WO2018109483A1 - Separation of rare earth metals - Google Patents
Separation of rare earth metals Download PDFInfo
- Publication number
- WO2018109483A1 WO2018109483A1 PCT/GB2017/053754 GB2017053754W WO2018109483A1 WO 2018109483 A1 WO2018109483 A1 WO 2018109483A1 GB 2017053754 W GB2017053754 W GB 2017053754W WO 2018109483 A1 WO2018109483 A1 WO 2018109483A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rare earth
- alkyl
- earth metal
- ionic liquid
- composition
- Prior art date
Links
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 214
- 150000002910 rare earth metals Chemical class 0.000 title claims abstract description 212
- 238000000926 separation method Methods 0.000 title description 57
- 239000002608 ionic liquid Substances 0.000 claims abstract description 132
- 238000000034 method Methods 0.000 claims abstract description 109
- 239000000203 mixture Substances 0.000 claims abstract description 87
- 239000003929 acidic solution Substances 0.000 claims abstract description 58
- 239000008346 aqueous phase Substances 0.000 claims abstract description 35
- -1 phthalazinium Chemical compound 0.000 claims description 97
- 125000000217 alkyl group Chemical group 0.000 claims description 70
- 150000001450 anions Chemical class 0.000 claims description 36
- 150000001768 cations Chemical class 0.000 claims description 31
- 239000000243 solution Substances 0.000 claims description 31
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 20
- 229910052702 rhenium Inorganic materials 0.000 claims description 19
- 230000002378 acidificating effect Effects 0.000 claims description 18
- 125000003118 aryl group Chemical group 0.000 claims description 16
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 16
- 125000005647 linker group Chemical group 0.000 claims description 15
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 claims description 13
- 239000002699 waste material Substances 0.000 claims description 13
- 239000002253 acid Substances 0.000 claims description 12
- 229910052757 nitrogen Inorganic materials 0.000 claims description 12
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 11
- 229910052779 Neodymium Inorganic materials 0.000 claims description 11
- 125000000129 anionic group Chemical group 0.000 claims description 11
- 239000012071 phase Substances 0.000 claims description 11
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 10
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 10
- RAXXELZNTBOGNW-UHFFFAOYSA-O Imidazolium Chemical compound C1=C[NH+]=CN1 RAXXELZNTBOGNW-UHFFFAOYSA-O 0.000 claims description 9
- 239000003960 organic solvent Substances 0.000 claims description 9
- SBYHFKPVCBCYGV-UHFFFAOYSA-O 1-azoniabicyclo[2.2.2]octane Chemical compound C1CC2CC[NH+]1CC2 SBYHFKPVCBCYGV-UHFFFAOYSA-O 0.000 claims description 8
- NQRYJNQNLNOLGT-UHFFFAOYSA-O Piperidinium(1+) Chemical compound C1CC[NH2+]CC1 NQRYJNQNLNOLGT-UHFFFAOYSA-O 0.000 claims description 8
- GLUUGHFHXGJENI-UHFFFAOYSA-O hydron piperazine Chemical compound [H+].C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-O 0.000 claims description 8
- YNAVUWVOSKDBBP-UHFFFAOYSA-O morpholinium Chemical compound [H+].C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-O 0.000 claims description 8
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 claims description 8
- 238000000638 solvent extraction Methods 0.000 claims description 8
- RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium Chemical compound [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 claims description 8
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 claims description 8
- 150000004820 halides Chemical class 0.000 claims description 7
- 238000002156 mixing Methods 0.000 claims description 7
- 238000001556 precipitation Methods 0.000 claims description 7
- IANQTJSKSUMEQM-UHFFFAOYSA-N 1-benzofuran Chemical compound C1=CC=C2OC=CC2=C1 IANQTJSKSUMEQM-UHFFFAOYSA-N 0.000 claims description 6
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical compound C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 claims description 6
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 claims description 6
- LJKVHZGQVDCXMY-UHFFFAOYSA-N 1H-borol-1-ium Chemical compound [BH2+]1C=CC=C1 LJKVHZGQVDCXMY-UHFFFAOYSA-N 0.000 claims description 6
- BAXOFTOLAUCFNW-UHFFFAOYSA-N 1H-indazole Chemical compound C1=CC=C2C=NNC2=C1 BAXOFTOLAUCFNW-UHFFFAOYSA-N 0.000 claims description 6
- SIKJAQJRHWYJAI-UHFFFAOYSA-O 1H-indol-1-ium Chemical compound C1=CC=C2[NH2+]C=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-O 0.000 claims description 6
- DJMUYABFXCIYSC-UHFFFAOYSA-N 1H-phosphole Chemical compound C=1C=CPC=1 DJMUYABFXCIYSC-UHFFFAOYSA-N 0.000 claims description 6
- BCHZICNRHXRCHY-UHFFFAOYSA-N 2h-oxazine Chemical compound N1OC=CC=C1 BCHZICNRHXRCHY-UHFFFAOYSA-N 0.000 claims description 6
- 229910052693 Europium Inorganic materials 0.000 claims description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 6
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 claims description 6
- WTKZEGDFNFYCGP-UHFFFAOYSA-O Pyrazolium Chemical compound C1=CN[NH+]=C1 WTKZEGDFNFYCGP-UHFFFAOYSA-O 0.000 claims description 6
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims description 6
- RWRDLPDLKQPQOW-UHFFFAOYSA-O Pyrrolidinium ion Chemical compound C1CC[NH2+]C1 RWRDLPDLKQPQOW-UHFFFAOYSA-O 0.000 claims description 6
- YTPLMLYBLZKORZ-UHFFFAOYSA-O Thiophenium Chemical compound [SH+]1C=CC=C1 YTPLMLYBLZKORZ-UHFFFAOYSA-O 0.000 claims description 6
- CYUBECYEVLLYPK-UHFFFAOYSA-N [O+]=1BC=CC=1 Chemical compound [O+]=1BC=CC=1 CYUBECYEVLLYPK-UHFFFAOYSA-N 0.000 claims description 6
- PTHKTFIRHVAWPY-UHFFFAOYSA-N [O+]=1PC=CC=1 Chemical compound [O+]=1PC=CC=1 PTHKTFIRHVAWPY-UHFFFAOYSA-N 0.000 claims description 6
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 claims description 6
- 125000004122 cyclic group Chemical group 0.000 claims description 6
- NJDNXYGOVLYJHP-UHFFFAOYSA-L disodium;2-(3-oxido-6-oxoxanthen-9-yl)benzoate Chemical compound [Na+].[Na+].[O-]C(=O)C1=CC=CC=C1C1=C2C=CC(=O)C=C2OC2=CC([O-])=CC=C21 NJDNXYGOVLYJHP-UHFFFAOYSA-L 0.000 claims description 6
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 claims description 6
- ZRALSGWEFCBTJO-UHFFFAOYSA-O guanidinium Chemical compound NC(N)=[NH2+] ZRALSGWEFCBTJO-UHFFFAOYSA-O 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- ZCQWOFVYLHDMMC-UHFFFAOYSA-O hydron;1,3-oxazole Chemical compound C1=COC=[NH+]1 ZCQWOFVYLHDMMC-UHFFFAOYSA-O 0.000 claims description 6
- CZPWVGJYEJSRLH-UHFFFAOYSA-O hydron;pyrimidine Chemical compound C1=CN=C[NH+]=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-O 0.000 claims description 6
- SMWDFEZZVXVKRB-UHFFFAOYSA-O hydron;quinoline Chemical compound [NH+]1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-O 0.000 claims description 6
- LPAGFVYQRIESJQ-UHFFFAOYSA-N indoline Chemical compound C1=CC=C2NCCC2=C1 LPAGFVYQRIESJQ-UHFFFAOYSA-N 0.000 claims description 6
- AWJUIBRHMBBTKR-UHFFFAOYSA-O isoquinolin-2-ium Chemical compound C1=[NH+]C=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-O 0.000 claims description 6
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims description 6
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 claims description 6
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 claims description 6
- JUJWROOIHBZHMG-UHFFFAOYSA-O pyridinium Chemical compound C1=CC=[NH+]C=C1 JUJWROOIHBZHMG-UHFFFAOYSA-O 0.000 claims description 6
- WVIICGIFSIBFOG-UHFFFAOYSA-N pyrylium Chemical compound C1=CC=[O+]C=C1 WVIICGIFSIBFOG-UHFFFAOYSA-N 0.000 claims description 6
- JWVCLYRUEFBMGU-UHFFFAOYSA-N quinazoline Chemical compound N1=CN=CC2=CC=CC=C21 JWVCLYRUEFBMGU-UHFFFAOYSA-N 0.000 claims description 6
- XSCHRSMBECNVNS-UHFFFAOYSA-O quinoxalin-1-ium Chemical compound [NH+]1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-O 0.000 claims description 6
- 125000003831 tetrazolyl group Chemical group 0.000 claims description 6
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 claims description 6
- 125000001425 triazolyl group Chemical group 0.000 claims description 6
- 125000005500 uronium group Chemical group 0.000 claims description 6
- AHXNYDBSLAVPLY-UHFFFAOYSA-M 1,1,1-trifluoro-N-(trifluoromethylsulfonyl)methanesulfonimidate Chemical compound [O-]S(=O)(=NS(=O)(=O)C(F)(F)F)C(F)(F)F AHXNYDBSLAVPLY-UHFFFAOYSA-M 0.000 claims description 5
- 229910002651 NO3 Inorganic materials 0.000 claims description 5
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 5
- 229910019142 PO4 Inorganic materials 0.000 claims description 5
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 5
- 229910052746 lanthanum Inorganic materials 0.000 claims description 5
- 238000002386 leaching Methods 0.000 claims description 5
- 239000011707 mineral Substances 0.000 claims description 5
- 235000021317 phosphate Nutrition 0.000 claims description 5
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 4
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 claims description 4
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 claims description 4
- 150000001642 boronic acid derivatives Chemical class 0.000 claims description 4
- 238000004070 electrodeposition Methods 0.000 claims description 4
- 125000001153 fluoro group Chemical group F* 0.000 claims description 4
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 4
- 150000003558 thiocarbamic acid derivatives Chemical class 0.000 claims description 4
- GWIKYPMLNBTJHR-UHFFFAOYSA-M thiosulfonate group Chemical group S(=S)(=O)[O-] GWIKYPMLNBTJHR-UHFFFAOYSA-M 0.000 claims description 4
- 150000004764 thiosulfuric acid derivatives Chemical class 0.000 claims description 4
- ITMCEJHCFYSIIV-UHFFFAOYSA-M triflate Chemical compound [O-]S(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-M 0.000 claims description 4
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Chemical compound BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052794 bromium Inorganic materials 0.000 claims description 3
- 150000004649 carbonic acid derivatives Chemical class 0.000 claims description 3
- 239000000460 chlorine Substances 0.000 claims description 3
- 125000000623 heterocyclic group Chemical group 0.000 claims description 3
- 229910052740 iodine Inorganic materials 0.000 claims description 3
- 229910017604 nitric acid Inorganic materials 0.000 claims description 3
- 239000010452 phosphate Substances 0.000 claims description 3
- JOXIMZWYDAKGHI-UHFFFAOYSA-M toluene-4-sulfonate Chemical compound CC1=CC=C(S([O-])(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-M 0.000 claims description 3
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 claims description 2
- BAJQRLZAPXASRD-UHFFFAOYSA-N 4-Nitrobiphenyl Chemical compound C1=CC([N+](=O)[O-])=CC=C1C1=CC=CC=C1 BAJQRLZAPXASRD-UHFFFAOYSA-N 0.000 claims description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 2
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 claims description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical class OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 claims description 2
- 125000003545 alkoxy group Chemical group 0.000 claims description 2
- 125000002877 alkyl aryl group Chemical group 0.000 claims description 2
- 150000001413 amino acids Chemical class 0.000 claims description 2
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 2
- 150000004657 carbamic acid derivatives Chemical class 0.000 claims description 2
- 125000004432 carbon atom Chemical group C* 0.000 claims description 2
- 150000007942 carboxylates Chemical class 0.000 claims description 2
- 125000002091 cationic group Chemical group 0.000 claims description 2
- 229910052801 chlorine Inorganic materials 0.000 claims description 2
- URSLCTBXQMKCFE-UHFFFAOYSA-N dihydrogenborate Chemical compound OB(O)[O-] URSLCTBXQMKCFE-UHFFFAOYSA-N 0.000 claims description 2
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 claims description 2
- 229910052731 fluorine Inorganic materials 0.000 claims description 2
- 239000011737 fluorine Substances 0.000 claims description 2
- 150000004679 hydroxides Chemical class 0.000 claims description 2
- 239000011630 iodine Substances 0.000 claims description 2
- 125000001518 isoselenocyanato group Chemical group *N=C=[Se] 0.000 claims description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 2
- LGRLWUINFJPLSH-UHFFFAOYSA-N methanide Chemical compound [CH3-] LGRLWUINFJPLSH-UHFFFAOYSA-N 0.000 claims description 2
- 125000005525 methide group Chemical group 0.000 claims description 2
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 claims description 2
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 claims description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 claims description 2
- 125000002577 pseudohalo group Chemical group 0.000 claims description 2
- WRHZVMBBRYBTKZ-UHFFFAOYSA-N pyrrole-2-carboxylic acid Chemical class OC(=O)C1=CC=CN1 WRHZVMBBRYBTKZ-UHFFFAOYSA-N 0.000 claims description 2
- 150000003871 sulfonates Chemical class 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 239000011593 sulfur Substances 0.000 claims description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 claims description 2
- 229910021653 sulphate ion Inorganic materials 0.000 claims description 2
- 239000012991 xanthate Substances 0.000 claims description 2
- 238000000605 extraction Methods 0.000 description 31
- 238000009826 distribution Methods 0.000 description 17
- ZXMGHDIOOHOAAE-UHFFFAOYSA-N 1,1,1-trifluoro-n-(trifluoromethylsulfonyl)methanesulfonamide Chemical compound FC(F)(F)S(=O)(=O)NS(=O)(=O)C(F)(F)F ZXMGHDIOOHOAAE-UHFFFAOYSA-N 0.000 description 15
- 241000894007 species Species 0.000 description 14
- 239000002904 solvent Substances 0.000 description 13
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- 239000003085 diluting agent Substances 0.000 description 9
- 239000012074 organic phase Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 230000002209 hydrophobic effect Effects 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 0 C*P(*)(C(*)C(C(C1*)*=C)[Re])C1O* Chemical compound C*P(*)(C(*)C(C(C1*)*=C)[Re])C1O* 0.000 description 6
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 125000004429 atom Chemical group 0.000 description 6
- 238000000622 liquid--liquid extraction Methods 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 238000005065 mining Methods 0.000 description 6
- 229910052684 Cerium Inorganic materials 0.000 description 5
- 229910052771 Terbium Inorganic materials 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000003446 ligand Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 235000010755 mineral Nutrition 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 206010011906 Death Diseases 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 229910052747 lanthanoid Inorganic materials 0.000 description 3
- 150000002602 lanthanoids Chemical class 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- 210000000707 wrist Anatomy 0.000 description 3
- 229910052727 yttrium Inorganic materials 0.000 description 3
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 239000003849 aromatic solvent Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052987 metal hydride Inorganic materials 0.000 description 2
- 238000005649 metathesis reaction Methods 0.000 description 2
- ZUZLIXGTXQBUDC-UHFFFAOYSA-N methyltrioctylammonium Chemical compound CCCCCCCC[N+](C)(CCCCCCCC)CCCCCCCC ZUZLIXGTXQBUDC-UHFFFAOYSA-N 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 229910001868 water Inorganic materials 0.000 description 2
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- IQQRAVYLUAZUGX-UHFFFAOYSA-N 1-butyl-3-methylimidazolium Chemical compound CCCCN1C=C[N+](C)=C1 IQQRAVYLUAZUGX-UHFFFAOYSA-N 0.000 description 1
- RVEJOWGVUQQIIZ-UHFFFAOYSA-N 1-hexyl-3-methylimidazolium Chemical compound CCCCCCN1C=C[N+](C)=C1 RVEJOWGVUQQIIZ-UHFFFAOYSA-N 0.000 description 1
- ZDFBXXSHBTVQMB-UHFFFAOYSA-N 2-ethylhexoxy(2-ethylhexyl)phosphinic acid Chemical compound CCCCC(CC)COP(O)(=O)CC(CC)CCCC ZDFBXXSHBTVQMB-UHFFFAOYSA-N 0.000 description 1
- KDHWOCLBMVSZPG-UHFFFAOYSA-N 3-imidazol-1-ylpropan-1-amine Chemical compound NCCCN1C=CN=C1 KDHWOCLBMVSZPG-UHFFFAOYSA-N 0.000 description 1
- WXMVWUBWIHZLMQ-UHFFFAOYSA-N 3-methyl-1-octylimidazolium Chemical compound CCCCCCCCN1C=C[N+](C)=C1 WXMVWUBWIHZLMQ-UHFFFAOYSA-N 0.000 description 1
- MEUAVGJWGDPTLF-UHFFFAOYSA-N 4-(5-benzenesulfonylamino-1-methyl-1h-benzoimidazol-2-ylmethyl)-benzamidine Chemical compound N=1C2=CC(NS(=O)(=O)C=3C=CC=CC=3)=CC=C2N(C)C=1CC1=CC=C(C(N)=N)C=C1 MEUAVGJWGDPTLF-UHFFFAOYSA-N 0.000 description 1
- DBVXWVMCVDCFEO-UHFFFAOYSA-N 5,8-diethyldodecan-6-yl dihydrogen phosphate Chemical compound CCCCC(CC)CC(OP(O)(O)=O)C(CC)CCCC DBVXWVMCVDCFEO-UHFFFAOYSA-N 0.000 description 1
- 241001541997 Allionia Species 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical class ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- KWIUHFFTVRNATP-UHFFFAOYSA-O N,N,N-trimethylglycinium Chemical compound C[N+](C)(C)CC(O)=O KWIUHFFTVRNATP-UHFFFAOYSA-O 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229910052873 allanite Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052586 apatite Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 238000010504 bond cleavage reaction Methods 0.000 description 1
- 229910000182 britholite Inorganic materials 0.000 description 1
- PASHVRUKOFIRIK-UHFFFAOYSA-L calcium sulfate dihydrate Chemical compound O.O.[Ca+2].[O-]S([O-])(=O)=O PASHVRUKOFIRIK-UHFFFAOYSA-L 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 229950005499 carbon tetrachloride Drugs 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- IKNAJTLCCWPIQD-UHFFFAOYSA-K cerium(3+);lanthanum(3+);neodymium(3+);oxygen(2-);phosphate Chemical compound [O-2].[La+3].[Ce+3].[Nd+3].[O-]P([O-])([O-])=O IKNAJTLCCWPIQD-UHFFFAOYSA-K 0.000 description 1
- 238000012993 chemical processing Methods 0.000 description 1
- 238000010960 commercial process Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 150000001924 cycloalkanes Chemical class 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 150000001983 dialkylethers Chemical class 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- POLCUAVZOMRGSN-UHFFFAOYSA-N dipropyl ether Chemical compound CCCOCCC POLCUAVZOMRGSN-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 229910000248 eudialyte Inorganic materials 0.000 description 1
- 239000012527 feed solution Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910000199 gadolinite Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009854 hydrometallurgy Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229910052590 monazite Inorganic materials 0.000 description 1
- PYLWMHQQBFSUBP-UHFFFAOYSA-N monofluorobenzene Chemical compound FC1=CC=CC=C1 PYLWMHQQBFSUBP-UHFFFAOYSA-N 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- 239000005304 optical glass Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- UXBZSSBXGPYSIL-UHFFFAOYSA-N phosphoric acid;yttrium(3+) Chemical compound [Y+3].OP(O)(O)=O UXBZSSBXGPYSIL-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- DZLFLBLQUQXARW-UHFFFAOYSA-N tetrabutylammonium Chemical compound CCCC[N+](CCCC)(CCCC)CCCC DZLFLBLQUQXARW-UHFFFAOYSA-N 0.000 description 1
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003623 transition metal compounds Chemical class 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- QCLVFLIIJODTJU-UHFFFAOYSA-N triethyl(octyl)phosphanium Chemical compound CCCCCCCC[P+](CC)(CC)CC QCLVFLIIJODTJU-UHFFFAOYSA-N 0.000 description 1
- PYVOHVLEZJMINC-UHFFFAOYSA-N trihexyl(tetradecyl)phosphanium Chemical compound CCCCCCCCCCCCCC[P+](CCCCCC)(CCCCCC)CCCCCC PYVOHVLEZJMINC-UHFFFAOYSA-N 0.000 description 1
- MHIYLNAEUJEVOK-UHFFFAOYSA-N tris(2-ethylhexyl)-methylazanium Chemical compound CCCCC(CC)C[N+](C)(CC(CC)CCCC)CC(CC)CCCC MHIYLNAEUJEVOK-UHFFFAOYSA-N 0.000 description 1
- 231100000925 very toxic Toxicity 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910000164 yttrium(III) phosphate Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C211/00—Compounds containing amino groups bound to a carbon skeleton
- C07C211/62—Quaternary ammonium compounds
- C07C211/63—Quaternary ammonium compounds having quaternised nitrogen atoms bound to acyclic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D233/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
- C07D233/54—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
- C07D233/56—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
- C07D233/61—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with hydrocarbon radicals, substituted by nitrogen atoms not forming part of a nitro radical, attached to ring nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/26—Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/26—Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
- C22B3/28—Amines
- C22B3/288—Quaternary ammonium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/26—Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
- C22B3/36—Heterocyclic compounds
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/26—Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
- C22B3/36—Heterocyclic compounds
- C22B3/362—Heterocyclic compounds of a single type
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/26—Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
- C22B3/40—Mixtures
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B59/00—Obtaining rare earth metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the present invention relates to the extraction and separation of rare earth metals.
- the present invention relates to the extraction and separation of rare earth metals using specifically designed ionic liquids.
- Rare earth Metals which include the lanthanides (La to Lu), Y, and Sc, have unique physicochemical properties which make them crucial components of numerous high-tech products and environmental technologies such as wind mills, LCD/LED displays, phosphors, magnet drives (hard disk), and others. These applications demand a continuous supply of high purity rare earth metals to the industries, which is currently met by mining and processing the natural ores of these metals. However, there are concerns that the exponentially increasing demand of these metals will surpass the supply in coming years and therefore, it has become attractive to explore other secondary sources of these valuable metals.
- liquid-liquid extraction processes used to date employ commercial organophosphorus extractants which do not possess specific selectivity for individual rare earth metals, thereby leading to a number of stages to separate rare earth metals from each other (see Table 1). Furthermore, additional processing steps are generally required to recover the rare earth metal in high purity. These factors lead to manifold increase in processing costs thereby putting strain on overall costing of consumer products. Also, most employed methods for the separation of rare earth metals necessitate the use of organic solvents, which due to their toxicity, volatility and flammability are not considered environmentally friendly. Some of the currently used industrial liquid-liquid extraction processes available for intra- group separation of rare earth metals (e.g. separation of dysprosium from neodymium) are compared in Table 1.
- D M [M] N .
- Table 1 Comparison of the separation factors of commonly used REM extractants.
- P507 (2-ethylhexyl phosphoric acid mono(2-ethylhexyl) ester
- P507 also gives low separation factors, with the selectivity for heavy rare earth metals generally being lower than for light rare earth metals (e.g. Tm/Er (3.34), Yb/Tm (3.56), and Lu/Yb (1.78)).
- Tm/Er 3.34
- Yb/Tm Yb/Tm
- Lu/Yb Lu/Yb
- Ionic liquids have also been used as potential extractants for rare earth metals.
- Binnemans et al. reported the extraction of Nd and Dy or Y and Eu from mixtures of transition metal compounds with a betainium bis(trifluoromethyl-sulfonyl)imide ionic liquid (Green Chemistry, 2015, 17, 2150-2163; Green Chemistry, 2015, 17, 856-868).
- this system was unable to selectively perform intra-group separation between rare earth metals.
- Nd and Dy Separation of Nd and Dy was reported by Schelter et al., whereby separation was achieved by precipitation using a tripodal nitroxide ligand to form Nd and Dy complexes with differing solubilities in benzene.
- precipitation is not considered to be a commercially viable process and, in addition, the process requires the use of specific rare earth metal precursors and an inert, moisture-free environment, which is highly impractical for commercial scale up. This method also relies on the use of benzene to achieve high separation, which is a very toxic solvent.
- the present invention provides a method for extracting a rare earth metal from a mixture of one or more rare earth metals, said method comprising contacting an acidic solution of the rare earth metal with a composition which comprises an ionic liquid to form an aqueous phase and a non-aqueous phase into which the rare earth metal has been selectively extracted, wherein the ionic liquid has the formula:
- [Y + ] comprises a group selected from ammonium, benzimidazolium, benzofuranium, benzothiophenium, benzotriazolium, borolium, cinnolinium, diazabicyclodecenium, diazabicyclononenium, 1 ,4- diazabicyclo[2.2.2]octanium, diazabicyclo-undecenium, dithiazolium, furanium, guanidinium, imidazolium, indazolium, indolinium, indolium, morpholinium, oxaborolium, oxaphospholium, oxazinium, oxazolium, iso-oxazolium, oxothiazolium, phospholium, phosphonium, phthalazinium, piperazinium, piperidinium, pyranium, pyrazinium, pyrazolium, pyridazinium, pyridinium, pyr
- each l_2 represents a linking group independently selected from d_2 alkanediyl, C 2 alkenediyl, d -2 dialkanylether and d_ 2 dialkanylketone groups;
- [X " ] represents an anionic species.
- ionic liquid refers to a liquid that is capable of being produced by melting a salt, and when so produced consists solely of ions.
- An ionic liquid may be formed from a homogeneous substance comprising one species of cation and one species of anion, or it can be composed of more than one species of cation and/or more than one species of anion.
- an ionic liquid may be composed of more than one species of cation and one species of anion.
- An ionic liquid may further be composed of one species of cation, and one or more species of anion.
- an ionic liquid may be composed of more than one species of cation and more than one species of anion.
- ionic liquid includes compounds having both high melting points and compounds having low melting points, e.g. at or below room temperature. Thus, many ionic liquids have melting points below 200°C, particularly below 100°C, around room temperature (15 to 30°C), or even below 0°C. Ionic liquids having melting points below around 30 °C are commonly referred to as "room temperature ionic liquids" and are often derived from organic salts having nitrogen-containing heterocyclic cations. In room temperature ionic liquids, the structures of the cation and anion prevent the formation of an ordered crystalline structure and therefore the salt is liquid at room temperature.
- Ionic liquids are most widely known as solvents. Many ionic liquids have been shown to have negligible vapour pressure, temperature stability, low flammability and recyclability. Due to the vast number of anion/cation combinations that are available it is possible to fine- tune the physical properties of the ionic liquid (e.g. melting point, density, viscosity, and miscibility with water or organic solvents) to suit the requirements of a particular application.
- ionic liquid e.g. melting point, density, viscosity, and miscibility with water or organic solvents
- rare earth metals when extracted from sources such as ores or waste materials, the resulting product is a mixture of rare earth metals dissolved in an aqueous acidic solution.
- rare earth metals may be selectively extracted directly from an aqueous acidic feed, negating the need to apply significant processing to the feed prior to extraction. It will be appreciated that in order to form an aqueous phase and a non-aqueous phase when contacted with the acidic solution, the composition comprising an ionic liquid will be sufficiently hydrophobic such that a phase separation will occur between the aqueous solution and the composition.
- compositions comprising an ionic liquid as defined according to the first aspect, it has been surprisingly found that increased selectivity and extractability may be obtained in the extraction of rare earth metals from an acidic solution.
- the combination of high extractability (indicated by distribution ratio) and selectivity (indicated by separation factors) is key to a commercially effective separation process because the number of separation stages necessary to produce a product may be reduced without sacrificing purity.
- selectivity separation factor
- mixtures of dysprosium and neodymium may be separated with a selectivity (separation factor) of over 1000: 1 in a single contact. This represents a substantial increase over known systems as reported in Table 1.
- the presence of the central nitrogen donor atom in the ionic liquid allows for differing binding strengths to different rare earth metals as a result of differing ionic radii due to lanthanide contraction.
- some rare earth metals are preferentially bound by the hydrophobic ionic liquid extractant, which results in effective intra-group separation of the rare earth metals.
- the arrangement of this variable nitrogen binding as part of an ionic liquid provides the particularly effective extraction of rare earth metals described herein. Nonetheless, it will be appreciated that the ionic liquid comprising a nitrogen donor, whilst discriminating between different rare earth metals, must have additional electron donating groups appended in order to provide sufficient extractability.
- the method further comprises recovering the rare earth metal from the nonaqueous phase.
- This recovery may be performed using any suitable means, however it is preferred that the rare earth metal is recovered from the non-aqueous phase by stripping with an acidic stripping solution.
- the acidic stripping solution may be any acidic solution which liberates the rare earth metal from the ionic liquid.
- the acidic stripping solution will be an aqueous acidic stripping solution and the acid will substantially remain in the aqueous phase on contact with the ionic liquid.
- the acidic stripping solution comprises an aqueous hydrochloric acid or nitric acid solution.
- the stripping of the rare earth metal may be conducted in any suitable manner.
- the ionic liquid is contacted with an acidic stripping solution for 2 or more stripping cycles to completely strip the rare earth metal, more preferably 2 or 3 stripping cycles are used. In some embodiments, a single stripping cycle may be used.
- a "stripping cycle" as referred to herein will typically comprise contacting the acidic stripping solution with the composition, equilibrating for an amount of time, for example 15 to 30 minutes, and separating the aqueous and organic phases.
- a second cycle may be conducted by contacting the composition with another acidic stripping solution substantially free of rare earth metals.
- the rare earth metal may be stripped from the ionic liquid at a relatively high pH. This saves costs associated with both the amount and the strength of acid needed to strip the rare earth metals from the ionic liquid and the equipment necessary to handle such strong acids. In addition, it is possible to completely strip rare earth metals from the ionic liquid at a relatively high pH, whilst for many known extractants such as P507 it is difficult to completely strip heavy rare earth metals (e.g. Tm(lll), Yb(lll), Lu(lll)) even at low pH.
- the acidic stripping solution preferably has a pH of 0 or higher. In preferred embodiments, the acidic stripping solution has a pH of 1 or lower.
- the method comprises extracting a rare earth metal from a mixture of two or more rare earth metals.
- the acidic solution comprises a first and a second rare earth metal, and the method comprises:
- the method further comprises, in step (a), separating the non-aqueous phase from the acidic solution; and
- the first rare earth metal is recovered from the non-aqueous phase in step (a), and said non-aqueous phase is recycled and used as the composition in step (b).
- the acidic solution may have a lower pH in step (a) in comparison to that in step (b).
- the acidic solution has a pH of less than 3.5 in step (a), and the acidic solution has a pH of greater than 3.5 in step (b).
- 2 or 3 extraction cycles will be performed at a particular pH.
- the acidic solution from which the rare earth metal is extracted may have any suitable pH.
- the rare earth metal is extracted at a pH of more than 1 , more preferably at a pH of from 2 to 4.
- the pH level of the acidic solution of the rare earth metal may be adjusted in any suitable way, as is well known to those skilled in the art.
- the pH level of the acidic solution may be altered by the addition of acid scavengers such as mildly alkaline solutions including sodium carbonate, sodium bicarbonate, ammonia, C0 2 , amines or alcohols.
- the above embodiments refer to the separation of a particular rare earth metal from another directly from the acidic solution of the rare earth metal at varying pH levels.
- any suitable extraction sequence may be used to separate rare earth metals.
- two or more rare earth metals may be extracted from the acidic solution to the non-aqueous phase simultaneously at a higher pH, followed by back- extraction of the non-aqueous phase with acidic solutions having a lower pH to separate individual rare earth metals.
- all or only some of the rare earth metals present in the acidic solution may initially be extracted from the acidic solution using the composition comprising the ionic liquid.
- Nd and Dy are widely used in permanent magnets for numerous applications such as hard disks, MRI scanners, electric motors and generators.
- La and Eu are also an important pair due to their common use in lamp phosphors, other phosphors include Y and Eu (YOX phosphors); La, Ce and Tb (LAP phosphors); Gd, Ce and Tb (CBT phosphors); and Ce, Tb (CAT phosphors).
- the first rare earth metal is dysprosium, and the second rare earth metal is neodymium.
- the first rare earth metal is lanthanum, and the second rare earth metal is europium.
- the first rare earth metal is terbium, and the second rare earth metal is cerium.
- the composition may be contacted with the acidic solution in any suitable manner and in any suitable ratio such that exchange of rare earth metals is achieved between the aqueous and non-aqueous phases.
- the composition is preferably added to the acidic solution in a volume ratio of from 0.5: 1 to 2:1 , preferably 0.7: 1 to 1.5: 1 , more preferably 0.8:1 to 1.2: 1 , for example 1 : 1. Nonetheless, it will be appreciated that the volume ratio will vary depending on the manner in which the acidic solution is contacted with the composition comprising the ionic liquid.
- the composition prior to contacting the composition with the acidic solution of the rare earth metal the composition is equilibrated with an acidic solution having the same pH as the acidic solution of the rare earth metal. In this way, the mixture of the composition and the acidic solution will generally remain at the desired pH level during the extraction.
- composition may be contacted with the acidic solution of the rare earth metal under any conditions suitable for extracting the rare earth metal.
- the temperature employed during contacting of the acidic solution with the composition comprising the ionic liquid may be any suitable temperature and may vary according to the viscosity of the composition comprising the ionic liquid. For example, where a higher viscosity composition is used, a higher temperature may be necessary in order to obtain optimal results.
- the acidic solution is contacted with the composition at ambient temperature, i.e. without external heating or cooling. It will nonetheless be appreciated that temperature changes may naturally occur during the extraction as a result of contacting the composition with the acidic solution.
- the composition may be contacted with the acidic solution of the rare earth metal for any length of time suitable to facilitate extraction of the rare earth metal into the non-aqueous phase. Preferably, the length of time will be such that an equilibrium is reached and the proportions of rare earth metal in the aqueous and non-aqueous phases are constant.
- the method comprises contacting the acidic solution of the rare earth metal and the composition for from 10 to 40 minutes, preferably from 15 to 30 minutes.
- the method comprises contacting and physically mixing the acidic solution of the rare earth metal and the composition.
- Such mixing will usually speed up extraction of the rare earth metal.
- Any suitable apparatus may be used to achieve this and mixing apparatus is well known in the art.
- the mixture may be mixed using an agitator or stirrer.
- the mixing apparatus may comprise equipment specifically designed for multi-phase mixing such as high shear devices.
- mixing may comprise shaking the mixture, for example, using a wrist action shaker.
- aqueous and non-aqueous phases may be separated by any suitable method, for example by use of small scale apparatus such as a separating funnel or Craig apparatus. It will be appreciated that the phases will normally be allowed to settle prior to separation. Settling may be under gravity or preferably accelerated by the use of additional equipment such as centrifuge. Alternatively, aqueous and non-aqueous phases may be separated by the use of equipment which both contacts and separates the phases, for example a centrifugal extractor, a pulsed column, or a combined mixer-settler.
- multiple extractions and separations may be performed. This may involve multiple extractions of the acidic solution of the rare earth metal with the composition or multiple back-extractions of the non-aqueous phase with an aqueous acidic solution.
- fewer steps are required to separate rare earth metals due to the ionic liquid extractant giving separation factors and distribution ratios above those typically found in previous systems.
- EDG electron donating group
- an electron donating group refers to groups having an available pair of electrons able to coordinate to a rare earth metal to form a metal-ligand complex.
- the EDGs will typically have a single atom from which the electrons are donated to form a bond. However, electrons may alternatively be donated from one or more bonds between atoms, i.e. EDG may represent a ligand with a hapticity of 2 or more.
- the ring formed by the nitrogen, L 2 , the EDG and the metal is a 5 or 6 membered ring, preferably a 5 membered ring.
- [Y + ] represents an acyclic cation selected from:
- R a , R b and R c are each independently selected from optionally substituted Ci. 30 alkyl, C 3 . 8 cycloalkyl and C 6 -io aryl groups.
- [Y + ] represents a cyclic cation selected from:
- R a , R b , R c , R d , R e and R f are each independently selected from: hydrogen and optionally substituted Ci -30 alkyl, C 3 . 8 cycloalkyl and C 6 . 1 0 aryl groups, or any two of R a , R b , R c , R d and R e attached to adjacent carbon atoms form an optionally substituted methylene chain -(CH 2 ) q - where q is from 3 to 6.
- At least one of R a , R b , R c , R d , R e and R f is a d_ 5 alkyl group substituted with -C0 2 R x , -OC(0)R x , -CS 2 R X , -SC(S)R x ,-S(0)OR x , -OS(0)R x , - NR x C(0)NR y R z , -NR x C(0)OR y , -OC(0)NR y R z , -NR x C(S)OR y , -OC(S)NR y R z , -NR x C(S)OR y , -OC(S)NR y R z , -NR x C(S)SR y , -SC(S)NR y R z , -NR x C(S)NR y R z , -C(0)NR y R z ,
- [Y + ] represents a saturated heterocyclic cation selected from cyclic ammonium, 1 ,4-diazabicyclo[2.2.2]octanium, morpholinium, cyclic phosphonium, piperazinium, piperidinium, quinuclidinium, and cyclic sulfonium.
- [Y + ] represents a saturated heterocyclic cation having the formula:
- R a , R b , R c , R d , R e and R f are as defined above.
- At least one of R a , R b , R c , R d , R e and R f is d. 3 alkyl group substituted with ⁇ C0 2 R x , -C(0)NR y R z , wherein R x , R y and R z are each independently selected from C 3 . 6 alkyl.
- At least one of R a , R b , R c , R d , R e and R f represents a group selected from:
- R y R z
- R x , R y and R z are each selected from C 3 . 6 alkyl, preferably C 4 alkyl, for example / ' -Bu.
- At least one of R , R , R , R , R and R represents a group selected from:
- R y R z
- R y and R z are selected from C 3 . 6 alkyl, preferably C 4 alkyl, for example / ' -Bu.
- one of R a , R b , R c , R d , R e and R f is a substituted d. 5 alkyl group, and the remainder of R a , R b , R c , R d , R e and R f are independently selected from H and unsubstituted d. 5 alkyl groups, preferably the remainder of R a , R b , R c , R d , R e and R f are H.
- [Y + ] represents a cyclic cation selected from:
- [Y + ] represents the cyclic cation:
- R f is a substituted d_ 5 alkyl group, and the remainder of R a , R b , R c , R d , R e and R f are independently selected from H and unsubstituted d_ 5 alkyl groups.
- each L 2 represents a linking group independently selected from -2 alkanediyl and C 2 alkenediyl groups, preferably selected from Ci. 2 alkanediyl groups, for example independently selected from -CH 2 - and -C 2 H 4 -
- Each EDG may be any suitable electron donating group able to form a coordinate bond with a rare earth metal to form a metal-ligand complex.
- each EDG represents an electron donating group independently selected from— C0 2 R x , -OC(0)R x , -CS 2 R X , -SC(S)R x ,-S(0)OR x , -OS(0)R x , -NR x C(0)NR y R z , - NR x C(0)OR y , -OC(0)NR y R z , -NR x C(S)OR y , -OC(S)NR y R z , -NR x C(S)SR y , -SC(S)NR y R z , - NR x C(S)NR y R z , -C(0)NR y R z , -C(S)NR y R z , wherein R x , R y and R z are independently selected from H or -e alkyl- More preferably, each EDG represents an electron donating group independently selected from
- each -L 2 -EDG represents an electron donating group independently selected from:
- R y R z
- R x , R y and R z are each selected from C 3 .
- each -L 2 -EDG represents an electron donating group independently selected from:
- R y R z
- R y and R z are selected from C 3 . 6 alkyl, preferably C 4 alkyl, for example / ' -Bu.
- any suitable anionic species [X " ] may be used as part of the ionic liquid used in the method of the present invention.
- [X " ] represents one or more anionic species selected from: hydroxides, halides, perhalides, pseudohalides, sulphates, sulphites, sulfonates, sulfonimides, phosphates, phosphites, phosphonates, methides, borates, carboxylates, azolates, carbonates, carbamates, thiophosphates, thiocarboxylates, thiocarbamates, thiocarbonates, xanthates, thiosulfonates, thiosulfates, nitrate, nitrite, tetrafluoroborate, hexafluorophosphate and perchlorate, halometallates, amino acids, borates, polyfluoroalkoxyaluminates.
- [X " ] preferably represents one or more anionic species selected from:
- a halide anion selected from: F “ , CI “ , Br “ , I “ ;
- a perhalide anion selected from: [l 3 ] “ , [l 2 Br] “ , [IBr 2 ] “ , [Br 3 ] “ , [Br 2 C] “ , [BrCI 2 ] “ , [ICI 2 ] “ , [l 2 CI] “ , [Cl 3 ] “ ;
- a pseudohalide anion selected from: [N 3 ] “ , [NCS] “ , [NCSe] “ , [NCO] “ , [CN] “ ; d) a sulphate anion selected from: [HS0 4 ] “ , [S0 4 ] 2" , [R 2 OS0 2 0] “ ;
- a phosphate anion selected from: [H 2 P0 4 ] “ , [HP0 4 ] 2" , [P0 4 ] 3" , [R 2 OP0 3 ] 2" , [(R 2 0) 2 P0 2 ]- ;
- a phosphite anion selected from: [H 2 P0 3 ] “ , [HP0 3 ] 2" , [R 2 OP0 2 ] 2" , [(R 2 0) 2 PO] " ; j) a phosphonate anion selected from: [R 1 P0 3 ] 2" , [R 1 P(0)(OR 2 )0] " ;
- a borate anion selected from: [bisoxalatoborate], [bismalonatoborate] tetrakis[3,5-bis(trifluoromethyl)phenyl]borate,
- an azolate anion selected from: [3,5-dinitro-1 ,2,4-triazolate], [4-nitro-1 ,2,3- triazolate], [2,4-dinitroimidazolate], [4,5-dinitroimidazolate], [4,5-dicyano- imidazolate], [4-nitroimidazolate], [tetrazolate];
- a sulfur-containing anion selected from: thiocarbonates (e.g. [R 2 OCS 2 ] “ , thiocarbamates (e.g. [R 2 2 NCS 2 ] “ ), thiocarboxylates (e.g. [R 1 CS 2 ] “ ), thiophosphates (e.g. [(R 2 0) 2 PS 2 ] “ ), thiosulfonates (e.g. [RS(0) 2 S] " ), thiosulfates (e.g. [ROS(0) 2 S] “ );
- thiocarbonates e.g. [R 2 OCS 2 ] “
- thiocarbamates e.g. [R 2 2 NCS 2 ] "
- thiocarboxylates e.g. [R 1 CS 2 ] "
- thiophosphates e.g. [(R 2 0) 2 PS 2 ] "
- thiosulfonates e
- R F is selected from d_ 6 alkyl substituted by one or more fluoro groups; where: R 1 and R 2 are independently selected from the group consisting of C1-C10 alkyl, C 6 aryl, C C 10 alkyl(C 6 )aryl and C 6 aryl(C C 10 )alkyl each of which may be substituted by one or more groups selected from: fluoro, chloro, bromo, iodo, d to C 6 alkoxy, C 2 to C12 alkoxyalkoxy, C 3 to C 8 cycloalkyl, C 6 to C 10 aryl, C 7 to C 10 alkaryl, C 7 to C 10 ,
- R 1 may also be fluorine, chlorine, bromine or iodine.
- [X " ] may be any suitable anion, it is preferred that [X “ ] represents a non-coordinating anion.
- non-coordinating anion used herein, which is common in the field of ionic liquids and metal coordination chemistry, is intended to mean an anion that does not coordinate with a metal atom or ion, or does so only weakly.
- non-coordinating anions have their charge dispersed over several atoms in the molecule which significantly limits their coordinating capacity. This limits the effect interference of the anion with the selective coordination of the cation [Cat + ] with the rare earth metal.
- [X " ] represents one or more non-coordinating anionic species selected from: bistriflimide, triflate, tosylate, perchlorate, [AI(OC(CF 3 ) 3 ) 4 " ], tetrakis[3,5- bis(trifluoromethyl)phenyl]borate, tetrakis(pentafluorophenyl)borate, tetrafluoroborate, hexfluoroantimonate and hexafluorophosphate anions; and most preferably from bistriflimide and triflate anions.
- [Cat + ] represents one or more ionic species having the structure:
- [Z + ] represents a group selected from ammonium, benzimidazolium, benzofuranium, benzothiophenium, benzotriazolium, borolium, cinnolinium, diazabicyclodecenium, diazabicyclononenium, 1 ,4- diazabicyclo[2.2.2]octanium, diazabicyclo-undecenium, dithiazolium, furanium, guanidinium, imidazolium, indazolium, indolinium, indolium, morpholinium, oxaborolium, oxaphospholium, oxazinium, oxazolium, iso-oxazolium, oxothiazolium, phospholium, phosphonium, phthalazinium, piperazinium, piperidinium, pyranium, pyrazinium, pyrazolium, pyridazinium, pyridinium, pyr
- the composition may comprise the ionic liquid as defined above in combination with a diluent.
- a diluent may be used in order to decrease the viscosity of the composition where the ionic liquid has a high viscosity, which limits its practical use in liquid-liquid extraction.
- a diluent may also be used to save costs where the diluent is cheaper to produce than the ionic liquid.
- any diluent added to the composition will be sufficiently hydrophobic so as to allow the separation of the composition and the acidic solution of the rare earth metal into an aqueous and nonaqueous phase.
- the diluent may enhance the hydrophobicity of the composition.
- the composition further comprises a lower viscosity ionic liquid.
- lower viscosity ionic liquid will be understood to mean that this ionic liquid has a lower viscosity than the ionic liquid extractant described previously.
- the lower viscosity ionic liquid will be sufficiently hydrophobic so as to allow the separation of the composition and the acidic solution of the rare earth metal into an aqueous and non-aqueous phase. It will also be appreciated that the hydrophobicity may be provided by either of the cation or anion of the lower viscosity ionic liquid, or by both.
- the decreased volatility and flammability offered by the ionic liquid extractant may be maintained to give a potentially safer and more environmentally friendly rare earth metal extraction process.
- the cation of the lower viscosity ionic liquid is selected from ammonium, benzimidazolium, benzofuranium, benzothiophenium, benzotriazolium, borolium, cinnolinium, diazabicyclodecenium, diazabicyclononenium, 1 ,4- diazabicyclo[2.2.2]octanium, diazabicyclo-undecenium, dithiazolium, furanium, guanidinium, imidazolium, indazolium, indolinium, indolium, morpholinium, oxaborolium, oxaphospholium, oxazinium, oxazolium, iso-oxazolium, oxothiazolium, phospholium, phosphonium, phthalazinium, piperazinium, piperidinium, pyranium, pyrazinium, pyrazolium, pyrida
- the cation of the lower viscosity ionic liquid is selected from phosphonium, imidazolium and ammonium groups.
- the cation of the lower viscosity ionic liquid is selected from:
- R 3 , R 4 , R 5 and R 6 are each independently selected from optionally substituted Ci_ 2 o alkyl, C 3 . 8 cycloalkyl and C 6 -io aryl groups.
- the cation of the lower viscosity ionic liquid is [P(R 3 )(R 4 )(R 5 )(R 6 )] + , wherein R 3 , R 4 , R 5 are selected from CM 0 alkyl, preferably C 2 . 6 alkyl, and R 6 is selected from C 4 . 2 o alkyl, preferably C 8 -i 4 alkyl.
- the cation of the lower viscosity ionic liquid may be selected from triethyloctyl phosphonium (P222 ( 8>] + ), tributyloctyl phosphonium (P 44 4 ( 8 ) ] + ), trihexyloctyl phosphonium (Peeece j f), trihexyldecyl phosphonium (P666(io)] + ), and trihexyltetradecyl phosphonium (P 6 66(i 4 )D-
- the cation of the lower viscosity ionic liquid is [N(R 3 )(R 4 )(R 5 )(R 6 )] + , wherein R 3 , R 4 , R 5 are selected from C 4 .
- the cation of the lower viscosity ionic liquid may be selected from trioctylmethyl ammonium, tris(2-ethylhexyl) methyl ammonium, and tetrabutyl ammonium.
- the cation of the lower viscosity ionic liquid is selected from imidazolium cations substituted with one or more Ci_ 2 o alkyl, C 3 . 8 cycloalkyl and C 6 -io aryl groups, preferably substituted with two CM 0 alkyl groups, more preferably substituted with one methyl group and one CM 0 alkyl group.
- the cation of the lower viscosity ionic liquid may be selected from 1-butyl-3-methyl imidazolium, 1-hexyl-3-methyl imidazolium and 1-octyl-3-methyl imidazolium.
- any suitable anionic group may be used as the anion of the lower viscosity ionic liquid.
- the anion of the lower viscosity ionic liquid is as described previously in relation to the anionic group [X " ].
- the anion of the lower viscosity ionic liquid is a non-coordinating anion as described previously. It will be appreciated that there may be an excess of anions from the lower viscosity ionic liquid in comparison to the ionic liquid extractant. Therefore, it is especially preferred that the anion of the lower viscosity ionic liquid is a non-coordinating anion.
- the composition comprises less than 25% halide or pseudohalide anions as a proportion of the total anions, preferably less than 20%, more preferably less than 15%, most preferably less than 10%, for example less than 5%.
- the composition is substantially free of halide or pseudohalide anions.
- the composition may alternatively or additionally further comprise one or more non-ionic liquid diluents.
- the composition further comprises one or more organic solvents.
- suitable organic solvents will include hydrophobic and non-coordinating solvents.
- non-coordinating solvent used herein, which is common in the field of metal coordination chemistry, is intended to mean a solvent that does not coordinate with metal atoms or ions, or does so only weakly.
- Suitable organic solvents include but are not limited to hydrocarbon solvents such as d_ 2 o alkanes, alkenes or cycloalkanes, aromatic solvents such as toluene or benzene, C 6+ alcohols such as n-hexanol, etheric solvents such as diethyl ether, dipropyl ether, dibutyl ether and methyl-f-butyl ether, or halogenated solvents such as tetrachloromethane, tetrachloroethane, chloroform, dichloromethane, chlorobenzene, or fluorobenzene.
- the organic solvent is a hydrocarbon solvent.
- the ionic liquid may be present in the composition in any concentration suitable for extracting rare earth metals and it will be appreciated that this concentration will vary depending on the particular application and pH. In particular, it will be appreciated that for the separation of rare earth metals a competitive separation is desirable. For example the concentration of the ionic liquid should be low enough to avoid the extraction of all rare earth metals present. Therefore, the concentration of the ionic liquid will typically depend on the concentration of rare earth metals to be extracted and the pH at which the separation is conducted. In some preferred embodiments, the ionic liquid is present in the composition in a concentration of at least 0.001 M, preferably from 0.005 M to 0.01 M.
- the composition may consist essentially of the ionic liquid.
- the concentration of the ionic liquid in the composition may be varied in order to achieve a particular target viscosity for the composition. It will also be appreciated that the character of the lower viscosity ionic liquid or other diluent may be varied in order to obtain a particular viscosity level.
- the viscosity of the composition is in the range of from 50 to 500 mPa.s at 298K, when the composition comprises a solution of the ionic liquid in a lower viscosity ionic liquid.
- the ionic liquid is in a solution of an organic solvent, it will be appreciated that the composition will likely have a lower viscosity, for example, less than 50 mPa.s.
- Viscosity may be measured by any suitable method, for example viscosity may be measured using a rotating disk viscometer with variable temperature.
- the acidic solution is obtainable by leaching the rare earth metal from its source using an acid, for example a mineral acid such as hydrochloric, nitric, perchloric or sulfuric acid, typically hydrochloric or nitric acid.
- an acid for example a mineral acid such as hydrochloric, nitric, perchloric or sulfuric acid, typically hydrochloric or nitric acid.
- the source of the rare earth metal is a mineral or a waste material.
- the acidic solution of the rare earth metal or mixture of rare earth metals may be obtained in any suitable way from any rare earth metal source.
- the concentration of rare earth metals in the acidic solution is typically from 60 ppm to 2000 ppm. Nonetheless, it will be appreciated that any suitable concentration of rare earth metals in the acid solution may be used.
- rare earth metals are obtained from rare earth ores, which are mined and processed by a variety of methods depending on the particular ore. Such processes are well known in the art. Usually, following mining such processes may include steps such as grinding, roasting to remove carbonates, chemical processing (e.g alkali/hydroxide treatment), and ultimately leaching with acid to obtain an aqueous acidic solution containing a mixture of rare earth metals.
- steps such as grinding, roasting to remove carbonates, chemical processing (e.g alkali/hydroxide treatment), and ultimately leaching with acid to obtain an aqueous acidic solution containing a mixture of rare earth metals.
- rare earth metal bearing minerals contained in rare earth ores are aeschynite, allanite, apatite, bastnasite, brannerite, britholite, eudialyte, euxenite, fergusonite, gadolinite, kainosite, loparite, monazite, parisite, perovskite, pyrochlore, xenotime, yttrocerite, huanghoite, cebaite, florencite, synchysite, samarskite, and knopite.
- Rare earth metals may also increasingly be obtained from recycled materials. As global demand for rare earth metals grows, it is increasingly attractive to obtain earth metals from recycled waste materials, particularly in countries with a lack of minable rare earth ore deposits. Rare earth waste materials may be obtained from various sources, for example direct recycling of rare earth scrap/residues from pre-consumer manufacturing, "urban mining" of rare earth containing end of life products, or landfill mining of urban and industrial waste containing rare earths. As rare earth metals are increasingly being used in consumer products, the amount of rare earth metals that can be obtained from such waste materials is also growing.
- Waste materials that may contain rare earth metals include, magnetic swarf and rejected magnets, rare earth containing residues from metal production/recycling (e.g. postsmelter and electric arc furnace residues or industrial residues such as phosphogypsum and red mud), phosphors such as those in fluorescent lamps, LEDs, LCD backlights, plasma screens and cathode ray tubes, permanent magnets (e.g.
- NdFeB such as those used in automobiles, mobile phones, hard disk drives, computers and peripherals, electronic kitchen utensils, hand held tools, electric shavers, industrial electric motors, electric bicycles, electric vehicle and hybrid vehicle motors, wind turbine generators, nickel-metal hydride batteries such as are used for rechargeable batteries and electric and hybrid vehicle batteries, glass polishing powders, fluid cracking catalysts and optical glass.
- Major end-of-life waste material sources of rare earths in terms of value are permanent magnets, nickel-metal hydride batteries and lamp phosphors, as well as scrap in the form of magnetic swarf waste.
- Rare earth metals will usually be extracted from waste materials by leaching with mineral acids and optionally further processing to remove impurities such as transition metals. This results in an acidic solution of the rare earth metals, which may be used as a source for separation and purification of the individual rare earth metals.
- rare earth metals may be extracted with high selectivity and extractability directly from an acidic solution of the rare earth metal, which may be conveniently obtained from the extraction process of an ore or a waste material.
- an ionic liquid [Cat + ][X " ]) substantially as described previously herein.
- a composition substantially as described previously herein.
- the composition further comprises a rare earth metal. It will be appreciated that the composition comprising a rare earth metal may be a valuable resource in itself and it will not always be desirable to separate the rare earth metal, for example by stripping with acid.
- the composition further comprising a rare earth metal may be used for electrodeposition of the rare earth metal or precipitation of one or more rare earth metals (e.g. with oxalic acid).
- Electrodeposition of rare earth metals from ionic liquids and precipitation of rare earth metals from solution are well known in the art any may be performed in any suitable way, as will be appreciated by one skilled in the art.
- the use of the composition further comprising a rare earth metal for electrodeposition of a rare earth metal in a further aspect of the present invention, there is provided the use of the composition further comprising a rare earth metal for precipitation of a rare earth metal.
- a method for preparing an ionic liquid as defined in Claim 59 comprising reacting:
- LG represents a leaving group
- a “leaving group” as used herein will be understood to mean a group that may be displaced from a molecule by reaction with a nucleophilic centre, in particular a leaving group will depart with a pair of electrons in heterolytic bond cleavage.
- a leaving group is usually one that is able to stabilize the additional electron density that results from bond heterolysis.
- Such groups are well-known in the field of chemistry.
- group [Z] may be any group that is able to displace the leaving group to form a [Z + ] cation as defined previously herein.
- a leaving group as defined herein will be such that the primary amine coupled by to [Z] may displace the leaving group to form a bond between the nitrogen and an L 2 group, and such that the group [Z] can displace the leaving group to form a bond between [Z] and an L 2 group.
- Leaving groups may, for example, include a group selected from dinitrogen, dialkyl ethers, perfluoroalkylsulfonates such as triflate, tosylate or mesylate, halogens such as CI, Br and I, water, alcohols, nitrate, phosphate, thioethers and amines.
- the leaving group LG is selected from halides, more preferably the leaving group LG is CI.
- an ionic liquid having advantageous rare earth metal extraction properties may be conveniently synthesised in a single step, reducing the increased costs associated with multiple step syntheses.
- the ionic liquid or the composition further comprising a rare earth metal as described herein for extracting rare earth metals.
- the ionic liquid or the composition is used to preferentially extract a first rare earth metal from a solution which comprises a first and a second rare earth metal.
- Figure 1 is a graph showing the distribution factors for the extraction of a selection of rare earth metals according to an embodiment of the present invention.
- Figure 2 shows the crystal structure of the [MAIL] + cation coordinating to Nd after extraction from an acidic (HCI) solution containing NdCI 3 6H 2 0.
- a reaction mixture comprising 3 moles of an A/,A/-dialkyl-2-chloroacetamide and a substrate having the structure H 2 N-L [Z] were stirred in a halogenated solvent (e.g. CHCI 3 , CH 2 CI 2 , etc.) or an aromatic solvent (e.g. toluene, xylene, etc.) at 60 to 70 °C for 7 to 15 days.
- a halogenated solvent e.g. CHCI 3 , CH 2 CI 2 , etc.
- an aromatic solvent e.g. toluene, xylene, etc.
- the organic phase was then washed with 0.1 M Na 2 C0 3 (2-3 washes) and finally was washed with deionized water until the aqueous phase showed a neutral pH.
- the solvent was removed under high vacuum to give the ionic liquid product (with a chloride anion) as a highly viscous liquid.
- This ionic liquid could be used as it was or the chloride anion could be exchanged with different anions (e.g. bistriflimide, triflate, hexafluorophosphate etc.) using conventional metathesis routes, for example, by reacting with an alkali metal salt of the desired anion with the ionic liquid in an organic solvent.
- the solvent was removed from the neutralised organic phase at 8 mbar (6 mm Hg) and finally at 60 ° C and 0.067 mbar (0.05 mmHg).
- the ionic liquid [MAIL + ]Cr was recovered as a highly viscous yellow liquid.
- Example 2 Liquid-liquid extraction of rare earth metals using [MAIL + ][NTf 2 ⁇ ]
- Equal volumes (2 to 5 ml) of the ionic liquid extractant ([MAIL + ][NTf 2 ⁇ ] in [P666(i4 ) + ][NTf 2 ⁇ ]) and an acidic aqueous feed solution containing rare earth metals in HCI were equilibrated for 15- 30 minutes on a wrist action shaker.
- the phases were centrifuged and the aqueous phase was analysed for rare earth metal content using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), though it will be appreciated that any suitable analysis technique may be used.
- ICP-OES Inductively Coupled Plasma Optical Emission Spectroscopy
- the proportion of the rare earth metals extracted into the ionic liquid (organic) phase was determined through mass balance using the ICP-OES measurement.
- the distribution ratio of an individual rare earth metal was determined as the ratio of its concentration in the ionic liquid phase to that of it in the aqueous phase (raffinate).
- D M [M]
- the separation factor (SF) with respect to an individual rare earth metal pair is expressed as the ratio of the distribution ratio of a first rare earth metal with the distribution ratio of a second rare earth metal.
- the separation factor of dysprosium with respect to neodymium D Dy /D Nd . It will be appreciated that separation factors estimated from independently obtained distribution ratios will be lower than the actual separation factors, obtained during the separation of mixtures of rare earth metals during a competitive separation (as exemplified below).
- Distribution ratios for individual rare earth metals were obtained in separate extractions according to the general procedure above, using 0.0075 M [MAIL + ][NTf 2 ⁇ ] in [P666(i 4 ) + ][NTf 2 ⁇ ] and a 200 mg/l (ppm) HCI solution of the relevant rare earth metal chloride (where 200 ppm refers to the concentration of the elemental metal in the solution).
- Figure 1 shows a plot of the distribution ratios for each rare earth metal as a function of pH, showing that the ionic liquid according to the present invention may be used to extract rare earth metals across a range of pH values. Separation of Dy and Nd
- Dy(lll) 200 ppm was stripped from an organic phase at pH 3 comprising [MAIL + ][NTf 2 ⁇ ] in [P666(i 4 ) + ][NTf 2 _ ] (0.005 M) in 2 successive contacts.
- the organic phase was contacted with an equal volume of an aqueous HCI solution (0.2 M) and was equilibrated for 15-30 minutes on a wrist action shaker. 140 ppm of Dy(lll) was stripped in the first contact and 55 ppm was stripped in the second contact.
- an ionic liquid according to the present invention e.g. Nd/Dy: Nd-Dy magnet, Eu/La: white lamp phosphor, Tb/Ce: green lamp phosphor.
- the rare earth metals may also be advantageously stripped from the ionic liquid at relatively high pH compared to prior art systems.
- optimised geometries of the complexes LaCI 3 .([MAIL + ][C ]) 2 and LuCI 3 .([MAIL + ][C ]) 2 show that the distance between the tertiary central nitrogen of the ionic liquid cation and the metal is much longer in the case of La (-2.9 A, non-bonding) than in the case of Lu (-2.6 A, bonding), which also supports the weaker bonding of the ionic liquid to lighter rare earth metals.
- the electron donating groups, in this case amides linked to the nitrogen atom bond to the metal in a very similar way in both cases. This result shows that the central motif of the ionic liquid cation having a tertiary nitrogen donor is important for the differentiation obtained between the heavier and lighter rare earth metals and the improved selectivity that results therefrom.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Geology (AREA)
- Manufacturing & Machinery (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Metallurgy (AREA)
- Environmental & Geological Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Extraction Or Liquid Replacement (AREA)
- Steroid Compounds (AREA)
Priority Applications (16)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112019012324-5A BR112019012324B1 (pt) | 2016-12-16 | 2017-12-14 | Métodos para extração de um metal de terras-raras e para preparação de um líquido iônico, líquido iônico, composição, e, usos de um líquido iônico e de uma composição |
KR1020197020065A KR102591939B1 (ko) | 2016-12-16 | 2017-12-14 | 희토류 금속의 분리 |
CA3047051A CA3047051A1 (en) | 2016-12-16 | 2017-12-14 | Separation of rare earth metals |
EP17826540.1A EP3555325B1 (en) | 2016-12-16 | 2017-12-14 | Separation of rare earth metals |
PL17826540T PL3555325T3 (pl) | 2016-12-16 | 2017-12-14 | Oddzielanie metali ziem rzadkich |
CN201780086538.0A CN110300810B (zh) | 2016-12-16 | 2017-12-14 | 稀土金属的分离 |
JP2019532078A JP7141722B2 (ja) | 2016-12-16 | 2017-12-14 | 希土類金属の分離 |
IL267366A IL267366B2 (en) | 2016-12-16 | 2017-12-14 | Separation of rare trace metals |
AU2017374789A AU2017374789B2 (en) | 2016-12-16 | 2017-12-14 | Separation of rare earth metals |
MYPI2019006084A MY195866A (en) | 2016-12-16 | 2017-12-14 | Separation of Rare Earth Metals |
MX2019007042A MX2019007042A (es) | 2016-12-16 | 2017-12-14 | Separación de metales de tierra rara. |
EA201991422A EA201991422A1 (ru) | 2016-12-16 | 2017-12-14 | Разделение редкоземельных металлов |
US16/469,748 US11396684B2 (en) | 2016-12-16 | 2017-12-14 | Extracting rare earth metal from acidic solution by contacting with ionic liquid composition |
PH12019501379A PH12019501379A1 (en) | 2016-12-16 | 2019-06-17 | Separation of rare earth metals |
ZA2019/03919A ZA201903919B (en) | 2016-12-16 | 2019-06-18 | Separation of rare earth metals |
US17/872,533 US20230059863A1 (en) | 2016-12-16 | 2022-07-25 | Separation of rare earth metals |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1621523.8 | 2016-12-16 | ||
GB1621523.8A GB2560871B (en) | 2016-12-16 | 2016-12-16 | Separation of rare earth matals |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/469,748 A-371-Of-International US11396684B2 (en) | 2016-12-16 | 2017-12-14 | Extracting rare earth metal from acidic solution by contacting with ionic liquid composition |
US17/872,533 Continuation US20230059863A1 (en) | 2016-12-16 | 2022-07-25 | Separation of rare earth metals |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018109483A1 true WO2018109483A1 (en) | 2018-06-21 |
Family
ID=58284646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2017/053754 WO2018109483A1 (en) | 2016-12-16 | 2017-12-14 | Separation of rare earth metals |
Country Status (21)
Country | Link |
---|---|
US (2) | US11396684B2 (pl) |
EP (1) | EP3555325B1 (pl) |
JP (1) | JP7141722B2 (pl) |
KR (1) | KR102591939B1 (pl) |
CN (1) | CN110300810B (pl) |
AR (1) | AR110383A1 (pl) |
AU (1) | AU2017374789B2 (pl) |
BR (1) | BR112019012324B1 (pl) |
CA (1) | CA3047051A1 (pl) |
CL (1) | CL2019001644A1 (pl) |
EA (1) | EA201991422A1 (pl) |
GB (1) | GB2560871B (pl) |
IL (1) | IL267366B2 (pl) |
MA (1) | MA50591A (pl) |
MX (1) | MX2019007042A (pl) |
MY (1) | MY195866A (pl) |
PH (1) | PH12019501379A1 (pl) |
PL (1) | PL3555325T3 (pl) |
TW (1) | TWI758375B (pl) |
WO (1) | WO2018109483A1 (pl) |
ZA (1) | ZA201903919B (pl) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019239149A1 (en) * | 2018-06-15 | 2019-12-19 | Seren Technologies Limited | Ionic liquid preparation |
CN112280981A (zh) * | 2020-11-23 | 2021-01-29 | 中国科学院过程工程研究所 | 一种稀土高效除铝用的离子液体萃取剂及其制备方法 |
US20210285072A1 (en) * | 2018-06-15 | 2021-09-16 | Seren Technologies Limited | Countercurrent rare earth separation process |
JP7001861B1 (ja) | 2021-03-31 | 2022-01-20 | 第一工業製薬株式会社 | フッ素系イオン性液体およびその製造方法 |
US11958754B2 (en) | 2018-06-15 | 2024-04-16 | Seren Technologies Limited | Enhanced separation of rare earth metals |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10938329B2 (en) | 2018-03-22 | 2021-03-02 | University Of Notre Dame Du Lac | Electricity generation from low grade waste heat |
GB2607851A (en) * | 2018-06-15 | 2022-12-21 | Seren Tech Limited | Rare earth metal oxide preparation |
CN114075626B (zh) * | 2020-08-20 | 2024-01-02 | 厦门稀土材料研究所 | 一种利用水热法溶萃一体化回收稀土永磁废料中稀土金属的方法 |
CN111961071B (zh) * | 2020-08-24 | 2023-06-02 | 江西理工大学 | 一种有机无机杂化稀土双钙钛矿化合物、制备方法及其应用 |
CN112725622B (zh) * | 2020-12-02 | 2022-09-09 | 北京工业大学 | 一种两步酸浸梯次分离回收废铈基稀土抛光粉中稀土的方法 |
CN113249598B (zh) * | 2021-05-18 | 2022-07-29 | 江西理工大学 | 一种从稀土料液中络合分离除铝的方法 |
CN113292498B (zh) * | 2021-06-16 | 2022-11-25 | 浙江工业大学 | 3-过氧苯甲酸-1-甲基咪唑氯盐及其制备和应用 |
CN115992317B (zh) * | 2022-11-30 | 2024-06-18 | 核工业北京化工冶金研究院 | 一种从含稀土铀铍的硫酸浸出液中分离稀土铀铍的方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010116167A1 (en) * | 2009-04-06 | 2010-10-14 | Petroliam Nasional Berhad (Petronas) | Ionic liquid solvents of perhalide type for metals and metal compounds |
WO2015106324A1 (en) * | 2014-01-17 | 2015-07-23 | Katholieke Universiteit Leuven Ku Leuven Research & Development | Process for extraction and separation of rare earths by split-anion extraction with ionic liquids |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4016237A (en) | 1975-09-08 | 1977-04-05 | The United States Of America As Represented By The United States Energy Research And Development Administration | Process for separation of the rare earths by solvent extraction |
WO2007071028A1 (en) | 2005-12-23 | 2007-06-28 | St. Mary's University | Compounds, complexes and uses thereof |
US8097721B2 (en) | 2007-01-31 | 2012-01-17 | Sigma-Aldrich Co. Llc | High stability polyionic liquid salts |
GB2484301B8 (en) * | 2010-10-05 | 2017-11-22 | The Queen's Univ Of Belfast | Process for removing metals from hydrocarbons |
JP5279938B1 (ja) | 2011-11-09 | 2013-09-04 | 国立大学法人九州大学 | 有価金属抽出剤及びこの抽出剤を用いた有価金属抽出方法 |
WO2013128536A1 (ja) | 2012-02-27 | 2013-09-06 | 株式会社アサカ理研 | 光学ガラス廃材からの希土類元素の分離方法 |
CN103451427B (zh) * | 2013-09-24 | 2014-11-26 | 兰州大学 | 一种重稀土与轻稀土金属的分离方法及分离萃取剂 |
CN103961978B (zh) | 2014-05-15 | 2016-02-24 | 中国科学院过程工程研究所 | 一种含叔胺基和腈基吡啶类功能化离子液体捕集二氧化硫的方法 |
JP6502182B2 (ja) | 2014-06-04 | 2019-04-17 | 国立大学法人横浜国立大学 | 希土類元素の回収方法および希土類元素の回収装置 |
JP5889455B1 (ja) | 2015-02-27 | 2016-03-22 | 日本軽金属株式会社 | 希土類元素の回収方法 |
CN105219979B (zh) * | 2015-10-14 | 2017-04-26 | 北京科技大学 | 一种分离La、Ce、Pr、Nd混合稀土离子的萃取柱色层法 |
CN106498184B (zh) * | 2016-12-07 | 2019-04-26 | 青海柴达木兴华锂盐有限公司 | 一种锂的萃取体系 |
-
2016
- 2016-12-16 GB GB1621523.8A patent/GB2560871B/en active Active
-
2017
- 2017-12-14 MX MX2019007042A patent/MX2019007042A/es unknown
- 2017-12-14 CN CN201780086538.0A patent/CN110300810B/zh active Active
- 2017-12-14 KR KR1020197020065A patent/KR102591939B1/ko active IP Right Grant
- 2017-12-14 EA EA201991422A patent/EA201991422A1/ru unknown
- 2017-12-14 MY MYPI2019006084A patent/MY195866A/en unknown
- 2017-12-14 CA CA3047051A patent/CA3047051A1/en active Pending
- 2017-12-14 AU AU2017374789A patent/AU2017374789B2/en active Active
- 2017-12-14 JP JP2019532078A patent/JP7141722B2/ja active Active
- 2017-12-14 US US16/469,748 patent/US11396684B2/en active Active
- 2017-12-14 WO PCT/GB2017/053754 patent/WO2018109483A1/en active Application Filing
- 2017-12-14 EP EP17826540.1A patent/EP3555325B1/en active Active
- 2017-12-14 IL IL267366A patent/IL267366B2/en unknown
- 2017-12-14 PL PL17826540T patent/PL3555325T3/pl unknown
- 2017-12-14 MA MA050591A patent/MA50591A/fr unknown
- 2017-12-14 BR BR112019012324-5A patent/BR112019012324B1/pt active IP Right Grant
- 2017-12-15 AR ARP170103539A patent/AR110383A1/es unknown
- 2017-12-15 TW TW106144200A patent/TWI758375B/zh active
-
2019
- 2019-06-14 CL CL2019001644A patent/CL2019001644A1/es unknown
- 2019-06-17 PH PH12019501379A patent/PH12019501379A1/en unknown
- 2019-06-18 ZA ZA2019/03919A patent/ZA201903919B/en unknown
-
2022
- 2022-07-25 US US17/872,533 patent/US20230059863A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010116167A1 (en) * | 2009-04-06 | 2010-10-14 | Petroliam Nasional Berhad (Petronas) | Ionic liquid solvents of perhalide type for metals and metal compounds |
WO2015106324A1 (en) * | 2014-01-17 | 2015-07-23 | Katholieke Universiteit Leuven Ku Leuven Research & Development | Process for extraction and separation of rare earths by split-anion extraction with ionic liquids |
Non-Patent Citations (1)
Title |
---|
YINGHUI LIU ET AL: "Application and Perspective of Ionic Liquids on Rare Earths Green Separation", SEPARATION SCIENCE AND TECHNOLOGY, vol. 47, no. 2, 15 January 2012 (2012-01-15), pages 223 - 232, XP055448149, ISSN: 0149-6395, DOI: 10.1080/01496395.2011.635171 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019239149A1 (en) * | 2018-06-15 | 2019-12-19 | Seren Technologies Limited | Ionic liquid preparation |
US20210285072A1 (en) * | 2018-06-15 | 2021-09-16 | Seren Technologies Limited | Countercurrent rare earth separation process |
US11958754B2 (en) | 2018-06-15 | 2024-04-16 | Seren Technologies Limited | Enhanced separation of rare earth metals |
US12024756B2 (en) * | 2018-06-15 | 2024-07-02 | Seren Technologies Limited | Countercurrent rare earth separation process |
CN112280981A (zh) * | 2020-11-23 | 2021-01-29 | 中国科学院过程工程研究所 | 一种稀土高效除铝用的离子液体萃取剂及其制备方法 |
JP7001861B1 (ja) | 2021-03-31 | 2022-01-20 | 第一工業製薬株式会社 | フッ素系イオン性液体およびその製造方法 |
JP2022157468A (ja) * | 2021-03-31 | 2022-10-14 | 第一工業製薬株式会社 | フッ素系イオン性液体およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
TW201831698A (zh) | 2018-09-01 |
AU2017374789B2 (en) | 2023-06-15 |
US20200080169A1 (en) | 2020-03-12 |
GB2560871A (en) | 2018-10-03 |
GB201621523D0 (en) | 2017-02-01 |
CL2019001644A1 (es) | 2020-03-20 |
AR110383A1 (es) | 2019-03-20 |
EA201991422A1 (ru) | 2019-11-29 |
MA50591A (fr) | 2020-08-12 |
PL3555325T3 (pl) | 2022-03-07 |
AU2017374789A1 (en) | 2019-07-04 |
BR112019012324B1 (pt) | 2022-07-26 |
ZA201903919B (en) | 2020-12-23 |
IL267366B2 (en) | 2023-03-01 |
IL267366A (en) | 2019-08-29 |
MX2019007042A (es) | 2019-10-15 |
MY195866A (en) | 2023-02-24 |
EP3555325B1 (en) | 2021-06-30 |
IL267366B (en) | 2022-11-01 |
BR112019012324A2 (pt) | 2019-11-19 |
CA3047051A1 (en) | 2018-06-21 |
KR20190114969A (ko) | 2019-10-10 |
GB2560871B (en) | 2020-06-03 |
PH12019501379A1 (en) | 2020-03-02 |
EP3555325A1 (en) | 2019-10-23 |
CN110300810A (zh) | 2019-10-01 |
KR102591939B1 (ko) | 2023-10-20 |
TWI758375B (zh) | 2022-03-21 |
JP2020502365A (ja) | 2020-01-23 |
US11396684B2 (en) | 2022-07-26 |
JP7141722B2 (ja) | 2022-09-26 |
CN110300810B (zh) | 2021-05-28 |
US20230059863A1 (en) | 2023-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2017374789B2 (en) | Separation of rare earth metals | |
US11401579B2 (en) | Rare earth metal oxide process including extracting rare earth metal from acidic solution with an ionic liquid composition | |
WO2019239149A1 (en) | Ionic liquid preparation | |
US12024756B2 (en) | Countercurrent rare earth separation process | |
US11958754B2 (en) | Enhanced separation of rare earth metals | |
OA19426A (en) | Separation of rare earth metals. | |
EA040373B1 (ru) | Разделение редкоземельных металлов |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17826540 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3047051 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2019532078 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112019012324 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2017374789 Country of ref document: AU Date of ref document: 20171214 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20197020065 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2017826540 Country of ref document: EP Effective date: 20190716 |
|
ENP | Entry into the national phase |
Ref document number: 112019012324 Country of ref document: BR Kind code of ref document: A2 Effective date: 20190614 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 519402152 Country of ref document: SA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 519402152 Country of ref document: SA |