WO2018110345A1 - 船舶搭載型水質分析装置、及び、船舶搭載型脱泡器 - Google Patents

船舶搭載型水質分析装置、及び、船舶搭載型脱泡器 Download PDF

Info

Publication number
WO2018110345A1
WO2018110345A1 PCT/JP2017/043478 JP2017043478W WO2018110345A1 WO 2018110345 A1 WO2018110345 A1 WO 2018110345A1 JP 2017043478 W JP2017043478 W JP 2017043478W WO 2018110345 A1 WO2018110345 A1 WO 2018110345A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample liquid
container
liquid
ship
water quality
Prior art date
Application number
PCT/JP2017/043478
Other languages
English (en)
French (fr)
Inventor
雄大 羽島
紀一郎 富岡
忠司 河野
Original Assignee
株式会社堀場アドバンスドテクノ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場アドバンスドテクノ filed Critical 株式会社堀場アドバンスドテクノ
Priority to KR1020197016625A priority Critical patent/KR102430172B1/ko
Priority to JP2018556586A priority patent/JP6971258B2/ja
Priority to EP17880442.3A priority patent/EP3550299B1/en
Priority to CN201780077469.7A priority patent/CN110088618B/zh
Priority to DK17880442.3T priority patent/DK3550299T3/da
Publication of WO2018110345A1 publication Critical patent/WO2018110345A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1893Water using flow cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0063Regulation, control including valves and floats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0073Degasification of liquids by a method not covered by groups B01D19/0005 - B01D19/0042
    • B01D19/0078Degasification of liquids by a method not covered by groups B01D19/0005 - B01D19/0042 by vibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/44Sample treatment involving radiation, e.g. heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water

Definitions

  • the present invention relates to a ship-mounted water quality analyzer that is mounted on a ship and analyzes the water quality of liquid used or discharged in the ship.
  • exhaust gas discharged from the internal combustion engine flows and seawater assembled by the pump is sprayed as fine droplets. Since particles containing SOx, NOx, etc. contained in the exhaust gas are separated and collected in the sprayed droplets, the exhaust gas that has passed through the scrubber is purified.
  • seawater containing SOx and NOx discharged from the scrubber must be returned to the sea after being subjected to wastewater treatment so as to satisfy predetermined environmental standards. For this reason, it is necessary to always monitor whether or not the waste water treatment is properly performed on the ship by the water quality analyzer.
  • the present invention has been made in view of the above-described problems, and can provide a sample liquid from which bubbles are sufficiently removed even on a ship, thereby reducing measurement errors. It is an object of the present invention to provide a ship-mounted water quality analyzer that enables continuous accurate water quality monitoring.
  • the ship-mounted water quality analyzer according to the present invention is mounted on a ship, a defoamer for defoaming a sample liquid, and a sample defoamed by the defoamer provided downstream of the defoamer.
  • the defoamer includes a storage container in which the sample liquid is stored, a liquid introduction port for introducing the sample liquid into the storage container, and the storage An ultrasonic vibrator for applying ultrasonic vibration to the sample liquid in the container; a bubble discharge port for discharging bubbles generated in the sample liquid by the ultrasonic vibration to the outside from the upper part of the storage container; and defoaming by the storage container And a liquid outlet port for leading the sample liquid to the outside and supplying the sample liquid to the analyzer, and the container is configured to be filled with the sample liquid.
  • the ship-mounted water quality analyzer is mounted on a ship, a defoamer for defoaming a sample liquid, and a sample liquid defoamed by the defoamer provided downstream of the defoamer.
  • the defoamer contains a storage container in which a sample liquid is stored, a liquid introduction port for introducing the sample liquid into the storage container, and the storage container
  • An ultrasonic vibrator for applying ultrasonic vibration to the sample liquid inside, a bubble discharge port for discharging bubbles generated in the sample liquid by ultrasonic vibration to the outside from the upper part of the container, and degassing by the container
  • a liquid outlet port for leading the sample liquid to the outside and supplying the sample liquid to the analyzer, wherein a part of the sample liquid is discharged together with bubbles from the bubble discharge port.
  • the sample liquid introduced into the container is depressurized to make it easier for bubbles to be separated, and the sample liquid supplied to the analyzer is pressurized to make it difficult for bubbles to be generated.
  • the first valve provided in the bubble discharge line connected to the bubble discharge port and the second valve provided in the liquid discharge line connected to the liquid discharge port may be used.
  • the opening degree of the first valve is set so that air bubbles and sample liquid are discharged in a mixed state from the bubble discharge port, and the opening degree of the second valve is the container.
  • the predetermined opening degree may be set and fixed so as to decrease the flow rate of the sample liquid led out from the liquid lead-out port with respect to the flow rate of the sample liquid flowing into the pipe. Further, the opening degree of the first valve and the second valve may be appropriately changed on the ship, or may be fixed at an opening degree fixed at the time of factory shipment in advance. .
  • a liquid introduction line connected to the liquid introduction port is further provided with a regulator for regulating the sample liquid introduced into the storage container to a predetermined pressure. Good. If it is such, the pressure fluctuation of the sample liquid which flows in into the said defoamer can be reduced, and the sample liquid which flows in can be restrict
  • the container is filled with a sufficient amount of sample liquid and is connected to the bubble discharge port so that an operator can easily check whether a substantial liquid-tight state is achieved. It suffices that at least a part of the bubble discharge line is constituted by a transparent pipe. In such a case, the operator confirms that the sample liquid is flowing into the bubble discharge port, so that the container is filled with the sample liquid even when the sample liquid is continuously flowing in and out. You can see that it is full. Therefore, the operator can easily determine that new bubbles are hardly generated due to the rocking of the ship.
  • the analyzer is defoamed from the derivation unit. It is only necessary to provide a flow cell through which the sample liquid flows, and to be substantially liquid-tight with the sample liquid in the container and the flow cell.
  • the analyzer may It is only necessary to have a sensor surface arranged so as to come into contact with the sample liquid, and to provide the sensor surface so as to be inclined with respect to a horizontal plane in a natural state. If it is such, the bubble which flowed in in the said flow cell can be naturally moved upward along the said sensor surface.
  • the flow cell In order to increase the flow rate of the sample liquid with respect to the sensor surface and to move immediately from the sensor surface even if there are bubbles in the sample liquid, so as not to cause a measurement error, the flow cell However, what is necessary is just to further provide the introduction port which is provided facing the said sensor surface and introduces a sample liquid toward the said sensor surface, and the said introduction port has a throttle structure.
  • a liquid introduction port for introducing the sample liquid into the storage container, an ultrasonic vibrator for applying ultrasonic vibration to the sample liquid in the storage container, A bubble discharge port for discharging bubbles from the upper part of the storage container to the outside, and a liquid outlet port for extracting the sample liquid degassed from the lower part of the storage container and supplying the sample liquid to the analyzer.
  • a liquid introduction port for introducing the sample liquid into the storage container
  • an ultrasonic vibrator for applying ultrasonic vibration to the sample liquid in the storage container
  • a bubble discharge port for discharging bubbles from the upper part of the storage container to the outside
  • a liquid outlet port for extracting the sample liquid degassed from the lower part of the storage container and supplying the sample liquid to the analyzer.
  • Suitable for removing bubbles from the sample liquid on the ship include a storage container for storing the sample liquid, a liquid introduction port for introducing the sample liquid into the storage container, and the sample liquid in the storage container An ultrasonic vibrator for applying ultrasonic vibration to the liquid, a bubble discharge port for discharging bubbles generated in the sample liquid by ultrasonic vibration to the outside from the upper part of the container, and a sample liquid defoamed by the container A liquid-delivery port that is led out to the outside and is supplied to the analyzer, and is configured to discharge part of the sample liquid together with the bubbles from the bubble discharge port. Can be mentioned.
  • the ship-mounted water quality analyzer makes it difficult for new bubbles to be generated in the defoamer even when the ship is swung, and always enables accurate monitoring.
  • summary of the exhaust gas purification system in which the ship-mounted water quality analyzer which concerns on one Embodiment of this invention is used.
  • a ship-mounted water quality analyzer 100 according to an embodiment of the present invention will be described with reference to FIGS.
  • the ship-mounted water quality analyzer 100 of the present embodiment constantly monitors the quality of the wastewater discharged from the exhaust gas purification system 300 on the ship, and determines whether the wastewater treatment in the exhaust gas purification system 300 is operating as specified. It is used for confirmation.
  • the exhaust gas purification system 300 purifies SOx and NOx discharged from an internal combustion engine of a ship, and discharges it as exhaust gas that satisfies various regulation values. More specifically, the exhaust gas purification system 300 includes a scrubber 31, a cleaning liquid supply mechanism 32 that supplies seawater collected from outside the ship as a cleaning liquid to the scrubber 31, and wastewater that purifies wastewater discharged from the scrubber 31. A treatment mechanism 33; and the ship-mounted water quality analyzer 100 that monitors the water quality of the wastewater purified by the wastewater treatment mechanism 33.
  • the scrubber 31 has a substantially cylindrical shape, in which exhaust gas discharged from the internal combustion engine is introduced from below, and droplets of seawater or water is sprayed as a cleaning liquid from the cleaning liquid supply mechanism 32 inside. is there. Particles containing SOx and NOx in the exhaust gas are aggregated in droplet-like seawater and led out to the wastewater treatment mechanism 33 from below the scrubber 31. On the other hand, the purified exhaust gas is discharged from the top of the scrubber 31 into the air.
  • the waste water treatment mechanism 33 has a function of, for example, centrifuging the waste water to remove aggregated particles contained in the waste water and adjusting the pH of the waste water.
  • the ship-mounted water quality analyzer 100 is a system in which the purified waste water discharged from the waste water treatment mechanism 33 is introduced as a sample liquid, and the water quality is continuously monitored for turbidity, PAH, and pH.
  • each device is accommodated in a casing B as shown in the perspective view of FIG.
  • the casing B contains a defoamer 1 for defoaming the sample liquid and three types of analyzers 2 for analyzing the water quality of the defoamed sample liquid.
  • the ship-mounted water quality analyzer includes at least a control unit CNT that controls each valve, which will be described later, and a display D that displays a control state of each device, a measurement result of the analyzer 2, and the like. .
  • the ship-mounted water quality analyzer 100 is a liquid introduction line for introducing the sample liquid from the wastewater treatment mechanism 33 to the defoamer 1 as a main line related to the water quality analysis of the sample liquid.
  • L1 a liquid lead-out line L2 for supplying the sample liquid defoamed from the defoamer 1 to the plurality of analyzers 2, and bubbles or sample liquid defoamed by the defoamer 1 are outside the apparatus.
  • emitted out of a ship is provided.
  • the ship-mounted water quality analyzer 2 is provided in parallel with the liquid introduction line L1, and a zero water supply line L4 for supplying zero water used for adjustment to the defoamer 1 and the analyzer 2;
  • An upper part of the defoamer 1 and the drainage line L3 are connected to each other, and a bubble discharge line L5 through which the defoamed bubbles flow from the defoamer 1 to the drainage line L3 is provided.
  • a flow path from the defoamer 1 to a second valve V2 described later is defined as the introduction line L1
  • a flow path downstream of the second valve V2 is defined as the drain line L3. ing.
  • the defoamer 1 introduces the sample liquid into the storage container 11 and the storage container 11 extending in the vertical direction in which the sample liquid introduced from the wastewater treatment mechanism 33 is stored.
  • the liquid introduction port P1, the ultrasonic vibrator 12 provided in the lower part of the storage container 11 for applying ultrasonic vibration to the sample liquid in the storage container 11, and the bubbles generated in the sample liquid by the ultrasonic vibration are described above.
  • the container 11 has a substantially hollow cylindrical shape, and the liquid introduction port P1 connected to the liquid introduction line L1 is formed on the upper side surface thereof. Further, the bubble discharge port P5 is formed at a position above the liquid introduction port P1 in the storage container 11, and the bubble discharge line L5 is connected.
  • the liquid outlet port P2 is provided on the side surface near the bottom surface of the container 11 and is connected to the liquid outlet line L2.
  • the ultrasonic transducer 12 is attached to the bottom surface of the storage container 11 so as to be in contact with an internal sample liquid, and the bubble discharge port is located at a position higher than the liquid outlet port P2 in the storage container 11. Bubbles are generated by ultrasonic vibration at a position lower than P5 and the liquid introduction port P1.
  • a regulator R for adjusting the sample liquid supplied from the wastewater treatment mechanism 33 to a predetermined pressure is provided on the liquid introduction line L1, so that the sample liquid having a constant pressure is introduced into the storage container 11. It is. More specifically, the pressure fluctuation and the flow fluctuation of the sample liquid are reduced by the regulator R by the centrifugal separation in the waste water treatment mechanism 33, and a constant flow of the sample liquid is supplied to the defoamer 1 and each analyzer 2. I can do it.
  • a first valve V1 is provided on the bubble discharge line L5, and a second valve V2 is provided on the liquid lead-out line L2.
  • the opening degree of the first valve V1 is not limited to the bubbles in the bubble discharge line L5 when shipped from the factory, but a part of the sample liquid in the storage container 11 is discharged to the bubble discharge line L5 and the inside of the storage container 1 The opening of the sample liquid is fixed so that the pressure of the sample liquid is reduced more than that during inflow.
  • the opening degree of the second valve V2 lowers the flow rate of the sample liquid led out from the liquid lead-out port P2 than the flow rate of the sample liquid flowing into the storage container 1 at the time of factory shipment, and the liquid lead-out line L2
  • the sample liquid in each analyzer 2 is set to be in a pressurized state, and the opening degree is fixed.
  • the pressure ratio of the liquid introduction line L1, the bubble discharge line L5, and the liquid outlet line L2 is maintained at a predetermined value by the first valve V1 and the second valve V2, and is introduced.
  • the sample liquid is distributed at a predetermined ratio between the bubble discharge line L5 and the liquid introduction line L1.
  • substantially filled means a state in which the liquid sample is filled so that the sample liquid contacts the inner upper surface of the container 11. In other words, even if there is rocking of the ship, the wave front is hardly generated on the upper surface of the sample liquid in the container 11.
  • the bubble discharge line L5 is formed of a transparent pipe so that the flow of the sample liquid discharged from the storage container 11 can be visually recognized by an operator.
  • the outlet of the liquid lead-out port P2 is connected to a flow passage diameter expanding portion 13 having a flow passage diameter larger than that of the liquid lead-out port P2, thereby reducing the flow rate of the sample liquid led out from the storage container 11. This further generates bubbles remaining in the sample liquid.
  • the upper opening 14 provided in the flow path diameter enlarged portion 13 is connected to the drainage line L3 via the enlarged portion bubble discharge line L6, and a third valve V3 is provided on the enlarged portion bubble discharge line L6. is there.
  • the opening of the third valve V3 is such that only bubbles generated inside the flow path diameter enlarged portion 13 at the time of factory shipment or only a part of the bubbles and the sample liquid are discharged to the outside through the upper opening 14, It is set to be discharged to the drain line L3.
  • Each analyzer 2 includes a flow cell C having a substantially hollow rectangular parallelepiped shape to which the sample liquid deaerated by the deaerator 1 is supplied and flows.
  • Each flow cell C has a substantially rectangular parallelepiped shape, and the flow cell of the PAH meter 22 is provided in the casing so as to be inclined with respect to a horizontal plane in a natural state as shown in a perspective view of FIG.
  • the turbidity meter 21 and the pH meter 23 are provided so that their axial directions coincide with the vertical direction in a natural state.
  • the turbidimeter 21 and the PAH meter 22 are configured to continuously measure the values based on the absorbance of the sample liquid with respect to a predetermined wavelength.
  • the pH meter 23 is configured to continuously measure the pH based on the potential difference generated by the glass electrode method.
  • the flow cell C of the PAH meter 22 is configured such that the sample liquid is introduced from the inlet C1 on the bottom surface and led out from the outlet C2 at the center of the side surface.
  • the sensor surface S1 in which the light source and the detector constituting the sensor S portion of the PAH meter 22 are exposed to the outside of the housing is arranged in the center of the inside of the flow cell C and is in a horizontal plane in a natural state where the ship is stationary. It is tilted by a predetermined angle.
  • the inlet C1 is formed on the lower surface facing the sensor surface S1 so as to introduce the sample liquid toward the inclined surface C3.
  • the inlet C1 is partially narrower than the diameter of the liquid outlet line L2 to form a throttle structure, and the flow rate of the sample liquid introduced toward the sensor surface S1 in the flow cell C is increased to increase the flow rate.
  • the sensor surface S1 is sprayed.
  • not only the container 11 but also the inside of the flow cell C of the PAH meter 22 is configured such that the sample liquid is kept substantially liquid-tight.
  • the other flow cells C of the turbidimeter 21 and the pH meter 23 are also configured so that the inside thereof is substantially liquid-tight with the sample solution.
  • liquid tightness is also maintained in the liquid lead-out line L2, and the entire flow path from the defoamer 1 to the pH meter 23 as the last analyzer 2 is substantially liquid tight. The state is kept.
  • the inside of the flow cell C is substantially liquid-tight with the sample liquid.
  • the inside of the flow cell C is filled with the sample liquid, and the flow cell C is in a natural state up to the highest position on the inner upper surface or the inner upper surface. Says that the sample solution has reached.
  • the sample liquid is liquid-tight in the flow path constituting the measurement system from the defoamer 1 to the pH meter 23 as the last analyzer 2. Therefore, it is possible to prevent the sample liquid from being agitated with air and generating new bubbles even if the ship is swung. Therefore, the state in which the bubbles of the sample liquid are removed by the defoamer 1 is always maintained, and the measurement error due to the bubbles can be prevented from occurring in each analyzer 2. In addition, even if a small amount of bubbles are generated after defoaming, the sample liquid is blown against the inclined surface C3 in the flow cell C, and the bubbles move upward along the inclined surface C3. It will not move and stay on the sensor.
  • the container 11 of the defoamer 1 is not limited to the one that extends in the vertical direction, and may be one that extends in the horizontal direction like the container 1 as shown in FIG. More specifically, a liquid inlet port P1 and a liquid outlet port P2 are provided on each end face provided in the horizontal direction of the container 1 and a bubble discharge port P5 is provided on the upper side of the side of the container 1. It is provided. In addition, an ultrasonic transducer 12 having a length approximately the same as the horizontal dimension of the container 1 is provided on the lower side of the side surface of the container 1. Ultrasonic vibration can be applied to the sample liquid. Also in this embodiment, the storage container 1 is filled with the sample liquid while the sample liquid is flowing into and out of the storage container 1.
  • the position where the ultrasonic vibrator is provided in the defoamer is not limited to the bottom surface of the container, but may be provided on the side surface or the top surface.
  • the sample liquid may be indirectly ultrasonically vibrated by vibrating the wall surface of the container without directly contacting the inside of the container.
  • the storage container itself may be formed of a transparent resin so that it can be visually confirmed whether or not the sample liquid is entirely filled in the state where the sample liquid is continuously flowing into and out of the storage container.
  • the ship-mounted water quality analyzer according to the present invention may be used not only for wastewater monitoring in SOx and NOx purification systems but also for other purposes. Moreover, what is necessary is just to select suitably the place which provides a ship-mounted water quality analyzer according to the sample liquid to monitor.
  • the number of analyzers installed may be one, two, or four or more.
  • the object of water quality analysis is not limited to turbidity, PAH, and pH, and an analyzer that measures other characteristics may be used. Moreover, it is not restricted to what was shown to the said embodiment about the order in which each analyzer is provided.
  • the sensor surface on which the sensor sensitive part, light source, and detector are provided is not limited to the PAH meter in the natural state, and the same configuration is adopted for the pH meter and the turbidity meter. May be.
  • the rectangular parallelepiped flow cell may be provided so as to extend in the vertical direction without being inclined in the natural state, and only the sensor itself may be provided inclined.
  • a pressure gauge is provided in the bubble discharge line, The operator may be able to determine whether or not the pressure gauge indicates a predetermined pressure value.
  • the analyzer may be accommodated in the casing, and the defoamer may be installed outside the casing. Further, if at least the inside of the container is liquid-tight, new generation of bubbles due to the rocking of the ship can be greatly reduced as compared with the conventional case, and measurement errors can be reduced.
  • the present invention it is possible to provide a ship-mounted water quality analyzer that makes it difficult for new bubbles to be generated in the defoamer even when the ship is swung, and can always perform accurate monitoring.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrology & Water Resources (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

船舶上であっても分析器に対して気泡が十分に除去されたサンプル液を供給することができ、測定誤差を低減して正確な水質の連続モニタリングを可能とする船舶搭載型水質分析装置を提供するために、船舶に搭載され、サンプル液を脱泡する脱泡器と、前記脱泡器の下流に設けられ、当該脱泡器により脱泡されたサンプル液の水質を分析する1又は複数の分析器と、を備え、前記脱泡器が、サンプル液が収容される上下方向に延びる収容容器と、前記収容容器内にサンプル液を導入する液導入ポートと、前記収容容器内のサンプル液に超音波振動を加える超音波振動子と、を具備し、前記収容容器内がサンプル液により満たされた状態となるように構成した。

Description

船舶搭載型水質分析装置、及び、船舶搭載型脱泡器
 本発明は、船舶に搭載され、当該船舶において使用又は排出される液体の水質を分析する船舶搭載型水質分析装置に関するものである。
 近年船舶の排ガス規制が強化されつつあり、船舶の内燃機関から排出されるSOxやNOx等の排出量を低減する事が求められている。このため船舶の中には排ガスを浄化するためにスクラバにより排ガスを浄化した後に排出できるように構成されたものがある。
 前記スクラバ内では内燃機関から排出された排ガスが流されるとともにポンプにより組み上げられた海水が微小液滴として噴霧される。そして、排ガスに含まれるSOxやNOx等を含む粒子は噴霧された液滴内へ分離捕集されるので、スクラバを通過した排ガスは浄化されることになる。
 また、前記スクラバから排出されるSOxやNOxを含む海水については所定の環境基準を満たすように排水処理を行った上で、再び海へ戻さなくてはならない。このため、船舶上において排水処理が適正に行えているかどうかを水質分析装置により常時モニタリングする必要がある。
 ところで、水質分析を行う際にサンプル液に気泡があると、この気泡が例えばセンサへのサンプル液の接触を阻害する、あるいは、吸光度を変化させる等して分析器に測定誤差が発生してしまう。このため、特許文献1に示される水質分析装置のようにサンプル液に含まれる気泡を脱泡器により除去した後に分析器での分析が行われる。
 しかしながら、船舶は海上において様々な方向へ激しく揺動することがあるため、上記のような脱泡器を備えた水質分析装置を用いたとしても、分析器に至るまでにサンプル液と空気が混合されてサンプル液内に新たな気泡が発生して、測定誤差が十分に低減できないことがある。
特開2000-126507号公報
 本発明は上述したような問題を鑑みてなされたものであり、船舶上であっても分析器に対して気泡が十分に除去されたサンプル液を供給することができ、測定誤差を低減して正確な水質の連続モニタリングを可能とする船舶搭載型水質分析装置を提供することを目的とする。
 すなわち、本発明に係る船舶搭載型水質分析装置は、船舶に搭載され、サンプル液を脱泡する脱泡器と、前記脱泡器の下流に設けられ、当該脱泡器により脱泡されたサンプル液の水質を分析する1又は複数の分析器と、を備え、前記脱泡器が、サンプル液が収容される収容容器と、前記収容容器内にサンプル液を導入する液導入ポートと、前記収容容器内のサンプル液に超音波振動を加える超音波振動子と、超音波振動によりサンプル液内に発生した気泡を前記収容容器の上部から外部へ排出する気泡排出ポートと、前記収容容器で脱泡されたサンプル液を外部へ導出し、前記分析器へ供給する液導出ポートと、を具備し、前記収容容器内がサンプル液により満たされた状態となるように構成されていることを特徴とする。
 また、本発明に係る船舶搭載型水質分析装置は船舶に搭載され、サンプル液を脱泡する脱泡器と、前記脱泡器の下流に設けられ、当該脱泡器により脱泡されたサンプル液の水質を分析する1又は複数の分析器と、を備え、前記脱泡器が、サンプル液が収容される収容容器と、前記収容容器内にサンプル液を導入する液導入ポートと、前記収容容器内のサンプル液に超音波振動を加える超音波振動子と、超音波振動によりサンプル液内に発生した気泡を前記収容容器の上部から外部へ排出する気泡排出ポートと、前記収容容器で脱泡されたサンプル液を外部へ導出し、前記分析器へ供給する液導出ポートと、を具備し、前記気泡排出ポートから気泡とともにサンプル液の一部も排出されるように構成されていることを特徴とする。
 これらのようなものであれば、船舶が揺動したとしても前記収容容器内には気泡の発生の原因となる空気がほとんど存在しないので、前記収容容器内にあるサンプル液に新たな気泡はほとんど発生しない。また、サンプル液に元々含まれていた気泡は超音波振動により大径化し、前記収容容器内を上昇して前記気泡排出ポートから外部へ排出されるので、前記液導出ポートから導出されるサンプル液にはほとんど気泡が含まれず、前記分析器における測定誤差を大幅に低減できる。このため、正確な水質の連続モニタリングが船舶上においても可能となる。
 前記収容容器内に導入されるサンプル液については減圧されてより気泡が分離されやすくするとともに、前記分析器に供給されるサンプル液については加圧された状態にして気泡を発生しにくくするには、前記気泡排出ポートに接続される気泡排出ラインに設けられた第1バルブと、前記液導出ポートに接続される液導出ラインに設けられた第2バルブと、をさらに備えたものであればよい。例えば、工場出荷時において前記第1バルブの開度については前記気泡排出ポートから気泡とサンプル液が混在された状態で排出されるように設定し、前記第2バルブの開度については前記収容容器に流入するサンプル液の流速に対して前記液導出ポートから導出されるサンプル液の流量を低下させるようにそれぞれ所定開度に設定して固定しておけばよい。また、前記第1バルブ、前記第2バルブについてはその開度を船舶上において適宜変更できるようにしてもよいし、予め工場出荷時に固定された開度で固定されるものであっても構わない。
 前記脱泡器にサンプル液を供給する供給側においてサンプル液の圧力変動や流量変動が生じたとしても、前記分析器に供給される脱泡されたサンプル液の状態を一定にでき、連続モニタリングを精度良く実現できるようにするには、前記液導入ポートに接続される液導入ラインに設けられ、前記収容容器内に導入されるサンプル液を所定圧力に調圧するレギュレータをさらに備えたものであればよい。このようなものであれば、前記脱泡器に流入するサンプル液の圧力変動を低減でき、流入するサンプル液を適切な流量に制限できる。
 前記収容容器内に十分な量のサンプル液が充填されており、実質的な液密状態が達成されているかどうかをオペレータが容易に確認できるようにするには、前記気泡排出ポートに接続される気泡排出ラインの少なくとも一部が透明配管により構成されていればよい。このようなものであれば、気泡排出ポートにサンプル液が流れていることをオペレータが確認することによって前記収容容器内はサンプル液が連続的に流出入している状態でもサンプル液で満たされて満杯になっていることが確認できる。したがって、オペレータは容易に船舶の揺動により新たな気泡がほぼ発生しない状態になっていると判断できる。
 前記収容容器以外の部分においてもサンプル液に中に新たな気泡が発生して測定誤差の原因となるのを防げるようにするには、前記分析器が、前記導出部から供給される脱泡されたサンプル液が流れるフローセルを具備し、前記収容容器内、及び、前記フローセル内がサンプル液で実質的に液密となるように構成されていればよい。
 前記フローセル内に気泡が流入したとしても、前記分析器における感応部分等の測定誤差の原因となる位置に気泡が滞留し続けるのを防げるようにするには、前記分析器が、前記フローセル内のサンプル液に接触するように配置されたセンサ面を有し、前記センサ面が、自然状態において水平面に対して傾斜するように設けられていればよい。このようなものであれば、前記フローセル内に流入した気泡を前記センサ面に沿って自然に上方移動させることができる。
 前記センサ面に対してサンプル液が流れる速度を大きくして、サンプル液内に気泡があったとしても前記センサ面からすぐに移動して、測定誤差の原因とならないようにするには、前記フローセルが、前記センサ面に対向して設けられ、当該センサ面へ向かってサンプル液を導入する導入口をさらに具備し、前記導入口が絞り構造を有するものであればよい。
 船舶上であっても分析器に対して十分に脱泡されたサンプル液を供給して、正確な水質分析を実現できるようにするには、船舶に搭載され、サンプル液が収容される上下方向に延びる収容容器と、前記収容容器内にサンプル液を導入する液導入ポートと、前記収容容器内のサンプル液に超音波振動を加える超音波振動子と、超音波振動によりサンプル液内に発生した気泡を前記収容容器の上部から外部へ排出する気泡排出ポートと、前記収容容器の下部から脱泡されたサンプル液を外部へ導出し、分析器へ供給する液導出ポートと、を備え、前記収容容器内がサンプル液により満たされた状態となるように構成されていることを特徴とする船舶搭載型脱泡器を用いればよい。
 船舶上においてサンプル液から気泡を除去するのに適したものとしては、サンプル液が収容される収容容器と、前記収容容器内にサンプル液を導入する液導入ポートと、前記収容容器内のサンプル液に超音波振動を加える超音波振動子と、超音波振動によりサンプル液内に発生した気泡を前記収容容器の上部から外部へ排出する気泡排出ポートと、前記収容容器で脱泡されたサンプル液を外部へ導出し、前記分析器へ供給する液導出ポートと、備え、前記気泡排出ポートから気泡とともにサンプル液の一部も排出されるように構成されていることを特徴とする船舶搭載型脱泡器を挙げることができる。
 このように本発明に係る船舶搭載型水質分析装置であれば、船舶が揺動したとしても脱泡器において新たな気泡を発生しにくくし、常に正確なモニタリングが可能となる。
本発明の一実施形態に係る船舶搭載型水質分析装置が用いられる排ガス浄化システムの概要を示す模式図。 同実施形態における船舶搭載型水質分析装置の模式的斜視図。 同実施形態における船舶搭載型水質分析装置の模式的フロー図。 同実施形態における脱泡器の内部構造を示す模式的部分断面図。 同実施形態における分析器の内部構造を示す模式的部分断面図。 本発明の別の実施形態に係る船舶搭載型水質分析装置の脱泡器の構成を示す模式的断面図。
100・・・船舶搭載型水質分析装置
1  ・・・脱泡器
11 ・・・収容容器
12 ・・・超音波振動子
P1 ・・・導入ポート
P2 ・・・導出ポート
P5 ・・・気泡排出ポート
2  ・・・分析器
21 ・・・濁度計
22 ・・・PAH計
23 ・・・pH計
C  ・・・フローセル
C1 ・・・導入口
C2 ・・・導出口
C3 ・・・傾斜面
V1 ・・・第1バルブ
V2 ・・・第2バルブ
 本発明の一実施形態に係る船舶搭載型水質分析装置100について図1乃至図5を参照しながら説明する。本実施形態の船舶搭載型水質分析装置100は、船舶上において排ガス浄化システム300から排出される排水の水質を常時モニタリングし、前記排ガス浄化システム300における排水処理が規定通りに動作しているかどうかを確認するために用いられるものである。
 図1に示すように排ガス浄化システム300は、船舶の内燃機関から排出されるSOxやNOxを浄化して、各種規制値を満たす排ガスにして排出するものである。より具体的には前記排ガス浄化システム300は、スクラバ31と、前記スクラバ31に船舶外から採取された海水を洗浄液として供給する洗浄液供給機構32と、前記スクラバ31から排出される排水を浄化する排水処理機構33と、前記排水処理機構33で浄化された排水の水質をモニタリングする前記船舶搭載型水質分析装置100と、を備えている。
 前記スクラバ31内には概略円筒状のものであり、下部から内燃機関から排出された排ガスが導入され、内部において前記洗浄液供給機構32から洗浄液として液滴状の海水又は水が噴霧されるものである。排ガス中のSOxやNOxを含む粒子は液滴状の海水中に凝集されて、前記スクラバ31の下方から前記排水処理機構33へと導出される。一方、浄化された排ガスは前記スクラバ31の上部から空気中へと排出される。
 前記排水処理機構33は例えば排水を遠心分離して排水中に含まれる凝集された粒子分を除去するとともに、排水のpHを調整する機能を有するものである。
 前記船舶搭載型水質分析装置100は、前記排水処理機構33から排出される浄化後の排水がサンプル液として導入されてその水質として、濁度、PAH、pHを連続モニタリングするものである。この船舶搭載型水質分析装置100は、図2の斜視図に示すようケーシングB内に各機器が収容してある。前記ケーシングB内にはサンプル液の脱泡が行われる脱泡器1と、脱泡されたサンプル液の水質を分析する3種類の分析器2が収容してある。また、この船舶搭載型水質分析装置は、少なくとも後述する各バルブの制御を行う制御部CNTと、各機器の制御状態や分析器2の測定結果等が表示されるディスプレイDと、を備えている。図3のフロー図に示すように前記船舶搭載型水質分析装置100は、サンプル液の水質分析に関わる主ラインとして、前記排水処理機構33から前記脱泡器1へサンプル液を導入する液導入ラインL1と、前記脱泡器1から複数の前記分析器2へ脱泡されたサンプル液を供給する液導出ラインL2と、前記脱泡器1で脱泡された気泡、又は、サンプル液が装置外又は船舶外へ排出される排水ラインL3と、を備えている。さらに前記船舶搭載型水質分析装置2は前記液導入ラインL1と並列に設けられ、前記脱泡器1及び前記分析器2へ調整に用いられるゼロ水を供給するためのゼロ水供給ラインL4と、前記脱泡器1の上部と前記排水ラインL3との間を接続し、脱泡された気泡が前記脱泡器1から前記排水ラインL3へと流される気泡排出ラインL5とを備えている。なお、本実施形態では前記脱泡器1から後述する第2バルブV2に至るまでの流路を前記導入ラインL1、前記第2バルブV2よりも下流側の流路を前記排水ラインL3と定義している。
 各部の詳細について説明する。
 前記脱泡器1は図2、図4に示すように前記排水処理機構33から導入されるサンプル液が収容される上下方向に延びる収容容器11と、前記収容容器11内にサンプル液を導入する液導入ポートP1と、前記収容容器11の下部に設けられ、当該収容容器11内のサンプル液に超音波振動を加える超音波振動子12と、超音波振動によりサンプル液内に発生した気泡を前記収容容器11の上部から外部へ排出する気泡排出ポートP5と、前記収容容器11の下部から脱泡されたサンプル液を外部へ導出し、前記分析器2へ供給する液導出ポートP2と、を具備する。
 前記収容容器11は概略中空円筒状のものであり、その上部側面に前記液導入ラインL1に接続される前記液導入ポートP1が形成してある。また、前記収容容器11において前記液導入ポートP1よりも上方の位置に前記気泡排出ポートP5が形成してあり、前記気泡排出ラインL5が接続してある。前記収容容器11の底面近傍の側面には前記液導出ポートP2が設けてあり、前記液導出ラインL2に接続してある。前記収容容器11の底面には内部のサンプル液と接触するように前記超音波振動子12が取り付けてあり、前記収容容器11において前記液導出ポートP2よりも高い位置で、かつ、前記気泡排出ポートP5及び前記液導入ポートP1よりも低い位置に超音波振動により気泡を発生させるようにしてある。
 前記液導入ラインL1上には、前記排水処理機構33から供給されるサンプル液を所定圧力に調圧するレギュレータRが設けてあり、前記収容容器11内へは一定圧力のサンプル液が導入されるようにしてある。より具体的には前記排水処理機構33における遠心分離によりサンプル液の圧力変動や流量変動が前記レギュレータRにより低減され、前記脱泡器1及び各分析器2に対して一定流量のサンプル液を供給できるようにしてある。
 また、前記気泡排出ラインL5上には第1バルブV1が設けてあり前記液導出ラインL2上には第2バルブV2が設けてある。前記第1バルブV1の開度は工場出荷時において前記気泡排出ラインL5に気泡のみでなく、前記収容容器11内のサンプル液の一部が気泡排出ラインL5へ排出されるとともに前記収容容器1内のサンプル液の圧力が流入時よりも減圧されるように設定してその開度が固定してある。また、前記第2バルブV2の開度は工場出荷時において前記収容容器1に流入するサンプル液の流速よりも前記液導出ポートP2から導出されるサンプル液の流速を低下させ、前記液導出ラインL2や各分析器2内のサンプル液が加圧された状態となるように設定してその開度が固定してある。また、前記第1バルブV1及び前記第2バルブV2によって、前記液導入ラインL1、前記気泡排出ラインL5、前記液導出ラインL2の圧力比が所定値で保たれるようにしてあり、導入されるサンプル液が前記気泡排出ラインL5と前記液導入ラインL1とで所定比率で分配されるようにしてある。さらに、前記気泡排出ラインL5からもサンプル液の一部が排出されるようにすることで、図4の断面図に示すように前記収容容器11内は常時サンプル液で実質的に満たされるようにしてある。ここで、「実質的に満たされる」とは前記収容容器11の内部上面までサンプル液が接触するように液サンプルが充填されている状態を言う。言い換えると、船舶の揺動があったとしても前記収容容器11内においてサンプル液の上面には波面がほぼ発生しない状態にしてある。
 また、前記気泡排出ラインL5の少なくとも一部は透明配管で形成してあり、前記収容容器11内から排出されるサンプル液の流れがオペレータによって視認できるようにしてある。
 加えて、前記液導出ポートP2の出口には当該液導出ポートP2よりも流路径が大きくなる流路径拡大部13が接続してあり、前記収容容器11から導出されるサンプル液の流速を低下させてサンプル液に残っている気泡をさらに発生させるようにしてある。この流路径拡大部13に設けられた上部開口14は拡大部気泡排出ラインL6を介して前記排水ラインL3へ接続してあり、前記拡大部気泡排出ラインL6上には第3バルブV3が設けてある。前記第3バルブV3の開度は工場出荷時において前記流路径拡大部13の内部で発生した気泡のみ、又は、気泡とサンプル液の一部が前記上部開口14を介して外部へ出され、前記排水ラインL3へと排出されるように設定してある。
 次に各分析器2について図2及び図5を参照しながら説明する。
 前記液導出ラインL2上には、上流側から順番に濁度計21、PAH計22(多環芳香族炭化水素計)、pH計23が分析器2として設けてある。各分析器2は前記脱泡器1により脱泡されたサンプル液が供給され流れる概略中空直方体形状のフローセルCを具備している。各フローセルCは概略直方体形状をなし、PAH計22のフローセルについては図2の斜視図に示すように自然状態において水平面に対して傾斜させて前記ケーシング内に設けてある。なお、濁度計21、pH計23については自然状態でその軸方向が鉛直方向と一致するように設けてある。濁度計21及びPAH計22はサンプル液の所定波長に対する吸光度に基づき、その値が連続測定されるようにしてある。また、pH計23についてはガラス電極法により発生する電位差に基づいてpHが連続測定されているようにしてある。
 次に前記PAH計22の詳細について図5の断面図を参照しながら説明する。PAH計22のフローセルCは底面の導入口C1からサンプル液が導入されて、その側面中央部の導出口C2から外部へと導出されるように構成してある。PAH計22のセンサS部分を構成する光源や検出器が筐体の外側へ露出するセンサ面S1は、前記フローセルCの内部中央部に配置されるとともに船舶が静止している自然状態において水平面に対して所定角度傾斜させてある。前記センサ面S1に対して対向する下面には当該傾斜面C3へ向かってサンプル液を導入するように前記導入口C1が形成してある。この導入口C1は液導出ラインL2の直径よりも一部狭くして絞り構造が形成してあり、前記フローセルC内で前記センサ面S1に向かって導入されるサンプル液の流速を速くして前記センサ面S1へと吹きつけられるようにしてある。このようして前記フローセルC内にサンプル液の流れを形成しておくことで、サンプル液に仮に気泡が含まれていたとしても前記センサ面S1に沿って斜め上方へ移動し、当該センサ面S1において気泡が滞留し続けないようにしてある。
 本実施形態では図5に示すように前記収容容器11だけでなく、PAH計22の前記フローセルC内についてもサンプル液が実質的に液密の状態が保たれるように構成してある。なお、その他の前記濁度計21及び前記pH計23のフローセルCについてもその内部がサンプル液で実質的に液密の状態が保たれるようにしてある。なお、液導出ラインL2中についても液密が保たれるようにしてあり、前記脱泡器1から最後の分析器2であるpH計23に至るまでの流路全体が実質的に液密の状態が保たれるようにしてある。ここでフローセルCの内部がサンプル液で実質的に液密であるとは、例えばフローセルC内がサンプル液で満たされており、フローセルCの内部上面又は内部上面において最も高い位置にまで自然状態でサンプル液が到達していることを言う。
 このように構成された船舶搭載型水質分析装置100であれば、前記脱泡器1から最後の分析器2であるpH計23に至るまでの測定系を構成する流路においてサンプル液が液密の状態となっているので、船舶に揺動が生じてもサンプル液が空気と撹拌されて新たな気泡が発生することを防ぐことができる。したがって、前記脱泡器1によりサンプル液の気泡が除去された状態は常に保たれることになり、各分析器2において気泡による測定誤差が発生しないようにできる。また、少量の気泡が脱泡後に発生してしまったとしても前記フローセルC内において傾斜面C3に対してサンプル液が吹きつけられるようにしてあるの、気泡は前記傾斜面C3に沿って上方へと移動させセンサに対して滞留し続けることがない。
 したがって、船舶のように揺動が大きく、安定した測定環境が実現されないような環境でも気泡による影響を排除して正しい測定を実現できる。
 その他の実施形態について説明する。
 脱泡器1の収容容器11は上下方向に延びるものに限られず、図6に示されるように収容容器1のように水平方向に延びるものであっても構わない。より具体的には前記収容容器1の水平方向に設けられた各端面にはそれぞれ液導入ポートP1、と液導出ポートP2が設けてあり、前記収容容器1の側面において上側は気泡排出ポートP5が設けてある。また、前記収容容器1の側面において下側には例えば収容容器1の水平方向の長さ寸法と同程度の長さを有する超音波振動子12が設けてあり、収容容器1の側面側から内部のサンプル液に超音波振動を加えられるようにしてある。この実施形態でも収容容器1内に対してサンプル液が流出入している状態で当該収容容器1内にはサンプル液が満たされた状態となるようにしてある。具体的には前記気泡排出ポートP5からは超音波振動により発生した気泡だけでなく、収容容器1内のサンプル液の一部も排出されるようにしてある。すなわち、図示するようにサンプル液が連続的に流出入している状態において収容容器1の各ポートの壁面を除くすべての内壁面にサンプル液が実質的に隙間なく接触する状態が維持され続けるように構成してある。
 脱泡器において超音波振動子が設けられる位置は収容容器の底面に限られるものではなく、側面や上面に設けられていても構わない。また、超音波振動子が収容容器の内部に直接接触せずに、前記収容容器の壁面を振動させて間接的にサンプル液を超音波振動させるようにしてもよい。また、収容容器自体を透明樹脂で形成して、収容容器内にサンプル液が連続的に流出入している状態において全体にサンプル液が満たされているかどうかを視認できるようにしてもよい。
 本発明に係る船舶搭載型水質分析装置は、SOx、NOxの浄化システムにおける排水のモニタリングだけでなく、その他の用途に用いても構わない。また、モニタリングしたいサンプル液に応じて船舶搭載型水質分析装置の設ける場所については適宜選択すればよい。
 分析器の設置数については1つや2つであってもよいし、4つ以上であっても構わない。また、水質分析の対象は濁度、PAH、pHに限られるものではなく、その他の特性について測定する分析器であっても構わない。また、各分析器の設けられる順番について前記実施形態に示したものに限られない。センサの感応部や光源、検出器が設けられるセンサ面について自然状態において水平面に対して傾斜させるのはPAH計のみに限られるものではなく、pH計や濁度計についても同様の構成を採用してもよい。また、直方体形状のフローセルを自然状態において傾けずに上下方向に延びるように設けておき、センサ自体だけを傾けて設けても構わない。
 気泡排出ラインに収容容器からサンプル液が排出されて、収容容器内がサンプル液で液密になっているかどうかを確かめられるようにするには、前記気泡排出ラインに圧力計を設けておき、当該圧力計が所定圧力値を示すかどうかでオペレータが判断できるようにしてもよい。
 ケーシング内に分析器だけ収容して、脱泡器についてはケーシング外に設置してもよい。また、少なくとも収容容器内が液密であれば船舶の揺動による気泡の新たな発生は従来に比べて大幅に低減でき、測定誤差も低減できる。
 その他、本発明の趣旨に反しない限りにおいて様々な実施形態の組み合わせや変形を行っても構わない。
 本発明であれば、船舶が揺動したとしても脱泡器において新たな気泡を発生しにくくし、常に正確なモニタリングが可能な船舶搭載型水質分析装置を提供できる。

Claims (10)

  1.  船舶に搭載され、サンプル液を脱泡する脱泡器と、
     前記脱泡器の下流に設けられ、当該脱泡器により脱泡されたサンプル液の水質を分析する1又は複数の分析器と、を備え、
     前記脱泡器が、
     サンプル液が収容される収容容器と、
     前記収容容器内にサンプル液を導入する液導入ポートと、
     前記収容容器内のサンプル液に超音波振動を加える超音波振動子と、
     超音波振動によりサンプル液内に発生した気泡を前記収容容器の上部から外部へ排出する気泡排出ポートと、
     前記収容容器で脱泡されたサンプル液を外部へ導出し、前記分析器へ供給する液導出ポートと、を具備し、
     前記収容容器内がサンプル液により満たされた状態となるように構成されていることを特徴とする船舶搭載型水質分析装置。
  2.  船舶に搭載され、サンプル液を脱泡する脱泡器と、
     前記脱泡器の下流に設けられ、当該脱泡器により脱泡されたサンプル液の水質を分析する1又は複数の分析器と、を備え、
     前記脱泡器が、
     サンプル液が収容される収容容器と、
     前記収容容器内にサンプル液を導入する液導入ポートと、
     前記収容容器内のサンプル液に超音波振動を加える超音波振動子と、
     超音波振動によりサンプル液内に発生した気泡を前記収容容器の上部から外部へ排出する気泡排出ポートと、
     前記収容容器で脱泡されたサンプル液を外部へ導出し、前記分析器へ供給する液導出ポートと、を具備し、
     前記気泡排出ポートから気泡とともにサンプル液の一部も排出されるように構成されていることを特徴とする船舶搭載型水質分析装置。
  3.  前記気泡排出ポートに接続される気泡排出ラインに設けられた第1バルブと、
     前記液導出ポートに接続される液導出ラインに設けられた第2バルブと、をさらに備えた請求項1又は2いずれかに記載の船舶搭載型水質分析装置。
  4.  前記液導入ポートに接続される液導入ラインに設けられ、前記収容容器内に導入されるサンプル液を所定圧力に調圧するレギュレータをさらに備えた請求項1乃至3いずれかに記載の船舶搭載型水質分析装置。
  5.  前記気泡排出ポートに接続される気泡排出ラインの少なくとも一部が透明配管により構成された請求項1乃至4いずれかに記載の船舶搭載型水質分析装置。
  6.  前記分析器が、
     前記導出部から供給される脱泡されたサンプル液が流れるフローセルを具備し、
     前記収容容器内、及び、前記フローセル内がサンプル液で満たされた状態となるように構成されている請求項1乃至5いずれかに記載の船舶搭載型水質分析装置。
  7.  前記分析器が、前記フローセル内のサンプル液に接触するように配置されたセンサ面を有し、
     前記センサ面が、自然状態において水平面に対して傾斜するように設けられている請求項6記載の船舶搭載型水質分析装置。
  8.  前記フローセルが、前記センサ面に対向して設けられ、当該センサ面へ向かってサンプル液を導入する導入口をさらに具備し、前記導入口が絞り構造を有する請求項7記載の船舶搭載型水質分析装置。
  9.  船舶に搭載され、サンプル液が収容される収容容器と、
     前記収容容器内にサンプル液を導入する液導入ポートと、
     前記収容容器内のサンプル液に超音波振動を加える超音波振動子と、
     超音波振動によりサンプル液内に発生した気泡を前記収容容器の上部から外部へ排出する気泡排出ポートと、
     前記収容容器で脱泡されたサンプル液を外部へ導出し、サンプル液の水質を分析する分析器へ供給する液導出ポートと、を備え、
     前記収容容器内がサンプル液により満たされた状態となるように構成されていることを特徴とする船舶搭載型脱泡器。
  10.  サンプル液が収容される収容容器と、
     前記収容容器内にサンプル液を導入する液導入ポートと、
     前記収容容器内のサンプル液に超音波振動を加える超音波振動子と、
     超音波振動によりサンプル液内に発生した気泡を前記収容容器の上部から外部へ排出する気泡排出ポートと、
     前記収容容器で脱泡されたサンプル液を外部へ導出し、前記分析器へ供給する液導出ポートと、備え、
     前記気泡排出ポートから気泡とともにサンプル液の一部も排出されるように構成されていることを特徴とする船舶搭載型脱泡器。
PCT/JP2017/043478 2016-12-15 2017-12-04 船舶搭載型水質分析装置、及び、船舶搭載型脱泡器 WO2018110345A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197016625A KR102430172B1 (ko) 2016-12-15 2017-12-04 선박 탑재형 수질 분석 장치, 및, 선박 탑재형 탈포기
JP2018556586A JP6971258B2 (ja) 2016-12-15 2017-12-04 船舶搭載型水質分析装置、及び、船舶搭載型脱泡器
EP17880442.3A EP3550299B1 (en) 2016-12-15 2017-12-04 Ship-mounted water quality analysis apparatus and ship-mounted defoaming device
CN201780077469.7A CN110088618B (zh) 2016-12-15 2017-12-04 船舶搭载型水质分析装置和船舶搭载型消泡器
DK17880442.3T DK3550299T3 (da) 2016-12-15 2017-12-04 Skibsmonteret vandkvalitetsanalyseapparat og skibsmonteret afskumningsindretning

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-243811 2016-12-15
JP2016243811 2016-12-15

Publications (1)

Publication Number Publication Date
WO2018110345A1 true WO2018110345A1 (ja) 2018-06-21

Family

ID=62558306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043478 WO2018110345A1 (ja) 2016-12-15 2017-12-04 船舶搭載型水質分析装置、及び、船舶搭載型脱泡器

Country Status (6)

Country Link
EP (1) EP3550299B1 (ja)
JP (1) JP6971258B2 (ja)
KR (1) KR102430172B1 (ja)
CN (1) CN110088618B (ja)
DK (1) DK3550299T3 (ja)
WO (1) WO2018110345A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112034130A (zh) * 2020-09-07 2020-12-04 上海淳业仪表科技有限公司 液体质量检测系统及其使用方法
CN115200930A (zh) * 2022-07-08 2022-10-18 江苏恒源环境检测股份有限公司 一种沉淀池抗干扰自动采样装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113484411A (zh) * 2021-07-14 2021-10-08 武汉洛特福动力技术有限公司 一种尿素超声波传感器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829198Y1 (ja) * 1968-01-22 1973-09-04
JPS5578597A (en) * 1978-12-08 1980-06-13 Fujitsu Ltd Method of fabricating multilayer printed circuit board
JPH08136526A (ja) * 1994-11-04 1996-05-31 Meidensha Corp 溶存オゾン濃度連続測定装置
JP2000126507A (ja) 1998-10-22 2000-05-09 Nikkiso Co Ltd 脱泡装置
JP2003075344A (ja) * 2001-08-30 2003-03-12 Ajinomoto Co Inc 濁度センサ
JP2009031173A (ja) * 2007-07-30 2009-02-12 Toppan Printing Co Ltd 高精度液中パーティクル計測装置
JP2010281679A (ja) * 2009-06-04 2010-12-16 Ttm:Kk 吸光度計測装置またはその方法
JP2017136554A (ja) * 2016-02-04 2017-08-10 株式会社ユウ・ピー・アイ スクラバー用計測記録装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826370Y2 (ja) * 1980-06-05 1983-06-07 株式会社山武 脱泡分流器
US6576042B2 (en) * 2001-09-11 2003-06-10 Eastman Kodak Company Process control method to increase deaeration capacity in an ECR by constant voltage operation
FI116320B (fi) * 2003-02-04 2005-10-31 Luode Consulting Oy Järjestely veden laadun mittaamiseksi
CN101031786A (zh) * 2005-08-26 2007-09-05 先进科技股份有限公司 流动分析系统
KR100643176B1 (ko) * 2006-05-26 2006-11-10 대윤계기산업 주식회사 온라인 탁도 측정장치
JP4845855B2 (ja) * 2007-11-02 2011-12-28 財団法人シップ・アンド・オーシャン財団 船舶バラスト水のサンプリングシステム
JP5594774B2 (ja) * 2010-11-18 2014-09-24 株式会社オメガ ガス溶解機構
JP2015020083A (ja) * 2013-07-16 2015-02-02 株式会社堀場製作所 脱泡装置及び液体分析装置
JP6013302B2 (ja) * 2013-10-04 2016-10-25 東京エレクトロン株式会社 気泡除去方法、気泡除去装置、脱気装置、及びコンピュータ読み取り可能な記録媒体
CN203648520U (zh) * 2013-12-04 2014-06-18 北京国奥时代新能源技术发展有限公司 一种超声波间接消泡装置
EP3214440B1 (en) * 2015-03-16 2019-12-25 Fuji Electric Co., Ltd. Device and ph calculation method
CN205019777U (zh) * 2015-08-28 2016-02-10 孙璐 一种超声波消泡装置
CN105617841B (zh) * 2015-12-31 2018-06-26 胡克峰 一种船舶尾气脱硫和船舶压载水一体化处理工艺
CN105836832B (zh) * 2016-03-29 2018-09-14 国核电力规划设计研究院 一种滨海电厂循环水的排水消泡装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829198Y1 (ja) * 1968-01-22 1973-09-04
JPS5578597A (en) * 1978-12-08 1980-06-13 Fujitsu Ltd Method of fabricating multilayer printed circuit board
JPH08136526A (ja) * 1994-11-04 1996-05-31 Meidensha Corp 溶存オゾン濃度連続測定装置
JP2000126507A (ja) 1998-10-22 2000-05-09 Nikkiso Co Ltd 脱泡装置
JP2003075344A (ja) * 2001-08-30 2003-03-12 Ajinomoto Co Inc 濁度センサ
JP2009031173A (ja) * 2007-07-30 2009-02-12 Toppan Printing Co Ltd 高精度液中パーティクル計測装置
JP2010281679A (ja) * 2009-06-04 2010-12-16 Ttm:Kk 吸光度計測装置またはその方法
JP2017136554A (ja) * 2016-02-04 2017-08-10 株式会社ユウ・ピー・アイ スクラバー用計測記録装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3550299A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112034130A (zh) * 2020-09-07 2020-12-04 上海淳业仪表科技有限公司 液体质量检测系统及其使用方法
CN115200930A (zh) * 2022-07-08 2022-10-18 江苏恒源环境检测股份有限公司 一种沉淀池抗干扰自动采样装置

Also Published As

Publication number Publication date
JP6971258B2 (ja) 2021-11-24
CN110088618B (zh) 2022-06-24
KR20190096998A (ko) 2019-08-20
EP3550299A1 (en) 2019-10-09
EP3550299B1 (en) 2023-03-22
EP3550299A4 (en) 2020-12-23
JPWO2018110345A1 (ja) 2019-10-24
DK3550299T3 (da) 2023-06-19
KR102430172B1 (ko) 2022-08-08
CN110088618A (zh) 2019-08-02

Similar Documents

Publication Publication Date Title
WO2018110345A1 (ja) 船舶搭載型水質分析装置、及び、船舶搭載型脱泡器
US6620226B2 (en) Bubble elimination tube with acutely angled transducer horn assembly
JP6104399B2 (ja) 微細気泡生成装置および微細気泡生成装置を備える汚染水浄化システム
US20090299651A1 (en) Filtration testing system
CN101557869A (zh) 气体溶解装置
JP2008296087A (ja) 膜損傷検知方法および膜ろ過装置
JP3940760B2 (ja) 微細気泡液生成装置とこれに用いる気泡微細化器
JP2007319843A (ja) 気体溶解モジュール
JP2017136554A (ja) スクラバー用計測記録装置
KR101753453B1 (ko) 중공사막 여과장치 및 그의 여과막 손상 감지방법
JP2008139205A (ja) 水質異常検出装置、水質異常検出方法及び水処理装置
KR200492927Y1 (ko) 정량펌프용 탈가스 챔버
US11117089B2 (en) Apparatus and calculating method of pH
JP4820774B2 (ja) 溶存酸素除去装置
JP7244310B2 (ja) 中空糸膜モジュールのリーク試験方法、純水の製造方法及び純水の製造装置
US20100025321A1 (en) Filter
JPH05212274A (ja) 化学処理システム
JP3995820B2 (ja) 脱泡機能付き測定槽
CN217180571U (zh) 一种油气监测系统
JP5308286B2 (ja) オゾン水濃度計用脱泡装置
KR20150079091A (ko) 고유량 가압식 막모듈 정수장치, 이를 이용한 정수처리 장치 및 막파단 검사방법
JP6943119B2 (ja) 膜モジュールの評価方法、評価装置および超純水製造装置
JP2004305998A (ja) 浄水カートリッジの欠陥検査方法及び浄水カートリッジの欠陥検査装置
JP2007136300A (ja) 膜ろ過装置とその膜モジュール汚染検知方法。
JP2000298092A (ja) 液中微粒子測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880442

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018556586

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197016625

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017880442

Country of ref document: EP

Effective date: 20190704