WO2018107649A1 - 显示面板的检测方法和显示面板的检测装置 - Google Patents

显示面板的检测方法和显示面板的检测装置 Download PDF

Info

Publication number
WO2018107649A1
WO2018107649A1 PCT/CN2017/083791 CN2017083791W WO2018107649A1 WO 2018107649 A1 WO2018107649 A1 WO 2018107649A1 CN 2017083791 W CN2017083791 W CN 2017083791W WO 2018107649 A1 WO2018107649 A1 WO 2018107649A1
Authority
WO
WIPO (PCT)
Prior art keywords
source driving
circuit board
clock signal
driving circuit
board
Prior art date
Application number
PCT/CN2017/083791
Other languages
English (en)
French (fr)
Inventor
陈伟
Original Assignee
惠科股份有限公司
重庆惠科金渝光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司, 重庆惠科金渝光电科技有限公司 filed Critical 惠科股份有限公司
Priority to US16/329,233 priority Critical patent/US10733923B2/en
Publication of WO2018107649A1 publication Critical patent/WO2018107649A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/004Diagnosis, testing or measuring for television systems or their details for digital television systems
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136204Arrangements to prevent high voltage or static electricity failures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30121CRT, LCD or plasma display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/04Display protection
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/12Test circuits or failure detection circuits included in a display system, as permanent part thereof
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only

Definitions

  • the present application relates to the field of display technologies, and more particularly to a method for detecting a display panel and a detecting device for a display panel.
  • the liquid crystal display has many advantages such as thin body, power saving, no radiation, and has been widely used.
  • Most of the liquid crystal displays on the market are backlight type liquid crystal displays, which include a liquid crystal panel and a backlight module.
  • the working principle of the liquid crystal panel is to place liquid crystal molecules in two parallel glass substrates, and apply a driving voltage on the two glass substrates to control the rotation direction of the liquid crystal molecules to refract the light of the backlight module to generate a picture.
  • a thin film transistor liquid crystal display includes a liquid crystal panel including a color filter substrate (CF Substrate, also referred to as a color filter substrate) and a thin film transistor array substrate (Thin Film Transistor Substrate, TFT Substrate).
  • CF Substrate also referred to as a color filter substrate
  • TFT Substrate Thin Film Transistor Substrate
  • a transparent electrode is present on the opposite inner side of the substrate.
  • a layer of liquid crystal molecules (LC) is sandwiched between the two substrates.
  • the liquid crystal panel controls the orientation of the liquid crystal molecules by an electric field, changes the polarization state of the light, and realizes the purpose of display by the penetration and blocking of the optical path by the polarizing plate.
  • the process of the LCD open cell is generally divided into a front, a middle and a back process; wherein, the front process is mainly for the fabrication of TFT (Thin Film Transistor) glass; the middle process mainly refers to the TFT. The glass is bonded to the color filter and the upper and lower polarizing plates are added; the rear stage process refers to pressing the driving IC (integrated circuit) and the printed circuit board to the TFT glass, and completing the open cell (liquid crystal panel). Among them, in the latter stage process, high temperature and high humidity tests are required after the production line is completed to ensure the line resistance.
  • TFT Thin Film Transistor
  • the technical problem to be solved by the present application is to provide a detection method of a display panel and a detection device for a display panel capable of preventing damage of a plurality of external test boards.
  • the present application discloses a detection method of a display panel, the detection method comprising the following steps:
  • the power board that generates the power signal is directly electrically connected to the source driving circuit board;
  • a power signal and a clock signal are delivered to the source drive circuit board.
  • the clock signal is directly generated by the power board.
  • the part that generates the clock signal is integrated on the power board, and the power board can directly generate the clock signal, so that the power board can not only deliver the power signal to the source driving circuit board, but also
  • the clock signal can be sent to the source driver board, so that only the power board and the source driver board need to be electrically connected during the detection process, and no additional logic board or other circuit parts are needed, which further saves assembly.
  • the process further improves the detection efficiency.
  • the power board itself has high temperature resistance and high temperature resistance, and is not easily damaged during high temperature and high temperature resistance tests.
  • the power board is connected to the first connector of the source driving circuit board through the first connecting line, and the power board is connected to the second connector of the source driving circuit through the second connecting line,
  • the power signal is delivered to the first connector through the first connection line, and the clock signal is transmitted to the second connector through the second connection line;
  • a source of the source driving circuit board The driving chip is respectively connected to the first connector and the second connector through a connecting bar.
  • the clock signal is directly generated by the source driving circuit board.
  • the source driver circuit board generally includes a source driver chip, a connection bar and a connector, and the clock signal can be generated by the source driver chip or the connection bar or the connector. There is no need to additionally connect the logic board or other detection circuit parts, which further saves the assembly process and further improves the detection efficiency.
  • the clock signal is directly generated by a source driving chip of the source driving circuit board. This is another specific way of transmitting the clock signal in the present application.
  • the part that generates the clock signal is integrated on the source driving chip of the source driving circuit board, and the source driving chip can directly generate the clock signal and complete the transmission, thereby detecting In the process, only the power signal of the power board needs to be sent to the source driving circuit board, and no additional logic board or other circuit parts are needed, which further saves the assembly process and further improves the detection efficiency.
  • the power board is connected to the third connector of the source driving circuit board through a third connecting line, and the power signal is transmitted to the third connector through the third connecting line; the source The driver chip is connected to the third connector through a connection bar.
  • the power board directly connects the third connection line and the third connector to supply the power signal, and the connection mode is simple and convenient, and no additional connection is needed to other parts of the circuit, which is convenient for the staff to operate.
  • the clock signal is directly generated by a clock signal board, and the clock signal board and the source driving circuit board are electrically connected. This is another specific way of conveying the clock signal in the present application.
  • the clock signal board that generates the clock signal is electrically connected to the source driving circuit board, and the clock signal board can send the clock signal to the source driving circuit board, because the logic board The cost is high, so that the present application saves cost by replacing the logic board with a clock signal board.
  • the picture is stored in a source driving chip of the source driving circuit board.
  • the screen is directly stored in the source driver chip of the source driver board, which is more convenient for detection.
  • the present application further discloses a detection system for a display panel, the detection system comprising:
  • a screen storage device for storing a screen for detecting, wherein the screen storage device is stored in a source driving circuit board of the display panel;
  • a power board for generating a power signal the power board being directly electrically connected to the source driving circuit board;
  • the clock signal device is configured to generate a clock signal, and the clock signal device is electrically connected to the source driving circuit board.
  • the clock signal device is disposed on the power board, the power board is connected to the first connector of the source driving circuit board through the first connecting line, and the power board passes the second connecting line and a second connector of the source driving circuit is connected, the power signal is transmitted to the first connector through the first connecting line, and the clock signal is sent to the second through the second connecting line And a source driving chip of the source driving circuit board is respectively connected to the first connector and the second connector through a connecting bar.
  • the clock signal generating device is integrated on the power board, and the power board can directly generate the clock signal, so that the power board can not only deliver the power signal to the source driving circuit board, but also
  • the clock signal can be sent to the source driver board, so that only the power board and the source driver board need to be electrically connected during the detection process, and no additional logic board or other circuit parts are needed, which further saves assembly.
  • the process further improves the detection efficiency.
  • the power board itself has high temperature resistance and high temperature resistance, and is not easily damaged during high temperature and high temperature resistance tests. And two wires are electrically connected to the two connectors respectively, and the power signal and the clock signal are separately transmitted, thereby ensuring normal transmission of various signals.
  • the clock signal device is disposed at the source to serve on a circuit board.
  • the source driving circuit board generally includes a source driving chip, a connecting bar and a connector, and a clock signal device can be disposed on the source driving chip or the connecting bar or the connector to generate a clock signal. There is no need to additionally connect the logic board or other detection circuit parts, which further saves the assembly process and further improves the detection efficiency.
  • the clock signal device is disposed on a source driving chip of the source driving circuit board, and the power board is connected to a third connector of the source driving circuit board through a third connecting line, the power source a signal is delivered to the third connector through the third connection line; the source drive chip is coupled to the third connector by a connection strip.
  • the clock signal generating device is integrated on the source driving chip of the source driving circuit board, and the source driving chip is The clock signal can be directly generated and completed, so that only the power signal of the power board needs to be sent to the source driving circuit board during the detection process, and no additional logic board or other circuit parts are needed, thereby further saving the assembly process and further improving The detection efficiency.
  • the power board directly connects the third connection line and the third connector to supply the power signal, and the connection mode is simple and convenient, and no additional connection is needed to other parts of the circuit, which is convenient for the staff to operate.
  • the screen for detecting is directly stored in the source driving circuit board of the display panel, and the power board is directly electrically connected to the source driving circuit board.
  • the display panel can be tested by sending power and clock signals to the source driver board, eliminating the need for multiple external test boards or TCON to provide high temperature and high humidity detection. Therefore, the application can realize high temperature and high humidity detection without using multiple external test boards or TCON, and a plurality of external test boards are omitted compared with the prior art, thereby avoiding damage of multiple external test boards. It not only saves the equipment input cost and maintenance cost in the inspection process, but also saves the process in the inspection process and improves the production efficiency.
  • FIG. 1 is a flow chart of a method for detecting a display panel according to an embodiment of the present application
  • FIG. 2 is a flow chart of a method for detecting a display panel according to an embodiment of the present application
  • FIG. 3 is a flow chart of a method for detecting a display panel according to an embodiment of the present application.
  • FIG. 4 is a flow chart of a method for detecting a display panel according to an embodiment of the present application.
  • FIG. 5 is a schematic structural view showing a cooperation between a detecting device and a display panel of a display panel according to an embodiment of the present application
  • FIG. 6 is a schematic structural view showing a cooperation between a detecting device and a display panel of a display panel according to an embodiment of the present application
  • FIG. 7 is a schematic structural view showing a cooperation between a detecting device and a display panel of a display panel according to an embodiment of the present application
  • FIG. 8 is a schematic structural view showing a cooperation between a detecting device and a display panel of a display panel according to an embodiment of the present application.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated. Thus, features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • a plurality means two or more unless otherwise stated.
  • the term “comprises” and its variations are intended to cover a non-exclusive inclusion.
  • connection In the description of the present application, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise specifically defined and defined. Connected, or integrally connected; can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • Connected, or integrally connected can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • the specific meanings of the above terms in the present application can be understood in the specific circumstances for those skilled in the art.
  • FIGS. 1 through 8 A method for detecting a display panel and a detecting device for a display panel according to an embodiment of the present application are described below with reference to FIGS. 1 through 8.
  • FIG. 1 is a flowchart of a method for detecting a display panel according to an embodiment of the present application.
  • the detecting method includes the following steps S101, S102, and S103. specific:
  • Step S101 storing the screen for detecting into the source driving circuit board of the display panel
  • Step S102 The power board that generates the power signal is directly electrically connected to the source driving circuit board;
  • Step S103 Delivering a power signal and a clock signal to the source driving circuit board.
  • the screen for detecting is directly stored in the source driving circuit board of the display panel, and the power board is directly connected to the source driving circuit board, and the power signal and the clock signal are sent to the source driving circuit board.
  • the display panel can be tested without using multiple external test boards or TCON to provide high temperature and high humidity detection. Therefore, the application can realize high temperature and high humidity detection without using multiple external test boards or TCON, and a plurality of external test boards are omitted compared with the prior art, thereby avoiding damage of multiple external test boards. It not only saves the equipment input cost and maintenance cost in the inspection process, but also saves the process in the inspection process and improves the production efficiency.
  • the source driving circuit board includes a source driving chip.
  • the picture is specifically stored in the source driving chip for high temperature and high humidity detection.
  • the picture includes but is not limited to: red picture, green picture, blue picture, black picture, gray picture.
  • step S102 the power board and the source driving circuit board are directly electrically connected, and the specific power board is connected by a connector (such as a wire) and a connector of the source driving circuit board, and the connector is connected to the connecting bar.
  • the connecting strip is connected to the source driving chip, so that the power signal of the power board is sent to the connector through the connecting line, and the connector sends the signal to the connecting strip and is sent to the source driving chip through the connecting strip for high temperature and high humidity detection. use.
  • step S103 the power signal and the clock signal are sent to the source driving circuit board, specifically, the power signal and the clock signal are sent to the source driving chip of the source driving circuit board, so that the high temperature and high humidity detection can be completed.
  • FIG. 2 is a specific flowchart of a method for detecting a display panel according to an embodiment of the present application, and the detecting method in FIG. 2 includes steps S201, S202, and S203. Step S204. specific:
  • Step S201 storing the picture for detecting in the source driving circuit board of the display panel
  • Step S202 The power board that generates the power signal is directly electrically connected to the source driving circuit board;
  • Step S203 directly generate a clock signal from the power board.
  • Step S204 The power signal and the clock signal are sent to the source driving circuit board.
  • Step S201 is the same as step S101 in FIG. 1 . See step S101 in FIG. 1 .
  • Step S202 is the same as step S102 in FIG. 1 . Referring to step S102 in FIG. 1 , step S201 and step S202 are performed here. No more detailed one by one.
  • the clock signal is directly generated by the power board.
  • the part that generates the clock signal is integrated on the power board.
  • an oscillator can be integrated on the power board, and a clock signal is generated by the oscillator.
  • this embodiment can also integrate other structures on the power board to generate a clock signal. In this way, the power board can directly generate a clock signal, so that the power board can not only deliver the power signal to the source.
  • the driving circuit board can also send the clock signal to the source driving circuit board, so that only the power board and the source driving circuit board need to be electrically connected during the detecting process, and no additional logic board or other circuit parts are needed, so Further saving the assembly process further improves the detection efficiency.
  • the power board itself has high temperature resistance and high temperature resistance, and is not easily damaged during high temperature and high temperature resistance tests.
  • the power board is connected to the first connector of the source driving circuit board through the first connecting line, and the power board is connected to the second connector of the source driving circuit through the second connecting line
  • the power signal is delivered to the first connector through the first connection line
  • the clock signal is transmitted to the second connector through the second connection line
  • the pole drive chips are respectively connected to the first connector and the second connector through connecting bars.
  • the two connectors (the first connector and the second connector) are electrically connected to each other through the connecting wires (the first connecting wire and the second connecting wire), and respectively supply the power signal and the clock signal, thereby ensuring various signals. Normal delivery.
  • step S204 the first connection line is connected to the first connector, the first connector is connected to the connection bar, and the connection bar is connected to the source driver chip, so that the power signal of the power board passes through the first connection line, A connector and a connecting strip are delivered to the source driver chip for high temperature and high humidity detection. And connecting the second connection line and the second connector, the second connector is connected to the connection bar, and the connection bar is further connected to the source drive chip, so that the clock signal of the power board passes through the second connection line, the second connector, and The connecting strip is delivered to the source driver chip for high temperature and high humidity detection.
  • This embodiment not only saves the logic board or a plurality of other detection circuit boards, but also avoids damage of the logic board or a plurality of other detection circuit boards, saves cost, and saves the process and improves the detection efficiency.
  • the clock signal is directly generated by the source driving circuit board.
  • the source driving circuit board includes a source driving chip, a connecting bar and a connector, and can generate a clock signal through a source driving chip or a connecting bar or a connector, without additionally connecting a logic board or other detecting circuit portion, thereby further saving
  • the assembly process further improves the detection efficiency.
  • FIG. 3 is another specific flowchart of the method for detecting a display panel according to an embodiment of the present application.
  • the detecting method in FIG. 3 includes step S301, step S302, step S303, and step S304. specific:
  • Step S301 The screen for detecting is stored in the source driving circuit board of the display panel;
  • Step S302 The power board that generates the power signal is directly electrically connected to the source driving circuit board;
  • Step S303 directly generating a clock signal from a source driving chip of the source driving circuit board.
  • Step S304 The power signal and the clock signal are sent to the source driving circuit board.
  • Step S301 is the same as step S101 in FIG. 1 . See step S101 in FIG. 1 .
  • Step S302 is the same as step S102 in FIG. 1 . Referring to step S102 in FIG. 1 , step S301 and step S302 are performed here. No more detailed one by one.
  • the clock signal is directly generated by the source driving chip of the source driving circuit board.
  • the part that generates the clock signal is integrated on the source driving chip of the source driving circuit board.
  • an oscillator can be integrated on the power board.
  • the clock signal is generated by the oscillator.
  • this embodiment may also integrate other structures on the source driver chip to generate a clock signal. In this way, the source driver chip can directly generate the clock signal and complete the transmission, so that only the power signal of the power board needs to be sent to the source driving circuit board during the detection process, and no additional logic board or other circuit parts are needed, thereby further saving.
  • the assembly process further improves the detection efficiency.
  • the power board is connected to the third connector of the source driving circuit board through a third connecting line, and the power signal is transmitted to the third connector through the third connecting line;
  • the pole drive chip is connected to the third connector through a connecting strip.
  • the power board directly connects the third connection line and the third connector to supply the power signal, and the connection mode is simple and convenient, and no additional connection is needed to other parts of the circuit, which is convenient for the staff to operate.
  • step S304 the third connection line is connected to the third connector, the third connector is connected to the connection bar, and the connection bar is connected to the source driver chip, so that the power signal of the power board passes through the third connection line,
  • the three connectors and the connecting strip are delivered to the source driver chip.
  • the source driver chip can directly generate a clock chip for high temperature and high humidity detection.
  • this embodiment not only saves the logic board or other structure of the detection circuit board, but also avoids the damage of the logic board or other detection circuit board, saves the cost, and saves the process and improves the detection. effectiveness.
  • FIG. 4 is still another specific flowchart of a method for detecting a display panel according to an embodiment of the present application.
  • the detecting method in FIG. 4 includes step S401, step S402, and step S403. And step S404. specific:
  • Step S401 storing a picture for detection in a source driving circuit board of the display panel
  • Step S402 The power board that generates the power signal is directly electrically connected to the source driving circuit board;
  • Step S403 The clock signal is directly generated from the clock signal board, and the clock signal board and the source are electrically connected to the circuit.
  • Step S404 The power signal and the clock signal are sent to the source driving circuit board.
  • Step S401 is the same as step S101 in FIG. 1 . See step S101 in FIG. 1 .
  • Step S402 is the same as step S102 in FIG. 1 . Referring to step S102 in FIG. 1 , step S401 and step S402 are performed here. No more detailed one by one.
  • the clock signal is directly generated by a clock signal board, and the clock signal board and the source driving circuit board are electrically connected.
  • the clock signal board that generates the clock signal is electrically connected to the source driving circuit board, and the clock signal board can send the clock signal to the source driving circuit board, because
  • the logic board or other multiple detection boards are costly, so that the embodiment of the present application saves cost by replacing a logic board or other multiple detection boards by a clock signal board.
  • the clock signal board of this embodiment may be integrated with only an oscillator, and a clock signal is generated by the oscillator.
  • this embodiment can also integrate other structures on a circuit board to generate a clock signal.
  • the clock signal board of this embodiment is directly connected to the connector of the source driving circuit board, the connector is connected with the connecting strip of the source driving circuit board, and the connecting strip is further connected with the source driving chip of the source driving circuit board.
  • the clock signal board can be electrically connected to the power board first, and the power board is respectively connected through two connecting lines and two connectors, and the two connectors are connected to the connecting strip. The connection strip is then connected to the source driver chip.
  • step S404 when the clock signal board is directly connected to the connector, the clock signal is sequentially sent to the source driving chip through the connector and the connecting bar; and the power signal is transmitted to the source driving through the other connector of the connecting line and the connecting bar. Chip for high temperature and high humidity detection.
  • the power board When the clock signal board and the power board are connected, the power board is respectively connected by two connecting lines and two connectors, and the two connectors are connected to the connecting strip, and the connecting strip is connected to the source driving chip.
  • the clock signal is sent to the source driving chip through one of the connecting wires, one of the connectors and the connecting bar; and the power signal is sent to the source driving chip through the other connecting wire, the other connector and the connecting bar, so as to perform high temperature and high humidity Detection.
  • FIG. 5 is a schematic structural diagram of a detection system and a display panel of a display panel according to an embodiment of the present application.
  • the detection system 200 includes a picture storage device 220 and a power board. 210 and clock signal device 230.
  • the screen storage device is configured to store a screen for detecting, the screen storage device 220 is stored in the source driving circuit board 110 of the display panel 100; the power board 210 is used to generate a power signal, and the power board 210 is directly connected to the The source driving circuit board 110 is electrically connected; the clock signal device 230 is used to generate a clock signal, and the clock signal device 230 and the source driving circuit board 110 are electrically connected.
  • the source driving circuit board 110 includes a source driving chip 111, a connecting strip 112, a first connector 113, and a second connector 114.
  • the picture storage device 220 is stored in the source driving chip 111, and does not need to use a logic board to provide a picture for high temperature and high humidity detection.
  • the picture includes but is not limited to: red picture, green picture, blue picture, black picture, gray picture.
  • the clock signal device 230 is disposed on the power board 210.
  • the power board 210 is connected to the first connector 113 of the source driving circuit board through the first connecting line 310, and the power board 210.
  • the power signal is transmitted to the first connector through the first connection line, and the clock signal passes through the second
  • the connection line is delivered to the second connector; the source driving chip 111 of the source driving circuit board is connected to the first connector 113 and the second connector 114 through the connecting bar 112, respectively.
  • the clock signal generating device is integrated on the power board, and the power board can directly generate a clock signal, so that the power board can not only deliver the power signal to the source driving circuit board, but also can set the clock.
  • the signal is sent to the source driving circuit board, so that only the power board and the source driving circuit board need to be electrically connected during the detecting process, and no additional logic board or other circuit parts are needed, thereby further saving the assembly process and further Improved detection efficiency.
  • the power board itself has high temperature resistance and high temperature resistance, and is not easily damaged during high temperature and high temperature resistance tests. And two wires are electrically connected to the two connectors respectively, and the power signal and the clock signal are separately transmitted, thereby ensuring normal transmission of various signals.
  • an oscillator can be integrated on the power board, and a clock signal is generated by the oscillator.
  • this embodiment can also integrate other structures on the power board to generate a clock signal.
  • this embodiment not only saves the logic board or other structure of the detection circuit board, but also avoids the damage of the logic board or other detection circuit board, saves cost, and saves the process and improves the detection efficiency.
  • FIG. 6 is a schematic structural diagram of a display system of a display panel and a display panel according to an embodiment of the present application.
  • the detection system 200 includes a picture storage device 220 and a power board. 210 and clock signal device 230.
  • the screen storage device is configured to store a screen for detecting, the screen storage device 220 is stored in the source driving circuit board 110 of the display panel 100; the power board 210 is used to generate a power signal, and the power board 210 is directly connected to the The source driving circuit board 110 is electrically connected; the clock signal device 230 is used to generate a clock signal, and the clock signal device 230 and the source driving circuit board 110 are electrically connected.
  • the source driving circuit board 110 includes a source driving chip 111, a connecting strip 112, and a third connector 115.
  • the picture storage device 220 is stored in the source driving chip 111, and does not need to use a logic board to provide a picture for high temperature and high humidity detection.
  • the picture includes but is not limited to: red picture, green picture, blue picture, black picture, gray picture.
  • the clock signal device 230 is disposed on the source driving circuit board, such as the clock signal device 230 is disposed on the source driving chip 111, or the clock signal device 230 is disposed on the connecting bar 112, or The clock signal device 230 is disposed on the third connector 115.
  • the clock signal device 230 is disposed on the source driving chip 111 of the source driving circuit board, and the power board passes through the third connecting line 330 and the third connector 115 of the source driving circuit board. Connected, the power signal is transmitted to the third connector through the third connecting line; the source driving chip is connected through the connecting bar and the third connector.
  • the clock signal generating device is integrated on the source driving chip of the source driving circuit board, and the source driving chip can directly generate the clock signal and complete the transportation. In the detection process, only the power signal of the power board needs to be sent to the source driving circuit board, and no additional logic board or other circuit parts are needed, which further saves the assembly process and further improves the detection efficiency. And the power board directly connects the third connection line and the third connector to supply the power signal, and the connection mode is simple and convenient, and no additional connection is needed to other parts of the circuit, which is convenient for the staff to operate.
  • an oscillator can be integrated on the power board, and a clock signal is generated by the oscillator.
  • this embodiment can also integrate other structures on the source driving circuit board to generate a clock signal.
  • this embodiment not only saves the logic board or other structure of the detection circuit board, but also avoids the damage of the logic board or other detection circuit board, saves cost, and saves the process and improves the detection efficiency.
  • FIG. 7 is a schematic structural diagram of a detection system and a display panel of a display panel according to an embodiment of the present application.
  • the detection system 200 includes a picture storage device 220 and a power board. 210 and clock signal device 230.
  • the screen storage device is configured to store a screen for detecting, the screen storage device 220 is stored in the source driving circuit board 110 of the display panel 100; the power board 210 is used to generate a power signal, and the power board 210 is directly connected to the The source driving circuit board 110 is electrically connected; the clock signal device 230 is used to generate a clock signal, and the clock signal device 230 and the source driving circuit board 110 are electrically connected.
  • the source driving circuit board 110 includes a source driving chip 111, a connecting strip 112, a first connector 113, and a second connector 114.
  • the picture storage device 220 is stored in the source driving chip 111, and does not need to use a logic board to provide a picture for high temperature and high humidity detection.
  • the picture includes but is not limited to: red picture, green picture, blue picture, black picture, gray picture.
  • the clock signal device 230 is separately provided, and the clock signal device can be a clock signal board, or an oscillator can be directly integrated on a circuit board, and a clock signal is generated by the oscillator. Of course, it should be noted that this embodiment can also integrate other structures on the circuit board to generate a clock signal.
  • the clock signal device 230 of the present embodiment is directly connected to the fifth connector 117 through the fifth connection line 350, the fifth connector 117 is connected to the connection bar 112, and the connection bar 112 is connected to the source driver chip 111, thereby generating the clock signal device.
  • the clock signal is transmitted to the source driving chip through the fifth connection line, the fifth connector, and the connection bar.
  • the power board 210 is connected to the fourth connector 116 through the fourth connection line 340, the fourth connector is connected with the connection bar, and the connection bar is connected with the source driver chip, so that the power signal passes through the fourth connection line, the fourth connector, and The connecting strip is transferred to the source driver chip for high temperature and high humidity detection.
  • clock signal device of this embodiment may not be directly electrically connected to the source driving circuit board.
  • the clock signal device 230 and the power board 210 are electrically connected, and the power board is connected through the sixth connection line 360 and the sixth connector 118 to transmit a power signal; and the power board passes the seventh.
  • the connection line 370 and the seventh connection line 119 are connected to transmit a clock signal.
  • the connecting strips 112 are electrically connected to the sixth connector and the seventh connector, respectively, to deliver the power signal and the clock signal to the source driving chip 111 to achieve high temperature and high humidity detection.
  • the power board is electrically connected to the clock signal device, and the clock signal device and the connector are electrically connected.
  • the connector and the connecting bar are electrically connected, and the connecting bar and the source driving chip are electrically connected, so that the power board
  • the power signal is transmitted to the source driver board through the clock signal device.
  • the clock signal can be directly transmitted to this connector and delivered to the source driver chip through the connection bar.
  • This embodiment not only saves the logic board or other structure of the detection circuit board, but also avoids the logic board or other The detection circuit board is damaged, the cost is saved, and the process is saved, and the detection efficiency is improved.
  • the display panel 100 of the present application further includes a gate driving chip 120.
  • the display panel 100 of the present application may be, for example, an LCD, an OLED, a QLED, a curved panel, or other display panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Quality & Reliability (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板(100)的检测方法和显示面板(100)的检测装置,其中,检测方法包括以下步骤:将用于检测的画面存储到显示面板(100)的源极驱动电路板(110)内(S101);将产生电源信号的电源板(210)直接和源极驱动电路板(110)电性连接(S102);将电源信号和时钟信号输送到源极驱动电路板(110)(S103)。

Description

显示面板的检测方法和显示面板的检测装置 【技术领域】
本申请涉及显示技术领域,更具体的说,涉及一种显示面板的检测方法和显示面板的检测装置。
【背景技术】
液晶显示器具有机身薄、省电、无辐射等众多优点,得到了广泛的应用。现有市场上的液晶显示器大部分为背光型液晶显示器,其包括液晶面板及背光模组(Backlight Module)。液晶面板的工作原理是在两片平行的玻璃基板当中放置液晶分子,并在两片玻璃基板上施加驱动电压来控制液晶分子的旋转方向,以将背光模组的光线折射出来产生画面。
其中,薄膜晶体管液晶显示器(Thin Film Transistor-Liquid Crystal Display,TFT-LCD)由于具有低的功耗、优异的画面品质以及较高的生产良率等性能,目前已经逐渐占据了显示领域的主导地位。同样,薄膜晶体管液晶显示器包含液晶面板和背光模组,液晶面板包括彩膜基板(Color Filter Substrate,CF Substrate,也称彩色滤光片基板)和薄膜晶体管阵列基板(Thin Film Transistor Substrate,TFT Substrate),上述基板的相对内侧存在透明电极。两片基板之间夹一层液晶分子(Liquid Crystal,LC)。液晶面板是通过电场对液晶分子取向的控制,改变光的偏振状态,并藉由偏光板实现光路的穿透与阻挡,实现显示的目的。
目前LCD open cell(Liquid Crystal Display open cell,液晶面板)的制程一般分为前段、中段和后段制程;其中,前段制程主要是进行TFT(Thin Film Transistor)玻璃的制作;中段制程主要指将TFT玻璃与彩色滤光片贴合,并加上上下偏光板;后段制程指将驱动IC(integrated circuit,集成电路)和印刷电路板压合至TFT玻璃,并完成open cell(液晶面板)。其中,在后段制程中,在生产线完成bonding(连接)后需要做高温高湿试验来确保其行耐性。
现有技术中,在液晶面板做高温高湿试验时,需要多个外接测试电路板来 提供画面和时钟信号,外接的测试电路板耐高温、耐高湿性能差,在反复高温高湿试验中外接的测试电路板容易损坏。
【发明内容】
本申请所要解决的技术问题是提供一种能够防止多个外接的测试电路板损坏的显示面板的检测方法和显示面板的检测装置。
本申请的目的是通过以下技术方案来实现的:
根据本申请的一个方面,本申请公开了一种显示面板的检测方法,所述检测方法包括以下步骤:
将用于检测的画面存储到显示面板的源极驱动电路板内;
将产生电源信号的电源板直接和所述源极驱动电路板电性连接;
将电源信号和时钟信号输送到所述源极驱动电路板。
其中,所述时钟信号直接由所述电源板产生。这是本申请输送时钟信号的一种具体方式,将产生时钟信号的部分集成到电源板上,电源板可以直接产生时钟信号,这样电源板不仅可以将电源信号输送到源极驱动电路板,还可以将时钟信号输送到源极驱动电路板,从而在检测过程中只需要将电源板和源极驱动电路板电性连接即可,无需额外连接逻辑板或其他电路部分,这样就进一步节省了组装工序,进一步提升了检测效率。而且,电源板本身耐高温、耐高温性能好,在进行耐高温、耐高温试验中不易损坏。
其中,所述电源板通过第一连接线和所述源极驱动电路板的第一连接器连接,以及所述电源板通过第二连接线和所述源极驱动电路的第二连接器连接,所述电源信号通过所述第一连接线输送到所述第一连接器,所述时钟信号通过所述第二连接线输送到所述第二连接器;所述源极驱动电路板的源极驱动芯片通过连接条分别和所述第一连接器、第二连接器连接。这是电源板和源极驱动电路板电性连接及信号输送的一种具体方式,分别通过两个连接线与两个连接器电性连接,并分别输送电源信号和时钟信号,能够确保各种信号的正常输送。
其中,所述时钟信号直接由所述源极驱动电路板产生。源极驱动电路板一般包括有源极驱动芯片、连接条及连接器,可以通过源极驱动芯片或连接条或连接器产生时钟信号。无需额外连接逻辑板或其他检测电路部分,这样就进一步节省了组装工序,进一步提升了检测效率。
其中,所述时钟信号直接由所述源极驱动电路板的源极驱动芯片产生。这是本申请输送时钟信号的另一种具体方式,将产生时钟信号的部分集成到源极驱动电路板的源极驱动芯片上,源极驱动芯片可以直接产生时钟信号并完成输送,从而在检测过程中只需要将电源板的电源信号输送到源极驱动电路板,无需额外连接逻辑板或其他电路部分,这样就进一步节省了组装工序,进一步提升了检测效率。
其中,所述电源板通过第三连接线和所述源极驱动电路板的第三连接器连接,所述电源信号通过所述第三连接线输送到所述第三连接器;所述源极驱动芯片通过连接条和所述第三连接器连接。电源板直接通过第三连接线和第三连接器连接来输送电源信号,其连接方式简单、方便,无需再额外连接到其他电路部分,方便工作人员操作。
其中,所述时钟信号由一时钟信号板直接产生,所述时钟信号板和源极驱动电路板电性连接。这是本申请输送时钟信号的又一种具体方式,将产生时钟信号的时钟信号板和源极驱动电路板电性连接,时钟信号板可将时钟信号输送到源极驱动电路板,由于逻辑板成本高,从而本申请通过一时钟信号板代替逻辑板就节省了成本。
其中,所述画面存储到所述源极驱动电路板的源极驱动芯片中。将画面直接存储到源极驱动电路板的源极驱动芯片中,更加方便检测。
根据本申请的另一个方面,本申请还公开了一种显示面板的检测系统,所述检测系统包括:
画面存储装置,用于存储检测用的画面,所述画面存储装置存储于所述显示面板的源极驱动电路板内;
电源板,用于产生电源信号,所述电源板直接和所述源极驱动电路板电性连接;
时钟信号装置,用于产生时钟信号,所述时钟信号装置和源极驱动电路板电性连接。
其中,所述时钟信号装置设置在所述电源板上,所述电源板通过第一连接线和所述源极驱动电路板的第一连接器连接,以及所述电源板通过第二连接线和所述源极驱动电路的第二连接器连接,所述电源信号通过所述第一连接线输送到所述第一连接器,所述时钟信号通过所述第二连接线输送到所述第二连接器;所述源极驱动电路板的源极驱动芯片通过连接条分别和所述第一连接器、第二连接器连接。这是本申请设置时钟信号装置的一种具体方式,将产生时钟信号装置集成到电源板上,电源板可以直接产生时钟信号,这样电源板不仅可以将电源信号输送到源极驱动电路板,还可以将时钟信号输送到源极驱动电路板,从而在检测过程中只需要将电源板和源极驱动电路板电性连接即可,无需额外连接逻辑板或其他电路部分,这样就进一步节省了组装工序,进一步提升了检测效率。而且,电源板本身耐高温、耐高温性能好,在进行耐高温、耐高温试验中不易损坏。以及分别通过两个连接线与两个连接器电性连接,并分别输送电源信号和时钟信号,能够确保各种信号的正常输送。
其中,所述时钟信号装置设置在所述源极起到电路板上。源极驱动电路板一般包括有源极驱动芯片、连接条及连接器,可以在源极驱动芯片或连接条或连接器上设置时钟信号装置,以产生时钟信号。无需额外连接逻辑板或其他检测电路部分,这样就进一步节省了组装工序,进一步提升了检测效率。
其中,所述时钟信号装置设置在所述源极驱动电路板的源极驱动芯片上,所述电源板通过第三连接线和所述源极驱动电路板的第三连接器连接,所述电源信号通过所述第三连接线输送到所述第三连接器;所述源极驱动芯片通过连接条和所述第三连接器连接。这是本申请设置时钟信号装置的另一种具体方式,将产生时钟信号装置集成到源极驱动电路板的源极驱动芯片上,源极驱动芯片 可以直接产生时钟信号并完成输送,从而在检测过程中只需要将电源板的电源信号输送到源极驱动电路板,无需额外连接逻辑板或其他电路部分,这样就进一步节省了组装工序,进一步提升了检测效率。以及电源板直接通过第三连接线和第三连接器连接来输送电源信号,其连接方式简单、方便,无需再额外连接到其他电路部分,方便工作人员操作。
现有液晶面板在做高温高湿试验时,需要使用不同外接的测试电路板来提供画面和时钟信号,但是,多个外接的测试电路板常由于其成本高,耐高温、耐高温性能不足,在反复高温高湿试验中容易损坏。而申请人在实际试验过程中使用TCON(逻辑板)来提供画面和时钟信号,使用电源板提供电源信号,从而相比采用多个外接的测试电路板来分别提供画面和时钟信号就可以减少工序和成本。但是,由于TCON成本高,其耐高温、耐高温性能也有所不足,在反复高温高湿试验中也会损坏。因此,申请人采用本申请的技术方案,在本申请中,将用于检测的画面直接存储到显示面板的源极驱动电路板内,并且将电源板直接和源极驱动电路板电性连接,将电源信号和时钟信号输送到源极驱动电路板就可以对显示面板进行检测,无需使用多个外接的测试电路板或TCON提供画面,以实现高温高湿检测。从而本申请无需使用多个外接的测试电路板或TCON即可实现高温高湿检测,相比现有技术就省去多个外接的测试电路板,进而就避免多个外接的测试电路板被损坏,不仅节约了检测过程中设备投入成本和维护成本;而且还节省了检测过程中的工序,提升了生产效率。
【附图说明】
所包括的附图用来提供对本申请实施例的进一步的理解,其构成了说明书的一部分,用于例示本申请的实施方式,并与文字描述一起来阐释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1是本申请一个实施例显示面板的检测方法的流程图;
图2是本申请一个实施例显示面板的检测方法的流程图;
图3是本申请一个实施例显示面板的检测方法的流程图;
图4是本申请一个实施例显示面板的检测方法的流程图;
图5是本申请一个实施例显示面板的检测装置和显示面板配合的结构示意图;
图6是本申请一个实施例显示面板的检测装置和显示面板配合的结构示意图;
图7是本申请一个实施例显示面板的检测装置和显示面板配合的结构示意图;
图8是本申请一个实施例显示面板的检测装置和显示面板配合的结构示意图。
【具体实施方式】
这里所公开的具体结构和功能细节仅仅是代表性的,并且是用于描述本申请的示例性实施例的目的。但是本申请可以通过许多替换形式来具体实现,并且不应当被解释成仅仅受限于这里所阐述的实施例。
在本申请的描述中,需要理解的是,术语“中心”、“横向”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。另外,术语“包括”及其任何变形,意图在于覆盖不排他的包含。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
这里所使用的术语仅仅是为了描述具体实施例而不意图限制示例性实施例。除非上下文明确地另有所指,否则这里所使用的单数形式“一个”、“一项”还意图包括复数。还应当理解的是,这里所使用的术语“包括”和/或“包含”规定所陈述的特征、整数、步骤、操作、单元和/或组件的存在,而不排除存在或添加一个或更多其他特征、整数、步骤、操作、单元、组件和/或其组合。
下面参考图1至图8描述本申请实施例显示面板的检测方法和显示面板的检测装置。
下面结合附图1至8和具体实施例对本申请作进一步详细说明。
在本申请一实施例中,如图1所示,图1为本申请一实施例所述显示面板的检测方法的流程图,所述检测方法包括以下步骤S101、步骤S102和步骤S103。具体的:
步骤S101:将用于检测的画面存储到显示面板的源极驱动电路板内;
步骤S102:将产生电源信号的电源板直接和所述源极驱动电路板电性连接;
步骤S103:将电源信号和时钟信号输送到所述源极驱动电路板。
本实施例将用于检测的画面直接存储到显示面板的源极驱动电路板内,并且将电源板直接和源极驱动电路板电性连接,将电源信号和时钟信号输送到源极驱动电路板就可以对显示面板进行检测,无需使用多个外接的测试电路板或TCON提供画面,以实现高温高湿检测。从而本申请无需使用多个外接的测试电路板或TCON即可实现高温高湿检测,相比现有技术就省去多个外接的测试电路板,进而就避免多个外接的测试电路板被损坏,不仅节约了检测过程中设备投入成本和维护成本;而且还节省了检测过程中的工序,提升了生产效率。
其中,所述源极驱动电路板包括有源极驱动芯片,在步骤S101中,具体的将画面存储到源极驱动芯片中,以便高温高湿检测使用。
其中,画面包括但并不限于:红画面、绿画面、蓝画面、黑画面、灰画面。
在步骤S102中,直接将电源板和源极驱动电路板电性连接,具体的电源板通过连接线(比如:导线)和源极驱动电路板的连接器连接,连接器再和连接条连接,连接条再和源极驱动芯片连接,从而电源板的电源信号通过连接线输送到连接器,连接器再将信号输送到连接条,并通过连接条输送到源极驱动芯片,以便高温高湿检测使用。
在步骤S103中,将电源信号和时钟信号输送到源极驱动电路板,具体的是将电源信号和时钟信号输送到源极驱动电路板的源极驱动芯片,这样就可以完成高温高湿检测。
在本申请一实施例中,如图2所示,图2为本申请一实施例显示面板的检测方法的一种具体流程图,图2中的检测方法包括步骤S201、步骤S202、步骤S203及步骤S204。具体的:
步骤S201:将用于检测的画面存储到显示面板的源极驱动电路板内;
步骤S202:将产生电源信号的电源板直接和所述源极驱动电路板电性连接;
步骤S203:从所述电源板直接产生时钟信号。
步骤S204:将电源信号和时钟信号输送到所述源极驱动电路板。
其中,步骤S201和图1中的步骤S101相同,可参见图1中的步骤S101;步骤S202和图1中的步骤S102相同,可参见图1中的步骤S102,在此对步骤S201和步骤S202不再进行一一详述。
其中,在步骤S203中,所述时钟信号直接由所述电源板产生。这是本申请输送时钟信号的一种具体方式,将产生时钟信号的部分集成到电源板上,本实施例可以在电源板上集成振荡器(oscillator),通过振荡器产生时钟信号。当然,需要说明的是,本实施例也可以在电源板上集成其他结构以产生时钟信号。这样电源板可以直接产生时钟信号,这样电源板不仅可以将电源信号输送到源极 驱动电路板,还可以将时钟信号输送到源极驱动电路板,从而在检测过程中只需要将电源板和源极驱动电路板电性连接即可,无需额外连接逻辑板或其他电路部分,这样就进一步节省了组装工序,进一步提升了检测效率。而且,电源板本身耐高温、耐高温性能好,在进行耐高温、耐高温试验中不易损坏。
具体的,所述电源板通过第一连接线和所述源极驱动电路板的第一连接器连接,以及所述电源板通过第二连接线和所述源极驱动电路的第二连接器连接,所述电源信号通过所述第一连接线输送到所述第一连接器,所述时钟信号通过所述第二连接线输送到所述第二连接器;所述源极驱动电路板的源极驱动芯片通过连接条分别和所述第一连接器、第二连接器连接。分别通过连接线(第一连接线和第二连接线)与两个连接器(第一连接器和第二连接器)电性连接,并分别输送电源信号和时钟信号,能够确保各种信号的正常输送。
在步骤S204中,第一连接线和第一连接器连接,第一连接器和连接条连接,连接条再和源极驱动芯片连接,从而电源板的电源信号就先后通过第一连接线、第一连接器及连接条输送到源极驱动芯片,以便进行高温高湿检测。以及第二连接线和第二连接器连接,第二连接器和连接条连接,连接条再和源极驱动芯片连接,从而电源板的时钟信号就先后通过第二连接线、第二连接器及连接条输送到源极驱动芯片,以便进行高温高湿检测。
本实施例不仅节省了逻辑板或多个其他检测电路板,避免逻辑板或多个其他检测电路板损坏,节省了成本,而且还节省了工序,提高检测效率。
在本申请一实施例中,所述时钟信号直接由所述源极驱动电路板产生。源极驱动电路板包括有源极驱动芯片、连接条及连接器,可以通过源极驱动芯片或连接条或连接器产生时钟信号,无需额外连接逻辑板或其他检测电路部分,这样就进一步节省了组装工序,进一步提升了检测效率。
进一步的,如图3所示,图3为本申请一实施例显示面板的检测方法的另一种具体流程图,图3中的检测方法包括步骤S301、步骤S302、步骤S303及步骤S304。具体的:
步骤S301:将用于检测的画面存储到显示面板的源极驱动电路板内;
步骤S302:将产生电源信号的电源板直接和所述源极驱动电路板电性连接;
步骤S303:从所述源极驱动电路板的源极驱动芯片直接产生时钟信号。
步骤S304:将电源信号和时钟信号输送到所述源极驱动电路板。
其中,步骤S301和图1中的步骤S101相同,可参见图1中的步骤S101;步骤S302和图1中的步骤S102相同,可参见图1中的步骤S102,在此对步骤S301和步骤S302不再进行一一详述。
其中,在步骤S303中,所述时钟信号直接由所述源极驱动电路板的源极驱动芯片产生。这是本申请实施例输送时钟信号的另一种具体方式,将产生时钟信号的部分集成到源极驱动电路板的源极驱动芯片上,本实施例可以在电源板上集成振荡器(oscillator),通过振荡器产生时钟信号。当然,需要说明的是,本实施例也可以在源极驱动芯片上集成其他结构以产生时钟信号,。这样源极驱动芯片可以直接产生时钟信号并完成输送,从而在检测过程中只需要将电源板的电源信号输送到源极驱动电路板,无需额外连接逻辑板或其他电路部分,这样就进一步节省了组装工序,进一步提升了检测效率。
具体的,所述电源板通过第三连接线和所述源极驱动电路板的第三连接器连接,所述电源信号通过所述第三连接线输送到所述第三连接器;所述源极驱动芯片通过连接条和所述第三连接器连接。电源板直接通过第三连接线和第三连接器连接来输送电源信号,其连接方式简单、方便,无需再额外连接到其他电路部分,方便工作人员操作。
在步骤S304中,第三连接线和第三连接器连接,第三连接器和连接条连接,连接条再和源极驱动芯片连接,从而电源板的电源信号就先后通过第三连接线、第三连接器及连接条输送到源极驱动芯片。以及源极驱动芯片可直接产生时钟芯片,以便进行高温高湿检测。
本实施例相比现有技术,不仅节省了逻辑板或其他结构的检测电路板,避免逻辑板或其他检测电路板损坏,节省了成本,而且还节省了工序,提高检测 效率。
在本申请一实施例中,如图4所示,图4为本申请一实施例显示面板的检测方法的又一种具体流程图,图4中的检测方法包括步骤S401、步骤S402、步骤S403及步骤S404。具体的:
步骤S401:将用于检测的画面存储到显示面板的源极驱动电路板内;
步骤S402:将产生电源信号的电源板直接和所述源极驱动电路板电性连接;
步骤S403:从时钟信号板直接产生时钟信号,所述时钟信号板和源极起到电路电性连接。
步骤S404:将电源信号和时钟信号输送到所述源极驱动电路板。
其中,步骤S401和图1中的步骤S101相同,可参见图1中的步骤S101;步骤S402和图1中的步骤S102相同,可参见图1中的步骤S102,在此对步骤S401和步骤S402不再进行一一详述。
其中,在步骤S403中,所述时钟信号由一时钟信号板直接产生,所述时钟信号板和源极驱动电路板电性连接。这是本申请实施例输送时钟信号的又一种具体方式,将产生时钟信号的时钟信号板和源极驱动电路板电性连接,时钟信号板可将时钟信号输送到源极驱动电路板,由于逻辑板或其他多个检测电路板成本高,从而本申请实施例通过一时钟信号板代替逻辑板或其他多个检测电路板就节省了成本。
本实施例的时钟信号板可仅集成有振荡器(oscillator),通过振荡器产生时钟信号。当然,需要说明的是,本实施例也可以在一电路板上集成其他结构以产生时钟信号。
本实施例的时钟信号板直接与源极驱动电路板的连接器连接,连接器和源极驱动电路板的连接条连接,连接条再和源极驱动电路板的源极驱动芯片连接。然而,需要说明的是,本实施例也可以将时钟信号板先和电源板电性连接,电源板再分别通过两个连接线和两个连接器连接,两个连接器再连接到连接条,连接条再和源极驱动芯片连接。
在步骤S404中,当时钟信号板直接和连接器连接时,时钟信号先后通过连接器、连接条输送到源极驱动芯片;以及电源信号通过连接线另一连接器、连接条输送到源极驱动芯片,以便进行高温高湿检测。
而当时钟信号板和电源板连接时,电源板分别通过两个连接线和两个连接器连接,两个连接器再连接到连接条,连接条再和源极驱动芯片连接。时钟信号通过其中一个连接线、其中一个连接器及连接条输送到源极驱动芯片;以及电源信号通过另一个连接线、另一个连接器及连接条输送到源极驱动芯片,以便进行高温高湿检测。
在本申请一实施例中,如图5所示,图5为本申请一实施例显示面板的检测系统和显示面板配合的一种结构示意图,所述检测系统200包括画面存储装置220、电源板210和时钟信号装置230。画面存储装置用于存储检测用的画面,所述画面存储装置220存储于所述显示面板100的源极驱动电路板110内;电源板210用于产生电源信号,所述电源板210直接和所述源极驱动电路板110电性连接;时钟信号装置230用于产生时钟信号,所述时钟信号装置230和源极驱动电路板110电性连接。
其中,源极驱动电路板110包括有源极驱动芯片111、连接条112、第一连接器113和第二连接器114。
具体的,所述画面存储装置220存储于所述源极驱动芯片111内,无需使用逻辑板提供画面,以便高温高湿检测使用。
其中,画面包括但并不限于:红画面、绿画面、蓝画面、黑画面、灰画面。
其中,所述时钟信号装置230设置在所述电源板210上,所述电源板210通过第一连接线310和所述源极驱动电路板的第一连接器113连接,以及所述电源板210通过第二连接线320和所述源极驱动电路的第二连接器114连接,所述电源信号通过所述第一连接线输送到所述第一连接器,所述时钟信号通过所述第二连接线输送到所述第二连接器;所述源极驱动电路板的源极驱动芯片111通过连接条112分别和所述第一连接器113、第二连接器114连接。这是本 申请设置时钟信号装置的一种具体方式,将产生时钟信号装置集成到电源板上,电源板可以直接产生时钟信号,这样电源板不仅可以将电源信号输送到源极驱动电路板,还可以将时钟信号输送到源极驱动电路板,从而在检测过程中只需要将电源板和源极驱动电路板电性连接即可,无需额外连接逻辑板或其他电路部分,这样就进一步节省了组装工序,进一步提升了检测效率。而且,电源板本身耐高温、耐高温性能好,在进行耐高温、耐高温试验中不易损坏。以及分别通过两个连接线与两个连接器电性连接,并分别输送电源信号和时钟信号,能够确保各种信号的正常输送。
本实施例可以在电源板上集成振荡器(oscillator),通过振荡器产生时钟信号。当然,需要说明的是,本实施例也可以在电源板上集成其他结构以产生时钟信号。
本实施例相比现有技术,不仅节省了逻辑板或其他结构的检测电路板,避免逻辑板或其他检测电路板损坏,节省了成本,而且还节省了工序,提高检测效率。
在本申请一实施例中,如图6所示,图6为本申请一实施例显示面板的检测系统和显示面板配合的一种结构示意图,所述检测系统200包括画面存储装置220、电源板210和时钟信号装置230。画面存储装置用于存储检测用的画面,所述画面存储装置220存储于所述显示面板100的源极驱动电路板110内;电源板210用于产生电源信号,所述电源板210直接和所述源极驱动电路板110电性连接;时钟信号装置230用于产生时钟信号,所述时钟信号装置230和源极驱动电路板110电性连接。
其中,源极驱动电路板110包括有源极驱动芯片111、连接条112、第三连接器115。
具体的,所述画面存储装置220存储于所述源极驱动芯片111内,无需使用逻辑板提供画面,以便高温高湿检测使用。
其中,画面包括但并不限于:红画面、绿画面、蓝画面、黑画面、灰画面。
其中,所述时钟信号装置230设置在所述源极驱动电路板上,比如将时钟信号装置230设置在源极驱动芯片111上,或将时钟信号装置230设置在连接条112上,或将将时钟信号装置230设置在第三连接器115上。
具体的,所述时钟信号装置230设置在所述源极驱动电路板的源极驱动芯片111上,所述电源板通过第三连接线330和所述源极驱动电路板的第三连接器115连接,所述电源信号通过所述第三连接线输送到所述第三连接器;所述源极驱动芯片通过连接条和所述第三连接器连接。这是本申请实施例设置时钟信号装置的另一种具体方式,将产生时钟信号装置集成到源极驱动电路板的源极驱动芯片上,源极驱动芯片可以直接产生时钟信号并完成输送,从而在检测过程中只需要将电源板的电源信号输送到源极驱动电路板,无需额外连接逻辑板或其他电路部分,这样就进一步节省了组装工序,进一步提升了检测效率。以及电源板直接通过第三连接线和第三连接器连接来输送电源信号,其连接方式简单、方便,无需再额外连接到其他电路部分,方便工作人员操作。
本实施例可以在电源板上集成振荡器(oscillator),通过振荡器产生时钟信号。当然,需要说明的是,本实施例也可以在源极驱动电路板上集成其他结构以产生时钟信号。
本实施例相比现有技术,不仅节省了逻辑板或其他结构的检测电路板,避免逻辑板或其他检测电路板损坏,节省了成本,而且还节省了工序,提高检测效率。
在本申请一实施例中,如图7所示,图7为本申请一实施例显示面板的检测系统和显示面板配合的一种结构示意图,所述检测系统200包括画面存储装置220、电源板210和时钟信号装置230。画面存储装置用于存储检测用的画面,所述画面存储装置220存储于所述显示面板100的源极驱动电路板110内;电源板210用于产生电源信号,所述电源板210直接和所述源极驱动电路板110电性连接;时钟信号装置230用于产生时钟信号,所述时钟信号装置230和源极驱动电路板110电性连接。
其中,源极驱动电路板110包括有源极驱动芯片111、连接条112、第一连接器113和第二连接器114。
具体的,所述画面存储装置220存储于所述源极驱动芯片111内,无需使用逻辑板提供画面,以便高温高湿检测使用。
其中,画面包括但并不限于:红画面、绿画面、蓝画面、黑画面、灰画面。
其中,所述时钟信号装置230单独设置,时钟信号装置可以为一时钟信号板,或直接在一电路板上集成振荡器(oscillator),通过振荡器产生时钟信号。当然,需要说明的是,本实施例也可以在电路板上集成其他结构以产生时钟信号。本实施例时钟信号装置230通过第五连接线350直接连接到第五连接器117,第五连接器117和连接条112连接,连接条112和源极驱动芯片111连接,从而时钟信号装置产生的时钟信号通过第五连接线、第五连接器及连接条传输到源极驱动芯片。以及电源板210通过第四连接线340连接到第四连接器116,第四连接器和连接条连接,连接条和源极驱动芯片连接,从而电源信号通过第四连接线、第四连接器及连接条传输到源极驱动芯片,以便进行高温高湿检测。
然而,需要说明的是,本实施例时钟信号装置也可以不直接和源极驱动电路板电性连接。
例如1:如图8所示,将时钟信号装置230和电源板210电性连接,电源板再通过第六连接线360和第六连接器118连接以传输电源信号;以及电源板再通过第七连接线370和第七连接线119连接以传输时钟信号。连接条112分别和第六连接器、第七连接器电性连接,以便将电源信号和时钟信号输送到源极驱动芯片111,以实现高温高湿检测。
例如2:电源板直接和时钟信号装置电性连接,时钟信号装置和一连接器电性连接,此连接器和连接条电性连接,连接条和源极驱动芯片电性连接,这样电源板的电源信号通过时钟信号装置传输到源极驱动电路板。而时钟信号可直接传输到此连接器,并通过连接条输送到源极驱动芯片。
本实施例不仅节省了逻辑板或其他结构的检测电路板,避免逻辑板或其他 检测电路板损坏,节省了成本,而且还节省了工序,提高检测效率。
在本申请中,本申请的显示面板100还包括有栅极驱动芯片120。
本申请的显示面板100可例如为LCD、OLED、QLED、曲面面板或其他显示面板。
以上内容是结合具体的优选实施方式对本申请所作的进一步详细说明,不能认定本申请的具体实施只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本申请的保护范围。

Claims (20)

  1. 一种显示面板的检测系统,包括:
    画面存储装置,用于存储检测用的画面,所述画面存储装置存储于所述显示面板的源极驱动电路板的源极驱动芯片中;
    电源板,用于产生电源信号,所述电源板直接和所述源极驱动电路板电性连接;
    时钟信号装置,用于产生时钟信号,所述时钟信号装置和源极驱动电路板电性连接,所述时钟信号装置设置在所述电源板上;所述电源板通过第一连接线和所述源极驱动电路板的第一连接器连接,以及所述电源板通过第二连接线和所述源极驱动电路的第二连接器连接,所述电源信号通过所述第一连接线输送到所述第一连接器,所述时钟信号通过所述第二连接线输送到所述第二连接器;所述源极驱动电路板的源极驱动芯片通过连接条分别和所述第一连接器、第二连接器连接。
  2. 一种显示面板的检测方法,所述检测方法包括以下步骤:
    将用于检测的画面存储到显示面板的源极驱动电路板内;
    将产生电源信号的电源板直接和所述源极驱动电路板电性连接;
    将电源信号和时钟信号输送到所述源极驱动电路板。
  3. 如权利要求2所述的显示面板的检测方法,其中,所述时钟信号直接由所述电源板产生。
  4. 如权利要求3所述的显示面板的检测方法,其中,所述电源板通过第一连接线和所述源极驱动电路板的第一连接器连接,以及所述电源板通过第二连接线和所述源极驱动电路的第二连接器连接,所述电源信号通过所述第一连接线输送到所述第一连接器,所述时钟信号通过所述第二连接线输送到所述第二连接器;所述源极驱动电路板的源极驱动芯片通过连接条分别和所述第一连接器、第二连接器连接。
  5. 如权利要求4所述的显示面板的检测方法,其中,所述画面存储到所述源极驱动电路板的源极驱动芯片中。
  6. 如权利要求3所述的显示面板的检测方法,其中,所述画面存储到所述源极驱动电路板的源极驱动芯片中。
  7. 如权利要求2所述的显示面板的检测方法,其中,所述时钟信号直接由所述源极驱动电路板的源极驱动芯片产生。
  8. 如权利要求7所述的显示面板的检测方法,其中,所述电源板通过第三连接线和所述源极驱动电路板的第三连接器连接,所述电源信号通过所述第三连接线输送到所述第三连接器;所述源极驱动芯片通过连接条和所述第三连接器连接。
  9. 如权利要求8所述的显示面板的检测方法,其中,所述画面存储到所述源极驱动电路板的源极驱动芯片中。
  10. 如权利要求7所述的显示面板的检测方法,其中,所述画面存储到所述源极驱动电路板的源极驱动芯片中。
  11. 如权利要求2所述的显示面板的检测方法,其中,所述时钟信号由一时钟信号板直接产生,所述时钟信号板和源极驱动电路板电性连接。
  12. 如权利要求11所述的显示面板的检测方法,其中,所述画面存储到所述源极驱动电路板的源极驱动芯片中。
  13. 如权利要求2所述的显示面板的检测方法,其中,所述画面存储到所述源极驱动电路板的源极驱动芯片中。
  14. 一种显示面板的检测系统,包括:
    画面存储装置,用于存储检测用的画面,所述画面存储装置存储于所述显示面板的源极驱动电路板内;
    电源板,用于产生电源信号,所述电源板直接和所述源极驱动电路板电性连接;
    时钟信号装置,用于产生时钟信号,所述时钟信号装置和源极驱动电路板 电性连接。
  15. 如权利要求14所述的检测系统,其中,所述时钟信号装置设置在所述电源板上。
  16. 如权利要求15所述的检测系统,其中,所述电源板通过第一连接线和所述源极驱动电路板的第一连接器连接,以及所述电源板通过第二连接线和所述源极驱动电路的第二连接器连接,所述电源信号通过所述第一连接线输送到所述第一连接器,所述时钟信号通过所述第二连接线输送到所述第二连接器;所述源极驱动电路板的源极驱动芯片通过连接条分别和所述第一连接器、第二连接器连接。
  17. 如权利要求14所述的检测系统,其中,所述时钟信号装置设置在所述源极驱动电路板的源极驱动芯片上。
  18. 如权利要求17所述的检测系统,其中,所述电源板通过第三连接线和所述源极驱动电路板的第三连接器连接,所述电源信号通过所述第三连接线输送到所述第三连接器;所述源极驱动芯片通过连接条和所述第三连接器连接。
  19. 如权利要求14所述的显示面板的检测方法,其中,所述时钟信号装置设置在一时钟信号板上,所述时钟信号板和源极驱动电路板电性连接。
  20. 如权利要求14所述的显示面板的检测方法,其中,所述画面存储装置存储于所述显示面板的源极驱动电路板内。
PCT/CN2017/083791 2016-12-16 2017-05-10 显示面板的检测方法和显示面板的检测装置 WO2018107649A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/329,233 US10733923B2 (en) 2016-12-16 2017-05-10 Display panel test detection method and device for storing a picture for detection in a source driver circuit board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611182537.X 2016-12-16
CN201611182537.XA CN106504687B (zh) 2016-12-16 2016-12-16 显示面板的检测方法和显示面板的检测系统

Publications (1)

Publication Number Publication Date
WO2018107649A1 true WO2018107649A1 (zh) 2018-06-21

Family

ID=58333339

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2017/083791 WO2018107649A1 (zh) 2016-12-16 2017-05-10 显示面板的检测方法和显示面板的检测装置
PCT/CN2017/116291 WO2018108135A1 (zh) 2016-12-16 2017-12-14 显示面板的检测方法和显示面板的检测装置
PCT/CN2017/116292 WO2018108136A1 (zh) 2016-12-16 2017-12-14 显示面板的检测方法和显示面板的检测装置

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/CN2017/116291 WO2018108135A1 (zh) 2016-12-16 2017-12-14 显示面板的检测方法和显示面板的检测装置
PCT/CN2017/116292 WO2018108136A1 (zh) 2016-12-16 2017-12-14 显示面板的检测方法和显示面板的检测装置

Country Status (3)

Country Link
US (3) US10733923B2 (zh)
CN (1) CN106504687B (zh)
WO (3) WO2018107649A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106504687B (zh) 2016-12-16 2018-04-03 惠科股份有限公司 显示面板的检测方法和显示面板的检测系统
CN106842651A (zh) * 2017-04-11 2017-06-13 惠科股份有限公司 显示装置及显示面板的测试方法
CN107742505B (zh) * 2017-10-26 2019-11-05 惠科股份有限公司 显示装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020084972A1 (en) * 2000-12-28 2002-07-04 Kim Jong Dae Liquid crystal display device and method for driving the same
CN1645463A (zh) * 2004-06-14 2005-07-27 友达光电股份有限公司 液晶显示装置
CN102063877A (zh) * 2009-11-12 2011-05-18 群康科技(深圳)有限公司 液晶显示器及其检测方法
CN202084281U (zh) * 2011-06-16 2011-12-21 北京京东方光电科技有限公司 一种液晶显示器的驱动装置及液晶显示装置
CN102629457A (zh) * 2011-09-26 2012-08-08 北京京东方光电科技有限公司 液晶显示器的驱动模块
CN204302618U (zh) * 2015-01-04 2015-04-29 京东方科技集团股份有限公司 一种显示装置
CN204904802U (zh) * 2014-07-31 2015-12-23 株式会社日本显示器 液晶显示装置
CN105575346A (zh) * 2014-10-13 2016-05-11 群创光电股份有限公司 显示面板及显示面板自动化检测方法
CN105869591A (zh) * 2016-05-31 2016-08-17 深圳市华星光电技术有限公司 一种驱动电路及液晶显示装置
CN106504687A (zh) * 2016-12-16 2017-03-15 惠科股份有限公司 显示面板的检测方法和显示面板的检测装置

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5081687A (en) * 1990-11-30 1992-01-14 Photon Dynamics, Inc. Method and apparatus for testing LCD panel array prior to shorting bar removal
KR100324914B1 (ko) * 1998-09-25 2002-02-28 니시무로 타이죠 기판의 검사방법
JP3437152B2 (ja) * 2000-07-28 2003-08-18 ウインテスト株式会社 有機elディスプレイの評価装置および評価方法
KR100724745B1 (ko) * 2000-09-30 2007-06-04 엘지.필립스 엘시디 주식회사 액정표시소자 및 그 검사방법
KR100662989B1 (ko) * 2004-08-20 2006-12-28 삼성에스디아이 주식회사 검사회로부를 구비하는 표시장치
JP2006098536A (ja) * 2004-09-28 2006-04-13 Sharp Corp 液晶表示装置
TWI273312B (en) * 2005-11-30 2007-02-11 Au Optronics Corp Display device and panel module
US20070126667A1 (en) * 2005-12-01 2007-06-07 Toshiba Matsushita Display Technology Co., Ltd. El display apparatus and method for driving el display apparatus
TWI345747B (en) * 2006-08-07 2011-07-21 Au Optronics Corp Method of testing liquid crystal display
CN101452120B (zh) * 2007-12-05 2011-08-17 群康科技(深圳)有限公司 液晶显示器的检测装置及其检测方法
JP2009198691A (ja) * 2008-02-20 2009-09-03 Eastman Kodak Co 有機el表示モジュールおよびその製造方法
US9674517B2 (en) * 2008-05-15 2017-06-06 Hewlett-Packard Development Company, L.P. Monitoring quality of video signals
KR101472843B1 (ko) * 2008-07-11 2014-12-15 삼성디스플레이 주식회사 디스플레이 포트 기능 테스트 장치, 이를 이용하는디스플레이 포트 기능 테스트 시스템 및 방법
CN101685040B (zh) * 2008-09-27 2011-07-27 奇景光电股份有限公司 显示器的测试装置及测试方法
WO2010035557A1 (ja) * 2008-09-29 2010-04-01 シャープ株式会社 表示パネル
US8963937B2 (en) * 2011-02-10 2015-02-24 Novatek Microelectronics Corp. Display controller driver and testing method thereof
WO2012147703A1 (ja) * 2011-04-28 2012-11-01 シャープ株式会社 表示モジュールおよびそれを備えた表示装置、並びに電子機器
CN103280173B (zh) * 2012-09-28 2016-08-10 武汉天马微电子有限公司 液晶显示面板的检测装置及其检测方法
US9472131B2 (en) * 2012-11-02 2016-10-18 Apple Inc. Testing of integrated circuit to substrate joints
TW201421250A (zh) * 2012-11-29 2014-06-01 Faraday Tech Corp 顯示裝置及其影像擷取方法
CN103105684B (zh) * 2013-01-22 2015-09-16 北京京东方光电科技有限公司 液晶显示模块测试方法、装置、系统及测试设备
KR102002495B1 (ko) * 2013-02-28 2019-07-23 삼성디스플레이 주식회사 유기 발광 표시 패널
KR102070707B1 (ko) 2013-05-27 2020-01-30 삼성디스플레이 주식회사 표시 장치
KR102078857B1 (ko) * 2013-08-02 2020-02-20 삼성디스플레이 주식회사 컨트롤 보드 및 이를 포함하는 표시 장치
JP2015079187A (ja) * 2013-10-18 2015-04-23 シナプティクス・ディスプレイ・デバイス株式会社 表示装置および表示ドライバ
TWI569238B (zh) * 2014-10-13 2017-02-01 群創光電股份有限公司 顯示面板及顯示面板自動化檢測方法
KR20160102644A (ko) * 2015-02-23 2016-08-31 삼성전자주식회사 불량 검출 방법과 이를 운용하는 디스플레이 모듈 및 전자 장치
KR102288319B1 (ko) * 2015-06-10 2021-08-11 삼성디스플레이 주식회사 표시 장치 및 그 제어 방법
CN105609024B (zh) * 2016-01-05 2018-07-27 京东方科技集团股份有限公司 显示面板的测试方法及装置
US10043428B2 (en) * 2016-05-25 2018-08-07 Microsoft Technology Licensing, Llc Evaluation of a display temperature
US10580336B2 (en) * 2016-07-14 2020-03-03 Samsung Electronics Co., Ltd. Display driver device
CN106228923B (zh) * 2016-08-02 2019-04-30 京东方科技集团股份有限公司 一种驱动电路、驱动方法及显示面板
CN106125367B (zh) * 2016-08-26 2019-03-15 深圳市华星光电技术有限公司 一种检测Mura补偿数据异常的方法及装置
CN106847144A (zh) * 2017-03-23 2017-06-13 京东方科技集团股份有限公司 测试用转接模块、终端测试系统及测试方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020084972A1 (en) * 2000-12-28 2002-07-04 Kim Jong Dae Liquid crystal display device and method for driving the same
CN1645463A (zh) * 2004-06-14 2005-07-27 友达光电股份有限公司 液晶显示装置
CN102063877A (zh) * 2009-11-12 2011-05-18 群康科技(深圳)有限公司 液晶显示器及其检测方法
CN202084281U (zh) * 2011-06-16 2011-12-21 北京京东方光电科技有限公司 一种液晶显示器的驱动装置及液晶显示装置
CN102629457A (zh) * 2011-09-26 2012-08-08 北京京东方光电科技有限公司 液晶显示器的驱动模块
CN204904802U (zh) * 2014-07-31 2015-12-23 株式会社日本显示器 液晶显示装置
CN105575346A (zh) * 2014-10-13 2016-05-11 群创光电股份有限公司 显示面板及显示面板自动化检测方法
CN204302618U (zh) * 2015-01-04 2015-04-29 京东方科技集团股份有限公司 一种显示装置
CN105869591A (zh) * 2016-05-31 2016-08-17 深圳市华星光电技术有限公司 一种驱动电路及液晶显示装置
CN106504687A (zh) * 2016-12-16 2017-03-15 惠科股份有限公司 显示面板的检测方法和显示面板的检测装置

Also Published As

Publication number Publication date
US20190251885A1 (en) 2019-08-15
CN106504687A (zh) 2017-03-15
US10699614B2 (en) 2020-06-30
CN106504687B (zh) 2018-04-03
US10733923B2 (en) 2020-08-04
WO2018108136A1 (zh) 2018-06-21
US20190318675A1 (en) 2019-10-17
US10672314B2 (en) 2020-06-02
US20190333429A1 (en) 2019-10-31
WO2018108135A1 (zh) 2018-06-21

Similar Documents

Publication Publication Date Title
KR101800669B1 (ko) 액정표시장치 및 이의 제조방법
US8773419B2 (en) Liquid crystal display
CN101999095B (zh) 有源矩阵基板、显示装置、有源矩阵基板的检查方法和显示装置的检查方法
WO2020051987A1 (zh) 一种显示面板和显示装置
CN109307961B (zh) 显示面板电路结构
CN211237679U (zh) 测试电路及其显示装置
GB2550726A (en) Bright spot-repaired liquid crystal panel and bright spot repair method therefor
US20190384078A1 (en) Lighting jig for returning to light-on and panel detecting method thereof
KR101549260B1 (ko) 액정표시장치
WO2021169662A1 (zh) 检测结构、显示面板、检测装置及检测系统
WO2018086297A1 (zh) 显示面板和显示器
US9576514B2 (en) Method for detecting disconnection of gate line and detection apparatus
WO2018107649A1 (zh) 显示面板的检测方法和显示面板的检测装置
WO2014180042A1 (zh) 液晶面板的暗点修复方法及液晶面板
KR20120119082A (ko) 액정표시장치용 기판 절단 방법
WO2018090577A1 (zh) 显示面板、显示器及显示面板的电压补偿方法
CN109358458A (zh) 显示装置
WO2019084979A1 (zh) 显示面板和显示装置
CN205670222U (zh) 一种tft液晶面板
KR101879300B1 (ko) 액정표시장치
WO2020182126A1 (zh) 显示基板及终端
CN208689335U (zh) 显示面板和显示装置
JP4919607B2 (ja) 液晶表示装置
KR102185427B1 (ko) 액정표시장치
CN104375296A (zh) 一种玻璃基板、外围电路板和显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/11/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17881677

Country of ref document: EP

Kind code of ref document: A1