WO2018119775A1 - 一种复进式顺序阀及其顺序驱动方法 - Google Patents

一种复进式顺序阀及其顺序驱动方法 Download PDF

Info

Publication number
WO2018119775A1
WO2018119775A1 PCT/CN2016/112705 CN2016112705W WO2018119775A1 WO 2018119775 A1 WO2018119775 A1 WO 2018119775A1 CN 2016112705 W CN2016112705 W CN 2016112705W WO 2018119775 A1 WO2018119775 A1 WO 2018119775A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic cylinder
plunger
cylinder
oil
oil pipe
Prior art date
Application number
PCT/CN2016/112705
Other languages
English (en)
French (fr)
Inventor
白保忠
Original Assignee
白保忠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 白保忠 filed Critical 白保忠
Priority to CN201680003707.5A priority Critical patent/CN108513600B/zh
Priority to PCT/CN2016/112705 priority patent/WO2018119775A1/zh
Publication of WO2018119775A1 publication Critical patent/WO2018119775A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors

Definitions

  • the present invention relates to a hydraulic valve, and more particularly to a reversing sequence valve and a sequential driving method therefor.
  • the gas distribution and fuel boost injection of the existing internal combustion engine belong to two systems.
  • the mechanical type is a cam mechanism that converts the rotary motion into a reciprocating motion of the valve stem or the fuel pump plunger
  • the electromagnetic type converts the rotary mechanical energy into electrical energy by the generator, and the electrical energy is converted into a magnetic force by the electromagnetic coil, thereby driving the valve stem or the spray. Nozzle valve.
  • Both of the above forms have the following disadvantages: the power is multi-converted, the self-consumption energy is large in the transmission process; the number of parts is large, the structure is complex, the manufacturing cost is high; the installation position of the camshaft is limited, and the overall structure of the internal combustion engine is increased; The opening degree is limited by the shape of the cam, and the fullness coefficient of the opening time section is difficult to be improved, the charging and discharging efficiency is low, and the combustion efficiency and quality are difficult to be improved.
  • One of the objects of the present invention is to provide a reversing sequence valve to solve the problem that the prior sequence valve cannot change the one-time re-entry motion into two sequential re-entry motions.
  • a second object of the present invention is to provide a sequential driving method for a re-entry sequence valve to change a re-entry motion into two sequential re-entry motions, thereby displacing the engine of the internal combustion engine and the fuel boosting system.
  • the drive unit is combined into one.
  • a reversing sequence valve comprising:
  • the reciprocating plunger cylinder is a single plunger hydraulic cylinder, and has an end oil port and a side wall oil port on the cylinder;
  • a first hydraulic cylinder group including a first hydraulic cylinder and a second hydraulic cylinder, a first reset device is connected to the first hydraulic cylinder, a second reset device is connected to the second hydraulic cylinder, and the The starting pressure of the second resetting device is greater than the maximum accumulating pressure of the first resetting device.
  • a first oil pipe is connected between the end oil port of the reciprocating plunger cylinder and the first hydraulic cylinder, and a side wall oil passage of the reciprocating plunger cylinder and the second hydraulic cylinder
  • a second oil pipe there is a second oil pipe
  • a first communication pipe is connected between the first oil pipe and the second oil pipe, and a first one-way valve that flows to the second oil pipe is disposed on the first communication pipe.
  • the re-entry sequence valve of the present invention further includes:
  • a second hydraulic cylinder group including a third hydraulic cylinder and a fourth hydraulic cylinder, and a third reset device is connected to the third hydraulic cylinder, a fourth reset device is connected to the fourth hydraulic cylinder, and a starting pressure of the fourth reset device is greater than a maximum energy storage pressure of the third reset device;
  • the negative pressure type shuttle valve has two oil passage ports which are alternately opened and closed by the shuttle valve spool on the shuttle valve body.
  • a third oil pipe is connected between the end oil passage of the reciprocating plunger cylinder and the third hydraulic cylinder, and a side wall oil passage of the reciprocating plunger cylinder and the fourth hydraulic cylinder
  • a fourth oil pipe there is a fourth oil pipe
  • a second communication pipe is connected between the third oil pipe and the fourth oil pipe
  • a second one-way valve that flows to the fourth oil pipe is disposed on the second communication pipe.
  • the negative pressure type shuttle valve is serially connected to the first oil pipe and the third oil pipe, the first oil pipe is connected to one of the oil passage ports on the shuttle valve body, and the third oil pipe is connected to the shuttle Another way on the valve body is on the oil port.
  • a space-bearing magnetic rubber hollow ball is respectively arranged at two ends of the inner cavity of the shuttle valve body to provide a cavity compression space for the shuttle valve spool to block the oil passage.
  • the oil pipes and the communication pipes of the reversing sequence valve of the present invention are filled with hydraulic oil.
  • the second object of the present invention is achieved by a sequential driving method of a reversing sequence valve, comprising the following steps:
  • the plunger in the plunger cylinder is controlled to ascend, the hydraulic oil enters the first hydraulic cylinder through the end oil passage and the first oil pipe, and pushes the piston in the first hydraulic cylinder to move upward (due to the second hydraulic cylinder)
  • the starting pressure of the second resetting device is greater than the maximum accumulating pressure of the first resetting device, so that the piston in the second hydraulic cylinder does not move).
  • the plunger in the plunger cylinder continues to ascend, and after closing the side wall oil passage, the piston in the first hydraulic cylinder is moved upward to the top dead center, and the plunger in the plunger cylinder continues to push upward.
  • the hydraulic oil entering the first oil pipe passes through the first communication pipe, the first one-way valve and the second oil pipe, enters the second hydraulic cylinder, and pushes the piston in the second hydraulic cylinder to move upward; when the plunger is ascended to approach or reach At the top dead center in the plunger cylinder, the piston in the second hydraulic cylinder moves upward to the top dead center.
  • the plunger in the plunger cylinder then descends. Since the oil port of the side wall of the plunger cylinder is in a closed state at this time, the positive pressure state is maintained in the second oil pipe, and the negative pressure state is in the first oil pipe.
  • the hydraulic oil in the first hydraulic cylinder is returned to the plunger cylinder through the first oil pipe, and the first reset device pushes the piston in the first hydraulic cylinder downward.
  • the sequential drive method of the present invention comprises the following steps:
  • the spool of the negative pressure shuttle valve is located on the left side of the valve body cavity, and the first The right-way oil port connected to one oil pipe is in an open state, and the left-way oil port connected to the third oil pipe is in a closed state.
  • the plunger in the plunger cylinder is controlled to ascend, and the hydraulic oil enters the first hydraulic cylinder through the end oil port, the shuttle valve and the first oil pipe (because the third oil pipe is blocked at this time), and pushes the first hydraulic pressure
  • the piston in the cylinder acts upward (since the starting pressure of the second reset device on the second hydraulic cylinder is greater than the maximum energy storage pressure of the first reset device, the piston in the second hydraulic cylinder does not move).
  • the plunger in the plunger cylinder continues to ascend, and after closing the side wall oil port, the piston in the first hydraulic cylinder is moved upward to its top dead center, and the plunger in the plunger cylinder continues to push upward.
  • the hydraulic oil entering the first oil pipe passes through the first communication pipe, the first one-way valve and the second oil pipe, enters the second hydraulic cylinder, and pushes the piston in the second hydraulic cylinder to move upward; when the plunger is ascending to approach Or when the top dead center in the plunger cylinder is reached, the piston in the second hydraulic cylinder moves upward to its top dead center.
  • the plunger in the plunger cylinder then descends. Since the side wall of the plunger cylinder is closed at this time, the positive pressure state is maintained in the second oil pipe, and the negative pressure state is maintained in the first oil pipe.
  • the hydraulic oil in the first hydraulic cylinder is returned to the plunger cylinder through the first oil pipe, and the first reset device pushes the piston in the first hydraulic cylinder downward.
  • the plunger in the plunger cylinder is manually controlled upward, and the hydraulic oil enters the third hydraulic cylinder through the end oil port, the shuttle valve and the third oil pipe (so the first oil pipe is blocked), and pushes the third hydraulic pressure.
  • the piston in the cylinder moves upward (since the starting pressure of the fourth reset device on the fourth hydraulic cylinder is greater than the maximum accumulating pressure of the third reset device, the piston in the fourth hydraulic cylinder does not move).
  • the plunger in the plunger cylinder continues to ascend, and after closing the side wall oil passage, the piston in the third hydraulic cylinder is moved upward to the top dead center, and the plunger in the plunger cylinder continues to push upward.
  • the hydraulic oil entering the third oil pipe passes through the second communication pipe, the second one-way valve and the fourth oil pipe, enters the fourth hydraulic cylinder, and pushes the piston in the fourth hydraulic cylinder to move upward; when the plunger is ascended to approach or When the top dead center in the plunger cylinder is reached, the piston in the second hydraulic cylinder moves upward to its top dead center.
  • the plunger in the plunger cylinder is then controlled to descend. Since the side wall of the plunger cylinder is closed at this time, the fourth oil pipe maintains a positive pressure state, while the third oil pipe is negative. In the pressed state, the hydraulic oil in the third hydraulic cylinder is returned to the plunger cylinder through the third oil pipe, and the third reset device pushes the piston in the third hydraulic cylinder downward.
  • the plunger of the plunger cylinder is synchronously linked with the piston of the internal combustion engine, the first reset device of the first hydraulic cylinder is interlocked with the first group of valves, and the second reset device of the second hydraulic cylinder is coupled with the internal combustion engine a first group of fuel pumps is linked, a third reset device of the third hydraulic cylinder is associated with a second group of valves of the internal combustion engine, and a fourth reset device of the fourth hydraulic cylinder is associated with a second group of fuel pumps of the internal combustion engine;
  • the re-entry sequence valve of the present invention can realize the sequential sequential re-entry motion of changing the one-time re-entry motion into two, and applying the same to the internal combustion engine can increase the stroke of the fuel pump plunger and increase the fuel injection pressure. Extend the valve full opening time, greatly improve the fullness factor of the opening time section, improve the efficiency of inflation and exhaust, and improve the combustion efficiency and quality of the internal combustion engine.
  • the application of the re-entry sequence valve of the invention can combine the gas distribution system of the internal combustion engine and the fuel boost injection system, thereby greatly reducing the number of components of the internal combustion engine, reducing the volume of the internal combustion engine, and being self-lubricating, and the installation position is flexible and reduced.
  • the conversion of the power form greatly reduces the self-consumption of the internal combustion engine.
  • a number of re-introduction two-four-four-step sequence valve series and parallel can be used to form a non-electromagnetic servo-type automatic control hydraulic unit, such as a leg-type hydraulic robot alternate step mechanism, a four-cylinder four-stroke internal combustion engine valve sequentially open and close and linkage fuel boost injection mechanism.
  • a non-electromagnetic servo-type automatic control hydraulic unit such as a leg-type hydraulic robot alternate step mechanism, a four-cylinder four-stroke internal combustion engine valve sequentially open and close and linkage fuel boost injection mechanism.
  • Figure 1 is a schematic view of the structure of the present invention.
  • Figure 2 is a schematic view showing the reverse installation of two sets of sequence valves.
  • plunger cylinder 1, shuttle valve, 3, valve core, 4, first oil pipe, 5, second oil pipe, 6, third oil pipe, 7, fourth oil pipe, 8, magnetic rubber hollow ball, 9.
  • Example 1 Double-input two-four-step sequence valve.
  • the re-entry sequence valve of the present invention includes a reciprocating single-acting plunger cylinder 1, a negative pressure shuttle valve 2, a second hydraulic cylinder group, and a first hydraulic cylinder group.
  • the plunger cylinder 1 includes a cylinder and a plunger disposed inside the cylinder, and the plunger and the cylinder wall form a seal at all coupling sections to avoid oil leakage.
  • the top of the cylinder is open to form an end oil passage, and a side wall oil passage is opened on the side cylinder wall of the cylinder.
  • the plunger in the plunger cylinder 1 can be synchronized in synchronism with the piston of the internal combustion engine to power the sequence valve.
  • the shuttle valve 2 includes a housing and a spool 3 disposed inside the housing, and the spool 3 forms a seal with the interior of the housing at all coupling sections.
  • the left and right oil passages are opened on the casing, the left oil passage is connected to the second hydraulic cylinder group, and the right oil passage is connected to the first hydraulic cylinder group.
  • the spool 3 moves under the action of negative pressure to alternately close the two-way oil ports.
  • Grooves are respectively formed on the inner walls of the corresponding shells on both ends of the valve core 3, and magnetic rubber hollow balls 8 are arranged in the recesses, and the hollow balls attract the valve core 3 when the equipment is stopped, so as to prevent the spool 3 from falling off,
  • the hollow ball absorbs the impact force generated by the reciprocating movement of the valve core, and provides the inner cavity compression space of the locking oil passage for the valve core.
  • the spool 3 presses the hollow ball into the groove to strengthen the sealing effect.
  • the first hydraulic cylinder group includes a first hydraulic cylinder 11 and a second hydraulic cylinder 12, a first reset device 15 is connected to the piston of the first hydraulic cylinder 11, and a second reset device is connected to the piston of the second hydraulic cylinder 12. 16, and the starting pressure of the second resetting device 16 is greater than the maximum accumulating pressure of the first resetting device 15 to achieve the sequential action of the first hydraulic cylinder 11 and the second hydraulic cylinder 12 (the maximum accumulating pressure of the first hydraulic cylinder 11) It also determines the opening position of the two oil ports on the plunger cylinder 1. The opening position of the oil port must ensure that the plunger of the plunger cylinder generates sufficient negative pressure when driving down, and the shuttle valve spool is reversible. Then release the seal to the drain port).
  • a first oil pipe 4 is connected between the end oil port of the plunger cylinder 1 and the first hydraulic cylinder 11, and the first oil pipe 4 is connected in series with the right oil port of the shuttle valve 2, and the first hydraulic cylinder 11 is The right port of the shuttle valve 2 is in communication with the plunger cylinder 1.
  • a second oil pipe 5 is connected between the side wall oil passage of the plunger cylinder 1 and the second hydraulic cylinder 12, and a first communication pipe is connected between the first oil pipe 4 and the second oil pipe 5, and is disposed on the first communication pipe.
  • the hydraulic oil first flows into the first hydraulic cylinder 11 having a low pressure to push the piston in the first hydraulic cylinder 11 to move; when the piston in the first hydraulic cylinder 11 moves upward In a limited time, the hydraulic oil flows into the second hydraulic cylinder 12 through the first communication pipe, and pushes the piston movement in the second hydraulic cylinder 12 to achieve a sequential action.
  • the second hydraulic cylinder group includes a third hydraulic cylinder 13 and a fourth hydraulic cylinder 14, a third reset device 17 is connected to the piston of the third hydraulic cylinder 13, and a fourth reset device is connected to the piston of the fourth hydraulic cylinder 14. 18, and the starting pressure of the fourth resetting device 18 is greater than the maximum accumulating pressure of the third resetting device 17 to achieve sequential operation of the third hydraulic cylinder 13 and the fourth hydraulic cylinder 14 (for the convenience of use, the third resetting device 17
  • the maximum stored pressure is equal to the maximum stored pressure of the first reset device 15, and the starting pressure of the fourth reset device 18 is equal to the starting pressure of the second reset device 16.
  • a third oil pipe 6 is connected between the end oil port of the plunger cylinder 1 and the third hydraulic cylinder 13, and the third oil pipe 6 is connected in series with the left oil port of the shuttle valve 2, and the third hydraulic cylinder 13 is The left port of the shuttle valve is in communication with the plunger cylinder 1.
  • a fourth oil pipe 7 is connected between the side wall oil passage port of the plunger cylinder 1 and the fourth hydraulic cylinder 14, and a second communication pipe is connected between the third oil pipe 6 and the fourth oil pipe 7, and is disposed on the second communication pipe.
  • There is a second check valve 10 that only allows fluid to flow from the third oil pipe 6 to the fourth oil pipe 7.
  • the working principle of the second hydraulic cylinder group is the same as that of the first hydraulic cylinder group, and will not be described herein.
  • the alternate operation of the first hydraulic cylinder group and the second hydraulic cylinder group is realized by alternately opening and closing the two oil passage ports through the shuttle valve spool, and the principle is: when the piston in the first hydraulic cylinder (third hydraulic cylinder) descends After the bottom dead center, the plunger in the plunger cylinder continues to descend.
  • the side wall oil port is still closed, so the communication between the first hydraulic cylinder (third hydraulic cylinder) and the plunger cylinder
  • the area forms a negative pressure
  • the spool moves to the right (left) under the action of negative pressure
  • the left (right) road port opens, thereby blocking the first (two) hydraulic cylinder group
  • the first (three) oil pipe opens the third (one) oil pipe of the second (one) hydraulic cylinder group.
  • the invention can also open two opposite oil ports on the side wall of the plunger cylinder 1, one of which is connected to the oil tank through the oil pipe, the other is connected to the hydraulic motor through the oil pipe, and the check valve is connected to the oil pipe connecting the oil tank. , an overflow check valve is connected to the oil pipe connected to the hydraulic motor, and a return oil pipe is connected between the hydraulic motor and the fuel tank, so that the present invention can form a double-input two-four-step sequence with power output valve.
  • Embodiment 2 A sequential driving method of a reversing sequence valve.
  • the sequential driving method of the re-entry sequence valve of the present invention comprises the following steps:
  • the re-entry sequence valve according to the first embodiment is provided.
  • the spool 3 of the vacuum-type shuttle valve 2 is located on the left side of the valve body cavity, and the right-hand port port connected to the first oil pipe 4 is at In the open state, the left port port connected to the third oil pipe 6 is in a closed state.
  • the plunger in the plunger cylinder 1 is controlled to ascend, and the hydraulic oil enters the first liquid through the end oil port, the shuttle valve 2 and the first oil pipe 4.
  • the pressure cylinder 11 (because the third oil pipe 6 is now blocked) and pushes the piston in the first hydraulic cylinder 11 upward (since the starting pressure of the second reset device 16 on the second hydraulic cylinder is greater than the first reset)
  • the maximum energy storage pressure of the device 15 is such that the piston in the second hydraulic cylinder does not move).
  • the plunger in the plunger cylinder 1 continues to ascend, and after closing the side wall oil passage, the piston in the first hydraulic cylinder 11 is moved upward to the top dead center, and the plunger in the plunger cylinder 1 continues to ascend.
  • the hydraulic oil entering the first oil pipe 4 passes through the first communication pipe, the first check valve 9 and the second oil pipe 5, enters the second hydraulic cylinder 12, and pushes the piston in the second hydraulic cylinder 12 to move upward;
  • the piston within the second hydraulic cylinder 12 moves up to top dead center.
  • the plunger in the plunger cylinder 1 then descends. Since the side wall of the plunger cylinder is closed at this time, the second oil pipe 5 maintains a positive pressure state, and the first oil pipe 4 has a constant state. In the negative pressure state, the hydraulic oil in the first hydraulic cylinder 11 is returned to the plunger cylinder 1 through the first oil pipe 4, and the first resetting device 15 pushes the piston in the first hydraulic cylinder 11 downward.
  • the plunger in the plunger cylinder 1 descends through the side wall oil passage, the positive pressure in the second oil pipe 5 disappears and a negative pressure state occurs, and the hydraulic oil in the second hydraulic cylinder 12 flows back through the second oil pipe 5.
  • the second resetting device 16 pushes the piston in the second hydraulic cylinder 12 to start to descend; when the piston in the second hydraulic cylinder 12 descends to the bottom dead center, the plunger in the plunger cylinder 1 then descends. Up to the bottom dead center, the sequential up and reset of the first hydraulic cylinder 11 and the second hydraulic cylinder 12 are thereby achieved.
  • the plunger in the plunger cylinder 1 starts the next reciprocating cycle, and the third hydraulic cylinder 13 and the fourth hydraulic cylinder 14 that drive the second hydraulic cylinder group are sequentially sequentially ascended and reset, when the fourth hydraulic cylinder 14
  • the plunger in the plunger cylinder 1 then descends to its bottom dead center and begins to enter the next working cycle; thereby changing the re-entry motion of the two plungers into four hydraulic cylinders.
  • the sequence moves back and forth in sequence.
  • Embodiment 3 A method of using a double-input four-fourth sequence valve on an internal combustion engine.
  • the method of using a re-entry sequence valve on an internal combustion engine includes the following steps:
  • the re-entry sequence valve according to the first embodiment is mounted on the internal combustion engine, and the plunger in the plunger cylinder 1 is synchronously linked with the piston of the internal combustion engine, and the first reset device 15 is linked with the first group of valves of the internal combustion engine.
  • the second reset device 16 is coupled with the first group of fuel pump plungers of the internal combustion engine
  • the third reset device 17 is coupled with the second group of valves of the internal combustion engine
  • the fourth reset device 18 is coupled with the second group of fuel pump plungers of the internal combustion engine
  • the piston of the internal combustion engine is ascending, driving the plunger in the plunger cylinder 1 to start to rise, and the hydraulic oil enters the first hydraulic cylinder 11 through the end oil port, the shuttle valve 2 and the first oil pipe 4 (because the third oil pipe 6 is at this time) Blocked) and push the piston in the first hydraulic cylinder 11 upward (since the starting pressure of the second reset device 16 on the second hydraulic cylinder is greater than the maximum energy storage pressure of the first reset device 15, so the second The piston in the hydraulic cylinder does not move), and the first group of valves is opened in parallel.
  • the plunger in the plunger cylinder 1 continues to ascend with the piston of the internal combustion engine.
  • the side wall oil port is sealed by the plunger, when the first hydraulic cylinder 11
  • the hydraulic oil enters the second hydraulic cylinder 12 through the first communication pipe, the first check valve 9 and the second oil pipe 5, and pushes the piston in the second hydraulic cylinder 12 to move upward, and is connected in parallel.
  • the plunger of the group fuel pump pressurizes the fuel.
  • the pressure of the second hydraulic cylinder 12 and the first group of fuel pumps reaches a maximum value, and triggers the set spray.
  • the fuel port is opened and the fuel is injected.
  • the plunger in the plunger cylinder 1 descends through the side wall oil passage, the positive pressure in the second oil pipe 5 disappears and a negative pressure state occurs, and the hydraulic oil in the second hydraulic cylinder 12 flows back through the second oil pipe 5.
  • the second resetting device 16 pushes the piston in the second hydraulic cylinder 12 to start to descend, and the plunger of the first group of fuel pumps starts to reset; when the piston in the second hydraulic cylinder 12 descends to the bottom dead center After that, the plunger in the plunger cylinder 1 then descends to the bottom dead center.
  • the piston of the internal combustion engine completes a reciprocating stroke, and the sequential up and reset of the first hydraulic cylinder 11 and the second hydraulic cylinder 12 are sequentially performed.
  • the first group of valves and the first group of fuel pumps are sequentially turned on and reset.
  • the fourth hydraulic cylinder 14 resets the parallel operation of the second group of fuel pump plungers Position, at this point, the piston of the internal combustion engine completes the second reciprocating stroke, and sequentially and sequentially resets the third hydraulic cylinder and the fourth hydraulic cylinder to realize the sequential sequence of the second group of valves and the second group of fuel pumps. Open and reset.
  • the two reciprocating strokes are one working cycle, and the pistons of the four hydraulic cylinders reciprocate once in sequence, thereby changing the two re-introduction movements into four sequential re-introduction movements, and injecting two kinds of gas distribution and fuel pressure.
  • the system is combined into one component to achieve sequential opening and closing of the valve and fuel boost.
  • the piston For a four-cylinder four-stroke internal combustion engine, the piston needs to reciprocate twice in one working cycle, and the intake and exhaust valves are eight in total, divided into four groups, which need to be sequentially opened and closed four times, and the four injectors also need to be sequentially switched four times.
  • the intake and exhaust valves are eight in total, divided into four groups, which need to be sequentially opened and closed four times, and the four injectors also need to be sequentially switched four times.
  • two sets of re-introduction two-position four-action sequence valves are installed in reverse symmetry, and eight switch sequence actions can be completed in two reciprocating strokes.

Abstract

一种复进式顺序阀及其顺序驱动方法,复进式顺序阀包括:往复式柱塞缸(1)、第一液压缸组和第二液压缸组,每个液压缸组中包含两个液压缸(11、12、13、14),往复式柱塞缸(1)通过端部通油口和相接的油管与每个液压缸组中的一个液压缸相接,往复式柱塞缸(1)通过侧壁通油口和相接的油管与每个液压缸组中的另一个液压缸相接,在连接每个液压缸组中的两个液压缸的两根油管之间接有连通管,在连通管上设置有单向阀(9、10)。该复进式顺序阀可形成复进式两位四动顺序阀,多个复进式两位四动顺序阀的串、并联可组建成非电磁伺服式自动控制液压单元,例如腿式液压机器人交替迈步机构、四缸四冲程内燃机气门顺序启闭并且联动燃油增压喷射机构。

Description

一种复进式顺序阀及其顺序驱动方法 技术领域
本发明涉及一种液压阀,具体地说是一种复进式顺序阀及其顺序驱动方法。
背景技术
现有内燃机的配气和燃油增压喷射分属于两个系统,这两个系统的动力输变形式主要有两种,一种是机械式,另一种为电磁式。机械式是由凸轮机构将旋转运动转化为气门杆或燃油泵柱塞的往复运动,而电磁式是由发电机将旋转机械能变为电能,电能通过电磁线圈转化为磁力,进而驱动气门杆或喷油嘴阀门。上述两种形式均存在以下缺点:动力经多次转化,传递过程中自耗能较大;零部件数量多、结构复杂、制造成本高;凸轮轴安装位置受限,内燃机整体架构增大;气门开度受凸轮外形限制,开启时间断面的丰满系数很难提高,充排气效率较低,燃烧效率与质量难以提高。
发明内容
本发明的目的之一就是提供一种复进式顺序阀,以解决现有顺序阀不能将一次复进运动变为两次按序顺次复进运动的问题。
本发明的目的之二就是提供一种复进式顺序阀的顺序驱动方法,以将一次复进运动变为两次按序顺次复进运动,从而将内燃机的配气和燃油增压系统的驱动装置合二为一。
本发明的目的之一是这样实现的:一种复进式顺序阀,包括有:
往复式柱塞缸,为单柱塞液压缸,在其缸体上设有端部通油口和侧壁通油口;以及
第一液压缸组,包括第一液压缸和第二液压缸,在所述第一液压缸上接有第一复位装置,在所述第二液压缸上接有第二复位装置,且所述第二复位装置的启动压力大于所述第一复位装置的最大蓄能压力。
在所述往复式柱塞缸的端部通油口与所述第一液压缸之间接有第一油管,在所述往复式柱塞缸的侧壁通油口与所述第二液压缸之间接有第二油管,在所述第一油管与所述第二油管之间接有第一连通管,在所述第一连通管上设置有向第二油管流通的第一单向阀。由此形成一种复进式二位二动顺序阀。
本发明复进式顺序阀还包括有:
第二液压缸组,包括第三液压缸和第四液压缸,在所述第三液压缸上接有第三复位装置, 在所述第四液压缸上接有第四复位装置,且所述第四复位装置的启动压力大于所述第三复位装置的最大蓄能压力;以及
负压式梭阀,在梭阀阀体上设有由梭阀阀芯交替启闭的两路通油口。
在所述往复式柱塞缸的端部通油口与所述第三液压缸之间接有第三油管,在所述往复式柱塞缸的侧壁通油口与所述第四液压缸之间接有第四油管,在所述第三油管与所述第四油管之间接有第二连通管,在所述第二连通管上设置有向第四油管流通的第二单向阀。
所述负压式梭阀串接在所述第一油管和所述第三油管上,所述第一油管连接在梭阀阀体上的其中一路通油口上,所述第三油管连接在梭阀阀体上的另一路通油口上。
在梭阀阀体的内腔两端分别设有占位性磁性橡胶空心球,为梭阀阀芯提供闭锁油路的内腔压缩空间。由此形成一种复进式二位四动顺序阀。
使用时,在本发明复进式顺序阀的各油管和连通管内均充满有液压油。
本发明的目的之二是这样实现的:一种复进式顺序阀的顺序驱动方法,包括以下步骤:
a、设置如上所述的复进式顺序阀。
b、柱塞缸内的柱塞受控上行,液压油经端部通油口和第一油管进入第一液压缸,并推动第一液压缸内的活塞向上动作(由于第二液压缸上的第二复位装置的启动压力大于所述第一复位装置的最大蓄能压力,故第二液压缸中的活塞不动)。
c、柱塞缸内的柱塞继续上行,并在封闭侧壁通油口后,使第一液压缸内的活塞向上运动至上止点,在柱塞缸内的柱塞继续上行的推动作用下,进入第一油管内的液压油经第一连通管、第一单向阀和第二油管,进入第二液压缸,推动第二液压缸内的活塞向上动作;当柱塞上行至接近或达到柱塞缸内的上止点时,第二液压缸内的活塞向上运动至上止点。
d、柱塞缸内的柱塞随后下行,由于柱塞缸侧壁通油口此时处于封闭状态,故第二油管内保持正压状态不变,而第一油管内则呈负压状态,第一液压缸内的液压油通过第一油管回流到柱塞缸内,第一复位装置推动第一液压缸内的活塞下行。
e、当第一液压缸内的活塞下行至下止点后,柱塞缸内的柱塞下行通过侧壁通油口,使第二油管内的正压消失并出现负压状态,第二液压缸内的液压油通过第二油管回流到柱塞缸内,第二复位装置推动第二液压缸内的活塞开始下行。
f、当第二液压缸内的活塞下行至下止点后,柱塞缸内的柱塞随即下行至下止点,开始进入下一个工作循环,由此实现第一液压缸与第二液压缸的按序顺次的上行与复位。
对于设置有第二液压缸组和负压式梭阀的复进式顺序阀,本发明的顺序驱动方法包括以下步骤:
a、设置包括有第一液压缸组、第二液压缸组和负压式梭阀的复进式顺序阀,停机时,负压式梭阀的阀芯位于阀体内腔的左侧,与第一油管连接的右路通油口处于开启状态,与第三油管连接的左路通油口处于关闭状态。
b、柱塞缸内的柱塞受控上行,液压油经端部通油口、梭阀和第一油管进入第一液压缸(因为第三油管此时被封堵),并推动第一液压缸内的活塞向上动作(由于第二液压缸上的第二复位装置的启动压力大于所述第一复位装置的最大蓄能压力,故第二液压缸中的活塞不动)。
c、柱塞缸内的柱塞继续上行,并在封闭侧壁通油口后,使第一液压缸内的活塞向上运动至其上止点,在柱塞缸内的柱塞继续上行的推动作用下,进入第一油管内的液压油经第一连通管、第一单向阀和第二油管,进入第二液压缸,推动第二液压缸内的活塞向上动作;当柱塞上行至接近或达到柱塞缸内的上止点时,第二液压缸内的活塞向上运动至其上止点。
d、柱塞缸内的柱塞随后下行,由于柱塞缸的侧壁通油口此时处于封闭状态,故第二油管内保持正压状态不变,而第一油管内则呈负压状态,第一液压缸内的液压油通过第一油管回流到柱塞缸内,第一复位装置推动第一液压缸内的活塞下行。
e、当第一液压缸内的活塞下行至下止点后,柱塞缸内的柱塞继续下行,从而在梭阀与柱塞缸之间的连通区域形成负压,梭阀阀芯在负压作用下向右移动,将与第一油管连接的一路通油口关闭,将与第三油管连接的另一路通油口打开。
f、当柱塞缸内的柱塞下行通过侧壁通油口后,第二油管内的正压消失并出现负压状态,第二液压缸内的液压油通过第二油管回流到柱塞缸内,第二复位装置推动第二液压缸内的活塞开始下行;当第二液压缸内的活塞下行至下止点后,柱塞缸内的柱塞随即下行至下止点,由此实现第一液压缸与第二液压缸的按序顺次的上行与复位。
g、柱塞缸内的柱塞再次手控上行,液压油经端部通油口、梭阀和第三油管进入第三液压缸(因此时第一油管被封堵),并推动第三液压缸内的活塞向上动作(由于第四液压缸上的第四复位装置的启动压力大于第三复位装置的最大蓄能压力,故第四液压缸中的活塞不动)。
h、柱塞缸内的柱塞继续上行,并封闭侧壁通油口后,使第三液压缸内的活塞向上运动至其上止点,在柱塞缸内的柱塞继续上行的推动作用下,进入第三油管内的液压油经第二连通管、第二单向阀和第四油管,进入第四液压缸,推动第四液压缸内的活塞向上动作;当柱塞上行至接近或达到柱塞缸内的上止点时,第二液压缸内的活塞向上运动至其上止点。
i、柱塞缸内的柱塞随后受控下行,由于柱塞缸的侧壁通油口此时处于封闭状态,故第四油管内保持正压状态不变,而第三油管内则呈负压状态,第三液压缸内的液压油通过第三油管回流到柱塞缸内,第三复位装置推动第三液压缸内的活塞下行。
j、当第三液压缸内的活塞下行至下止点后,柱塞缸内的柱塞继续下行,从而在梭阀与柱塞之间的连通区域形成负压,梭阀阀芯在负压作用下向左移动,将与第三油管连接的通油口关闭,将与第一油管连接的通油口打开。
k、当柱塞缸内的柱塞下行通过侧壁通油口后,第四油管内的正压消失并出现负压状态,第四液压缸内的液压油通过第四油管回流到柱塞缸内,第四复位装置推动第四液压缸内的活塞开始下行;当第四液压缸内的活塞下行至下止点后,柱塞缸内的柱塞随即下行至下止点,开始进入下一工作循环,由此实现第三液压缸与第四液压缸的按序顺次的上行与复位,至此,将两次柱塞的复进运动变为四个液压缸的按序顺次复进运动。
将所述柱塞缸的柱塞与内燃机的活塞同向同步联动,所述第一液压缸的第一复位装置与第一组气门联动,所述第二液压缸的第二复位装置与内燃机的第一组燃油泵联动,所述第三液压缸的第三复位装置与内燃机的第二组气门联动,所述第四液压缸的第四复位装置与内燃机的第二组燃油泵联动;当内燃机的活塞上行时,带动柱塞缸内的柱塞上行,控制第一液压缸内的活塞和第二液压缸内的活塞依次推出,对应的第一组气门打开,第一组燃油泵加压喷油;当内燃机的活塞下行时,带动柱塞缸内的柱塞下行,控制第一液压缸内的活塞和第二液压缸内的活塞依次回复,对应的第一组气门关闭、第一组燃油泵关闭,内燃机的活塞完成一个往复冲程,第一组气门和第一组燃油泵完成一次按序顺次开关动作;当内燃机的活塞再次上行时,带动柱塞缸内的柱塞上行,控制第三液压缸内的活塞和第四液压缸内的活塞依次推出,对应的第二组气门打开,第二组燃油泵加压喷油;当内燃机的活塞再次下行时,带动柱塞缸内的柱塞随之下行,控制第三液压缸内的活塞和第四液压缸内的活塞依次回复,对应的第二组气门关闭、第二组燃油泵关闭,内燃机的活塞完成第二个往复冲程,第二组气门和第二组燃油泵完成一次按序顺次开关动作;至此,将内燃机活塞的两次复进运动变为四次按序顺次复进运动。
本发明的复进式顺序阀可以实现将一次复进运动变为两次的按序顺次复进运动,将其应用于内燃机中,可增大燃油泵柱塞的行程,提高燃油喷射压力,延长气门满开时间,大大提高开启时间断面的丰满系数,提高充气、排气效率,提高内燃机的燃烧效率与质量。
本发明复进式顺序阀的应用可将内燃机的配气系统和燃油增压喷射系统合二为一,从而大大减少内燃机的零部件数量,缩小内燃机体积,且可自润滑,安装位置灵活,减少了动力形式的转换,大大降低了内燃机的自耗能。
若干个复进式两位四动顺序阀串、并联可组建成非电磁伺服式自动控制液压单元,例如腿式液压机器人交替迈步机构、四缸四冲程内燃机气门顺序启闭并且联动燃油增压喷射机构。
附图说明
图1是本发明的结构示意图。
图2是两组顺序阀反向安装的结构示意图。
图中:1、柱塞缸,2、梭阀,3、阀芯,4、第一油管,5、第二油管,6、第三油管,7、第四油管,8、磁性橡胶空心球,9、第一单向阀,10、第二单向阀,11、第一液压缸,12、第二液压缸,13、第三液压缸,14、第四液压缸,15、第一复位装置,16、第二复位装置,17、第三复位装置,18、第四复位装置。
具体实施方式
实施例1:复进式两位四动顺序阀。
如图1所示,本发明的复进式顺序阀包括往复式单作用柱塞缸1、负压式梭阀2、第二液压缸组和第一液压缸组。
柱塞缸1包括缸体和设置在缸体内部的柱塞,柱塞与缸壁在所有耦合段都形成密封,以避免漏油。缸体的顶部开口,形成端部通油口,在缸体的侧缸壁上开设有侧壁通油口。使用时,柱塞缸1内的柱塞可与内燃机的活塞同向同步联动,以为顺序阀提供动力。
梭阀2包括壳体和设置在壳体内部的阀芯3,阀芯3与壳体内部在所有耦合段都形成密封。在壳体上开设有左、右两路通油口,左路通油口与第二液压缸组相连,右路通油口与第一液压缸组相连。阀芯3在负压作用下移动换向交替封闭两路通油口。在阀芯3两端对应的壳体内壁上分别开设有凹槽,在凹槽内设有磁性橡胶空心球8,在设备停机时空心球吸引阀芯3,以防止阀芯3脱落移位,在设备工作时空心球吸收阀芯往复移动产生的冲击力,为阀芯提供闭锁油路的内腔压缩空间。另外,在压力作用下阀芯3将空心球压进凹槽内,可加强密封作用。
第一液压缸组包括第一液压缸11和第二液压缸12,在第一液压缸11的活塞上接有第一复位装置15,在第二液压缸12的活塞上接有第二复位装置16,且第二复位装置16的启动压力大于第一复位装置15的最大蓄能压力,以实现第一液压缸11和第二液压缸12的顺序动作(第一液压缸11的最大蓄能压力也决定着柱塞缸1上的两个通油口的开设位置,通油口的开设位置须保证柱塞缸的柱塞在下行时产生足够的负压驱动梭阀阀芯换向到位后,再解除对泄油口的密封)。在柱塞缸1的端部通油口与第一液压缸11之间接有第一油管4,该第一油管4与梭阀2的右路通油口串接,将第一液压缸11、梭阀2的右路通油口与柱塞缸1连通。在柱塞缸1的侧壁通油口与第二液压缸12之间接有第二油管5,在第一油管4与第二油管5之间接有第一连通管,在第一连通管上设置有只容许流体从第一油管4流向第二油管5的第一单 向阀9。
当柱塞缸1内的柱塞向上运动时,液压油先向压力低的第一液压缸11内流动,推动第一液压缸11内的活塞运动;当第一液压缸11内的活塞运动至上限时,液压油通过第一连通管流入第二液压缸12内,并推动第二液压缸12内的活塞运动,实现顺序动作。
第二液压缸组包括第三液压缸13和第四液压缸14,在第三液压缸13的活塞上接有第三复位装置17,在第四液压缸14的活塞上接有第四复位装置18,且第四复位装置18的启动压力大于第三复位装置17的最大蓄能压力,以实现第三液压缸13和第四液压缸14的顺序动作(为使用更加方便,第三复位装置17的最大蓄能压力等于第一复位装置15的最大蓄能压力,第四复位装置18的启动压力等于第二复位装置16的启动压力)。在柱塞缸1的端部通油口与第三液压缸13之间接有第三油管6,该第三油管6与梭阀2的左路通油口串接,将第三液压缸13、梭阀的左路通油口与柱塞缸1连通。在柱塞缸1的侧壁通油口与第四液压缸14之间接有第四油管7,在第三油管6与第四油管7之间接有第二连通管,在第二连通管上设置有只容许流体从第三油管6流向第四油管7的第二单向阀10。第二液压缸组的工作原理与第一液压缸组的工作原理相同,此处不再赘述。
第一液压缸组与第二液压缸组交替工作是通过梭阀阀芯交替启闭两路通油口来实现的,其原理是:当第一液压缸(第三液压缸)内的活塞下行至其下止点后,柱塞缸内的柱塞继续下行,此时,侧壁通油口仍处于封闭状态,故在第一液压缸(第三液压缸)与柱塞缸之间的连通区域形成负压,阀芯在负压作用下向右(左)移动,将右(左)路通油口关闭,左(右)路通油口打开,从而闭锁第一(二)液压缸组的第一(三)油管,开启第二(一)液压缸组的第三(一)油管。
本发明还可在柱塞缸1的侧壁上再开通两个位置相对的通油口,其中一个通过油管连接油箱,另一个通过油管连接液压马达,在连接油箱的油管上接有逆止阀,在连接液压马达的油管上连接溢流单向阀,并且,在液压马达与油箱之间连接回流油管,这样,本发明就可形成一种带有动力输出的复进式两位四动顺序阀。
实施例2:复进式顺序阀的顺序驱动方法。
本发明复进式顺序阀的顺序驱动方法包括以下步骤:
1、设置如实施例1所述的复进式顺序阀,停机时,负压式梭阀2的阀芯3位于阀体内腔的左侧,与第一油管4连接的右路通油口处于开启状态,与第三油管6连接的左路通油口处于关闭状态。
2、柱塞缸1内的柱塞受控上行,液压油经端部通油口、梭阀2和第一油管4进入第一液 压缸11(因为第三油管6此时被封堵),并推动第一液压缸11内的活塞向上动作(由于第二液压缸上的第二复位装置16的启动压力大于所述第一复位装置15的最大蓄能压力,故第二液压缸中的活塞不动)。
3、柱塞缸1内的柱塞继续上行,并在封闭侧壁通油口后,使第一液压缸11内的活塞向上运动至上止点,在柱塞缸1内的柱塞继续上行的推动作用下,进入第一油管4内的液压油经第一连通管、第一单向阀9和第二油管5,进入第二液压缸12,推动第二液压缸12内的活塞向上动作;当柱塞上行至接近或达到柱塞缸内的上止点时,第二液压缸12内的活塞向上运动至上止点。
4、柱塞缸1内的柱塞随后下行,由于柱塞缸的侧壁通油口此时处于封闭状态,故第二油管5内保持正压状态不变,而第一油管4内则呈负压状态,第一液压缸11内的液压油通过第一油管4回流到柱塞缸1内,第一复位装置15推动第一液压缸11内的活塞下行。
5、当第一液压缸11内的活塞下行至下止点后,柱塞缸1内的柱塞继续下行,从而在梭阀2与柱塞缸1之间的连通区域形成负压,阀芯右端面积大,承受正向吸力,阀芯左密封面面积小,承受侧向吸力,当正向吸力大于侧向吸力时,阀芯3摆脱左侧磁性橡胶空心球8的束缚力,向右移动,从而将与第一油管4连接的一路通油口关闭,将与第三油管6连接的另一路通油口打开。
6、当柱塞缸1内的柱塞下行通过侧壁通油口后,第二油管5内的正压消失并出现负压状态,第二液压缸12内的液压油通过第二油管5回流到柱塞缸1内,第二复位装置16推动第二液压缸12内的活塞开始下行;当第二液压缸12内的活塞下行至下止点后,柱塞缸1内的柱塞随即下行至下止点,由此实现第一液压缸11与第二液压缸12的按序顺次的上行与复位。
7、此后,柱塞缸1内的柱塞开始下一往复周期,驱动第二液压缸组的第三液压缸13与第四液压缸14按序顺次上行与复位,当第四液压缸14内的活塞下行至下止点后,柱塞缸1内的柱塞随即下行至其下止点,开始进入下一工作循环;由此将两次柱塞的复进运动变为四个液压缸的按序顺次复进运动。
实施例3:复进式两位四动顺序阀在内燃机上的使用方法。
复进式顺序阀在内燃机上的使用方法,包括以下步骤:
1、将实施例1所述的复进式顺序阀安装在内燃机上,将柱塞缸1内的柱塞与内燃机的活塞同向同步联动,第一复位装置15与内燃机的第一组气门联动,第二复位装置16与内燃机的第一组燃油泵柱塞联动,第三复位装置17与内燃机的第二组气门联动,第四复位装置18与内燃机的第二组燃油泵柱塞联动;停机时,负压式梭阀2的阀芯3位于阀体内腔的左侧, 与第一油管4连接的右路通油口处于开启状态,与第三油管6连接的左路通油口处于关闭状态.
2、内燃机的活塞上行,带动柱塞缸1内的柱塞开始上行,液压油经端部通油口、梭阀2和第一油管4进入第一液压缸11(因为第三油管6此时被封堵),并推动第一液压缸11内的活塞向上动作(由于第二液压缸上的第二复位装置16的启动压力大于所述第一复位装置15的最大蓄能压力,故第二液压缸中的活塞不动),并联动第一组气门开启。
3、柱塞缸1内的柱塞继续随内燃机的活塞上行,当其上表面运动至侧壁通油口上方后,侧壁通油口被该柱塞密封,当第一液压缸11内的活塞运动至上止点时,液压油经第一连通管、第一单向阀9和第二油管5进入第二液压缸12中,推动第二液压缸12内的活塞向上运动,并联动第一组燃油泵的柱塞对燃油加压,当柱塞缸1内的柱塞上行至其上止点时,第二液压缸12与第一组燃油泵压力达到最大值,并触发设定的喷油口开启条件,喷射燃油。
4、此后,内燃机活塞开始下行,柱塞缸1内的柱塞也随之下行,此时第二液压缸12的侧壁通油口被柱塞缸1内的柱塞封闭,第二油管5内保持正压状态不变,暂时不能泄压,而第一油管4内则呈负压状态,第一液压缸11内的液压油通过第一油管4回流到柱塞缸内,第一复位装置15推动第一液压缸11内的活塞下行,并联动第一组气门复位。
5、当第一液压缸11内的活塞复位后,柱塞缸1内的柱塞继续下行,梭阀2与柱塞缸1之间的连通区域开始形成负压,阀芯右端面积大,承受正向吸力,阀芯左密封面面积小,承受侧向吸力,当正向吸力大于侧向吸力时,阀芯3摆脱左侧磁性橡胶空心球8的束缚力,向右移动,从而将与第一油管4连接的一路通油口关闭,将与第三油管6连接的另一路通油口打开。
6、当柱塞缸1内的柱塞下行通过侧壁通油口后,第二油管5内的正压消失并出现负压状态,第二液压缸12内的液压油通过第二油管5回流到柱塞缸1内,第二复位装置16推动第二液压缸12内的活塞开始下行,联动第一组燃油泵的柱塞开始复位;当第二液压缸12内的活塞下行至下止点后,柱塞缸1内的柱塞随即下行至下止点,至此,内燃机的活塞完成一个往复冲程,通过第一液压缸11与第二液压缸12的按序顺次的上行与复位,实现第一组气门与第一组燃油泵的按序顺次开启与复位。
7、当内燃机的活塞再次上行时,柱塞缸1内的柱塞随之向上运行,驱动第二液压缸组工作,即先驱动第三液压缸13联动第二组气门开启,再驱动第四液压缸14联动第二组燃油泵喷射燃油;当内燃机的活塞再次下行时,柱塞缸1内的柱塞随之向下运行,第三液压缸13内的活塞先复位并联动第二组气门复位,然后第四液压缸14复位并联动第二组燃油泵柱塞复 位,至此,内燃机的活塞完成第二个往复冲程,通过第三液压缸和第四液压缸的按序顺次的上行与复位,实现第二组气门与第二组燃油泵的按序顺次开启与复位。
两个往复冲程为一个工作周期,四个液压缸的活塞按顺序各自往复动作一次,由此将两次复进运动变为四次顺序复进运动,并将配气和燃油增压喷射两个系统合并为一个部件,实现气门和燃油增压的顺序启闭。
对于四缸四冲程内燃机,其一个工作周期活塞需往复两次,进排气门共八个,分四组,需四次顺序启闭,四个喷油嘴也需顺序开关四次,如图2所示,将两组复进式二位四动顺序阀反向对称安装,可在两个往复冲程内完成八个开关顺序动作。

Claims (5)

  1. 一种复进式顺序阀,其特征是,包括有:
    往复式柱塞缸,为单柱塞液压缸,在其缸体上设有端部通油口和侧壁通油口;以及
    第一液压缸组,包括第一液压缸和第二液压缸,在所述第一液压缸上接有第一复位装置,在所述第二液压缸上接有第二复位装置,且所述第二复位装置的启动压力大于所述第一复位装置的最大蓄能压力;
    在所述往复式柱塞缸的端部通油口与所述第一液压缸之间接有第一油管,在所述往复式柱塞缸的侧壁通油口与所述第二液压缸之间接有第二油管,在所述第一油管与所述第二油管之间接有第一连通管,在所述第一连通管上设置有向第二油管流通的第一单向阀。
  2. 根据权利要求1所述的复进式顺序阀,其特征是,还包括有:
    第二液压缸组,包括第三液压缸和第四液压缸,在所述第三液压缸上接有第三复位装置,在所述第四液压缸上接有第四复位装置,且所述第四复位装置的启动压力大于所述第三复位装置的最大蓄能压力;以及
    负压式梭阀,在梭阀阀体上设有由梭阀阀芯交替启闭的两路通油口;
    在所述往复式柱塞缸的端部通油口与所述第三液压缸之间接有第三油管,在所述往复式柱塞缸的侧壁通油口与所述第四液压缸之间接有第四油管,在所述第三油管与所述第四油管之间接有第二连通管,在所述第二连通管上设置有向第四油管流通的第二单向阀;
    所述负压式梭阀串接在所述第一油管和所述第三油管上,所述第一油管连接在梭阀阀体上的其中一路通油口上,所述第三油管连接在梭阀阀体上的另一路通油口上。
  3. 根据权利要求2所述的复进式顺序阀,其特征是,在梭阀阀体的内腔两端分别设有占位性磁性橡胶空心球,为梭阀阀芯提供闭锁油路的内腔压缩空间。
  4. 一种复进式顺序阀的顺序驱动方法,其特征是,包括以下步骤:
    a、设置如权利要求1所述的复进式顺序阀;
    b、柱塞缸内的柱塞受控上行,液压油经端部通油口和第一油管进入第一液压缸,并推动第一液压缸内的活塞向上动作;
    c、柱塞缸内的柱塞继续上行,并在封闭侧壁通油口后,使第一液压缸内的活塞向上运动至上止点,在柱塞缸内的柱塞继续上行的推动作用下,进入第一油管内的液压油经第一连通管、第一单向阀和第二油管,进入第二液压缸,推动第二液压缸内的活塞向上动作;当柱塞上行至接近或达到柱塞缸内的上止点时,第二液压缸内的活塞向上运动至上止点;
    d、柱塞缸内的柱塞随后下行,第一液压缸内的液压油通过第一油管回流到柱塞缸内,第一复位装置推动第一液压缸内的活塞下行;
    e、当第一液压缸内的活塞下行至下止点后,柱塞缸内的柱塞下行通过侧壁通油口,第二液压缸内的液压油通过第二油管回流到柱塞缸内,第二复位装置推动第二液压缸内的活塞开始下行;
    f、当第二液压缸内的活塞下行至下止点后,柱塞缸内的柱塞随即下行至下止点,开始进入下一个工作循环。
  5. 权利要求1所述的复进式顺序阀在内燃机中的应用。
PCT/CN2016/112705 2016-12-28 2016-12-28 一种复进式顺序阀及其顺序驱动方法 WO2018119775A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680003707.5A CN108513600B (zh) 2016-12-28 2016-12-28 一种复进式顺序阀及其顺序驱动方法
PCT/CN2016/112705 WO2018119775A1 (zh) 2016-12-28 2016-12-28 一种复进式顺序阀及其顺序驱动方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/112705 WO2018119775A1 (zh) 2016-12-28 2016-12-28 一种复进式顺序阀及其顺序驱动方法

Publications (1)

Publication Number Publication Date
WO2018119775A1 true WO2018119775A1 (zh) 2018-07-05

Family

ID=62710137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112705 WO2018119775A1 (zh) 2016-12-28 2016-12-28 一种复进式顺序阀及其顺序驱动方法

Country Status (2)

Country Link
CN (1) CN108513600B (zh)
WO (1) WO2018119775A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114635791A (zh) * 2022-03-09 2022-06-17 山东理工大学 一种铰接约束活塞式发动机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1515157A (en) * 1974-11-19 1978-06-21 Bosch Gmbh Robert Control device for hydraulic pumps
CN1250841A (zh) * 1999-10-22 2000-04-19 李世六 全液压内燃机
CN102425494A (zh) * 2011-12-19 2012-04-25 欧益忠 液控对置活塞式发动机
CN103038519A (zh) * 2010-06-11 2013-04-10 空中客车作业有限公司 顺序阀组件以及用于操作顺序阀组件的方法
CN202971152U (zh) * 2012-10-31 2013-06-05 四川邦立重机有限责任公司 一种液压泵流量控制阀
CN103470398A (zh) * 2012-08-25 2013-12-25 摩尔动力(北京)技术股份有限公司 差时相循环发动机
CN104405468A (zh) * 2014-09-30 2015-03-11 刘恩均 发动机液压开闭气门装置
CN105840304A (zh) * 2015-03-08 2016-08-10 肖光宇 一种活塞往复式单缸高速内燃发动机

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19822439A1 (de) * 1997-07-30 1999-02-04 Heidelberger Druckmasch Ag Vorrichtung zur Durchführung von Betätigungen in einer Druckmaschine
CN2309453Y (zh) * 1997-09-22 1999-03-03 胡宣哲 流体压力执行装置
CN1063728C (zh) * 1998-01-22 2001-03-28 胡宣哲 液压顶举全自动控制装置
JP3929645B2 (ja) * 1999-07-05 2007-06-13 新明和工業株式会社 ゲートリフタのシリンダ同調装置
JP2003184812A (ja) * 2001-12-18 2003-07-03 Kayaba Ind Co Ltd 油圧制御装置
DE102004060003A1 (de) * 2004-12-14 2006-07-06 Man B & W Diesel Ag Kraftstoffversorgungsanlage in Form eines Common-Rail-Systems für mehrere Zylinder einer Brennkraftmaschine
CN201236856Y (zh) * 2008-05-26 2009-05-13 重庆宗申发动机制造有限公司 顺序动作控制阀
DE102008002527A1 (de) * 2008-06-19 2009-12-24 Robert Bosch Gmbh Kraftstoff-Injektor
CN201818571U (zh) * 2010-09-27 2011-05-04 武桥重工集团股份有限公司 一种控制两个油缸顺序伸缩的液压系统
CN202266529U (zh) * 2011-10-11 2012-06-06 江苏卡威专用汽车制造有限公司 由顺序阀和限位气阀控制的液压回路
CN102678409B (zh) * 2012-05-21 2014-03-26 哈尔滨工程大学 相继增压式电控共轨喷油系统
CN202756325U (zh) * 2012-08-23 2013-02-27 中国船舶重工集团公司第七〇五研究所高技术公司 双阀组动力系统
CN104973035B (zh) * 2015-06-12 2017-10-24 中车齐齐哈尔车辆有限公司 一种车辆的制动控制系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1515157A (en) * 1974-11-19 1978-06-21 Bosch Gmbh Robert Control device for hydraulic pumps
CN1250841A (zh) * 1999-10-22 2000-04-19 李世六 全液压内燃机
CN103038519A (zh) * 2010-06-11 2013-04-10 空中客车作业有限公司 顺序阀组件以及用于操作顺序阀组件的方法
CN102425494A (zh) * 2011-12-19 2012-04-25 欧益忠 液控对置活塞式发动机
CN103470398A (zh) * 2012-08-25 2013-12-25 摩尔动力(北京)技术股份有限公司 差时相循环发动机
CN202971152U (zh) * 2012-10-31 2013-06-05 四川邦立重机有限责任公司 一种液压泵流量控制阀
CN104405468A (zh) * 2014-09-30 2015-03-11 刘恩均 发动机液压开闭气门装置
CN105840304A (zh) * 2015-03-08 2016-08-10 肖光宇 一种活塞往复式单缸高速内燃发动机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114635791A (zh) * 2022-03-09 2022-06-17 山东理工大学 一种铰接约束活塞式发动机

Also Published As

Publication number Publication date
CN108513600A (zh) 2018-09-07
CN108513600B (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
US6652247B2 (en) Fully-controlled, free-piston engine
US5375417A (en) Method of and means for driving a pneumatic engine
CN1699735B (zh) 用于将燃料直接喷射入内燃机的方法
JP2005502814A5 (zh)
CN1699736A (zh) 用于将燃料直接喷射入内燃机的方法和系统
KR102277604B1 (ko) 피스톤-형 압력 변환기를 위한 스트로크 단부 팽창기
US20040020467A1 (en) Engine with high efficiency hydraulic system having variable timing valve actuation
WO2018119775A1 (zh) 一种复进式顺序阀及其顺序驱动方法
CN108240244B (zh) 柴油机进气门可变系统及柴油机
KR940011345B1 (ko) 디젤엔진용 연료분사장치
EP0839265A1 (en) Operation and control of a free piston aggregate
CN108612682B (zh) 一种低噪音液压增压器
CN108679031A (zh) 一种液压空压机
US20050247273A1 (en) Pneumatic spring for starting a free piston internal combustion engine
CN206647339U (zh) 一种由机械结构控制油缸伸缩顺序的逻辑阀
CN108561344B (zh) 一种双作用往复式液压增压器
CN201255153Y (zh) 压差式内换向自动循环油缸
CN220955947U (zh) 一种压力平稳的并连气液泵
RU2544116C1 (ru) Способ привода клапана и форсунки двигателя
CN204003687U (zh) 舟桥跳板液压翻转装置
CN109236527A (zh) 可变增压比压电-电磁控制喷油器
CN219262808U (zh) 一种高效充氮装置
CN106979186B (zh) 一种由机械结构控制油缸伸缩顺序的逻辑阀
RU2576772C1 (ru) Способ управления рециркуляцией выхлопных газов в двигателе внутреннего сгорания системой пневматического привода двухклапанного газораспределителя с зарядкой пневмоаккумулятора системы газом из компенсационного пневмоаккумулятора
KR20120102905A (ko) 기어펌프를 이용한 액체 이송펌프

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16924981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16924981

Country of ref document: EP

Kind code of ref document: A1