>x0 By0 A>y0 B,即A点的Cd含量大于B点的Cd含量,A点的Zn含量小于B点的Zn含量,A点的Se含量大于B点的Se含量,A点的S含量小于B点的S含量。这样,在该量子点复合材料中,就在径向方向上形成了渐变结构,并且由于在径向方向上,越向外(即远离量子点复合材料中心)则Cd和Se含量越低,Zn和S含量越高,那么根据这几种元素的特性,其能级宽度将会越宽。
后续不同具体结构的量子点复合材料中,若量子点结构单元为径向方向上越向外能级宽度越宽的渐变合金组分结构,则其合金组分均优选为Cdx0Zn1‐x0Sey0S1‐y0,其中,A点的合金组分为Cdx0 AZn1‐x0 ASey0 AS1‐y0 A,B点的合金组分为Cdx0 BZn1‐x0 BSey0 BS1‐y0 B,其中A点相对于B点更靠近量子点复合材料中心,且A点和B点的组成满足:x0 A>x0 By0 A>y0 B。若量子点结构单元为径向方向上越向外能级宽度越窄的渐变合金组分结构,则其合金组分均优选为Cdx0Zn1‐x0Sey0S1‐y0,其中,C点的合金组分为Cdx0 CZn1‐x0 CSey0 CS1‐y0 C,D点的 合金组分为Cdx0 DZn1‐x0 DSey0 DS1‐y0 D,其中C点相对于D点更靠近量子点复合材料中心,且C点和D点的组成满足:x0 Cx0 Dy0 Cy0 D。若量子点结构单元为均一合金组分结构(即径向方向上能级宽度一致),则其合金组分均优选为Cdx0Zn1‐x0Sey0S1‐y0,其中,E点的合金组分为Cdx0 EZn1‐x0 ESey0 ES1‐y0 E,F点的合金组分为Cdx0 FZn1‐x0 FSey0 FS1‐y0 F,其中E点相对于F点更靠近量子点复合材料中心,且E点和F点的组成满足:x0 Ex0 Fy0 Ey0 F
具体地,所述量子点复合材料的发光峰波长出现交替的蓝移和不变。出现蓝移代表发光峰向短波方向移动,能级宽度变宽,出现红移代表发光峰向长波方向移动,能级宽度变窄,若发光峰波长不变代表则代表能级宽度不变。出现交替的蓝移和不变则代表能级宽度是交替变化的,即如图2所示,在量子点径向方向上,在第一区间内能级宽度变宽(蓝移),在第二区间内能级宽度不变(不变),在第三区间内能级宽度变宽(蓝移)。
具体地,如图2所示,本发明还制备得到一种具有内部合金组成成分对应能级宽度不大于外部合金组成成分对应能级宽度、且量子点结构最中心和最外部区域之间含有至少一层均一合金组分结构的量子点结构单元的量子点复合材料;也就是说,本发明提供的量子点复合材料包括至少三个在径向方向上依次排布的量子点结构单元,其中,所述至少三个量子点结构单元中,位于中心和表面的量子点结构单元均为径向方向上越向外能级宽度越宽的渐变合金组分结构,且在径向方向上相邻的渐变合金组分结构的量子点结构单元的能级是连续的,位于中心和表面的量子点结构单元之间的一个量子点结构单元为均一合金组分结构。后续实施例中将图2所示量子点复合材料的结构称为具体结构2。
具体地,如图2所示的量子点复合材料中,所述位于中心和表面的量子点结构单元之间的一层均一合金组分结构的量子点结构单元上,任一点的合金组分为Cdx1Zn1‐x1Sey1S1‐y1,其中0≤x1≤1,0≤y1≤1,并且x1和y1不同时为0和不同时为1,且x1和y1为固定值。例如某一点的合金组分为 Cd0.5Zn0.5Se0.5S0.5,而径向方向上另一点的合金组分也应为Cd0.5Zn0.5Se0.5S0.5;又例如某一均一合金组分结构的量子点结构单元内某一点的均一组分为Cd0.7Zn0.3S,而该量子点结构单元内另一点的合金组分也应为Cd0.7Zn0.3S;又例如某一均一合金组分结构的量子点结构单元内某一点的均一组分为CdSe,而该量子点结构单元内另一点的合金组分也应为CdSe。
进一步,如图2所示的量子点复合材料中,位于中心和表面的量子点结构单元均为径向方向上越向外能级宽度越宽的渐变合金组分结构,且在径向方向上相邻的渐变合金组分结构的量子点结构单元的能级是连续的;即在所述具有渐变合金组分结构的量子点结构单元中,沿径向方向上任一点的合金组成成分对应的能级宽度均要大于相邻的且更靠近量子点结构中心另一点的合金组成成分对应的能级宽度。所述具有渐变合金组分结构的量子点结构单元中的合金组分组成为Cdx2Zn1‐x2Sey2S1‐y2,其中0≤x2≤1,0≤y2≤1,并且x2和y2不同时为0和不同时为1。例如某一点的合金组分为Cd0.5Zn0.5Se0.5S0.5,而另一点的合金组分为Cd0.3Zn0.7Se0.4S0.6
具体地,所述量子点复合材料的发光峰波长出现交替的蓝移和红移,以实现在指定位置处的渐变合金组分分布。出现蓝移代表发光峰向短波方向移动,能级宽度变宽,出现红移代表发光峰向长波方向移动,能级宽度变窄,若发光峰波长不变代表则代表能级宽度不变。出现交替的蓝移和红移则代表能级宽度是交替变化的,即如图3所示,在量子点径向方向上,在第一区间内能级宽度变宽(蓝移),在第二区间内能级宽度变窄(红移),在第三区间内能级宽度变宽(蓝移),在第四区间内能级宽度变窄(红移),在第五区间内能级宽度变宽(蓝移)。
具体地,如图3所示,本发明还制备得到一种具有量子阱结构的全渐变合金组分的量子点复合材料;也就是说,本发明制备的量子点复合材料包括两种类型的量子点结构单元(A1类型和A2类型),其中A1类型的量子点结构单元为径向方向上越向外能级宽度越宽的渐变合金组分结构,A2 类型的量子点结构单元为径向方向上越向外能级宽度越窄的渐变合金组分结构,所述两种量子点结构单元沿径向方向依次交替分布,且在径向方向上相邻的量子点结构单元的能级是连续的。也就是说,所述量子点复合材料的量子点结构单元分布可以是:A1、A2、A1、A2、A1…,也可以是A2、A1、A2、A1、A2…,即起始的量子点结构单元可以是A1类型,也可以是A2类型。在A1类型的量子点结构单元中,其能级宽度是越向外越宽,在A2类型的量子点结构单元中,其能级宽度是越向外越窄,这两种能级结构均犹如波浪线的形式在径向方向上延伸,后续实施例中将图3所示量子点复合材料的结构称为具体结构3。
具体地,所述量子点复合材料的发光峰波长出现间断的蓝移。出现蓝移代表发光峰向短波方向移动,能级宽度变宽。当然若发光峰波长出现红移代表发光峰向长波方向移动,能级宽度变窄,若发光峰波长不变代表则代表能级宽度不变。出现间断的蓝移则代表量子点结构单元之间的能级宽度是突变而非连续变化的,即如图4所示。
具体地,如图4所示,本发明还制备得到一种具有能级突变的量子阱结构的合金组分的量子点复合材料,具体地,所述量子点结构单元均为径向方向上越向外能级宽度越宽的渐变合金组分结构,且相邻的量子点结构单元的能级是不连续的,即各个相邻的量子点结构单元的能级宽度具有非连续变化的特点,即突变特点,也就是说量子点的合金组分也是具有突变性,后续的突变结构原理相同;后续实施例中将图4所示量子点复合材料的结构称为具体结构4。
具体地,图4所示的量子点复合材料,是由多个量子点结构单元通过突变的方式依次排布构成,这些量子点结构单元均为径向方向上越向外能级宽度越宽的渐变合金组分结构。进一步,所述量子点复合材料中,靠近中心的量子点结构单元的能级宽度小于远离中心的量子点结构单元的能级宽度。也就是说,所述的量子点复合材料中,从中心到表面的能级宽度是 逐渐变宽的,从而形成间断的开口逐渐变大的漏斗型结构,当然,所述的量子点复合材料中,也并不限于上述方式,即远离中心的量子点结构单元的能级宽度也可以小于靠近中心的量子点结构单元的能级宽度,这种结构中,相邻的量子点结构单元的能级宽度有交错重叠的地方。
具体地,所述量子点复合材料的发光峰波长出现间断的红移。出现红移代表发光峰向长波方向移动,能级宽度变窄。若发光峰波长出现蓝移代表发光峰向短波方向移动,能级宽度变宽,若发光峰波长不变代表则代表能级宽度不变。出现间断的红移则代表量子点结构单元之间的能级宽度是突变而非连续变化的,即如图5所示。
具体地,如图5所示,本发明还制备得到另一种具有能级突变的量子阱结构的合金组分的量子点复合材料,具体地,所述量子点结构单元均为径向方向上越向外能级宽度越窄的渐变合金组分结构,且相邻的量子点结构单元的能级是不连续的,即各个相邻的量子点结构单元的能级宽度具有非连续变化的特点,即突变特点,也就是说量子点的合金组分也是具有突变性,后续的突变结构原理相同;后续实施例中将图5所示量子点复合材料的结构称为具体结构5。
具体地,图5所示的量子点复合材料,是由多个量子点结构单元通过突变的方式依次排布构成,这些量子点结构单元均为径向方向上越向外能级宽度越窄的渐变合金组分结构。进一步,所述量子点复合材料中,靠近中心的量子点结构单元的能级宽度大于远离中心的量子点结构单元的能级宽度。也就是说,所述的量子点复合材料中,从中心到表面的能级宽度是逐渐变窄的,从而形成间断的开口逐渐变小的漏斗型结构,当然,所述的量子点复合材料中,也并不限于上述方式,即远离中心的量子点结构单元的能级宽度也可以大于靠近中心的量子点结构单元的能级宽度,这种结构中,相邻的量子点结构单元的能级宽度有交错重叠的地方。
具体地,所述量子点复合材料的发光峰波长先出现蓝移,而后不变。 出现蓝移代表发光峰向短波方向移动,能级宽度变宽,若发光峰波长不变代表则代表能级宽度不变,即如图6所示,在量子点径向方向上,在第一区间内能级宽度变宽(蓝移),在第二区间内能级宽度不变(不变)。
具体地,如图6所示,本发明还制备得到一种量子点复合材料,位于所述量子点复合材料内部的合金组成成分的能级宽度由中心到外部逐渐变大,且量子点结构最外部区域为均一合金组分;具体地,所述量子点复合材料包括两种量子点结构单元(A3类型和A4类型),其中,A3类型的量子点结构单元为径向方向上越向外能级宽度越宽的渐变合金组分结构,A4类型的量子点结构单元为均一合金组分结构,所述量子点复合材料的内部包括包括一个或一个以上的渐变合金组分结构的量子点结构单元,且在径向方向上相邻的渐变合金组分结构的量子点结构单元的能级是连续的;所述量子点复合材料的外部包括一个或一个以上的均一合金组分结构的量子点结构单元;后续实施例中将图6所示量子点复合材料的结构称为具体结构6。
具体地,如图6所示的量子点复合材料中,其量子点结构单元的分布为A3…A3A4…A4,即所述量子点复合材料的内部是由A3类型的量子点结构单元组成,所述量子点复合材料的外部是由A4类型的量子点结构单元组成,且A3类型的量子点结构单元的数量和A4类型的量子点结构单元的数量均大于等于1。
具体地,所述量子点复合材料的发光峰波长出现连续红移。出现红移代表发光峰向长波方向移动,能级宽度变窄。若发光峰波长出现蓝移代表发光峰向短波方向移动,能级宽度变宽,若发光峰波长不变代表则代表能级宽度不变。出现红移代表发光峰向长波方向移动,能级宽度变窄,如图7所示,在量子点径向方向上,量子点结构单元的能级宽度变窄(红移)。
具体地,如图7所示,本发明还制备得到另一种量子点复合材料,位于所述量子点复合材料内部的合金组成成分的能级宽度为均一的,位于所述量子点外部的合金组成成分的能级宽度由中心到外部为逐渐变大;具体 地,所述量子点复合材料包括两种量子点结构单元(A5类型和A6类型),其中,A5类型的量子点结构单元为均一合金组分结构,A6类型的量子点结构单元为径向方向上越向外能级宽度越宽的渐变合金组分结构,所述量子点复合材料的内部包括一个或一个以上的均一合金组分结构的量子点结构单元;所述量子点复合材料的外部包括一个或一个以上的渐变合金组分结构的量子点结构单元,且在径向方向上相邻的渐变合金组分结构的量子点结构单元的能级是连续的;后续实施例中将图7所示量子点复合材料的结构称为具体结构7。
具体地,如图7所示的量子点复合材料中,其单原子层的分布为A5…A5A6…A6,即所述量子点复合材料的内部是由A5类型的量子点结构单元组成,所述量子点复合材料的外部是由A6类型的量子点结构单元组成,且A5类型的量子点结构单元的数量和A6类型的量子点结构单元的数量均大于等于1。
进一步,本发明所制备的量子点结构单元包括2‐20层的单原子层。优选的,所述量子点结构单元包括2‐5个单原子层,优选的层数能够保证量子点实现良好的发光量子产率以及高效的电荷注入效率。
进一步,所述量子点发光单元包括1‐10层晶胞层,优选2‐5层晶胞层;所述晶胞层为最小结构单元,即每一层的晶胞层其合金组分均是固定的,即每一晶胞层内具有相同晶格参数和元素,每一量子点结构单元均为晶胞层连接而构成的封闭晶胞曲面,相邻晶胞层之间的能级宽度具有连续结构或者突变结构。
所述第一种化合物和/或所述第二种化合物的阳离子前驱体包括:Zn的前驱体,所述Zn的前驱体为二甲基锌(dimethyl Zinc)、二乙基锌(diethyl Zinc)、醋酸锌(Zinc acetate)、乙酰丙酮锌(Zinc acetylacetonate)、碘化锌(Zinc iodide)、溴化锌(Zinc bromide)、氯化锌(Zinc chloride)、氟化锌(Zinc fluoride)、碳酸锌(Zinc carbonate)、氰化锌(Zinc cyanide)、硝酸锌(Zinc nitrate)、 氧化锌(Zinc oxide)、过氧化锌(Zinc peroxide)、高氯酸锌(Zinc perchlorate)、硫酸锌(Zinc sulfate)、油酸锌(Zinc oleate)或硬脂酸锌(Zinc stearate)等中的至少一种,但不限于此。
所述第一种化合物和/或所述第二种化合物的阳离子前驱体包括Cd的前驱体,所述Cd的前驱体为二甲基镉(dimethyl cadmium)、二乙基镉(diethyl cadmium)、醋酸镉(cadmium acetate)、乙酰丙酮镉(cadmium acetylacetonate)、碘化镉(cadmium iodide)、溴化镉(cadmium bromide)、氯化镉(cadmium chloride)、氟化镉(cadmium fluoride)、碳酸镉(cadmium carbonate)、硝酸镉(cadmium nitrate)、氧化镉(cadmium oxide)、高氯酸镉(cadmium perchlorate)、磷酸镉(cadmium phosphide)、硫酸镉(cadmium sulfate)、油酸镉(cadmium oleate)或硬脂酸镉(cadmium stearate)等中的至少一种,但不限于此。
所述第一种化合物和/或所述第二种化合物的阴离子前驱体包括Se的前驱体,例如Se与一些有机物任意组合所形成的化合物,具体可以是Se‐TOP(selenium‐trioctylphosphine)、Se‐TBP(selenium‐tributylphosphine)、Se‐TPP(selenium‐triphenylphosphine)、Se‐ODE(selenium‐1‐octadecene)、Se‐OA(selenium‐oleic acid)、Se‐ODA(selenium‐octadecylamine)、Se‐TOA(selenium‐trioctylamine)、Se‐ODPA(selenium‐octadecylphosphonic acid)或Se‐OLA(selenium‐oleylamine)等中的至少一种,但不限于此。
所述第一种化合物和/或所述第二种化合物的阴离子前驱体包括S的前驱体,例如S与一些有机物任意组合所形成的化合物,具体可以是S‐TOP(sulfur‐trioctylphosphine,)、S‐TBP(sulfur‐tributylphosphine)、S‐TPP(sulfur‐triphenylphosphine)、S‐ODE(sulfur‐1‐octadecene)、S‐OA(sulfur‐oleic acid)、S‐ODA(sulfur‐octadecylamine)、S‐TOA(sulfur‐trioctylamine)、S‐ODPA(sulfur‐octadecylphosphonic acid)或S‐OLA(sulfur‐oleylamine)等,但不限于此;所述S的前驱体还可以是烷基硫醇(alkyl thiol),所述烷基硫醇可以 是己硫醇(hexanethiol)、辛硫醇(octanethiol)、癸硫醇(decanethiol)、十二烷基硫醇(dodecanethiol)、十六烷基硫醇(hexadecanethiol)or巯丙基硅烷(mercaptopropylsilane)等中的至少一种,但不限于此。
所述第一种化合物和/或所述第二种化合物的阴离子前驱体包括Te的前驱体,所述Te的前驱体为Te‐TOP、Te‐TBP、Te‐TPP、Te‐ODE、Te‐OA、Te‐ODA、Te‐TOA、Te‐ODPA或Te‐OLA中的至少一种。
上述阳离子前躯体和阴离子前驱体可以根据最终的量子点复合材料组成来确定选择其中的一种或几种:例如需要合成CdxZn1‐xSeyS1‐y的量子点复合材料时,则需要Cd的前驱体、Zn的前驱体、Se的前驱体、S的前驱体;如需要合成CdxZn1‐xS的量子点复合材料时,则需要Cd的前驱体、Zn的前驱体、S的前驱体;如需要合成CdxZn1‐xSe的量子点复合材料时,则需要Cd的前驱体、Zn的前驱体、Se的前驱体。
在本发明的制备方法中,发生阳离子交换反应的条件优选是进行加热反应,例如加热温度在100℃至400℃之间,优选的加热温度为150℃至380℃之间。加热时间在2s至24h之间,优选的加热时间为5min至4h之间。
加热温度越高,阳离子交换反应的速率越快,阳离子交换的厚度范围和交换程度也越大,但厚度和程度范围会逐渐达到相对饱和的程度;类似的,加热时间越长,阳离子交换的厚度范围和交换程度也越大,但厚度和程度范围也会逐渐达到相对饱和的程度。阳离子交换的厚度范围和程度直接决定了所形成的渐变合金组分分布。阳离子交换所形成的渐变合金组分分布同时也由各自所形成的二元或者多元化合物量子点复合材料的厚度所决定。
在形成各层化合物时,阳离子前驱体与阴离子前驱体的摩尔比为100:1到1:50(具体为阳离子与阴离子的摩尔投料比),例如在形成第一层化合物时,阳离子前驱体与阴离子前驱体的摩尔比为100:1到1:50;在形成第二层 化合物时,阳离子前驱体与阴离子前驱体的摩尔比为100:1到1:50,优选的比例为20:1到1:10,优选的阳离子前驱体与阴离子前驱体的摩尔比例可保证反应速率在易于控制的范围内。
本发明还提供一种量子点复合材料,其中,所述量子点复合材料采用如上所述的制备方法制备而成。
通过上述制备方法所制备的量子点复合材料,其发光峰波长范围为400纳米至700纳米,优选的发光峰波长范围为430纳米至660纳米,优选的量子点发光峰波长范围能够保证量子点在此范围内实现大于30%的发光量子产率。
通过上述制备方法所制备的量子点复合材料,发光量子产率范围为1%至100%,优选的发光量子产率范围为30%至100%,优选的发光量子产率范围内能够保证量子点的良好应用性。
进一步,在本发明中,所述量子点复合材料的发光峰的半高峰宽为12纳米至80纳米。
本发明还提供一种半导体器件,其包括如上任一项所述的纳米晶体。
所述半导体器件为电致发光器件、光致发光器件、太阳能电池、显示器件、光电探测器、生物探针以及非线性光学器件中的任意一种。
以电致发光器件为例,以本发明所述的量子点复合材料作为发光层材料的量子点电致发光器件QLED。这种量子点电致发光器件能够实现:1)高效电荷注入、2)高发光亮度、3)低驱动电压、4)高器件效率等优异器件性能。同时,本发明所述的量子点复合材料,具有易于控制和多样性能级结构的特点,能够充分满足并配合器件中其他功能层的能级结构,以实现器件整体能级结构的匹配,从而有助于实现高效稳定的QLED器件。
所述光致发光器件是指依赖外界光源进行照射,从而获得能量,产生激发导致发光的器件,紫外辐射、可见光及红外辐射均可引起光致发光,例如磷光与荧光。本发明的纳米晶体可作为光致发光器件的发光材料。
所述太阳能电池也称光伏器件,本发明的纳米晶体可作为太阳能电池的光吸收材料,有效提高光伏器件的各项性能。
所述显示器件是指背光模组或应用所述背光模组的显示面板,所述显示面板可以应用在各种产品当中,例如显示器、平板电脑、手机、笔记本电脑、平板电视、可穿戴式显示设备或其他包含不同尺寸显示面板的产品。
所述光电探测器是指能把光信号转换为电信号的器件,其原理是由辐射引起被照射材料电导率发生改变,将量子点复合材料应用在光电探测器中,具有如下优势:对垂直入射光敏感、光电导响应度高、比探测率高、探测波长连续可调及可低温制备。这种结构的光电探测器在运行过程中,量子点光敏层(即采用本发明的纳米晶体)吸收光子后产生的光生电子‐空穴对能够在内建电场的作用下发生分离,这使得该结构光电探测器具有更低的驱动电压,能在低外加偏压甚至是0外加偏压下就能工作,且易于控制。
所述生物探针是指对某类材料进行修饰,使其具有标记功能的器件,例如对本发明的纳米晶体进行包覆,从而形成荧光探针,应用在细胞成像或者物质检测领域中,相对于传统的有机荧光染料探针,采用本发明的纳米晶体制备的生物探针,具有荧光强度高、化学稳定性好、抗光漂白能力强的特点,具有广泛的用途。
所述非线性光学器件属于光学激光技术领域,其应用较广泛,例如用于电光开光和激光调制,用于激光频率的转换、激光频率的调谐;进行光学信息处理、改善成像质量和光束质量;作为非线性标准具和双稳器件;研究物质的高激发态以及高分辨率光谱以及物质内部能量和激发的转移过程以及其他弛豫过程等。
实施例1:基于CdZnSeS/CdZnSeS量子点的制备
先将阳离子Cd的前驱体、阳离子Zn的前驱体、阴离子Se的前驱体和阴离子S的前驱体注入到反应体系中,形成CdyZn1‐ySebS1‐b层(其中0≤y≤1, 0≤b≤1);继续将阳离子Cd的前驱体、阳离子Zn的前驱体、阴离子Se的前驱体和阴离子S的前驱体注入到反应体系中,在上述CdyZn1‐ySebS1‐b层表面形成CdzZn1‐zSecS1‐c层(其中0≤z≤1,且z不等于y,0≤c≤1);在一定的加热温度和加热时间等反应条件下,发生内外层量子点复合材料(即上述两层化合物)中Cd与Zn离子的互换;由于阳离子的迁移距离有限且越远的迁移距离发生迁移的机率就越小,因此会在CdyZn1‐ySebS1‐b层与CdzZn1‐zSecS1‐c层的界面附近形成Cd含量和Zn含量的渐变合金组分分布,即CdxZn1‐xSeaS1‐a,其中0≤x≤1,0≤a≤1。
实施例2:基于CdZnS/CdZnS量子点的制备
先将阳离子Cd的前驱体、阳离子Zn的前驱体以及阴离子S的前驱体注入到反应体系中,先形成CdyZn1‐yS层(其中0≤y≤1);继续将阳离子Cd的前驱体、阳离子Zn的前驱体以及阴离子S的前驱体注入到反应体系中,会在上述CdyZn1‐yS层表面形成CdzZn1‐zS层(其中0≤z≤1,且z不等于y);在一定的加热温度和加热时间等反应条件下,发生内外层量子点复合材料(即上述两层化合物)中Cd与Zn离子的互换;由于阳离子的迁移距离有限且越远的迁移距离发生迁移的机率就越小,因此会在CdyZn1‐yS层与CdzZn1‐zS层的界面附近形成Cd含量和Zn含量的渐变合金组分分布,即CdxZn1‐xS,其中0≤x≤1。
实施例3:基于CdZnSe/CdZnSe量子点的制备
先将阳离子Cd的前驱体、阳离子Zn的前驱体以及阴离子Se的前驱体注入到反应体系中先形成CdyZn1‐ySe层(其中0≤y≤1);继续将阳离子Cd的前驱体、阳离子Zn的前驱体以及阴离子Se的前驱体注入到反应体系中,会在上述CdyZn1‐ySe层表面形成CdzZn1‐zSe层(其中0≤z≤1,且z不等于y);在一定的加热温度和加热时间等反应条件下,发生内外层量子点复合材料中Cd与Zn离子的互换;由于阳离子的迁移距离有限且越远的迁移距离发生迁移的机率就越小,因此会在CdyZn1‐ySe层与CdzZn1‐zSe层的界面附近形 成Cd含量和Zn含量的渐变合金组分分布,即CdxZn1‐xSe,其中0≤x≤1。
实施例4:基于CdS/ZnS量子点的制备
先将阳离子Cd的前驱体和阴离子S的前驱体注入到反应体系中,先形成CdS层;继续将阳离子Zn的前驱体和阴离子S的前驱体注入到反应体系中,会在上述CdS层表面形成ZnS层;在一定的加热温度和加热时间等反应条件下,外层的Zn阳离子会逐渐向内层迁移,并与Cd阳离子发生阳离子交换反应,即Cd离子向外层迁移,发生了Cd与Zn离子的互换;由于阳离子的迁移距离有限且越远的迁移距离发生迁移的机率就越小,因此会在CdS层与ZnS层的界面附近形成Cd含量沿着径向向外逐渐减少、Zn含量沿着径向向外逐渐增加的渐变合金组分分布,即CdxZn1‐xS,其中0≤x≤1且x自内向外(径向方向)从1单调递减为0。
实施例5:基于CdSe/ZnSe量子点的制备
先将阳离子Cd的前驱体和阴离子Se的前驱体注入到反应体系中先形成CdSe层;继续将阳离子Zn的前驱体和阴离子Se的前驱体注入到反应体系中,会在上述CdSe层表面形成ZnSe层;在一定的加热温度和加热时间等反应条件下,外层的Zn阳离子会逐渐向内层迁移,并与Cd阳离子发生阳离子交换反应,即Cd离子向外层迁移,发生了Cd与Zn离子的互换;由于阳离子的迁移距离有限且越远的迁移距离发生迁移的机率就越小,因此会在CdSe层与ZnSe层的界面附近形成Cd含量沿着径向向外逐渐减少、Zn含量沿着径向向外逐渐增加的渐变合金组分分布,即CdxZn1‐xSe,其中0≤x≤1且x自内向外(径向方向)从1单调递减为0。
实施例6:基于CdSeS/ZnSeS量子点的制备
先将阳离子Cd的前驱体、阴离子Se的前驱体以及阴离子S的前驱体注入到反应体系中先形成CdSebS1‐b层(其中0≤b≤1);继续将阳离子Zn的前驱体、阴离子Se的前驱体以及阴离子S的前驱体注入到反应体系中,会在上述CdSebS1‐b层表面形成ZnSecS1‐c层(其中0≤c≤1);在一定的加热温度和 加热时间等反应条件下,外层的Zn阳离子会逐渐向内层迁移,并与Cd阳离子发生阳离子交换反应,即Cd离子向外层迁移,发生了Cd与Zn离子的互换;由于阳离子的迁移距离有限且越远的迁移距离发生迁移的机率就越小,因此会在CdSebS1‐b层与ZnSecS1‐c层的界面附近形成Cd含量沿着径向向外逐渐减少、Zn含量沿着径向向外逐渐增加的渐变合金组分分布,即CdxZn1‐xSeaS1‐a,其中0≤x≤1且x自内向外(径向方向)从1单调递减为0,0≤a≤1。
实施例7:基于ZnS/CdS量子点的制备
先将阳离子Zn的前驱体和阴离子S的前驱体注入到反应体系中先形成ZnS层;继续将阳离子Cd的前驱体和阴离子S的前驱体注入到反应体系中,会在上述ZnS层表面形成CdS层;在一定的加热温度和加热时间等反应条件下,外层的Cd阳离子会逐渐向内层迁移,并与Zn阳离子发生阳离子交换反应,即Zn离子向外层迁移,发生了Cd与Zn离子的互换;由于阳离子的迁移距离有限且越远的迁移距离发生迁移的机率就越小,因此会在ZnS层与CdS层的界面附近形成Zn含量沿着径向向外逐渐减少、Cd含量沿着径向向外逐渐增加的渐变合金组分分布,即CdxZn1‐xS,其中0≤x≤1且x自内向外(径向方向)从0单调递增为1。
实施例8:基于ZnSe/CdSe量子点的制备
先将阳离子Zn的前驱体和阴离子Se的前驱体注入到反应体系中先形成ZnSe层;继续将阳离子Cd的前驱体和阴离子Se的前驱体注入到反应体系中,会在上述ZnSe层表面形成CdSe层;在一定的加热温度和加热时间等反应条件下,外层的Cd阳离子会逐渐向内层迁移,并与Zn阳离子发生阳离子交换反应,即Zn离子向外层迁移,发生了Cd与Zn离子的互换;由于阳离子的迁移距离有限且越远的迁移距离发生迁移的机率就越小,因此会在ZnSe层与CdSe层的界面附近形成Zn含量沿着径向向外逐渐减少、Cd含量沿着径向向外逐渐增加的渐变合金组分分布,即CdxZn1‐xSe,其中0≤x≤1 且x自内向外(径向方向)从0单调递增为1。
实施例9:基于ZnSeS/CdSeS量子点的制备
先将阳离子Zn的前驱体、阴离子Se的前驱体以及阴离子S的前驱体注入到反应体系中先形成ZnSebS1‐b层(其中0≤b≤1);继续将阳离子Cd的前驱体、阴离子Se的前驱体以及阴离子S的前驱体注入到反应体系中,会在上述ZnSebS1‐b层表面形成CdSecS1‐c层(其中0≤c≤1);在一定的加热温度和加热时间等反应条件下,外层的Cd阳离子会逐渐向内层迁移,并与Zn阳离子发生阳离子交换反应,即Zn离子向外层迁移,发生了Cd与Zn离子的互换;由于阳离子的迁移距离有限且越远的迁移距离发生迁移的机率就越小,因此会在ZnSebS1‐b层与CdSecS1‐c层的界面附近形成Zn含量沿着径向向外逐渐减少、Cd含量沿着径向向外逐渐增加的渐变合金组分分布,即CdxZn1‐xSeaS1‐a,其中0≤x≤1且x自内向外从0单调递增为1,0≤a≤1。
实施例10:具有具体结构1的蓝色量子点CdxZn1‐xS的制备
油酸镉和油酸锌前驱体制备:将1mmol氧化镉(CdO),9mmol乙酸锌[Zn(acet)2],8mL油酸(Oleic acid),和15mL十八烯(1‐Octadecene)置于100mL三口烧瓶中,于80℃下进行真空脱气60min。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
将2mmol硫粉(Sulfur powder)溶解在3mL的十八烯(1‐Octadecene)中,得到硫十八烯前驱体。
将6mmol硫粉(Sulfur powder)溶解在3mL的三辛基膦(Trioctylphosphine)中,得到硫化三辛基膦前驱体。
将0.6mmol氧化镉(CdO),0.6mL油酸(Oleic acid)和5.4mL十八烯(1‐Octadecene)置于100mL三口烧瓶中,在氮气氛围下250℃加热回流120min,得到透明的油酸镉前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硫十八烯前驱体快速注入到反应体系中,CdxZn1‐xS迅速成核,反应10min后,将3mL 的硫化三辛基膦前驱体和6mL油酸镉前驱体分别以3mL/h和10mL/h的速率同时注入到反应体系中。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,然后离心提纯,得到具有开口逐渐变大的漏斗型能级结构的蓝色量子点CdxZn1‐xS,如图8所示,其发光峰波长为453nm,其吸光度随着波长的增加逐渐降低。
实施例11:具有具体结构1的绿色量子点CdxZn1‐xSeyS1‐y/CdzZn1‐zS的制备
油酸镉和油酸锌前驱体制备:将0.4mmol氧化镉(CdO),8mmol乙酸锌[Zn(acet)2],10mL油酸(Oleic acid)置于100mL三口烧瓶中,于80℃下进行真空脱气60min。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
将2mmol硒粉(Selenium powder),4mmol硫粉(Sulfur powder)溶解在4mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦‐硫化三辛基膦前驱体。
将2mmol硫粉(Sulfur powder)溶解在2mL的三辛基膦(Trioctylphosphine)中,得到硫化三辛基膦前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硒化三辛基膦‐硫化三辛基膦前驱体快速注入到反应体系中,CdxZn1‐xSeyS1‐y迅速成核,反应10min后,将2mL的硫化三辛基膦前驱体以8mL/h的速率逐滴加入到反应体系中,直至前驱体注入完。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具有开口逐渐变大的漏斗型能级结构的绿色量子点CdxZn1‐xSeyS1‐y/CdzZn1‐zS;如图9所示,其发光峰波长为542nm,其吸光度随着波长的增加逐渐降低。
实施例12:具有具体结构1的红色量子点CdxZn1‐xSeyS1‐y/CdzZn1‐zS的制备
油酸镉和油酸锌前驱体制备:将0.8mmol氧化镉(CdO),12mmol乙 酸锌[Zn(acet)2],14mL油酸(Oleic acid)置于100mL三口烧瓶中,于80℃下进行真空脱气60min。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
将2mmol硒粉(Selenium powder)在4mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦前驱体。
将0.2mmol硒粉(Selenium powder),0.6mmol硫粉(Sulfur powder)溶解在2mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦‐硫化三辛基膦前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硒化三辛基膦前驱体快速注入到反应体系中,CdxZn1‐xSe迅速成核,反应10min后,将2mL的硒化三辛基膦‐硫化三辛基膦前驱体以4mL/h的速率逐滴加入到反应体系中。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具有开口逐渐变大的漏斗型能级结构的CdxZn1‐xSeyS1‐y/CdzZn1‐zS红色荧光量子点;如图10所示,其发光峰波长为631nm,其吸光度随着波长的增加逐渐降低。。
实施例13:油酸镉注入速率对具有具体结构1的蓝色量子点合成的影响
在实施例10的基础上,通过调节油酸镉的注入速率,可以调控量子点的成分的梯度变化的斜率,从而影响其漏斗形能级结构的变化,最终实现对量子点发光波长的调控。
油酸镉和油酸锌前驱体制备:将1mmol氧化镉(CdO),9mmol乙酸锌[Zn(acet)2],8mL油酸(Oleic acid),和15mL十八烯(1‐Octadecene)置于100mL三口烧瓶中,于80℃下进行真空脱气60min。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
将2mmol硫粉(Sulfur powder)溶解在3mL的十八烯(1‐Octadecene)中,得到硫十八烯前驱体。
将6mmol硫粉(Sulfur powder)溶解在3mL的三辛基膦(Trioctylphosphine)中,得到硫化三辛基膦前驱体。
将0.6mmol氧化镉(CdO),0.6mL油酸(Oleic acid)和5.4mL十八烯(1‐Octadecene)置于100mL三口烧瓶中,在氮气氛围下250℃加热回流120min,得到透明的油酸镉前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硫十八烯前驱体快速注入到反应体系中,CdxZn1‐xS迅速成核,反应10min后,将3mL的硫化三辛基膦前驱体以3mL/h速率逐滴加入到反应体系中,同时将油酸镉前驱体以不同的注入速率逐滴加入到反应体系中。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具有开口逐渐变大的漏斗型能级结构的蓝色荧光CdxZn1‐xS/CdyZn1‐yS量子点。
基于相同的核(合金量子点发光峰447nm)及不同油酸镉前驱体的注入速率下合金量子点发光波长,调节油酸镉前驱体的注入速率实现量子点发光波长调控的列表如下:
油酸镉注入速率(mmol/h) 发光波长(nm)
0.5 449
0.75 451
1 453
1.25 455
1.5 456
实施例14:油酸镉注入量对具有具体结构1的蓝色量子点合成的影响
在实施例10和实施例13的基础上,通过调节油酸镉的注入量,可以调控量子点的成分的梯度变化的区间,从而影响其漏斗形能级结构的变化,最终实现对量子点发光波长的调控。基于相同的核(合金量子点发光峰 447nm)及不同油酸镉前驱体的注入量(相同注入速率下1mmol/h)速率下合金量子点发光波长,如下表:
油酸镉注入量(mmol) 发光波长(nm)
0.4 449
0.5 451
0.6 453
0.8 454
1.0 455
实施例15:具有具体结构2的蓝色量子点的制备
油酸镉和油酸锌前驱体制备:将1mmol氧化镉(CdO),9mmol乙酸锌[Zn(acet)2],8mL油酸(Oleic acid)和15mL十八烯(1‐Octadecene)置于100mL三口烧瓶中,于80℃下进行真空脱气60min。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
将2mmol硫粉(Sulfur powder)溶解在3mL的十八烯(1‐Octadecene)中,得到硫十八烯前驱体。
将6mmol硫粉(Sulfur powder)溶解在3mL的三辛基膦(Trioctylphosphine)中,得到硫化三辛基膦前驱体。
将0.6mmol氧化镉(CdO),0.6mL油酸(Oleic acid)和5.4mL十八烯(1‐Octadecene)置于100mL三口烧瓶中,在氮气氛围下250℃加热回流120min,得到透明的油酸镉前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硫十八烯前驱体快速注入到反应体系中,先生成CdxZn1‐xS,反应10min后,将反应体系温度降至280℃,接着将2mL的硫化三辛基膦前驱体和6mL油酸镉前驱体分别以3mL/h和10mL/h的速率同时注入到反应体系中。注入40min后,将反应体系温度升温至310℃,将1mL硫化三辛基膦前驱体以3mL/h的速 率注入到反应体系中,反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到量子阱能级结构的蓝色量子点。
实施例16:具有具体结构2的绿色量子点的制备
油酸镉和油酸锌前驱体制备:将0.4mmol氧化镉(CdO),8mmol乙酸锌[Zn(acet)2],10mL油酸(Oleic acid)和20mL十八烯(1‐Octadecene)置于100mL三口烧瓶中,于80℃下进行真空脱气60min。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
将2mmol硒粉(Selenium powder),4mmol硫粉(Sulfur powder)溶解在4mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦‐硫化三辛基膦前驱体。
将2mmol硫粉(Sulfur powder)溶解在2mL的三辛基膦(Trioctylphosphine)中,得到硫化三辛基膦前驱体。
将0.6mmol氧化镉(CdO),0.6mL油酸(Oleic acid)和5.4mL十八烯(1‐Octadecene)置于100mL三口烧瓶中,在氮气氛围下250℃加热回流120min,得到透明的油酸镉前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硒化三辛基膦‐硫化三辛基膦前驱体快速注入到反应体系中,先生成CdxZn1‐xSeyS1‐y,反应10min后,将反应体系温度降至280℃,接着将1.2mL的硫化三辛基膦前驱体和6mL油酸镉前驱体分别以2mL/h和10mL/h的速率注入到反应体系中,直至前驱体注入完。将反应体系温度升温至310℃,将0.8mL硫化三辛基膦前驱体以2mL/h的速率注入到反应体系中。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具有量子阱能级结构的绿色量子点。
实施例17:具有具体结构2的红色量子点的制备
油酸镉和油酸锌前驱体制备:将0.8mmol氧化镉(CdO),12mmol乙 酸锌[Zn(acet)2],14mL油酸(Oleic acid)和20mL十八烯(1‐Octadecene)置于100mL三口烧瓶中,于80℃下进行真空脱气60min。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
将2mmol硒粉(Selenium powder)在4mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦前驱体。
将0.2mmol硒粉(Selenium powder),0.6mmol硫粉(Sulfur powder)溶解在2mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦‐硫化三辛基膦前驱体。
将0.3mmol氧化镉(CdO),0.3mL油酸(Oleic acid)和2.7mL十八烯(1‐Octadecene)置于50mL三口烧瓶中,在氮气氛围下250℃加热回流120min,得到透明的油酸镉前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硒化三辛基膦前驱体快速注入到反应体系中,先生成CdxZn1‐xSe,反应10min后,将反应体系温度降至280℃,接着将1mL硒化三辛基膦‐硫化三辛基膦前驱体和3mL油酸镉前驱体分别以2mL/h和6mL/h的速率注入到反应体系中。将反应体系温度升温至310℃,将1mL硒化三辛基膦‐硫化三辛基膦前驱体以4mL/h的速率注入到反应体系中。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具有量子阱能级结构的红色量子点。
实施例18:具有具体结构3的蓝色量子点的制备
油酸镉和油酸锌前驱体制备:将1mmol氧化镉(CdO),9mmol乙酸锌[Zn(acet)2],8mL油酸(Oleic acid),和15mL十八烯(1‐Octadecene)置于100mL三口烧瓶中,于80℃下进行真空脱气60min。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
将2mmol硫粉(Sulfur powder)溶解在3mL的十八烯(1‐Octadecene)中,得到硫十八烯前驱体。
将6mmol硫粉(Sulfur powder)溶解在3mL的三辛基膦(Trioctylphosphine)中,得到硫化三辛基膦前驱体。
将0.2mmol硒粉(Selenium powder)溶解在1mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦前驱体。
将0.6mmol氧化镉(CdO),0.6mL油酸(Oleic acid)和5.4mL十八烯(1‐Octadecene)置于100mL三口烧瓶中,在氮气氛围下250℃加热回流120min,得到透明的油酸镉前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硫十八烯前驱体快速注入到反应体系中,先生成CdxZn1‐xS迅速成核,反应10min后,将油酸镉前驱体和硫化三辛基膦前驱体分别以0.6mmol/h、4mmol/h的速率连续注入20min到反应体系中。随后将油酸镉前驱体、硫化三辛基膦前驱体和硒化三辛基膦前驱体分别以0.4mmol/h、0.6mmol/h和0.2mmol/h的速率连续注入1h到反应体系中。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具有量子阱能级结构的蓝色量子点(CdZnS/CdZnS/CdZnSeS3)。
实施例19:具有具体结构3的绿色量子点的制备
油酸镉和油酸锌前驱体制备:将0.4mmol氧化镉(CdO),6mmol乙酸锌[Zn(acet)2],10mL油酸(Oleic acid)和20mL十八烯(1‐Octadecene)置于100mL三口烧瓶中,于80℃下进行真空脱气60min。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
将0.4mmol硒粉(Selenium powder),4mmol硫粉(Sulfur powder)溶解在4mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦‐硫化三辛基膦前驱体1。
将0.1mmol硒粉(Selenium powder),0.3mmol硫粉(Sulfur powder)溶解在2mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦‐硫化三辛基膦前驱体2。
将0.8mmol硫粉(Sulfur powder),0.8mmol硒粉(Selenium powder)溶解在3mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦‐硫化三辛基膦前驱体3。
将0.6mmol氧化镉(CdO),0.6mL油酸(Oleic acid)和5.4mL十八烯(1‐Octadecene)置于100mL三口烧瓶中,在氮气氛围下250℃加热回流120min,得到透明的油酸镉前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硒化三辛基膦‐硫化三辛基膦前驱体1快速注入到反应体系中,先生成CdxZn1‐xSeyS1‐y,反应5min后,将2mL的硒化三辛基膦‐硫化三辛基膦前驱体2以6mL/h的速率逐滴加入到反应体系中。随后,将3mL的硒化三辛基膦‐硫化三辛基膦前驱体3和6mL的油酸镉前驱体的分别以3mL/h和6mL/h速率继续逐滴加入到反应体系中。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具有量子阱能级结构的绿色量子点(CdZn3SeS3/Zn4SeS3/Cd3Zn5Se4S4)。
实施例20:具有具体结构3的红色量子点的制备
油酸镉和油酸锌前驱体制备:将0.8mmol氧化镉(CdO),12mmol乙酸锌[Zn(acet)2],14mL油酸(Oleic acid)和20mL十八烯(1‐Octadecene)置于100mL三口烧瓶中,于80℃下进行真空脱气60min。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
将2mmol硒粉(Selenium powder)在4mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦前驱体。
将0.2mmol硒粉(Selenium powder),0.6mmol硫粉(Sulfur powder)溶解在2mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦‐硫化三辛基膦前驱体。
将0.9mmol氧化镉(CdO),0.9mL油酸(Oleic acid)和8.1mL十八烯(1‐Octadecene)置于100mL三口烧瓶中,在氮气氛围下250℃加热回流 120min,得到透明的油酸镉前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硒化三辛基膦前驱体快速注入到反应体系中,先生成CdxZn1‐xSe,反应10min后,将2mL的硒化三辛基膦‐硫化三辛基膦前驱体以2mL/h的速率逐滴加入到反应体系中。注入到30min时,将3mL的油酸镉前驱体同时以6mL/h速率逐滴加入到反应体系中。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具有量子阱能级结构的红色量子点(CdxZn1‐xSe/ZnSeyS1‐y/CdzZn1‐zSeS)。
实施例21:具有具体结构4的蓝色量子点的制备
油酸镉和油酸锌前驱体制备:将1mmol氧化镉(CdO),9mmol乙酸锌[Zn(acet)2],8mL油酸(Oleic acid),和15mL十八烯(1‐Octadecene)置于100mL三口烧瓶中,于80℃下进行真空脱气60min。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
将2mmol硫粉(Sulfur powder)溶解在3mL的十八烯(1‐Octadecene)中,得到硫十八烯前驱体。
将6mmol硫粉(Sulfur powder)溶解在3mL的三辛基膦(Trioctylphosphine)中,得到硫化三辛基膦前驱体。
将0.2mmol硒粉(Selenium powder)溶解在1mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦前驱体。
将0.6mmol氧化镉(CdO),0.6mL油酸(Oleic acid)和5.4mL十八烯(1‐Octadecene)置于100mL三口烧瓶中,在氮气氛围下250℃加热回流120min,得到透明的油酸镉前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硫十八烯前驱体快速注入到反应体系中,先生成CdxZn1‐xS,反应10min后,将油酸镉前驱体和硒化三辛基膦前驱体分别以0.6mmol/h、0.6mmol/h的速率连续注入20min到反应体系中。随后将油酸镉前驱体和硫化三辛基膦前驱体分 别以0.4mmol/h和6mmol/h的速率连续注入1h到反应体系中。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具有量子阱能级结构的蓝色量子点(CdZnS/CdZnSe/CdZnS)。
实施例22:具有具体结构4的绿色量子点的制备
油酸镉和油酸锌前驱体制备:将1mmol氧化镉(CdO),9mmol乙酸锌[Zn(acet)2],8mL油酸(Oleic acid),和15mL十八烯(1‐Octadecene)置于100mL三口烧瓶中,于80℃下进行真空脱气60min。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
将2mmol硫粉(Sulfur powder)溶解在3mL的十八烯(1‐Octadecene)中,得到硫十八烯前驱体。
将6mmol硫粉(Sulfur powder)溶解在3mL的三辛基膦(Trioctylphosphine)中,得到硫化三辛基膦前驱体。
将0.4mmol硒粉(Selenium powder)溶解在2mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦前驱体。
将0.8mmol氧化镉(CdO),1.2mL油酸(Oleic acid)和4.8mL十八烯(1‐Octadecene)置于100mL三口烧瓶中,在氮气氛围下250℃加热回流120min,得到透明的油酸镉前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硫十八烯前驱体快速注入到反应体系中,先生成CdxZn1‐xS,反应10min后,将油酸镉前驱体和硒化三辛基膦前驱体分别以0.6mmol/h、0.6mmol/h的速率连续注入40min到反应体系中。随后将油酸镉前驱体和硫化三辛基膦前驱体分别以0.4mmol/h和6mmol/h的速率连续注入1h到反应体系中。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具有量子阱能级结构的绿色量子点(CdZnS/CdZnSe/CdZnS)。
实施例23:具有具体结构4的红色量子点的制备
油酸镉和油酸锌前驱体制备:将0.8mmol氧化镉(CdO),12mmol乙 酸锌[Zn(acet)2],14mL油酸(Oleic acid)和20mL十八烯(1‐Octadecene)置于100mL三口烧瓶中,于80℃下进行真空脱气60min。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
将1.5mmol硒粉(Selenium powder),1.75mmol硫粉(Sulfur powder)溶解在3mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦‐硫化三辛基膦前驱体1。
将1mmol硒粉(Selenium powder)在2mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦前驱体。
将0.2mmol硒粉(Selenium powder),0.8mmol硫粉(Sulfur powder)溶解在2mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦‐硫化三辛基膦前驱体2。
将3mmol氧化镉(CdO),3mL油酸(Oleic acid)和6mL十八烯(1‐Octadecene)置于100mL三口烧瓶中,在氮气氛围下250℃加热回流120min,得到透明的油酸镉前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硒化三辛基膦‐硫化三辛基膦前驱体1注入到反应体系中,先生成CdxZn1‐xSe,反应10min后,将2mL的硒化三辛基膦前驱体和3mL的油酸镉前驱体分别以4mL/h和6mL/h的速率逐滴加入到反应体系中。注入到30min时,将2mL的硒化三辛基膦‐硫化三辛基膦前驱体2和3mL的油酸镉前驱体分别以2mL/h和3mL/h速率逐滴加入到反应体系中。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到量子阱能级结构的红色量子点(CdxZn1‐xSe/CdZnSe/CdzZn1‐zSeS)。
实施例24:具有具体结构5的蓝色量子点的制备
油酸镉和油酸锌前驱体制备:将1mmol氧化镉(CdO),9mmol乙酸锌[Zn(acet)2],8mL油酸(Oleic acid),和15mL十八烯(1‐Octadecene)置于100mL三口烧瓶中,于80℃下进行真空脱气60min。然后将其切换成氮 气气氛下,并于该温度下保存以备待用。
将1mmol硫粉(Sulfur powder)溶解在3mL的十八烯(1‐Octadecene)中,得到硫十八烯前驱体。
将6mmol硫粉(Sulfur powder)溶解在3mL的三辛基膦(Trioctylphosphine)中,得到硫化三辛基膦前驱体。
将0.6mmol氧化镉(CdO),0.6mL油酸(Oleic acid)和5.4mL十八烯(1‐Octadecene)置于100mL三口烧瓶中,在氮气氛围下250℃加热回流120min,得到透明的油酸镉前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硫十八烯前驱体快速注入到反应体系中,先生成CdxZn1‐xS,反应10min后,将3mL硫化三辛基膦前驱体以3mL/h的速率连续注入1h到反应体系中,在硫化三辛基膦前驱体注入20min时,将2mL油酸镉前驱体以6mL/h注入到反应体系中,在硫化三辛基膦前驱体注入40min时,将4mL油酸镉前驱体以12mL/h注入到反应体系中。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具有量子阱能级结构的蓝色量子点(CdZnS/ZnS/CdZnS)。
实施例25:具有具体结构5的绿色量子点的制备
油酸镉和油酸锌前驱体制备:将0.4mmol氧化镉(CdO),6mmol乙酸锌[Zn(acet)2],10mL油酸(Oleic acid)和20mL十八烯(1‐Octadecene)置于100mL三口烧瓶中,于80℃下进行真空脱气60min。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
将0.4mmol硒粉(Selenium powder),4mmol硫粉(Sulfur powder)溶解在4mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦‐硫化三辛基膦前驱体1。
将6mmol硫粉(Sulfur powder)溶解在3mL的三辛基膦(Trioctylphosphine)中,得到硫化三辛基膦前驱体。
将0.6mmol氧化镉(CdO),0.6mL油酸(Oleic acid)和5.4mL十八烯(1‐Octadecene)置于100mL三口烧瓶中,在氮气氛围下250℃加热回流120min,得到透明的油酸镉前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硒化三辛基膦‐硫化三辛基膦前驱体快速注入到反应体系中,先生成CdxZn1‐xSeyS1‐y,反应10min后,将3mL硫化三辛基膦前驱体以3mL/h的速率连续注入1h到反应体系中,在硫化三辛基膦前驱体注入20min时,将2mL油酸镉前驱体以6mL/h注入到反应体系中,在硫化三辛基膦前驱体注入40min时,将4mL油酸镉前驱体以12mL/h注入到反应体系中。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具有量子阱能级结构的绿色量子点(CdZnSeS/ZnS/CdZnS)。
实施例26:具有具体结构5的红色量子点的制备
油酸镉和油酸锌前驱体制备:将0.8mmol氧化镉(CdO),12mmol乙酸锌[Zn(acet)2],14mL油酸(Oleic acid)和20mL十八烯(1‐Octadecene)置于100mL三口烧瓶中,于80℃下进行真空脱气60min。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
将2mmol硒粉(Selenium powder)在4mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦前驱体。
将6mmol硫粉(Sulfur powder)溶解在3mL的三辛基膦(Trioctylphosphine)中,得到硫化三辛基膦前驱体。
将0.6mmol氧化镉(CdO),0.6mL油酸(Oleic acid)和5.4mL十八烯(1‐Octadecene)置于100mL三口烧瓶中,在氮气氛围下250℃加热回流120min,得到透明的油酸镉前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硒化三辛基膦前驱体快速注入到反应体系中,先生成CdxZn1‐xSe,反应10min后,将硫化三辛基膦前驱体以6mmol/h的速率连续注入1h到反应体系中,在S‐TOP 注入20min时,将0.2mmol油酸镉前驱体以0.6mmol/h注入到反应体系中,在S‐TOP注入40min时,将0.4mmol油酸镉前驱体以1.2mmol/h注入到反应体系中。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具有量子阱能级结构的红色量子点(CdZnSe/ZnS/CdZnS)。
实施例27:具有具体结构6的蓝色量子点的制备
酸镉和油酸锌前驱体制备:将1mmol氧化镉(CdO),9mmol乙酸锌[Zn(acet)2],8mL油酸(Oleic acid),和15mL十八烯(1‐Octadecene)置于100mL三口烧瓶中,于80℃下进行真空脱气60min。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
将2mmol硫粉(Sulfur powder)溶解在3mL的十八烯(1‐Octadecene)中,得到硫十八烯前驱体。
将6mmol硫粉(Sulfur powder)溶解在3mL的三辛基膦(Trioctylphosphine)中,得到硫化三辛基膦前驱体。
将0.6mmol氧化镉(CdO),0.6mL油酸(Oleic acid)和5.4mL十八烯(1‐Octadecene)置于100mL三口烧瓶中,在氮气氛围下250℃加热回流120min,得到透明的油酸镉前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硫十八烯前驱体快速注入到反应体系中,先生成CdxZn1‐xS,反应10min后,将硫化三辛基膦前驱体和油酸镉前驱体分别以6mmol/h和0.6mmol/h的速率逐滴加入到反应体系中。30min后,将反应体系温度降至280℃,将剩余的硫化三辛基膦前驱体和油酸镉前驱体分别以6mmol/h和0.6mmol/h的速率逐滴加入到反应体系中。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具有具体结构6的蓝色量子点(CdxZn1‐xS)。
实施例28:具有具体结构6的绿色量子点的制备
油酸镉和油酸锌前驱体制备:将0.4mmol氧化镉(CdO),8mmol乙酸锌[Zn(acet)2],10mL油酸(Oleic acid)置于100mL三口烧瓶中,于80℃下进行真空脱气60min。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
将2mmol硒粉(Selenium powder),4mmol硫粉(Sulfur powder)溶解在4mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦‐硫化三辛基膦前驱体。
将2mmol硫粉(Sulfur powder)溶解在2mL的三辛基膦(Trioctylphosphine)中,得到硫化三辛基膦前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硒化三辛基膦‐硫化三辛基膦前驱体快速注入到反应体系中,先生成CdxZn1‐xSeyS1‐y,反应10min后,将反应体系温度降至280℃,将硫化三辛基膦前驱体以4mL/h的速率逐滴加入到反应体系中。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具有具体结构6的绿色量子点(CdxZn1‐xSeyS1‐y/ZnS)。
实施例29:具有具体结构6的红色量子点的制备
油酸镉和油酸锌前驱体制备:将0.8mmol氧化镉(CdO),12mmol乙酸锌[Zn(acet)2],14mL油酸(Oleic acid)置于100mL三口烧瓶中,于80℃下进行真空脱气60min。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
将2mmol硒粉(Selenium powder)在4mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦前驱体。
将0.2mmol硒粉(Selenium powder),0.6mmol硫粉(Sulfur powder)溶解在2mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦‐硫化三辛基膦前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硒化三辛基 膦前驱体快速注入到反应体系中,CdxZn1‐xSe迅速成核,反应10min后,将反应体系温度降至280℃,将硒化三辛基膦‐硫化三辛基膦前驱体以4mL/h的速率逐滴加入到反应体系中。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具有具体结构6的红色量子点(CdxZn1‐xSe/ZnSeS)。
实施例30:具有具体结构7的蓝色量子点的制备
油酸镉第一前驱体制备:将1mmol氧化镉(CdO),1mL油酸(Oleic acid)和5mL十八烯(1‐Octadecene)置于100mL三口烧瓶中,于80℃下进行真空脱气60mins。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
油酸镉第二前驱体制备:将0.6mmol氧化镉(CdO),0.6mL油酸(Oleic acid)和5.4mL十八烯(1‐Octadecene)置于100mL三口烧瓶中,在氮气氛围下250℃加热回流120mins,得到透明的油酸镉第二前驱体。
油酸锌前驱体制备:将9mmol乙酸锌[Zn(acet)2],7mL油酸(Oleic acid),和10mL十八烯(1‐Octadecene)置于100mL三口烧瓶中,于80℃下进行真空脱气60mins。然后将其切换成氮气气氛下,并于氮气氛围下250℃加热回流保存以备待用。
将2mmol硫粉(Sulfur powder)溶解在3mL的十八烯(1‐Octadecene)中,得到硫十八烯前驱体。
将6mmol硫粉(Sulfur powder)溶解在3mL的三辛基膦(Trioctylphosphine)中,得到硫化三辛基膦前驱体。
在氮气氛围下,将油酸镉第一前驱体升温至310℃,将硫十八烯前驱体快速注入到反应体系中,迅速生成CdS,反应10mins后,将油酸锌前驱体全部注入反应体系,随后将3mL的硫化三辛基膦前驱体和6mL油酸镉第二前驱体分别以3mL/h和10mL/h的速率同时注入到反应体系中。
反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复 溶解、沉淀,离心提纯,得到具有量子阱能级结构的蓝色量子点。
实施例31:具有具体结构7的绿色量子点的制备
油酸镉前驱体制备:将0.4mmol氧化镉(CdO),1mL油酸(Oleic acid)和5mL十八烯(1‐Octadecene)置于100mL三口烧瓶中,于80℃下进行真空脱气60mins。然后将其在氮气氛围下250℃加热回流,并于该温度下保存以备待用。
将0.4mmol硒粉(Selenium powder),溶解在4mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦。
油酸锌前驱体制备:将8mmol乙酸锌[Zn(acet)2],9mL油酸(Oleic acid)和15mL十八烯(1‐Octadecene)置于100mL三口烧瓶中,于80℃下进行真空脱气60mins。在氮气氛围下250℃加热回流120mins,得到透明的油酸锌前驱体。
将2mmol硫粉(Sulfur powder)和1.6mmol硒粉(Selenium powder)溶解在2mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦‐硫化三辛基膦前驱体。
在氮气氛围下,将油酸镉前驱体升温至310℃,将硒化三辛基膦前驱体快速注入到反应体系中,迅速生成CdSe,反应5mins后,将油酸锌前驱体全部注入到反应体系中,将2mL的硒化三辛基膦‐硫化三辛基膦前驱体以2mL/h的速率逐滴加入到反应体系中,直至前驱体注入完。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具有量子阱能级结构的绿色荧光量子点。
实施例32:具有具体结构7的红色量子点的制备
油酸镉前驱体制备:将0.8mmol氧化镉(CdO),4mL油酸(Oleic acid)和10mL十八烯(1‐Octadecene)置于100mL三口烧瓶中,于80℃下进行真空脱气60mins。然后将其在氮气氛围下250℃加热回流,并于该温度下保存以备待用。
油酸锌前驱体制备:12mmol乙酸锌[Zn(acet)2],10mL油酸(Oleic acid)和10mL十八烯(1‐Octadecene)置于100mL三口烧瓶中,于80℃下进行真空脱气60mins。
将0.8mmol硒粉(Selenium powder)在4mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦前驱体。
将1mmol硒粉(Selenium powder),0.6mmol硫粉(Sulfur powder)溶解在2mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦‐硫化三辛基膦前驱体。
在氮气氛围下,将油酸镉前驱体升温至310℃,将硒化三辛基膦前驱体快速注入到反应体系中,迅速生成CdSe,反应10mins后,将油酸锌前驱体全部注入到反应体系中,将2mL的硒化三辛基膦‐硫化三辛基膦前驱体以4mL/h的速率逐滴加入到反应体系中。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具有量子阱能级结构的红色荧光量子点。
实施例33
本实施例量子点发光二极管,如图11所示,自下而上依次包括:ITO衬底11、底电极12、PEDOT:PSS空穴注入层13、poly‐TPD空穴传输层14、量子点发光层15、ZnO电子传输层16及Al顶电极17。
上述量子点发光二极管的制备步骤如下:
在ITO衬底11上依次制备底电极12、30nm PEDOT:PSS空穴注入层13和30nm poly‐TPD空穴传输层14后,在poly‐TPD空穴传输层14上制备一层量子点发光层15,厚度为20nm,随后再在量子点发光层15上制备40nm ZnO电子传输层16及100nm Al顶电极17。所述量子点发光层15的量子点复合材料为如实施例10所述的量子点复合材料。
实施例34
本实施例中量子点发光二极管,如图12所示,自下而上依次包括:ITO 衬底21、底电极22、PEDOT:PSS空穴注入层23、Poly(9‐vinylcarbazole)(PVK)空穴传输层24、量子点发光层25、ZnO电子传输层26及Al顶电极27。
上述量子点发光二极管的制备步骤如下:
在ITO衬底21上依次制备底电极22、30nm PEDOT:PSS空穴注入层23和30nm PVK空穴传输层24后,在PVK空穴传输层24上制备一层量子点发光层25,厚度为20nm,随后再在量子点发光层25上制备40nm ZnO电子传输层26及100nm Al顶电极27。所述量子点发光层25的量子点复合材料为如实施例15所述的量子点复合材料。
实施例35
本实施例量子点发光二极管,如图13所示,自下而上依次包括:ITO衬底31、底电极32、PEDOT:PSS空穴注入层33、poly‐TPD空穴传输层34、量子点发光层35、TPBi电子传输层36及Al顶电极37。
上述量子点发光二极管的制备步骤如下:
在ITO衬底31上依次制备底电极32、30nm PEDOT:PSS空穴注入层33和30nm poly‐TPD空穴传输层34后,在poly‐TPD空穴传输层34上制备一层量子点发光层35,厚度为20nm,随后再在量子点发光层35上通过真空蒸镀方法制备30nm TPBi电子传输层36及100nm Al顶电极37。所述量子点发光层35的量子点复合材料为如实施例18所述的量子点复合材料。
实施例36
本实施例量子点发光二极管,如图14所示,自下而上依次包括:ITO衬底41、底电极42、ZnO电子传输层43、量子点发光层44、NPB空穴传输层45、MoO3空穴注入层46及Al顶电极47。
上述量子点发光二极管的制备步骤如下:
在ITO衬底41上依次制备底电极42,40nm ZnO电子传输层43,在ZnO电子传输层43上制备一层量子点发光层44,厚度为20nm,随后再通过真空蒸镀方法制备30nm NPB空穴传输层45,5nm MoO3空穴注入层 46及100nm Al顶电极47。所述量子点发光层44的量子点复合材料为如实施例21所述的量子点复合材料。
实施例37
本实施例量子点发光二极管,如图15所示,自下而上依次包括:玻璃衬底51、Al电极52,PEDOT:PSS空穴注入层53、poly‐TPD空穴传输层54、量子点发光层55、ZnO电子传输层56及ITO顶电极57。
上述量子点发光二极管的制备步骤如下:
在玻璃衬底51上通过真空蒸镀方法制备100nm Al电极52,然后依次制备30nm PEDOT:PSS空穴注入层53和30nm poly‐TPD空穴传输层54后,在poly‐TPD空穴传输层54上制备一层量子点发光层55,厚度为20nm,随后再在量子点发光层55上制备40nm ZnO电子传输层56,最后通过溅射方法制备120nm ITO作为顶电极57。所述量子点发光层55的量子点复合材料为如实施例24所述的量子点复合材料。
实施例38
本实施例量子点发光二极管,如图16所示,自下而上依次包括:玻璃衬底61、Al电极62,ZnO电子传输层63,量子点发光层64,NPB空穴传输层65,MoO3空穴注入层66及ITO顶电极67。
上述量子点发光二极管的制备步骤如下:
在玻璃衬底61上通过真空蒸镀方法制备100nm Al电极62,然后依次制备40nm ZnO电子传输层63,20nm量子点发光层64,随后再通过真空蒸镀方法制备30nm NPB空穴传输层65,5nm MoO3空穴注入层66,最后通过溅射方法制备120nm ITO作为顶电极67。所述量子点发光层的量子点复合材料为如实施例27所述的量子点复合材料。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (21)

  1. 一种量子点复合材料的制备方法,其特征在于,包括步骤:
    在预定位置处合成第一种化合物;
    在第一种化合物的表面合成第二种化合物,所述第一种化合物与所述第二种化合物的合金组分相同或者不同;
    第一种化合物和第二种化合物体之间发生阳离子交换反应形成量子点复合材料,所述量子点复合材料的发光峰波长出现蓝移、红移和不变中的一种或多种。
  2. 根据权利要求1所述的量子点复合材料的制备方法,其特征在于,所述量子点复合材料的发光峰波长出现连续蓝移。
  3. 根据权利要求1所述的量子点复合材料的制备方法,其特征在于,所述量子点复合材料的发光峰波长出现交替的蓝移和不变。
  4. 根据权利要求1所述的量子点复合材料的制备方法,其特征在于,所述量子点复合材料的发光峰波长出现交替的蓝移和红移。
  5. 根据权利要求1所述的量子点复合材料的制备方法,其特征在于,所述量子点复合材料的发光峰波长出现间断的蓝移。
  6. 根据权利要求1所述的量子点复合材料的制备方法,其特征在于,所述量子点复合材料的发光峰波长出现间断的红移。
  7. 根据权利要求1所述的量子点复合材料的制备方法,其特征在于,所述量子点复合材料的发光峰波长先出现蓝移,而后不变。
  8. 根据权利要求1所述的量子点复合材料的制备方法,其特征在于,所述量子点复合材料的发光峰波长出现连续红移。
  9. 根据权利要求1所述的量子点复合材料的制备方法,其特征在于,所述第一种化合物和/或所述第二种化合物的阳离子前驱体包括Zn的前驱体,所述Zn的前驱体为二甲基锌、二乙基锌、醋酸锌、乙酰丙酮锌、碘化锌、溴化锌、氯化锌、氟化锌、碳酸锌、氰化锌、硝酸锌、氧化锌、过氧化锌、高氯酸锌或硫酸锌中的至少一种。
  10. 根据权利要求1所述的量子点复合材料的制备方法,其特征在于,所述第一种化合物和/或所述第二种化合物的阳离子前驱体包括Cd的前驱体,所述Cd的前驱体为二甲基镉、二乙基镉、醋酸镉、乙酰丙酮镉、碘化镉、溴化镉、氯化镉、氟化镉、碳酸镉、硝酸镉、氧化镉、高氯酸镉、磷酸镉或硫酸镉中的至少一种。
  11. 根据权利要求1所述的量子点复合材料的制备方法,其特征在于,所述第一种化合物和/或所述第二种化合物的阴离子前驱体包括Se的前驱体,所述Se的前驱体为Se‐TOP、Se‐TBP、Se‐TPP、Se‐ODE、Se‐OA、Se‐ODA、Se‐TOA、Se‐ODPA或Se‐OLA中的至少一种。
  12. 根据权利要求1所述的量子点复合材料的制备方法,其特征在于,所述第一种化合物和/或所述第二种化合物的阴离子前驱体包括S的前驱体,所述S的前驱体为S‐TOP、S‐TBP、S‐TPP、S‐ODE、S‐OA、S‐ODA、S‐TOA、S‐ODPA、S‐OLA或烷基硫醇中的至少一种。
  13. 根据权利要求1所述的量子点复合材料的制备方法,其特征在于,所述第一种化合物和/或所述第二种化合物的阴离子前驱体包括Te的前驱体,所述Te的前驱体为Te‐TOP、Te‐TBP、Te‐TPP、Te‐ODE、Te‐OA、Te‐ODA、Te‐TOA、Te‐ODPA或Te‐OLA中的至少一种。
  14. 根据权利要求1所述的量子点复合材料的制备方法,其特征在于,在加热条件下使第一种化合物和第二种化合物之间发生阳离子交换反应。
  15. 根据权利要求14所述的量子点复合材料的制备方法,其特征在于,加热温度在100℃至400℃之间。
  16. 根据权利要求14所述的量子点复合材料的制备方法,其特征在于,加热时间在2s至24h之间。
  17. 根据权利要求1所述的量子点复合材料的制备方法,其特征在于,合成第一种化合物时,阳离子前驱体与阴离子前驱体的摩尔投料比为100:1到1:50之间。
  18. 根据权利要求1所述的量子点复合材料的制备方法,其特征在于,合成第二种化合物时,阳离子前驱体与阴离子前驱体的摩尔投料比为100:1到1:50之间。
  19. 一种量子点复合材料,其特征在于,所述量子点复合材料采用如权利要求1~18任一所述的制备方法制备而成。
  20. 一种半导体器件,其特征在于,包括如权利要求19所述的量子点复合材料。
  21. 根据权利要求20所述的半导体器件,其特征在于,所述半导体器件为电致发光器件、光致发光器件、太阳能电池、显示器件、光电探测器、生物探针以及非线性光学器件中的任意一种。
PCT/CN2017/080615 2016-12-30 2017-04-14 一种量子点复合材料、制备方法及半导体器件 WO2018120513A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/762,146 US11203715B2 (en) 2016-12-30 2017-04-14 Quantum dot composite material, preparation method, and semiconductor device
KR1020197022339A KR102286971B1 (ko) 2016-12-30 2017-04-14 양자점 복합 재료, 제조 방법 및 반도체 장치
EP17886578.8A EP3564341B1 (en) 2016-12-30 2017-04-14 Quantum dot composite material, preparation method, and semiconductor device
US17/524,339 US11746292B2 (en) 2016-12-30 2021-11-11 Quantum dot composite material, preparation method, and semiconductor device
US17/524,347 US11795394B2 (en) 2016-12-30 2021-11-11 Quantum dot composite material, preparation method, and semiconductor device
US17/524,357 US11746293B2 (en) 2016-12-30 2021-11-11 Quantum dot composite material, preparation method, and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611255822.XA CN108264900A (zh) 2016-12-30 2016-12-30 一种量子点复合材料、制备方法及半导体器件
CN201611255822.X 2016-12-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US201815762146A Continuation 2016-12-30 2018-03-22

Publications (1)

Publication Number Publication Date
WO2018120513A1 true WO2018120513A1 (zh) 2018-07-05

Family

ID=62706775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080615 WO2018120513A1 (zh) 2016-12-30 2017-04-14 一种量子点复合材料、制备方法及半导体器件

Country Status (5)

Country Link
US (4) US11203715B2 (zh)
EP (1) EP3564341B1 (zh)
KR (1) KR102286971B1 (zh)
CN (1) CN108264900A (zh)
WO (1) WO2018120513A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116162458A (zh) * 2021-11-24 2023-05-26 四川大学 一种幻数团簇/量子点的形成路径调控方法及利用该方法制备幻数团簇和量子点的应用

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108264900A (zh) * 2016-12-30 2018-07-10 Tcl集团股份有限公司 一种量子点复合材料、制备方法及半导体器件
CN108269930B (zh) * 2016-12-30 2020-05-26 Tcl科技集团股份有限公司 一种合金纳米材料、制备方法及半导体器件
WO2019129005A1 (zh) * 2017-12-29 2019-07-04 Tcl集团股份有限公司 一种量子点及其制备方法与应用
CN109988563A (zh) * 2017-12-29 2019-07-09 Tcl集团股份有限公司 一种量子点及其制备方法与应用
CN109988565A (zh) * 2017-12-29 2019-07-09 Tcl集团股份有限公司 一种量子点及其制备方法与应用
CN109988562A (zh) * 2017-12-29 2019-07-09 Tcl集团股份有限公司 一种量子点及其制备方法与应用
CN109988555A (zh) * 2017-12-29 2019-07-09 Tcl集团股份有限公司 一种量子点及其制备方法与应用
CN109988564A (zh) * 2017-12-29 2019-07-09 Tcl集团股份有限公司 一种量子点及其制备方法与应用
CN110951477B (zh) * 2018-09-27 2023-09-26 纳晶科技股份有限公司 一种核壳量子点及其制备方法
CN109504203B (zh) * 2018-11-06 2020-11-10 山西大学 一种适用于室内娱乐的彩光水性功能涂料及其制备方法和用途
CN111378429A (zh) * 2018-12-29 2020-07-07 苏州星烁纳米科技有限公司 量子点及其制备方法
CN111748347A (zh) * 2019-03-29 2020-10-09 苏州星烁纳米科技有限公司 量子点及光转换膜
KR20210026614A (ko) 2019-08-30 2021-03-10 삼성전자주식회사 양자점, 양자점의 제조 방법, 및 양자점을 포함하는 소자
CN111682118B (zh) * 2020-06-24 2023-06-09 合肥福纳科技有限公司 量子点的制备方法、光敏层和太阳能电池器件
CN113198546A (zh) * 2021-04-27 2021-08-03 华中科技大学 一种量子点/过氧化物复合材料、制备方法及其应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030017264A1 (en) * 2001-07-20 2003-01-23 Treadway Joseph A. Luminescent nanoparticles and methods for their preparation
CN101016461A (zh) * 2007-03-01 2007-08-15 上海交通大学 近红外CdHgTe和CdHgTe/CdS荧光量子点的合成方法
US7919012B2 (en) 2003-01-22 2011-04-05 The Board Of Trustees Of The University Of Arkansas Monodisperse core/shell and other complex structured nanocrystals and methods of preparing the same
CN104736234A (zh) * 2012-08-30 2015-06-24 应用纳米技术中枢(Can)有限公司 核-壳纳米颗粒的制备方法和核-壳纳米颗粒
CN105405941A (zh) * 2016-01-06 2016-03-16 Tcl集团股份有限公司 一种基于量子阱结构的量子点发光二极管及其制备方法
CN106566526A (zh) * 2016-10-17 2017-04-19 Tcl集团股份有限公司 一种多阱核壳结构量子点及其制备方法
CN106590661A (zh) * 2016-11-01 2017-04-26 Tcl集团股份有限公司 一种CdSexS1‑x合金量子点及其制备方法
CN106601886A (zh) * 2016-12-30 2017-04-26 Tcl集团股份有限公司 具有量子阱能级结构的纳米晶体、制备方法及半导体器件
CN106634946A (zh) * 2016-09-28 2017-05-10 Tcl集团股份有限公司 无镉核壳量子点及其制备方法
CN106634963A (zh) * 2016-12-22 2017-05-10 Tcl集团股份有限公司 一种CuInS2/ZnS核壳量子点及其制备方法
CN106753381A (zh) * 2016-11-14 2017-05-31 Tcl集团股份有限公司 一种ZnSexS1‑x合金量子点及其制备方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2524350C (en) * 2003-05-07 2015-04-14 Indiana University Research & Technology Corporation Alloyed semiconductor quantum dots and concentration-gradient alloyed quantum dots, series comprising the same and methods related thereto
EP1666562B1 (en) * 2004-11-11 2018-03-07 Samsung Electronics Co., Ltd. Interfused nanocrystals and method of preparing the same
KR100817853B1 (ko) 2006-09-25 2008-03-31 재단법인서울대학교산학협력재단 점진적 농도구배 껍질 구조를 갖는 양자점 및 이의 제조방법
US20100289003A1 (en) * 2007-10-29 2010-11-18 Kahen Keith B Making colloidal ternary nanocrystals
US7777233B2 (en) * 2007-10-30 2010-08-17 Eastman Kodak Company Device containing non-blinking quantum dots
JP5347363B2 (ja) * 2008-07-31 2013-11-20 富士通株式会社 Wdm光伝送システムおよびその制御方法
JP5423952B2 (ja) 2009-03-04 2014-02-19 セイコーエプソン株式会社 光電変換装置および電子機器
CN101851498B (zh) 2010-06-08 2013-06-12 济南大学 一种可降低有机相合成发光量子点生物毒性的水溶性转换方法
JP5744468B2 (ja) 2010-10-20 2015-07-08 シャープ株式会社 半導体ナノ粒子蛍光体
CN103090277B (zh) 2013-01-30 2015-08-19 深圳市华星光电技术有限公司 背光模组及液晶显示装置
KR20160078954A (ko) 2013-08-29 2016-07-05 유니버시티 오브 플로리다 리서치 파운데이션, 아이엔씨. 용액-처리된 무기 반도체로부터의 공기 안정성 적외선 광검출기
EP3058598A4 (en) * 2013-10-17 2017-03-29 Nanophotonica, Inc. Quantum dot for emitting light and method for synthesizing same
CN104134711B (zh) 2014-07-18 2016-03-09 中国电子科技集团公司第四十八研究所 一种钙钛矿太阳能电池的制备方法
CN104498021B (zh) * 2014-11-25 2016-06-29 合肥工业大学 一种蓝到绿光发射、均匀合金化核的核壳量子点的合成方法
CN104864318B (zh) 2015-06-12 2017-05-03 深圳市华星光电技术有限公司 背光模组及显示装置
CN105204103B (zh) 2015-10-09 2018-11-23 深圳市华星光电技术有限公司 量子点彩色滤光片及液晶显示装置
CN106189515A (zh) 2016-07-26 2016-12-07 Tcl集团股份有限公司 一种喷墨打印用的量子点油墨及其制备方法
CN108264900A (zh) * 2016-12-30 2018-07-10 Tcl集团股份有限公司 一种量子点复合材料、制备方法及半导体器件
CN108264905A (zh) * 2016-12-30 2018-07-10 Tcl集团股份有限公司 一种量子点材料、制备方法及半导体器件
CN108269886B (zh) * 2016-12-30 2019-12-10 Tcl集团股份有限公司 一种量子点材料、制备方法及半导体器件
CN108269930B (zh) * 2016-12-30 2020-05-26 Tcl科技集团股份有限公司 一种合金纳米材料、制备方法及半导体器件

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030017264A1 (en) * 2001-07-20 2003-01-23 Treadway Joseph A. Luminescent nanoparticles and methods for their preparation
US7919012B2 (en) 2003-01-22 2011-04-05 The Board Of Trustees Of The University Of Arkansas Monodisperse core/shell and other complex structured nanocrystals and methods of preparing the same
CN101016461A (zh) * 2007-03-01 2007-08-15 上海交通大学 近红外CdHgTe和CdHgTe/CdS荧光量子点的合成方法
CN104736234A (zh) * 2012-08-30 2015-06-24 应用纳米技术中枢(Can)有限公司 核-壳纳米颗粒的制备方法和核-壳纳米颗粒
CN105405941A (zh) * 2016-01-06 2016-03-16 Tcl集团股份有限公司 一种基于量子阱结构的量子点发光二极管及其制备方法
CN106634946A (zh) * 2016-09-28 2017-05-10 Tcl集团股份有限公司 无镉核壳量子点及其制备方法
CN106566526A (zh) * 2016-10-17 2017-04-19 Tcl集团股份有限公司 一种多阱核壳结构量子点及其制备方法
CN106590661A (zh) * 2016-11-01 2017-04-26 Tcl集团股份有限公司 一种CdSexS1‑x合金量子点及其制备方法
CN106753381A (zh) * 2016-11-14 2017-05-31 Tcl集团股份有限公司 一种ZnSexS1‑x合金量子点及其制备方法
CN106634963A (zh) * 2016-12-22 2017-05-10 Tcl集团股份有限公司 一种CuInS2/ZnS核壳量子点及其制备方法
CN106601886A (zh) * 2016-12-30 2017-04-26 Tcl集团股份有限公司 具有量子阱能级结构的纳米晶体、制备方法及半导体器件

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
J. AM. CHEM. SOC., vol. 119, no. 30, 1997, pages 7019 - 7029
J. PHY. CHEM. B, vol. 108, no. 49, 2004, pages 18826 - 18831
J. PHYS. CHEM., vol. 100, no. 2, 1996, pages 468 - 471

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116162458A (zh) * 2021-11-24 2023-05-26 四川大学 一种幻数团簇/量子点的形成路径调控方法及利用该方法制备幻数团簇和量子点的应用
CN116162458B (zh) * 2021-11-24 2024-01-12 四川大学 一种幻数团簇/量子点的形成路径调控方法及利用该方法制备幻数团簇和量子点的应用

Also Published As

Publication number Publication date
US11203715B2 (en) 2021-12-21
US20220064528A1 (en) 2022-03-03
US11746293B2 (en) 2023-09-05
US11795394B2 (en) 2023-10-24
CN108264900A (zh) 2018-07-10
KR102286971B1 (ko) 2021-08-09
US20220064530A1 (en) 2022-03-03
EP3564341A1 (en) 2019-11-06
KR20190101429A (ko) 2019-08-30
US20190071603A1 (en) 2019-03-07
EP3564341B1 (en) 2023-09-27
US11746292B2 (en) 2023-09-05
EP3564341A4 (en) 2020-07-08
US20220064529A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
WO2018120513A1 (zh) 一种量子点复合材料、制备方法及半导体器件
WO2018120515A1 (zh) 一种量子点材料、制备方法及半导体器件
CN106601886B (zh) 具有量子阱能级结构的纳米晶体、制备方法及半导体器件
CN108264901B (zh) 具有漏斗型能级结构的发光材料、制备方法及半导体器件
WO2018120511A1 (zh) 一种量子点薄膜及其制备方法
WO2018120510A1 (zh) 一种量子点材料、制备方法及半导体器件
CN108269891B (zh) 一种纳米复合材料、制备方法及半导体器件
WO2018120518A1 (zh) 一种纳米晶体、制备方法及半导体器件
WO2018120517A1 (zh) 一种合金纳米材料、制备方法及半导体器件
CN108269892B (zh) 具有量子阱能级结构的合金材料、制备方法及半导体器件
WO2018120516A1 (zh) 一种纳米材料、制备方法及半导体器件
WO2018120512A1 (zh) 一种量子点油墨及其制备方法
CN108264904A (zh) 一种发光材料、制备方法及半导体器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197022339

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017886578

Country of ref document: EP

Effective date: 20190730