WO2018116540A1 - 逐次比較型a/d変換装置、撮像装置、内視鏡および設定方法 - Google Patents
逐次比較型a/d変換装置、撮像装置、内視鏡および設定方法 Download PDFInfo
- Publication number
- WO2018116540A1 WO2018116540A1 PCT/JP2017/032169 JP2017032169W WO2018116540A1 WO 2018116540 A1 WO2018116540 A1 WO 2018116540A1 JP 2017032169 W JP2017032169 W JP 2017032169W WO 2018116540 A1 WO2018116540 A1 WO 2018116540A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- circuit
- transistor
- voltage
- unit
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 183
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 120
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000012937 correction Methods 0.000 claims abstract description 68
- 238000005070 sampling Methods 0.000 claims abstract description 22
- 230000003071 parasitic effect Effects 0.000 claims abstract description 15
- 239000000872 buffer Substances 0.000 claims description 105
- 239000003990 capacitor Substances 0.000 claims description 89
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 45
- 238000003780 insertion Methods 0.000 claims description 9
- 230000037431 insertion Effects 0.000 claims description 9
- 239000011159 matrix material Substances 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 6
- 238000012360 testing method Methods 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims description 2
- 230000000052 comparative effect Effects 0.000 claims 1
- 230000006866 deterioration Effects 0.000 abstract description 2
- 238000012546 transfer Methods 0.000 description 70
- 238000010586 diagram Methods 0.000 description 34
- 238000012545 processing Methods 0.000 description 26
- 238000012986 modification Methods 0.000 description 18
- 230000004048 modification Effects 0.000 description 18
- 230000005540 biological transmission Effects 0.000 description 17
- 230000003287 optical effect Effects 0.000 description 8
- 239000000470 constituent Substances 0.000 description 4
- 238000005286 illumination Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000007493 shaping process Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 101150076592 CST3 gene Proteins 0.000 description 2
- 101100102627 Oscarella pearsei VIN1 gene Proteins 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 101150037603 cst-1 gene Proteins 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000010845 search algorithm Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00002—Operational features of endoscopes
- A61B1/00011—Operational features of endoscopes characterised by signal transmission
- A61B1/00018—Operational features of endoscopes characterised by signal transmission using electrical cables
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
- A61B1/05—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
- A61B1/051—Details of CCD assembly
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/10—Calibration or testing
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/10—Calibration or testing
- H03M1/1009—Calibration
- H03M1/1033—Calibration over the full range of the converter, e.g. for correcting differential non-linearity
- H03M1/1057—Calibration over the full range of the converter, e.g. for correcting differential non-linearity by trimming, i.e. by individually adjusting at least part of the quantisation value generators or stages to their nominal values
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/34—Analogue value compared with reference values
- H03M1/38—Analogue value compared with reference values sequentially only, e.g. successive approximation type
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/71—Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
- H04N25/75—Circuitry for providing, modifying or processing image signals from the pixel array
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
- H04N25/78—Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00002—Operational features of endoscopes
- A61B1/00004—Operational features of endoscopes characterised by electronic signal processing
- A61B1/00009—Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
- A61B1/045—Control thereof
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/1205—Multiplexed conversion systems
- H03M1/123—Simultaneous, i.e. using one converter per channel but with common control or reference circuits for multiple converters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/34—Analogue value compared with reference values
- H03M1/38—Analogue value compared with reference values sequentially only, e.g. successive approximation type
- H03M1/46—Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter
- H03M1/466—Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter using switched capacitors
- H03M1/468—Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter using switched capacitors in which the input S/H circuit is merged with the feedback DAC array
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/66—Digital/analogue converters
- H03M1/74—Simultaneous conversion
- H03M1/80—Simultaneous conversion using weighted impedances
- H03M1/802—Simultaneous conversion using weighted impedances using capacitors, e.g. neuron-mos transistors, charge coupled devices
Definitions
- the present invention relates to a successive approximation A / D converter, an imaging device, an endoscope, and a setting method for converting an analog signal input from the outside into a digital signal.
- a / D converter for example, a differential input asynchronous type successive approximation A / D converter disclosed in Non-Patent Document 1 is known.
- This successive approximation type A / D converter holds a pair of analog signals input as differential input signals by a sample-and-hold circuit, and compares the reference signals with the analog signals held through the capacitor circuit to compare with the comparison circuit.
- a voltage signal is generated, and based on this comparison voltage signal, the successive approximation logic circuit determines the value (0 or 1) of each bit from the MSB to the LSB of the digital signal corresponding to the differential input signal according to the binary search algorithm At the same time, the determined value of each bit is fed back to the reference signal.
- the successive approximation type A / D converters can be composed of digital circuits without using analog circuits such as operational amplifiers. For this reason, a successive approximation A / D converter can be realized in a small size by using a fine CMOS (Complementary Metal Oxide Semiconductor) process, and power consumption can be reduced. From the viewpoint of enabling such low power consumption and miniaturization, the successive approximation A / D converter is used in a system LSI (Large Scale Integration) such as a portable device.
- LSI Large Scale Integration
- the successive approximation A / D converter described above changes the input voltage of the comparator for each bit conversion when executing the A / D conversion, so that the input capacitance of the comparator during the A / D conversion is changed. Also fluctuate. For this reason, in the successive approximation A / D converter described above, the gain coefficient fluctuates during A / D conversion due to a change in the capacitance connected to the input terminal of the comparator, resulting in an error in the output signal. As a result, there is a problem that the linearity of the output signal deteriorates.
- the present invention has been made in view of the above, and provides a successive approximation A / D converter, an imaging device, an endoscope, and a setting method that can prevent the linearity of an output signal from deteriorating.
- the purpose is to do.
- a successive approximation A / D converter includes a sampling circuit that samples a pair of analog signals input as differential input signals, and the sampling circuit.
- a capacitance circuit that generates a pair of voltage signals by reflecting a signal level of a reference signal to the pair of analog signals via the binary capacitance,
- a comparison circuit that has an input transistor to which the pair of voltage signals are input, compares one signal forming the pair of voltage signals with the other signal, and is provided on the front side of the comparison circuit;
- a correction circuit that outputs the pair of voltage signals that cancel the parasitic capacitance in the comparison circuit to the comparison circuit, and a ratio by the comparison circuit
- a control circuit that sequentially determines the value of each bit of the digital signal corresponding to the binary capacity by a binary search method and reflects the value of each bit of the digital signal in the reference signal. It is characterized by providing.
- the correction circuit includes a correction transistor that cancels the parasitic capacitance, and a bias circuit that applies a predetermined bias voltage to the correction transistor. It is characterized by having.
- the bias voltage is adjustable in the bias circuit.
- the successive approximation A / D converter according to the present invention is characterized in that, in the above invention, the voltage dependency of the capacitance of the correction transistor has a reverse characteristic to the voltage dependency of the parasitic capacitance.
- An imaging apparatus is arranged in a two-dimensional matrix with the successive approximation A / D converter according to the above-described invention, receives light input from the outside, performs photoelectric conversion, and performs an imaging signal.
- An image pickup device having a plurality of pixels that output a noise removal unit that is provided for each column in the arrangement of the plurality of pixels and removes a noise component included in the image pickup signal;
- a plurality of column source follower buffers that are provided for each column in the arrangement of a plurality of pixels and that amplify and output the imaging signal from which the noise component has been removed and the plurality of column source follower buffers are sequentially selected.
- the voltage follower is connected to the horizontal scanning unit that outputs the imaging signal and the column source follower buffer sequentially selected by the horizontal scanning unit.
- a buffer unit that forms a path performs impedance conversion on the voltage of the imaging signal output from the column source follower buffer, and outputs the converted voltage to the successive approximation A / D converter. .
- the imaging device in the above invention, the imaging device generates a reference signal having a fluctuation component in phase with the signal generated by the pixel, and supplies the reference signal to the successive approximation A / D converter.
- a reference signal generation unit for outputting is further provided, wherein the successive approximation A / D converter inputs the imaging signal and the reference signal as the differential input signal.
- an endoscope according to the present invention includes the imaging device according to the above-described invention and an insertion portion that can be inserted into a subject and is provided with the imaging device at a distal end portion.
- the setting method includes a sampling circuit that samples a pair of analog signals input as a differential input signal, and a binary capacitor that holds the pair of analog signals sampled by the sampling circuit, A capacitor circuit that generates a pair of voltage signals by reflecting a signal level of a reference signal to the pair of analog signals via a binary capacitor; and an input transistor to which the pair of voltage signals are input; A comparison circuit that compares one signal forming the voltage signal with the other signal; a correction transistor that is provided on the front side of the comparison circuit and that cancels parasitic capacitance in the input transistor; and A bias circuit for applying a bias voltage, and the pair of voltage signals are converted into the comparison circuit.
- a value of each bit of the digital signal is sequentially determined by a binary search method based on a result of comparison by the correction circuit and the comparison circuit to be output to the binary capacity And a control circuit for reflecting the reference voltage to the reference signal.
- An A / D conversion step for executing A / D conversion, and the output code based on a measurement result obtained by sequentially measuring the output code converted in the A / D conversion step.
- the bias voltage having a small difference between the absolute values of the plurality of maximum values and the minimum value calculated in the step and the second calculation step, and a small average value of the absolute values of the maximum value and the minimum value
- a second setting step for setting the value to the value of the bias voltage applied by the bias circuit.
- FIG. 1 is a schematic diagram schematically showing an overall configuration of an endoscope system according to Embodiment 1 of the present invention.
- FIG. 2 is a block diagram showing functions of main parts of the endoscope system according to Embodiment 1 of the present invention.
- FIG. 3 is a block diagram showing a detailed configuration of the image sensor shown in FIG.
- FIG. 4 is a circuit diagram schematically showing the configuration of the image sensor according to Embodiment 1 of the present invention.
- FIG. 5 is a circuit diagram showing a configuration of the reference voltage generation unit according to Embodiment 1 of the present invention.
- FIG. 6 is a circuit diagram schematically showing the configuration of the reference signal generation unit according to Embodiment 1 of the present invention.
- FIG. 1 is a schematic diagram schematically showing an overall configuration of an endoscope system according to Embodiment 1 of the present invention.
- FIG. 2 is a block diagram showing functions of main parts of the endoscope system according to Embodiment 1 of the present invention.
- FIG. 7 is a circuit diagram schematically showing the configuration of the first A / D converter according to Embodiment 1 of the present invention.
- FIG. 8 is a diagram showing the relationship between the voltage dependence characteristics of the input capacitance of the comparison circuit and the input capacitance of the correction transistor of the correction circuit according to the first embodiment of the present invention.
- FIG. 9 is a diagram showing INL characteristics of an output signal output from a conventional successive approximation A / D converter.
- FIG. 10 is a diagram illustrating the INL characteristic of the output signal output from the first A / D converter according to Embodiment 1 of the present invention.
- FIG. 11A is a timing chart showing the operation of the imaging apparatus according to Embodiment 1 of the present invention.
- FIG. 11B is a schematic diagram enlarging a part of the timing chart of the region R1 in FIG. 11A.
- FIG. 12 is a circuit diagram schematically showing a configuration of a reference signal generation unit according to Modification 1 of Embodiment 1 of the present invention.
- FIG. 13 is a circuit diagram schematically showing a configuration of a reference signal generation unit according to Modification 2 of Embodiment 1 of the present invention.
- FIG. 14 is a circuit diagram schematically showing the configuration of the image sensor according to the second embodiment of the present invention.
- FIG. 15 is a circuit diagram schematically showing the configuration of the reference signal generation unit according to Embodiment 2 of the present invention.
- FIG. 16A is a timing chart showing the operation of the imaging apparatus according to Embodiment 2 of the present invention.
- FIG. 16B is an enlarged schematic view of a part of the timing chart of the region R2 in FIG. 16A.
- FIG. 17 is a circuit diagram schematically showing the configuration of the first A / D converter according to Embodiment 3 of the present invention.
- FIG. 18 is a flowchart showing a method for adjusting the bias voltage of the correction circuit according to the third embodiment of the present invention.
- FIG. 19A is a diagram schematically showing INL characteristics when the bias voltage (1) of the correction circuit according to Embodiment 3 of the present invention is changed.
- FIG. 19B is a diagram schematically showing INL characteristics when the bias voltage (N) of the correction circuit according to Embodiment 3 of the present invention is changed.
- FIG. 19C is a diagram schematically showing INL characteristics when the bias voltage (n) of the correction circuit according to Embodiment 3 of the present invention is changed.
- an endoscope system including an endoscope having an imaging device at a distal end portion of an insertion portion inserted into a subject.
- the present invention is not limited by this embodiment.
- the same portions will be described with the same reference numerals.
- the drawings are schematic, and it should be noted that the relationship between the thickness and width of each member, the ratio of each member, and the like are different from the actual ones. Moreover, the part from which a mutual dimension and ratio differ between drawings is contained.
- FIG. 1 is a schematic diagram schematically showing an overall configuration of an endoscope system according to Embodiment 1 of the present invention.
- An endoscope system 1 shown in FIG. 1 includes an endoscope 2, a transmission cable 3, a connector unit 5, a processor 6, a display device 7, and a light source device 8.
- the endoscope 2 images the inside of the subject by inserting the insertion portion 100 that is a part of the transmission cable 3 into the body cavity of the subject, and outputs an imaging signal to the processor 6.
- the endoscope 2 is one end side of the transmission cable 3 and is used to image the inside of the subject and generate an imaging signal on the distal end 101 side of the insertion portion 100 inserted into the body cavity of the subject.
- a device 20 is provided.
- the endoscope 2 is provided with an operation unit 4 on the proximal end 102 side of the insertion unit 100 for receiving various operations on the endoscope 2.
- the imaging signal of the in-vivo image captured by the imaging device 20 is output to the connector unit 5 via the transmission cable 3 having a length of, for example, several meters.
- the transmission cable 3 connects the endoscope 2 and the connector unit 5, and connects the endoscope 2, the processor 6, and the light source device 8. Further, the transmission cable 3 transmits the imaging signal generated by the imaging device 20 to the connector unit 5.
- the transmission cable 3 is configured using a cable, an optical fiber, or the like.
- the connector unit 5 is connected to the endoscope 2, the processor 6, and the light source device 8, performs predetermined signal processing on the imaging signal output from the connected endoscope 2, and outputs the processed signal to the processor 6.
- the processor 6 performs predetermined image processing on the imaging signal input from the connector unit 5 and outputs the processed image signal to the display device 7. Further, the processor 6 controls the entire endoscope system 1 in an integrated manner. For example, the processor 6 performs control to switch the illumination light emitted from the light source device 8 or switch the imaging mode of the endoscope 2.
- the display device 7 displays an image corresponding to the imaging signal that has been subjected to image processing by the processor 6.
- the display device 7 displays various information related to the endoscope system 1.
- the display device 7 is configured using a display panel such as liquid crystal or organic EL (Electro Luminescence).
- the light source device 8 irradiates illumination light toward the subject (subject) from the distal end 101 side of the insertion portion 100 of the endoscope 2 via the connector portion 5 and the transmission cable 3.
- the light source device 8 includes a white LED (Light Emitting Diode) that emits white light.
- a simultaneous illumination method is employed for the light source device 8, but a frame sequential illumination method may be used.
- FIG. 2 is a block diagram illustrating functions of a main part of the endoscope system 1.
- the endoscope 2 illustrated in FIG. 2 includes an imaging device 20, a transmission cable 3, and a connector unit 5.
- the imaging device 20 includes an imaging device 21 (imaging chip) and an optical system 22 that forms a subject image on the imaging device 21.
- the image sensor 21 is arranged in a two-dimensional matrix in the matrix direction, receives a light from the outside, generates a light-receiving signal corresponding to the amount of received light, and outputs a light-receiving unit 23 having a plurality of pixels, A reading unit 24 that sequentially reads out the imaging signals photoelectrically converted by the row 23 for each column; and a buffer unit 25 that impedance-converts the voltage of the imaging signals sequentially read out by the reading unit 24 and amplifies and outputs the voltage by a voltage follower.
- the reference signal generation unit 26 that has a fluctuation component in phase with the imaging signal generated by the light receiving unit 23 and generates and outputs a reference signal used for the correction processing of the imaging signal, and the imaging output from the buffer unit 25
- the signal and the reference signal generated from the reference signal generator 26 are sampled at the same timing, converted into a digital imaging signal, and output to the outside.
- a hysteresis unit 29 that outputs the reference clock signal and the synchronization signal subjected to the waveform shaping to the timing generation unit 28.
- the image pickup device 21 receives a power supply voltage VDD (for example, 3.3 V) generated in a power supply unit 61 of the processor 6 described later via the transmission cable 3 together with the ground GND.
- VDD for example, 3.3 V
- a power supply stabilizing capacitor C1 is provided between the power supply voltage VDD supplied to the image sensor 21 and the ground GND. The detailed configuration of the image sensor 21 will be described later with reference to FIG.
- the optical system 22 includes a plurality of lenses and prisms, and forms a subject image on the light receiving unit 23 of the image sensor 21.
- the connector unit 5 is supplied from the processor 6 and is based on a reference clock signal (for example, a 27 MHz clock signal) serving as a reference for the operation of each component unit of the endoscope 2.
- a pulse generator 51 that generates a horizontal synchronization signal and a vertical synchronization signal) and outputs them together with a reference clock signal to the timing generation unit 28 of the imaging device 20 via the transmission cable 3, and an FPGA (Field Programmable Gate Array) Or ASIC (Application Specific Integrated Circuit) or the like, and performs predetermined signal processing, for example, noise reduction processing, on the digital imaging signal output from the imaging device 20 via the transmission cable 3 to the processor 6.
- Consists of a signal processing unit 52 for output and a regulator, etc., supplied from the processor 6 From power source comprises a power supply voltage generation unit 53 that outputs to the imaging device 21, the generated power supply voltage necessary for driving the image sensor 21.
- the processor 6 generates a power supply voltage, supplies the generated power supply voltage VDD together with the ground GND to the power supply voltage generation section 53 of the connector section 5, and operation of each component of the endoscope system 1.
- the endoscope system 1 includes a clock generation unit 62 that generates a reference clock signal serving as a reference and outputs the reference clock signal to the pulse generation unit 51 of the connector unit 5 and a CPU (Central Processing Unit).
- Processor control unit 63 that performs overall control of the image processing apparatus, and digital imaging signals input from the endoscope 2, synchronization processing, white balance (WB) adjustment processing, gain adjustment processing, gamma correction processing, An image that is subjected to image processing such as digital / analog (D / A) conversion processing and format conversion processing to be converted into an image signal, and this image signal is output to the display device 7 It includes a processing section 64, the.
- FIG. 3 is a block diagram showing a detailed configuration of the image sensor 21 shown in FIG.
- the image sensor 21 includes a light receiving unit 23, a reading unit 24, a buffer unit 25, a reference signal generation unit 26, an A / D conversion device 27, a timing generation unit 28, and a hysteresis unit. 29.
- the light receiving unit 23 is arranged in a two-dimensional matrix in the matrix direction, and has a plurality of pixels that receive light from the outside and generate and output an imaging signal corresponding to the amount of received light.
- the pixel configuration in the light receiving unit 23 will be described in detail with reference to FIG.
- the readout unit 24 sequentially reads out the imaging signals from each of a plurality of pixels of the light receiving unit 23 described later and outputs them to the buffer unit 25.
- the reading unit 24 includes a vertical scanning unit 241 (row selection circuit), a constant current source 242, a noise removing unit 243, a column source follower buffer 244, a horizontal scanning unit 245, and a reference voltage generating unit 246. .
- the signal is transferred to a vertical transfer line 239 (first transfer line), which will be described later, and output to the noise removing unit 243.
- the noise removing unit 243 removes output variation of each pixel 230 described later and a noise signal at the time of pixel reset, and outputs an imaging signal photoelectrically converted by each pixel 230 described later to the column source follower buffer 244.
- the column source follower buffer 244 holds the imaging signal from which noise has been removed from the noise removing unit 243 based on the drive signal input from the horizontal scanning unit 245, amplifies the held imaging signal, and supplies the amplified imaging signal to the buffer unit 25. Output.
- the reference voltage generating unit 246 generates the clamp voltage VCLP of the noise removing unit 243 from the same power supply voltage VDD as that of the light receiving unit 23. Details of the circuit of the reference voltage generation unit 246 will be described later with reference to FIG.
- the buffer unit 25 performs impedance conversion on the voltage of the imaging signal sequentially output from the column source follower buffer 244, amplifies the voltage by a voltage follower, and outputs the amplified signal to the A / D converter 27. Details of the circuit of the buffer unit 25 will be described later with reference to FIG.
- the reference signal generation unit 26 has a fluctuation component in phase with the imaging signal generated by the light receiving unit 23, generates a reference signal used for correction processing of the imaging signal, and outputs the reference signal to the A / D conversion device 27. Details of the circuit of the reference signal generation unit 26 will be described later with reference to FIG.
- the A / D converter 27 samples the imaging signal output from the buffer unit 25 and the reference signal generated from the reference signal generation unit 26 at the same timing, converts the sampled signal into a digital imaging signal (Vout), and outputs the signal to the outside. To do.
- the timing generation unit 28 generates various drive signals based on the reference clock signal and the synchronization signal input from the hysteresis unit 29, and reads out a later-described read unit 24, buffer unit 25, reference signal generation unit 26, and A / D. The data is output to the conversion device 27.
- the hysteresis unit 29 performs waveform shaping of the reference clock signal and the synchronization signal input via the transmission cable 3, and outputs the reference clock signal and synchronization signal subjected to the waveform shaping to the timing generation unit 28.
- FIG. 4 is a circuit diagram schematically showing the configuration of the image sensor 21.
- each pixel 230 includes a photoelectric conversion element 231 (photodiode), a charge conversion unit 233, a transfer transistor 234 (first transfer unit), a pixel reset unit 236 (transistor), and a pixel source follower transistor 237. Including.
- the photoelectric conversion element 231 photoelectrically converts incident light into a signal charge amount corresponding to the amount of light and accumulates it.
- the photoelectric conversion element 231 has a cathode connected to one end of the transfer transistor 234 and an anode connected to the ground GND.
- the charge conversion unit 233 includes a floating diffusion capacitor (FD), and converts the charge accumulated in the photoelectric conversion element 231 into a voltage.
- FD floating diffusion capacitor
- the transfer transistor 234 transfers charge from the photoelectric conversion element 231 to the charge conversion unit 233.
- a signal line to which a drive signal (row selection pulse) ⁇ R and a drive signal ⁇ T are supplied is connected to the gate of the transfer transistor 234, and a charge conversion unit 233 is connected to the other end side.
- the transfer transistor 234 is turned on when the drive signal ⁇ R and the drive signal ⁇ T are supplied from the vertical scanning unit 241 via the signal line, and transfers the charge from the photoelectric conversion element 231 to the charge conversion unit 233.
- the pixel reset unit 236 resets the charge conversion unit 233 to a predetermined potential.
- the pixel reset unit 236 has one end connected to the power supply voltage VDD, the other end connected to the charge conversion unit 233, and a gate connected to a signal line to which a drive signal ⁇ R is supplied.
- the drive signal ⁇ R is supplied from the vertical scanning unit 241 via the signal line, the pixel reset unit 236 is turned on, releases the signal charge accumulated in the charge conversion unit 233, and causes the charge conversion unit 233 to have a predetermined potential. Reset to.
- One end of the pixel source follower transistor 237 is connected to a power supply voltage VDD (for example, 3.3 V), the other end is connected to a vertical transfer line 239, and a signal (an imaging signal or an image signal or a voltage converted by the charge conversion unit 233 is connected to a gate. Reset signal) is input.
- VDD power supply voltage
- a signal an imaging signal or an image signal or a voltage converted by the charge conversion unit 233 is connected to a gate. Reset signal
- a drive signal ⁇ T is supplied to the gate of the transfer transistor 234 after the selection operation described later, the pixel source follower transistor 237 reads the charge from the photoelectric conversion element 231 and is converted into a voltage by the charge conversion unit 233. Later, it is transferred to the vertical transfer line 239.
- the constant current source 242 has one end connected to the vertical transfer line 239, the other end connected to the ground GND, and a bias voltage Vbias1 applied to the gate.
- the constant current source 242 drives the pixel 230 and outputs the output of the pixel 230 to the vertical transfer line 239.
- the signal output to the vertical transfer line 239 is input to the noise removing unit 243.
- the noise removal unit 243 illustrated in FIG. 4 is provided for each column of the pixels 230. Specifically, the noise removing unit 243 is provided for each vertical transfer line 239.
- the noise removing unit 243 includes a transfer capacitor 252 (AC coupling capacitor) and a clamp switch 253 (transistor). In the first embodiment, the noise removing unit 243 functions as a clamp circuit.
- the transfer capacitor 252 has one end connected to the vertical transfer line 239 and the other end connected to a column source follower transistor 254 of a column source follower buffer 244 described later.
- the clamp switch 253 has one end connected to a signal line to which the clamp voltage VCLP is supplied from the reference voltage generator 246, the other end connected between the transfer capacitor 252 and the column source follower buffer 244, and a timing generator at the gate.
- the drive signal ⁇ VCL is input from 28.
- the imaging signal input to the noise removing unit 243 is an optical noise sum signal including a noise component.
- the noise removing unit 243 configured as described above, when the drive signal ⁇ VCL is input from the timing generation unit 28 to the gate of the clamp switch 253, the clamp switch 253 is turned on, and the clamp supplied from the reference voltage generation unit 246 is performed.
- the transfer capacitor 252 is reset by the voltage VCLP.
- the imaging signal from which noise has been removed by the noise removing unit 243 is input to the gate of the column source follower buffer 244. Since the noise removing unit 243 does not require a sampling capacitor (sampling capacity), it is sufficient that the transfer capacity 252 (AC coupling capacitor) has a capacity sufficient for the input capacity of the column source follower buffer 244. Furthermore, the noise removal unit 243 can reduce the area occupied by the image sensor 21 by the amount of sampling capacity.
- a column source follower buffer 244 shown in FIG. 4 is provided for each column of each pixel 230. Specifically, the column source follower buffer 244 is provided for each vertical transfer line 239.
- the column source follower buffer 244 includes a column source follower transistor 254 and a column selection switch 255. In the first embodiment, the column source follower buffer 244 functions as a column side circuit.
- One end of the column source follower transistor 254 is connected to the power supply voltage VSS (hereinafter referred to as “ground GND”), the other end is connected to one end of the column selection switch 255, and noise is removed from the gate by the noise removing unit 243.
- the captured image signal is input.
- the column selection switch 255 has one end connected to the other end of the column source follower transistor 254 and the other end connected to the horizontal transfer line 257.
- the column selection switch 255 is configured using a transistor, and a signal line for supplying a drive signal ⁇ HCLK ⁇ M> from the horizontal scanning unit 245 is connected to a gate.
- the column selection switch 255 is turned on when the drive signal ⁇ HCLK ⁇ M> is supplied from the horizontal scanning unit 245, and transfers the imaging signal from which noise has been removed by the noise removing unit 243 to the horizontal transfer line 257.
- a horizontal reset transistor (not shown) is connected to the horizontal transfer line 257, and the horizontal reset transistor is turned on by inputting a drive signal from the timing generation unit 28 to the horizontal reset transistor, thereby resetting the horizontal transfer line 257. To do.
- the column selection switch 255 when the drive signal ⁇ HCLK ⁇ M> is applied from the timing generation unit 28 to the column selection switch 255, the column selection switch 255 is turned on and the horizontal source line 257 is connected. Then, the imaging signal from which noise has been removed by the noise removing unit 243 is sequentially input to the buffer unit 25.
- the buffer unit 25 shown in FIG. 4 is connected to the column source follower buffer 244 sequentially selected by the horizontal scanning unit 245 to form a voltage follower circuit, and performs impedance conversion on the voltage of the input imaging signal. And output to the A / D converter 27.
- the buffer unit 25 is connected to the column source follower buffer 244 sequentially selected by the horizontal scanning unit 245, so that the input imaging signal is amplified by a voltage follower to A / D conversion. Output to the device 27.
- the buffer unit 25 includes a first global side circuit 260 and a second global side circuit 270 provided in each of the odd and even columns of the pixel 230.
- the first global side circuit 260 and the second global side circuit 270 function as an impedance converter.
- the first global circuit 260 includes a constant current source 256, a switch 261, a first transistor 262, a second transistor 263, a third transistor 264, and a constant current source 265.
- the constant current source 256 has one end connected to the horizontal transfer line 257 and the other end connected to the power supply voltage VDD.
- the constant current source 256 reads the imaging signal to the horizontal transfer line 257.
- the imaging signal read to the horizontal transfer line 257 is input to the source side of the first transistor 262 via a switch 261 described later.
- the constant current source 256 functions as a first constant current source.
- the switch 261 has one end connected to the column selection switch 255 of the column source follower buffer 244 via the horizontal transfer line 257 and the other end connected to the source side of the first transistor 262.
- the switch 261 has a resistance value similar to that of the column selection switch 255 of the column source follower buffer 244, and is configured using, for example, a transistor.
- the switch 261 is always on and connects the horizontal transfer line 257 and the first transistor 262.
- One end side (source side) of the first transistor 262 is connected to the column selection switch 255 of the column source follower buffer 244 via the switch 261 and the horizontal transfer line 257, and the other end side (drain side) is the second transistor. It is connected to one end side (drain side) of H.263, and the gate is connected to the A / D converter 27.
- the first transistor 262 is configured using a PMOS.
- the second transistor 263 has one end side (drain side) connected to the other end side (drain side) of the first transistor 262 and the gate of the first transistor 262, and the other end side (source side) to the ground GND. And the gate is connected to the constant current source 265.
- the second transistor 263 is configured using an NMOS.
- the third transistor 264 has one end side (drain side) connected to the constant current source 265 (second constant current source), the other end side (source side) connected to the ground GND, and a gate connected to the constant current source 265. Connected to.
- the first global side circuit 260 configured in this way is connected to the column source follower buffer 244 (column side circuit) of odd columns sequentially selected by the horizontal scanning unit 245, thereby becoming a voltage follower circuit. Impedance conversion is performed on the voltage of the imaging signal (Vin) input from the source follower buffer 244, and the imaging signal (Vout) is output to the A / D converter 27 after being amplified by a factor of 1 by a voltage follower.
- the second global circuit 270 has the same configuration as the first global circuit 260 described above, and includes a constant current source 256, a switch 261, a first transistor 262, a second transistor 263, A third transistor 264 and a constant current source 265 are included.
- the second global side circuit 270 configured as described above forms a voltage follower circuit by connecting the column source follower buffers 244 (column side circuits) of even columns sequentially selected by the horizontal scanning unit 245. Then, impedance conversion is performed on the voltage of the input imaging signal (Vin), and the imaging signal (Vout) amplified by a voltage follower is output to the A / D converter 27.
- the reference signal generation unit 26 has a fluctuation component in phase with the imaging signal generated by the pixel 230, generates a reference signal used for correction processing of the imaging signal, and outputs the reference signal to the A / D conversion device 27. Details of the circuit of the reference signal generation unit 26 will be described later with reference to FIG.
- the A / D conversion device 27 is provided in each of the odd-numbered columns and the even-numbered columns in the light receiving unit 23, converts the analog imaging signal output from the pixels 230 in the odd-numbered column into a digital imaging signal, and outputs the digital imaging signal to the outside.
- a / D conversion unit 280, and a second A / D conversion unit 290 that converts an analog imaging signal output from even-numbered pixels 230 into a digital imaging signal and outputs the digital imaging signal to the outside. Details of the circuits of the first A / D converter 280 and the second A / D converter 290 will be described with reference to FIG.
- FIG. 5 is a circuit diagram illustrating a configuration of the reference voltage generation unit 246.
- the reference voltage generation unit 246 (constant voltage signal generation unit) shown in FIG. 5 includes two resistors 291a and 291b, and one end is connected to VDD_A / D (for example, 3.3V) and the other end is connected to the ground GND.
- the reference voltage generation unit 246 configured as described above generates the clamp voltage VCLP of the noise removal unit 243 at the timing when the drive signal ⁇ VSH is driven by the drive of the switch 292, and outputs the clamp voltage VCLP to the noise removal unit 243.
- FIG. 6 is a circuit diagram schematically showing the configuration of the reference signal generator 26.
- the reference signal generator 26 shown in FIG. 6 is independent from a power source, a resistance dividing circuit 301 including two resistors 301a and 301b, a switch 302 (transistor) driven by a drive signal applied from the timing generator 28, and the power source.
- a sampling capacitor 303 capacitor for releasing from fluctuation
- a pixel equivalent circuit 304 a noise removal equivalent circuit 305
- a column equivalent circuit 306 a buffer equivalent circuit 307
- the pixel equivalent circuit 304 forms a corresponding circuit with each of the pixel source follower transistor 237 and the constant current source 242 of the pixel 230, and includes a pixel source follower transistor 237a, a constant current source 242a that drives the pixel source follower transistor 237a, Have
- One end (drain side) of the pixel source follower transistor 237a is connected to the power supply voltage VDD, the other end (source side) is connected to the constant current source 242a, and a signal transferred from the sampling capacitor 303 is transferred to the gate. Signal lines to be connected.
- the constant current source 242a has one end connected to the pixel source follower transistor 237a and the other end connected to the ground GND.
- the constant current source 242a drives the pixel source follower transistor 237a and outputs the output of the pixel source follower transistor 237a to the noise removal equivalent circuit 305.
- the noise removal equivalent circuit 305 forms a circuit equivalent to the noise removal unit 243 described above, and includes a transfer capacitor 252 (AC coupling capacitor) and a clamp switch 253. Since the noise removal equivalent circuit 305 is a circuit equivalent to the noise removal unit 243 described above, detailed description thereof is omitted.
- the column equivalent circuit 306 forms a circuit corresponding to the column source follower buffer 244 described above, and includes a column source follower transistor 254 and a column selection switch 255. Since the column equivalent circuit 306 is a circuit equivalent to the above-described column source follower buffer 244, detailed description thereof is omitted.
- the buffer equivalent circuit 307 forms a circuit equivalent to the first global circuit 260 described above, and includes a constant current source 256, a switch 261, a first transistor 262, a second transistor 263, and a third transistor. A transistor 264 and a constant current source 265 are included. Since the buffer equivalent circuit 307 is equivalent to the first global circuit 260 described above, a detailed description thereof is omitted.
- the reference signal generation unit 26 configured in this way has a fluctuation component in phase with the imaging signal generated by the pixel 230, generates a reference signal (VREF) used for correction processing of the imaging signal, and performs A / D.
- the data is output to the conversion device 27.
- FIG. 7 is a circuit diagram schematically illustrating the configuration of the first A / D conversion unit 280. Since the first A / D conversion unit 280 and the second A / D conversion unit 290 have the same circuit configuration, only the configuration of the first A / D conversion unit 280 will be described below. The description of the configuration of the A / D converter 290 is omitted.
- the first A / D converter 280 shown in FIG. 7 is a successive approximation A / D converter and a 9-bit output A / D converter, but is not limited thereto. The number of output bits can be changed as appropriate.
- the first A / D converter 280 does not need to be a successive approximation A / D converter, and may be any power-saving A / D converter, such as a Nyquist A / D converter. It may be a device.
- the first A / D conversion unit 280 illustrated in FIG. 1 includes a sampling circuit 401, a capacitive DAC circuit 402, a comparison circuit 403, a correction circuit 404, and a control circuit 405.
- the sampling circuit 401 tracks a pair of imaging signals (Vsignal) and a reference signal (VREF) constituting a differential input signal at the same timing based on the clock signal CLK input from the timing generation unit 28. -Hold (Track and Hold) and sample analog imaging signal and reference signal.
- the sampling circuit 401 includes a switch 401a and a switch 401b.
- the switch 401a When the switch 401a is in the on state, the switch 401a conducts between the first global circuit 260 and the capacitive DAC circuit 402 described above. When the switch 401a is in the off state, the first global circuit 260 and the capacitive DAC circuit. A high impedance state is set between the terminal 402 and the terminal 402. An analog imaging signal is input to the switch 401a via the non-inverting input terminal INP. The switch 401a holds and samples an analog imaging signal in a later-described capacitor 402aP at the timing of switching from the on state to the off state. The switch 401 a switches between an on state and an off state based on the clock signal CLK input from the timing generation unit 28.
- the switch 401b When the switch 401b is in an on state, the switch 401b conducts between the reference signal generation unit 26 and the capacitive DAC circuit 402 described above. When the switch 401b is in an off state, the switch 401b has a high connection between the reference signal generation unit 26 and the capacitive DAC 402. Set to impedance state.
- the switch 401b receives an analog reference signal via an inverting input terminal INN.
- the switch 401b holds and samples an analog reference signal in a later-described capacitor unit 402aN at the timing of switching from the on state to the off state.
- the switch 401b is switched between an on state and an off state based on the clock signal CLK input from the timing generation unit 28.
- the capacitive DAC circuit 402 generates an analog signal based on the digital signals (DN0 to DN8, DP0 to DP8) generated by the control circuit 405, and is held by the sampling circuit 401, and each of the sampled imaging signal and reference signal
- the accumulated residual between the differential input signal and the 9-bit digital signals D0 to D8 is obtained by subtracting a reference signal (another reference signal different from the reference signal VREF) from the reference signal.
- the capacitive DAC circuit 402 uses the subtraction result obtained by subtracting the reference signal from each of the imaging signal and the reference signal as an analog imaging signal (INP) and a reference signal (INN) in which the accumulated residual is reflected to the comparison circuit 403. Output.
- the capacitive DAC circuit 402 includes a capacitor 402aN, a driver 402bN, a capacitor 402aP, and a driver 402bP.
- the capacitor unit 402aP has an attenuation capacitor ChP and binary capacitors C0P to C8P.
- the attenuation capacitor ChP is connected between the signal node NP corresponding to the wiring connected to the switch 401a and the ground GND.
- Each of the binary capacitors C0P to C8P is connected between the signal node NP and the output unit of the drive unit 402bP. That is, in each of the binary capacitors C0P to C8P, one electrode is commonly connected to the signal node NP, and the other electrode is individually connected to an output part of inverters Q0P to Q8P constituting a drive part 402bP described later.
- the binary capacitors C0P to C8P are arranged corresponding to the digital signals DP0 to DP8 generated by the control circuit 405.
- the capacitance values of the binary capacitors C0P to C8P are different.
- the capacitance value of the capacitor C (n + 1) P corresponding to the digital signal DP (n + 1) is twice the capacitance value of the capacitor CnP corresponding to the digital signal DPn (n is an integer from 0 to 7). That is, the capacitance values of the binary capacitors C0P to C8P are weighted with binary numbers corresponding to the positions of the bits of the digital signals DP0 to DP8.
- the capacitor unit 402aN has an attenuation capacitor ChN and binary capacitors C0N to C8N, similarly to the capacitor unit 402aP.
- the attenuation capacitor ChN is connected between the signal node NN corresponding to the wiring connected to the switch 401b and the ground GND.
- Each of the binary capacitors C0N to C8N is connected between the signal node NN and the output unit of the drive unit 402bN. That is, in each of the binary capacitors C0N to C8N, one electrode is commonly connected to the signal node NN, and the other electrode is individually connected to an output part of inverters Q0N to Q8N constituting a drive part 402bN described later.
- the binary capacitors C0N to C8N are arranged corresponding to the digital signals DN0 to DN8 generated by the control circuit 405. Note that the capacitance values of the binary capacitors C0N to C8N are also weighted with binary numbers in the same manner as the binary capacitors C0P to C8P. In addition, each of the capacitance values of the binary capacitors C0N to C8N constituting the capacitor unit 402aN is set to be the same as the respective capacitance values of the binary capacitors C0P to C8P constituting the capacitor unit 402aP.
- the driving unit 402bP includes inverters Q0P to Q8P.
- Inverters Q0P to Q8P are supplied with power supply voltage VDD_A / D. This means that the amplitude of the analog signal output from each of inverters Q0P to Q8P is equal to power supply voltage VDD_A / D.
- Inverters Q0P to Q8P are arranged corresponding to digital signals DP0 to DP8 generated by control circuit 405. Each bit of the digital signals DP0 to DP8 is input from the control circuit 405 to each of the inverters Q0P to Q8P.
- each of the output portions of inverters Q0P to Q8P is connected to the other electrode of binary capacitors C0P to C8P.
- the inverters Q0P to Q8P generate reference signals by inverting the digital signals DP0 to DP8 input from the control circuit 405.
- the plurality of binary capacitors C0P to C8P included in the capacitor unit 402aP extract the charge based on the reference signal from the charge based on the analog image signal Vsignal held in the attenuation capacitor ChP by charge redistribution. Subtract the reference signal from.
- the capacitor unit 402aP outputs the analog signal VCP as a subtraction result to the comparison circuit 403.
- the drive unit 402bN includes inverters Q0N to Q8N. Inverters Q0N to Q8N are supplied with power supply voltage VDD_A / D. This means that the amplitude of the reference signal output from each of inverters Q0N to Q8N is equal to power supply voltage VDD_A / D. Inverters Q0N to Q8N are arranged corresponding to digital signals DN0 to DN8 generated by control circuit 405. Each bit of the digital signals DN0 to DN8 is input from the control circuit 405 to each of the inverters Q0N to Q8N. Further, each of the output parts of inverters Q0N to Q8N is connected to the other electrode of binary capacitors C0N to C8N.
- the inverters Q0N to Q8N generate reference signals by inverting the digital signals DN0 to DN8 input from the control circuit 405.
- the plurality of binary capacitors C0N to C8N included in the capacitor unit 402aN extract the analog reference signal by extracting the charge based on the reference signal from the charge based on the analog reference signal VREF held in the attenuation capacitor ChN by charge redistribution.
- the reference signal is subtracted from the signal VREF.
- the capacitor 402aN outputs an analog signal VCN that is a subtraction result.
- the comparison circuit 403 compares the analog imaging signal input from the capacitive DAC circuit 402 with the analog reference signal, and outputs a digital signal VOP and a digital signal VON indicating the comparison result according to the magnitude relationship. To do. Specifically, the comparison circuit 403 outputs a high level signal as the digital signal VOP and a low level signal as the digital signal VON when the signal level of the analog imaging signal is higher than the signal level of the analog reference signal. Is output. Conversely, when the signal level of the analog imaging signal is lower than the signal level of the analog reference signal, the comparison circuit 403 outputs a low level signal as the digital signal VOP and outputs a high level signal as the digital signal VON. To do. The comparison circuit 403 is controlled based on an internal clock signal BIT_CLK and an inverted internal clock signal BIT_CLKb generated by a control circuit 405 described later.
- the correction circuit 404 is provided on the upstream side of the comparison circuit 403, and outputs a pair of voltage signals to the comparison circuit 403, which cancels the parasitic capacitance in the input transistor of the comparison circuit 403. Specifically, the correction circuit 404 corrects the pair of analog signal voltages input to the comparison circuit 403 by canceling out the parasitic capacitance (gate capacitance) of the input transistor of the comparison circuit 403, and supplies the correction circuit 404 to the comparison circuit 403. Output.
- the correction circuit 404 includes a correction transistor 404a that cancels the parasitic capacitance of the input transistor of the comparison circuit 403, and a bias circuit 404b that applies a bias voltage VB to the correction transistor 404a.
- the gate terminal of the correction transistor 404a is connected to the input terminal of the comparison circuit 403, and the drain terminal and the source terminal of the correction transistor 404a are connected to each other and connected to the bias circuit 404b.
- the correcting transistor 404a forms a MOS capacitor between the drain terminal and the source terminal commonly connected to the gate terminal.
- the voltage dependency of the capacitance of the correction transistor 404 a has a reverse characteristic to the voltage dependency of the input transistor of the comparison circuit 403. Note that the voltage dependency of the correcting transistor 404a will be described later.
- the control circuit 405 functions as a SAR (Successive Approximation Register) logic circuit, and in accordance with the binary search algorithm, the digital signal DP0 to DP8 corresponding to the digital signal VOP and the digital signal VON indicating the comparison result by the comparison circuit 403, and the digital signal The value of each bit of DN0 to DN8 is sequentially judged.
- the control circuit 405 supplies digital signals DP0 to DP8 and digital signals DN0 to DN8 corresponding to the digital signal VOP and the digital signal VON to the capacitive DAC circuit 402. Among these, the control circuit 405 outputs the digital signals DP0 to DP8 as digital signals D0 to D8 representing the A / D conversion results (Vout).
- control circuit 405 generates an internal clock signal BIT_CLK and an inverted internal clock signal BIT_CLKb for controlling the comparison circuit 403 and supplies them to the comparison circuit 403.
- the control circuit 405 is controlled based on the clock signal CLK generated by the timing generator 28.
- the control circuit 405 generates the internal clock signal BIT_CLK and the inverted internal clock signal BIT_CLKb while the clock signal CLK is at a high level.
- the first A / D converter 280 configured in this way sequentially outputs the A / D conversion results bit by bit from the most significant bit (D8) to the least significant bit (D0) of the digital signals D0 to D8. get.
- the comparison circuit 403 performs the signal level (voltage) of the analog imaging signal (INP) reflecting the accumulated residual up to that time. ) And the signal level (voltage) of the analog reference signal (INN).
- the differential input range of the first A / D conversion unit 280 is expressed by the following equation (1).
- Cst1 represents a parasitic capacitance generated between metal wirings (node wiring)
- Cst2 represents an input capacitance of the comparison circuit 403
- Cst3 represents a MOS capacitance generated by the correction transistor 404a
- Ch represents 2 shows the attenuation capacity of the capacitive DAC circuit 402.
- the capacitance of the correction transistor 404a is set so that the value of the MOS capacitance shows the dependence of the bias voltage on the reverse characteristic to the gate capacitance of the input transistor of the comparison circuit 403.
- FIG. 8 is a diagram showing the relationship between the voltage dependence characteristics of the input capacitance of the comparison circuit 403 and the input capacitance of the correction transistor 404 a of the correction circuit 404.
- the horizontal axis represents the input voltage (V) of the comparison circuit 403
- the vertical axis represents the capacitance.
- a curve L1 indicates the voltage dependency characteristic of the comparison circuit 403
- a curve L2 indicates the voltage dependency characteristic of the correction transistor 404a
- a curve L3 indicates the capacitance (VB parameter) of the correction transistor 404a and the comparison circuit 403.
- the voltage dependence characteristic in the synthetic capacity with the input capacity of is shown.
- the correction transistor 404a is set so that the capacitance has a bias voltage dependency opposite to the gate capacitance of the input transistor of the comparison circuit 403.
- the user sets the bias voltage VB of the correction transistor 404a appropriately to set the combined capacitance of the capacitance of the correction transistor 404a and the input capacitance of the comparison circuit 403 to be substantially flat.
- the user appropriately sets the bias voltage VB of the correction transistor 404a, thereby reducing the bias voltage dependency of the reverse characteristic to the gate capacitance of the input transistor of the comparison circuit 403.
- the combined capacitance of the MOS capacitance of the correction transistor 404a and the input capacitance of the comparison circuit 403 can be set to be substantially flat as shown by the curve L3.
- FIG. 9 shows the INL (Integral Non-Linearity) characteristic of the output signal output from the conventional successive approximation A / D converter.
- FIG. 10 shows the INL characteristics of the output signal output from the first A / D converter 280. 9 and 10, the horizontal axis indicates code, and the vertical axis indicates INL [a. u. ] Is shown. 9 represents the INL characteristic of the output signal output from the conventional successive approximation type A / D converter, and the curve L32 in FIG. 10 represents the output signal output from the first A / D converter 280. This shows the INL characteristics.
- the first A / D converter 280 can prevent the output signal from changing during the A / D conversion because the output signal becomes substantially flat. The linearity of the output signal can be maintained.
- FIG. 11A is a timing chart showing the operation of the imaging apparatus 20.
- FIG. 11B is a schematic diagram enlarging a part of the timing chart of the region R1 in FIG. 11A.
- FIG. 11A a description will be given until the imaging signal is read from the pixel 230 in the row ⁇ n> of the light receiving unit 23 and the digital imaging signal is output from the A / D converter 27.
- the pixel 230 includes only one photoelectric conversion element 231.
- the operation for one video signal line shown in this timing chart is repeated for the number of photoelectric conversion elements 231 included in the pixel 230.
- the conversion timing of the device 27, the reference clock CLK, the output timing of the conversion result of the A / D conversion device 27, and the reference signal VREF are shown.
- FIG. 11A in order from the top, the driving signal ⁇ R, the driving signal ⁇ T, the driving signal ⁇ VCL, the driving signals SW21 to SW2n, the voltages VIN1 to VINn of the transfer capacitor 252, the output voltage Vout of the buffer unit 25, and A / D conversion.
- the reference signal VREF in order from the top, the reference signal VREF, the output voltage Vout of the buffer unit 25, the reference clock CLK, the operation mode of the A / D converter 27, and the difference of the reference signal VREF from the output voltage Vout of the buffer unit 25. (Vout ⁇ VREF) is shown.
- the timing generation unit 28 turns on the clamp switch 253 (the drive signal ⁇ VCL is High), and turns on the pixel reset unit 236 (the pulsed drive signal ⁇ R ⁇ 0> is High). ), By turning off the transfer transistor 234 (pulse drive signal ⁇ T ⁇ 0> is Low) (time T1), a noise signal including variations peculiar to the pixel 230 to be read, noise at the time of pixel reset, and the like 230 to the vertical transfer line 239. At this time, by keeping the clamp switch 253 on (the drive signal ⁇ VCL is High), the gate of the column source follower buffer 244 becomes the voltage of the clamp voltage VCLP, and the transfer capacitor 252 is charged with VRST ⁇ VCLP.
- the timing generation unit 28 turns on the transfer transistor 234 (the pulsed drive signal ⁇ T ⁇ 0> is High) with the clamp switch 253 turned off (the drive signal ⁇ VCL is Low), thereby converting the charge.
- the unit 233 reads the signal photoelectrically converted by the photoelectric conversion element 231 to the vertical transfer line 239 (time T2).
- the imaging signal VSIG subjected to voltage conversion by the charge conversion unit 233 is transferred to the vertical transfer line 239.
- the transfer capacitor 252 is charged with VCLP- (VRST1-VSIG1).
- the imaging signal (optical signal) from which the noise signal has been subtracted is output to the gate of the column source follower buffer 244 via the transfer capacitor 252.
- the signal output to the gate of the column source follower buffer 244 is a signal sampled with reference to the clamp voltage VCLP.
- the timing generation unit 28 turns on the column selection switch 255 (the drive signal SW21 is High) (time T3), so that the imaging signal Vout (VCLP ⁇ (VRST1-VSIG1)) charged in the transfer capacitor 252 is received.
- the data is output to the A / D converter 27 via the column source follower buffer 244 and the first global circuit 260.
- the timing generation unit 28 switches the column selection switch 255 and turns it on / off (the drive signal SW21 is Low and the drive signal SW22 is High) (time T4), whereby the imaging signal Vout (VCLP ⁇ ) charged in the transfer capacitor 252 is obtained.
- Vout Vout
- VRST2-VSIG2 VRST2-VSIG2
- the A / D conversion device 27 performs A / D conversion on the imaging signal Vout output from the transfer capacitor 252 based on the reference signal VREF output from the reference signal generation unit 26 to perform digital imaging.
- the signal D1 is output to the outside.
- the timing generation unit 28 sequentially switches the column selection switch 255 and turns it on / off (drive signals SW22 to SW2n) (time TN), whereby the imaging signal Vout (VCLP ⁇ (VRSTn ⁇ VSIGn) charged in the transfer capacitor 252 is obtained. )) Is sequentially output to the A / D converter 27 via the column source follower buffer 244 and the first global circuit 260.
- the A / D conversion device 27 performs A / D conversion on the imaging signal Vout sequentially output from the transfer capacitor 252 on the basis of the reference signal VREF output from the reference signal generation unit 26 and performs digital conversion.
- the imaging signals D2 to DN are sequentially output to the outside.
- the imaging apparatus 20 repeats such an operation for the number of columns of the light receiving unit 23 (or for the number of columns that need to be read), so that the digital imaging signal from which the in-phase fluctuation component of the imaging signal is canceled is output to the outside. Output. Furthermore, the imaging apparatus 20 outputs a digital imaging signal for one frame to the outside by repeating the reading operation for one line for the number of pixel rows (or the number of rows that need to be read).
- the reference signal VREF and the imaging signal Vout are subjected to common mode noise, but the difference (Vout ⁇ VREF) between the output voltage Vout of the buffer unit 25 and the reference signal VREF is affected by the common mode noise. Absent.
- the A / D conversion device 27 samples the imaging signal Vout input from the buffer unit 25 and the reference signal VREF generated from the reference signal generation unit 26 at the same timing, and outputs the digital imaging signal Vout to the outside. As a result, the A / D conversion result is not affected by the common mode noise.
- the first global side circuit 260 is connected to the column source follower buffer 244 (column side circuit) of the odd columns sequentially selected by the horizontal scanning unit 245.
- the voltage follower circuit is formed, impedance conversion is performed on the voltage of the imaging signal (Vin) input from the column source follower buffer 244, and the amplification factor is amplified by 1 by the voltage follower to output the imaging signal (Vout). Therefore, the level of the imaging signal output from the column source follower buffer 244 can be used to the maximum.
- the input dynamic range and linearity of the A / D conversion device 27 are ensured when output to the A / D conversion device 27 that operates at a power supply voltage lower than that of the pixel 230. can do.
- the input conversion noise of the column source follower buffer 244 can be reduced.
- the reference signal generation unit 26 since the reference signal generation unit 26 generates a reference signal having a fluctuation component in phase with the imaging signal generated by the pixel 230, it is substantially affected by in-phase noise. In this state, the imaging signal can be converted into a digital imaging signal and output.
- the capacitance connected to the input terminal of the comparison circuit 403 can be made substantially flat, the linearity of the output signal output from the A / D converter 27 is deteriorated. Can be prevented.
- FIG. 12 is a circuit diagram schematically showing a configuration of a reference signal generation unit according to Modification 1 of Embodiment 1 of the present invention.
- the reference signal generation unit 26a illustrated in FIG. 12 has a configuration in which the noise removal equivalent circuit 305, the column equivalent circuit 306, and the buffer equivalent circuit 307 are omitted from the reference signal generation unit 26 according to the first embodiment described above.
- a resistance dividing circuit 301 composed of a resistor 301a and a resistor 302b, a switch 302 (transistor) driven by a drive signal applied from the timing generation unit 28, and a sampling capacitor 303 (capacitor for releasing from fluctuations independently of the power source) )
- a pixel equivalent circuit 304 composed of a resistor 301a and a resistor 302b, a switch 302 (transistor) driven by a drive signal applied from the timing generation unit 28, and a sampling capacitor 303 (capacitor for releasing from fluctuations independently of the power source)
- a pixel equivalent circuit 304 composed of a resistor 301a and a resistor 302b, a switch 302 (transistor) driven by a drive signal applied from the
- a reference signal that has a fluctuation component in phase with the imaging signal generated by the pixel 230 and is used for correction processing of the imaging signal is generated, and A / D converter 27 can be output, and the chip area of the image sensor 21 can be reduced.
- FIG. 13 is a circuit diagram schematically showing a configuration of a reference signal generation unit according to Modification 2 of Embodiment 1 of the present invention.
- the 13 includes the switch 302 (transistor), the sampling capacitor 303 (capacitor), the pixel equivalent circuit 304, the noise removal equivalent circuit 305, the column from the reference signal generation unit 26 according to the first embodiment.
- the equivalent circuit 306 and the buffer equivalent circuit 307 are omitted, and a resistance dividing circuit 301 including two resistors 301a and 301b is provided.
- a reference signal that has a fluctuation component in phase with the imaging signal generated by the pixel 230 and is used for correction processing of the imaging signal is generated.
- the chip area of the image sensor 21 can be further reduced.
- FIG. 14 is a circuit diagram schematically showing the configuration of the image sensor according to the second embodiment of the present invention.
- An imaging element 21a illustrated in FIG. 14 includes a buffer unit 25a and a reference signal generation unit 26c instead of the buffer unit 25 and the reference signal generation unit 26 of the imaging element 21 according to Embodiment 1 described above.
- the buffer unit 25a is connected to the column source follower buffer 244 sequentially selected by the horizontal scanning unit 245, so that the buffer unit 25a becomes a voltage follower circuit.
- the input image signal is amplified by the voltage follower by one time, and the A / D converter To 27.
- the buffer unit 25a includes a first global circuit 260a and a second global circuit 270a provided in each of the odd and even columns of the pixel 230.
- the first global side circuit 260a and the second global side circuit 270a function as an impedance converter.
- the first global side circuit 260a includes a fourth transistor 266, a constant current source 267, a fifth transistor 268, and a constant transistor. And a current source 269.
- the fourth transistor 266 has one end side (source side) connected to the constant current source 267, the other end side (drain side) connected to the ground GND, the gate connected to the switch 261, the first transistor 262, and the horizontal transfer line. 257 is connected to the column selection switch 255 of the column source follower buffer 244.
- the fourth transistor 266 is configured using a PMOS.
- the constant current source 267 has one end connected to the power supply voltage VDD and the other end connected to one end (source side) of the fourth transistor 266 and the gate of the fifth transistor 268.
- the constant current source 267 functions as a third constant current source.
- the fifth transistor 268 has one end side (drain side) connected to the power supply voltage VDD, the other end side (source side) connected to the constant current source 269, and the gate connected to the constant current source 267.
- the fifth transistor 268 is configured using an NMOS.
- the constant current source 269 has one end connected to the ground GND and the other end connected to the other end (source side) of the fifth transistor 268.
- the constant current source 269 functions as a fourth constant current source.
- the column source follower buffer 244 (column side circuit) of odd columns sequentially selected by the horizontal scanning unit 245 is connected to the first global circuit 260a.
- a voltage follower circuit is formed, and the image pickup signal (Vout) obtained by amplifying the input image pickup signal (Vin) by a voltage follower is output to the A / D converter 27.
- the second global side circuit 270a has the same configuration as the first global side circuit 260a described above, and includes a constant current source 256, a switch 261, a first transistor 262, a second transistor 263,
- the third transistor 264 includes a constant current source 265, a fourth transistor 266, a constant current source 267, a fifth transistor 268, and a constant current source 269.
- the second global side circuit 270a configured as described above is connected to the column source follower buffer 244 (column side circuit) of even columns sequentially selected by the horizontal scanning unit 245, thereby becoming a voltage follower circuit.
- the imaging signal (Vout) obtained by amplifying the imaging signal (Vin) to be amplified by a voltage follower is output to the A / D converter 27.
- the reference signal generation unit 26 c has a fluctuation component in phase with the imaging signal generated by the pixel 230, generates a reference signal used for correction processing of the imaging signal, and outputs the reference signal to the A / D conversion device 27. Details of the circuit of the reference signal generation unit 26c will be described later with reference to FIG.
- FIG. 15 is a circuit diagram schematically showing the configuration of the reference signal generator 26c.
- the buffer equivalent circuit 307a forms a circuit equivalent to the first global circuit 260a, and includes a constant current source 256, a switch 261, a first transistor 262, a second transistor 263, and a third transistor 264.
- the reference signal generation unit 26c configured as described above has a fluctuation component in phase with the imaging signal generated by the pixel 230, generates a reference signal (VREF) used for correction processing of the imaging signal, and performs A / D The data is output to the conversion device 27.
- VREF reference signal
- FIG. 16A is a timing chart showing the operation of the imaging apparatus 20.
- FIG. 16B is an enlarged schematic view of a part of the timing chart of the region R2 in FIG. 16A.
- FIG. 16A a description will be given until the imaging signal is read from the pixel 230 in the row ⁇ n> of the light receiving unit 23 and the digital imaging signal is output from the A / D conversion device 27.
- the pixel 230 includes only one photoelectric conversion element 231.
- the reference signal VREF in order from the top, the reference signal VREF, the output voltage Vout of the buffer unit 25, the reference clock CLK, the operation mode of the A / D converter 27, and the difference between the reference voltage VREF from the output voltage Vout of the buffer unit 25. (Vout ⁇ VREF) is shown.
- the timing generation unit 28 turns on the clamp switch 253 (the drive signal ⁇ VCL is High), and turns on the pixel reset unit 236 (the pulsed drive signal ⁇ R ⁇ 0> is High). ), By turning off the transfer transistor 234 (pulse drive signal ⁇ T ⁇ 0> is Low) (time T1), a noise signal including variations peculiar to the pixel 230 to be read, noise at the time of pixel reset, and the like 230 to the vertical transfer line 239. At this time, by keeping the clamp switch 253 on (the drive signal ⁇ VCL is High), the gate of the column source follower buffer 244 becomes the voltage of the clamp voltage VCLP, and the transfer capacitor 252 is charged with VRST ⁇ VCLP.
- the timing generation unit 28 turns on the transfer transistor 234 (the pulsed drive signal ⁇ T ⁇ 0> is High) with the clamp switch 253 turned off (the drive signal ⁇ VCL is Low), thereby converting the charge.
- the unit 233 reads out a signal obtained by converting the charge photoelectrically converted by the photoelectric conversion element 231 to the vertical transfer line 239 (time T2). In this state, the imaging signal VSIG subjected to voltage conversion by the charge conversion unit 233 is transferred to the vertical transfer line 239. With this operation, the transfer capacitor 252 is charged with VCLP- (VRST1-VSIG1).
- the imaging signal (optical signal) from which the noise signal has been subtracted is output to the gate of the column source follower buffer 244 via the transfer capacitor 252.
- the signal output to the gate of the column source follower buffer 244 is a signal sampled with reference to the clamp voltage VCLP.
- the timing generation unit 28 turns on the column selection switch 255 (the drive signal SW21 is High) (time T3), so that the imaging signal Vout (VCLP ⁇ (VRST1-VSIG1)) charged in the transfer capacitor 252 is received.
- the data is output to the A / D converter 27 via the column source follower buffer 244 and the first global circuit 260a.
- the timing generation unit 28 switches the column selection switch 255 and turns it on / off (the drive signal SW21 is Low and the drive signal SW22 is High) (time T4), whereby the imaging signal Vout (VCLP ⁇ ) charged in the transfer capacitor 252 is obtained.
- Vout Vout
- VRST2-VSIG2 VRST2-VSIG2
- the A / D conversion device 27 performs A / D conversion on the imaging signal Vout output from the transfer capacitor 252 based on the reference signal VREF output from the reference signal generation unit 26c, and performs digital imaging.
- the signal D1 is output to the outside.
- the timing generation unit 28 sequentially switches the column selection switch 255 and turns it on / off (drive signals SW22 to SW2n) (time TN), whereby the imaging signal Vout (VCLP ⁇ (VRSTn ⁇ VSIGn) charged in the transfer capacitor 252 is obtained. )) Are sequentially output to the A / D converter 27 via the column source follower buffer 244 and the first global circuit 260a.
- the A / D conversion device 27 performs A / D conversion on the imaging signal Vout sequentially output from the transfer capacitor 252 based on the reference signal VREF output from the reference signal generation unit 26c, and performs digital conversion.
- the imaging signals D2 to DN are sequentially output to the outside.
- the imaging apparatus 20 repeats such an operation for the number of columns of the light receiving unit 23 (or for the number of columns that need to be read), so that the digital imaging signal from which the in-phase fluctuation component of the imaging signal is canceled is output to the outside. Output. Furthermore, the imaging apparatus 20 outputs a digital imaging signal for one frame to the outside by repeating the reading operation for one line for the number of pixel rows (or the number of rows that need to be read).
- the reference signal VREF and the imaging signal Vout are subjected to common mode noise, but the difference (Vout ⁇ VREF) between the output voltage Vout of the buffer unit 25 and the reference signal VREF is affected by the common mode noise. Absent.
- the A / D conversion device 27 samples the imaging signal Vout input from the buffer unit 25 and the reference signal VREF generated from the reference signal generation unit 26 at the same timing, and outputs the digital imaging signal Vout to the outside. As a result, the A / D conversion result is not affected by the common mode noise.
- the first global side circuit 260a is connected to the column source follower buffer 244 (column side circuit) of the odd number columns sequentially selected by the horizontal scanning unit 245. , A voltage follower circuit is formed, impedance conversion is performed on the voltage of the imaging signal (Vin) input from the column source follower buffer 244, and the amplification factor is amplified by 1 by the voltage follower to output the imaging signal (Vout). Therefore, the level of the imaging signal output from the column source follower buffer 244 can be used to the maximum.
- the settling performance of the column source follower buffer 244 can be improved by making the first global side circuit 260a a source follower type.
- the linearity is improved. Can be secured.
- the reference signal generation unit 26c generates a reference signal having a fluctuation component in phase with the imaging signal generated by the pixel 230, so that it is substantially affected by in-phase noise. In this state, the imaging signal can be converted into a digital imaging signal and output.
- the capacitance connected to the input terminal of the comparison circuit 403 can be made substantially flat, the linearity of the output signal output from the A / D converter 27 is deteriorated. Can be prevented.
- the third embodiment is different from the first A / D conversion unit 280 and the second A / D conversion unit 290 in the A / D conversion device 27 according to the first embodiment described above.
- configurations of the first A / D conversion unit and the second A / D conversion unit according to the third embodiment will be described.
- symbol is attached
- FIG. 17 is a circuit diagram schematically showing a configuration of the first A / D converter according to the third embodiment. Since the first A / D converter and the second A / D converter according to the third embodiment have the same circuit configuration, only the configuration of the first A / D converter will be described below. The description of the configuration of the second A / D conversion unit is omitted.
- the first A / D converter 280a shown in FIG. 17 is a successive approximation A / D converter and a 9-bit output A / D converter, but is not limited thereto. The number of output bits can be changed as appropriate.
- 17 includes a correction circuit 406 instead of the correction circuit 404 of the first A / D conversion unit 280 according to Embodiment 1 described above.
- the correction circuit 406 corrects the pair of analog signals input to the comparison circuit 403 by canceling the parasitic capacitance of the input transistor of the comparison circuit 403.
- the correction circuit 406 includes a correction transistor 404a that cancels the parasitic capacitance of the input transistor of the comparison circuit 403, and a bias circuit 406b that applies the bias voltage VB to the correction transistor 404a and can adjust the bias voltage VB.
- the bias circuit 406b is configured using, for example, a variable resistor. Note that the bias circuit 406b may be configured using an output signal of the DAC circuit.
- FIG. 18 is a flowchart showing a method for adjusting the bias voltage of the correction circuit 406.
- 19A to 19C are diagrams schematically showing INL characteristics (9-bit ADC) when the bias voltage (n) of the correction circuit 406 is changed.
- 19A to 19C the horizontal axis indicates code, and the vertical axis indicates INL [a. u].
- a curve L43 in FIG. 19C shows the bias voltage.
- N indicates the maximum value when the bias voltage VB is divided.
- the bias circuit 406b applies the bias voltage VB (n) to the correction transistor 404a (step S103).
- the user inputs a test signal to the first A / D conversion unit 280a, performs A / D conversion (step S104), and outputs the output code DOUT (output from the first A / D conversion unit 280a).
- n) is measured, and INL (n) is calculated (step S105).
- the INL characteristic of the bias voltage VB (1) is convex upward as shown by a curve L41 in FIG. 19A.
- the user calculates the INL maximum value INL_MAX (n) and the minimum value INL_MIN (n) from the calculated INL (n) (step S106).
- step S107 the user determines whether n is N (step S107).
- step S107: Yes the process proceeds to step S109 described later.
- step S107 No
- Step S107 is repeated.
- the INL characteristic of the bias voltage VB (N) is convex downward as shown by a curve L42 in FIG. 19B.
- step S109 the user has a small difference between the absolute values of the maximum value INL_MAX (n) and the minimum value INL_MIN (n), and the average value of the absolute values of the maximum value INL_MAX (n) and the minimum value INL_MIN (n) is small n. Select.
- the user sets the bias voltage VB (n) to the bias voltage of the correction transistor 404a (step S110). Specifically, the user adjusts the bias voltage that the bias circuit 406b applies to the correction transistor 404a to be VB (n). In this case, as shown in FIG. 19C, the INL characteristic of the bias voltage VB (n) is substantially linear as shown by a curve L43 in FIG. 19C. After step S110, the user ends this process.
- the capacitance connected to the input terminal of the comparison circuit 403 can be made substantially flat, the linearity of the output signal output from the A / D conversion device 27 is reduced. Deterioration can be prevented.
- the imaging signal generated by the imaging device is transmitted to the processor via the transmission cable.
- the imaging signal may be transmitted to the processor in accordance with a predetermined wireless communication standard (for example, Wi-Fi (registered trademark) or Bluetooth (registered trademark)).
- a predetermined wireless communication standard for example, Wi-Fi (registered trademark) or Bluetooth (registered trademark)
- wireless communication may be performed according to other wireless communication standards.
- update information for updating various information of the endoscope may be transmitted in addition to the imaging signal.
- the imaging element is configured by one chip, but a pixel chip in which a plurality of pixels are arranged and various circuits from the reading unit to the A / D converter are arranged. It is good also as 2 chips which divide
- the digital imaging signal is transmitted from the A / D conversion device to the connector unit via the transmission cable.
- an optical coupler or the like that converts the digital imaging signal into an optical signal is used.
- a digital imaging signal may be transmitted to the connector unit by an optical signal.
- the processor and the light source device are integrally formed.
- the present invention is not limited to this.
- the processor and the light source device may be separate.
- the simultaneous-type endoscope has been described as an example.
- the present invention can also be applied to a frame-sequential type endoscope.
- an endoscope system such as a rigid endoscope, a sinus endoscope, an electric knife, and an inspection probe is provided. Can also be applied.
- the successive approximation A / D conversion device is described as an imaging device, taking as an example an endoscope imaging device provided at the distal end of an insertion portion to be inserted into a subject.
- the present invention is not limited to this, and is used for an imaging device in which a lens device is detachable, an imaging device built in a mobile phone, an imaging device without a display monitor, a surveillance camera operated via a network, a digital camcorder, and a microscope It can be applied to an imaging device or the like.
- the present invention is not limited to the above-described embodiments and modifications as they are, and in the implementation stage, the constituent elements can be modified and embodied without departing from the spirit of the invention.
- Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments. For example, some constituent elements may be deleted from all the constituent elements described in the above-described embodiments and modifications. Furthermore, you may combine suitably the component demonstrated by each embodiment and the modification.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Theoretical Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Nonlinear Science (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
- Endoscopes (AREA)
- Analogue/Digital Conversion (AREA)
Abstract
出力信号の線形性が劣化することを防止することができる逐次比較型A/D変換装置、撮像装置、内視鏡および設定方法を提供する。逐次比較型のA/D変換装置27は、サンプリング回路401によりサンプリングされた一対のアナログ信号を保持するバイナリ容量を有する容量回路402と、一対の電圧信号をなす一方の信号と他方の信号とを比較する比較回路403と、比較回路403の入力トランジスタにおける寄生容量を相殺した一対の電圧信号を比較回路403へ出力する補正回路404と、バイナリ容量に対応するデジタル信号の各ビットの値を2分探索法により逐次的に判定し、デジタル信号の各ビットの値を前記参照信号に反映させる制御回路405と、を備える。
Description
本発明は、外部から入力されるアナログの信号をデジタルの信号に変換する逐次比較型A/D変換装置、撮像装置、内視鏡および設定方法に関する。
消費電力の低いA/D変換装置として、例えば非特許文献1に開示された差動入力非同期方式の逐次比較型A/D変換装置が知られている。この逐次比較型A/D変換装置は、差動入力信号として入力された一対のアナログ信号をサンプルホールド回路で保持し、保持したアナログ信号に容量回路を通じて基準信号を反映させることにより比較回路に比較電圧信号を発生させ、この比較電圧信号に基づいて、逐次比較論理回路が2分探索アルゴリズムに従って差動入力信号に対応するデジタル信号のMSBからLSBまでの各ビットの値(0または1)を決定すると共に、決定された各ビットの値を基準信号にフィードバックする。
逐次比較型A/D変換装置は、オペアンプ等のアナログ回路を使用することなく、その大部分をデジタル回路で構成することができる。このため、微細CMOS(Complementary Metal Oxide Semiconductor)プロセスを用いて逐次比較型A/D変換装置を小型に実現することができ、また消費電力を低減させることができる。このような低消費電力化および小型化を可能とする観点から、逐次比較型A/D変換装置は、例えば携帯機器などのシステムLSI(Large Scale Integration)に用いられている。
"A 26uW 8bit 10MS/s Asynchronous SAR ADC for Low Energy Radios", IEEE JOURNAL OF SOLID-STATE CIRCUITS, Vol46, No7 JULY 2011 pp1585-1595
ところで、上述した逐次比較型A/D変換装置は、A/D変換を実行する際に、ビット変換毎にコンパレータの入力電圧が変化することで、A/D変換を実行中にコンパレータの入力容量も変動する。このため、上述した逐次比較型A/D変換装置は、コンパレータの入力端子に接続される容量が変化することによって、ゲイン係数がA/D変換の最中に変動し、出力信号に誤差が生じることで、出力信号の線形性が劣化するという問題点があった。
本発明は、上記に鑑みてなされたものであって、出力信号の線形性が劣化することを防止することができる逐次比較型A/D変換装置、撮像装置、内視鏡および設定方法を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明に係る逐次比較型A/D変換装置は、差動入力信号として入力された一対のアナログ信号をサンプリングするサンプリング回路と、前記サンプリング回路によりサンプリングされた一対のアナログ信号を保持するバイナリ容量を有し、前記バイナリ容量を介して前記一対のアナログ信号に参照信号の信号レベルを反映させることにより一対の電圧信号を発生させる容量回路と、前記一対の電圧信号が入力される入力トランジスタを有し、前記一対の電圧信号をなす一方の信号と他方の信号とを比較する比較回路と、前記比較回路の前段側に設けられ、前記入力トランジスタにおける寄生容量を相殺した前記一対の電圧信号を前記比較回路へ出力する補正回路と、前記比較回路による比較の結果に基づき、前記バイナリ容量に対応するデジタル信号の各ビットの値を2分探索法により逐次的に判定し、前記デジタル信号の各ビットの値を前記参照信号に反映させる制御回路と、を備えることを特徴とする。
また、本発明に係る逐次比較型A/D変換装置は、上記発明において、前記補正回路は、前記寄生容量を相殺する補正用トランジスタと、前記補正用トランジスタに所定のバイアス電圧を印加するバイアス回路と、を有することを特徴とする。
また、本発明に係る逐次比較型A/D変換装置は、上記発明において、前記バイアス回路は、前記バイアス電圧が調整可能であることを特徴とする。
また、本発明に係る逐次比較型A/D変換装置は、上記発明において、前記補正用トランジスタの容量の電圧依存性は、前記寄生容量の電圧依存と逆特性を有することを特徴とする。
また、本発明に係る撮像装置は、上記発明の逐次比較型A/D変換装置と、二次元マトリクス状に配置されてなり、外部から入力される光を受光して光電変換を行って撮像信号を出力する複数の画素を有する撮像素子と、を備え、前記撮像素子は、前記複数の画素の配置における列毎に設けられ、前記撮像信号に含まれるノイズ成分を除去するノイズ除去部と、前記複数の画素の配置における列毎に設けられ、前記ノイズ除去部が前記ノイズ成分を除去した前記撮像信号を増幅して出力する複数の列ソースフォロワバッファと、前記複数の列ソースフォロワバッファを順次選択して前記撮像信号を出力させる水平走査部と、前記水平走査部によって順次選択された前記列ソースフォロワバッファと接続することによってボルテージフォロワ回路を形成し、前記列ソースフォロワバッファから出力された前記撮像信号の電圧に対してインピーダンス変換を行って前記逐次比較型A/D変換装置へ出力するバッファ部と、を備えることを特徴とする。
また、本発明に係る撮像装置は、上記発明において、前記撮像素子は、前記画素で生成された前記信号と同相の揺らぎ成分を有する基準信号を生成して前記逐次比較型A/D変換装置へ出力する基準信号生成部をさらに備え、前記逐次比較型A/D変換装置は、前記撮像信号および前記基準信号を前記差動入力信号として入力することを特徴とする。
また、本発明に係る内視鏡は、上記発明の撮像装置と、被検体に挿入可能であり、先端部に前記撮像装置を設けた挿入部と、を備えることを特徴とする。
また、本発明に係る設定方法は、差動入力信号として入力された一対のアナログ信号をサンプリングするサンプリング回路と、前記サンプリング回路によりサンプリングされた一対のアナログ信号を保持するバイナリ容量を有し、前記バイナリ容量を介して前記一対のアナログ信号に参照信号の信号レベルを反映させることにより一対の電圧信号を発生させる容量回路と、前記一対の電圧信号が入力される入力トランジスタを有し、前記一対の電圧信号をなす一方の信号と他方の信号とを比較する比較回路と、前記比較回路の前段側に設けられ、前記入力トランジスタにおける寄生容量を相殺する補正用トランジスタと、前記補正用トランジスタに所定のバイアス電圧を印加するバイアス回路と、を有し、前記一対の電圧信号を前記比較回路へ出力する補正回路と、前記比較回路による比較の結果に基づき、前記バイナリ容量に対応するデジタル信号の各ビットの値を2分探索法により逐次的に判定し、前記デジタル信号の各ビットの値を前記参照信号に反映させる制御回路と、を備えることを特徴とする逐次比較型A/D変換装置に実行する設定方法であって、前記バイアス回路が印加する前記バイアス電圧の値を設定する第1の設定ステップと、前記補正用トランジスタに前記第1の設定ステップで設定した値の前記バイアス電圧を順次印加する印加ステップと、前記逐次比較型A/D変換装置にテスト信号を順次入力してA/D変換を実行させるA/D変換ステップと、前記A/D変換ステップで変換された出力コードを順次測定した測定結果に基づいて、前記出力コード毎の積分非直線誤差を算出する第1の算出ステップと、前記積分非直線誤差に基づいて、前記積分非直線誤差の最大値および最小値の各々を、前記出力コード毎に算出する第2の算出ステップと、前記第2の算出ステップにおいて算出された複数の前記最大値と前記最小値の絶対値の差分が小さく、かつ、前記最大値と前記最小値の絶対値の平均値が小さい前記バイアス電圧の値を前記バイアス回路が印加する前記バイアス電圧の値に設定する第2の設定ステップと、を含むことを特徴とする。
本発明によれば、出力信号の線形成が劣化することを防止することができるという効果を奏する。
以下、本発明を実施するための形態(以下、「実施の形態」という)として、被検体内に挿入される挿入部の先端部に撮像装置を有する内視鏡を備えた内視鏡システムについて説明する。また、この実施の形態により、本発明が限定されるものではない。さらに、図面の記載において、同一の部分には同一の符号を付して説明する。さらにまた、図面は、模式的なものであり、各部材の厚みと幅との関係、各部材の比率等は、現実と異なることに留意する必要がある。また、図面の相互間において、互いの寸法や比率が異なる部分が含まれている。
(実施の形態1)
〔内視鏡システムの構成〕
図1は、本発明の実施の形態1に係る内視鏡システムの全体構成を模式的に示す概略図である。図1に示す内視鏡システム1は、内視鏡2と、伝送ケーブル3と、コネクタ部5と、プロセッサ6と、表示装置7と、光源装置8と、を備える。
〔内視鏡システムの構成〕
図1は、本発明の実施の形態1に係る内視鏡システムの全体構成を模式的に示す概略図である。図1に示す内視鏡システム1は、内視鏡2と、伝送ケーブル3と、コネクタ部5と、プロセッサ6と、表示装置7と、光源装置8と、を備える。
内視鏡2は、伝送ケーブル3の一部である挿入部100を被検体の体腔内に挿入することによって被検体の体内を撮像して撮像信号をプロセッサ6へ出力する。また、内視鏡2は、伝送ケーブル3の一端側であり、被検体の体腔内に挿入される挿入部100の先端部101側に、被検体の体内を撮像して撮像信号を生成する撮像装置20が設けられている。さらに、内視鏡2は、挿入部100の基端部102側に、内視鏡2に対する各種操作を受け付ける操作部4が設けられている。撮像装置20が撮像した体内画像の撮像信号は、例えば数mの長さを有する伝送ケーブル3を介してコネクタ部5に出力される。
伝送ケーブル3は、内視鏡2とコネクタ部5とを接続するとともに、内視鏡2とプロセッサ6および光源装置8とを接続する。また、伝送ケーブル3は、撮像装置20が生成した撮像信号をコネクタ部5へ伝送する。伝送ケーブル3は、ケーブルや光ファイバ等を用いて構成される。
コネクタ部5は、内視鏡2、プロセッサ6および光源装置8に接続され、接続された内視鏡2が出力する撮像信号に所定の信号処理を施してプロセッサ6へ出力する。
プロセッサ6は、コネクタ部5から入力された撮像信号に所定の画像処理を施して表示装置7へ出力する。また、プロセッサ6は、内視鏡システム1全体を統括的に制御する。例えば、プロセッサ6は、光源装置8が出射する照明光を切り替えたり、内視鏡2の撮像モードを切り替えたりする制御を行う。
表示装置7は、プロセッサ6が画像処理を施した撮像信号に対応する画像を表示する。また、表示装置7は、内視鏡システム1に関する各種情報を表示する。表示装置7は、液晶や有機EL(Electro Luminescence)等の表示パネル等を用いて構成される。
光源装置8は、コネクタ部5および伝送ケーブル3を経由して内視鏡2の挿入部100の先端部101側から被検体(被写体)に向けて照明光を照射する。光源装置8は、白色光を発する白色LED(Light Emitting Diode)等を用いて構成される。なお、本実施の形態1では、光源装置8に同時方式の照明方式が採用されるが、面順次方式の照明方式であってもよい。
〔内視鏡システムの要部〕
次に、内視鏡システム1の要部の機能について説明する。図2は、内視鏡システム1の要部の機能を示すブロック図である。
次に、内視鏡システム1の要部の機能について説明する。図2は、内視鏡システム1の要部の機能を示すブロック図である。
〔内視鏡の構成〕
まず、内視鏡2の構成について説明する。
図2に示す内視鏡2は、撮像装置20と、伝送ケーブル3と、コネクタ部5と、を備える。撮像装置20は、撮像素子21(撮像チップ)と、撮像素子21に被写体像を結像する光学系22と、を備える。
まず、内視鏡2の構成について説明する。
図2に示す内視鏡2は、撮像装置20と、伝送ケーブル3と、コネクタ部5と、を備える。撮像装置20は、撮像素子21(撮像チップ)と、撮像素子21に被写体像を結像する光学系22と、を備える。
撮像素子21は、行列方向に二次元マトリクス状に配置されてなり、外部から光を受光し、受光量に応じた撮像信号を生成して出力する複数の画素を有する受光部23と、受光部23によって光電変換された撮像信号を列毎に順次読み出す読み出し部24と、読み出し部24が順次読み出した撮像信号の電圧をインピーダンス変換してボルテージフォロワにより1倍に増幅して出力するバッファ部25と、受光部23によって生成された撮像信号と同相の揺らぎ成分を有し、撮像信号の補正処理に用いられる基準信号を生成して出力する基準信号生成部26と、バッファ部25から出力された撮像信号および基準信号生成部26から生成された基準信号を同一タイミングでサンプリングし、デジタルの撮像信号に変換して外部へ出力するA/D変換装置27と、基準クロック信号および同期信号に基づきタイミング信号を生成するタイミング生成部28と、伝送ケーブル3を介してコネクタ部5から入力された基準クロック信号および同期信号の波形整形を行い、この波形整形を行った基準クロック信号および同期信号をタイミング生成部28へ出力するヒステリシス部29と、を有する。また、撮像素子21は、伝送ケーブル3を介して後述するプロセッサ6の電源部61において生成された電源電圧VDD(例えば3.3V)をグランドGNDとともに受け取る。撮像素子21に供給される電源電圧VDDとグランドGNDとの間には、電源安定用のコンデンサC1が設けられている。なお、撮像素子21の詳細な構成については、図3を参照して後述する。
光学系22は、複数のレンズおよびプリズムを用いて構成され、撮像素子21の受光部23に被写体像を結像する。
コネクタ部5は、プロセッサ6から供給され、内視鏡2の各構成部の動作の基準となる基準クロック信号(例えば、27MHzのクロック信号)に基づいて、各フレームのスタート位置を表す同期信号(水平同期信号および垂直同期信号を含む)を生成して、基準クロック信号とともに、伝送ケーブル3を介して撮像装置20のタイミング生成部28へ出力するパルス生成部51と、FPGA(Field Programmable Gate Array)やASIC(Application Specific Integrated Circuit)等を用いて構成され、伝送ケーブル3を介して撮像装置20から出力されたデジタルの撮像信号に対して所定の信号処理、例えばノイズ低減処理を行ってプロセッサ6へ出力する信号処理部52と、レギュレータ(Regulator)等を用いて構成され、プロセッサ6から供給される電源から、撮像素子21を駆動するのに必要な電源電圧を生成して撮像素子21へ出力する電源電圧生成部53と、を有する。
〔プロセッサの構成〕
次に、プロセッサ6の構成について説明する。
プロセッサ6は、電源電圧を生成し、この生成した電源電圧VDDをグランドGNDとともに、コネクタ部5の電源電圧生成部53へ供給する電源部61と、内視鏡システム1の各構成部の動作の基準となる基準クロック信号を生成し、この基準クロック信号をコネクタ部5のパルス生成部51へ出力するクロック生成部62と、CPU(Central Processing Unit)等を用いて構成され、内視鏡システム1の全体を統括的に制御するプロセッサ制御部63と、内視鏡2から入力されたデジタルの撮像信号に対して、同時化処理、ホワイトバランス(WB)調整処理、ゲイン調整処理、ガンマ補正処理、デジタルアナログ(D/A)変換処理、フォーマット変換処理等の画像処理を行って画像信号に変換し、この画像信号を表示装置7へ出力する画像処理部64と、を備える。
次に、プロセッサ6の構成について説明する。
プロセッサ6は、電源電圧を生成し、この生成した電源電圧VDDをグランドGNDとともに、コネクタ部5の電源電圧生成部53へ供給する電源部61と、内視鏡システム1の各構成部の動作の基準となる基準クロック信号を生成し、この基準クロック信号をコネクタ部5のパルス生成部51へ出力するクロック生成部62と、CPU(Central Processing Unit)等を用いて構成され、内視鏡システム1の全体を統括的に制御するプロセッサ制御部63と、内視鏡2から入力されたデジタルの撮像信号に対して、同時化処理、ホワイトバランス(WB)調整処理、ゲイン調整処理、ガンマ補正処理、デジタルアナログ(D/A)変換処理、フォーマット変換処理等の画像処理を行って画像信号に変換し、この画像信号を表示装置7へ出力する画像処理部64と、を備える。
〔撮像素子の構成〕
次に、上述した撮像素子21の詳細な構成について説明する。図3は、図2に示す撮像素子21の詳細な構成を示すブロック図である。
次に、上述した撮像素子21の詳細な構成について説明する。図3は、図2に示す撮像素子21の詳細な構成を示すブロック図である。
図3に示すように、撮像素子21は、受光部23と、読み出し部24と、バッファ部25と、基準信号生成部26と、A/D変換装置27と、タイミング生成部28と、ヒステリシス部29と、を備える。
受光部23は、行列方向に2次元マトリクス状に配置され、外部から光を受光し、受光量に応じた撮像信号を生成して出力する複数の画素を有する。なお、受光部23における画素の構成は、後述する図4において詳細に説明する。
読み出し部24は、後述する受光部23の複数の画素の各々から撮像信号を順次読み出してバッファ部25へ出力する。読み出し部24は、垂直走査部241(行選択回路)と、定電流源242と、ノイズ除去部243と、列ソースフォロワバッファ244と、水平走査部245と、基準電圧生成部246と、を有する。
垂直走査部241は、タイミング生成部28から入力される駆動信号(φT、φR等)に基づいて、受光部23の選択された行(水平ライン)<M>(M=0,1,2…,m-1,m)に駆動信号φT<M>およびφR<M>を印加して、受光部23の各画素230を定電流源242で駆動することによって、撮像信号および画素リセット時のノイズ信号を後述する垂直転送線239(第1の転送線)へ転送し、ノイズ除去部243に出力する。
ノイズ除去部243は、後述する各画素230の出力ばらつきと、画素リセット時のノイズ信号とを除去し、後述する各画素230で光電変換された撮像信号を列ソースフォロワバッファ244へ出力する。
列ソースフォロワバッファ244は、水平走査部245から入力される駆動信号に基づいて、ノイズ除去部243からノイズが除去された撮像信号を保持し、この保持した撮像信号を増幅してバッファ部25へ出力する。
水平走査部245は、タイミング生成部28から入力される駆動信号(φHCLK)に基づいて、受光部23の選択された列(縦ライン)<N>(N=0,1,2…,n-1,n)に駆動信号φHCLK<N>を印加し、各画素230で光電変換された撮像信号を、ノイズ除去部243および列ソースフォロワバッファ244を介して後述する水平転送線257に転送してバッファ部25へ出力する。
基準電圧生成部246は、受光部23と同じ電源電圧VDDからノイズ除去部243のクランプ電圧VCLPを生成する。なお、基準電圧生成部246の回路の詳細は、後述する図5において説明する。
バッファ部25は、列ソースフォロワバッファ244から順次出力された撮像信号の電圧に対してインピーダンス変換を行い、ボルテージフォロワにより1倍に増幅してA/D変換装置27へ出力する。なお、バッファ部25の回路の詳細は、後述する図4において説明する。
基準信号生成部26は、受光部23によって生成された撮像信号と同相の揺らぎ成分を有し、撮像信号の補正処理に用いられる基準信号を生成してA/D変換装置27へ出力する。なお、基準信号生成部26の回路の詳細は、後述する図6において説明する。
A/D変換装置27は、バッファ部25から出力された撮像信号および基準信号生成部26から生成された基準信号を同一タイミングでサンプリングし、デジタルの撮像信号(Vout)に変換して外部へ出力する。
タイミング生成部28は、ヒステリシス部29から入力された基準クロック信号および同期信号に基づいて、各種の駆動信号を生成し、後述する読み出し部24、バッファ部25、基準信号生成部26およびA/D変換装置27へ出力する。
ヒステリシス部29は、伝送ケーブル3を介して入力された基準クロック信号および同期信号の波形整形を行い、この波形整形を行った基準クロック信号および同期信号をタイミング生成部28へ出力する。
〔撮像素子の回路の構成〕
次に、上述した撮像素子21の回路について詳細に説明する。図4は、撮像素子21の構成を模式的に示す回路図である。
次に、上述した撮像素子21の回路について詳細に説明する。図4は、撮像素子21の構成を模式的に示す回路図である。
〔画素の構成〕
まず、画素230の構成について説明する。
図4に示すように、上述した受光部23には、多数の画素230が二次元マトリクス状に配列されてなる。各画素230は、光電変換素子231(フォトダイオード)と、電荷変換部233と、転送トランジスタ234(第1の転送部)と、画素リセット部236(トランジスタ)と、画素ソースフォロワトランジスタ237と、を含む。
まず、画素230の構成について説明する。
図4に示すように、上述した受光部23には、多数の画素230が二次元マトリクス状に配列されてなる。各画素230は、光電変換素子231(フォトダイオード)と、電荷変換部233と、転送トランジスタ234(第1の転送部)と、画素リセット部236(トランジスタ)と、画素ソースフォロワトランジスタ237と、を含む。
光電変換素子231は、入射光をその光量に応じた信号電荷量に光電変換して蓄積する。光電変換素子231は、カソード側がそれぞれ転送トランジスタ234の一端側に接続され、アノード側がグランドGNDに接続される。
電荷変換部233は、浮遊拡散容量(FD)からなり、光電変換素子231で蓄積された電荷を電圧に変換する。
転送トランジスタ234は、光電変換素子231から電荷変換部233に電荷を転送する。転送トランジスタ234のゲートには、駆動信号(行選択パルス)φRおよび駆動信号φTが供給される信号線が接続され、他端側には、電荷変換部233が接続される。転送トランジスタ234は、垂直走査部241から信号線を介して駆動信号φRおよび駆動信号φTが供給されると、オン状態となり、光電変換素子231から電荷変換部233に電荷を転送する。
画素リセット部236は、電荷変換部233を所定電位にリセットする。画素リセット部236は、一端側が電源電圧VDDに接続され、他端側が電荷変換部233に接続され、ゲートには駆動信号φRが供給される信号線に接続される。画素リセット部236は、垂直走査部241から信号線を介して駆動信号φRが供給されると、オン状態となり、電荷変換部233に蓄積された信号電荷を放出させ、電荷変換部233を所定電位にリセットする。
画素ソースフォロワトランジスタ237は、一端側が電源電圧VDD(例えば3.3V)に接続され、他端側が垂直転送線239に接続され、ゲートには電荷変換部233で電圧変換された信号(撮像信号またはリセット時の信号)が入力される。画素ソースフォロワトランジスタ237は、後述する選択動作の後に、転送トランジスタ234のゲートに駆動信号φTが供給されると、光電変換素子231から電荷が読み出され、電荷変換部233にて電圧変換された後に、垂直転送線239に転送される。
定電流源242は、一端側が垂直転送線239に接続され、他端側がグランドGNDに接続され、ゲートにはバイアス電圧Vbias1が印加される。定電流源242は、画素230を駆動し、画素230の出力を垂直転送線239へ出力させる。垂直転送線239へ出力された信号は、ノイズ除去部243に入力される。
〔ノイズ除去部の構成〕
次に、ノイズ除去部243の構成について説明する。
図4に示すノイズ除去部243は、各画素230の列毎に設けられる。具体的には、ノイズ除去部243は、垂直転送線239毎に設けられる。ノイズ除去部243は、転送容量252(AC結合コンデンサ)と、クランプスイッチ253(トランジスタ)と、を有する。なお、本実施の形態1では、ノイズ除去部243がクランプ回路として機能する。
次に、ノイズ除去部243の構成について説明する。
図4に示すノイズ除去部243は、各画素230の列毎に設けられる。具体的には、ノイズ除去部243は、垂直転送線239毎に設けられる。ノイズ除去部243は、転送容量252(AC結合コンデンサ)と、クランプスイッチ253(トランジスタ)と、を有する。なお、本実施の形態1では、ノイズ除去部243がクランプ回路として機能する。
転送容量252は、一端側が垂直転送線239に接続され、他端側が後述する列ソースフォロワバッファ244の列ソースフォロワトランジスタ254に接続される。
クランプスイッチ253は、一端側が基準電圧生成部246からクランプ電圧VCLPが供給される信号線が接続され、他端側が転送容量252と列ソースフォロワバッファ244との間に接続され、ゲートにタイミング生成部28から駆動信号φVCLが入力される。ノイズ除去部243に入力される撮像信号は、ノイズ成分を含んだ光ノイズ和信号である。
このように構成されたノイズ除去部243は、タイミング生成部28から駆動信号φVCLがクランプスイッチ253のゲートに入力されると、クランプスイッチ253がオン状態となり、基準電圧生成部246から供給されるクランプ電圧VCLPにより転送容量252がリセットされる。ノイズ除去部243でノイズ除去された撮像信号は、列ソースフォロワバッファ244のゲートに入力される。ノイズ除去部243は、サンプリング用のコンデンサ(サンプリング容量)を必要としないため、転送容量252(AC結合コンデンサ)の容量が列ソースフォロワバッファ244の入力容量に十分な容量であればよい。さらに、ノイズ除去部243は、サンプリング容量の無い分、撮像素子21における専有面積を小さくすることができる。
〔列ソースフォロワバッファの構成〕
次に、列ソースフォロワバッファ244の構成について説明する。
図4に示す列ソースフォロワバッファ244は、各画素230の列毎に設けられる。具体的には、列ソースフォロワバッファ244は、垂直転送線239毎に設けられる。列ソースフォロワバッファ244は、列ソースフォロワトランジスタ254と、列選択スイッチ255と、を有する。なお、本実施の形態1では、列ソースフォロワバッファ244が列側回路として機能する。
次に、列ソースフォロワバッファ244の構成について説明する。
図4に示す列ソースフォロワバッファ244は、各画素230の列毎に設けられる。具体的には、列ソースフォロワバッファ244は、垂直転送線239毎に設けられる。列ソースフォロワバッファ244は、列ソースフォロワトランジスタ254と、列選択スイッチ255と、を有する。なお、本実施の形態1では、列ソースフォロワバッファ244が列側回路として機能する。
列ソースフォロワトランジスタ254は、一端側が電源電圧VSS(以下、「グランドGND」という)に接続され、他端側が列選択スイッチ255の一端側に接続され、ゲートにはノイズ除去部243でノイズ除去された撮像信号が入力される。
列選択スイッチ255は、一端側が列ソースフォロワトランジスタ254の他端側に接続され、他端側が水平転送線257に接続される。列選択スイッチ255は、トランジスタを用いて構成され、ゲートに水平走査部245から駆動信号φHCLK<M>を供給するための信号線が接続される。列選択スイッチ255は、水平走査部245から駆動信号φHCLK<M>が供給されると、オン状態となり、ノイズ除去部243でノイズ除去された撮像信号を水平転送線257へ転送する。なお、水平転送線257には、図示しない水平リセットトランジスタが接続され、水平リセットトランジスタにタイミング生成部28から駆動信号が入力されることによって、水平リセットトランジスタがオン状態となり、水平転送線257をリセットする。
このように構成された列ソースフォロワバッファ244は、タイミング生成部28から駆動信号φHCLK<M>が列選択スイッチ255に印加されると、列選択スイッチ255がオン状態となり、水平転送線257を介してノイズ除去部243でノイズ除去された撮像信号がバッファ部25に順次入力される。
〔バッファ部の構成〕
次に、バッファ部25の構成について説明する。
図4に示すバッファ部25は、水平走査部245によって順次選択された列ソースフォロワバッファ244が接続されることによって、ボルテージフォロワ回路を形成し、入力される撮像信号の電圧に対してインピーダンス変換を行ってA/D変換装置27へ出力する。具体的には、バッファ部25は、水平走査部245によって順次選択された列ソースフォロワバッファ244が接続されることによって、入力される撮像信号をボルテージフォロワにより1倍に増幅してA/D変換装置27へ出力する。バッファ部25は、画素230の奇数列および偶数列それぞれに設けられた第1のグローバル側回路260および第2のグローバル側回路270を有する。なお、第1のグローバル側回路260および第2のグローバル側回路270は、インピーダンス変換部として機能する。
次に、バッファ部25の構成について説明する。
図4に示すバッファ部25は、水平走査部245によって順次選択された列ソースフォロワバッファ244が接続されることによって、ボルテージフォロワ回路を形成し、入力される撮像信号の電圧に対してインピーダンス変換を行ってA/D変換装置27へ出力する。具体的には、バッファ部25は、水平走査部245によって順次選択された列ソースフォロワバッファ244が接続されることによって、入力される撮像信号をボルテージフォロワにより1倍に増幅してA/D変換装置27へ出力する。バッファ部25は、画素230の奇数列および偶数列それぞれに設けられた第1のグローバル側回路260および第2のグローバル側回路270を有する。なお、第1のグローバル側回路260および第2のグローバル側回路270は、インピーダンス変換部として機能する。
第1のグローバル側回路260は、定電流源256と、スイッチ261と、第1のトランジスタ262と、第2のトランジスタ263と、第3のトランジスタ264と、定電流源265と、を有する。
定電流源256は、一端側が水平転送線257に接続され、他端側が電源電圧VDDに接続される。定電流源256は、撮像信号を水平転送線257へ読み出す。水平転送線257へ読み出された撮像信号は、後述するスイッチ261を介して第1のトランジスタ262のソース側に入力される。なお、本実施の形態1では、定電流源256が第1の定電流源として機能する。
スイッチ261は、一端側が水平転送線257を介して列ソースフォロワバッファ244の列選択スイッチ255に接続され、他端側が第1のトランジスタ262のソース側に接続される。スイッチ261は、列ソースフォロワバッファ244の列選択スイッチ255と同様の抵抗値を有し、例えばトランジスタを用いて構成される。スイッチ261は、常にオン状態で設けられ、水平転送線257と第1のトランジスタ262とを接続する。
第1のトランジスタ262は、一端側(ソース側)がスイッチ261および水平転送線257を介して列ソースフォロワバッファ244の列選択スイッチ255に接続され、他端側(ドレイン側)が第2のトランジスタ263の一端側(ドレイン側)に接続され、ゲートがA/D変換装置27に接続される。第1のトランジスタ262は、PMOSを用いて構成される。
第2のトランジスタ263は、一端側(ドレイン側)に第1のトランジスタ262の他端側(ドレイン側)および第1のトランジスタ262のゲートが接続され、他端側(ソース側)がグランドGNDに接続され、ゲートが定電流源265に接続される。第2のトランジスタ263は、NMOSを用いて構成される。
第3のトランジスタ264は、一端側(ドレイン側)が定電流源265(第2の定電流源)に接続され、他端側(ソース側)がグランドGNDに接続され、ゲートが定電流源265に接続される。
このように構成された第1のグローバル側回路260は、水平走査部245によって順次選択された奇数列の列ソースフォロワバッファ244(列側回路)が接続されることによって、ボルテージフォロワ回路となり、列ソースフォロワバッファ244から入力される撮像信号(Vin)の電圧に対してインピーダンス変換を行い、ボルテージフォロワにより1倍に増幅して撮像信号(Vout)をA/D変換装置27へ出力する。
第2のグローバル側回路270は、上述した第1のグローバル側回路260と同一の構成を有し、定電流源256と、スイッチ261と、第1のトランジスタ262と、第2のトランジスタ263と、第3のトランジスタ264と、定電流源265と、を有する。
このように構成された第2のグローバル側回路270は、水平走査部245によって順次選択された偶数列の列ソースフォロワバッファ244(列側回路)が接続されることによって、ボルテージフォロワ回路を形成し、入力される撮像信号(Vin)の電圧に対してインピーダンス変換を行い、ボルテージフォロワにより1倍に増幅した撮像信号(Vout)をA/D変換装置27へ出力する。
基準信号生成部26は、画素230によって生成された撮像信号と同相の揺らぎ成分を有し、撮像信号の補正処理に用いられる基準信号を生成してA/D変換装置27へ出力する。なお、基準信号生成部26の回路の詳細は、後述する図6において説明する。
A/D変換装置27は、受光部23における奇数列および偶数列の各々に設けられ、奇数列の画素230から出力されたアナログの撮像信号をデジタルの撮像信号に変換して外部へ出力する第1のA/D変換部280、および偶数列の画素230から出力されたアナログの撮像信号をデジタルの撮像信号に変換して外部へ出力する第2のA/D変換部290と、を有する。なお、第1のA/D変換部280および第2のA/D変換部290の回路の詳細は、後述する図7において説明する。
〔基準電圧生成部の構成〕
次に、上述した図3において説明した基準電圧生成部246の構成について説明する。図5は、基準電圧生成部246の構成を示す回路図である。
次に、上述した図3において説明した基準電圧生成部246の構成について説明する。図5は、基準電圧生成部246の構成を示す回路図である。
図5に示す基準電圧生成部246(定電圧信号生成部)は、2つの抵抗291aおよび291bからなり、一端がVDD_A/D(例えば3.3V)に接続され、他端がグランドGNDに接続された抵抗分圧回路291と、タイミング生成部28から印加される駆動信号φVSHで駆動されるスイッチ292(トランジスタ)と、電源から独立させて、揺らぎから開放させるためのサンプリング容量293(コンデンサ)と、を含む。
このように構成された基準電圧生成部246は、スイッチ292の駆動により駆動信号φVSHが駆動するタイミングで、ノイズ除去部243のクランプ電圧VCLPを生成してノイズ除去部243へ出力する。
〔基準信号生成部の構成〕
次に、上述した図3および図4において説明した基準信号生成部26の詳細な構成について説明する。図6は、基準信号生成部26の構成を模式的に示す回路図である。
次に、上述した図3および図4において説明した基準信号生成部26の詳細な構成について説明する。図6は、基準信号生成部26の構成を模式的に示す回路図である。
図6に示す基準信号生成部26は、2つの抵抗301aおよび抵抗301bからなる抵抗分割回路301と、タイミング生成部28から印加される駆動信号で駆動するスイッチ302(トランジスタ)と、電源から独立させて、揺らぎから開放させるためのサンプリング容量303(コンデンサ)と、画素相当回路304と、ノイズ除去相当回路305と、列相当回路306と、バッファ相当回路307と、を有する。
画素相当回路304は、画素230の画素ソースフォロワトランジスタ237および定電流源242の各々と相当な回路を形成し、画素ソースフォロワトランジスタ237aと、画素ソースフォロワトランジスタ237aを駆動する定電流源242aと、を有する。
画素ソースフォロワトランジスタ237aは、一端側(ドレイン側)が電源電圧VDDに接続され、他端側(ソース側)が定電流源242aに接続され、ゲートにはサンプリング容量303から転送された信号が転送される信号線が接続される。
定電流源242aは、一端側が画素ソースフォロワトランジスタ237aに接続され、他端側がグランドGNDに接続される。定電流源242aは、画素ソースフォロワトランジスタ237aを駆動し、画素ソースフォロワトランジスタ237aの出力をノイズ除去相当回路305へ出力させる。
ノイズ除去相当回路305は、上述したノイズ除去部243と相当な回路を形成し、転送容量252(AC結合コンデンサ)と、クランプスイッチ253と、を有する。ノイズ除去相当回路305は、上述したノイズ除去部243と相当な回路のため、詳細な説明は省略する。
列相当回路306は、上述した列ソースフォロワバッファ244と相当な回路を形成し、列ソースフォロワトランジスタ254と、列選択スイッチ255と、を有する。列相当回路306は、上述した列ソースフォロワバッファ244と相当な回路のため、詳細な説明は省略する。
バッファ相当回路307は、上述した第1のグローバル側回路260と相当な回路を形成し、定電流源256と、スイッチ261と、第1のトランジスタ262と、第2のトランジスタ263と、第3のトランジスタ264と、定電流源265と、を有する。バッファ相当回路307は、上述した第1のグローバル側回路260と相当な回路のため、詳細な説明は省略する。
このように構成された基準信号生成部26は、画素230によって生成された撮像信号と同相の揺らぎ成分を有し、撮像信号の補正処理に用いられる基準信号(VREF)を生成してA/D変換装置27へ出力する。
〔第1のA/D変換部の構成〕
次に、第1のA/D変換部280の構成について説明する。図7は、第1のA/D変換部280の構成を模式的に説明する回路図である。なお、第1のA/D変換部280および第2のA/D変換部290は、同じ回路構成のため、以下においては、第1のA/D変換部280の構成のみ説明し、第2のA/D変換部290の構成の説明は省略する。また、図7に示す第1のA/D変換部280は、逐次比較型のA/D変換装置であり、9ビット(bit)出力のA/D変換装置であるが、これに限定されず、出力ビット数を適宜変更することができる。なお、第1のA/D変換部280は、逐次比較型のA/D変換装置である必要はなく、省電力可能なA/D変換装置であればよく、例えばナイキスト型のA/D変換装置であってもよい。
次に、第1のA/D変換部280の構成について説明する。図7は、第1のA/D変換部280の構成を模式的に説明する回路図である。なお、第1のA/D変換部280および第2のA/D変換部290は、同じ回路構成のため、以下においては、第1のA/D変換部280の構成のみ説明し、第2のA/D変換部290の構成の説明は省略する。また、図7に示す第1のA/D変換部280は、逐次比較型のA/D変換装置であり、9ビット(bit)出力のA/D変換装置であるが、これに限定されず、出力ビット数を適宜変更することができる。なお、第1のA/D変換部280は、逐次比較型のA/D変換装置である必要はなく、省電力可能なA/D変換装置であればよく、例えばナイキスト型のA/D変換装置であってもよい。
図7に示す第1のA/D変換部280は、サンプリング回路401と、容量性DAC回路402と、比較回路403と、補正回路404と、制御回路405と、を備える。
サンプリング回路401は、差動入力信号を構成する1対の撮像信号(Vsignal)および基準信号(VREF)に対して、タイミング生成部28から入力されるクロック信号CLKに基づいて、同一のタイミングでトラック・ホールド(Track and Hold)を行い、アナログの撮像信号および基準信号をサンプリングする。サンプリング回路401は、スイッチ401aと、スイッチ401bと、を有する。
スイッチ401aは、オン状態であるとき、上述した第1のグローバル側回路260と容量性DAC回路402との間を導通させ、オフ状態であるとき、第1のグローバル側回路260と容量性DAC回路402との間を高インピーダンス状態とする。スイッチ401aは、非反転入力端子INPを介してアナログの撮像信号が入力される。スイッチ401aは、オン状態からオフ状態に切り替わるタイミングに後述する容量部402aPにアナログの撮像信号をホールドしてサンプリングする。スイッチ401aは、タイミング生成部28から入力されるクロック信号CLKに基づいて、オン状態とオフ状態とが切り替わる。
スイッチ401bは、オン状態であるとき、上述した基準信号生成部26と容量性DAC回路402との間を導通させ、オフ状態であるとき、基準信号生成部26と容量性DAC402との間を高インピーダンス状態とする。スイッチ401bは、反転入力端子INNを介してアナログの基準信号が入力される。スイッチ401bは、オン状態からオフ状態に切り替わるタイミングに後述する容量部402aNにアナログの基準信号をホールドしてサンプリングする。スイッチ401bは、タイミング生成部28から入力されるクロック信号CLKに基づいて、オン状態とオフ状態とが切り替わる。
容量性DAC回路402は、制御回路405によって生成されたデジタル信号(DN0~DN8,DP0~DP8)に基づくアナログ信号を生成し、サンプリング回路401によりホールドされ、サンプリングされた撮像信号および基準信号の各々から参照信号(基準信号VREFと異なる別の基準信号)を減算することによって、差動入力信号と9ビットのデジタル信号D0~D8との間の累積残差を取得する。容量性DAC回路402は、撮像信号および基準信号の各々から参照信号を減算した減算結果を、累積残差が反映されたアナログの撮像信号(INP)および基準信号(INN)として、比較回路403へ出力する。容量性DAC回路402は、容量部402aNと、駆動部402bNと、容量部402aPと、駆動部402bPと、を有する。
容量部402aPは、減衰容量ChPとバイナリ容量C0P~C8Pと、を有する。減衰容量ChPは、スイッチ401aに接続された配線に相当する信号ノードNPとグランドGNDとの間に接続される。また、バイナリ容量C0P~C8Pの各々は、信号ノードNPと駆動部402bPの出力部との間に接続される。即ち、バイナリ容量C0P~C8Pの各々は、一方の電極が信号ノードNPに共通接続され、他方の電極が後述する駆動部402bPを構成するインバータQ0P~Q8Pの出力部に個別に接続される。バイナリ容量C0P~C8Pは、制御回路405によって生成されるデジタル信号DP0~DP8に対応して配置されている。バイナリ容量C0P~C8Pの各々の容量値は異なる。例えば、デジタル信号DP(n+1)に対応する容量C(n+1)Pの容量値は、デジタル信号DPnに対応する容量CnPの容量値の2倍である(nは、0から7までの整数)。即ち、バイナリ容量C0P~C8Pの各々の容量値は、デジタル信号DP0~DP8の各ビットの位に応じた2進数で重み付けされている。
容量部402aNは、容量部402aPと同様に、減衰容量ChNとバイナリ容量C0N~C8Nと、を有する。減衰容量ChNは、スイッチ401bに接続された配線に相当する信号ノードNNとグランドGNDとの間に接続される。また、バイナリ容量C0N~C8Nの各々は、信号ノードNNと駆動部402bNの出力部との間に接続される。即ち、バイナリ容量C0N~C8Nの各々は、一方の電極が信号ノードNNに共通接続され、他方の電極が後述する駆動部402bNを構成するインバータQ0N~Q8Nの出力部に個別に接続される。バイナリ容量C0N~C8Nは、制御回路405によって生成されるデジタル信号DN0~DN8に対応して配置されている。なお、バイナリ容量C0N~C8Nの容量値についても、バイナリ容量C0P~C8Pと同様に2進数で重み付けされている。また、容量部402aNを構成するバイナリ容量C0N~C8Nの各容量値の各々は、容量部402aPを構成するバイナリ容量C0P~C8Pの各々の容量値と同じに設定されている。
駆動部402bPは、インバータQ0P~Q8Pを有する。インバータQ0P~Q8Pには、電源電圧VDD_A/Dが供給される。このことは、インバータQ0P~Q8Pの各々から出力されるアナログ信号の振幅が電源電圧VDD_A/Dに等しいことを意味する。インバータQ0P~Q8Pは、制御回路405によって生成されるデジタル信号DP0~DP8に対応して配置されている。インバータQ0P~Q8Pの各々には、制御回路405から、デジタル信号DP0~DP8の各ビットが入力される。また、インバータQ0P~Q8Pの出力部の各々は、バイナリ容量C0P~C8Pの他方の電極に接続される。
インバータQ0P~Q8Pは、制御回路405から入力されるデジタル信号DP0~DP8を反転することによって参照信号を生成する。容量部402aPが有する複数のバイナリ容量C0P~C8Pは、電荷再配分により、減衰容量ChPに保持されているアナログの撮像信号Vsignalに基づく電荷から、参照信号に基づく電荷を引き抜くことによって、撮像信号Vsignalから参照信号を減算する。容量部402aPは、減算結果であるアナログ信号VCPを比較回路403へ出力する。
駆動部402bNは、インバータQ0N~Q8Nを備えている。インバータQ0N~Q8Nには、電源電圧VDD_A/Dが供給される。このことは、インバータQ0N~Q8Nの各々から出力される基準信号の振幅が電源電圧VDD_A/Dに等しいことを意味する。インバータQ0N~Q8Nは、制御回路405によって生成されるデジタル信号DN0~DN8に対応して配置されている。インバータQ0N~Q8Nの各々には、制御回路405から、デジタル信号DN0~DN8の各ビットが入力される。また、インバータQ0N~Q8Nの出力部の各々は、バイナリ容量C0N~C8Nの他方の電極に接続される。
インバータQ0N~Q8Nは、制御回路405から入力されるデジタル信号DN0~DN8を反転することによって参照信号を生成する。容量部402aNが有する複数のバイナリ容量C0N~C8Nは、電荷再配分により、減衰容量ChNに保持されているアナログの基準信号VREFに基づく電荷から、参照信号に基づく電荷を引き抜くことによって、アナログの基準信号VREFから参照信号を減算する。容量部402aNは、減算結果であるアナログ信号VCNを出力する。
比較回路403(コンパレータ)は、容量性DAC回路402から入力されるアナログの撮像信号とアナログの基準信号とを比較し、その大小関係に応じた比較結果を示すデジタル信号VOPおよびデジタル信号VONを出力する。具体的には、比較回路403は、アナログの撮像信号の信号レベルがアナログの基準信号の信号レベルよりも高い場合、デジタル信号VOPとしてハイレベルの信号を出力し、デジタル信号VONとしてローレベルの信号を出力する。逆に、比較回路403は、アナログの撮像信号の信号レベルがアナログの基準信号の信号レベルよりも低い場合、デジタル信号VOPとしてローレベルの信号を出力し、デジタル信号VONとしてハイレベルの信号を出力する。比較回路403は、後述する制御回路405によって生成される内部クロック信号BIT_CLKおよび反転内部クロック信号BIT_CLKbに基づいて制御される。
補正回路404は、比較回路403の前段側に設けられ、比較回路403の入力トランジスタにおける寄生容量を相殺した一対の電圧信号を比較回路403へ出力する。具体的には、補正回路404は、比較回路403の入力トランジスタの寄生容量(ゲート容量)を相殺することによって、比較回路403に入力される一対のアナログの信号電圧を補正して比較回路403へ出力する。補正回路404は、比較回路403の入力トランジスタの寄生容量を相殺する補正用トランジスタ404aと、補正用トランジスタ404aにバイアス電圧VBを印加するバイアス回路404bと、を有する。補正用トランジスタ404aのゲート端子は、比較回路403の入力端子に、補正用トランジスタ404aのドレイン端子とソース端子は互いに接続されてバイアス回路404bに接続されている。補正用トランジスタ404aは、ゲート端子と共通接続されたドレイン・ソース端子間とでMOS容量を構成する。補正用トランジスタ404aの容量の電圧依存性は、比較回路403の入力トランジスタの電圧依存と逆特性を有する。なお、補正用トランジスタ404aの電圧依存性については後述する。
制御回路405は、SAR(Successive Approximation Register)ロジック回路として機能し、2分探索アルゴリズムに従って、比較回路403による比較結果を示すデジタル信号VOPおよびデジタル信号VONに対応するデジタル信号DP0~DP8、およびデジタル信号DN0~DN8の各ビットの値を逐次判定する。制御回路405は、デジタル信号VOPおよびデジタル信号VONに対応するデジタル信号DP0~DP8およびデジタル信号DN0~DN8を容量性DAC回路402に供給する。このうち、制御回路405は、デジタル信号DP0~DP8を、A/D変換結果を表すデジタル信号D0~D8として出力する(Vout)。また、制御回路405は、比較回路403を制御する内部クロック信号BIT_CLKおよび反転内部クロック信号BIT_CLKbを生成し、比較回路403へ供給する。制御回路405は、タイミング生成部28によって生成されたクロック信号CLKに基づいて制御される。制御回路405は、クロック信号CLKがハイレベルの期間において、内部クロック信号BIT_CLKおよび反転内部クロック信号BIT_CLKbを発生させる。
このように構成された第1のA/D変換部280は、デジタル信号D0~D8の最上位ビット(D8)から最下位ビット(D0)に向かって、1ビットずつ順にA/D変換結果を取得する。このA/D変換の過程で、比較回路403は、容量性DAC回路402によって上述した減算が行われる都度、それまでの累積残差が反映されたアナログの撮像信号(INP)の信号レベル(電圧)とアナログの基準信号(INN)の信号レベル(電圧)とを比較する。
また、第1のA/D変換部280の差動入力レンジは、下記の式(1)となる。
ここで、Cst1は、メタル配線間(ノード配線)に生じる寄生容量を示し、Cst2は、比較回路403の入力容量を示し、Cst3は、補正用トランジスタ404aにより生成されるMOS容量を示し、Chは、容量性DAC回路402の減衰容量を示す。
上述した式(1)において、Cdac=Ch+Cst1+Cst2+Cst3となるようにChを設定するとゲイン係数が1となり、フルスケールレンジを確保することができる。このため、本実施の形態1では、補正用トランジスタ404aの容量は、MOS容量の値が比較回路403の入力トランジスタのゲート容量と逆特性のバイアス電圧の依存性を示すように設定する。
〔補正用トランジスタの特性〕
次に、補正用トランジスタ404aの容量と比較回路403の容量の電圧依存特性について説明する。図8は、比較回路403の入力容量と補正回路404の補正用トランジスタ404aの入力容量との電圧依存特性の関係を示す図である。図8において、横軸が比較回路403の入力電圧(V)を示し、縦軸が容量を示す。また、図8において、曲線L1が比較回路403の電圧依存特性を示し、曲線L2が補正用トランジスタ404aの電圧依存特性を示し、曲線L3が補正用トランジスタ404aの容量(VBパラメータ)と比較回路403の入力容量との合成容量における電圧依存特性を示す。
次に、補正用トランジスタ404aの容量と比較回路403の容量の電圧依存特性について説明する。図8は、比較回路403の入力容量と補正回路404の補正用トランジスタ404aの入力容量との電圧依存特性の関係を示す図である。図8において、横軸が比較回路403の入力電圧(V)を示し、縦軸が容量を示す。また、図8において、曲線L1が比較回路403の電圧依存特性を示し、曲線L2が補正用トランジスタ404aの電圧依存特性を示し、曲線L3が補正用トランジスタ404aの容量(VBパラメータ)と比較回路403の入力容量との合成容量における電圧依存特性を示す。
図8に示すように、補正用トランジスタ404aは、容量が比較回路403の入力トランジスタのゲート容量と逆特性のバイアス電圧依存性を有するように設定する。具体的には、ユーザは、補正用トランジスタ404aのバイアス電圧VBを適切に設定することにより、補正用トランジスタ404aの容量と比較回路403の入力容量との合成容量を略フラットとなるように設定する。より具体的には、曲線L2に示すように、ユーザは、補正用トランジスタ404aのバイアス電圧VBを適切に設定することにより、比較回路403の入力トランジスタのゲート容量と逆特性のバイアス電圧依存性を持たせることで、曲線L3に示すように補正用トランジスタ404aのMOS容量と比較回路403の入力容量との合成容量を略フラットとなるように設定することができる。
図9は、従来の逐次比較型のA/D変換装置が出力する出力信号のINL(Integral Non-Linearity:積分非直線性誤差)特性を示す。図10は、第1のA/D変換部280が出力する出力信号のINL特性を示す。図9および図10において、横軸がcodeを示し、縦軸がINL[a.u.]を示す。また、図9の曲線L31が従来の逐次比較型のA/D変換装置が出力する出力信号のINL特性を示し、図10の曲線L32が第1のA/D変換部280が出力する出力信号のINL特性を示す。
図10の曲線L32に示すように、第1のA/D変換部280は、出力信号が略フラットなものとなり、ゲインがA/D変換の最中に変動することを防止することができるので、出力信号の線形性を維持することができる。
〔撮像装置の動作〕
次に、撮像装置20の動作について説明する。図11Aは、撮像装置20の動作を示すタイミングチャートである。図11Bは、図11Aの領域R1のタイミングチャートの一部を拡大した模式図である。図11Aにおいては、受光部23の行<n>の画素230から撮像信号を読み出し、A/D変換装置27からデジタルの撮像信号が出力されるまでを説明する。また、図11Aに示すタイミングチャートでは説明の便宜上、画素230に1つの光電変換素子231のみが含まれるものとしている。画素230に複数の光電変換素子231が含まれる場合(画素共有の場合)には、このタイミングチャートに示す1映像信号ライン分の動作を画素230に含まれる光電変換素子231の数分だけ繰り返し行う。また、図11Aにおいて、最上段から順に、駆動信号φR、駆動信号φT、駆動信号φVCL、駆動信号SW21~SW2n、転送容量252の電圧VIN1~VINn、バッファ部25の出力電圧Vout、A/D変換装置27の変換タイミング、基準クロックCLK、A/D変換装置27の変換結果の出力タイミングおよび基準信号VREFを示す。また、図11Bにおいて、最上段から順に、基準信号VREF、バッファ部25の出力電圧Vout、基準クロックCLK、A/D変換装置27の動作モードおよびバッファ部25の出力電圧Voutから基準信号VREFの差分(Vout-VREF)を示す。
次に、撮像装置20の動作について説明する。図11Aは、撮像装置20の動作を示すタイミングチャートである。図11Bは、図11Aの領域R1のタイミングチャートの一部を拡大した模式図である。図11Aにおいては、受光部23の行<n>の画素230から撮像信号を読み出し、A/D変換装置27からデジタルの撮像信号が出力されるまでを説明する。また、図11Aに示すタイミングチャートでは説明の便宜上、画素230に1つの光電変換素子231のみが含まれるものとしている。画素230に複数の光電変換素子231が含まれる場合(画素共有の場合)には、このタイミングチャートに示す1映像信号ライン分の動作を画素230に含まれる光電変換素子231の数分だけ繰り返し行う。また、図11Aにおいて、最上段から順に、駆動信号φR、駆動信号φT、駆動信号φVCL、駆動信号SW21~SW2n、転送容量252の電圧VIN1~VINn、バッファ部25の出力電圧Vout、A/D変換装置27の変換タイミング、基準クロックCLK、A/D変換装置27の変換結果の出力タイミングおよび基準信号VREFを示す。また、図11Bにおいて、最上段から順に、基準信号VREF、バッファ部25の出力電圧Vout、基準クロックCLK、A/D変換装置27の動作モードおよびバッファ部25の出力電圧Voutから基準信号VREFの差分(Vout-VREF)を示す。
図11Aおよび図11Bに示すように、まず、タイミング生成部28は、クランプスイッチ253をオン(駆動信号φVCLがHigh)し、画素リセット部236をオン(パルス状の駆動信号φR<0>がHigh)、転送トランジスタ234をオフ(パルス状の駆動信号φT<0>がLow)することにより(時間T1)、読み出し対象の画素230特有のばらつきと、画素リセット時のノイズ等を含むノイズ信号を画素230から垂直転送線239に出力する。このとき、クランプスイッチ253をオン(駆動信号φVCLがHigh)状態にしたままにすることにより、列ソースフォロワバッファ244のゲートがクランプ電圧VCLPの電圧となり、転送容量252にVRST-VCLPを充電する。
次に、タイミング生成部28は、クランプスイッチ253をオフ(駆動信号φVCLがLow)にした状態で、転送トランジスタ234をオン(パルス状の駆動信号φT<0>がHigh)することにより、電荷変換部233が光電変換素子231によって光電変換された信号を垂直転送線239に読み出す(時間T2)。この状態で、電荷変換部233によって電圧変換された撮像信号VSIGは、垂直転送線239に転送される。この動作により、転送容量252に、VCLP-(VRST1-VSIG1)を充電する。これにより、転送容量252を介して、ノイズ信号が差し引かれた撮像信号(光信号)が、列ソースフォロワバッファ244のゲートに出力される。ここで、列ソースフォロワバッファ244のゲートに出力される信号は、クランプ電圧VCLPを基準としてサンプリングされた信号である。
続いて、タイミング生成部28は、列選択スイッチ255をオン(駆動信号SW21がHigh)することにより(時間T3)、転送容量252に充電された撮像信号Vout(VCLP-(VRST1-VSIG1))が列ソースフォロワバッファ244および第1のグローバル側回路260を介してA/D変換装置27へ出力される。
その後、タイミング生成部28は、列選択スイッチ255を切り替えてオンオフ(駆動信号SW21がLow、駆動信号SW22がHigh)することにより(時間T4)、転送容量252に充電された撮像信号Vout(VCLP-(VRST2-VSIG2))が列ソースフォロワバッファ244および第1のグローバル側回路260を介してA/D変換装置27へ出力される。このとき、A/D変換装置27は、基準信号生成部26から出力された基準信号VREFに基づいて、転送容量252から出力された撮像信号Voutに対してA/D変換を行ってデジタルの撮像信号D1を外部へ出力する。
続いて、タイミング生成部28は、列選択スイッチ255を順次切り替えてオンオフ(駆動信号SW22~SW2n)することにより(時間TN)、転送容量252に充電された撮像信号Vout(VCLP-(VRSTn-VSIGn))が列ソースフォロワバッファ244および第1のグローバル側回路260を介してA/D変換装置27へ順次出力される。このとき、A/D変換装置27は、基準信号生成部26から出力された基準信号VREFに基づいて、転送容量252から順次出力された撮像信号Voutに対してA/D変換を行ってデジタルの撮像信号D2~DNを外部へ順次出力する。
このような動作を、撮像装置20は、受光部23の列数分(または読み出しが必要な列数分)繰り返すことにより、撮像信号の同相の揺らぎ成分がキャンセルされたデジタルの撮像信号を外部へ出力する。さらに、撮像装置20は、1ライン分の読み出し動作を画素行数分(または読み出しが必要な行数分)繰り返すことにより、1フレーム分のデジタルの撮像信号を外部へ出力する。
また、図11Bに示すように、基準信号VREFおよび撮像信号Voutは、同相ノイズが乗るが、バッファ部25の出力電圧Voutから基準信号VREFの差分(Vout-VREF)は、同相ノイズの影響を受けない。A/D変換装置27は、バッファ部25から入力された撮像信号Voutおよび基準信号生成部26から生成された基準信号VREFを同一のタイミングでサンプリングし、デジタルの撮像信号Voutを外部へ出力する。この結果、A/D変換結果は、同相ノイズの影響を受けない。
以上説明した本発明の実施の形態1によれば、第1のグローバル側回路260が水平走査部245によって順次選択された奇数列の列ソースフォロワバッファ244(列側回路)が接続されることによって、ボルテージフォロワ回路となり、列ソースフォロワバッファ244から入力される撮像信号(Vin)の電圧に対してインピーダンス変換を行い、ボルテージフォロワにより増幅率を1倍に増幅して撮像信号(Vout)を出力するので、列ソースフォロワバッファ244が出力する撮像信号のレベルを最大限に用いることができる。
また、本発明の実施の形態1によれば、画素230よりも低い電源電圧で動作するA/D変換装置27へ出力する場合において、A/D変換装置27の入力ダイナミックレンジと線形性を確保することができる。
さらに、本発明の実施の形態1によれば、列ソースフォロワバッファ244の入力換算雑音を低減することができる。
また、本発明の実施の形態1によれば、基準信号生成部26が画素230で生成された撮像信号と同相の揺らぎ成分を有する基準信号を生成するので、同相ノイズの影響を実質的に受けない状態で撮像信号をデジタルの撮像信号に変換して出力することができる。
また、本発明の実施の形態1によれば、比較回路403の入力端子に接続される容量を略フラットにすることができるので、A/D変換装置27が出力する出力信号の線形性が劣化することを防止することができる。
(実施の形態1の変形例1)
次に、本発明の実施の形態1の変形例1について説明する。本実施の形態1の変形例1は、上述した実施の形態1に係る基準信号生成部26の構成が異なる。以下においては、本実施の形態1の変形例1に係る基準信号生成部の構成について説明する。なお、上述した実施の形態1に係る内視鏡システム1と同一の構成には同一の符号を付して説明を省略する。
次に、本発明の実施の形態1の変形例1について説明する。本実施の形態1の変形例1は、上述した実施の形態1に係る基準信号生成部26の構成が異なる。以下においては、本実施の形態1の変形例1に係る基準信号生成部の構成について説明する。なお、上述した実施の形態1に係る内視鏡システム1と同一の構成には同一の符号を付して説明を省略する。
〔基準信号生成部の構成〕
図12は、本発明の実施の形態1の変形例1に係る基準信号生成部の構成を模式的に示す回路図である。
図12は、本発明の実施の形態1の変形例1に係る基準信号生成部の構成を模式的に示す回路図である。
図12に示す基準信号生成部26aは、上述した実施の形態1に係る基準信号生成部26からノイズ除去相当回路305、列相当回路306および、バッファ相当回路307を省略した構成であり、2つの抵抗301aおよび抵抗302bからなる抵抗分割回路301と、タイミング生成部28から印加される駆動信号で駆動するスイッチ302(トランジスタ)と、電源から独立させて、揺らぎから開放させるためのサンプリング容量303(コンデンサ)と、画素相当回路304と、を有する。
以上説明した本発明の実施の形態1の変形例1によれば、画素230によって生成された撮像信号と同相の揺らぎ成分を有し、撮像信号の補正処理に用いられる基準信号を生成してA/D変換装置27へ出力することができるうえ、撮像素子21のチップ面積を小型化することができる。
(実施の形態1の変形例2)
次に、本発明の実施の形態1の変形例2について説明する。本実施の形態1の変形例2は、上述した実施の形態1に係る基準信号生成部26の構成が異なる。以下においては、本実施の形態1の変形例2に係る基準信号生成部の構成について説明する。なお、上述した実施の形態1に係る内視鏡システム1と同一の構成には同一の符号を付して説明を省略する。
次に、本発明の実施の形態1の変形例2について説明する。本実施の形態1の変形例2は、上述した実施の形態1に係る基準信号生成部26の構成が異なる。以下においては、本実施の形態1の変形例2に係る基準信号生成部の構成について説明する。なお、上述した実施の形態1に係る内視鏡システム1と同一の構成には同一の符号を付して説明を省略する。
〔基準信号生成部の構成〕
図13は、本発明の実施の形態1の変形例2に係る基準信号生成部の構成を模式的に示す回路図である。
図13は、本発明の実施の形態1の変形例2に係る基準信号生成部の構成を模式的に示す回路図である。
図13に示す基準信号生成部26bは、上述した実施の形態1に係る基準信号生成部26からスイッチ302(トランジスタ)、サンプリング容量303(コンデンサ)、画素相当回路304、ノイズ除去相当回路305、列相当回路306およびバッファ相当回路307を省略した構成であり、2つの抵抗301aおよび抵抗301bからなる抵抗分割回路301を有する。
以上説明した本発明の実施の形態1の変形例2によれば、画素230によって生成された撮像信号と同相の揺らぎ成分を有し、撮像信号の補正処理に用いられる基準信号を生成してA/D変換装置27へ出力することができるうえ、撮像素子21のチップ面積をより小型化することができる。
(実施の形態2)
次に、本発明の実施の形態2について説明する。本実施の形態2は、上述した実施の形態1に係る撮像素子21の構成が異なる。以下においては、本実施の形態2に係る撮像素子の構成を説明後、本実施の形態2に係る撮像素子の動作について説明する。なお、上述した実施の形態1に係る内視鏡システム1と同一の構成には同一の符号を付して説明を省略する。
次に、本発明の実施の形態2について説明する。本実施の形態2は、上述した実施の形態1に係る撮像素子21の構成が異なる。以下においては、本実施の形態2に係る撮像素子の構成を説明後、本実施の形態2に係る撮像素子の動作について説明する。なお、上述した実施の形態1に係る内視鏡システム1と同一の構成には同一の符号を付して説明を省略する。
〔撮像素子の回路の構成〕
図14は、本発明の実施の形態2に係る撮像素子の構成を模式的に示す回路図である。図14に示す撮像素子21aは、上述した実施の形態1に係る撮像素子21のバッファ部25および基準信号生成部26に換えて、バッファ部25aおよび基準信号生成部26cを備える。
図14は、本発明の実施の形態2に係る撮像素子の構成を模式的に示す回路図である。図14に示す撮像素子21aは、上述した実施の形態1に係る撮像素子21のバッファ部25および基準信号生成部26に換えて、バッファ部25aおよび基準信号生成部26cを備える。
〔バッファ部の構成〕
まず、バッファ部25aの構成について説明する。バッファ部25aは、水平走査部245によって順次選択された列ソースフォロワバッファ244が接続されることによって、ボルテージフォロワ回路となり、入力される撮像信号をボルテージフォロワにより1倍増幅にしてA/D変換装置27へ出力する。バッファ部25aは、画素230の奇数列および偶数列それぞれに設けられた第1のグローバル側回路260aおよび第2のグローバル側回路270aを有する。第1のグローバル側回路260aおよび第2のグローバル側回路270aは、インピーダンス変換部として機能する。
まず、バッファ部25aの構成について説明する。バッファ部25aは、水平走査部245によって順次選択された列ソースフォロワバッファ244が接続されることによって、ボルテージフォロワ回路となり、入力される撮像信号をボルテージフォロワにより1倍増幅にしてA/D変換装置27へ出力する。バッファ部25aは、画素230の奇数列および偶数列それぞれに設けられた第1のグローバル側回路260aおよび第2のグローバル側回路270aを有する。第1のグローバル側回路260aおよび第2のグローバル側回路270aは、インピーダンス変換部として機能する。
第1のグローバル側回路260aは、上述した実施の形態1に係る第1のグローバル側回路260の構成に加えて、第4のトランジスタ266、定電流源267と、第5のトランジスタ268と、定電流源269と、をさらに有する。
第4のトランジスタ266は、一端側(ソース側)が定電流源267に接続され、他端側(ドレイン側)がグランドGNDに接続され、ゲートがスイッチ261、第1のトランジスタ262および水平転送線257を介して列ソースフォロワバッファ244の列選択スイッチ255に接続される。第4のトランジスタ266は、PMOSを用いて構成される。
定電流源267は、一端側が電源電圧VDDに接続され、他端側が第4のトランジスタ266の一端側(ソース側)および第5のトランジスタ268のゲートに接続される。なお、本実施の形態2では、定電流源267が第3の定電流源として機能する。
第5のトランジスタ268は、一端側(ドレイン側)が電源電圧VDDに接続され、他端側(ソース側)が定電流源269に接続され、ゲートが定電流源267に接続される。第5のトランジスタ268は、NMOSを用いて構成される。
定電流源269は、一端側がグランドGNDに接続され、他端側が第5のトランジスタ268の他端側(ソース側)に接続される。なお、本実施の形態2では、定電流源269が第4の定電流源として機能する。
このように構成された第1のグローバル側回路260aは、出力段をソースフォロワ構成としているため、水平走査部245によって順次選択された奇数列の列ソースフォロワバッファ244(列側回路)が接続されることによって、ボルテージフォロワ回路となり、入力される撮像信号(Vin)をボルテージフォロワにより1倍に増幅した撮像信号(Vout)をA/D変換装置27へ出力する。
第2のグローバル側回路270aは、上述した第1のグローバル側回路260aと同一の構成を有し、定電流源256と、スイッチ261と、第1のトランジスタ262と、第2のトランジスタ263と、第3のトランジスタ264と、定電流源265と、第4のトランジスタ266、定電流源267と、第5のトランジスタ268と、定電流源269と、を有する。
このように構成された第2のグローバル側回路270aは、水平走査部245によって順次選択された偶数列の列ソースフォロワバッファ244(列側回路)が接続されることによって、ボルテージフォロワ回路となり、入力される撮像信号(Vin)をボルテージフォロワにより1倍に増幅した撮像信号(Vout)をA/D変換装置27へ出力する。
基準信号生成部26cは、画素230によって生成された撮像信号と同相の揺らぎ成分を有し、撮像信号の補正処理に用いられる基準信号を生成してA/D変換装置27へ出力する。なお、基準信号生成部26cの回路の詳細は、後述する図15において説明する。
〔基準信号生成部の構成〕
次に、図14において説明した基準信号生成部26cの詳細な構成について説明する。図15は、基準信号生成部26cの構成を模式的に示す回路図である。
次に、図14において説明した基準信号生成部26cの詳細な構成について説明する。図15は、基準信号生成部26cの構成を模式的に示す回路図である。
図15に示す基準信号生成部26cは、上述した実施の形態1に係る基準信号生成部26のバッファ相当回路307に換えて、バッファ相当回路307aを有する。
バッファ相当回路307aは、第1のグローバル側回路260aと相当な回路を形成し、定電流源256と、スイッチ261と、第1のトランジスタ262と、第2のトランジスタ263と、第3のトランジスタ264と、定電流源265と、第4のトランジスタ266、定電流源267と、第5のトランジスタ268と、定電流源269と、を有する。バッファ相当回路307aは、上述した第1のグローバル側回路260aと相当な回路のため、詳細な説明は省略する。
このように構成された基準信号生成部26cは、画素230によって生成された撮像信号と同相の揺らぎ成分を有し、撮像信号の補正処理に用いられる基準信号(VREF)を生成してA/D変換装置27へ出力する。
〔撮像装置の動作〕
次に、撮像装置20の動作について説明する。図16Aは、撮像装置20の動作を示すタイミングチャートである。図16Bは、図16Aの領域R2のタイミングチャートの一部を拡大した模式図である。図16Aにおいては、受光部23の行<n>の画素230から撮像信号を読み出し、A/D変換装置27からデジタルの撮像信号が出力されるまでを説明する。また、図16Aに示すタイミングチャートでは説明の便宜上、画素230に1つの光電変換素子231のみが含まれるものとしている。画素230に複数の光電変換素子231が含まれる場合(画素共有の場合)には、このタイミングチャートに示す1映像信号ライン分の動作を画素230に含まれる光電変換素子231の数分だけ繰り返し行う。また、図16Aにおいて、最上段から順に、駆動信号φR、駆動信号φT、駆動信号φVCL、駆動信号SW21~SW2n、転送容量252の電圧VIN1~VINn、バッファ部25aの出力電圧Vout、A/D変換装置27の変換タイミング、基準クロックCLK、A/D変換装置27の変換結果の出力タイミングおよび基準信号VREFを示す。また、図16Bにおいて、最上段から順に、基準信号VREF、バッファ部25の出力電圧Vout、基準クロックCLK、A/D変換装置27の動作モードおよびバッファ部25の出力電圧Voutから基準信号VREFの差分(Vout-VREF)を示す。
次に、撮像装置20の動作について説明する。図16Aは、撮像装置20の動作を示すタイミングチャートである。図16Bは、図16Aの領域R2のタイミングチャートの一部を拡大した模式図である。図16Aにおいては、受光部23の行<n>の画素230から撮像信号を読み出し、A/D変換装置27からデジタルの撮像信号が出力されるまでを説明する。また、図16Aに示すタイミングチャートでは説明の便宜上、画素230に1つの光電変換素子231のみが含まれるものとしている。画素230に複数の光電変換素子231が含まれる場合(画素共有の場合)には、このタイミングチャートに示す1映像信号ライン分の動作を画素230に含まれる光電変換素子231の数分だけ繰り返し行う。また、図16Aにおいて、最上段から順に、駆動信号φR、駆動信号φT、駆動信号φVCL、駆動信号SW21~SW2n、転送容量252の電圧VIN1~VINn、バッファ部25aの出力電圧Vout、A/D変換装置27の変換タイミング、基準クロックCLK、A/D変換装置27の変換結果の出力タイミングおよび基準信号VREFを示す。また、図16Bにおいて、最上段から順に、基準信号VREF、バッファ部25の出力電圧Vout、基準クロックCLK、A/D変換装置27の動作モードおよびバッファ部25の出力電圧Voutから基準信号VREFの差分(Vout-VREF)を示す。
図16Aおよび図16Bに示すように、まず、タイミング生成部28は、クランプスイッチ253をオン(駆動信号φVCLがHigh)し、画素リセット部236にオン(パルス状の駆動信号φR<0>がHigh)、転送トランジスタ234をオフ(パルス状の駆動信号φT<0>がLow)することにより(時間T1)、読み出し対象の画素230特有のばらつきと、画素リセット時のノイズ等を含むノイズ信号を画素230から垂直転送線239に出力する。このとき、クランプスイッチ253をオン(駆動信号φVCLがHigh)状態にしたままにすることにより、列ソースフォロワバッファ244のゲートがクランプ電圧VCLPの電圧となり、転送容量252にVRST-VCLPを充電する。
次に、タイミング生成部28は、クランプスイッチ253をオフ(駆動信号φVCLがLow)にした状態で、転送トランジスタ234にオン(パルス状の駆動信号φT<0>がHigh)することにより、電荷変換部233が光電変換素子231によって光電変換された電荷を変換した信号を垂直転送線239に読み出す(時間T2)。この状態で、電荷変換部233によって電圧変換された撮像信号VSIGは、垂直転送線239に転送される。この動作により、転送容量252に、VCLP-(VRST1-VSIG1)を充電する。これにより、転送容量252を介して、ノイズ信号が差し引かれた撮像信号(光信号)が、列ソースフォロワバッファ244のゲートに出力される。ここで、列ソースフォロワバッファ244のゲートに出力される信号は、クランプ電圧VCLPを基準としてサンプリングされた信号である。
続いて、タイミング生成部28は、列選択スイッチ255をオン(駆動信号SW21がHigh)することにより(時間T3)、転送容量252に充電された撮像信号Vout(VCLP-(VRST1-VSIG1))が列ソースフォロワバッファ244および第1のグローバル側回路260aを介してA/D変換装置27へ出力される。
その後、タイミング生成部28は、列選択スイッチ255を切り替えてオンオフ(駆動信号SW21がLow、駆動信号SW22がHigh)することにより(時間T4)、転送容量252に充電された撮像信号Vout(VCLP-(VRST2-VSIG2))が列ソースフォロワバッファ244および第1のグローバル側回路260aを介してA/D変換装置27へ出力される。このとき、A/D変換装置27は、基準信号生成部26cから出力された基準信号VREFに基づいて、転送容量252から出力された撮像信号Voutに対してA/D変換を行ってデジタルの撮像信号D1を外部へ出力する。
続いて、タイミング生成部28は、列選択スイッチ255を順次切り替えてオンオフ(駆動信号SW22~SW2n)することにより(時間TN)、転送容量252に充電された撮像信号Vout(VCLP-(VRSTn-VSIGn))が列ソースフォロワバッファ244および第1のグローバル側回路260aを介してA/D変換装置27へ順次出力される。このとき、A/D変換装置27は、基準信号生成部26cから出力された基準信号VREFに基づいて、転送容量252から順次出力された撮像信号Voutに対してA/D変換を行ってデジタルの撮像信号D2~DNを外部へ順次出力する。
このような動作を、撮像装置20は、受光部23の列数分(または読み出しが必要な列数分)繰り返すことにより、撮像信号の同相の揺らぎ成分がキャンセルされたデジタルの撮像信号を外部へ出力する。さらに、撮像装置20は、1ライン分の読み出し動作を画素行数分(または読み出しが必要な行数分)繰り返すことにより、1フレーム分のデジタルの撮像信号を外部へ出力する。
また、図16Bに示すように、基準信号VREFおよび撮像信号Voutは、同相ノイズが乗るが、バッファ部25の出力電圧Voutから基準信号VREFの差分(Vout-VREF)は、同相ノイズの影響を受けない。A/D変換装置27は、バッファ部25から入力された撮像信号Voutおよび基準信号生成部26から生成された基準信号VREFを同一のタイミングでサンプリングし、デジタルの撮像信号Voutを外部へ出力する。この結果、A/D変換結果は、同相ノイズの影響を受けない。
以上説明した本発明の実施の形態2によれば、第1のグローバル側回路260aが水平走査部245によって順次選択された奇数列の列ソースフォロワバッファ244(列側回路)が接続されることによって、ボルテージフォロワ回路となり、列ソースフォロワバッファ244から入力される撮像信号(Vin)の電圧に対してインピーダンス変換を行い、ボルテージフォロワにより増幅率を1倍に増幅して撮像信号(Vout)を出力するので、列ソースフォロワバッファ244が出力する撮像信号のレベルを最大限に用いることができる。
また、本発明の実施の形態2によれば、第1のグローバル側回路260aをソースフォロワ型にすることにより、列ソースフォロワバッファ244のセトリング性能を向上させることができる。
また、本発明の実施の形態2によれば、第1のグローバル側回路260aをソースフォロワ型にすることにより、A/D変換装置27の入力容量を大きくした場合であっても、線形性を確保することができる。
また、本発明の実施の形態2によれば、基準信号生成部26cが画素230で生成された撮像信号と同相の揺らぎ成分を有する基準信号を生成するので、同相ノイズの影響を実質的に受けない状態で撮像信号をデジタルの撮像信号に変換して出力することができる。
また、本発明の実施の形態2によれば、比較回路403の入力端子に接続される容量を略フラットにすることができるので、A/D変換装置27が出力する出力信号の線形性が劣化することを防止することができる。
(実施の形態3)
次に、本発明の実施の形態3について説明する。本実施の形態3は、上述した実施の形態1に係るA/D変換装置27における第1のA/D変換部280および第2のA/D変換部290と構成が異なる。以下においては、本実施の形態3に係る第1のA/D変換部および第2のA/D変換部の構成について説明する。なお、上述した実施の形態1に係る内視鏡システム1と同一の構成には同一の符号を付して説明を省略する。
次に、本発明の実施の形態3について説明する。本実施の形態3は、上述した実施の形態1に係るA/D変換装置27における第1のA/D変換部280および第2のA/D変換部290と構成が異なる。以下においては、本実施の形態3に係る第1のA/D変換部および第2のA/D変換部の構成について説明する。なお、上述した実施の形態1に係る内視鏡システム1と同一の構成には同一の符号を付して説明を省略する。
〔第1のA/D変換部の構成〕
図17は、本実施の形態3に係る第1のA/D変換部の構成を模式的に示す回路図である。なお、本実施の形態3に係る第1のA/D変換部および第2のA/D変換部は、同じ回路構成のため、以下においては、第1のA/D変換部の構成のみ説明し、第2のA/D変換部の構成の説明は省略する。また、図17に示す第1のA/D変換部280aは、逐次比較型のA/D変換装置であり、9ビット(bit)出力のA/D変換装置であるが、これに限定されず、出力ビット数を適宜変更することができる。
図17は、本実施の形態3に係る第1のA/D変換部の構成を模式的に示す回路図である。なお、本実施の形態3に係る第1のA/D変換部および第2のA/D変換部は、同じ回路構成のため、以下においては、第1のA/D変換部の構成のみ説明し、第2のA/D変換部の構成の説明は省略する。また、図17に示す第1のA/D変換部280aは、逐次比較型のA/D変換装置であり、9ビット(bit)出力のA/D変換装置であるが、これに限定されず、出力ビット数を適宜変更することができる。
図17に示す第1のA/D変換部280aは、上述した実施の形態1に係る第1のA/D変換部280の補正回路404に換えて、補正回路406を備える。
補正回路406は、比較回路403の入力トランジスタの寄生容量を相殺することによって、比較回路403に入力される一対のアナログの信号を補正する。補正回路406は、比較回路403の入力トランジスタの寄生容量を相殺する補正用トランジスタ404aと、補正用トランジスタ404aにバイアス電圧VBを印加するとともに、バイアス電圧VBを調整可能なバイアス回路406bと、を有する。バイアス回路406bは、例えば可変抵抗等を用いて構成される。なお、バイアス回路406bは、DAC回路の出力信号を用いて構成されてもよい。
〔補正回路のバイアス電圧VBの調整方法〕
次に、上述した補正回路406のバイアス電圧の調整方法について説明する。図18は、補正回路406のバイアス電圧の調整方法を示すフローチャートである。図19A~図19Cは、補正回路406のバイアス電圧(n)を変化させたときのINL特性(9ビットADC)を模式的に示す図である。図19A~図19Cにおいて、横軸がcodeを示し、縦軸がINL[a.u]を示す。また、図19Aの曲線L41がバイアス電圧VB=VB(1)のINL特性を示し、図19Bの曲線L42がバイアス電圧VB=Vb(N)のINL特性を示し、図19Cの曲線L43がバイアス電圧VB=VB(n)のINL特性を示す。
次に、上述した補正回路406のバイアス電圧の調整方法について説明する。図18は、補正回路406のバイアス電圧の調整方法を示すフローチャートである。図19A~図19Cは、補正回路406のバイアス電圧(n)を変化させたときのINL特性(9ビットADC)を模式的に示す図である。図19A~図19Cにおいて、横軸がcodeを示し、縦軸がINL[a.u]を示す。また、図19Aの曲線L41がバイアス電圧VB=VB(1)のINL特性を示し、図19Bの曲線L42がバイアス電圧VB=Vb(N)のINL特性を示し、図19Cの曲線L43がバイアス電圧VB=VB(n)のINL特性を示す。
図18に示すように、まず、ユーザは、バイアス回路406bを調整して、バイアス電圧VB(1)~VB(N)の値を設定し(ステップS101)、n=1に設定する(ステップS102)。ここで、Nがバイアス電圧VBを分割する際の最大値を示す。
続いて、バイアス回路406bは、補正用トランジスタ404aにバイアス電圧VB(n)を印加する(ステップS103)。
その後、ユーザは、第1のA/D変換部280aにテスト信号を入力し、A/D変換を実行させ(ステップS104)、第1のA/D変換部280aから出力された出力コードDOUT(n)を測定し、INL(n)を算出する(ステップS105)。この場合、バイアス電圧VB(1)のINL特性は、図19Aの曲線L41に示すような上側に凸状をなす。
続いて、ユーザは、算出したINL(n)より、INLの最大値INL_MAX(n)、最小値INL_MIN(n)を算出する(ステップS106)。
その後、ユーザは、nがNであるか否かを判断する(ステップS107)。nがNである場合(ステップS107:Yes)、後述するステップS109へ移行する。
これに対して、nがNでない場合(ステップS107:No)、ユーザは、nをインクリメント(n=n+1)し(ステップS108)、ステップS103へ戻り、n=Nになるまで、上述したステップS103~ステップS107を繰り返す。この場合、バイアス電圧VB(N)のINL特性は、図19Bの曲線L42に示すような下側に凸状をなす。
ステップS109において、ユーザは、最大値INL_MAX(n)と最小値INL_MIN(n)の絶対値の差分が小さく、最大値INL_MAX(n)と最小値INL_MIN(n)の絶対値の平均値が小さいnを選択する。
その後、ユーザは、バイアス電圧VB(n)を補正用トランジスタ404aのバイアス電圧に設定する(ステップS110)。具体的には、ユーザは、バイアス回路406bが補正用トランジスタ404aに印加するバイアス電圧がVB(n)となるように調整する。この場合、図19Cに示すように、バイアス電圧VB(n)のINL特性は、図19Cの曲線L43に示すような略直線状をなす。ステップS110の後、ユーザは、本処理を終了する。
以上説明した本発明の実施の形態3によれば、比較回路403の入力端子に接続される容量を略フラットにすることができるので、A/D変換装置27が出力する出力信号の線形性が劣化することを防止することができる。
(その他の実施の形態)
本発明の実施の形態では、伝送ケーブルを介して撮像装置が生成した撮像信号をプロセッサへ伝送していたが、例えば有線である必要はなく、無線であってもよい。この場合、所定の無線通信規格(例えばWi-Fi(登録商標)やBluetooth(登録商標))に従って、撮像信号をプロセッサへ伝送するようにすればよい。もちろん、他の無線通信規格に従って無線通信を行ってもよい。さらに、撮像信号以外にも、内視鏡の各種情報を更新するための更新情報を伝送してもよい。
本発明の実施の形態では、伝送ケーブルを介して撮像装置が生成した撮像信号をプロセッサへ伝送していたが、例えば有線である必要はなく、無線であってもよい。この場合、所定の無線通信規格(例えばWi-Fi(登録商標)やBluetooth(登録商標))に従って、撮像信号をプロセッサへ伝送するようにすればよい。もちろん、他の無線通信規格に従って無線通信を行ってもよい。さらに、撮像信号以外にも、内視鏡の各種情報を更新するための更新情報を伝送してもよい。
また、本発明の実施の形態では、撮像素子を1チップで構成していたが、複数の画素を配置してなる画素チップと、読み出し部からA/D変換装置までの各種回路を配置してなる回路チップと、を分割し、画素チップ上に回路チップを積層する2チップとしてもよい。
また、本発明の実施の形態では、伝送ケーブルを介してA/D変換装置からデジタルの撮像信号をコネクタ部へ伝送していたが、例えばデジタルの撮像信号を光信号に変換する光カプラ等を設け、デジタルの撮像信号を光信号によってコネクタ部へ伝送してもよい。
また、本明細書において、前述の各動作フローチャートの説明において、便宜上「まず」、「次に」、「続いて」、「その後」等を用いて動作を説明しているが、この順で動作を実施することが必須であることを意味するものではない。
また、本発明の実施の形態では、プロセッサと光源装置とが一体的に形成されていたが、これに限定されることなく、例えばプロセッサと光源装置とが別体であってもよい。
また、本発明の実施の形態では、同時方式の内視鏡を例に説明したが、面順次方式の内視鏡であっても適用することができる。
また、本発明の実施の形態では、軟性内視鏡(上下内視鏡スコープ)以外にも、硬性内視鏡、副鼻腔内視鏡および電気メスや検査プローブ等の内視鏡システムであっても適用することができる。
また、本発明の実施の形態では、逐次比較型A/D変換装置が撮像装置として、被検体に挿入される挿入部の先端部に設けられた内視鏡の撮像装置を例に説明したが、これに限定されることなく、レンズ装置を着脱自在な撮像装置、携帯電話に内蔵された撮像装置、表示モニタレスの撮像装置、ネットワークを介して操作される監視カメラ、デジタルカムコーダおよび顕微鏡に用いられる撮像装置等に適用することができる。
また、本発明は、上述した実施の形態および変形例そのままに限定されるものではなく、実施段階では、発明の要旨を逸脱しない範囲内で構成要素を変形して具体化することができる。また、上述した実施の形態に開示されている複数の構成要素を適宜組み合わせることによって、種々の発明を形成することができる。例えば、上述した実施の形態および変形例に記載した全構成要素からいくつかの構成要素を削除してもよい。さらに、各実施の形態および変形例で説明した構成要素を適宜組み合わせてもよい。
また、明細書または図面において、少なくとも一度、より広義または同義な異なる用語とともに記載された用語は、明細書または図面のいかなる箇所においても、その異なる用語に置き換えることができる。このように、発明の主旨を逸脱しない範囲内において種々の変形や応用が可能である。
1 内視鏡システム
2 内視鏡
3 伝送ケーブル
4 操作部
5 コネクタ部
6 プロセッサ
7 表示装置
8 光源装置
20 撮像装置
21,21a 撮像素子
23 受光部
24 読み出し部
25,25a バッファ部
26,26a~26c 基準信号生成部
27 A/D変換装置
28 タイミング生成部
29 ヒステリシス部
51 パルス生成部
52 信号処理部
53 電源電圧生成部
61 電源部
62 クロック生成部
63 プロセッサ制御部
64 画像処理部
100 挿入部
101 先端部
230 画素
231 光電変換素子
233 電荷変換部
234 転送トランジスタ
236 画素リセット部
237 画素ソースフォロワトランジスタ
239 垂直転送線
241 垂直走査部
242 定電流源
243 ノイズ除去部
244 列ソースフォロワバッファ
245 水平走査部
246 基準電圧生成部
252 転送容量
253 クランプスイッチ
254 列ソースフォロワトランジスタ
255 列選択スイッチ
256 定電流源
257 水平転送線
260,260a 第1のグローバル側回路
261 スイッチ
262 第1のトランジスタ
263 第2のトランジスタ
264 第3のトランジスタ
265 定電流源
266 第4のトランジスタ
267 定電流源
268 第5のトランジスタ
269 定電流源
270,270a 第2のグローバル側回路
280,280a 第1のA/D変換部
290 第2のA/D変換部
304 画素相当回路
305 ノイズ除去相当回路
306 列相当回路
307,307a バッファ相当回路
401 サンプリング回路
402 容量性DAC回路
403 比較回路
404,406 補正回路
404a 補正用トランジスタ
404b,406b バイアス回路
405 制御回路
2 内視鏡
3 伝送ケーブル
4 操作部
5 コネクタ部
6 プロセッサ
7 表示装置
8 光源装置
20 撮像装置
21,21a 撮像素子
23 受光部
24 読み出し部
25,25a バッファ部
26,26a~26c 基準信号生成部
27 A/D変換装置
28 タイミング生成部
29 ヒステリシス部
51 パルス生成部
52 信号処理部
53 電源電圧生成部
61 電源部
62 クロック生成部
63 プロセッサ制御部
64 画像処理部
100 挿入部
101 先端部
230 画素
231 光電変換素子
233 電荷変換部
234 転送トランジスタ
236 画素リセット部
237 画素ソースフォロワトランジスタ
239 垂直転送線
241 垂直走査部
242 定電流源
243 ノイズ除去部
244 列ソースフォロワバッファ
245 水平走査部
246 基準電圧生成部
252 転送容量
253 クランプスイッチ
254 列ソースフォロワトランジスタ
255 列選択スイッチ
256 定電流源
257 水平転送線
260,260a 第1のグローバル側回路
261 スイッチ
262 第1のトランジスタ
263 第2のトランジスタ
264 第3のトランジスタ
265 定電流源
266 第4のトランジスタ
267 定電流源
268 第5のトランジスタ
269 定電流源
270,270a 第2のグローバル側回路
280,280a 第1のA/D変換部
290 第2のA/D変換部
304 画素相当回路
305 ノイズ除去相当回路
306 列相当回路
307,307a バッファ相当回路
401 サンプリング回路
402 容量性DAC回路
403 比較回路
404,406 補正回路
404a 補正用トランジスタ
404b,406b バイアス回路
405 制御回路
Claims (9)
- 差動入力信号として入力された一対のアナログ信号をサンプリングするサンプリング回路と、
前記サンプリング回路によりサンプリングされた一対のアナログ信号を保持するバイナリ容量を有し、前記バイナリ容量を介して前記一対のアナログ信号に参照信号の信号レベルを反映させることにより一対の電圧信号を発生させる容量回路と、
前記一対の電圧信号が入力される入力トランジスタを有し、前記一対の電圧信号をなす一方の信号と他方の信号とを比較する比較回路と、
前記比較回路の前段側に設けられ、前記入力トランジスタにおける寄生容量を相殺した前記一対の電圧信号を前記比較回路へ出力する補正回路と、
前記比較回路による比較の結果に基づき、前記バイナリ容量に対応するデジタル信号の各ビットの値を2分探索法により逐次的に判定し、前記デジタル信号の各ビットの値を前記参照信号に反映させる制御回路と、
を備えることを特徴とする逐次比較型A/D変換装置。 - 前記補正回路は、
前記寄生容量を相殺する補正用トランジスタと、
前記補正用トランジスタに所定のバイアス電圧を印加するバイアス回路と、
を有することを特徴とする請求項1に記載の逐次比較型A/D変換装置。 - 前記バイアス回路は、前記バイアス電圧が調整可能であることを特徴とする請求項2に記載の逐次比較型A/D変換装置。
- 前記補正用トランジスタの容量の電圧依存性は、前記寄生容量の電圧依存と逆特性を有することを特徴とする請求項3に記載の逐次比較型A/D変換装置。
- 請求項1に記載の逐次比較型A/D変換装置と、
二次元マトリクス状に配置されてなり、外部から入力される光を受光して光電変換を行って撮像信号を出力する複数の画素を有する撮像素子と、
を備え、
前記撮像素子は、
前記複数の画素の配置における列毎に設けられ、前記撮像信号に含まれるノイズ成分を除去するノイズ除去部と、
前記複数の画素の配置における列毎に設けられ、前記ノイズ除去部が前記ノイズ成分を除去した前記撮像信号を増幅して出力する複数の列ソースフォロワバッファと、
前記複数の列ソースフォロワバッファを順次選択して前記撮像信号を出力させる水平走査部と、
前記水平走査部によって順次選択された前記列ソースフォロワバッファと接続することによってボルテージフォロワ回路を形成し、前記列ソースフォロワバッファから出力された前記撮像信号の電圧に対してインピーダンス変換を行って前記逐次比較型A/D変換装置へ出力するバッファ部と、
を備えることを特徴とする撮像装置。 - 前記撮像素子は、
前記画素で生成された前記信号と同相の揺らぎ成分を有する基準信号を生成して前記逐次比較型A/D変換装置へ出力する基準信号生成部をさらに備え、
前記逐次比較型A/D変換装置は、前記撮像信号および前記基準信号を前記差動入力信号として入力することを特徴とする請求項5に記載の撮像装置。 - 前記基準信号生成部は、前記画素と等価な構造の素子または回路を有することを特徴とする請求項6に記載の撮像装置。
- 請求項5に記載の撮像装置と、
被検体に挿入可能であり、先端部に前記撮像装置を配置してなる挿入部と、
を備えることを特徴とする内視鏡。 - 差動入力信号として入力された一対のアナログ信号をサンプリングするサンプリング回路と、前記サンプリング回路によりサンプリングされた一対のアナログ信号を保持するバイナリ容量を有し、前記バイナリ容量を介して前記一対のアナログ信号に参照信号の信号レベルを反映させることにより一対の電圧信号を発生させる容量回路と、前記一対の電圧信号が入力される入力トランジスタを有し、前記一対の電圧信号をなす一方の信号と他方の信号とを比較する比較回路と、前記比較回路の前段側に設けられ、前記入力トランジスタにおける寄生容量を相殺する補正用トランジスタと、前記補正用トランジスタに所定のバイアス電圧を印加するバイアス回路と、を有し、前記一対の電圧信号を前記比較回路へ出力する補正回路と、前記比較回路による比較の結果に基づき、前記バイナリ容量に対応するデジタル信号の各ビットの値を2分探索法により逐次的に判定し、前記デジタル信号の各ビットの値を前記参照信号に反映させる制御回路と、を備えることを特徴とする逐次比較型A/D変換装置に実行する設定方法であって、
前記バイアス回路が印加する前記バイアス電圧の値を設定する第1の設定ステップと、
前記補正用トランジスタに前記第1の設定ステップで設定した値の前記バイアス電圧を順次印加する印加ステップと、
前記逐次比較型A/D変換装置にテスト信号を順次入力してA/D変換を実行させるA/D変換ステップと、
前記A/D変換ステップで変換された出力コードを順次測定した測定結果に基づいて、前記出力コード毎の積分非直線誤差を算出する第1の算出ステップと、
前記積分非直線誤差に基づいて、前記積分非直線誤差の最大値および最小値の各々を、前記出力コード毎に算出する第2の算出ステップと、
前記第2の算出ステップにおいて算出された複数の前記最大値と前記最小値の絶対値の差分が小さく、かつ、前記最大値と前記最小値の絶対値の平均値が小さい前記バイアス電圧の値を前記バイアス回路が印加する前記バイアス電圧の値に設定する第2の設定ステップと、
を含むことを特徴とする設定方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018537891A JP6445746B2 (ja) | 2016-12-21 | 2017-09-06 | 逐次比較型a/d変換装置、撮像装置、内視鏡および設定方法 |
CN201780071817.XA CN109983704A (zh) | 2016-12-21 | 2017-09-06 | 逐次比较型a/d转换装置、摄像装置、内窥镜以及设定方法 |
US16/415,067 US10601436B2 (en) | 2016-12-21 | 2019-05-17 | Successive approximation A/D converter, imaging device, endoscope, and setting method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-247964 | 2016-12-21 | ||
JP2016247964 | 2016-12-21 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/415,067 Continuation US10601436B2 (en) | 2016-12-21 | 2019-05-17 | Successive approximation A/D converter, imaging device, endoscope, and setting method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018116540A1 true WO2018116540A1 (ja) | 2018-06-28 |
Family
ID=62626320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/032169 WO2018116540A1 (ja) | 2016-12-21 | 2017-09-06 | 逐次比較型a/d変換装置、撮像装置、内視鏡および設定方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10601436B2 (ja) |
JP (1) | JP6445746B2 (ja) |
CN (1) | CN109983704A (ja) |
WO (1) | WO2018116540A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020144777A1 (ja) * | 2019-01-09 | 2020-07-16 | オリンパス株式会社 | 撮像素子、内視鏡および制御装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10840932B2 (en) * | 2018-10-12 | 2020-11-17 | Mediatek Inc. | Analog-to-digital converter |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003504912A (ja) * | 1999-07-01 | 2003-02-04 | バー−ブラウン コーポレイション | キャパシタアレイ |
JP2013526179A (ja) * | 2010-04-22 | 2013-06-20 | 日本テキサス・インスツルメンツ株式会社 | 積分非直線性補正を備えた逐次比較レジスタアナログ・デジタル・コンバータ |
WO2016170642A1 (ja) * | 2015-04-23 | 2016-10-27 | オリンパス株式会社 | 撮像装置、内視鏡、および内視鏡システム |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4200863A (en) * | 1977-10-03 | 1980-04-29 | The Regents Of The University Of California | Weighted capacitor analog/digital converting apparatus and method |
GB9014679D0 (en) * | 1990-07-02 | 1990-08-22 | Sarnoff David Res Center | Sequential successive approximation a/d converter |
JP2006020171A (ja) * | 2004-07-02 | 2006-01-19 | Fujitsu Ltd | 差動型コンパレータ、アナログ・デジタル変換装置、撮像装置 |
DE102006025116B4 (de) * | 2006-05-30 | 2020-06-04 | Austriamicrosystems Ag | Einstellbare Analog-Digital-Wandleranordnung und Verfahren zur Analog-Digital-Wandlung |
JP5198156B2 (ja) * | 2008-06-09 | 2013-05-15 | オリンパス株式会社 | 撮像装置 |
US7812757B1 (en) * | 2009-06-12 | 2010-10-12 | Hong Kong Applied Science And Technology Research Institute Co., Ltd. | Hybrid analog-to-digital converter (ADC) with binary-weighted-capacitor sampling array and a sub-sampling charge-redistributing array for sub-voltage generation |
JP5482158B2 (ja) * | 2009-12-04 | 2014-04-23 | ヤマハ株式会社 | 逐次比較a/d変換器 |
JP5517898B2 (ja) * | 2010-11-26 | 2014-06-11 | 株式会社日立製作所 | アナログデジタル変換器 |
CN102386924B (zh) * | 2011-09-21 | 2014-01-01 | 北京工业大学 | 低电压异步逐次逼近模数转换器 |
US20130147349A1 (en) * | 2011-12-07 | 2013-06-13 | General Electric Company | Integral starter for electrodeless lamp |
US8754798B2 (en) * | 2011-12-21 | 2014-06-17 | Realtek Semiconductor Corp. | High-speed successive-approximation-register analog-to-digital converter and method thereof |
JP5834988B2 (ja) * | 2012-02-16 | 2015-12-24 | 株式会社ソシオネクスト | A/d変換装置 |
US9912341B2 (en) * | 2013-03-01 | 2018-03-06 | Infineon Technologies Ag | Data conversion with redundant split-capacitor arrangement |
JP2015023587A (ja) * | 2013-07-16 | 2015-02-02 | スパンション エルエルシー | Dc−dcコンバータ及びその駆動方法 |
JP5904240B2 (ja) * | 2014-07-30 | 2016-04-13 | セイコーエプソン株式会社 | A/d変換回路、電子機器及びa/d変換方法 |
EP3203726A4 (en) * | 2014-10-03 | 2018-06-06 | Olympus Corporation | Imaging element, imaging device, endoscope, and endoscope system |
CN104702289B (zh) * | 2015-03-12 | 2018-01-26 | 中国电子科技集团公司第二十四研究所 | 逐次逼近型模数转换器及其比较器输入管的电容补偿电路 |
JP6407083B2 (ja) * | 2015-03-30 | 2018-10-17 | キヤノン株式会社 | 光電変換装置、および、光電変換システム |
TWI556585B (zh) * | 2015-06-11 | 2016-11-01 | 矽創電子股份有限公司 | 類比至數位轉換裝置及相關的校正方法及校正模組 |
US9654132B2 (en) * | 2015-07-08 | 2017-05-16 | Marvell World Trade Ltd. | Hybrid charge-sharing charge-redistribution DAC for successive approximation analog-to-digital converters |
-
2017
- 2017-09-06 CN CN201780071817.XA patent/CN109983704A/zh active Pending
- 2017-09-06 WO PCT/JP2017/032169 patent/WO2018116540A1/ja active Application Filing
- 2017-09-06 JP JP2018537891A patent/JP6445746B2/ja active Active
-
2019
- 2019-05-17 US US16/415,067 patent/US10601436B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003504912A (ja) * | 1999-07-01 | 2003-02-04 | バー−ブラウン コーポレイション | キャパシタアレイ |
JP2013526179A (ja) * | 2010-04-22 | 2013-06-20 | 日本テキサス・インスツルメンツ株式会社 | 積分非直線性補正を備えた逐次比較レジスタアナログ・デジタル・コンバータ |
WO2016170642A1 (ja) * | 2015-04-23 | 2016-10-27 | オリンパス株式会社 | 撮像装置、内視鏡、および内視鏡システム |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020144777A1 (ja) * | 2019-01-09 | 2020-07-16 | オリンパス株式会社 | 撮像素子、内視鏡および制御装置 |
JPWO2020144777A1 (ja) * | 2019-01-09 | 2021-10-14 | オリンパス株式会社 | 撮像素子、内視鏡および制御装置 |
JP7223774B2 (ja) | 2019-01-09 | 2023-02-16 | オリンパス株式会社 | 撮像素子、内視鏡および制御装置 |
US11856308B2 (en) | 2019-01-09 | 2023-12-26 | Olympus Corporation | Image sensor, endoscope and control device |
Also Published As
Publication number | Publication date |
---|---|
JP6445746B2 (ja) | 2018-12-26 |
CN109983704A (zh) | 2019-07-05 |
US20190280707A1 (en) | 2019-09-12 |
JPWO2018116540A1 (ja) | 2018-12-20 |
US10601436B2 (en) | 2020-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101215142B1 (ko) | 고체 촬상 장치 및 촬상 시스템 | |
JP4311181B2 (ja) | 半導体装置の制御方法および信号処理方法並びに半導体装置および電子機器 | |
US7295143B2 (en) | Semiconductor integrated circuit device | |
US9974431B2 (en) | Image sensor, imaging device, endoscope, and endoscope system | |
US20160022117A1 (en) | Imaging element, imaging device, endoscope, endoscope system, and method of driving imaging element | |
CN110771157B (zh) | 固态摄像装置、固态摄像装置的驱动方法、以及电子机器 | |
WO2013129646A1 (ja) | A/d変換回路、及び固体撮像装置 | |
US9800816B2 (en) | Signal readout circuit and method for controlling signal readout circuit | |
JP6445746B2 (ja) | 逐次比較型a/d変換装置、撮像装置、内視鏡および設定方法 | |
WO2019150522A1 (ja) | Ad変換回路、撮像装置、および内視鏡システム | |
US10757357B2 (en) | Imaging element, imaging device, and endoscope | |
JP7214622B2 (ja) | 固体撮像装置、およびそれを用いるカメラシステム | |
JP5115602B2 (ja) | 半導体装置およびその制御方法 | |
TWI840395B (zh) | 固態攝像元件及電子機器 | |
JP5115601B2 (ja) | 半導体装置およびその制御方法 | |
US9693002B2 (en) | Image sensor, imaging device, endoscope, and endoscope system | |
WO2018011877A1 (ja) | Ad変換回路、撮像装置、および内視鏡システム | |
JP6949738B2 (ja) | 逐次比較型a/d変換装置、撮像装置および内視鏡 | |
WO2015182361A1 (ja) | 増幅回路及びイメージセンサ | |
US9462204B2 (en) | Analog to digital converter for imaging device | |
JP4618329B2 (ja) | 半導体装置の制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018537891 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17885095 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17885095 Country of ref document: EP Kind code of ref document: A1 |