WO2018105865A1 - 을레핀 공중합체 합성용 촉매 조성물 및 올레핀 공중합체의 제조 방법 - Google Patents

을레핀 공중합체 합성용 촉매 조성물 및 올레핀 공중합체의 제조 방법 Download PDF

Info

Publication number
WO2018105865A1
WO2018105865A1 PCT/KR2017/010334 KR2017010334W WO2018105865A1 WO 2018105865 A1 WO2018105865 A1 WO 2018105865A1 KR 2017010334 W KR2017010334 W KR 2017010334W WO 2018105865 A1 WO2018105865 A1 WO 2018105865A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
olefin copolymer
halogen
aryl
Prior art date
Application number
PCT/KR2017/010334
Other languages
English (en)
French (fr)
Other versions
WO2018105865A8 (ko
Inventor
박진영
최이영
홍복기
이승민
선순호
김선미
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201780003677.2A priority Critical patent/CN108401432B/zh
Priority to US15/767,920 priority patent/US10669363B2/en
Priority to EP17854215.5A priority patent/EP3372620B1/en
Publication of WO2018105865A1 publication Critical patent/WO2018105865A1/ko
Publication of WO2018105865A8 publication Critical patent/WO2018105865A8/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/06Metallic compounds other than hydrides and other than metallo-organic compounds; Boron halide or aluminium halide complexes with organic compounds containing oxygen
    • C08F4/12Metallic compounds other than hydrides and other than metallo-organic compounds; Boron halide or aluminium halide complexes with organic compounds containing oxygen of boron, aluminium, gallium, indium, thallium or rare earths
    • C08F4/14Boron halides or aluminium halides; Complexes thereof with organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • C08F4/6428Component covered by group C08F4/64 with an organo-aluminium compound with an aluminoxane, i.e. a compound containing an Al-O-Al- group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/01Cp or analog bridged to a non-Cp X neutral donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/06Cp analog where at least one of the carbon atoms of the non-coordinating part of the condensed ring is replaced by a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/07Heteroatom-substituted Cp, i.e. Cp or analog where at least one of the substituent of the Cp or analog ring is or contains a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/10Heteroatom-substituted bridge, i.e. Cp or analog where the bridge linking the two Cps or analogs is substituted by at least one group that contains a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/12Long bridge, i.e. Cp or analog where the bridging unit linking the two Cps or analogs is composed of at least two atoms which are not part of a cycle and which are not an ethylene bridge
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer

Definitions

  • the present invention relates to a catalyst composition for olefin copolymer synthesis and a method for producing an olefin copolymer.
  • Olefin polymerization catalyst systems can be classified into Ziegler-Natta and metallocene catalyst systems, and these two highly active catalyst systems have been developed for their respective characteristics.
  • Ziegler-Natta catalysts have been widely applied to existing commercial processes since the invention in the 50's, but because they are multi-site catalysts with multiple active sites, the polymer has a broad molecular weight distribution. Since the composition distribution of the comonomer is not uniform, there is a problem that there is a limit in securing the desired physical properties.
  • the metallocene catalyst is composed of a combination of a main catalyst mainly composed of a transition metal compound and a cocatalyst composed of an organic metal compound composed mainly of aluminum.
  • a catalyst is a homogeneous complex catalyst.
  • the molecular weight distribution is narrow according to the characteristics of the single active site, the homogeneous composition distribution of the comonomer is obtained, the stereoregularity of the polymer, copolymerization characteristics, molecular weight according to the ligand structure modification of the catalyst and the change of polymerization conditions , Has the property of changing the crystallinity and the like.
  • U.S. Patent No. 5,914,289 describes a method of controlling the molecular weight and molecular weight distribution of a polymer using a metallocene catalyst supported on each carrier, but the amount and time of solvent used in preparing the supported catalyst This takes a lot, and the hassle of having to support the metallocene catalyst to be used on the carrier, respectively.
  • Korean Patent Application No. 2003-12308 supports a combination of a catalyst in a semi-unggi group by supporting a binuclear metallocene catalyst and a mononuclear metallocene catalyst together with an activator on a carrier.
  • a method of controlling molecular weight distribution by varying polymerization is disclosed.
  • this method has limitations in realizing the characteristics of each catalyst at the same time, and also has a disadvantage in that the metallocene catalyst portion is liberated in the carrier component of the finished catalyst, causing fouling in the reactor.
  • linear low density polyethylene is prepared by copolymerizing ethylene and alpha olepin at low pressure using a polymerization catalyst, and has a narrow molecular weight distribution, a short chain branch of a constant length, and a long chain branch.
  • Linear low density polyethylene film has the characteristics of general polyethylene, and has high breaking strength and elongation, and excellent tear strength and fall impact strength, so that the use of stretch film or overlap film, which is difficult to apply to existing low density polyethylene or high density polyethylene, has increased. Doing.
  • linear low density polyethylene is most is produced in a single gas phase or half unggi single loop slurry half unggi, productivity is high, but compared to processes using the 1-octene comonomer is used, the 1-butene or 1-haeksen a comonomer, such
  • the product is also inferior in the use of 1-octene comonomers due to the limitations of the catalytic technology and the process technology, and has a problem of poor workability due to the narrow molecular weight distribution. Many efforts are being made to improve these problems.
  • U. S. Patent No. 4, 935, 474 reports on the preparation of polyethylene having a wide molecular weight distribution using two or more metallocene compounds.
  • U.S. Patent No. 6,828,394 reports a method for producing polyethylene, which has good comonomer binding properties and those which do not, have good processability and are particularly suitable for films.
  • US Pat. No. 6,841,631, US Pat. No. 6,894,128 discloses polyethylene having a bimodal or polycrystalline molecular weight distribution using a metallocene catalyst using at least two metal compounds. It is reported that it can be applied to blow molding and pipe.
  • the melt flow index and the melt flow ratio are excellent in workability due to the high ratio, and have high molecular weight, wide molecular weight distribution and high long chain branching content.
  • An object of the present invention is to provide a catalyst composition for synthesizing an olefin copolymer capable of providing an olefin copolymer which can be preferably used as a food container, a bor cap, and the like which require stability and chemical resistance in a high temperature environment.
  • the present invention relates to a method for producing an olefin copolymer using the catalyst composition for synthesizing the olefin copolymer.
  • the first metallocene catalyst comprising a transition metal compound of Formula 1; A second metallocene catalyst comprising a transition metal compound of Formula 2; And a third metallocene catalyst comprising a transition metal compound represented by Chemical Formula 3 below, a catalyst composition for synthesizing an olefin copolymer may be provided.
  • Ri to 3 ⁇ 4 are the same as or different from each other, and each independently hydrogen, Halogen, C1 to C20 straight or branched alkyl group, C2 to C20 straight or branched alkenyl group, C1 to C20 alkylsilyl group, C1 to C20 silylalkyl group, C1 to C20 alkoxysilyl group, C1 to C20 alkoxy groups of straight or branched chain of C20, C6 to C20 aryl group, C7 to C20 alkylaryl group, or an arylalkyl group of C7 to C20, '
  • Qi is an alkylene group having 4 to 20 carbon atoms, an alkenylene group having 4 to 20 carbon atoms, an arylene group having 6 to 20 carbon atoms, a cycloalkylene group having 4 to 20 carbon atoms, Aryl alkylene group having 7 to 22 carbon atoms, cycloalkyl alkylene group having 5 to 22 carbon atoms,
  • 3 ⁇ 4 to Ru are the same as or different from each other, and each independently hydrogen, halogen, a straight or branched chain alkyl group of C 1 to C 20, a straight or branched chain alkenyl group of C 2 to C 20, an alkylsilyl group of C 1 to C 20, C1 to C20 silylalkyl group, C1 to C20 alkoxysilyl group, C1 to C20 straight or branched alkoxy group, C6 to C20 aryl group, C7 to C20 alkylaryl group, or C7 to C20 arylalkyl group At least two adjacent to each other in one of the above benzene rings may be connected to each other to form a substituted or unsubstituted aliphatic or aromatic ring;
  • 3 ⁇ 4 is a Group 4 transition metal
  • M 2 is a Group 4 transition metal
  • X 21 and 2 are the same as or different from each other, and are each independently halogen, in C1 C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, nitro group, amido group, C1 to C20 alkylsilyl group, C1 to C20 alkoxy group, or C1 to C20 sulfonate group,
  • Q 2 carbon, silicon or germanium
  • ⁇ and 2 are the same as or different from each other, and each independently hydrogen, halogen, alkyl group of C1 to C20, alkenyl group of C2 to C20, aryl group of C6 to C20, alkylaryl group of C7 to C20, aryl of C7 to C20 An alkyl group, a C1 to C20 alkoxy group, a C2 to C20 alkoxyalkyl group, a C3 to C20 heterocycloalkyl group, or a C5 to C20 heteroaryl group;
  • C 2 i and C 22 is One represented by Chemical Formula 1 2a, and the other represented by Chemical Formula 2b;
  • 1 ⁇ to are the same as or different from each other, and each independently hydrogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C1 to C20 alkoxy group, C1 to C20 Alkylsilyl group, CI to C20 silylalkyl group, C6 to C20 aryl group, C7 to C20 alkylaryl group, or C7 to C20 arylalkyl group;
  • formula 2b
  • ⁇ and ⁇ to Z 15 are hydrogen, halogen or an alkyl group having 1 to 3 carbon atoms,
  • Z u is C1 to C20 alkyl group, C2 to C20 alkenyl group, C1 to C20 alkylsilyl group, C1 to C20 silylalkyl group, C1 to C20 alkoxysilyl group, C1 to C20 ether group, C1 to C20 Silyl ether group, C1 to C20 silyloxy group, C1 to C20 alkoxy group, C2 to C20 alkoxyalkyl group, C6 to C20 aryl group, C7 to C20 alkylaryl group, or C7 to C20 arylalkyl group,
  • M 3 is a Group 4 transition metal
  • ⁇ 3 ⁇ and 3 ⁇ 4 2 are the same as or different from each other, and each independently halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, nitro group, amido group, C1 to C20 alkylsilyl Group, a C1 to C20 alkoxy group, or a C1 to C20 sulfonate group,
  • Rsi and 2 are the same as or different from each other, and each independently hydrogen, halogen, alkyl group of C1 to C20, alkenyl group of C2 to C20, aryl group of C6 to C20, alkylaryl group of C7 to C20, aryl of C7 to C20 An alkyl group C1 to C20 alkoxy group, C2 to C20 alkoxyalkyl group, C3 to C20 heterocycloalkyl group, or C5 to C20 heteroaryl group;
  • One of C 31 and C 32 is represented by the following Chemical Formula 3a or 3b, and the other one of C 31 and C 32 is represented by the following Chemical Formula 3c, Chemical Formula 3d, or Chemical Formula 3e.
  • to J 31 and J / to J 13 ′ are the same as or different from each other, and each independently hydrogen, halogen, a C1 to C20 alkyl group, a C1 to C20 halo alkyl group, C2 to C20 alkenyl group, C1 to C20 alkylsilyl group, C1 to C20 silylalkyl group, C1 to C20 alkoxysilyl group, C1 to C20 alkoxy group, C6 to C20 aryl group, C7 to C20 alkylaryl Or an arylalkyl group of C7 to C20,
  • At least one of Jg to J 13 and to J 13 ′ is a C1 to C20 halo alkyl group
  • the inventors of the present invention provide a first metallocene catalyst comprising the transition metal compound of Formula 1 having the above-described specific structure, and a metal catalyst of 12 metallocene including the transition metal compound of Formula 2 and the transition metal compound of Formula 3 above.
  • a catalyst composition including a third metallocene catalyst the melt flow index and the melt flow are high in ratio, and thus have excellent processability. It has been confirmed through experiments that the molecular weight distribution and high long chain branching content can provide an olefin copolymer with excellent environmental resistance cracking and workability, and completed the invention.
  • Such olefin copolymers may have high form stability in high pressure and high temperature environments, and thus may be preferably used for food containers, bor caps, and the like.
  • the polyethylene copolymer provided using the catalyst composition for synthesizing the olefin copolymer has excellent processability due to its wide melt flow index and melt flow rate ratio, as well as high molecular weight, wide molecular weight distribution and high long chain branching content.
  • Environmental stress cracking resistance is more than 200 hours or more than 300 hours, shows spiral flow length of more than 13 cm or more than 15 cm at high temperature around 190 ° C and pressure around 90 bar, rate of dimensional change even under high temperature and high pressure It can be represented as about 2% or less, indicating high form stability.
  • the transition metal compound of Formula 1 has a structure in which a transition metal bonds two indene derivatives of a specific structure while coordinating a covalent bond between two indene derivatives, an indene derivative having a relatively small steric hindrance Has a structure connected via 3 ⁇ 4 of the specific structure described above, monomers such as ethylene can easily access the center metal of the transition metal compound, thereby achieving higher copolymerization activity, and exhibiting low hydrogen reaction properties.
  • a medium molecular weight olefin polymer can be produced without a decrease in reaction activity.
  • the transition metal compound of Formula 2 forms an asymmetric crosslinked structure of an indeno indole derivative and an indene derivative by a bridge, and has a non-covalent electron pair capable of acting as a Lewis base to the ligand structure. It shows high polymerization activity.
  • the electronically rich indeno indole derivatives can polymerize high molecular weight olefin polymers by stabilizing beta-hydrogen in a polymer chain in which nitrogen atoms are grown by hydrogen bonds, thereby inhibiting beta-hydrogen el iminat ion.
  • the inclusion of indene derivatives with relatively low steric hindrance results in high copolymerization activity and low hydrogen reaction.
  • the olefin polymer can be polymerized with high activity.
  • the transition metal compound of Chemical Formula 2 is a structure having a substituent (Z u ) at a specific position of the indene derivative compound of Chemical Formula 2b, an unsubstituted indene compound, or a metallocene containing an indene compound substituted at another position Compared with the compound, the activity may have excellent properties.
  • the transition metal compound of Formula 3 forms a structure in which an indeno indole derivative and a cyclopentadiene derivative are asymmetrically crosslinked by a bridge, and forms a non-covalent electron pair that can act as a Lewis base to the ligand structure. By having it, it is supported on the surface having the Lewis acid characteristic of the carrier and shows high polymerization activity even when supported.
  • At least one of J 9 to J 13 and J 9 ′ to J 13 ′ in the transition metal compound of Chemical Formula 3 includes a C1 to C20 halo alkyl group.
  • a fluoroalkyl group that is, CF3, and the like, which acts like a nitrogen atom of an indenoindole derivative to stabilize beta-hydrogen of a polymer chain that is grown by hydrogen bonding, thereby further inhibiting beta-hydrogen el iminat ion.
  • ultra high molecular weight polyolefin polymerization can be more effectively achieved.
  • indeno indole derivatives and cyclopentadiene derivatives maintain the basic skeleton of asymmetrically crosslinked catalysts by bridges, and introduce more powerful hydrogen bond acceptors, such as CF3, to introduce hydrogen.
  • CF3 more powerful hydrogen bond acceptors
  • an aryl alkylene group is a functional group in which at least one aryl group and at least one alkylene group are bonded to each other. It means the structure combined with indene.
  • a cycloalkyl alkylene group refers to a structure in which at least one cycloalkyl group and at least one alkylene group are bonded to each other, and a structure in which one remaining point of the alkylene group is bonded to indene.
  • Specific examples of the transition metal compound of Formula 1 are not limited to a part of the above-described formula, but more preferable examples are as follows:
  • Ri to 3 ⁇ 4 is C1 to C20 alkylsilyl group, C1 to C20 silylalkyl group, and R 3 to 3 ⁇ 4 is arylene group having 6 to 20 carbohydrates, or 8 to 22 carbon atoms. It is an aryl dialkylene group, wherein R 5 to R u is hydrogen, halogen, C1 to C20 linear or branched alkyl group, 3 ⁇ 4 is titanium, zirconium or hafnium, ⁇ and Y 2 may be halogen.
  • Specific examples of the transition metal compound of Formula 2 are not limited to a part of the above-described formula, but more preferable examples are as follows:
  • Each of Formula 2a to independently hydrogen, methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, pentyl, nuclear, heptyl, octyl, ethylene, propylene, Butenyl group, phenyl group, benzyl group, naphthyl group, methoxy group, ethoxy group, or tert-butoxy nuclear group,
  • Z u of Formula 2b is a methyl group, ethyl group, propyl group, isopropyl group, n-butyl group tert-butyl group, pentyl group, nuclear group, heptyl group, octyl group, ethylene group, propylene group, butenyl group, phenyl group, Benzyl group, naphthyl group, trimethylsilyl group, triethylsilyl group, tripropylsilyl group, tributylsilyl group, triisopropylsilyl group, trimethylsilylmethyl group, tert-butyldimethylsilyl ether group, mesophilic group, special group, or It is a tert- butoxy-nuxyl group, R 21 and R 22 of the formula (2) may be a methyl group or tert-subnuclear nucleosil group.
  • Specific examples of the compound represented by Formula 2a may include
  • transition metal compound of Chemical Formula 2 includes a compound represented by Structural Formula ⁇ , but is not limited thereto.
  • transition metal compound of Formula 3 is not limited to a part of the above-described formula, but more preferable examples are as follows:
  • J 31 and to J 13 ′ of Formulas 3a, 3b, 3c, 3d and 3e are each independently hydrogen, methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl or pentyl , Nucleosil group, heptyl group, octyl group, phenyl group, halogen group, trimethylsilyl group, triethylsilyl group, tripropylsilyl group, tributylsilyl group, triisopropylsilyl group, trimethylsilylmethyl group, methoxy group, hydroxy group
  • at least one of from J 13 and J 9 ′ to J 13 ′ may be perf luoroalkyl having 1 to 3 carbon atoms.
  • R 31 and R 32 in Formula 3 are each independently hydrogen, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, tert-butyl group, methoxymethyl group, tert-appendixylmethyl group, tert-appendix It may be a nucleosil group, 1-ethoxyethyl group, 1-methyl-1-methoxyethyl group, tetrahydropyranyl group, or tetrahydrofuranyl group.
  • Specific examples of the compound represented by Chemical Formula 3a may include a compound represented by the following structural formula, but is not limited thereto.
  • the remaining reaction space of the following structural group means the point of attachment.
  • specific examples of the compound represented by Chemical Formula 3b may include a compound represented by the following structural formula, but is not limited thereto.
  • the remaining reaction space of the cyclopentadienyl group means a point of attachment.
  • Specific examples of the compound represented by Chemical Formula 3c may include a compound represented by one of the following structural formulas, but is not limited thereto.
  • the remaining counterungsite of the cyclopentadienyl group means a point of attachment.
  • Specific examples of the compound represented by Chemical Formula 3d may include a compound represented by the following structural formula, but is not limited thereto.
  • the remaining counterungsite of the pentaenyl group represented by the following means a binding point.
  • Specific examples of the compound represented by Chemical Formula 3e may include a compound represented by the following structural formula, but is not limited thereto. In the following structural formula, the remaining half-ung site of the cyclopentadienyl group means a point of attachment.
  • transition metal compound of Formula 3 may include a compound represented by a structural formula, but is not limited thereto.
  • the first metallocene catalyst including the transition metal compound of Formula 1 and the transition metal compound of the formula 2 is a metal catalyst and the second
  • the molar ratio between the third metallocene catalysts containing the transition metal compound is not particularly limited.
  • the leupin copolymer prepared using the catalyst composition has a wider melt flow index and melt flow rate ratio, and exhibits a higher molecular weight, a wide molecular weight distribution, and a high long chain branching content.
  • the Crab 1 metal containing the transition metal compound of Formula 1 compared to the C2 metallocene catalyst containing the transition metal compound of Formula 2 The molar ratio of the third catalyst including the high catalyst and the transition metal compound of Formula 3 may be 1: 0.5-2: 1-5.
  • the molar ratio of the first metallocene catalyst containing the transition metal compound of Formula 1 to the second metallocene catalyst including the transition metal compound of Formula 2 is too small, the low molecular weight in the synthesized polyethylene copolymer The ratio of the polyethylene copolymer to be lowered may lower the processability of the final product.
  • the molar ratio of the second metallocene catalyst containing the transition metal compound of Formula 2 to the first metallocene catalyst including the transition metal compound of Formula 1 is too large, a high molecular weight in the polyethylene copolymer The proportion of polyethylene copolymer having a lower ratio reduces the environmental resistance cracking resistance or spiral flow length of the final product. Can be degraded.
  • the molar ratio of the first metallocene catalyst including the transition metal compound of Formula 1 to the third metallocene catalyst including the transition metal compound of Formula 3 is too small, As the proportion of the polyethylene copolymer having a molecular weight is lowered, the environmental resistance cracking resistance or dimensional stability of the final product may be lowered.
  • the polymer copolymer When the molar ratio of the 3 metallocene catalyst including the transition metal compound of Formula 2 to the first metallocene catalyst including the transition metal compound of Formula 1 is too large, the polymer copolymer has a high molecular weight in the synthesized polyethylene copolymer. The proportion of the polyethylene copolymer is excessively high and the polymer tail (tai l) is excessively increased, so that excessively high pressure is required at the time of injection, and thus the processability or the quality of the final product may be reduced.
  • the molar ratio between the second metallocene catalyst comprising the allimetal compound of Formula 2 and the transition metal compound of Formula 3 is also not particularly limited, but is preferably used within the above-described range to achieve the above effect.
  • the catalyst composition for synthesizing the olefin copolymer may further include a promoter or a carrier.
  • the cocatalyst is an organometallic compound containing a Group 13 metal, and is not particularly limited as long as it is known that can be used when polymerizing olefins under a general metallocene catalyst.
  • the cocatalyst compound may include at least one of an aluminum-containing first cocatalyst of Formula 6, and a borate-based second cocatalyst of Formula 7 below.
  • X is a halogen, halogen substituted or unsubstituted hydrocarbyl group having 1 to 20 carbon atoms, k is an integer of 2 or more,
  • T + is a + monovalent polyatomic ion
  • B is boron in +3 oxidation state
  • G is independently a hydride group, a dialkylamido group, a halide group, an alkoxide group, an aryl oxide group, hydro Selected from the group consisting of a carbyl group, a halocarbyl group and a halo-substituted hydrocarbyl group, wherein G has up to 20 carbons, but at less than one position G is a halide group.
  • the molecular weight distribution of the finally produced polyolefin can be more uniform, and the polymerization activity can be improved.
  • the first cocatalyst of Chemical Formula 6 may be an alkylaluminoxane compound having a repeating unit bonded in a linear, circular or reticulated form, and specific examples of the first cocatalyst include methylaluminoxane (MA0) and ethylalumina. Noxyl acid, isobutyl aluminoxane or butyl aluminoxane.
  • the second cocatalyst of Formula 7 may be a borate-based compound in the form of a trisubstituted ammonium salt, or a dialkyl ammonium salt, a trisubstituted phosphonium salt.
  • Such a second cocatalyst include trimetalammonium tetraphenylborate, methyldioctadecylammonium tetraphenylborate, triethylammonium tetraphenylborate, tripropylammonium tetraphenylborate, tri (n-butyl) ammonium tetraphenylborate , Methyltetracyclooctadecylammonium tetraphenylborate , ⁇ , ⁇ -dimethylaninium tetraphenylborate , ⁇ , ⁇ -diethylaninynium tetraphenylborate , ⁇ , ⁇ -dimethyl (2, 4, 6-trimethylaninium Tetraphenylborate, trimethylammonium tetrakis (pentafluorophenyl) borate, methylditetradecylammonium tetraphen
  • Tripropylammonium tetrakis (pentafluorophenyl) borate tri ( ⁇ -butyl) ammonium tetrakis (pentafluorophenyl) borate, tri (secondary-butyl) ammonium tetrakis (pentafluorophenyl) borate , ⁇ , ⁇ -dimethylaninium tetrakis (pentafluorophenyl) borate, ⁇ , ⁇ -diethylaninium tetrakis (pentafluorophenyl) borate, -dimethyl (2,4,6-trimethylaninynium) tetrakis (penta Fluorophenyl) borate ,
  • 'Tetrafluoro phenyl) borate compounds tri-substituted ammonium salt forms of borate and the like;
  • Borate type in the form of dialkylammonium salt such as dioctadecyl ammonium tetrakis (pentafluorophenyl) borate, ditetradecyl ammonium tetrakis (pentafluorophenyl) borate, or dicyclonuclear ammonium tetrakis (pentafluorophenyl) borate compound;
  • the mass ratio of the carrier to the total weight of the transition metals included in the first metallocene compound, the second metallocene compound, and the third metallocene compound may be 10 to 10,000.
  • the carrier and the metallocene compound are included in the mass ratio, the optimum shape can be exhibited.
  • the mass ratio of the promoter compound to the carrier may be from 1: 1 to 1: 100.
  • the cocatalyst and the metallocene compound are included in the mass ratio, the active and polymer microstructures can be optimized.
  • the carrier may be a carrier containing a hydroxyl group on the surface, preferably a carrier having a semi-ungseong hydroxyl group and siloxane group, which is dried to remove moisture on the surface.
  • the dried silica in a high-temperature, silica-alumina, and silica-and the magnesia or the like can be used, it is typically Na 2 0, K 2 C0 3 , BaS0 4, and ⁇ Mg (N0 3) 2, such as the oxide, carbonate , Sulfate, and nitrate components.
  • Drying temperature of the carrier is preferably 200 to 800 ° C., 300 to More preferably 600 ° C, most preferably 300 to 400 ° C. If the drying temperature of the carrier is less than 200 ° C. water is too much to react with the surface of the surface and the cocatalyst, if it exceeds 800 o C the pores on the surface of the carrier is combined to reduce the surface area, and also hydroxy to the surface It is not preferable because there is a lot of groups and only siloxane groups are left to decrease the reaction space with the promoter.
  • the amount of hydroxy groups on the surface of the carrier is preferably from 0.1 to 10 mmol / g, more preferably from 0.5 to 5 mmol / g.
  • the amount of hydroxyl groups on the surface of the carrier can be controlled by the method and conditions for preparing the carrier or by drying conditions such as temperature, time, vacuum or spray drying.
  • the amount of the hydroxy group is less than 0.01 mmol / g, the reaction space with the promoter is small. If the amount of the hydroxy group is more than 10 ⁇ ol / g, it may be due to moisture other than the hydroxyl group present on the surface of the carrier particle. Because it is not desirable.
  • the catalyst composition for synthesizing the oleprene copolymer is a step of supporting a cocatalyst compound on a carrier, the carrier selected from the first metallocene compound, the second metallocene compound and the third metallocene compound It may be prepared by sequentially or supporting two or more of the metallocene compound at the same time.
  • the order of supporting the first metallocene compound, the second metallocene compound, and the third metallocene compound may be changed as necessary.
  • a hydrocarbon solvent such as pentane, nucleic acid, heptane, or the like, or an aromatic solvent such as benzene or toluene may be used.
  • the metallocene compound and the cocatalyst compound may be used in a form supported on silica or alumina.
  • the catalyst composition for synthesizing the olefin copolymer may itself be used for polymerization of the olefin monomer.
  • the catalyst composition for synthesizing the olefin copolymer may be prepared by use of a prepolymerized catalyst in contact with an olefinic monomer.
  • the catalyst may be separately used for ethylene, propylene, 1-butene, 1-nucleus, sen, 1-octene. It may be prepared and used as a prepolymerized catalyst by contacting with an olefinic monomer such as the like.
  • the olefinic monomers may be ethylene, alpha-olefins, cyclic olefins, diene olefins or triene olefins having two or more double bonds, and more specifically, ethylene, propylene, 1-butene, 1-pentene, 4 -Methyl- 1-pentene, 1-nuxene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dodecene, 1-tetradecene, 1-nuxadecene, 1-aitosen, norbornene , Norbornadiene, ethylidene norbornene, phenylnorbornene, vinyl norbornene, dicyclopentadiene, 1,4-butadiene, 1,5-pentadiene, 1, 6-nuxadiene, styrene, alpha-methylstyrene, Divinylbenzene, 3-ch
  • the olefin polymer is more preferably an ethylene / alpha olefin copolymer, but is not limited thereto.
  • the content of the alpha-olefin, which is the comonomer is not particularly limited, and may be appropriately selected according to the use, purpose, and the like of the olefin polymer. More specifically, it may be more than 0 and 99 mol% or less.
  • the copolymerization reaction or polymerization reaction may be carried out by homopolymerization with one olefinic monomer or copolymerization with two or more monomers by using one continuous slurry polymerization reaction, loop slurry reaction, gas phase reaction or solution reaction.
  • the copolymerization temperature may be about 25 to about 500 ° C, preferably about 25 to about 200 ° C, more preferably about 50 to about 150 ° C.
  • the polymerization pressure may be about 1 to about 100 gf / cm 2 , preferably about 1 to about 50 Kgf / cm 2 , more preferably about 5 to about 30 Kgf / cm 2 .
  • the catalyst composition for synthesizing the olefin copolymer is an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms, for example, pentane, nucleic acid, heptane, nonane, decane, and isomers thereof and aromatic hydrocarbon solvents such as toluene and benzene, dichloromethane and chloro by dissolving or dilution or the like, chlorine atom substituted hydrocarbon solvent such as benzene it may be injected.
  • the solvent used herein is preferably used by removing a small amount of water or air acting as a catalyst poison by treating a small amount of alkyl aluminum. It is also possible to carry out further use of a promoter.
  • the characteristics of the olefin copolymer provided in the method for producing an olefin copolymer using the catalyst composition for olefin copolymer synthesis are as follows.
  • the weight average molecular weight (Mw) of the olefin copolymer may be 100,000 to 300,000 g / mol. More preferably, the weight average molecular weight may be 120,000 g / mol or more, 130,000 g / mol or more, or 140,000 g / mol or more, 250,000 g / mol or less, or 220,000 g / mol or less, or 200,000 g / mol or less. .
  • the olefin copolymer of the olefin polymer according to the present invention may have a molecular weight distribution (Mw / Mn) of 10 to 30, or 15 to 25. As such, the olefin polymer having a broad molecular weight distribution can exhibit superior processability.
  • the density of the olefin copolymer may be 0.930 to 0.960 g / cm 3 but is not limited thereto.
  • the olefin copolymer is MFR 2 . 16 (melt flow index, measured at 190 ° C., 2.16 kg load according to ASTM D1238) may be between 0.01 and 1.0 g / 10 min. More preferably, the MFR 216 may be 0.05 g / 10min or more, or 0.1 g / 10min or more, 0.15 g / 10min or more, 0.9 g / 10min or less, or 0.8 g / 10min or less, or 0.6 g / 10min or less.
  • the olefin copolymer is MFR / 2 . 16 (melt flow index measured at 190 ° C, 5kg load divided by melt flow index measured at 190 ° C, 2.16kg load) according to ASTM D1238 has a value of 5-10. More preferably said 3 ⁇ 40 / 2 . 16 may be 3 or more, or 3.2 or more, or 3.3 or more, 9 or less, or 9.5 or less, or 8 or less.
  • the spiral flow length (190 ° C., 90 bar) indicates the processability of the ethylene / alpha-olefin copolymer, which means that the higher the value, the better the processability.
  • a spiral flow length measured using an ENGEL 150 ton injection machine, a mold thickness of 1.5 kPa, an injection temperature of 190 ° C, and a mold temperature of 50 injection pressures of 90 bar may be greater than 13 cm or greater than 15 cm.
  • the copolymer in addition to the mechanical properties and processability as described above
  • the copolymer is characterized by excellent environmental stress crack resistance (ESCR).
  • the olefin copolymer may have an environmental stress crack resistance (ESCR) of 200 hours or more, or 240 hours or more, or 300 hours or more, measured according to ASTM D 1693. If the environmental stress cracking resistance (ESCR) is 200 hours or more, the performance can be stably maintained in the state of use of the bor cap, so the upper limit value is practically not significant, but 1,000 hours or less, or 800 hours or less, or about 500 hours. It may be less than time. Thus, since it exhibits high performance environmental resistance crack resistance, high stability even when molded in a food container product such as a borcap and used under high temperature and high pressure conditions, can maintain continuous performance.
  • ESCR environmental stress crack resistance
  • the olefin copolymer provided in the method for preparing ellepin copolymer using the catalyst composition for synthesizing the olefin copolymer has a molecular weight of 100, 000 to 300, 000 g / mol, a molecular weight distribution (Mw / Mn) of 5 To 30 and a density of 0.930 to 0.960 g / citf, MFR 5/2 . 16 (melt flow index measured at 190 ° C, 5 kg load according to ASTM D1238, 190 ° C, 2.
  • the olefin copolymer may have characteristics of excellent environmental resistance cracking and stiffness, excellent stiffness in a polymer injection product, and high dimensional stability that does not substantially change shape even after temperature and pressure change after injection. Can be.
  • the integral value in the region where log Mw is 5.0 or more and less than 5.5 is 20% of the total X-axis integral value.
  • the integral value in the region where l og Mw is 5.0 or more and less than 5.5 is the entire X axis.
  • the stiffness of the olefin copolymer may be lowered or easily broken. Accordingly, when the olefin copolymer is applied to a product such as a food container or a bottle cap, the product easily breaks or bursts. The problem may occur, and it may be difficult to secure sufficient chemical resistance.
  • the integral value in the region where log Mw is 4.5 or more and less than 5.0 is 25% or more of the total X-axis integral value.
  • the area of log Mw of 4.5 or more and less than 5.0 may be related to the stiffness or dimensional stability of the olefin copolymer, and the integral value in this area may be 25% or more and 25% or more of the total X-axis integral value.
  • the olefin copolymer may satisfy the above-described characteristics.
  • the difference in the ratio of the integral values in the region of 5.0 or more and less than 5.5 may be 7% or less, or ⁇ to 7%.
  • the difference between the ratio of the integral value in the region of log Mw of 4.5 to less than 5.0 and the ratio of the integral value in the region of log Mw of 5.0 to less than 5.5 in the GPC curve is 7%.
  • the olefin copolymer may have a high stiffness required for the polymer injection product, but not easily broken properties, and accordingly high rigidity requiring high pressure resistance and chemical resistance It can be applied as a container or high rigidity beam cap.
  • the ratio of the integral value and the log Mw is 5.0 or more in the region where the log Mw is 4.5 or more and 5.0 to the total X-axis integral.
  • the olefin copolymer may exhibit an excessively high double molecular weight distribution pattern or a multi molecular weight distribution pattern (Bimodal i ty, mul t imodal i ty).
  • problems such as being easily broken by the external lamination or being greatly deformed according to changes in temperature and pressure may appear, and thus it may not be suitable to be applied to products such as food containers and bottle caps.
  • Mw is the weight-average mol ecul ar weight W means weight fract ion.
  • a GPC curve graph having an X axis of log Mw and an y axis of dw / dlogMw may be defined based on molecular weights measured through a method such as GPC.
  • the melt flow index and the melt flow rate ratio are wide, it has excellent processability, and has high molecular weight, wide molecular weight distribution, and high long chain defect content, and thus has excellent environmental stress cracking and workability and high dimensional stability.
  • Catalyst composition for olefin copolymer synthesis which can provide an olefin copolymer preferably used as a food container, bor cap, etc., which requires stability and chemical resistance in high pressure and high temperature environments, and the catalyst composition for synthesis of the olefin copolymer Methods for preparing olefin copolymers may be provided.
  • the obtained ligand compound llg was dissolved in a mixed solvent of 80 mL of toluene and 5 mL of Methyl Tertiary Butyl Ether (MTBE), and 16.7 mL (41.6 ⁇ ol) of a nucleic acid solution of 2.5 M n_butyl lithium was added dropwise and stirred at room temperature.
  • MTBE Methyl Tertiary Butyl Ether
  • 7.5 g (19.8 mmol) of ZrCl 4 (THF) 2 was added to 80 mL of toluene to prepare a slurry, and then transferred to a dry ice / acetone bath and stirred at room temperature overnight.
  • the slurry was filtered to remove LiCl, the toluene of the filtrate was removed by vacuum drying, and 100 mL of nucleic acid was added thereto and sonicated for 1 hour. The slurry was then filtered to obtain 1.5 g (yield 23 mol%, red solid) of a phosphorus metallocene compound as a filtered solid.
  • the lithiated solution of fluorene was slowly added dropwise to the Si solution in a dryice / acetone bath and stirred at room temperature overnight. After reaction, the organic layer was extracted with ether / water to remove residual moisture of the organic layer with MgS0 4 , and the solvent was removed under vacuum and reduced pressure to give 5.5 g (7.4 ⁇ ol) of the ligand compound in oil form. It was obtained and confirmed by 1H-NMR.
  • reaction mixture was filtered to remove LiCl, the toluene of the filtrate was removed by vacuum drying, and 100 mL of nucleic acid was added thereto and sonicated for 1 hour. This was filtered to obtain 3.5 g (yield 52 mol%) of a purple metallocene compound as a filtered solid.
  • the supported catalyst was prepared in the same manner as in Example 1, except that the amount of the metallocene compound of Preparation Examples 1 to 3 was changed. Comparative Example 1
  • Polyethylene copolymer (ME1000, LG Chemical) prepared with Ziegler-Natta catalyst was set as Comparative Example 1.
  • An olefin polymer was prepared by introducing each of the supported supported metallocene catalysts prepared in each of the above examples into a CSTR continuous polymerizer (reactor volume 50 L, reaction flow rate 7 m / s).
  • a CSTR continuous polymerizer reactor volume 50 L, reaction flow rate 7 m / s.
  • 1-nuxene was used, and the reactor pressure was maintained at 10 bar and the polymerization temperature at 90 ° C.
  • MFR 2 i. 6 / MFR 2 .i 6 MFR 21 . 6 Melt index (MI, 21.6kg load) to MFR 2 . The ratio is divided by 16 (MI, 2.16kg load).
  • ESCR Time to F50 (50% fracture) was measured under a temperature of 50 ° C using 10% Igepal C0-630 Solution according to ASTM D 1693.
  • Spiral flow length (SF: Spiral flow length): ENGEL 150 ton injection machine is used, the mold thickness is 1.5 ⁇ , the injection temperature is 190 ° C, the mold temperature is
  • injection pressure was measured at 90 bar.
  • Specimens were prepared from the urepin copolymers obtained in Examples and Comparative Examples, respectively, and the rate of dimensional change was measured using Dynamic Mechanical Analysis (DMA). More specifically, examples and comparative press for 5 minutes to eulre pin copolymer each obtained in Example at 20 MPa with a press of 200 ° C Test pieces (width 6 ⁇ , thickness: 0.3 ⁇ ) the production, and the specimen 32 ° C 4 cycles were repeated with one cycle of maintaining the temperature for 20 minutes at a temperature of 0.5 MPa and maintaining the temperature for 10 minutes at a temperature of 60 ° C. and a pressure of 0.5 MPa. Every cycle Record the strain under conditions of 32 ° C every time and finally
  • DMA Dynamic Mechanical Analysis
  • the olefin copolymers obtained using the common metallocene catalysts of Examples 1 and 2 exhibited an environmental stress crack resistance of 300 hours or more and a relatively high spiral flow length, and high temperature and high pressure conditions. It was also confirmed that the dimensional change rate was about 2% or less, indicating high form stability.
  • the olefin copolymers prepared in each of Examples 1 and 2 in the region of the log Mw of 5.0 to less than 5.5 in the GPC curve graph of the log Mw X axis and dw / dlogMw y axis
  • the integral value of is about 23% and 21% of the total X-axis integral
  • the log Mw is 5.0 or more 5.5 compared to the ratio of the integral value in the area where the log Mw is 4.5 to 5.0 to the total X-axis integral. It was confirmed that the difference in the ratio of the integral values in the region below was 6.36% and 5.24%, respectively.
  • the olefin copolymer may have a high rigidity required for a polymer injection product, but may not easily be broken, and exhibits excellent dimensional stability with high pressure resistance and chemical resistance, and thus has a property of significantly lower strain due to temperature and pressure changes. Indicates.
  • the copolymer has a high melt flow index and a high melt flow ratio, which has excellent processability, high molecular weight, wide molecular weight distribution and high long chain branching content, as well as excellent environmental resistance cracking and processability, and high pressure and Excellent stability in high temperature environment can be applied to food containers, bottle caps, etc. to achieve excellent performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은, 각각 특정한 화학 구조를 갖는 게 1메탈로센 촉매, 게 2메탈로센 촉매 및 제 3메탈로센 촉매를 포함한 올레핀 공중합체 합성용 촉매 조성물 및 상기 촉매 조성물을 이용한 올레핀 공중합체의 제조 방법에 관한 것이다.

Description

【명세서】
【발명의 명칭]
을레핀 공중합체 합성용 촉매 조성물 및 올레핀 공중합체의 제조 방법 【기술분야】
관련 출원 (들)과의 상호 인용
본 출원은 2016년 12월 5일자 한국 특허 출원 제 10-2016-0164338호에 기초한 우선권의 이익을 주장하몌 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 올레핀 공중합체 합성용 촉매 조성물 및 올레핀 공중합체의 제조 방법에 관한 것이다.
【발명의 배경이 되는 기술】
올레핀 중합 촉매계는 지글러 나타 및 메탈로센 촉매계로 분류할 수 있으며, 이 두 가지의 고활성 촉매계는 각각의 특징에 맞게 발전되어 왔다. 지글러 나타 촉매는 50 년대 발명된 이래 기존의 상업 프로세스에 널리 적용되어 왔으나, 활성점이 여러 개 흔재하는 다활성점 촉매 (mul t i-s i te catalyst )이기 때문에, 중합체의 분자량 분포가 넓은 것이 특징이며, 공단량체의 조성 분포가 균일하지 않아 원하는 물성 확보에 한계가 있다는 문제점이 있다.
한편, 메탈로센 촉매는 전이금속 화합물이 주성분인 주촉매와 알루미늄이 주성분인 유기 금속 화합물인 조촉매의 조합으로 이루어지며, 이와 같은 촉매는 균일계 착체 촉매로 단일 활성점 촉매 (single s i te catalyst )이며, 단일 활성점 특성에 따라 분자량 분포가 좁으며, 공단량체의 조성 분포가 균일한 고분자가 얻어지며, 촉매의 리간드 구조 변형 및 중합 조건의 변경에 따라 고분자의 입체 규칙도, 공중합 특성, 분자량, 결정화도 등을 변화시킬 수 있는 특성을 가지고 있다.
미국 특허 제 5, 914 ,289 호에는 각각의 담체에 담지된 메탈로센 촉매를 이용하여 고분자의 분자량 및 분자량 분포를 제어하는 방법이 기재되어 있으나, 담지촉매 제조시 사용된 용매의 양 및 제조시간이 많이 소요되고, 사용되는 메탈로센 촉매를 담체에 각각 담지시켜야 하는 번거로움이 따랐다.
대한민국 특허 출원 제 2003-12308호에는 담체에 이중핵 메탈로센 촉매와 단일핵 메탈로센 촉매를 활성화제와 함께 담지하여 반웅기 내 촉매의 조합을 변화시키며 중합함으로써 분자량 분포를 제어하는 방안을 개시하고 있다. 그러나, 이러한 방법은 각각의 촉매의 특성을 동시에 구현하기쎄 한계가 있으며, 또한 완성된 촉매의 담체 성분에서 메탈로센 촉매 부분이 유리되어 반응기에 파을링 ( foul ing)을 유발하는 단점이 있다.
따라서, 상기한 단점들을 해결하기 위해서 간편하게 활성이 우수한 흔성 담지 메탈로센 촉매를 제조하여 원하는 물성의 올레핀계 중합체를 제조하는 방법에 대한 요구가 계속되고 있다.
한편, 선형 저밀도 폴리에틸렌은 중합촉매를 사용하여 저압에서 에틸렌과 알파 을레핀을 공중합하여 제조되어, 분자량 분포가 좁고 일정한 길이의 단쇄분지를 가지며, 장쇄분지가 없는 수지이다. 선형 저밀도 폴리에틸렌 필름은 일반 폴리에틸렌의 특성과 더불어 파단강도와 신율이 높고, 인열강도, 낙추충격강도 등이 우수하여 기존의 저밀도 폴리에틸렌이나 고밀도 폴리에틸렌의 적용이 어려운 스트레치 필름, 오버랩 필름 등에의 사용이 증가하고 있다.
그런데, 1—부텐 또는 1-핵센을 공단량체로' 사용하는 선형 저밀도 폴리에틸렌은 대부분 단일 기상반웅기 또는 단일 루프 슬러리 반웅기에서 제조되며, 1-옥텐 공단량체를 사용하는 공정 대비 생산성은 높으나, 이러한 제품 역시 사용 촉매기술 및 공정기술의 한계로 물성이 1-옥텐 공단량체 사용시보다 크게 열세하고, 분자량 분포가 좁아 가공성이 불량한 문제가 있다. 이러한 문제의 개선을 위해 많은 노력이 진행되고 있으며,
미국 특허 제 4, 935 , 474 호에는 2 종 또는 그 이상의 메탈로센 화합물이 사용되어 넓은 분자량 분포를 갖는 폴리에틸렌 제조법에 대해 보고되어 있다. 미국 특허 제 6 , 828 ,394 호에는 공단량체 결합성아 좋은 것과 그렇지 않은 것을 흔합사용해 가공성이 우수하고 특히 필름용에 적합한 폴리에틸렌 제조방법에 대해 보고되어 있다. 또한, 미국 특허 제 6,841,631 호, 미국 특허 제 6 , 894, 128 호에는 적어도 2 종의 메탈 컴파운드가 사용된 메탈로센계 촉매로 이정 또는 다정 분자량분포를 갖는 폴리에틸렌을 제조하여, 필름, 블로우몰딩, 파이프 등의 용도에 적용이 가능하다고 보고되어 있다. 하지만 이러한 제품들은 가공성은 개선되었으나 단위 입자 내의 분자량별 분산상태가 균일하지 못해 비교적 양호한 압출조건에서도 압출외관이 거칠고 물성이 안정적이지 못한 문제가 있다. 이러한 배경에서 물성과 가공성 간의 균형이 이루어진 보다 우수한 제품의 제조가 끊임없이 요구되고 있으며 이에 대한 개선이 더욱 필요한 상태이다.
【발명의 내용】
【해결하고자 하는 과제】
본 발명은, 용융 유동 지수 및 용융 유동를비가 넓어 우수한 가공성을 가지며, 높은 분자량, 넓은 분자량 분포 및 높은 긴 사슬 곁가지 함량을 가짐에 따라 내환경 웅력 균열성 및 가공성이 우수하면서 치수 안정성이 높아서, 고압 및 고온 환경에서 안정성과 내화학성이 요구되는 식품 용기, 보를캡 등으로 바람직하게 사용 가능한 올레핀 공중합체를 제공할 수 있는 올레핀 공중합체 합성용 촉매 조성물을 제공하기 위한 것이다.
또한, 본 발명은 상기 올레핀 공중합체 합성용 촉매 조성물을 이용한 올레핀 공중합체 제조 방법에 관한 것이다. 、
【과제의 해결 수단】
본 명세서에서는 하기 화학식 1의 전이 금속 화합물을 포함하는 제 1메탈로센 촉매; 하기 화학식 2의 전이 금속 화합물을 포함하는 제 2메탈로센 촉매; 및 하기 화학식 3의 전이 금속 화합물을 포함하는 제 3메탈로센 촉매;를 포함하는, 올레핀 공중합체 합성용 촉매 조성물이 제공될 수 있다.
Figure imgf000004_0001
상기 화학식 1에서,
상기 Ri 내지 ¾ 는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, CI 내지 C20 의 직쇄 또는 분지쇄의 알킬기 , C2 내지 C20 의 직쇄 또는 분지쇄의 알케닐기, C1 내지 C20 의 알킬실릴기, C1 내지 C20 의 실릴알킬기, C1 내지 C20 의 알콕시실릴기, C1 내지 C20 의 직쇄 또는 분지쇄의 알콕시기, C6 내지 C20 의 아릴기, C7 내지 C20 의 알킬아릴기, 또는 C7 내지 C20 의 아릴알킬기이며, '
상기 Qi은 탄소수 4 내지 20 의 알킬렌기 (akylene) , 탄소수 4 내지 20 의 알케닐렌기 (akenylene) , 탄수소 6 내지 20 의 아릴렌기 (arylene), 탄소수 4 내지 20 의 사이클로알킬렌기 (cycloakylene) , 탄수소 7 내지 22 의 아릴 (aryl ) 알킬렌기, 탄소수 5 내지 22의 사이클로알킬 알킬렌기,
상기 ¾ 내지 Ru는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 직쇄 또는 분지쇄의 알킬기, C2 내지 C20의 직쇄 또는 분지쇄의ᅳ알케닐기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 실릴알킬기 , C1 내지 C20의 알콕시실릴기 , C1 내지 C20의 직쇄 또는 분지쇄의 알콕시기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이며, 상기 내지 중 하나의 벤젠 고리에서 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있고;
¾은 4족 전이금속이며,
Yi 및 는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, 니트로기, 아미도기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 알콕시기, 또는 C1 내지 C20의 술폰네이트기이다.
[화학식 2]
Figure imgf000005_0001
상기 화학식 2에서,
M2은 4족 전이금속이며,
X212는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 내 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, 니트로기, 아미도기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 알콕시기, 또는 C1 내지 C20의 술폰네이트기이고,
Q2 탄소, 실리콘 또는 게르마늄이고;
ι 및 2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기 , C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, C7 내지 C20의 아릴알킬기, C1 내지 C20의 알콕시기, C2 내지 C20의 알콕시알킬기, C3 내지 C20의 헤테로시클로알킬기, 또는 C5 내지 C20의 헤테로아릴기이고;
C2i 및 C22 중 하나는 하기. 화학식1 2a로 표시되고, 다른 하나는 하기 화학식 2b로 표시되며;
Figure imgf000006_0001
상기 화학식 2a에서,
1ι 내지 는 서로 동일하거나,상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C1 내지 C20의 알콕시기, C1 내지 C20의 알킬실릴기, CI 내지 C20의 실릴알킬기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이고; - 상기 화학식 2b에서,
Ζιο 및 Ιχ 내지 Z15는 수소, 할로겐 또는 탄소수 1 내지 3의 알킬기이고,
Zu은 C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 실릴알킬기, C1 내지 C20의 알콕시실릴기, C1 내지 C20의 에테르기, C1 내지 C20의 실릴에테르기, C1 내지 C20의 실릴옥시기, C1 내지 C20의 알콕시기, C2 내지 C20의 알콕시알킬기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이고,
Figure imgf000007_0001
상기 화학식 3에서,
M3은 4족 전이금속이며,
Χ3ι 및 ¾2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, 니트로기, 아미도기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 알콕시기, 또는 C1 내지 C20의 술폰네이트기이고,
¾ 탄소, 실리콘 또는 게르마늄이고;
Rsi 및 2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, C7 내지 C20의 아릴알킬기 C1 내지 C20의 알콕시기, C2 내지 C20의 알콕시알킬기, C3 내지 C20의 헤테로시클로알킬기, 또는 C5 내지 C20의 헤테로아릴기이고;
C31및 C32는 중 하나는 하기 화학식 3a 또는 화학식 3b로 표시되고, C31및 C32 중 나머지 하나는 하기 화학식 3c , 화학식 3d , 또는 화학식 3e로 표시된다.
[화학식 3a]
Figure imgf000008_0001
Figure imgf000009_0001
상기 화학식 2a , 2b , 3a , 3b 및 3c에서, 내지 J31 및 J/ 내지 J13' 은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C1 내지 C20의 할로 알킬기, C2 내지 C20의 알케닐기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 실릴알킬기, C1 내지 C20의 알콕시실릴기, C1 내지 C20의 알콕시기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이며,
Jg 내지 J13 및 내지 J13' 중 하나 이상은 C1 내지 C20의 할로 알킬기이고,
Ji 내지 J31 및 내지 J13' 중 하나의 방향족 고리에서 서로 인접하는
2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있다. 본 발명자들은, 상술한 특정 구조의 화학식 1의 전이 금속 화합물을 포함하는 제 1메탈로센 촉매와 상기 화학식 2의 전이 금속 화합물을 포함하는 거 12메탈로센 촉매와 상기 화학식 3의 전이 금속 화합물을 포함하는 제 3메탈로센 촉매를 함께 포함한 촉매 조성물을 이용하여 (공)중합 반웅을 진행하면, 용융 유동 지수 및 용융 유동를비가 넓어 우수한 가공성을 가지며, 높은 분자량, 넓은 분자량 분포 및 높은 긴 사슬 결가지 함량을 가짐에 따라 내환경 웅력 균열성 및 가공성이 우수하여 올레핀 공중합체를 제공할 수 있다는 점을 실험을 통하여 확인하고 발명을 완성하였다. 이러한 올레핀 공중합체는 고압 및 고온 환경에서 높은 형태 안정성을 가질 수 있어서, 식품 용기, 보를캡 등의 용도로 바람직하게 사용 가능하다.
보다 구체적으로, 상기 올레핀 공중합체 합성용 촉매 조성물을 이용하여 제공되는 폴리에틸렌 공중합체는 용융 유동 지수 및 용융 유동률비가 넓어 우수한 가공성을 가지며, 높은 분자량, 넓은 분자량 분포 및 높은 긴 사슬 곁가지 함량을 가질 뿐만 아니라, 내환경 웅력 균열성이 200 시간 이상 또는 300 시간 이상이며, 190 °C 내외의 고온 및 90 bar 내외의 압력 조건에서 13 cm 초과 또는 15 cm 이상의 스파이럴 플로우 길이를 나타내며, 고온 및 고압 조건에서도 치수 변화율이 약 2%이하로 나타내서 높은 형태 안정성을 나타낼 수 있다. 상기 화학식 1의 전이 금속 화합물은 2개의 인덴 ( indene) 유도체 사이에 전이 금속이 배위 결합을 하면서 특정 구조의 가 상기 2개의 인덴 ( indene) 유도체들을 연결하는 구조를 갖는데, 상대적으로 입체 장애가 작은 인덴 유도체가 상술한 특정 구조의 ¾를 매개로 연결된 구조를 가짐에 따라서, 에틸렌 등의 단량체가 상기 전이 금속 화합물의 중심 금속에 접근하기 용이하여 보다 높은 공중합 활성을 구현할 수 있으며, 낮은 수소 반웅성을 나타내어 수소를 투입하여 Ml 및 MFRR등을 조정하는 경우에도 반웅 활성의 저하 없이 중분자량의 올레핀 중합체를 생성할 수 있다. 상기 화학식 2의 전이 금속 화합물은 인데노 인돌 ( indeno indole) 유도체와 인덴 ( indene) 유도체가 브릿지에 의해 비대칭적으로 가교된 구조를 형성하며, 리간드 구조에 루이스 염기로 작용할 수 있는 비공유 전자쌍을 가짐으로써 높은 중합 활성을 나타낸다. 또한 전자적으로 풍부한 인데노인돌 유도체는 질소 원자가 자라나는 고분자 사슬의 beta-hydrogen을 수소결합에 의해 안정화시켜 beta-hydrogen el iminat ion을 억제하여 고분자량의 올레핀계 중합체를 중합할 수 있다. 또한 상대적으로 입체 장애가 적은 인덴 유도체를 포함함에 따라 높은 공중합 활성과 낮은 수소 반웅성을 나타내어 중고분자량의 올레핀 중합체를 고활성으로 중합할 수 있다.
특히, 상기 화학식 2의 전이 금속 화합물은 화학식 2b의 인덴 유도체 화합물의 특정한 위치에 치환기 (Zu)를 갖는 구조로, 비치환된 인덴 화합물이나, 다른 위치가 치환된 인덴 화합물을 포함하는 메탈로센 화합물에 비하여, 활성이 우수한 특성을 가질 수 있다. 상기 화학식 3의 전이 금속 화합물은 인데노 인돌 ( indeno indole) 유도체와 사이클로펜타디엔 (cyclopentadiene) 유도체가 브릿지에 의해 비대칭적으로 가교된 구조를 형성하며, 리간드 구조에 루이스 염기로 작용할 수 있는 비공유 전자쌍을 가짐으로써 담체의 루이스 산 특성을 지니는 표면에 담지되어 담지 시에도 높은 중합 활성을 나타낸다. 또한 전자적으로 풍부한 인데노 인돌기 및 사이클로펜타디엔기를 포함함에 따라 활성이 높고, 적절한 입체 장애와 리간드의 전자적인 효과로 인해 우수한 공중합성 및 높은 활성이 유지된다. 또한 인데노인돌 유도체의 질소 원자가 자라나는 고분자 사슬의 beta- hydrogen을 수소결합에 의해 안정화시켜 beta— hydrogen el iminat ion을 억제하여 초고분자량의 폴리을레핀을 중합할 수 있다.
특히, 상기 화학식 3의 전이 금속 화합물에서 J9 내지 J13 및 J9' 내지 J13' 중 하나 이상은 C1 내지 C20의 할로 알킬기를 포함하는 것이다. 예컨대, 플루오로알킬기, 즉 CF3 등을 들 수 있으며, 이는 인데노인돌 유도체의 질소 원자와 같은 작용을 하여 자라나는 고분자 사슬의 beta-hydrogen을 수소 결합에 의해 안정화시켜 beta-hydrogen el iminat ion을 더욱 억제하며 초고분자량의 폴리올레핀 중합을 좀더 효과적으로 달성할 수 있다. 즉, 인데노 인돌 ( indeno indole) 유도체와 사이클로펜타디엔 (cyclopentadiene) 유도체가 브릿지에 의해 비대칭적으로 가교된 촉매의 기본 골격은 유지하며, 보다 더 강력한 hydrogen bond acceptor인 CF3 등의 치환체를 도입하여 수소결합에 의해 beta-hydrogen을 안정화시켜 beta-hydrogen el iminat ion을 억제하는 작용을 높여 초고분자량 폴리올레핀을 중합할 수 있도록 한 것이다. 본 명세서에서, 아릴 (aryl ) 알킬렌기는 1 이상의 아릴기와 1 이상의 알킬렌기가 결합된 작용기로, 알킬렌기의 남은 하나의 결합 지점이 인덴 ( indene)과 결합한 구조를 의미한다. 또한, 사이클로알킬 알킬렌기는 1 이상의 사이클로알킬기와 1 이상의 알킬렌기가 결합된 작용기로, 알킬렌기의 남은 하나의 결합 지점이 인덴 ( indene)과 결합한 구조를 의미한다. 상기 화학식 1의 전이 금속 화합물의 구체적인 예가 상술한 화학식의 기재 범위의 일부로 한정되는 것은 아니나, 보다 바람직한 예는 다음과 같다:
상기 화학식 1 에서, 상기 Ri 내지 ¾는 C1 내지 C20 의 알킬실릴기, C1 내지 C20 의 실릴알킬기이고, 상기 R3 내지 ¾ 는 탄수소 6 내지 20 의 아릴렌기 (arylene) , 또는 탄소수 8 내지 22 의 아릴 디알킬렌기이고, 상기 R5 내지 Ru는 각각 수소, 할로겐, C1 내지 C20 의 직쇄 또는 분지쇄의 알킬기이고, ¾은 티타늄, 지르코늄 또는 하프늄이고, ^ 및 Y2는 할로겐일 수 있다. 상기 화학식 2의 전이 금속 화합물의 구체적인 예가 상술한 화학식의 기재 범위의 일부로 한정되는 것은 아니나, 보다 바람직한 예는 다음과 같다:
상기 화학식 2a 의 내지 는 각각 독립적으로 수소, 메틸기, 에틸기 , 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 펜틸기, 핵실기, 헵틸기, 옥틸기, 에틸렌기, 프로필렌기, 부테닐기, 페닐기, 벤질기, 나프틸기, 메록시기, 에톡시기, 또는 tert-부톡시핵실기이고,
상기 화학식 2b 의 Zu은 메틸기 , 에틸기 , 프로필기, 이소프로필기, n- 부틸기 tert-부틸기, 펜틸기, 핵실기, 헵틸기, 옥틸기, 에틸렌기, 프로필렌기, 부테닐기, 페닐기, 벤질기, 나프틸기, 트리메틸실릴기, 트리에틸실릴기, 트리프로필실릴기, 트리부틸실릴기, 트리이소프로필실릴기, 트리메틸실릴메틸기, tert-부틸디메틸실릴에테르기, 메특시기, 에특시기, 또는 tert-부록시핵실기이고, 상기 화학식 2의 R21 및 R22는 메틸기 또는 tert-부특시핵실기일 수 있다. 상기 화학식 2a로 표시되는 화합물의 구체적인 예로는 하기 구조식들.중 하나로 표시되는 화합물을 들 수 있으나, 이에만 한정되는 것은 아니다. 하기 구조식에서 사이클로펜타디에닐기의 남은 반웅 사이트가 결합지점을 의미한다.
Figure imgf000013_0001
또한, 상기 화학식 2b로 표시되는 화합물의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 화합물을 들 수 있으나, 이에만 한정되는 것은 아니다. 하기 구조식에서 사이클로펜타디에닐기의 남은 반웅 사이트가 결합 지점을 의미한다.
Figure imgf000014_0001
상기 화학식 2의 전이 금속 화합물의 보다 구체적인 예로는 구조식 하나로 표시되는 화합물을 들 있으나, 이에만 한정되는 것은 아니다.
Figure imgf000014_0002
Figure imgf000015_0001
상기 화학식 3의 전이 금속 화합물의 구체적인 예가 상술한 화학식의 기재 범위의 일부로 한정되는 것은 아니나, 보다 바람직한 예는 다음과 같다:
상기 화학식 3a , 3b , 3c , 3d 및 3e의 ^ 내지 J31 및 내지 J13 '은 각각 독립적으로 수소, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert- 부틸기, 펜틸기, 핵실기, 헵틸기, 옥틸기, 페닐기, 할로겐기, 트리메틸실릴기, 트리에틸실릴기, 트리프로필실릴기, 트리부틸실릴기, 트리이소프로필실릴기, 트리메틸실릴메틸기, 메록시기, 에록시기일 수 있으며, 내지 J13 및 J9' 내지 J13' 중 하나 이상은 탄소수 1 내지 3 의 퍼플로오로알킬 (perf luoroalkyl )일 수 있다. 상기 화학식 3 의 R31 및 R32은 각각 독릭적으로 수소, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 메톡시메틸기, tert- 부록시메틸기, tert-부록시핵실기, 1-에특시에틸기, 1-메틸 -1-메록시에틸기, 테트라하이드로피라닐기, 또는 테트라하이드로퓨라닐기일 수 있다.
상기 화학식 3a로 표시되는 화합물의 구체적인 예로는 하기 구조식으로 표시되는 화합물을 들 수 있으나, 이에만 한정되는 것은 아니다. 하기 구조식 기의 남은 반웅 사이트가 결합 지점을 의미한다.
Figure imgf000016_0001
또한, 상기 화학식 3b로 표시되는 화합물의 구체적인 예로는 하기 구조식으로 표시되는 화합물을 들 수 있으나, 이에만 한정되는 것은 아니다. 하기 구조식에서 사이클로펜타디에닐기의 남은 반웅 사이트가 결합 지점을 의미한
Figure imgf000016_0002
상기 화학식 3c로 표시되는 화합물의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 화합물을 들 수 있으나, 이에만 한정되는 것은 아니다. 하기 구조식에서 사이클로펜타디에닐기의 남은 반웅사이트가결합지점을 의미한다.
Figure imgf000017_0001
상기 화학식 3d로 표시되는 화합물의 구체적인 예로는 하기 구조식으로 표시되는 화합물을 들 수 있으나, 이에만 한정되는 것은 아니다. 하기 구조식 펜타디에닐기의 남은 반웅사이트가 결합지점을 의미한다.
Figure imgf000017_0002
상기 화학식 3e로 표시되는 화합물의 구체적인 예로는 하기 구조식으로 표시되는 화합물을 들 수 있으나, 이에만 한정되는 것은 아니다. 하기 구조식에서 사이클로펜타디에닐기의 남은 반웅사이트가 결합지점을 의미한다.
Figure imgf000017_0003
상기 화학식 3의 전이 금속 화합물의 보다 구체적인 예로는 구조식으로 표시되는 화합물을 들 수 있으나, 이에만 한정되는 것은 아니다.
Figure imgf000018_0001
한편, 상기 올레핀 공중합체 합성용 촉매 조성물에서, 상기 화학식 1의 전이 금속 화합물을 포함하는 제 1메탈로센 촉매와 상기 화학식 2의 전이 금속 화합물을 포함하는 게 2메탈로센 촉매와 상기 화학식 3의 전이 금속 화합물을 포함하는 제 3메탈로센 촉매 간의 몰비가 크게 한정되는 것은 아니다. 다만, 상술한 효과, 예를 들어 상기 촉매 조성물을 이용하여 제조되는 을레핀 공중합체가 보다 넓은 용융 유동 지수 및 용융 유동률비를 가지며, 보다 높은 분자량, 넓은 분자량 분포 및 높은 긴 사슬 곁가지 함량을 나타내면서 우수한 내환경 웅력 균열성, 가공성 및 치수 안정성을 구현하는 효과를 극대화 하기 위해서, 상기 화학식 2의 전이 금속 화합물을 포함하는 게 2메탈로센 촉매 대비 상기 화학식 1의 전이 금속 화합물을 포함하는 게 1메탈로센 촉매 및 상기 화학식 3의 전이 금속 화합물을 포함하는 제 3메탈로센 촉매의 몰비가 1 : 0.5 내지 2: 1 내지 5일 수 있다.
상기 화학식 1의 전이 금속 화합물을 포함하는 게 1메탈로센 촉매 대비 상기 화학식 2의 전이 금속 화합물을 포함하는 제 2메탈로센 촉매의 몰비가 너무 작으면, 상기 합성되는 폴리에틸렌 공중합체 중 저분자량을 갖는 폴리에틸렌 공중합체의 비율이 낮아져서 최종 제품의 가공성이 저하될 수 있다. 또한, 상기 화학식 1의 전이 금속 화합물을 포함하는 제 1메탈로센 촉매 대비 상기 화학식 2의 전이 금속 화합물을 포함하는 게 2메탈로센 촉매의 몰비가 너무 크면, 상가 합성되는 폴리에틸렌 공중합체 중 고분자량을 갖는 폴리에틸렌 공중합체의 비율이 낮아져서 최종 제품의 내환경 웅력 균열성이나 스파이럴 플로우 길이가 저하될 수 있다.
또한, 상기 화학식 1의 전이 금속 화합물을 포함하는 제 1메탈로센 촉매 대비 상기 화학식 3의 전이 금속 화합물을 포함하는 제 3메탈로센 촉매의 몰비가 너무 작으면, 상기 합성되는 폴리에틸렌 공중합체 중 고분자량을 갖는 폴리에틸렌 공중합체의 비율이 낮아져서 최종 제품의 내환경 웅력 균열성이나 치수 안정성 둥이 저하될 수 있다.
상기 화학식 1의 전이 금속 화합물을 포함하는 제 1메탈로센 촉매 대비 상기 화학식 2의 전이 금속 화합물을 포함하는 게 3메탈로센 촉매의 몰비가 너무 크면, 상기 합성되는 폴리에틸렌 공중합체 중 고분자량을 갖는 폴리에틸렌 공중합체의 비율이 과도하게 높아지고 고분자 꼬리 (tai l )이 과도하게 증가하여 사출시 과도하게 높은 압력이 요구되며 이에 따라 가공성이 저하되거나 최종 제품의 품질이 저하될 수 있다.
상기 상기 화학식 2의 전아금속 화합물을 포함하는 제 2메탈로센 촉매와 상기 화학식 3 의 전이 금속 화합물 간의 몰비 또한 크게 한정되는 것은 아니나, 상술한 범위 내에서 사용되는 것이 상기 효과를 구현하기 위하여 바람직하다. 한편, 상기 올레핀 공중합체 합성용 촉매 조성물은 조촉매 또는 담체를 더 포함할 수 있다.
상기 조촉매로는 13족 금속을 포함하는 유기 금속 화합물로서 , 일반적인 메탈로센 촉매 하에 올레핀을 중합할 때 사용될 수 있는 알려진 것이라면 특별히 한정되는 것은 아니다.
구체적으로, 상기 조촉매 화합물은 하기 화학식 6의 알루미늄 함유 제 1 조촉매, 및 하기 화학식 7의 보레이트계 제 2 조촉매 중 하나 이상을 포함할수 있다.
[화학식 6]
-[Al (X)-0-]k- 상기 화학식 6에서, X는 각각 독립적으로 할로겐, 할로겐 치환 또는 비치환된 탄소수 1 내지 20의 하이드로카빌기이고, k는 2 이상의 정수이고,
[화학식 7]
T+[BG4]" 화학식 7에서, T+은 +1가의 다원자 이온이고, B는 +3 산화 상태의 붕소이고, G는 각각 독립적으로 하이드라이드기, 디알킬아미도기, 할라이드기, 알콕사이드기, 아릴옥사이드기, 하이드로카빌기, 할로카빌기 및 할로-치환된 하이드로카빌기로 이루어진 군에서 선택되고, 상기 G는 20개 이하의 탄소를 가지나, 단 하나 이하의 위치에서 G는 할라이드기이다.
이러한 제 1 및 게 2 조촉매의 사용에 의해, 최종 제조된 폴리올레핀의 분자량 분포가 보다 균일하게 되면서, 중합 활성이 향상될 수 있다.
상기 화학식 6의 제 1 조촉매는 선형, 원형 또는 망상형으로 반복단위가 결합된 알킬알루미녹산계 화합물로 될 수 있고, 이러한 제 1 조촉매의 구체적인 예로는, 메틸알루미녹산 (MA0) , 에틸알루미녹산, 이소부틸알루미녹산 또는 부틸알루미녹산 등을 들 수 있다.
또한, 상기 화학식 7의 제 2 조촉매는 삼치환된 암모늄염, 또는 디알킬 암모늄염, 삼치환된 포스포늄염 형태의 보레이트계 화합물로 될 수 있다. 이러한 제 2 조촉매의 구체적인 예로는, 트리메탈암모늄 테트라페닐보레이트, 메틸디옥타데실암모늄 테트라페닐보레이트, 트리에틸암모늄 테트라페닐보레이트, 트리프로필암모늄 테트라페닐보레이트, 트리 (n-부틸)암모늄 테트라페닐보레이트, 메틸테트라데사이클로옥타데실암모늄 테트라페닐보레이트, Ν,Ν-디메틸아닐늄 테트라페닐보레이트, Ν,Ν-디에틸아닐늄 테트라페닐보레이트, Ν, Ν-디메틸 (2 , 4 , 6- 트리메틸아닐늄)테트라페닐보레이트, 트리메틸암모늄 테트라키스 (펜타플로오로페닐)보레이트, 메틸디테트라데실암모늄 테트라키스 (펜타페닐)보레이트 메틸디옥타데실암모늄 테트라키스 (펜타플루오로페닐)보레이트, 트리에틸암모늄, 테트라키스 (펜타플루오로페닐)보레이트,
트리프로필암모늄테트라키스 (펜타프루오로페닐)보레이트 트리 (η-부틸)암모늄 테트라키스 (펜타플루오로페닐)보레이트, 트리 (2급- 부틸)암모늄테트라키스 (펜타플루오로페닐)보레이트, Ν,Ν-디메틸아닐늄 테트라키스 (펜타플루오로페닐)보레이트, Ν,Ν- 디에틸아닐늄테트라키스 (펜타플루오로페닐)보레이트, -디메틸(2,4,6- 트리메틸아닐늄)테트라키스 (펜타플루오로페닐)보레이트,
트리메틸암모늄테트라키스 (2, 3 ,4, 6-테트라플루오로페닐)보레이트, 트리에틸암모늄 테트라키스 (2,3,4,6—테트라플루오로페닐)보레이트, 트리프로필암모늄 테트라키스 (2,3,4, 6-테트라플루오로페닐)보레이트, 트리 (n- 부틸)암모늄 테트라키스 (2,3,4,6- ,테트라플루오로페닐)보레이트, 디메틸 (t- 부틸)암모늄 테트라키스 (2 , 3,4,6-테트라플루오로페닐)보레이트, Ν,Ν- 디메틸아닐늄 테트라키스 (2 , 3 , 4 , 6-테트라플루오로페닐)보레이트, Ν,Ν- 디에틸아닐늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트 또는 Ν,Ν- 디메틸 -(2,4,6-트리메틸아닐늄)테트라키스 -(2,3,4,6-
'테트라플루오로페닐)보레이트 등의 삼치환된 암모늄염 형태의 보레이트계 화합물; 디옥타데실암모늄 테트라키스 (펜타플루오로페닐)보레이트, 디테트라데실암모늄 테트라키스 (펜타플루오로페닐)보레이트 또는 디사이클로핵실암모늄 테트라키스 (펜타플루오로페닐)보레이트 등의 디알킬암모늄염 형태의 보레이트계 화합물; 또는 트리페닐포스포늄 테트라키스 (펜타플루오로페닐)보레이트, 메틸디옥타데실포스포늄 테트라키스 (펜타플루오로페닐)보레이트 또는 트리 (2,6- , 디메틸페닐)포스포늄 테트라키스 (펜타플루오로페닐)보레이트 등의 삼치환된 포스포늄염 형태의 보레이트계 화합물 등을 들 수 있다.
상기 제 1 메탈로센 화합물, 제 2 메탈로센 화합물 및 제 3 메탈로센 화합물에 포함되는 전이금속의 전체 중량 대비 담체의 질량비는 10 내지 10 , 000 일 수 있다. 상기 질량비로 담체 및 메탈로센 화합물을 포함할 때, 최적의 형상을 나타낼 수 있다.
또한, 조촉매 화합물 대 담체의 질량비는 1 : 1 내지 1 : 100 일 수 있다. 상기 질량비로 조촉매 및 메탈로센 화합물을 포함할 때, 활성 및 고분자 미세구조를 최적화할 수 있다.
한편, 상기 담체는 표면에 하이드록시기를 함유하는 담체를 사용할 수 있으며, 바람직하게는 건조되어 표면에 수분이 제거된, 반웅성이 큰 하이드록시기와 실록산기를 가지고 있는 담체를 사용할 수 있다.
예컨대, 고온에서 건조된 실리카, 실리카 -알루미나, 및 실리카- 마그네시아 등이 사용될 수 있고, 이들은 통상적으로 Na20, K2C03 , BaS04, 및 Mg(N03)2 등의 산화물, 탄산염, 황산염, 및 질산염 성분을 함유할 수 있다.
상기 담체의 건조 온도는 200 내지 800°C가 바람직하고, 300 내지 600°C가 더욱 바람직하며, 300 내지 400°C가 가장 바람직하다. 상기 담체의 건조 온도가 200°C 미만인 경우 수분이 너무 많아서 표면의 수분과 조촉매가 반웅하게 되고, 800oC를 초과하는 경우에는 담체 표면의 기공들이 합쳐지면서 표면적이 줄어들며, 또한 표면에 하이드록시기가 많이 없어지고 실록산기만 남게 되어 조촉매와의 반웅자리가 감소하기 때문에 바람직하지 않다.
상기 담체 표면의 하이드록시기 양은 0. 1 내지 10 mmol /g이 바람직하며, 0.5 내지 5 mmol/g일 때 더욱 바람직하다. 상기 담체 표면에 있는 하이드록시기의 양은 담체의 제조방법 및 조건 또는 건조 조건, 예컨대 온도, 시간, 진공 또는 스프레이 건조 등에 의해 조절할 수 있다.
상기 하이드록시기의 양이 0. 1 mmol/g 미만이면 조촉매와의 반웅자리가 적고, 10 匪 ol /g을 초과하면 담체 입자 표면에 존재하는 하이드록시기 이외에 수분에서 기인한 것일 가능성이 있기 때문에 바람직하지 않다.
한편, 상기 을레핀 공중합체 합성용 촉매 조성물은 담체에 조촉매 화합물을 담지시키는 단계, 상기 담체에 상기 상기 제 1 메탈로센 화합물, 제 2 메탈로센 화합물 및 제 3 메탈로센 화합물 증 선택된 하나를 순차적으로 또는 상기 메탈로센 화합물 2종 이상을 동시에 담지시키는 단계를 포함하여 제조될 수 있다.
그리고, 상기 상기 제 1 메탈로센 화합물, 제 2 메탈로센 화합물 및 제 3 메탈로센 화합물을 담지시키는 단계의 순서는 필요에 따라 바뀔 수 있다.
상기 올레핀 공중합체 합성용 촉매 조성물의 제조시에 반웅 용매로서 펜탄, 핵산, 헵탄 등과 같은 탄화수소계 용매, 또는 벤젠, 를루엔 등과 같은 방향족계 용매가 사용될 수 있다. 또한, 메탈로센 화합물과 조촉매 화합물은 실리카나 알루미나에 담지된 형태로도 이용할 수 있다.
상기 올레핀 공중합체 합성용 촉매 조성물은 그 자체로서 올레핀계 단량체의 중합에 사용될 수 있다. 또한, 상기 올레핀 공중합체 합성용 촉매 조성물은 올레핀계 단량체와 접촉 반웅되어 예비 중합된 촉매로 제조하여 사용할 수도 있으며, 예컨대 촉매를 별도로 에틸렌, 프로필렌, 1-부텐, 1-핵、센, 1-옥텐 등과 같은 을레핀계 단량체와 접촉시켜 예비 중합된 촉매로 제조하여 사용할 수도 있다. 한편, 본 명세서에서는, 상술한 올레핀 공중합체 합성용 촉매 조성물의 존재 하에, 에틸렌 및 알파-올레핀을 공중합하는 단계는 포함하는, 올레핀 공중합체의 제조 방법이 제공될 수 있다.
상기 을레핀계 단량체는 에틸렌, 알파-올레핀, 사이클릭 올레핀, 이중 결합을 2개 이상 가지고 있는 디엔 올레핀 또는 트리엔 올레핀일 수 있고, 보다 구체적인 예로는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸— 1-펜텐, 1-핵센, 1- 헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-핵사데센, 1- 아이토센, 노보넨, 노보나디엔, 에틸리덴노보넨, 페닐노보넨, 비닐노보넨, 디사이클로펜타디엔, 1,4-부타디엔, 1,5-펜타디엔, 1 , 6-핵사디엔, 스티렌, 알파- 메틸스티렌, 디비닐벤젠, 3-클로로메틸스티렌 등을 들 수 있으며, 이들 단량체를 2종 이상흔합하여 공중합할 수도 있다.
상기 올레핀계 중합체는 에틸렌 /알파올레핀 공중합체인 것이 보다 바람직하나, 이에만 한정되는 것은 아니다.
상기 올레핀계 중합체가 에틸렌 /알파올레핀 공중합체인 경우에 있어서, 상기 공단량체인 알파을레핀의 함량은 특별히 제한되는 것은 아니며, 올레핀계 중합체의 용도, 목적 등에 따라 적절하게 선택할 수 있다. 보다 구체적으로는 0 초과 99 몰% 이하일 수 있다.
상기 공중합 반웅 또는 중합 반웅은 하나의 연속식 슬러리 중합 반웅기 , 루프 슬러리 반웅기, 기상 반웅기 또는 용액 반웅기를 이용하여 하나의 올레핀계 단량체로 호모중합하거나 또는 2종 이상의 단량체로 공중합여 진행할 수 있다. 그리고, 상기 공중합 온도는 약 25 내지 약 500°C , 바람직하게는 약 25 내지 약 200°C, 보다 바람직하게는 약 50 내지 약 150oC일 수 있다. 또한, 중합 압력은 약 1 내지 약 100 gf/cm2 , 바람직하게는 약 1 내지 약 50 Kgf/cm2, 보다 바람직하게는 약 5 내지 약 30 Kgf/cm2일 수 있다.
상기 올레핀 공중합체 합성용 촉매 조성물은 탄소수 5 내지 12의 지방족 탄화수소 용매, 예를 들면 펜탄, 핵산, 헵탄, 노난, 데칸, 및 이들의 이성질체와 를루엔, 벤젠과 같은 방향족 탄화수소 용매, 디클로로메탄, 클로로벤젠과 같은 ' 염소원자로 치환된 탄화수소 용매 등에 용해하거나 회석하여 주입할 수 있다. 여기에 사용되는 용매는 소량의 알킬 알루미늄 처리함으로써 촉매 독으로 작용하는 소량의 물 또는 공기 등을 제거하여 사용하는 것이 바람직하며, 조촉매를 더 사용하여 실시하는 것도 가능하다. 한편, 상기 올레핀 공중합체 합성용 촉매 조성물을 이용한 올레핀 공중합체의 제조 방법에 제공된 올레핀 공중합체의 특성은 다음과 같다.
상기 올레핀 공중합체의 중량 평균 분자량 (Mw)이 100,000 내지 300,000 g/mol일 수 있다. 보다 바람직하게 상기 중량 평균 분자량은, 120,000 g/mol 이상, 130,000 g/mol 이상, 또는 140,000 g/mol 이상이고, 250,000 g/mol 이하, 또는 220,000 g/mol 이하, 또는 200,000 g/mol 이하일 수 있다.
상기 올레핀 공중합체는 본 발명에 따른 올레핀계 중합체는 분자량 분포 (Mw/Mn)가 10 내지 30, 또는 15 내지 25일 수 있다. 이와 같이 넓은 분자량 분포를 갖는 올레핀계 중합체는 보다우수한 가공성을 나타낼 수 있다.
상기 올레핀 공중합체의 밀도는 0.930 내지 0.960 g/cm3일 수 있으나 이에만 한정되는 것은 아니다.
또한, 상기 올레핀 공중합체는 MFR2.16(ASTM D1238에 의거하여 190°C, 2.16 kg 하중에서 측정한 용융 유동 지수)이 0.01 내지 1.0 g/10min 일 수 있다. 보다 바람직하게 상기 MFR216은, 0.05 g/10min 이상, 또는 0.1 g/10min 이상, 0.15 g/10min 이상이고, 0.9 g/10min 이하, 또는 0.8 g/10min 이하, 또는 0.6 g/10min 이하일 수 있다.
또한, 상기 올레핀 공중합체는 MFR /2.16(ASTM D1238에 의거하여 190°C , 5kg 하중에서 측정한 용융 유동 지수를 190 °C, 2.16 kg 하중에서 측정한 용융 유동 지수로 나눈 값)이 5 내지 10의 값을 가진다. 보다 바람직하게 상기 ¾0 /2.16은 3 이상, 또는 3.2 이상, 또는 3.3 이상이고, 9 이하, 또는 9.5 이하, 또는 8 이하일 수 있다.
상기 스파이럴 플로우 길이 (spiral flow length, 190 °C, 90 bar)는 에틸렌 /알파-올레핀 공중합체의 가공성을 나타내는 것으로, 이의 값이 클수록 가공성이 우수함을 의미한다. 예를 들어 , 상기 올레핀 공중합체에 대하여, ENGEL 150 톤 사출기를 사용하고 금형 두께는 1.5瞧, 사출 온도는 190°C, 금형 온도는 50 사출 압력을 90 bar로 하여 측정한 스파이럴 플로우 길이 (SF: Spiral flow length)는 13 cm 초과 또는 15 cm 이상 일 수 있다.
또한, 상기와 같은 기계적 물성 및 가공성 외에도 상기 올레핀 공중합체는 내환경 웅력 균열성 (ESCR, envi ronmental stress crack res i stance) 또한우수하다는 특징이 있다.
일반적으로, 가공성과 내환경 응력 균열성은 상반되는 물성으로, 가공성을 높이기 위해 용융 지수를 높이면 내환경 웅력 균열성이 떨어지게 되나, 상기 올레핀 공중합체는 양호한 가공성 및 내환경 웅력 균열성을 모두 만족시킨다.
상기 올레핀 공중합체는 ASTM D 1693 에 따라 측정한 내환경 웅력 균열성 (ESCR)이 200 시간 이상, 또는 240 시간 이상, 또는 300 시간 이상일 수 있다. 내환경 웅력 균열성 (ESCR)이 200 시간 이상이면 보를캡 용도의 사용 상태에서 안정적으로 성능 유지가 가능하므로 상한값은 실질적으로 크게 의미가 없으나, 1 , 000 시간 이하, 또는 800 시간 이하, 또는 약 500 시간 이하일 수 있다. 이와 같이 고성능의 내환경 웅력 균열성을 나타내므로, 보를캡 등의 식품 용기 제품으로 성형하여 고온 고압의 조건에서 사용하였을 때에도 안정성이 높아 지속적인 성능을 유지할 수 있다.
구체적으로, 상기 올레핀 공중합체 합성용 촉매 조성물을 이용한 을레핀 공중합체의 제조 방법에 제공된 올레핀 공중합체는, 분자량이 100 , 000 내지 300 , 000 g/mol 이고, 분자량 분포 (Mw/Mn)가 5 내지 30이고ᅳ 밀도가 0.930 내지 0.960 g/citf이고, MFR 5/2.16(ASTM D1238에 의거하여 190 °C, 5kg 하중에서 측정한 용융 유동 지수를 190 °C , 2. 16 kg 하중에서 측정한 용융 유동.지수로 나눈 값)이 1 내지 10이고, X 축이 log Mw이고 y축이 dw/dlogMw인 GPC 커브 그래프에서 log Mw가 5.0 이상 5.5 미만의 영역에서의 적분값이 X축 전체 적분값의 20% 이상일 수 있다. 이에 따라, 상기 올레핀 공중합체는 내환경 웅력 균열성 및 강성이 우수한 특성을 가질 수 있고, 고분자 사출 제품에서 우수한 강성을 가지며, 사출 후 온도 및 압력 변화에도 형상이 실질적으로 변하지 않는 높은 치수 안정성을 가질 수 있다.
보다 구체적으로, 상기 올레핀 공중합체에 대한 X 축이 log Mw이고 y 축이 dw/dlogMw인 GPC 커브 그래프에서, log Mw가 5.0 이상 5.5 미만의 영역에서의 적분값이 X축 전체 적분값의 20% 내지 30¾일 수 있다.
상기 올레핀 공중합체에 대한 X 축이 log Mw이고 y 축이 dw/dlogMw인 GPC 커브 그래프에서, l og Mw가 5.0 이상 5.5 미만의 영역에서의 적분값이 X축 전체 적분값의 비율이 20% 미만이면, 상기 올레핀 공중합체의 강성이 저하되거나 쉽게 깨질 수 있으며, 이에 따라 상기 올레핀 공중합체를 식품 용기, 보틀캡 등의 제품으로 적용시 쉽게 깨지거나 상기 제품이 터지는 등의 문제가 발생할 수 있고, 또한층분한 내화학성을 확보하기 어려울 수 있다.
한편, 상기 올레핀 공중합체에 대한 X 축이 log Mw이고 y 축이 dw/dl ogMw인 GPC 커브 그래프에서, log Mw가 4.5 이상 5.0 미만의 영역에서의 적분값이 X축 전체 적분값의 25% 이상일 수 있다. 상기 GPC 커브 그래프에서 log Mw가 4.5 이상 5.0 미만의 영역은 상기 올레핀 공중합체의 강성이나 치수 안정성에 관련될 수 있으며, 이러한 영역에서의 적분값이 X축 전체 적분값의 25% 이상 또한 25% 내지 40% 임에 따라서, 상기 올레핀 공중합체는 상술한 특성을 만족할 수 있다.
그리고, 상기 올레핀 공중합체에 대한 X 축이 log Mw이고 y 축이 dw/dlogMw인 GPC 커브 그래프에서, x축 전체 적분값 대비 log Mw가 4.5 이상 5.0 미만의 영역에서 적분값의 비율과 log Mw가 5.0 이상 5.5 미만의 영역에서의 적분값의 비율의 차이가 7%이하, 또는 \ 내지 7%일 수 있다.
이와 같이, 상기 GPC 커브 그래프에서 X축 전체 적분값 대비 l og Mw가 4.5 이상 5.0 미만의 영역에서 적분값의 비율과 log Mw가 5.0 이상 5.5 미만의 영역에서의 적분값의 비율의 차이가 7%이하, 또는 1% 내지 7¾)임에 따라서, 상기 올레핀 공중합체는 고분자 사출 제품에 필요한 높은 강성을 가지면서도 쉽게 깨어지지 않는 특성을 가질 수 있고, 이에 따라 높은 내압 및 내화학성이 요구되는 고강성의 용기나 고강성의 보를캡 등으로 적용될 수 있다.
상기 올레핀 공중합체에 대한 X 축이 log Mw이고 y 축이 dw/dlogMw인 GPC 커브 그래프에서, X축 전체 적분값 대비 log Mw가 4.5 이상 5.0 미만의 영역에서 적분값의 비율과 log Mw가 5.0 이상 5.5 미만의 영역에서의 적분값의 비율의 차이가 Ί 초과하는 경우에는, 상기 올레핀 공중합체가 과도하게 높은 이중 분자량 분포 양상 또는 멀티 분자량 분포 양상 (Bimodal i ty, mul t imodal i ty)를 나타내게 되어, 이에 따라 외부 층격에 의하여 쉽게 깨지거나 온도 및 압력의 변화에 따라 크게 변형되는 등의 문제가 나타나서 식품 용기, 보틀캡 등의 제품으로 적용이 적합하지 않을 수 있다.
상기에서 Mw는 중량 평균 분자량 (weight-average mol ecul ar weight )을 의미하고, w는 질량 분율 (weight fract ion)을 의미한다. 또한, GPC 등의 방법을 통하여 측정된 분자량 등을 바탕으로 X 축이 log Mw이고 y 축이 dw/dlogMw인 GPC 커브 그래프를 정의할 수 있다.
【발명의 효과】 .
본 발명에 따르면, 용융 유동 지수 및 용윷 유동률비가 넓어 우수한 가공성을 가지며, 높은 분자량, 넓은 분자량 분포 및 높은 긴 사슬 결가지 함량을 가짐에 따라 내환경 웅력 균열성 및 가공성이 우수하면서 치수 안정성이 높아서, 고압 및 고온 환경에서 안정성과 내화학성이 요구되는 식품 용기, 보를캡 등으로 바람직하게 사용 기능한 올레핀 공중합체를 제공할수 있는 올레핀 공중합체 합성용 촉매 조성물과, 상기 올레핀 공중합체 합성용 촉매 조성물을 이용한올레핀 공중합체 제조 방법이 제공될 수 있다.
【발명을 실시하기 위한 구체적인 내용】
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.
<제조예 >
[제 1 메탈로센 화합물의 제조예]
제조예 1
Figure imgf000027_0001
1 , 8-비스 (브로모메틸)나프탈렌 [l , 8-bi s(bromomethyl )naphthalene 6.3g (20 腿 ol )과 메틸 TMS-인덴 리륨염 (methyl TMS—Indene Li thium sal t ) 8.3g (40 隱 ol )을 각각 THF 80 mL에 녹인 후, 드라이 아이스 /아세톤 배스 (bath)에서 적가하여 상온에서 밤새 교반하였다. 상기 교반 완료 후, 반웅 결과물은 ether /water로 추출 (extract ion)하여 유기층의 잔류수분을 MgS04로 제거 후, 진공 감압 조건에서 용매 (solvent)를 제거하여 액상의 리간드 화합물 11. lg (20 隱 ol, Mw 556.93)을 얻었다.
상기 얻어진 리간드 화합물 llg을 틀루엔 80 mL 및 Methyl Tertiary Butyl Ether (MTBE) 5 mL 의 흔합 용매에 녹이고, 2.5 M n_부틸 리튬의 핵산 용액 16.7 mL (41.6 麵 ol)을 적가하여 상온에서 교반하였다. 그리고, 7.5 g (19.8 mmol)의 ZrCl4(THF)2 를 를루엔 80 mL 에 넣어 슬러리로 준비한 후 dry ice/acetone bath에서 transfer하고 상온에서 밤새 교반하였다.
상기 교반 완료 이후, 상기 슬러리를 여과하여 LiCl을 제거하고, 여과액 (filtrate)의 를루엔을 진공 건조하여 제거한 후 핵산 100 mL을 넣고 1시간 동안 sonication하였다. 이후 상기 슬러리를 필터하여 여과된 고체 (filtered sol id)인 인 메탈로센 화합물 4.5 g (yield 62.3 mol%, 노란색 고체)을 얻었다.
¾ NMR (500 MHz, CDC13): 8.16― 6.95 (14H, m), 5.99 (2H, d), 3.99 (2H m), 3.83 (2H, m), 3.39 (2H, m), 0.15 (18H, d)
[제 2메탈로센 화합물의 제조예]
Figure imgf000028_0001
1) 리간드 화합물의 제조
건조된 250 mL schlenk flask에 3 g (10 匪 ol)의 Indenoindole을 넣고 100 mL의 핵센에 녹인 후, 4.4 mL (11 画 ol)의 2.5 M nBuLi hexane solution을 천천히 적가하고 반웅 흔합물은 천천히 상온으로 올린 후 다음날까지 교반하였다. 다른 250 mL schlenk flask를 글러브 박스안에 넣은 상태에서, (6-tert- butoxyhexyl)dichloro(methyl)silane 2.7 g(10 mmol)의 무게를 재고 상기 글러브 박스 밖으로 꺼내었다. 그리고, 상기 schlenk flask 안으로 50 mL의 핵센을 첨가하여 녹인후, 이 flask를 -78°C까지 냉각한 뒤 Indenoindole의 lithiated solution을 cannula를 통해 주입하였다.
상기 주입 완료 이후, 상기 schlenk flask의 온도를 상은으로 올리고 하루동안 교반한 후, 메틸 TMS-인덴 리튬염 (methyl TMS-Indene Lithium salt) 2.1g (10隱 ol)을 각각 THF 100 mL에 녹이고 적가하여 상온에서 밤새 교반하였다. 상기 교반 완료 후, 반응 결과물은 ether /water로 추출 (extraction)하여 유기층의 잔류수분을 MgS04로 제거 후, 진공 감압 조건에서 용매 (solvent)를 제거하여 액상의 리간드 화합물 7 g (10 mmol, Mw: 696.1)을 얻었다.
¾ NMR (500 MHz, CDC13): 7.86 - 7.11 (17H, m), 5.11-5.64 (3H, d) , 4.16 (1H, m), 3.20 (2H, m) , 1.61-1.47 (6H, m) , 1.15 (9H, s), -0.34 (3H, m)
2) 메탈로센 화합물의 제조
상기 얻어진 리간드 화합물 5.5g(7.9 醒 ol)을 를루엔 80 mL에 녹이고,
2.5 M n-부틸 리튬의 핵산 용액 6.6 mL (16.6 瞧 ol)을 적가하여 상온에서 교반하였다. 그리고, .3 g (7.9 隱 ol)의 ZrCl4(THF)2 를 를루엔 80 mL 에 넣어 슬러리로 준비한 후 dry ice/acetone bath에서 transfer하고 상온에서 밤새 교반하였다.
상기 교반 완료 이후, 상기 슬러리를 여과하여 LiCl을 제거하고, 여과액 (filtrate)의 를루엔을 진공 건조하여 제거한 후 핵산 100 mL을 넣고 1시간 동안 sonication하였다. 이후 상기 슬러리를 필터하여 여과된 고체 (filtered solid)인 인 메탈로센 화합물 1.5 g (yield 23 mol%, 적색 고체)을 얻었다.
¾ NMR (500 MHz, CDC13): 7.66 - 7.20 (17H, m), 6.15-5.71 (1H, d),
5.65 (2H, m), 3.76 (2H, m), 3.20 (2H, m), 1.51-1.29 (4H, m), 1.15 (3H, s), 0.01 (9H, s)
[제 3 메탈로센 화합물의 제조예]
제조예 3
Figure imgf000030_0001
1) 리간드 화합물의 제조
8-methyl-5-(2-(tr i f luoromethyl ) benzyl )—5,l(Hiihydroindeno[l,2_ b] indole 2.9 g(7.4隱 ol)을 100 mL의 Hexane과 2 mL(16.8 mmol)의 MTBE (methyl tertialry butyl ether)에 녹여 2.5 M n-BuLi Hexane 용액 3.2 mL(8.1 隱 ol)을 dryice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. 다른 250 mL 술 크 플라스크 (schlenk flask)에 (6-tert-butoxyhexyl )dichloro(methyl )si lane 2 g(7.4 mmol)를 hexane 50 mL에 녹인 후, dryice/acetone bath에서 적가하여 8_ methyl-5-(2-(trif 1 uorome thyDbenzyl )-5, 10-di hydr o i ndeno [1,2-b] i ndo 1 e의 lithiated slurry를 cannula를 통해 dropwise 적가하였다. 주입이 끝나 흔합물은 상온으로 천천히 올린 후 상온에서 밤새 교반하였다. 이와 동시에 fluorene 1.2 g(7.4 隱 ol) 또한 THF 100 mL에 녹여 2.5 M n-BuLi hexane solution 3.2 mL(8.1 瞧 ol)를 dryice/acetone bath에서 적가하여 상온에서 밤새 교반하였다.
8一 me thyl-5-(2-(trif 1 uorome thyl )benzyl )-5, 10-di hydr o i ndeno [1,2- b] indole과 (6— (tert-butoxy)hexyl )dichloro(methyl )si lane과의 반응 용액 (Si 용액)을 NMR 샘플링하여 반웅 완료를 확인하였다.
¾證 (500 MHz, CDCI3): 7.74-6.49 (11H, m), 5.87 (2H, s), 4.05 (1H, d), 3.32 (2H, m), 3.49 (3H, s), 1.50-1.25(8H, m), 1.15 (9H, s), 0.50 (2H, m), 0.17 (3H, d)
앞서 합성 확인한 후, 상기 Si 용액에 fluorene의 lithiated solution을 dryice/acetone bath에서 천천히 적가하여 상온에서 밤새 교반하였다. 반웅 후 ether/water로 추출 (extraction)하여 유기층의 잔류수분을 MgS04로 제거 후, 진공 감압조건에서 용매를 제거하여 오일상의 리간드 화합물 5.5 g(7.4隱 ol)을 얻었으며, 1H-NMR에서 확인할 수 있었다.
¾ 匿 (500 MHz, CDCI3): 7.89-6.53 (19H, m), 5.82 (2H, s), 4.26 (1H, d), 4.14-4.10 (1H, m), 3.19 (3H, s), 2.40 (3H, m), 1.35-1.21 (6H, m), 1.14 (9H, s), 0.97-0.9 (4H, m), -0.34 (3H, t).
'
2) 메탈로센 화합물의 제조
상기 합성한 리간드 화합물 5.4 g (Mw 742.00, 7.4隱 ol)을 를루엔 80 mL MTBE 3 mL(25.2 隱 ol)에 녹여 2.5 M n-BuLi hexane solution 7.1 mL(17.8 mmol)를 dryice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. ZrCl4(THF)2 3.0 g(8.0 隱 ol)를 를루엔 80 mL를 넣어 슬러리로 준비하였다. ZrCl4(THF)2의 80 mL 를루엔 슬러리를 dry ice/acetone bath에서 리간드 -Li 용액을 transfer하여 상온에서 밤새 교반하였다.
반웅 흔합물을 필터하여 LiCl을 제거한 뒤, 여과액 (filtrate)의 를루엔을 진공 건조하여 제거한 후 핵산 100 mL을 넣고 1 시간 동안 sonication하였다. 이를 필터하여 여과된 고체 (filtered solid)인 자주색의 메탈로센 화합물 3.5 g (yield 52 mol%)을 얻었다.
¾ NMR (500 MHz, CDC13): 7.90-6.69 (9H, m), 5.67 (2H, s), 3.37 (2H, m), 2.56 (3H,s), 2.13—1.51 (11H, m) , 1.17 (9H, s). [흔성 담지 촉매의 제조 실시예]
실시예 1
20L sus 고압 반웅기에 를루엔 용액 3.0 kg을 넣고 반웅기 온도를 40oC로 유지하였다. 600oC의 온도에서 12시간 동안 진공을 가해 탈수시킨 실리카 (Grace Davison사 제조, SYL0P0L 948) 1,000 g을 반웅기에 투입하고 실리카를 충분히 분산시킨 후, 제조예 1의 메탈로센 화합물 0.1 匪 ol/g Si02 비율로 를루엔에 녹여 투입하고 40°C에서 2사간 동안 교반하여 반웅시켰다. 이후 교반을 중지하고 30분 동안 settling시킨 후 반웅 용액을 decant at ion하였다.
그리고, 반웅기에 10 wt% 메틸알루미녹산 (MA0)/를루엔 용액 3 kg을 투입한 후, 40°C에서 200rpm으로 12시간 동안 교반하였다. 그리고, 제조예 2의 메탈로센 화합물 0.05 隱 ol/g Si02 비율로 를루엔에 녹여 투입하고 40°C에서 200 rpm으로 12시간 동안 교반하여 반웅시켰다. 그리고, 제조예 3의 메탈로센 화합물 0. 15 mniol /g Si02 비율로 를루엔에 녹여 투입하고 40°C에서 200 rpm으로 12시간 동안 교반하여 반웅시켰다.
이후, 반웅기에 핵산 3.0 kg을 투입하고, 핵산 슬러리를 f i l ter dryer로 이송하고 핵산 용액을 필터하였다. 40 에서 4시간 동안 감압 하에 건조하여 lKg의 Si02 흔성 담지 촉매를 제조하였다. 실시예 2
상기 제조예 1 내지 3의 메탈로센 화합물을 첨가량을 달리한 점을 제외하고는 상기 실시예 1과 동일한 방법으로 담지 촉매를 제조하였다. 비교예 1
지글러 나타 촉매로 제조한 폴리에틸렌 공중합체 (ME1000 , LG화학 제품)을 비교예 1로 하였다.
<실험예 >
에틸렌 -1-핵센 공중합
상기 실시예에 각각에서 제조한 각각의 흔성 담지 메탈로센 촉매를 CSTR 연속 중합기 (반응기 부피 50 L , 반웅 유속 7m/s)에 투입하여 올레핀 중합체를 제조하였다. 공단량체로는 1-핵센을 사용하였고, 반응기 압력은 10 bar로 중합 온도는 90°C로 유지하였다.
상기 실시예 1 내지 3의 각각의 흔성 담지 메탈로센 촉매를 이용한 중합 조건을 하기 표 1에 정리하여 나타내었다.
[표 1]
Figure imgf000032_0001
제조예 3
0.15 mmol/gSi02
제조예 1
0.07 mmol/gSi02
제조예 2 ,
실시예 2 10/90 3.0 6
0.07蘭 ol/gSi¾
제조예 2
0.15 mmol/gSi02
중합체의 물성 평가
1) 용융지수 (MFR, 2.16 kg/21.6 kg): 측정 온도 190 °C, ASTM 1238
2) MF R(MFR2i.6/MFR2.i6): MFR21.6 용융지수 (MI, 21.6kg 하중)를 MFR2.16(MI, 2.16kg하중)으로 나눈 비율이다.
3) 분자량, 분자량 분포: PL-SP260을 이용하여 BHT 0.0125% 포함된 1, 2, 4-Trichlorobenzene에서 160°C, 10시간 동안 녹여 전처리하고, PL—GPC220을 이용하여 측정 온도 160°C에서 수 평균분자량, 중량 평균분자량을 측정하였다. 분자량 분포는 중량 평균분자량과 수 평균분자량의 비로 나타내었다.
그리고, 측정된 GPC 데이터를 이용하여, X 축이 log Mw이고 y 축이 dw/dlogMw인 GPC 커브 그래프를 도출하였다.
5) ESCR: ASTM D 1693에 따라 10% Igepal C0-630 Solution을 사용하여 온도 50°C 조건하에서 F50 (50% 파괴)까지의 시간을 측정하였다.
6) 스파이럴 플로우 길이 (SF: Spiral flow length): ENGEL 150톤 사출기를 사용하였으며, 금형 두께는 1.5 醒, 사출 온도는 190°C, 금형 온도는
50 °C, 사출 압력을 90 bar로 하여 측정하였다.
7) 치수 변화율: 실시예 및 비교예에서 각각 얻어진 을레핀 공중합체로부터 시편을 제작하고, Dynamic Mechanical Analysis(DMA)를 이용하여 치수 변화율을 측정하였다. 구체적으로, 실시예 및 비교예에서 각각 얻어진 을레핀 공중합체를 200°C의 프레스로 20 MPa에서 약 5분간 눌러서 시편 (폭 6隱, 두께: 0.3 誦)을 제작하고, 상기 시편을 32°C의 온도 및 0.5 MPa의 압력하에서 20분간 유지하는 단계와 온도를 승온하여 60°C의 온도 및 0.5 MPa의 압력하에서 10분간 유지시키는 단계를 1사이클로 하여 4사이클을 반복하였다. 매 사이클 마다 32°C의 조건에서 Strain을 기록하고, 최종적으로
사이클의 Strain과 4번째 사이클의 Strain의 차이를 1번
값으로 나눈 값 *100(%)으로 하였다.
【표 2]
Figure imgf000034_0001
상기 표 2에 나타난 바와 같이, 실시예 1 및 2의 흔성 메탈로센 촉매를 이용하여 얻어진 올레핀 공중합체는 내환경 웅력 균열성이 300 시간 이상이며 상대적으로 높은 스파이럴 플로우 길이를 나타내며, 고온 및 고압 조건에서도 치수 변화율이 약 2%이하로 나타내서 높은 형태 안정성을 나타낸다는 점이 확인되었다.
한편, 도 1에서 확인되는 바와 같이, 실시예 1 및 2 각각에서 제조된 올레핀 공중합체는 X 축이 log Mw이고 y 축이 dw/dlogMw인 GPC 커브 그래프에서 log Mw가 5.0 이상 5.5 미만의 영역에서의 적분값이 X축 전체 적분값의 약 23% 및 21%으로 나타났으며, 또한 X축 전체 적분값 대비 log Mw가 4.5 이상 5.0 미만의 영역에서 적분값의 비율 대비해서 log Mw가 5.0 이상 5.5 미만의 영역에서의 적분값의 비율의 차이가 각각 6.36% 및 5.24% 인것으로 확인되었다. 상술한 바와 같이, 실시예 1 및 2의 실시예 1 및 2 각각에서 제조된 을레핀 공중합체는 X 축이 log Mw이고 y 축이 dw/dlogMw인 GPC 커브 그래프에서 상술한 수치를 나타냄에 따라서, 상기 올레핀 공중합체는 고분자 사출 제품에 필요한 높은 강성을 가지면서도 쉽게 깨어지지 않는 특성을 가질 수 있고, 높은 내압 및 내화학성과 함께 우수한 치수 안정성을 나타내어 온도 및 압력의 변화에 따른 변형율이 크게 낮은 특성을 나타낸다.
즉, 실시예 1 및 2의 흔성 메탈로센 촉매를 이용하여 얻어진 올레핀 공중합체는 용융 유동 지수 및 용융 유동를비가 넓어 우수한 가공성을 가지며, 높은 분자량, 넓은 분자량 분포 및 높은 긴 사슬 곁가지 함량을 가질 뿐만 아니라, 상기 확인된 바와 같이 내환경 웅력 균열성 및 가공성이 우수하고 고압 및 고온 환경에서 안정성이 우수하여 식품 용기, 보틀캡 등으로 적용되어 우수한 성능을 구현할수 있다.

Claims

【특허청구범위】 . '
【청구항 1】
하기 화학식 1의 전이 금속 화합물을 포함하는 제 1메탈로센 촉매 ;
하기 화학식 2의 전이 금속 화합물을 포함하는 게 2메탈로센 촉매; 및 하기 화학식 3의 전이 금속 화합물을 포함하는 제 3메탈로센 촉매;를 포함하는, 올레핀 공중합체 합성용 촉매 조성물:
Figure imgf000036_0001
상기 화학식 1에서,
상기 ¾ 내지 R4 는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20 의 직쇄 또는 분지쇄의 알킬기, C2 내지 C20 의 직쇄 또는 분지쇄의 알케닐기, C1 내지 C20 의 알킬실릴기, C1 내지 C20 의 실릴알킬기, C1 내지 C20 의 알콕시실릴기, C1 내지 C20 의 직쇄 또는 분지쇄의 알콕시기, C6 내지 C20 의 아릴기, C7 내지 C20 의 알킬아릴기, 또는 C7 내지 C20 의 아릴알킬기이며,
상기 Qi은 탄소수 4 내지 20 의 알킬렌기 (akylene) , 탄소수 4 내지 20 의 알케닐렌기 (akenyl ene) , 탄수소 6 내지 20 의 아릴렌기 (aryl ene) , 탄소수 4 내지 20 의 사이클로알킬렌기 (cyc loakylene) , 탄수소 7 내지 22 의 아릴 (aryl ) 알킬렌기, 탄소수 5 내지 22의 사이클로알킬 알킬렌기 ,
상기 ¾ 내지 Ru는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 직쇄 또는 분지쇄의 알킬기, C2 내지 C20의 직쇄 또는 분지쇄의 알케닐기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 실릴알킬기, C1 내지 C20의 알콕시실릴기, C1 내지 C20의 직쇄 또는 분지쇄의 알콕시기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이며 상기 R5 내지 Rii중 하나의 벤젠 고리에서 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있고;
^은 4족 전이금속이며,
Yi 및 Y2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, 니트로기, 아미도기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 알콕시기, 또는 C1 내지 C20의 술폰네이트기이고,
[화학식 2]
Figure imgf000037_0001
상기 화학식 2에서,
Μ2은 4족 전이금속이며,
Χ2ι 및 Χ22는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 내지 C20의 알킬기ᅳ C2 내지 C20의 알케닐기 C6 내지 C20의 아릴기, 니트로기, 아미도기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 알콕시기, 또는 C1 내지 C20의 술폰네이트기이고,
Q2 탄소, 실리콘 또는 게르마늄이고;
2i 및 ¾2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, C7 내지 C20의 아릴알킬기, C1 내지 C20의 알콕시기, C2 내지 C20의 알콕시알킬기, C3 내지 C20의 헤테로시클로알킬기, 또는 C5 내지 C20의 헤테로아릴기이고;
C2i 및 C22 중 하나는 하기 화학식 2a로 표시되고, 다른 하나는 하기 화학식 2b로 표시되며;
[화학식 2a]
Figure imgf000038_0001
Figure imgf000038_0002
상기 화학식 2a에서,
Zi 내지 ¾는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지
C20의 알킬기, C2 내지 C20의 알케닐기, C1 내지 C20의 알콕시기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 실릴알킬기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이고;
상기 화학식 2b에서,
Zio 및 Ιχι 내지 Z15는 수소, 할로겐 또는 탄소수 1 내지 3의 알킬기이고,
Zu은 C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 실릴알킬기, C1 내지 C20의 알콕시실릴기, C1 내지 C20의 에테르기, C1 내지 C20의 실릴에테르기, C1 내지 C20의 실릴옥시기, C1 내지 C20의 알콕시기, C2 내지 C20의 알콕시알킬기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이고,
[화학식 3]
Figure imgf000039_0001
상기 화학식 3에서,
M3은 4족 전이금속이며,
¾ι 및 ¾2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, 니트로기, 아미도기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 알콕시기, 또는 C1 내지 C20의 술폰네이트기이고,
¾ 탄소, 실리콘 또는 게르마늄이고;
R3i 및 2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, C7 내지 C20의 아릴알킬기, C1 내지 C20의 알콕시기, C2 내지 C20의 알콕시알킬기, C3 내지 C20의 헤테로시클로알킬기, 또는 C5 내지 C20의 헤테로아릴기이고;
C3i및 C32는 중 하나는 하기 화학식 3a 또는 화학식 3b로 표시되고, C31및 C32 중 나머지 하나는 하기 화학식 3c, 화학식 3d , 또는 화학식 3e로 표시되며;
Figure imgf000039_0002
Figure imgf000040_0001
[화학식 3e]
Figure imgf000041_0001
상기 화학식 2a , 2b , 3a , 3b 및 3c에서, ^ 내지 J31 및 내지 J13' 은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C1 내지 C20의 할로 알킬기, C2 내지 C20의 알케닐기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 실릴알킬기, C1 내지 C20의 알콕시실릴기, C1 내지 C20의 알콕시기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이며,
J9 내지 J13 및 내지 J13' 중 하나 이상은 C1 내지 C20의 할로 알킬기이고,
Ji 내지 J31 및 내지 J13' 중 하나의 방향족 고리에서 서로 인접하는
2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있다.
【청구항 2】
제 1항에 있어서, - 상기 화학식 1에서,
상기 Ri 내지 R2 는 C1 내지 C20 의 알킬실릴기, C1 내지 C20 의 실릴알킬기이고,
상기 ¾ 내지 R4는 탄수소 6 내지 20 의 아릴렌기 (arylene) , 또는 탄소수 8 내지 22의 아릴 디알킬렌기이고,
상기 내지 Rii 는 각각 수소, 할로겐, C1 내지 C20 의 직쇄 또는 분지쇄의 알킬기이고,
Mr 티타늄, 지르코늄 또는 하프늄이고, ^ 및 Y2는 할로겐인,
올레핀 공중합체 합성용 촉매 조성물.
【청구항 3】
제 1항에 있어서, 상기 화학식 2a 의
Figure imgf000042_0001
내지 Ζ9는 각각 독립적으로 수소, 메틸기, 에틸기, 프로필기, 이소프로필기, η-부틸기, tert-부틸기, 펜틸기, 핵실기, 헵틸기, 옥틸기, 에틸렌기, 프로필렌기, 부테닐기, 페닐기, 벤질기, 나프틸기, 메톡시기, 에특시기, 또는 tert-부특시핵실기이고,
상기 화학식 2b 의 Zu은 메틸기, 에틸기, 프로필기 , 이소프로필기, n- 부틸기, tert-부틸기, 펜틸기, 핵실기, 헵틸기, 옥틸기, 에틸렌기, 프로필렌기, 부테닐기, 페닐기, 벤질기, 나프틸기, 트리메틸실릴기, 트리에틸실릴기, 트리프로필실릴기, 트리부틸실릴기, 트리이소프로필실릴기, 트리메틸실릴메틸기, tert—부틸디메틸실릴에테르기, 메톡시기, 에록시기, 또는 tert-부특시핵실기이고 상기 화학식 2의 R21 및 R22는 메틸기 또는 tert-부톡시핵실기인, 올레핀 공중합체 합성용 촉매 조성물.
【청구항 4】
제 1항에 있어서,
상기 화학식 3a, 3b , 3c , 3d 및 3e의 내지 J31 및 내지 J13 '은 각각 독립적으로 수소, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert— 부틸기, 펜틸기, 핵실기, 헵틸기, 옥틸기, 페닐기, 할로겐기, 트리메틸실릴기, 트리에틸실릴기, 트리프로필실릴기, 트리부틸실릴기, 트리이소프로필실릴기, 트리메틸실릴메틸기, 메록시기, 에특시기이고,
J9 내지 J13 및 J9' 내지 중 하나 이상은 탄소수 1 내지 3 의 퍼플로오로알킬 (perf luoroalkyl )이고,
상기 화학식 3 의 R312은 각각 독릭적으로 수소, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert—부틸기, 메특시메틸기, tert— 부록시메틸기, tert-부톡시핵실기, 1-에록시에틸기, 1-메틸 -1-메특시에틸기, 테트라하이드로피라닐기, 또는 테트라하이드로퓨라닐기인,
올레핀 공중합체 합성용 촉매 조성물.
【청구항 5】
게 1항에 있어서,
상기 화학식 2의 전이 금속 화합물을 포함하는 제 2메탈로센 촉매 대비 상기 화학식 1의 전이 금속 화합물을 포함하는 제 1메탈로센 촉매 및 상기 화학식 3의 전이 금속 화합물을 포함하는 제 3메탈로센 촉매의 몰비가 1 : 0.5 내지 2: 1 내지 5인, 올레핀 공중합체 합성용 촉매 조성물. 【청구항 6】
제 1항에 있어서,
상기' 올레핀 공중합체 합성용 촉매 조성물은 조촉매 또는 담체를 더 포함하는, 올레핀 공중합체 합성용 촉매 조성물. 【청구항 7】
제 6항에 있어서,
상기 조촉매는 화학식 6 및 7의 화합물로 이루어진 군에서 선택된 1종 이상을 포함하는, 올레핀 공중합체 합성용 촉매 조성물:
[화학식 6]
- [Al (X)-0-]k- 상기 화학식 6에서, X는 각각 독립적으로 할로겐, 할로겐 치환 또는 비치환된 탄소수 1 내지 20의 하이드로카빌기이고, k는 2 이상의 정수이고,
[화학식 7]
T+[BG4]"
화학식 7에서, T+은 +1가의 다원자 이온이고, B는 +3 산화 상태의 붕소이고, G는 각각 독립적으로 하이드라이드기, 디알킬아미도기, 할라이드기, 알콕사이드기, 아릴옥사이드기, 하이드로카빌기, 할로카빌기 및 할로-치환된 하이드로카빌기로 이루어진 군에서 선택되고, 상기 G는 20개 이하의 탄소를 가지나, 단 하나 이하의 위치에서 G는 할라이드기이다.
【청구항 8】
제 6항에 있어서,
상기 제 1 메탈로센 화합물 및 제 2 메탈로센 화합물에 포함되는 전이금속의 전체 중량 대비 담체의 질량비는 10 내지 10 , 000 인 올레핀 공중합체 합성용 촉매 조성물. 【청구항 91
게 6항에 있어서,
상기 .조촉매 대비 담체의 질량비는 1 내지 10.0 인 올레핀 공중합체 합성용 촉매 조성물.
【청구항 10】
제 1항의 을레핀 공중합체 합성용 촉매 조성물의 존재 하에, 에틸렌 및 알파-올레핀을 공중합하는 단계는 포함하는, 올레핀 공중합체의 제조 방법 .
PCT/KR2017/010334 2016-12-05 2017-09-20 을레핀 공중합체 합성용 촉매 조성물 및 올레핀 공중합체의 제조 방법 WO2018105865A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780003677.2A CN108401432B (zh) 2016-12-05 2017-09-20 用于合成烯烃共聚物的催化剂组合物和制备烯烃共聚物的方法
US15/767,920 US10669363B2 (en) 2016-12-05 2017-09-20 Catalyst composition for synthesizing olefin copolymer and method for preparing olefin copolymer
EP17854215.5A EP3372620B1 (en) 2016-12-05 2017-09-20 Catalyst composition for synthesizing olefin copolymer, and method for preparing olefin copolymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160164338A KR102073252B1 (ko) 2016-12-05 2016-12-05 올레핀 공중합체 합성용 촉매 조성물 및 올레핀 공중합체의 제조 방법
KR10-2016-0164338 2016-12-05

Publications (2)

Publication Number Publication Date
WO2018105865A1 true WO2018105865A1 (ko) 2018-06-14
WO2018105865A8 WO2018105865A8 (ko) 2018-07-19

Family

ID=62491612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/010334 WO2018105865A1 (ko) 2016-12-05 2017-09-20 을레핀 공중합체 합성용 촉매 조성물 및 올레핀 공중합체의 제조 방법

Country Status (5)

Country Link
US (1) US10669363B2 (ko)
EP (1) EP3372620B1 (ko)
KR (1) KR102073252B1 (ko)
CN (1) CN108401432B (ko)
WO (1) WO2018105865A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180083247A (ko) * 2017-01-12 2018-07-20 주식회사 엘지화학 올레핀 중합체 및 이의 제조 방법
KR102252430B1 (ko) * 2018-12-10 2021-05-14 주식회사 엘지화학 폴리에틸렌 및 이의 염소화 폴리에틸렌
KR102431339B1 (ko) 2018-12-10 2022-08-10 주식회사 엘지화학 폴리에틸렌 및 이의 염소화 폴리에틸렌
KR102427755B1 (ko) * 2018-12-10 2022-08-01 주식회사 엘지화학 폴리에틸렌 및 이의 염소화 폴리에틸렌
KR102427756B1 (ko) * 2018-12-10 2022-08-01 주식회사 엘지화학 폴리에틸렌 및 이의 염소화 폴리에틸렌
KR102178361B1 (ko) * 2019-02-20 2020-11-12 주식회사 엘지화학 고가교도를 갖는 폴리에틸렌 및 이를 포함하는 가교 폴리에틸렌 파이프
KR102178360B1 (ko) * 2019-02-20 2020-11-12 주식회사 엘지화학 고내압성을 갖는 폴리에틸렌 및 이를 포함하는 가교 폴리에틸렌 파이프
EP3936541A4 (en) * 2019-10-07 2022-07-27 Lg Chem, Ltd. POLYETHYLENE AND RELATED CHLORINATED POLYETHYLENE
KR102578777B1 (ko) * 2019-10-07 2023-09-14 주식회사 엘지화학 폴리에틸렌 및 이의 염소화 폴리에틸렌

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935474A (en) 1983-06-06 1990-06-19 Exxon Research & Engineering Company Process and catalyst for producing polyethylene having a broad molecular weight distribution
US5753578A (en) * 1995-07-06 1998-05-19 Enichem S.P.A. Metallocene catalyst for the (CO)polymerization of α-olefins
US5914289A (en) 1996-02-19 1999-06-22 Fina Research, S.A. Supported metallocene-alumoxane catalysts for the preparation of polyethylene having a broad monomodal molecular weight distribution
US6482902B1 (en) * 1998-02-07 2002-11-19 Targor Gmbh Catalyst system
KR20030012308A (ko) 2001-07-31 2003-02-12 주식회사 예스아이비 배팅형 복권 시스템 및 배팅 방법
US6828394B2 (en) 2001-07-19 2004-12-07 Univation Technologies, Llc Mixed metallocene catalyst systems containing a poor comonomer incorporator and a good comonomer incorporator
US6841631B2 (en) 1999-10-22 2005-01-11 Univation Technologies, Llc Catalyst composition, method of polymerization, and polymer therefrom
KR20150058938A (ko) * 2013-11-21 2015-05-29 주식회사 엘지화학 메탈로센 화합물, 이를 포함하는 촉매 조성물, 및 이를 이용하는 폴리올레핀의 제조방법
KR20150066344A (ko) * 2013-12-06 2015-06-16 주식회사 엘지화학 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용하는 올레핀계 중합체의 제조방법
WO2016124157A1 (zh) * 2015-02-06 2016-08-11 中国石油天然气股份有限公司 含杂原子的π-配体的茂金属络合物及其制备方法、其催化剂体系和催化剂体系的应用

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1243763C (zh) * 1998-01-14 2006-03-01 蒙特尔技术有限公司 茂金属化合物的制备方法
CN1272852A (zh) 1998-04-21 2000-11-08 蒙特尔技术有限公司 乙烯与α-烯烃共聚物的制备方法
EP1310436A1 (fr) 2001-11-09 2003-05-14 SOLVAY POLYOLEFINS EUROPE - BELGIUM (Société Anonyme) Capsule à visser comprenant une composition à base de polymère de l'éthylène multimodal
EP1422249A1 (en) 2002-11-20 2004-05-26 ATOFINA Research New metallocene catalyst system
KR20040076965A (ko) 2003-02-27 2004-09-04 호남석유화학 주식회사 올레핀 중합용 담지 다중핵 메탈로센 촉매 및 이의 제조방법
KR100753478B1 (ko) 2005-02-15 2007-08-31 주식회사 엘지화학 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리에틸렌 공중합체의 제조방법
US8722833B2 (en) 2006-12-22 2014-05-13 Basell Polyolefine Gmbh Multimodal polyethylene composition, mixed catalyst and process for preparing the composition
ATE497992T1 (de) * 2006-12-22 2011-02-15 Basell Polyolefine Gmbh Multimodale polyethylenzusammensetzung, mischkatalysaotr und verfahren zur herstellung der zusammensetzung
KR101362005B1 (ko) 2009-07-10 2014-02-11 토탈 리서치 앤드 테크놀로지 펠루이 뚜껑 및 마개
KR101637026B1 (ko) 2013-11-18 2016-07-07 주식회사 엘지화학 메탈로센 담지 촉매 및 이를 이용하는 폴리올레핀의 제조방법
KR101685662B1 (ko) * 2013-11-21 2016-12-12 주식회사 엘지화학 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
KR101774615B1 (ko) * 2013-12-02 2017-09-04 주식회사 엘지화학 인덴기를 갖는 메탈로센형 촉매 및 이를 이용한 올레핀 중합체의 제조방법
KR20150066484A (ko) 2013-12-06 2015-06-16 주식회사 엘지화학 메탈로센 화합물
US9422380B2 (en) * 2014-04-03 2016-08-23 Basell Polyolefine Wesseling Non-bridged metallocene complexes for the polymerization of olefins
KR101705340B1 (ko) * 2014-06-03 2017-02-09 주식회사 엘지화학 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
KR101617870B1 (ko) * 2014-09-05 2016-05-03 주식회사 엘지화학 가공성이 우수한 올레핀계 중합체
KR101618460B1 (ko) 2014-11-28 2016-05-18 롯데케미칼 주식회사 올레핀 중합용 담지 촉매 및 이를 이용하여 제조된 올레핀 중합체의 제조방법
US10450390B2 (en) 2014-12-15 2019-10-22 Lg Chem, Ltd. Metallocene compound, metallocene-supported catalyst, and method of preparing polyolefin using the same
US9994652B2 (en) 2015-01-28 2018-06-12 Lg Chem, Ltd. Metallocene compound, catalyst composition including the same, and method of preparing polyolefin using the same
KR20160121940A (ko) * 2015-04-13 2016-10-21 주식회사 엘지화학 내환경 응력 균열성이 우수한 에틸렌/알파-올레핀 공중합체

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935474A (en) 1983-06-06 1990-06-19 Exxon Research & Engineering Company Process and catalyst for producing polyethylene having a broad molecular weight distribution
US5753578A (en) * 1995-07-06 1998-05-19 Enichem S.P.A. Metallocene catalyst for the (CO)polymerization of α-olefins
US5914289A (en) 1996-02-19 1999-06-22 Fina Research, S.A. Supported metallocene-alumoxane catalysts for the preparation of polyethylene having a broad monomodal molecular weight distribution
US6482902B1 (en) * 1998-02-07 2002-11-19 Targor Gmbh Catalyst system
US6841631B2 (en) 1999-10-22 2005-01-11 Univation Technologies, Llc Catalyst composition, method of polymerization, and polymer therefrom
US6894128B2 (en) 1999-10-22 2005-05-17 Univation Technologies, Llc Catalyst composition, method of polymerization, and polymer therefrom
US6828394B2 (en) 2001-07-19 2004-12-07 Univation Technologies, Llc Mixed metallocene catalyst systems containing a poor comonomer incorporator and a good comonomer incorporator
KR20030012308A (ko) 2001-07-31 2003-02-12 주식회사 예스아이비 배팅형 복권 시스템 및 배팅 방법
KR20150058938A (ko) * 2013-11-21 2015-05-29 주식회사 엘지화학 메탈로센 화합물, 이를 포함하는 촉매 조성물, 및 이를 이용하는 폴리올레핀의 제조방법
KR20150066344A (ko) * 2013-12-06 2015-06-16 주식회사 엘지화학 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용하는 올레핀계 중합체의 제조방법
WO2016124157A1 (zh) * 2015-02-06 2016-08-11 中国石油天然气股份有限公司 含杂原子的π-配体的茂金属络合物及其制备方法、其催化剂体系和催化剂体系的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3372620A4

Also Published As

Publication number Publication date
CN108401432A (zh) 2018-08-14
CN108401432B (zh) 2020-11-06
EP3372620B1 (en) 2022-07-06
EP3372620A1 (en) 2018-09-12
US10669363B2 (en) 2020-06-02
US20190119420A1 (en) 2019-04-25
EP3372620A4 (en) 2019-02-13
WO2018105865A8 (ko) 2018-07-19
KR102073252B1 (ko) 2020-02-04
KR20180064115A (ko) 2018-06-14

Similar Documents

Publication Publication Date Title
WO2018105865A1 (ko) 을레핀 공중합체 합성용 촉매 조성물 및 올레핀 공중합체의 제조 방법
KR101891638B1 (ko) 가공성이 우수한 에틸렌/알파-올레핀 공중합체 공중합체
KR101726820B1 (ko) 가공성 및 환경 응력 균열 저항성이 우수한 에틸렌/1-헥센 또는 에틸렌/1-부텐 공중합체
KR101592436B1 (ko) 내환경 응력 균열성이 우수한 폴리올레핀
KR102234944B1 (ko) 올레핀 공중합체
KR102260362B1 (ko) 올레핀 공중합체
EP3348585B1 (en) Supported hybrid metallocene catalyst and polyolefin preparation method using same
WO2016167547A1 (ko) 내환경 응력 균열성이 우수한 에틸렌/알파-올레핀 공중합체
WO2015076618A1 (ko) 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
KR20150058020A (ko) 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
WO2016167568A1 (ko) 가공성이 우수한 에틸렌 /알파-올레핀 공중합체
KR102073253B1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법
KR20150037520A (ko) 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
KR101831418B1 (ko) 가공성 및 표면 특성이 우수한 에틸렌/알파-올레핀 공중합체
KR102228533B1 (ko) 가공성이 우수한 에틸렌/알파-올레핀 공중합체
CN111511783B (zh) 具有优异加工性的乙烯/1-丁烯共聚物
KR102211603B1 (ko) 올레핀 공중합체 합성용 촉매 조성물 및 올레핀 공중합체의 제조 방법
WO2015056975A1 (ko) 혼성 담지 메탈로센 촉매
WO2016163810A1 (ko) 중공 성형용 고밀도 폴리에틸렌 공중합체
EP3476870A1 (en) Olefin polymer and method for preparing same
KR102229002B1 (ko) 가공성 및 내환경 응력 균열성이 우수한 에틸렌/알파-올레핀 공중합체
KR102174389B1 (ko) 내환경 응력 균열성이 우수한 에틸렌/알파-올레핀 공중합체
KR20160038589A (ko) 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
KR20180055558A (ko) 기계적 물성 및 가공성이 우수한 에틸렌/알파-올레핀 공중합체
KR102215024B1 (ko) 폴리올레핀의 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017854215

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017854215

Country of ref document: EP

Effective date: 20180405

NENP Non-entry into the national phase

Ref country code: DE