WO2016124157A1 - 含杂原子的π-配体的茂金属络合物及其制备方法、其催化剂体系和催化剂体系的应用 - Google Patents

含杂原子的π-配体的茂金属络合物及其制备方法、其催化剂体系和催化剂体系的应用 Download PDF

Info

Publication number
WO2016124157A1
WO2016124157A1 PCT/CN2016/073644 CN2016073644W WO2016124157A1 WO 2016124157 A1 WO2016124157 A1 WO 2016124157A1 CN 2016073644 W CN2016073644 W CN 2016073644W WO 2016124157 A1 WO2016124157 A1 WO 2016124157A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
alkyl group
ligand
metallocene
aryl
Prior art date
Application number
PCT/CN2016/073644
Other languages
English (en)
French (fr)
Inventor
辛世煊
郎笑梅
薛山
李新乐
胡泓梵
孙鑫
张雪芹
周生远
冉印
李勃天
朱博超
贾军纪
曲景平
宋玉明
谢亚梅
母瀛
高伟
刘京龙
Original Assignee
中国石油天然气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510064977.4A external-priority patent/CN105985368B/zh
Priority claimed from CN201510064976.XA external-priority patent/CN105985383B/zh
Application filed by 中国石油天然气股份有限公司 filed Critical 中国石油天然气股份有限公司
Priority to US15/548,793 priority Critical patent/US20180079843A1/en
Priority to JP2017559755A priority patent/JP6735292B2/ja
Publication of WO2016124157A1 publication Critical patent/WO2016124157A1/zh
Priority to US16/671,295 priority patent/US20200062874A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/02Polymerisation in bulk
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/06Cp analog where at least one of the carbon atoms of the non-coordinating part of the condensed ring is replaced by a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/07Heteroatom-substituted Cp, i.e. Cp or analog where at least one of the substituent of the Cp or analog ring is or contains a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound

Definitions

  • the invention belongs to the field of catalysts, in particular to a metallocene complex containing a hetero atom-containing ⁇ -ligand, a catalyst system with a metallocene complex as a core component, a metallocene complex and a catalyst system preparation process thereof And the use of the catalyst system in the polymerization of alpha-olefins.
  • Metal-organic complexes formed by cyclopentadiene and its derivatives in a ⁇ -coordination form, especially metallocene complexes of transition metals of Group III and Group IV, when When combined with a suitable activator, it has an extremely high catalytic activity for olefin polymerization.
  • metallocene complexes formed by cyclopentadiene and its derivatives in a ⁇ -coordination form, especially metallocene complexes of transition metals of Group III and Group IV, when When combined with a suitable activator, it has an extremely high catalytic activity for olefin polymerization.
  • ethylene catalyzed polymerization applications have been discovered (HG Alte et al. Chemcal Reviews 2000, 100, 1205. Metallocene-Based Polyolefins. Preparation, Properties and Technology; Scheirs, J.; Kaminsky, W., Eds.; Wiley: New York , 1999.).
  • the Group IV transition metallocene complex with a special symmetrical structure not only has high activity, but also has extremely high area and stereoselectivity, and has been successfully used for stereospecific polymerization of propylene to produce isotactic (iPP).
  • iPP isotactic
  • sPP syndiotactic polypropylene
  • metallocene complex catalysts are to elucidate the mechanism of stereospecific polymerization of ⁇ -olefins, to enrich the variety of polyolefin materials and Specifications, contributes to the provision of new polyolefin materials with special properties (Advances in Organometallic Chemistry; FGAStone; R.West; Eds.; Academic Press: New York, 1980. Transition Metals and Organometallics as Catalysts for Olefin Polymerization; W .Kaminsky; H. Sinn, Eds.; Springer-Verlag: Berlin, 1988. Metallocene-Based Polyolefin; J. Scheirs and W. Kaminsky Eds. Wiley, 2000. Metallocene Catalyzed Polymers: Materials, Properties, Processing & Markets, CMBenedikt Ed, William Andrew Publishing, 1999). The current research is to develop new structural catalysts to obtain new structural high performance polyolefin products.
  • Group IV transition metallocene complexes with special structure are also effective polypropylene-based elastomeric polymer catalysts, for example: 2-position aryl substituted yttrium and zirconium lanthanum compounds (Science 1995, 267, 217), asymmetric carbon bridges Sandwich compounds of substituted cyclopentadiene-ruthenium and titanium (J. Am. Chem. Soc.
  • metallocene complex catalysts in addition to the classical bridged substituted cyclopentadienyl (Cp'), substituted-indenyl (Ind'), bridged substituted fulte ( Substituted fluorenyl, Flu'), and its Cp'/Ind'/Flu' are combined with each other to form a large number of metallocene complex groups (Metallocenes: Synthesis, Reactivity, Applications, A. Togni and R. L.
  • the metallocene complex containing a hetero atom ring may have a specific polymerization activity for an olefin or have a specific region or stereoselectivity (Cecilia Cobzaru, Sabine Hild, Andreas Boger, Carsten Troll, Bernhard Rieger, Coordination Chemistry Reviews 2006, 250, 189; IENifant'ev, I.
  • CA2204803 (DE69811211, EP983280, US6051667, WO1998050392) describes metallocene complexes containing phosphorus heteroatoms and their excellent activity and molecular weight distribution for the polymerization of ethylene, as well as superior high temperatures. Catalytic activity.
  • a Group IV elemental metallocene complex catalyst system associated therewith can catalyze the polymerization of ethylene at high temperatures to produce high molecular weight polyethylene.
  • WO9822486 and EP9706297 describe a class of metallocene complexes containing oxygen or/and sulfur or/and nitrogen in a five-membered side ring adjacent to Cp. Such complexes have an extremely high polymerization activity for propylene when combined with methylaluminoxane (MAO).
  • MAO methylaluminoxane
  • WO0144318 describes a metallocene complex containing sulfur ⁇ -ligand and its ethylene/propylene catalytic copolymerization process, but has no practical application value because of the low molecular weight of the obtained ethylene-propylene copolymer.
  • WO03045964 describes a process for preparing a dimethylsilicon bridged substituted thiopentalene and a substituted iridium zirconium complex and a process for copolymerizing ethylene and propylene. According to the process described in WO03045964, such a zirconocene complex has a very high polymerization activity, the obtained ethylene-propylene copolymer has a relatively high molecular weight, and the ethylene content of the copolymer is between 4% and 13% by weight.
  • the material properties are between RCP and TPE.
  • No. 6,756,455 describes a class of nitrogen-containing ⁇ -ligand zirconocene complexes, in particular zirconium complex catalysts in which a bridged indenofluorene derivative and a bridged indenofluorene derivative are coordinated. Such zirconocene complex catalysts have high activity, high molecular weight, and bimodal molecular weight distribution under appropriate conditions when ethylene is homopolymerized.
  • No. 6,683,150 discloses a fourth group transition metallocene complex catalyst of a bridged indenofluorene derivative as a ligand, catalyzing the polymerization of propylene over a wide temperature range to produce numerous examples of high molecular weight polypropylene.
  • WO03089485 provides a catalytic system formed by combining a nitrogen-containing ⁇ -ligand Group IV transition metallocene complex with methylaluminoxane (MAO), characterized by using a very low aluminum/metal ratio and having Highly active, high molecular weight linear low density polyethylene (mLLDPE) can be produced when combined with a suitable carrier.
  • MAO methylaluminoxane
  • WO9924446 describes a metallocene complex formed by a nitrogen-containing heteroatom ⁇ -ligand with a Group 4 transition metal. These metallocene complexes are not only simple in synthesis, high in yield, but also excellent olefin polymerization catalysts after activation with methylaluminoxane (MAO) or modified methylaluminoxane (MMAO), which can be separately polymerized. High molecular weight polyethylene and polypropylene. When the same catalytic system is used to copolymerize ethylene and propylene, the obtained copolymer has not only a lower molecular weight, but also the distribution of the two monomers in the copolymer is not random, and tends to be more.
  • MAO methylaluminoxane
  • MMAO modified methylaluminoxane
  • such a zirconocene complex catalyst can greatly reduce the probability of 2,1- and 1,3-misinsertion in catalyzing the polymerization of propylene.
  • heteroatom-containing ⁇ -coordination metallocene complexes perform exceptionally well in the homopolymerization of ethylene and alpha-olefins, there are only very limited examples of copolymerization of ethylene and alpha-olefins, and the resulting materials are still plastic.
  • One WO03-045964, WO03-0489485).
  • One of the objects of the present invention is to provide a metallocene complex of a hetero atom-containing ⁇ -ligand.
  • the second object of the present invention is to provide a catalyst system comprising a metallocene complex containing a hetero atom-containing ⁇ -ligand as a core component, so as to overcome the incompatibility of polyolefin materials in the prior art at 50-90. % interval controllable defects.
  • a third object of the present invention is to provide a method for synthesizing a metallocene complex containing a ⁇ -ligand containing a hetero atom.
  • a fourth object of the present invention is to provide a catalyst system comprising a metallocene complex containing a hetero atom-containing ⁇ -ligand as a core component for catalyzing the homopolymerization or copolymerization of an ⁇ -olefin.
  • M is a transition metal element of the third, fourth, fifth or sixth group of the periodic table, including actinides and actinides;
  • X is the same or different from each other and is selected from the group consisting of hydrogen, halogen, alkyl R, alkoxy OR, sulfhydryl SR, carboxyl OCOR, amine NR 2 , phosphino PR 2 , -OR°O-, and OSO 2 CF 3 ;
  • n is an integer from 1 to 4, n is not equal to zero; the number of charges obtained by multiplying the number of charges of n with X is equal to the number of charges of the central metal atom M minus two;
  • A is a ⁇ -ligand having a structure as shown in the chemical formula (II):
  • the monovalent anion ⁇ -ligand of A has a chemical structure represented by the chemical formula (II)-Li + ;
  • the chemical formula (II) contains a basic structure of a cyclopentadiene ring,
  • the active hydrogen in the cyclopentadiene structure has electrophilic reactivity and can be exchanged with a nucleophilic reagent to form a compound represented by the formula (II)-Li +
  • the basic reaction is as shown in the reaction formula (2):
  • nucleophilic reagent in the reaction formula (2) is an organolithium reagent R n Li, wherein R n is a C 1 -C 6 alkyl group or a C 6 -C 12 aryl group.
  • M is a Group 4 zirconium, hafnium or titanium.
  • R is a linear or branched alkyl group of C 1 - C 20 , a saturated or unsaturated alkyl group, a halogenated or non-halogenated alkyl group or an alkane having a hetero atom of a thirteenth to seventeenth element of the periodic table; Or a C 3 -C 20 cycloalkyl group, a C 6 -C 30 aryl group, a C 7 -C 30 alkoxy-substituted aryl group or a C 7 -C 30 aryl-substituted alkyl group.
  • the thirteenth to seventeenth group element hetero atoms in the periodic table of the present invention are preferably boron, aluminum, silicon, germanium, sulfur, oxygen, fluorine or chlorine.
  • is a divalent radical, including a C 2 -C 40 alkylene group, a C 6 -C 30 arylene group, a C 7 -C 40 alkyl arylene group, and a C 7 -C 40 aryl group.
  • Alkenylene; in the -OR°O-structure, the two oxygen atoms are at any position of the free radical, respectively.
  • the positions of the two oxygen atoms are a combination of adjacent ⁇ , ⁇ -positions of the radicals and ⁇ , ⁇ -positions between the phases.
  • X is chlorine, bromine, C 1 -C 20 lower alkyl or aryl.
  • R' is the same or different and is a C 1 -C 20 linear or branched alkyl group, a saturated or unsaturated alkyl group, a halogenated or a non-halogenated alkyl group or a thirteenth to seventeenth group of the periodic table.
  • R' is methyl, ethyl, isopropyl, trimethylsilyl, phenyl or benzyl.
  • E is a divalent radical of the 16th or fifteenth element of the periodic table, including oxygen radicals, sulfur radicals, selenium radicals, NR" and PR".
  • R" is a C 1 -C 20 linear or branched alkyl group, a saturated or unsaturated alkyl group, a halogenated or non-halogenated alkyl group or a hetero atom containing a thirteenth to seventeenth element of the periodic table;
  • R" is a C 4 -C 10 linear alkyl group, a phenyl group, a monosubstituted or polysubstituted phenyl group, a benzyl group, a monosubstituted or polysubstituted benzyl group, a 1-naphthyl group, a 2-naphthyl group, 2 Indenyl, 1-phenanthryl, 2-phenanthryl or 5-phenanthryl.
  • R 1 is hydrogen, a C 1 -C 40 saturated or unsaturated alkyl group, a halogenated or non-halogenated alkyl group or an alkyl group containing a hetero atom of a thirteenth to seventeenth element of the periodic table, or C 3 - the C 40 cycloalkyl, C 6 -C 40 aryl, C 7 -C 40 alkyl substituted aryl, or C 7 -C 40 aryl-substituted alkyl group.
  • R 1 is hydrogen, methyl, ethyl, isopropyl, tert-butyl, phenyl, benzyl, 2-furyl or 2-thienyl.
  • R 2 and R 3 are each independently hydrogen, fluoro or R, wherein R is a C 1 -C 20 linear or branched alkyl group, a saturated or unsaturated alkyl group, a halogenated or non-halogenated alkyl group or contains an elemental period An alkyl group of the thirteenth to seventeenth member element heteroatoms in the table, or a C 3 -C 20 cycloalkyl group, a C 6 -C 30 aryl group, a C 7 -C 30 alkoxy substituted aryl group or a C 7 -C 30 aryl substituted alkyl.
  • R 4 is hydrogen, a C 1 -C 40 saturated or unsaturated alkyl group, a halogenated or non-halogenated alkyl group or an alkyl group containing a hetero atom of a thirteenth to seventeenth element of the periodic table, or C 3 - the C 40 cycloalkyl, C 6 -C 40 aryl, C 7 -C 40 alkyl substituted aryl, or C 7 -C 40 aryl-substituted alkyl group.
  • R 4 is H, methyl, trifluoromethyl, isopropyl, tert-butyl, phenyl, p-tert-butylphenyl, p-trimethylsilylphenyl, p-trifluoromethylphenyl, 3,5-Dichloro-4-trimethylsilylphenyl or 2-naphthyl.
  • L is a divalent radical and has a structure represented by the following chemical formula (III), (IV), (V), (VI), (VII) or (VIII):
  • i is an integer and i is not equal to zero.
  • R 5 is the same or different, and R 5 is a C 1 -C 40 saturated or unsaturated alkyl group, a halogenated or non-halogenated alkyl group or an alkyl group containing a hetero atom of the thirteenth to seventeenth element elements of the periodic table, Or a C 3 -C 40 cycloalkyl group, a C 6 -C 40 aryl group, a C 7 -C 40 alkoxy-substituted aryl group or a C 7 -C 40 aryl-substituted alkyl group.
  • R 5 is hydrogen, fluorine or methyl.
  • R 6 and R 7 are each independently hydrogen, fluorine or R, wherein R is a linear or branched alkyl group of C 1 - C 20 , a saturated or unsaturated alkyl group, a halogenated or non-halogenated alkyl group or an alkyl group containing a hetero atom of the thirteenth to seventeenth element of the periodic table, or a C 3 -C 20 cycloalkyl group, C 6 -C 30 Aryl, C 7 -C 30 alkane substituted aryl or C 7 -C 30 aryl substituted alkyl.
  • R 1 is hydrogen, C 1 -C 40 saturated or unsaturated alkyl, halogenated or non-halogenated alkyl Or an alkyl group containing a hetero atom of the thirteenth to seventeenth element of the periodic table, or a C 3 -C 40 cycloalkyl group, a C 6 -C 40 aryl group, or a C 7 -C 40 alkane substituted aromatic group Or an alkyl-substituted alkyl group of C 7 -C 40 ; wherein R 2 in the formulae (X), (XI), (XIII) and (XV) is hydrogen, fluorine or R, wherein R is a C 1 - C 20 straight a chain or branched alkyl group, a saturated or unsaturated alkyl group, a halogenated or non-halogenated alkyl group or an alkyl group containing
  • R 1 is hydrogen, methyl, ethyl, isopropyl, t-butyl, phenyl, Benzyl, 2-furyl or 2-thienyl.
  • R 8 is the same or different, and R 8 is a C 1 -C 40 saturated or unsaturated alkyl group, a halogenated or non-halogenated alkyl group or an alkyl group containing a hetero atom of the thirteenth to seventeenth member elements of the periodic table, Or a C 3 -C 40 cycloalkyl group, a C 6 -C 40 aryl group, a C 7 -C 40 alkoxy-substituted aryl group or a C 7 -C 40 aryl-substituted alkyl group.
  • R 8 is methyl, ethyl, isopropyl, tert-butyl or phenyl.
  • R 9 is the same or different, and R 9 is a C 1 -C 40 saturated or unsaturated alkyl group, a halogenated or non-halogenated alkyl group or an alkyl group containing a hetero atom of the thirteenth to seventeenth element elements of the periodic table, Or a C 3 -C 40 cycloalkyl group, a C 6 -C 40 aryl group, a C 7 -C 40 alkoxy-substituted aryl group or a C 7 -C 40 aryl-substituted alkyl group.
  • R 9 is a C 1 -C 20 linear or branched, saturated or unsaturated, partially or fully halogenated, linear or cyclic carbon radical.
  • R 10 is the same or different, and R 10 is hydrogen, a C 1 -C 40 saturated or unsaturated alkyl group, a halogenated or non-halogenated alkyl group or an alkane having a hetero atom of a thirteenth to seventeenth element of the periodic table; a group, or a C 3 -C 40 cycloalkyl group, a C 6 -C 40 aryl group, a C 7 -C 40 alkyl substituted aryl group or a C 7 -C 40 aryl substituted alkyl group.
  • R 10 is hydrogen, fluorine, chlorine, methyl, ethyl or phenyl.
  • R 11 is the same or different, and R 11 is hydrogen, fluorine, chlorine, bromine, OR, SR, OCOR, NR 2 , PR 2 , wherein R is a C 1 -C 20 linear or branched alkyl group, saturated Or an unsaturated alkyl group, a halogenated or non-halogenated alkyl group or an alkyl group containing a hetero atom of the thirteenth to seventeenth element of the periodic table, or a C 3 -C 20 cycloalkyl group, C 6 -C 30 Aryl, C 7 -C 30 alkane-substituted aryl or C 7 -C 30 aryl substituted alkyl; or R 11 is C 1 -C 40 saturated or unsaturated alkyl, halo or non-halogenated alkyl or containing an element An alkyl group of a hetero atom of the thirteenth to seventeenth element of the periodic table, or a C 3 -C 40 cycloalkyl group,
  • J is a thirteenth or fifteenth element of the periodic table of elements, including boron, aluminum, gallium, nitrogen, phosphorus and arsenic.
  • J is nitrogen or phosphorus.
  • (I) is prepared by the activation reaction represented by the reaction formula (1):
  • LA is a Lewis acidic substance.
  • LA is a polymethylaluminoxane or a modified polymethylaluminoxane having an equilibrium state of a chain, a ring, and a cage structure in a solution.
  • the activation reaction is carried out in a homogeneous liquid medium comprising a saturated alkane liquid medium comprising an pentane and an isomer thereof, hexane and isomers thereof, and an aromatic liquid medium, Heptane and its isomers and octane and its isomers, including benzene, toluene, xylene and isomers, toluene and isomers, chlorobenzene, dichlorobenzene and isomers , fluorobenzene, difluorobenzene and isomers as well as polyfluorobenzene and isomers.
  • a homogeneous liquid medium comprising a saturated alkane liquid medium comprising an pentane and an isomer thereof, hexane and isomers thereof, and an aromatic liquid medium, Heptane and its isomers and octane and its isomers, including benzene, toluene, xylene and isomers
  • the homogeneous liquid medium used in the activation reaction is a mixed liquid medium of two or more kinds, and the mixed liquid medium means that the saturated alkane and the aromatic hydrocarbon are mixed by volume percentage, and the volume percentage of one liquid medium is not low. At 5%.
  • the activation reaction is completed in a temperature range of -100 ° C to +250 ° C, and the yield of the reaction product (Ia) is 95% or more.
  • reaction temperature of the activation reaction is between -75 ° C and 150 ° C.
  • T is the same or different from each other, and said T is a monodentate or bidentate neutral ligand;
  • LG is a detached group which is the same or different from each other, and the LG is an organic radical of hydrogen, an alkali metal element or a fourteenth heavy element.
  • the monodentate ligand comprises an ether ROR, a thioether RSR, a tertiary amine NR 3 , a tertiary phosphine PR 3 , a cyclic ether, a cyclic thioether, a ketone, a substituted cyclic ketone, and a substitution.
  • R is a C 1 -C 20 linear or branched alkyl group, a saturated or unsaturated alkyl group, a halogenated or non-halogenated alkyl group or an alkyl group containing a hetero atom of a thirteenth to seventeenth element of the periodic table, or a C 3 -C 20 cycloalkyl group, a C 6 -C 30 aryl group, C 7 - An alkyl substituted aryl group of C 30 or an aryl substituted alkyl group of C 7 - C 30 .
  • the bidentate ligand comprises an ortho-diether, alpha, - diethers, ortho-diamines, alpha, - diamines, ortho-disulfides, alpha, - disulfide ethers, ortho-bisphosphines and alpha, - Bisphosphines.
  • x is 0 or an integer 1, 2 or 3.
  • the alkali metal element comprises lithium, sodium and potassium; and the organic radical of the fourteenth heavy element comprises SiR 3 , GeR 3 , SnR 3 , PdR 3 , ZnR, BaR, MgR and CaR, wherein R Is a C 1 -C 20 linear or branched alkyl group, a saturated or unsaturated alkyl group, a halogenated or non-halogenated alkyl group or an alkyl group containing a hetero atom of a thirteenth to seventeenth element of the periodic table, or a C 3 -C 20 cycloalkyl group, a C 6 -C 30 aryl group, a C 7 -C 30 alkoxy-substituted aryl group or a C 7 -C 30 aryl-substituted alkyl group.
  • reaction medium in the synthesis process is a saturated C 5 -C 15 alkane, a cycloalkane or a mixture of two or more thereof.
  • reaction medium in the synthesis process is hexane, heptane, octane, toluene or xylene.
  • reaction temperature ranges from -100 ° C to +300 ° C.
  • reaction temperature ranges from -75 ° C to +250 ° C.
  • reaction temperature ranges from -50 ° C to +150 ° C.
  • hetero atom-containing ⁇ -ligand metallocene complex catalyst system in the polymerization of a-olefins or copolymerization under bulk slurry or solvent slurry polymerization conditions.
  • the invention has the beneficial effects of synthesizing a quasi-C2 structure catalyst and preparing a polyolefin material whose isotacticity is adjustable in the range of 50-90%.
  • novel metallocene complexes of the present invention are formed by a class of bridged dicyclopentadiene derivatives and transition metals of Group III, Group 4, and Group 5, and lanthanides and actinides.
  • Structure the bridged dicyclopentadiene derivative structure has a C1 symmetry, but the space and regioselectivity have the characteristics of a C2 symmetrical structure, so it is defined as a quasi-C2 symmetrical structure
  • sandwich complex At least one of the cyclopentadiene derivatives contains a hetero atom such as a non-metallic element such as O, S, Se, N, P, As, Si, B or the like.
  • novel hetero atom-containing ⁇ -ligand metallocene complex of the present invention has the general chemical structure shown by the general chemical formula (I):
  • M is a transition metal element of the third, fourth, fifth or sixth group of the periodic table, including actinides and actinides. Among them, a third, fourth or lanthanide metal element is preferred, and a fourth group of zirconium, hafnium, titanium is most preferred.
  • X the same or different from each other, hydrogen, halogen, alkyl R, alkoxy OR, sulfhydryl SR, carboxyl OCOR, amine (NR 2 ), phosphino (PR 2 ), -OR°O- or OSO 2 CF 3 . among them:
  • R is a linear or branched alkyl group of C 1 -C 20 , a saturated or unsaturated alkyl group, a halogenated or a non-halogenated alkyl group, optionally containing a hetero atom of the thirteenth to seventeenth group elements of the periodic table.
  • C 1 -C 20 saturated alkyl groups and haloalkyl groups are: methyl, trifluoromethyl, ethyl, 1,1,1-trifluoroethyl, perfluoroethyl, n-propyl, isopropyl , n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, n-hexyl, n-heptyl, n-octyl, n-dodecyl, n-octadecyl, trimethylsilyl, Triethylsilyl, triphenylsilyl, etc., but are not limited thereto.
  • Examples of the C 1 -C 20 unsaturated alkyl group are, but are not limited to, vinyl, propenyl, allyl, and the like.
  • Examples of the C 3 -C 20 cycloalkyl group are, but not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclooctyl, 1-adamantane and the like.
  • Examples of the aryl group of C 6 -C 30 are: phenyl, 1-naphthyl, 2-naphthyl, 1-indenyl, 2-indenyl, 9-fluorenyl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, 4-phenanthryl, 9-phenanthryl, etc., but is not limited thereto.
  • C 7 -C 30 alkane substituted aryl groups are: 2-methylphenyl, 2,6-dimethylphenyl, 2-fluoro-3-methylphenyl, 2-fluoro-4-methylbenzene , 2,6-difluoro-3-methylphenyl, 2,6-difluoro-4-methylphenyl, 2-chloro-3-methylphenyl, 2-chloro-4-methylbenzene , 2,6-dichloro-3-methylphenyl, 2,6-dichloro-4-methylphenyl, 2-ethylphenyl, 2,6-diethylphenyl, 2-iso Propylphenyl, 2,6-diisopropylphenyl, 3-methylphenyl, 3,5-dimethylphenyl, 3-fluoro-4-methylphenyl, 3,5-difluoro 4-methylphenyl, 3,5-difluoro-4-ethylphenyl, 3,5-difluoro-4-isopropylphenyl
  • Examples of the C 7 -C 30 aryl substituted alkyl group are: benzyl, p-methylbenzyl, p-fluorobenzyl, p-chlorobenzyl, p-ethylbenzyl, p-isopropylbenzyl, p-tert-butyl Benzyl and the like, p-trifluoromethylbenzyl, p-trimethylsilylbenzyl, 3,5-difluorobenzyl, 3,4,5-trifluorobenzyl, 3,5-bistrimethylbenzyl , 3,5-bis-trifluoromethylbenzyl, phenethyl, p-methylphenethyl, p-fluorophenethyl, p-chlorophenethyl, p-isopropylphenethyl, p-tert-butylbenzene Ethyl, p-trimethylsilylphenethyl, 2,6-diflu
  • is a divalent radical such as a C 2 -C 40 alkylene group, a C 6 -C 30 arylene group, a C 7 -C 40 alkylarylene group, or a C 7 -C 40 aromatic group.
  • the two oxygen atoms may be at any position of the radical, respectively, but preferably the positions of the two oxygen atoms are adjacent ( ⁇ , ⁇ -position) and interphase ( ⁇ , ⁇ ) of the radical. - bit) combination of positions.
  • X is preferably a halogen chlorine, bromine, and a lower alkyl group and an aryl group (e.g., methyl, phenyl, benzyl, etc.), but is not limited thereto.
  • n is an integer from 1 to 4, and n is not equal to zero.
  • the number of charges obtained by multiplying the product of n by the number of charges of X is equal to the number of charges of the central metal atom M minus two.
  • R' is a C 1 -C 20 linear or branched alkyl group, a saturated or unsaturated alkyl group, a halogenated or a non-halogenated alkyl group, optionally containing the thirteenth to tenth a hetero atom of a group of seven, such as an alkyl group of boron, aluminum, silicon, germanium, sulfur, oxygen, fluorine, chlorine, or the like, or a C 3 -C 20 cycloalkyl group, a C 6 -C 30 aryl group, a C 7 -C 30 alkyl substituted aryl, C 7 - C 30 aryl substituted alkyl.
  • C 1 -C 20 saturated and haloalkyl groups are: methyl, trifluoromethyl, ethyl, 1,1,1-trifluoroethyl, perfluoroethyl, n-propyl, isopropyl, n-butyl Base, isobutyl, tert-butyl, n-pentyl, isopentyl, n-hexyl, n-heptyl, n-octyl, n-dodecyl, n-octadecyl, trimethylsilyl, triethyl Silicon based, triphenyl silicon based, etc., but not limited thereto.
  • Examples of the C 1 -C 20 unsaturated alkyl group are, but are not limited to, a vinyl group, a propenyl group, an allyl group and the like.
  • Examples of the C 3 -C 20 cycloalkyl group are, but not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclooctyl, 1-adamantyl and the like.
  • Examples of the aryl group of C 6 -C 30 are: phenyl, 1-naphthyl, 2-naphthyl, 1-indenyl, 2-indenyl, 9-fluorenyl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, 4-phenanthryl, 9-phenanthryl, etc., but is not limited thereto.
  • C 7 -C 30 alkane substituted aryl groups are: 2-methylphenyl, 2,6-dimethylphenyl, 2-fluoro-3-methylphenyl, 2-fluoro-4-methylbenzene , 2,6-difluoro-3-methylphenyl, 2,6-difluoro-4-methylphenyl, 2-chloro-3-methylphenyl, 2-chloro-4-methylbenzene , 2,6-dichloro-3-methylphenyl, 2,6-dichloro-4-methylphenyl, 2-ethylphenyl, 2,6-diethylphenyl, 2-iso Propylphenyl, 2,6-diisopropylphenyl, 3-methylphenyl, 3,5-dimethylphenyl, 3-fluoro-4-methylphenyl, 3,5-difluoro 4-methylphenyl, 3,5-difluoro-4-ethylphenyl, 3,5-difluoro-4-isopropylphenyl
  • Examples of the C 7 -C 30 aryl substituted alkyl group are: benzyl, p-methylbenzyl, p-fluorobenzyl, p-chlorobenzyl, p-ethylbenzyl, p-isopropylbenzyl, p-tert-butyl Benzyl, p-trifluoromethylbenzyl, p-trimethylsilylbenzyl, 3,5-difluorobenzyl, 3,4,5-trifluorobenzyl, 3,5-bistrimethylbenzyl ,3,5-bis-trifluoromethylbenzyl, phenethyl, p-methylphenethyl, p-fluorophenethyl, p-chlorophenethyl, p-isopropylphenethyl, p-tert-butylphenyl Base, p-trimethylsilylphenethyl, 2,6-difluoropheneth
  • R' is preferably a methyl group, an ethyl group, an isopropyl group, a trimethylsilyl group, a phenyl group or a benzyl group.
  • A is a ⁇ -ligand having a general structure as shown in the chemical formula (II);
  • E a divalent radical of a 16th or fifteenth element of the periodic table, such as an oxygen radical, a sulfur radical, an arsenic radical, NR", PR". among them:
  • R" is a C 1 -C 20 linear or branched alkyl group, a saturated or unsaturated alkyl group, a halogenated or a non-halogenated alkyl group, optionally containing a thirteenth to seventeenth group of elements in the periodic table.
  • An atom such as an alkyl group of boron, aluminum, silicon, germanium, sulfur, oxygen, fluorine, chlorine or the like, or a C 3 -C 20 cycloalkyl group, a C 6 -C 30 aryl group, or a C 7 -C 30 alkane substituted aromatic group. a C 7 -C 30 aryl-substituted alkyl group.
  • C 1 -C 20 saturated and haloalkyl groups such as methyl, trifluoromethyl, ethyl, 1,1,1-trifluoroethyl, perfluoro Alkenyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, n-hexyl, n-heptyl, n-octyl, n-dodecyl, positive examples octadecyl, trimethylsilyl group, triethylsilyl group, triphenylmethyl group and the like silicon, but is not limited thereto .
  • C 1 -C 20 unsaturated alkyl groups such as vinyl, propenyl And the like, but not limited thereto, examples of the C 3 -C 20 cycloalkyl group, such as cyclopropyl, cyclobutyl, cyclopen
  • C 6 -C 30 aryl group such as a phenyl, 1-naphthyl, 2-naphthyl 1-anthryl, 2-anthryl, 9-anthryl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, 4-phenanthryl, 9-phenanthryl and the like, but is not limited thereto .
  • C 7 - Examples of the C 30 alkyl substituted aryl group are, for example, 2-methylphenyl, 2,6-dimethylphenyl, 2-fluoro-3-methylphenyl, 2-fluoro-4-methylphenyl, 2 ,6-difluoro-3-methylphenyl, 2,6-difluoro-4-methylphenyl, 2-chloro-3-methylphenyl, 2-chloro-4-methylphenyl, 2 ,6-Dichloro-3-methylphenyl, 2,6-dichloro-4-methylphenyl, 2-ethylphen
  • substituted alkyl groups are, for example, benzyl, p-methylbenzyl, p-fluorobenzyl , p-chlorobenzyl, p-ethylbenzyl, p-isopropylbenzyl, p-tert-butylbenzyl, p-trifluoromethylbenzyl, p-trimethylsilylbenzyl, 3,5-difluoro Benzyl, 3,4,5-trifluorobenzyl, 3,5-bistrimethylbenzyl, 3,5-bis-trifluoromethylbenzyl, phenethyl, p-methylphenethyl, p-fluoro Phenylethyl, p-chlorophenethyl, p-isopropylphenethyl, p-tert-butylphenethyl, p-trimethylsilylphenethyl, 2,6-difluoropheneth
  • R" is preferably a C 4 -C 10 linear alkyl group, a phenyl group, a monosubstituted or polysubstituted phenyl group, a benzyl group, a monosubstituted or polysubstituted benzyl group, a 1-naphthyl group, a 2-naphthalene group in the above infinite combination.
  • Base 2-indenyl, 1-phenanthryl, 2-phenanthryl, 5-phenanthryl. All R" in the following have the same meaning.
  • E is preferably elemental sulfur, oxygen, NR" and PR". Wherein R" is as defined above.
  • R 1 any one of the following, hydrogen, C 1 -C 40 saturated or unsaturated alkyl, halogenated or non-halogenated alkyl, optionally containing a hetero atom of the thirteenth to seventeenth element of the periodic table;
  • An alkyl group such as boron, aluminum, silicon, germanium, sulfur, oxygen, fluorine, chlorine or the like, or a C 3 -C 40 cycloalkyl group, a C 6 -C 40 aryl group, a C 7 -C 40 alkoxy-substituted aryl group An aryl-substituted alkyl group of C 7 -C 40 .
  • C 1 -C 40 saturated and haloalkyl groups such as methyl, trifluoromethyl, ethyl, 1,1,1-trifluoroethyl, perfluoroethyl, n-propyl, isopropyl, and Butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, n-hexyl, n-heptyl, n-octyl, n-dodecyl, n-octadecyl, trimethylsilyl, three Ethyl silicon methyl group, triphenyl silicon methyl group or the like, but is not limited thereto.
  • Examples of the C 1 -C 20 unsaturated alkyl group are, for example, a vinyl group, a propylene group, an allyl group and the like, but are not limited thereto.
  • Examples of the C 3 -C 40 cycloalkyl group are, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclooctyl, 1-adamantane and the like.
  • Examples of the aryl group of C 6 -C 40 are phenyl, 1-naphthyl, 2-naphthyl, 1-indenyl, 2-indenyl, 9-fluorenyl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, 4-phenanthryl, 9-phenanthryl, etc., but is not limited thereto.
  • C 7 -C 40 alkane substituted aryl groups are, for example, 2-methylphenyl, 2,6-dimethylphenyl, 2-fluoro-3-methylphenyl, 2-fluoro-4-methylbenzene , 2,6-difluoro-3-methylphenyl, 2,6-difluoro-4-methylphenyl, 2-chloro-3-methylphenyl, 2-chloro-4-methylbenzene , 2,6-dichloro-3-methylphenyl, 2,6-dichloro-4-methylphenyl, 2-ethylphenyl, 2,6-diethylphenyl, 2-iso Propylphenyl, 2,6-diisopropylphenyl, 3-methylphenyl, 3,5-dimethylphenyl, 3-fluoro-4-methylphenyl, 3,5-difluoro 4-methylphenyl, 3,5-difluoro-4-ethylphenyl, 3,5-difluoro-4-isopropyl
  • C 7 -C 40 aryl-substituted alkyl group such as an example, benzyl, p-methylbenzyl, p-fluorobenzyl, p-chlorobenzyl, p-ethyl benzyl, p-isopropylbenzyl, p-tert-butyl Benzyl, p-trifluoromethylbenzyl, p-trimethylsilylbenzyl, 3,5-difluorobenzyl, 3,4,5-trifluorobenzyl, 3,5-bistrimethylbenzyl ,3,5-bis-trifluoromethylbenzyl, phenethyl, p-methylphenethyl, p-fluorophenethyl, p-chlorophenethyl, p-isopropylphenethyl, p-tert-butylphenyl Base, p-trimethylsilylphenethyl, 2,6-diflu
  • R 1 is preferably hydrogen, methyl, ethyl, isopropyl, tert-butyl, phenyl, benzyl, 2-furyl or 2-thienyl. All R 1 have the same meaning below.
  • R 2 and R 3 hydrogen, fluorine or R.
  • R is as defined above.
  • R 2 and R 3 are preferably hydrogen. All R 2 and R 3 have the same meanings hereinafter.
  • R 4 any one of the following, hydrogen, C 1 -C 40 saturated or unsaturated alkyl, halogenated or non-halogenated alkyl, optionally containing a hetero atom of the thirteenth to seventeenth element of the periodic table;
  • An alkyl group such as boron, aluminum, silicon, germanium, sulfur, oxygen, fluorine, chlorine or the like, or a C 3 -C 40 cycloalkyl group, a C 6 -C 40 aryl group, a C 7 -C 40 alkoxy-substituted aryl group An aryl-substituted alkyl group of C 7 -C 40 .
  • C 1 -C 40 saturated and haloalkyl groups such as methyl, trifluoromethyl, ethyl, 1,1,1-trifluoroethyl, perfluoroethyl, n-propyl, isopropyl, and Butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, n-hexyl, n-heptyl, n-octyl, n-dodecyl, n-octadecyl, trimethylsilyl, triethyl A silicon group, a triphenyl silicon group or the like, but is not limited thereto.
  • Examples of the C 1 -C 20 unsaturated alkyl group are, for example, a vinyl group, a propenyl group, a propyl group and the like, but are not limited thereto.
  • Examples of the C 3 -C 40 cycloalkyl group are, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclooctyl, 1-adamantane and the like.
  • Examples of the aryl group of C 6 -C 40 are phenyl, 1-naphthyl, 2-naphthyl, 1-indenyl, 2-indenyl, 9-fluorenyl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, 4-phenanthryl, 9-phenanthryl, etc., but is not limited thereto.
  • C 7 -C 40 alkane substituted aryl groups are, for example, 2-methylphenyl, 2,6-dimethylphenyl, 2-fluoro-3-methylphenyl, 2-fluoro-4-methylbenzene , 2,6-difluoro-3-methylphenyl, 2,6-difluoro-4-methylphenyl, 2-chloro-3-methylphenyl, 2-chloro-4-methylbenzene , 2,6-dichloro-3-methylphenyl, 2,6-dichloro-4-methylphenyl, 2-ethylphenyl, 2,6-diethylphenyl, 2-iso Propylphenyl, 2,6-diisopropylphenyl, 3-methylphenyl, 3,5-dimethylphenyl, 3-fluoro-4-methylphenyl, 3,5-difluoro 4-methylphenyl, 3,5-difluoro-4-ethylphenyl, 3,5-difluoro-4-isopropyl
  • C 7 -C 40 aryl-substituted alkyl group such as an example, benzyl, p-methylbenzyl, p-fluorobenzyl, p-chlorobenzyl, p-ethyl benzyl, p-isopropylbenzyl, p-tert-butyl Benzyl, p-trifluoromethylbenzyl, p-trimethylsilylbenzyl, 3,5-difluorobenzyl, 3,4,5-trifluorobenzyl, 3,5-bistrimethylsilyl Benzyl, 3,5-bis-trifluoromethylbenzyl, phenethyl, p-methylphenethyl, p-fluorophenethyl, p-chlorophenethyl, p-isopropylphenethyl, p-tert-butyl Phenylethyl, p-trimethylsilylphenethyl, 2,
  • R 4 is preferably H, methyl, trifluoromethyl, isopropyl, tert-butyl, phenyl, p-tert-butylphenyl, p-trimethylsilylphenyl, p-trifluoromethylphenyl, 3 , 5-dichloro-4-trimethylsilylphenyl, 2-naphthyl. And all R 4 in the following have the same meaning.
  • L is a divalent radical and has any one of the following general chemical formulae (III), (IV), (V), (VI), (VII), (VIII);
  • i is an integer, i is not equal to zero, and i is preferably 2.
  • R 5 the same or different, any one of the following, a C 1 -C 40 saturated or unsaturated alkyl group, a halogenated or a non-halogenated alkyl group, optionally containing the thirteenth to seventeenth group elements of the periodic table; a hetero atom such as an alkyl group of boron, aluminum, silicon, germanium, sulfur, oxygen, fluorine, chlorine or the like and a C 3 -C 40 cycloalkyl group, a C 6 -C 40 aryl group, a C 7 -C 40 alkane substitution Aryl, C 7 -C 40 aryl substituted alkyl.
  • a hetero atom such as an alkyl group of boron, aluminum, silicon, germanium, sulfur, oxygen, fluorine, chlorine or the like and a C 3 -C 40 cycloalkyl group, a C 6 -C 40 aryl group, a C 7 -C 40 alkane substitution Aryl, C 7 -C 40 ary
  • C 1 -C 40 saturated and haloalkyl groups such as methyl, trifluoromethyl, ethyl, 1,1,1-trifluoroethyl, perfluoroethyl, n-propyl, isopropyl, and Butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, n-hexyl, n-heptyl, n-octyl, n-dodecyl, n-octadecyl, trimethylsilyl, triethyl A silicon group, a triphenyl silicon group or the like, but is not limited thereto.
  • Examples of the C 1 -C 20 unsaturated alkyl group are, for example, a vinyl group, a propylene group, an allyl group and the like, but are not limited thereto.
  • Examples of the C 3 -C 40 cycloalkyl group are, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclooctyl, 1-adamantane and the like.
  • Examples of the aryl group of C 6 -C 40 are phenyl, 1-naphthyl, 2-naphthyl, 1-indenyl, 2-indenyl, 9-fluorenyl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, 4-phenanthryl, 9-phenanthryl, etc., but is not limited thereto.
  • C 7 -C 40 alkane substituted aryl groups are, for example, 2-methylphenyl, 2,6-dimethylphenyl, 2-fluoro-3-methylphenyl, 2-fluoro-4-methylbenzene , 2,6-difluoro-3-methylphenyl, 2,6-difluoro-4-methylphenyl, 2-chloro-3-methylphenyl, 2-chloro-4-methylbenzene , 2,6-dichloro-3-methylphenyl, 2,6-dichloro-4-methylphenyl, 2-ethylphenyl, 2,6-diethylphenyl, 2-iso Propylphenyl, 2,6-diisopropylphenyl, 3-methylphenyl, 3,5-dimethylphenyl, 3-fluoro-4-methylphenyl, 3,5-difluoro 4-methylphenyl, 3,5-difluoro-4-ethylphenyl, 3,5-difluoro-4-isopropyl
  • C 7 -C 40 aryl-substituted alkyl group such as an example, benzyl, p-methylbenzyl, p-fluorobenzyl, p-chlorobenzyl, p-ethyl benzyl, p-isopropylbenzyl, p-tert-butyl Benzyl, p-trifluoromethylbenzyl, p-trimethylsilylbenzyl, 3,5-difluorobenzyl, 3,4,5-trifluorobenzyl, 3,5-bistrimethylsilyl Benzyl, 3,5-bis-trifluoromethylbenzyl, phenethyl, p-methylphenethyl, p-fluorophenethyl, p-chlorophenethyl, p-isopropylphenethyl, p-tert-butyl Phenylethyl, p-trimethylsilylphenethyl, 2,
  • R 5 is preferably hydrogen, fluorine or methyl. And all R 5 in the following have the same meaning.
  • R 6 and R 7 are equal to R 3 .
  • R 3 is as defined above.
  • R 6 and R 7 are preferably hydrogen and fluorine. And all of R 6 and R 7 in the following have the same meaning.
  • Z is a ⁇ -ligand.
  • Z A, A is as defined above.
  • Z has the following general chemical formula (IX), (X), (XI), (XII), (XIII), (XIV), (XV);
  • R 1 as defined above.
  • R 1 is preferably hydrogen, methyl, ethyl, isopropyl, tert-butyl, phenyl, benzyl, 2-furyl or 2-thienyl.
  • R 2 hydrogen, fluorine, R.
  • R is as defined above.
  • R 2 is preferably hydrogen.
  • R 8 the same or different, any one of the following, a C 1 -C 40 saturated or unsaturated alkyl group, a halogenated or a non-halogenated alkyl group, optionally containing the thirteenth to seventeenth group elements of the periodic table; An alkyl group of a hetero atom or a C 3 -C 40 cycloalkyl group, a C 6 -C 40 aryl group, a C 7 -C 40 alkyl-substituted aryl group, or a C 7 -C 40 aryl-substituted alkyl group.
  • C 1 -C 40 saturated and haloalkyl groups such as methyl, trifluoromethyl, ethyl, 1,1,1-trifluoroethyl, perfluoroethyl, n-propyl, isopropyl, and Butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, n-hexyl, n-heptyl, n-octyl, n-dodecyl, n-octadecyl, trimethylsilyl, triethyl A silicon group, a triphenyl silicon group or the like, but is not limited thereto.
  • Examples of the C 1 -C 20 unsaturated alkyl group are, for example, a vinyl group, a propylene group, an allyl group and the like, but are not limited thereto.
  • Examples of the C 3 -C 40 cycloalkyl group are, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclooctyl, 1-adamantane and the like.
  • Examples of the aryl group of C 6 -C 40 are phenyl, 1-naphthyl, 2-naphthyl, 1-indenyl, 2-indenyl, 9-fluorenyl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, 4-phenanthryl, 9-phenanthryl, etc., but is not limited thereto.
  • C 7 -C 40 alkane substituted aryl groups are, for example, 2-methylphenyl, 2,6-dimethylphenyl, 2-fluoro-3-methylphenyl, 2-fluoro-4-methylbenzene , 2,6-difluoro-3-methylphenyl, 2,6-difluoro-4-methylphenyl, 2-chloro-3-methylphenyl, 2-chloro-4-methylbenzene , 2,6-dichloro-3-methylphenyl, 2,6-dichloro-4-methylphenyl, 2-ethylphenyl, 2,6-diethylphenyl, 2-iso Propylphenyl, 2,6-diisopropylphenyl, 3-methylphenyl, 3,5-dimethylphenyl, 3-fluoro-4-methylphenyl, 3,5-difluoro 4-methylphenyl, 3,5-difluoro-4-ethylphenyl, 3,5-difluoro-4-isopropyl
  • C 7 -C 40 aryl-substituted alkyl group such as an example, benzyl, p-methylbenzyl, p-fluorobenzyl, p-chlorobenzyl, p-ethyl benzyl, p-isopropylbenzyl, p-tert-butyl Benzyl, p-trifluoromethylbenzyl, p-trimethylsilylbenzyl, 3,5-difluorobenzyl, 3,4,5-trifluorobenzyl, 3,5-bistrimethylsilyl Benzyl, 3,5-bis-trifluoromethylbenzyl, phenethyl, p-methylphenethyl, p-fluorophenethyl, p-chlorophenethyl, p-isopropylphenethyl, p-tert-butyl Phenylethyl, p-trimethylsilylphenethyl, 2,
  • R 8 is preferably a methyl group, an ethyl group, an isopropyl group, a t-butyl group or a phenyl group. And all R 8 in the following have the same meaning.
  • R 9 the same or different, any one of the following, a C 1 -C 40 saturated or unsaturated alkyl group, a halogenated or a non-halogenated alkyl group, optionally containing the thirteenth to seventeenth group elements of the periodic table; An alkyl group of a hetero atom and a C 3 -C 40 cycloalkyl group, a C 6 -C 40 aryl group, a C 7 -C 40 alkyl-substituted aryl group, and a C 7 -C 40 aryl-substituted alkyl group.
  • C 1 -C 40 saturated and haloalkyl groups such as methyl, trifluoromethyl, ethyl, 1,1,1-trifluoroethyl, perfluoroethyl, n-propyl, isopropyl, and Butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, n-hexyl, n-heptyl, n-octyl, n-dodecyl, n-octadecyl, trimethylsilyl, triethyl A silicon group, a triphenyl silicon group or the like, but is not limited thereto.
  • Examples of the C 1 -C 20 unsaturated alkyl group are, for example, a vinyl group, a propylene group, an allyl group and the like, but are not limited thereto.
  • Examples of the C 3 -C 40 cycloalkyl group are, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclooctyl, 1-adamantane and the like.
  • Examples of the aryl group of C 6 -C 40 are phenyl, 1-naphthyl, 2-naphthyl, 1-indenyl, 2-indenyl, 9-fluorenyl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, 4-phenanthryl, 9-phenanthryl, etc., but is not limited thereto.
  • C 7 -C 40 alkane substituted aryl groups are, for example, 2-methylphenyl, 2,6-dimethylphenyl, 2-fluoro-3-methylphenyl, 2-fluoro-4-methylbenzene , 2,6-difluoro-3-methylphenyl, 2,6-difluoro-4-methylphenyl, 2-chloro-3-methylphenyl, 2-chloro-4-methylbenzene , 2,6-dichloro-3-methylphenyl, 2,6-dichloro-4-methylphenyl, 2-ethylphenyl, 2,6-diethylphenyl, 2-iso Propylphenyl, 2,6-diisopropylphenyl, 3-methylphenyl, 3,5-dimethylphenyl, 3-fluoro-4-methylphenyl, 3,5-difluoro 4-methylphenyl, 3,5-difluoro-4-ethylphenyl, 3,5-difluoro-4-isopropyl
  • C 7 -C 40 aryl-substituted alkyl group such as an example, benzyl, p-methylbenzyl, p-fluorobenzyl, p-chlorobenzyl, p-ethyl benzyl, p-isopropylbenzyl, p-tert-butyl Benzyl, p-trifluoromethylbenzyl, p-trimethylsilylbenzyl, 3,5-difluorobenzyl, 3,4,5-trifluorobenzyl, 3,5-bistrimethylsilyl Benzyl, 3,5-bis-trifluoromethylbenzyl, phenethyl, p-methylphenethyl, p-fluorophenethyl, p-chlorophenethyl, p-isopropylphenethyl, p-tert-butyl Phenylethyl, p-trimethylsilylphenethyl, 2,
  • R 9 is preferably a C 1 -C 20 linear or branched, saturated or unsaturated, partially or fully halogenated, linear or cyclic carbon radical. And all R 9 in the following have the same meaning.
  • R 10 the same or different, any one of the following, hydrogen, C 1 -C 40 saturated or unsaturated alkyl, halogenated or non-halogenated alkyl, optionally containing thirteenth to seventeenth of the periodic table a hetero atom of a group element such as an alkyl group of boron, aluminum, silicon, germanium, sulfur, oxygen, fluorine, chlorine or the like and a C 3 -C 40 cycloalkyl group, a C 6 -C 40 aryl group, a C 7 -C 40 Alkyl substituted aryl, C 7 -C 40 aryl substituted alkyl.
  • a group element such as an alkyl group of boron, aluminum, silicon, germanium, sulfur, oxygen, fluorine, chlorine or the like and a C 3 -C 40 cycloalkyl group, a C 6 -C 40 aryl group, a C 7 -C 40 Alkyl substituted aryl, C 7 -C 40 aryl substitute
  • C 1 -C 40 saturated and haloalkyl groups such as methyl, trifluoromethyl, ethyl, 1,1,1-trifluoroethyl, perfluoroethyl, n-propyl, isopropyl, and Butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, n-hexyl, n-heptyl, n-octyl, n-dodecyl, n-octadecyl, trimethylsilyl, triethyl A silicon group, a triphenyl silicon group or the like, but is not limited thereto.
  • Examples of the C 1 -C 20 unsaturated alkyl group are, for example, a vinyl group, a propylene group, an allyl group and the like, but are not limited thereto.
  • Examples of the C 3 -C 40 cycloalkyl group are, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclooctyl, 1-adamantane and the like.
  • Examples of the aryl group of C 6 -C 40 are phenyl, 1-naphthyl, 2-naphthyl, 1-indenyl, 2-indenyl, 9-fluorenyl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, 4-phenanthryl, 9-phenanthryl, etc., but is not limited thereto.
  • C 7 -C 40 alkane substituted aryl groups are, for example, 2-methylphenyl, 2,6-dimethylphenyl, 2-fluoro-3-methylphenyl, 2-fluoro-4-methylbenzene , 2,6-difluoro-3-methylphenyl, 2,6-difluoro-4-methylphenyl, 2-chloro-3-methylphenyl, 2-chloro-4-methylbenzene , 2,6-dichloro-3-methylphenyl, 2,6-dichloro-4-methylphenyl, 2-ethylphenyl, 2,6-diethylphenyl, 2-iso Propylphenyl, 2,6-diisopropylphenyl, 3-methylphenyl, 3,5-dimethylphenyl, 3-fluoro-4-methylphenyl, 3,5-difluoro 4-methylphenyl, 3,5-difluoro-4-ethylphenyl, 3,5-difluoro-4-isopropyl
  • C 7 -C 40 aryl-substituted alkyl group such as an example, benzyl, p-methylbenzyl, p-fluorobenzyl, p-chlorobenzyl, p-ethyl benzyl, p-isopropylbenzyl, p-tert-butyl Benzyl, p-trifluoromethylbenzyl, p-trimethylsilylbenzyl, 3,5-difluorobenzyl, 3,4,5-trifluorobenzyl, 3,5-bistrimethylsilyl Benzyl, 3,5-bis-trifluoromethylbenzyl, phenethyl, p-methylphenethyl, p-fluorophenethyl, p-chlorophenethyl, p-isopropylphenethyl, p-tert-butyl Phenylethyl, p-trimethylsilylphenethyl, 2,
  • R 10 is preferably hydrogen, fluorine, chlorine, methyl, ethyl or phenyl. And all R 10 in the following have the same meaning.
  • R 11 the same or different, any of the following: hydrogen, fluorine, chlorine, bromine, OR, SR, OCOR, NR 2 , PR 2 .
  • R is as defined above.
  • R 11 is the same or different and is any one of the following, a C 1 -C 40 saturated or unsaturated alkyl group, a halogenated or a non-halogenated alkyl group, optionally containing the thirteenth to seventeenth group elements of the periodic table; a hetero atom such as an alkyl group of boron, aluminum, silicon, germanium, sulfur, oxygen, fluorine, chlorine or the like and a C 3 -C 40 cycloalkyl group, a C 6 -C 40 aryl group, a C 7 -C 40 alkane substitution Aryl, C 7 -C 40 aryl substituted alkyl.
  • C 1 -C 40 saturated and haloalkyl groups such as methyl, trifluoromethyl, ethyl, 1,1,1-trifluoroethyl, perfluoroethyl, n-propyl, isopropyl, and Butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, n-hexyl, n-heptyl, n-octyl, n-dodecyl, n-octadecyl, trimethylsilyl, triethyl A silicon group, a triphenyl silicon group or the like, but is not limited thereto.
  • Examples of the C 1 -C 20 unsaturated alkyl group are, for example, a vinyl group, a propylene group, an allyl group and the like, but are not limited thereto.
  • Examples of the C 3 -C 40 cycloalkyl group are, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclooctyl, 1-adamantane and the like.
  • Examples of the aryl group of C 6 -C 40 are phenyl, 1-naphthyl, 2-naphthyl, 1-indenyl, 2-indenyl, 9-fluorenyl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, 4-phenanthryl, 9-phenanthryl, etc., but is not limited thereto.
  • C 7 -C 40 alkane substituted aryl groups are, for example, 2-methylphenyl, 2,6-dimethylphenyl, 2-fluoro-3-methylphenyl, 2-fluoro-4-methylbenzene , 2,6-difluoro-3-methylphenyl, 2,6-difluoro-4-methylphenyl, 2-chloro-3-methylphenyl, 2-chloro-4-methylbenzene , 2,6-dichloro-3-methylphenyl, 2,6-dichloro-4-methylphenyl, 2-ethylphenyl, 2,6-diethylphenyl, 2-iso Propylphenyl, 2,6-diisopropylphenyl, 3-methylphenyl, 3,5-dimethylphenyl, 3-fluoro-4-methylphenyl, 3,5-difluoro 4-methylphenyl, 3,5-difluoro-4-ethylphenyl, 3,5-difluoro-4-isopropyl
  • C 7 -C 40 aryl-substituted alkyl group such as an example, benzyl, p-methylbenzyl, p-fluorobenzyl, p-chlorobenzyl, p-ethyl benzyl, p-isopropylbenzyl, p-tert-butyl Benzyl, p-trifluoromethylbenzyl, p-trimethylsilylbenzyl, 3,5-difluorobenzyl, 3,4,5-trifluorobenzyl, 3,5-bistrimethylsilyl Benzyl, 3,5-bis-trifluoromethylbenzyl, phenethyl, p-methylphenethyl, p-fluorophenethyl, p-chlorophenethyl, p-isopropylphenethyl, p-tert-butyl Phenylethyl, p-trimethylsilylphenethyl, 2,
  • R 11 is preferably hydrogen, fluorine, chlorine, OCOR, OR, SR, NR 2 or PR 2 . And all R 11 in the following have the same meaning.
  • J is the thirteenth or fifteenth element of the periodic table, such as boron, aluminum, gallium, nitrogen, phosphorus, and arsenic.
  • J is preferably nitrogen and phosphorus. All Js below have the same meaning.
  • A is a monovalent anion ⁇ -ligand.
  • the precursor of A is a neutral stable organic compound having a chemical structure as shown in general formula (II);
  • R 1 , R 2 , R 3 , R 4 , L and E are as defined above.
  • the general formula (II) contains the basic structure of a cyclopentadiene ring.
  • the active hydrogen in the cyclopentadiene structure has a unique electrophilic reactivity and can be exchanged with a nucleophile such as a Grignard reagent or an organolithium reagent.
  • the basic reaction is as shown in general reaction formula (2);
  • the nucleophilic reagent is selected from the organolithium reagent R n Li as a specific example, but in practice, it is not limited to using only the organolithium reagent.
  • R n is a C 1 -C 6 alkyl group or a C 6 -C 12 aryl group.
  • the invention relates to the synthesis of metallocene complexes, including multi-step organic chemical synthesis of cyclopentadiene derivatives, high-efficiency and high-yield synthesis of bridged ligands, and high-efficiency and high-yield synthesis of quasi-C2 symmetric metallocene complexes. .
  • the present invention relates to a novel class of hetero atom-containing ⁇ -coordinated metallocene complexes (as shown in general formula (I)), the synthesis method of which can be represented by the following general reaction formula (3);
  • T Same or different from each other, being a single- or double-toothed neutral ligand.
  • Monodentate ligands such as ether ROR, thioether RSR, tertiary amine NR 3 , tertiary phosphine PR 3 , cyclic ether (eg substituted tetrahydrofuran, substituted furan, substituted dioxane, etc.), cyclosulphur Ethers, ketones, substituted cyclic ketones, substituted pyridines, substituted azoles, substituted piperidines, esters, lactones, amides, lactams, and the like.
  • R is as defined above.
  • Bidentate ligands such as: ortho-diethers, alpha, - diethers, ortho-diamines, alpha, - diamines, ortho-disulfides, alpha, - disulfide, ortho-bisphosphine, alpha, - double phosphines, and so on.
  • T is preferably a neutral monodentate ligand cyclic ether and a neutral bidentate ligand ortho-diamine in the above infinite combination.
  • x: is 0 or an integer 1, 2 or 3.
  • LG It is a departure from the group. They may be the same or different from each other, and are organic radicals such as hydrogen, an alkali metal element such as lithium, sodium, potassium or a fourteenth heavy element such as SiR 3 , GeR 3 , SnR 3 , PdR 3 and ZnR, BaR, MgR. , CaR, etc., but are not limited to this. Where R is as defined above.
  • the above general reaction formula (3) represents various types of metathesis reactions.
  • the most mediocre example is the metathesis reaction between bis anion ligand and metal halide of LG equal to the alkali metal cation to eliminate the alkali metal halide (generally LGX in the reaction formula (3), LG such as lithium, X such as chlorine ), the desired metallocene complex (I) is formed.
  • LGX in the reaction formula (3) LG such as lithium, X such as chlorine
  • This mediocre reaction type is the most commonly used synthesis method for synthetic metallocene complexes, and is also applicable to the synthesis of a new class of heteroatom-containing ⁇ -coordination metallocene complexes of the present invention.
  • LG is an alkali metal cation (Li+, Na+, K+), and when X is a halogen (Cl-, Br-, I-) in the general chemical formula (XVIII), such a complex
  • X is a halogen
  • XVIII a halogen
  • a new class of heteroatom-containing ⁇ -coordination metallocene complexes contemplated by the present invention may employ a variety of other methods of preparation.
  • X in the general formula (XVIII) may be selected from R or NR 2 , wherein R is as defined above.
  • the neutral ligand (LG is equal to H) and the third to sixth transition metal alkyl compound or the third to sixth transition metal organic amine compound, in a suitable solvent and appropriate The metathesis reaction is carried out in the temperature range, and the neutral alkane or neutral secondary amine is removed, and the desired ⁇ -coordinated metallocene complex (I) is formed.
  • Suitable solvents can be selected from saturated C 5 -C 15 alkanes and cycloalkanes such as pentane, cyclopentane, n-hexane, cyclohexane, heptane, cycloheptane, octane, cyclooctane, n-dodecane, etc.
  • aromatic hydrocarbons and substituted aromatic hydrocarbons such as benzene, toluene, o-xylene, m-xylene, p-xylene, trimethylbenzene, chlorobenzene, o-dichlorobenzene, m-dichlorobenzene, p-dichlorobenzene, trichlorobenzene Etc., but not limited to this. Among them, hexane, heptane, octane, toluene or xylene is preferred. A mixture of two or more of the above organic solvents may also be used as the reaction medium. Suitable reaction temperatures range from -100 to +300 °C. A more suitable reaction temperature range is generally from -75 to +250 °C. The optimum reaction temperature range is -50 to +150 °C.
  • the general chemical formula (XVII) is LG is a 14th-group heavy element organic radical such as SiR 3 , GeR 3 , SnR 3 , PdR 3 , ZnR, BaR, MgR, CaR, etc.
  • the general chemical formula (XVIII) X may be selected from halogen (Cl, Br, I), alkoxy OR, sulfhydryl SR, carboxyl OCOR, OCOCF 3 , OSO 2 CF 3 , R as defined above.
  • neutral ligands organic radicals of the fourteenth heavy elements such as SiR 3 , GeR 3 , SnR 3 , PdR 3 , ZnR, BaR, MgR, CaR, etc.
  • XVIII general chemical formula
  • US6657027 (WO02076999, DE10114345, EP1373284) uses Cp-LG (Cp is equivalent to substituted cyclopentadiene, substituted hydrazine, etc., LG is equal to SnR 3 ) to react with a Group IV transition metal halide to prepare a so-called donor-acceptance.
  • Cp-LG Cp is equivalent to substituted cyclopentadiene, substituted hydrazine, etc., LG is equal to SnR 3
  • Suitable solvents are selected from saturated C 5 -C 15 alkanes and naphthenes and aromatic hydrocarbons.
  • Alkanes and cycloalkanes such as pentane, cyclopentane, n-hexane, cyclohexane, heptane, cycloheptane, octane, cyclooctane, n-dodecane, and the above-mentioned partially fluorinated or perfluoroalkanes and rings Alkanes and the like; aromatic hydrocarbons and partially or perfluorinated aromatic hydrocarbons such as benzene, toluene, trifluoromethylbenzene, o-xylene, m-xylene, p-xylene, trimethylbenzene, fluorobenzene, o-difluorobenzene, and Difluorobenzene, p-difluorobenzene, trifluorobenz
  • hexane, heptane, octane, toluene and xylene are preferred.
  • a mixture of two or more of the above organic solvents may also be used as the reaction medium.
  • Suitable reaction temperatures range from -100 to +300 °C.
  • a more suitable reaction temperature range is generally from -75 to +250 °C.
  • the most suitable reaction temperature range is from -50 to +150 °C.
  • the general formula (I) represents a class of the most common metallocene complexes having a quasi-C2 symmetrical structure.
  • Compounds having a quasi-C2 symmetrical structure generally have two isomers, a racemic and a meso (Meso).
  • a in general formula (I) is not equal to Z, it represents a class of metallocene complexes defined as C1 symmetric structures.
  • the invention sets a metallocene complex of a quasi-C2 symmetric structure, and the pseudo-C2 symmetric metallocenes have a partial C2 symmetry characteristic due to the surrounding space environment of the catalytic active center.
  • a compound having a quasi-C2 symmetrical structure generally also has two spatial isomers, namely, cis (Syn, the metallocene complex of the present invention, wherein the R 1 substituent is located on the same side of the molecule) and trans (Anti, the metallocene complex invention is substituted with R 1 which is opposite to the side groups of the molecule).
  • the racemic (Rac) and trans (Anti) isomers generally have respect to meso (meth) and cis (
  • the syn) isomer has a high thermodynamic stability.
  • the metathesis reaction between the general formula (XVII) and the general formula (XVIII) represented by the general reaction formula (3) is thermodynamically controllable by adjusting the solvent polarity, reaction temperature, and reaction. Substrate concentration, as well as other reaction conditions, etc., can maximize the rate of formation of isomers (racemic, Rac, and trans, anti) with higher thermodynamic stability.
  • thermodynamically selective reaction characteristic has been successfully utilized to prepare a so-called donor-acceptor bridged Group IV transition metallocene complex (US6657027, WO0207699, DE10114345, EP1373284), and to eliminate it with amines.
  • the reaction was carried out to prepare a Group IV transition metallocene organic amine complex (JN Christopher; GMDiamond, RF Jordan; JL Petersen, Organometallics 1996, 15, 4038. GMDiamond; RF Jordan; JL Petersen; JACS, 1996, 118, 8024.).
  • metallocene complexes employ synthetic routes that are likely to be completely different in order to achieve optimum yields and optimum purity of the metallocene complex.
  • the following reaction scheme shows another synthetic route for the same metallocene complex molecule, fully demonstrating the multiple selectivity of such metallocene complex synthesis routes.
  • the metallocene complex synthesized in the present invention is subjected to a specific activation treatment and loading to form an active catalyst system.
  • the composition of the system is generally the carrier ZT, the cocatalyst ZC, the main catalyst ZH and the activator HH.
  • the carrier ZT is generally a high specific surface acidic inorganic oxide such as SiO 2 , Al 2 O 3 , montmorillonite, kaolin or the like, or a synthetic or natural inorganic porous or layered structural material.
  • the cocatalyst ZC is generally a strong Lewis acidic substance such as polymethylaluminoxane (PMAO), modified MAO (MMAO), organoboron compound, partial or perfluoro-substituted aromatic borane compound (such as LiB (C 6 H) 5 ) 4 , B(C 6 F 5 ) 3 , LiB(C 6 F 5 ) 4 , Ph 3 CB(C 6 F 5 ) 4 , etc.).
  • the main catalyst ZH is a metallocene complex or a combination of two metallocene complexes synthesized as described above.
  • the activator HH is any chemical substance (such as an alkyl aluminum compound or an alkane) capable of undergoing substitution or exchange reaction of an anion (halogen, alkoxy group, amine group, siloxy group, etc.) coordinated at the active site of the metallocene.
  • a boron-based compound, a format reagent, an organolithium reagent, or the like, and the material can form a metallocene complex to form a neutral or cationic compound.
  • the preparation process of the catalyst system can separately treat and combine the four components of ZT, ZC, ZH and HH according to the polymerization process requirements.
  • the commonly used combination index catalyst procedure can be expressed in the following ways: 1ZH+HH forms an activated metallocene catalyst solution, this solution is added to the supported promoter formed by ZT+ZC; 2ZH+HH formed active catalyst solution is added to The solution of the promoter ZC is mixed, and the mixed solution is added to the carrier ZT; the active catalyst solution formed by 3ZC+ZH is added to the carrier ZT, and finally the activator HH is added (or the activator HH can be omitted); 4ZH+ The activated catalyst solution of HH is added to the activated support formed by ZT + HH (cocatalyst ZC may be omitted).
  • the diversity of the catalyst preparation process of the present invention allows the polymerization process adaptability of the catalyst system to be expanded and extended.
  • the invention further relates to the use of the novel hetero atom-containing ⁇ -coordinated metallocene complex as a core component to form an active catalytic system for the catalyzed homopolymerization or copolymerization of olefins.
  • the preparation process of forming an active catalytic system using the novel hetero atom-containing ⁇ -coordination metallocene complex as a core component is first considered.
  • the activation method or activation process of the metallocene complex directly affects the catalytic efficiency of the catalyst, such as the high temperature thermal stability of the catalyst (the effective life of the catalyst), the activity of the catalyst (the polymerization yield efficiency of the catalyst per unit time)
  • the relative selectivity of the catalyst to the rate of polymerization chain growth and the rate of chain elimination molecular weight size and molecular weight distribution of the polymer
  • the regional and stereoselectivity of the catalyst active center to the olefin microstructure of the polymeric chain.
  • activation process activator itself, ratio of activator to metallocene complex, temperature, medium, type of support, physical form of the support
  • activation process also directly affects the apparent morphology of the polymer (condensed matter physical properties). Therefore, the success of the catalytic process and the physical and mechanical properties of the polymer are particularly close to the activation process of the catalyst.
  • the novel hetero atom-containing ⁇ -coordination metallocene complex according to the present invention is a catalytic system for forming a core component, that is, the activation process of the catalyst can be represented by the following general reaction formula (1). ;
  • LA is a type of Lewis acid that is bulky, electron delocalized, and poorly coordinated.
  • Representative of such materials are polymethylaluminoxane (PMAO) having both chain, cyclic and cage structure equilibrium states in solution, and polymethylaluminoxane (MMAO) modified thereon.
  • the catalyst activation reaction represented by the reaction (1) is generally carried out in a specific homogeneous liquid medium, and various liquid mediums are commonly used, such as a C 5 - C 12 saturated alkane, a C 6 - C 12 aromatic hydrocarbon.
  • the most preferred liquid medium is a metal complex represented by the structure (I) and a Lewis acid represented by LA to form a homogeneous reaction system.
  • Common liquid reaction media include saturated alkanes such as pentane, hexane, heptane, and octane, and isomers thereof.
  • Aromatic liquid medium includes benzene, toluene, xylene and isomers, trimethylbenzene and isomers, chlorobenzene, dichlorobenzene and isomers, fluorobenzene, difluorobenzene and isomers, and polyfluorobenzene and Its isomers.
  • the most commonly used are pentane and isomers, hexane and isomers, heptane and isomers, toluene, xylene and isomers. In practice, hexane and isomers, heptane and isomers, toluene, chlorobenzene, etc. are preferred.
  • the mixed liquid medium means that the saturated alkane and the aromatic hydrocarbon are mixed in a certain volume percentage, and the volume percentage of one liquid medium is not less than 5%.
  • the reaction of the catalyst activation reaction represented by the reaction (1) in a specific homogeneous medium needs to be completed in a certain temperature range to form 95% or more of the reaction product (Ia).
  • the reaction temperature range can be selected from -100 to 250 °C, and the general reaction temperature is controlled between -75 and 150 °C.
  • the optimum reaction temperature interval is related to the solubility and reaction properties of the metal complex represented by the formula (I) and LA.
  • the present invention relates to the use of the above novel hetero atom-containing ⁇ -coordination metallocene complex as a core component to form an active catalytic system for olefin homopolymerization or copolymerization.
  • the active complex catalyst formed by the above process has the function of polymerizing an alpha-olefin under a bulk slurry or solvent slurry polymerization process.
  • the polymerization of an alpha-olefin (e.g., propylene) using the above metallocene catalyst system of the present invention is generally applicable to a bulk slurry polymerization process. It can also be applied to a solvent slurry polymerization process or a gas phase polymerization process by appropriate polymerization conditions and catalyst adjustment.
  • an alpha-olefin e.g., propylene
  • the present invention uses the above metallocene catalyst system to copolymerize an ⁇ -olefin (such as propylene) with an olefin (such as ethylene) and other ⁇ -olefins (such as butene-1, pentene-1, hexene-1, etc.), and is generally applicable.
  • an ⁇ -olefin such as propylene
  • an olefin such as ethylene
  • other ⁇ -olefins such as butene-1, pentene-1, hexene-1, etc.
  • the analysis of ligands and complexes was carried out by nuclear magnetic and mass spectrometry.
  • the analysis of the polymer was carried out by means of a melt indexer, DSC, GPC analyzer, nuclear magnetic analysis and the like.
  • the intermediate product b 1 was dissolved in toluene, then oxalic acid and 4A molecular sieve were added; the mixture was refluxed at 120 ° C for 2 h; the reaction layer was used to verify whether the reaction was complete; the reaction was completed with excess carbonic acid washed with sodium bicarbonate solution, the organic phase was separated; the aqueous layer was extracted three times with ethyl acetate, the organic phases were combined and dried; the solvent was removed by rotary evaporation to yield a ligand Z 1, 84% yield.
  • the amount of the raw material was calculated according to the amount of 1 mol of the product, and placed in a 2000 ml single-mouth reaction bottle, and isopropanol was added; the oil bath was gradually heated to 80 ° C, and refluxed for 1.3 h under stirring; after being cooled to room temperature, the solution was dark brown. washed with aqueous NaHCO 3 to give a brown suspension; filtered, to obtain 26.5 g of a brown powdery solid (theoretical yield: 28.1g); The product was purified by column chromatography ligand A 1 94.3% yield.
  • the intermediate product 1 was dissolved in anhydrous diethyl ether (500 mL) under nitrogen atmosphere, cooled to ⁇ 0 ° C, and the diethyl ether solution of the intermediate product 2 was slowly added dropwise to the intermediate solution 1 in diethyl ether by capillary siphoning.
  • the system was allowed to naturally warm to room temperature and stirred at 28 ° C overnight under high nitrogen atmosphere.
  • the above dark red solution was subjected to siphon filtration to remove LiCl, and the remaining solid was washed once with a small amount of anhydrous diethyl ether and filtered by siphon.
  • the reaction suspension is cherry red.
  • the suspension is removed under reduced pressure and vacuum dried to a weight to obtain a quasi-C2 symmetrical zirconium complex.
  • the impurities are mainly The purity of the complex is greater than 95% with hexane and a large amount of LiCl.
  • the 5 L reactor was evacuated and replaced with nitrogen three times, and then 3600 ⁇ mol of MAO (methylaluminoxane) solution and 1000 g of propylene were added to the reaction vessel; with zirconium dichloride complex 8 ⁇ mol and 400 ⁇ mol of MAO (methyl aluminum oxide)
  • the alkane was activated at room temperature for 30 min, and was pressurized into the reaction vessel with high pressure nitrogen; the temperature was raised to 65 ° C, and the polymerization was carried out for 1 h to obtain a polymerization product of 139 g, a catalyst activity of 1.74 ⁇ 10 7 gPP/mol cat.h, a molecular weight M W 22.5, a distribution of 2.0, The isotacticity is 87%.
  • the amount of the raw material was calculated according to the amount of 1 mol of the product, and placed in a 2500 ml two-neck reaction flask; stirred under ice-cold bath conditions for 20 min; dibromo-2-methylpropanoyl bromide and anhydrous dichloromethane were weighed into a separatory funnel. Slowly drip into the reaction flask; weighed naphthalene and anhydrous dichloromethane were added to the separatory funnel, and quickly dissolved and slowly added dropwise to the reaction system. The color of the solution in the reaction flask quickly turned yellow and gradually turned brownish red.
  • the separatory funnel After adding anhydrous dichloromethane, the separatory funnel was rinsed; after 30 minutes of reaction, the ice was taken out, and the water bath was slowly raised to room temperature; the reaction was continued, and no HBr gas evolution was observed, which was regarded as the end point of the reaction; washing with a large amount of water to remove impurities and not
  • the raw material of the reaction the organic phase is collected after liquid separation; the product in the aqueous phase is extracted with anhydrous dichloromethane, and the mixture is repeated three times; the extract phase and the organic phase are combined and dried; the solvent is distilled off by a rotary evaporator to purify the crude product a 2 , the yield was 64.5%.
  • the intermediate product a 2 was weighed into a 1000 ml two-neck reaction flask, and 400 ml of THF was added thereto, and the mixture was cooled in an ice water bath, and red-Al was added dropwise thereto, and the whole was added dropwise over 15 minutes.
  • the product intermediate b 2 is dissolved in toluene, then oxalic acid and 4A molecular sieve are added; the mixture is refluxed at 120 ° C for 2 h; during the reaction, a thin layer chromatography plate is used to verify whether the reaction is complete; After washing with sodium bicarbonate solution, the organic phase was separated; the aqueous layer was extracted three times with ethyl acetate, and the organic phase was combined and dried, and the solvent was evaporated to give the ligand Z 2 , yield 84%. The final yield was 37.1%.
  • the zirconium dichloride complex was prepared by reacting the ligand Z 2 with the ligand A 1 , and polymerization was carried out according to the conditions in Example 1 to obtain a polymerization product of 255 g, a catalyst activity of 3.19 ⁇ 10 7 gPP/mol cat.h, and a molecular weight M W . 24.5, distribution 2.0, isocratic 76%.
  • the intermediate product b 2 mmol was dissolved in toluene, then oxalic acid and 4A molecular sieve were added; the mixture was refluxed at 120 ° C for 2 h; during the reaction, a thin layer chromatography plate was used to verify whether the reaction was complete; after the reaction was completed, excess carbonic acid was used.
  • the sodium hydride solution was washed, and then the organic phase was separated; the aqueous layer was extracted three times with ethyl acetate, and the organic phases were combined and dried.
  • Example 3 8.25 29 2.0 72
  • Example 4 0.55 19 2.1 56
  • Example 5 0.75 twenty one 2.0 67
  • Example 6 1.64 twenty one 2.3 60
  • Example 8 36.25 28 2.0 78
  • Example 9 4.50 twenty four 2.1 93
  • Example 10 18.30 26 2.0 88
  • Example 11 5.15 twenty one 1.9 84
  • Example 12 0.15 26 2.0 45
  • Example 13 0.36 twenty one 2.0 55
  • Example 14 1.12 18 1.9 60
  • Example 15 10.35 28 2.0
  • Example 16 0.85 twenty two 2.0 74
  • Example 17 1.45 twenty four 2.1 85
  • Example 18 7.35 25 2.0
  • Example 20 10.55 27 2.0 78
  • Example 21 4.25 twenty one 1.9 78
  • Example 22 7.45 twenty four 2.0 84
  • Example 23 13.25 19 2.0 72
  • Example 24 6.50 16 1.9 66
  • Example 1 According to the procedure of Example 1, the compound of A 1 was replaced with a compound of the following structure, and the other conditions were unchanged.
  • Post-treatment 50mL saturated sodium bicarbonate solution was placed, slowly added to the above solution, and a large amount of solid was precipitated after stirring. The filter cake was washed with sodium bicarbonate solution and water to obtain 5.1 g of brown solid. The yield was 98%. .
  • Example 1 8 ⁇ mol of the zirconium dichloride complex obtained by the A 2 structural compound and the Z 1 structural compound was polymerized to obtain a polymer product of 155 g, a catalyst activity of 1.94 ⁇ 10 7 g PP / mol cat.h, and a molecular weight M. W 24, distribution 2.0, isocratic 85%.
  • Example 2 According to the procedure of Example 1, 30 g of hexene-1 was added during the polymerization to obtain a polymer product of 220 g, a catalyst activity of 2.75 ⁇ 10 7 gPP/mol cat.h, a molecular weight M W 20 , a distribution of 2.4, and an isotacticity of 71%.
  • Example 1 According to the operation of Example 1, 2.4 mmol of triisobutylaluminum was added during the polymerization, and the other conditions were unchanged, and 184 g of a polymerization product was obtained.
  • the catalyst activity was 2.3 ⁇ 10 7 gPP/mol cat.h, and the molecular weight M W 25.5 was distributed. 2.0, equal degree 88%.
  • Example 1 According to the operation of Example 1, the synthesis reaction temperature of the metallocene complex of ⁇ -ligand was -75 ° C, and other conditions were unchanged, and 95 g of a polymerization product was obtained, and the catalyst activity was 1.06 ⁇ 10 7 gPP/mol cat.h. M W 19.5, distribution 2.1, isocraticity 80%.
  • Example 1 According to the operation of Example 1, 2 L of dehydrated hexane was added during the polymerization, and then polymerization grade propylene was introduced to obtain a polymerization product of 45 g, a catalyst activity of 0.56 ⁇ 10 7 gPP/mol cat.h, a molecular weight M W 27.4, a distribution of 2.2, The isotacticity is 88%.
  • Example 1 According to the operation of Example 1, the synthesis reaction temperature of the metallocene complex of ⁇ -ligand was 150 ° C, and other conditions were unchanged, and 255 g of a polymerization product was obtained, and the catalyst activity was 3.19 ⁇ 10 7 gPP/mol cat.h, and the molecular weight was M. W 24.8, distribution 2.1, isocraticity 91%.
  • Post-treatment 50 mL of saturated sodium bicarbonate solution was placed, slowly added to the above solution, and a large amount of solid was precipitated after stirring. The filter cake was washed with sodium bicarbonate solution and water to obtain 4.1 g of a brown solid. The yield was 73%. .
  • the ligand A 1 0.64 g (Fw 219.28, 2.9 mmol) was weighed into an ampoule, and dissolved in 30 mL of anhydrous diethyl ether.
  • the ampoules were placed in a 0 ° C ice water bath under high-purity N 2 and cooled and stirred, and 1.75 mL of nBuLi/hexane (hexane) (2.01 mol/L, 3.5 mmol) was slowly added dropwise thereto using a syringe. After the addition was completed, the reaction system naturally rose to room temperature, and the solution was black-red. The reaction was stirred at room temperature for 4 h.
  • the ampule was placed in a 0 ° C ice water bath under high-purity N 2 and cooled and stirred, and 1.45 mL of nBuLi/hexane (2.01 mol/L, 2.9 mmol) was slowly added dropwise thereto with a syringe.
  • the reaction system naturally warmed up, the solution turned from colorless to yellow, and finally turned orange, and stirred at room temperature for 5 hours to obtain intermediate product 2.
  • the drained intermediate 1 was dissolved in 30 mL of anhydrous diethyl ether and the solution was dark red.
  • the intermediate solution 1 of the ether solution was placed in a -30 ° C low temperature cold bath and cooled and stirred.
  • the intermediate product 2 of the ether solution was slowly added dropwise to the intermediate product 1 (15 min). After the addition was completed, the reaction system was naturally warmed up, and the solution was Black and red, stir at room temperature overnight. The LiCl was removed and the solvent was evaporated to give intermediate 3, which was 38.6%.
  • the ampoules were placed in a 0 ° C ice water bath and cooled and stirred, and 1.42 mL of nBuLi/hexane (1.6 mol/L, 2.24 mmol) was slowly added under N 2 protection.
  • the insoluble material gradually dissolved and the solution turned yellow.
  • the lithium salt solution of the intermediate product 3 was obtained by naturally stirring to room temperature and stirring at room temperature for 5 hours.
  • the ZrCl 4 diethyl ether solution was placed in a -40 ° C low temperature cold bath and cooled and stirred.
  • the lithium salt solution of the above intermediate product 3 was slowly added to the suspension of ZrCl 4 (20 min), and naturally increased to room temperature after the completion of the dropwise addition.
  • the zirconium dichloride complex was prepared by stirring at room temperature overnight. A yellow solid precipitated, which was filtered and dried. The product was 482 mg of an orange solid, yield 66.7%.
  • the 5 L reactor was evacuated and replaced with nitrogen three times, and then 3600 ⁇ mol of MAO (methylaluminoxane) solution and 1000 g of propylene were added to the reaction vessel; with zirconium dichloride complex 8 ⁇ mol and 400 ⁇ mol of MAO (methyl aluminum oxide)
  • the alkane was activated at room temperature for 30 min, and was pressurized into the reaction vessel with high pressure nitrogen; the temperature was raised to 65 ° C, and the polymerization was carried out for 1 h to obtain a polymer product of 155 g, a catalyst activity of 1.94 ⁇ 10 7 gPP/mol cat.h, a molecular weight M W 23.5, a distribution of 2.1,
  • the isocratic degree is 85%.
  • the amount of the raw material was calculated according to the amount of 1 mol of the product, and placed in a 2500 ml two-neck reaction flask; stirred under ice-cold bath conditions for 20 min; dibromo-2-methylpropanoyl bromide and anhydrous dichloromethane were weighed into a separatory funnel. Slowly drip into the reaction flask; weighed naphthalene and anhydrous dichloromethane were added to the separatory funnel, and quickly dissolved and slowly added dropwise to the reaction system. The color of the solution in the reaction flask quickly turned yellow and gradually turned brownish red.
  • the separatory funnel After adding anhydrous dichloromethane, the separatory funnel was rinsed; after 30 minutes of reaction, the ice was taken out, and the water bath was slowly raised to room temperature; the reaction was continued, and no HBr gas evolution was observed, which was regarded as the end point of the reaction; washing with a large amount of water to remove impurities and not
  • the raw material of the reaction the organic phase is collected after liquid separation; the product in the aqueous phase is extracted with anhydrous dichloromethane, and the mixture is repeated three times; the extract phase and the organic phase are combined and dried; the solvent is distilled off by a rotary evaporator to purify the crude product a 2 , the yield was 64.5%.
  • the intermediate product a 2 was weighed into a 1000 ml two-neck reaction flask, and 400 ml of THF was added thereto, and the mixture was cooled in an ice water bath, and red-Al was added dropwise thereto, and the whole was added dropwise over 15 minutes.
  • the intermediate product b 2 was dissolved in toluene, then oxalic acid and 4A molecular sieve were added; the mixture was refluxed at 120 ° C for 2 h; the reaction layer was used to verify whether the reaction was complete; the reaction was completed with excess carbonic acid The sodium hydride solution was washed, and then the organic phase was separated; the aqueous layer was extracted three times with ethyl acetate, and the organic phase was combined and dried, and the solvent was evaporated to give the ligand Z 2 , yield 84%. The final yield was 37.1%.
  • the zirconium dichloride complex was prepared by reacting the ligand Z 2 with the ligand A 1 , and polymerization was carried out according to the conditions in Example 1 to obtain a polymerized product of 460 g, a catalyst activity of 5.75 ⁇ 10 7 gPP/mol cat.h, and a molecular weight M W . 25.4, distribution 2.0, isotacticity 66%.
  • Example 31 According to the procedure of Example 31, the compound of A 1 was replaced with a compound of the following structure, and the other conditions were unchanged.
  • Post-treatment 50mL saturated sodium bicarbonate solution was placed, slowly added to the above solution, and a large amount of solids were precipitated after stirring. The filter cake was washed with sodium bicarbonate solution and water to obtain 4.1 g of brown solid. The yield was 93%. .
  • Example 1 8 ⁇ mol of the zirconium dichloride complex obtained from the A 2 structural compound and the Z 1 structural compound was polymerized to obtain a polymerization product of 134 g, and the catalyst activity was 1.68 ⁇ 10 7 g PP / mol cat.h, molecular weight M. W 22, distribution 2.0, isotacticity 88%.
  • Example 311 According to the procedure of Example 311, 30 g of hexene-1 was added during the polymerization to obtain a polymer product of 234 g, a catalyst activity of 2.93 ⁇ 10 7 gPP/mol cat.h, a molecular weight M W of 19.5, a distribution of 2.4, and an isotacticity of 63%.
  • Example 31 According to the operation of Example 31, 2.4 mmol of triisobutylaluminum was added during the polymerization, and the other conditions were unchanged, and 145 g of a polymerization product was obtained.
  • the catalyst activity was 1.81 ⁇ 10 7 gPP/mol cat.h, and the molecular weight M W 26.5 was distributed. 2.1, the equal degree is 85%.
  • Example 31 According to the operation of Example 31, the synthesis reaction temperature of the metallocene complex of ⁇ -ligand was -75 ° C, and other conditions were unchanged, and 145 g of a polymerization product was obtained, and the catalyst activity was 0.61 ⁇ 10 7 g PP / mol cat.h. M W 22.5, distribution 2.0, isocratic 86%.
  • Example 31 According to the operation of Example 31, 2 L of dehydrated hexane was added during the polymerization, and then polymerization grade propylene was introduced to obtain a polymerization product of 65 g, a catalyst activity of 0.81 ⁇ 10 7 g PP / mol cat.h, a molecular weight M W 25.5, a distribution of 2.2, The isotacticity is 86%.
  • the synthesis reaction temperature of the metallocene complex of ⁇ -ligand was 150 ° C, and other conditions were unchanged, and 220 g of a polymerization product was obtained, and the catalyst activity was 2.75 ⁇ 10 7 gPP/mol cat.h, and the molecular weight was M. W 24, distribution 2.1, isocratic 85%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

本发明涉及一种含杂原子的π-配体的茂金属络合物及其制备方法、其催化剂体系和催化剂体系的应用,所述茂金属络合物具有如下化学式(I)所示的化学结构: M是元素周期表中第三、第四、第五或第六族过渡金属元素,包括镧系和錒系元素;X相互之间相同或不同,选自氢元素、卤素、烷基R、烷氧基OR、巯基SR、羧基OCOR、胺基NR2、膦基PR2、-OR°O-和OSO2CF3;n是从1到4的整数,n不等于零;n与X的电荷数的乘积所得电荷数等于中心金属原子M的电荷数减二;Q是二价自由基;A是π-配位体;Z是一种π-配位体。

Description

含杂原子的π-配体的茂金属络合物及其制备方法、其催化剂体系和催化剂体系的应用 技术领域
本发明属于催化剂领域,尤其涉及一种含杂原子的π-配体的茂金属络合物、以茂金属络合物为核心组分的催化剂体系、茂金属络合物及催化剂体系的制备工艺,以及该催化剂体系在α-烯烃的聚合中的应用。
背景技术
环戊二烯及其衍生物以π-配位形式形成的金属有机络合物(俗称茂金属络合物),特别是第三族和第四族过渡金属的茂金属络合物,当与适当的活化剂组合时,具有极高的对烯烃催化聚合活性。已发现广泛的乙烯催化聚合应用(H.G.Alte et al.Chemcal Reviews 2000,100,1205.Metallocene-Based Polyolefins.Preparation,Properties and Technology;Scheirs,J.;Kaminsky,W.,Eds.;Wiley:New York,1999.)。具有特殊对称结构的第四族过渡茂金属络合物不但具有高活性,而且更具有极其高的区域和立体选择性,已被成功地用于丙烯的立体定向聚合以生产等规立构(iPP)和间规立构聚丙烯(sPP)(Luigi Resconi,Luigi Cavallo,Anna Fait,and Fabrizio Piemontesi,Chemical Reviews 2000,100,1253)。
基于茚环上丰富的取代化学(Halterman,R.L.Chem.Rev.1992,92,965),茚环上1位到7位取代基的无限组合,以及其潜在的科学、技术和商业价值,以取代茚为主的第三族和第四族茂金属络合物烯烃聚合催化剂,特别是桥联的第四族过渡茂金属络合物烯烃聚合催化剂在过去三十余年里受到极大的关注(H.H.Brintzinger,D.Fischer,R.Muelhaupt,B.Rieger,R.M.Waymouth,Angew.Chem.,Int.Ed.Engl.1995,34,1143.Luigi Resconi,Luigi Cavallo,Anna Fait,and Fabrizio Piemontesi,Chemical Reviews 2000,100,1253)。以桥联取代茚为配体的第四族过渡茂金属络合物实际上构成了茂金属化学的主流,不但为发展金属有机化学理论提供了大量有力的实验依据,同时为聚烯烃工业和高选择性有机合成化学提供了许多具有特殊性质的催化剂(Metallocenes:Synthesis,Reactivity,Applications,A.Togni and R.L.Halterman Eds,Wiley,1998.Metallocenes in Regio-and Stereoselective Synthesis,T.Takahashi Ed,Springer,2005)。简而言之,茂金属络合物催化剂的发展,为阐明α-烯烃立体定向聚合的机理、为丰富聚烯烃材料的品种和 规格、为提供新型具有特殊性能的聚烯烃材料贡献颇丰(Advances in Organometallic Chemistry;F.G.A.Stone;R.West;Eds.;Academic Press:New York,1980.Transition Metals and Organometallics as Catalysts for Olefin Polymerization;W.Kaminsky;H.Sinn,Eds.;Springer-Verlag:Berlin,1988.Metallocene-Based Polyolefin;J.Scheirs and W.Kaminsky Eds.Wiley,2000.Metallocene Catalyzed Polymers:Materials,Properties,Processing & Markets,C.M.Benedikt Ed,William Andrew Publishing,1999)。目前的研究在于开发新结构催化剂,得到新结构高性能的聚烯烃产品。
具有特殊结构的第四族过渡茂金属络合物还是有效的聚丙烯类弹性体聚合物催化剂,例如:2位芳香基取代的茚与锆的茂化合物(Science 1995,267,217)、非对称碳桥联的取代环戊二烯-茚与钛的夹心化合物(J.Am.Chem.Soc.1990,112,2030)、硅桥联的环戊二烯-茚与铪的夹心化合物(Macromolecules,1995,28,3771,ibid,3779)、硅桥联的3-取代茚-茚与铪的夹心化合物(Macromolecules,1998,31,1000)、1,2-已烯基桥联的取代茚-取代富烯与铪的夹心化合物(Cecilia Cobzaru,Sabine Hild,Andreas Boger,Carsten Troll,Bernhard Rieger Coordination Chemistry Review 2006,250,189)等。以这类特殊对称结构为核心的第四族过渡茂金属络合物作为催化剂生产的热塑性弹性体(TPE),已发现广泛的用途和较大规模的工业生产。
在茂金属络合物催化剂发展的过程中,除了经典的桥联取代环戊二烯(substituted-Cyclopentadienyl,Cp′)、桥联取代茚(substituted-Indenyl,Ind′)、桥联取代富烯(substituted fluorenyl,Flu′),及其Cp′/Ind′/Flu′之间互相组合,形成的数量庞大的茂金属络合物群之外(Metallocenes:Synthesis,Reactivity,Applications,A。Togni and R。L。Halterman Eds,Wiley,1998),近年来,尚有一定数量的茂金属络合物在环戊二烯基环(Cp)中,或与Cp环邻接的饱和或不饱和环中引入例如氮,磷,氧,硫,等杂原子。含杂原子环的茂金属络合物或具有特殊的对烯烃的聚合活性,或具有特殊的区域或立体选择性(Cecilia Cobzaru,Sabine Hild,Andreas Boger,Carsten Troll,Bernhard Rieger,Coordination Chemistry Reviews 2006,250,189;I.E.Nifant’ev,I.Laishevtsev,P.V.Ivchenko,I.A.Kashulin,S.Guidotti,F.Piemontesi,I.Camurati,L.Resconi,P.A.A.Klusener,J.J.H.Rijsemus,K.P.de Kloe,F.M.Korndorffer,Macromol.Chem.Phys.2004,205,2275;C.De Rosa,F.Auriema,A.Di Capua,L.Resconi,S.Guidotti,I.Camurati,I.E.Nifant’ev,I.P.Laishevtsev,J.Am.Chem.Soc.2004,126,17040)。
例如CA2204803(DE69811211、EP983280、US6051667、WO1998050392)描述了含磷杂原子的茂金属络合物及其催化乙烯聚合的优良活性和分子量分布,以及超群的高温 催化活性。与之有关的第四族元素茂金属络合物催化体系可在高温下催化聚合乙烯生产高分子量的聚乙烯。
WO9822486和EP9706297,描述了一类与Cp相邻的五元侧环中含氧或/和硫或/和氮的茂金属络合物。此类络合物与甲基铝氧烷(MAO)结合时具有极高的对丙烯的聚合活性。WO0144318描述了含硫π-配体的茂金属络合物及其乙烯/丙烯催化共聚的工艺,但因所得乙丙共聚物的分子量低而无实际应用价值。WO03045964描述了一类二甲基硅桥联的取代硫代pentalene和取代茚的锆茂络合物的制备工艺及其催化乙烯与丙烯的共聚工艺。以WO03045964所述工艺,此类锆茂络合物具有非常高的聚合活性,得到的乙丙共聚物具有较高的分子量,且共聚物中乙烯的含量在百分重量4%到13%之间,其材料特性介于RCP和TPE之间。
US6756455描述了一类含氮π-配体锆茂络合物,特别是桥联的茚并砒硌衍生物和桥联的茚并吲哚衍生物配位的锆茂络合物催化剂。这类锆茂络合物催化剂用于乙烯均聚时具有高活性,高分子量,以及在适当条件下双峰分子量分布。US6683150揭示了桥联的茚并吲哚衍生物作为配位体的第四族过渡茂金属络合物催化剂,在较宽的温度范围内催化丙烯聚合,以生产高分子量聚丙烯的众多实例。WO03089485提供了一类含氮π-配位体第四族过渡茂金属络合物与甲基铝氧烷(MAO)组合形成的催化体系,其特征在于使用非常低的铝/金属比,并具有高活性,与适当的载体配合时可生产高分子量线形低密度聚乙烯(mLLDPE)。
WO9924446描述了一类含氮杂原子π-配位体与第四族过渡金属形成的茂络合物。这类茂金属络合物不但合成简单、产率高,而且经与甲基铝氧烷(MAO)或改性甲基铝氧烷(MMAO)活化后是优良的烯烃聚合催化剂,可分别聚合生产高分子量的聚乙烯和聚丙烯。而利用同一催化体系对乙烯和丙烯进行共聚合时,得到的共聚物不但分子量较低,而且共聚物中两种单体的分布不是随机的,更趋向于崁段。同时与经典的C2-对称性锆茂络合物相比,这类锆茂络合物催化剂在催化丙烯聚合时可大大降低2,1-和1,3-误插入的几率。虽然含杂原子的π-配位茂金属络合物在乙烯以及α-烯烃均聚催化中表现非凡,但只有非常有限的关于乙烯与α-烯烃共聚催化的例子,且所得材料仍属塑料的一种(WO03-045964,WO03-0489485)。
发明内容
本发明的目的之一在于提供一种含杂原子的π-配体的茂金属络合物。
本发明的目的之二在于提供一种以含杂原子的π-配体的茂金属络合物为核心成分的催化剂体系,以克服现有技术中无法实现聚烯烃材料等规度在50-90%区间可调控的缺陷。
本发明的目的之三在于提供一种以含杂原子的π-配体的茂金属络合物的合成方法。
本发明的目的之四在于提供以含杂原子的π-配体的茂金属络合物为核心成分的催化剂体系在催化α-烯烃均聚合或共聚合中的应用。
本发明的目的是通过以下技术方案实现的:一种含杂原子的π-配体的茂金属络合物,所述茂金属络合物具有如下化学式(I)所示的化学结构:
Figure PCTCN2016073644-appb-000001
其中,M是元素周期表中第三、第四、第五或第六族过渡金属元素,包括镧系和錒系元素;
X相互之间相同或不同,选自氢元素、卤素、烷基R、烷氧基OR、巯基SR、羧基OCOR、胺基NR2、膦基PR2、-OR°O-和OSO2CF3
n是从1到4的整数,n不等于零;n与X的电荷数的乘积所得电荷数等于中心金属原子M的电荷数减二;
Q是二价自由基,包括=CR′2、=SiR′2、=GeR′2、=NR′、=PR′、=BR′;
A是π-配位体,具有如化学式(II)所示的结构:
Figure PCTCN2016073644-appb-000002
Z是一种π-配位体,Z=A,或Z具有下述化学式(IX)、(X)、(XI)、(XII)、(XIII)、(XIV)或(XV)所示的化学结构:
Figure PCTCN2016073644-appb-000004
其中,化学结构式(I)中,A的一价阴离子π-配位体,具有化学式(II)-Li+所示的化学结构;化学式(II)中包含有环戊二烯环的基本结构,环戊二烯结构中的活泼氢具有亲电反应性,可与亲核试剂进行交换反应生成化学式(II)-Li+所示的化合物,其基本反应如反应式(2)所示:
Figure PCTCN2016073644-appb-000005
其中,反应式(2)中亲核试剂为有机锂试剂RnLi,其中,Rn是C1-C6的烷基或C6-C12的芳基。
其中,M为第四族的锆、铪或钛。
其中,R是C1-C20的直链或支化烷基、饱和或不饱和烷基、卤代或非卤代烷基或含有元素周期表中第十三到第十七族元素杂原子的烷基,或C3-C20的环烷基、C6-C30的芳基、C7-C30的烷取代芳基或C7-C30的芳取代烷基。
其中,本发明所述的元素周期表中第十三到第十七族元素杂原子优选为硼、铝、硅、锗、硫、氧、氟或氯。
其中,R°是二价自由基,包括C2-C40的亚烷基、C6-C30的亚芳基、C7-C40的烷代亚芳基、C7-C40的芳代亚烷基;在-OR°O-结构中,两个氧原子分别在自由基的任何位置。
其中,在-OR°O-结构中,两个氧原子的位置为在自由基的相邻α,β-位和相间α,γ-位的组合。
其中,X为氯、溴、C1-C20低碳烷基或芳基。
其中,R′相同或不同,是C1-C20的直链或支化烷基、饱和或不饱和烷基、卤代或非卤代烷基或含有元素周期表中第十三到第十七族元素杂原子的烷基,或C3-C20的环烷基、C6-C30的芳基、C7-C30的烷取代芳基或C7-C30的芳取代烷基。
其中,R′为甲基、乙基、异丙基、三甲基硅基、苯基或苄基。
其中,化学式(II)中符号﹡连接在化学键、原子或自由基上,表示﹡连接的此点与同类化学键、原子或自由基形成一个化学单键。
其中,化学式(II)中E是元素周期表中第十六族或第十五族元素的二价自由基,包括氧自由基、硫自由基、硒自由基、NR″和PR″。
其中,R″是C1-C20的直链或支化烷基、饱和或不饱和烷基、卤代或非卤代烷基或含有元素周期表中第十三到第十七族元素杂原子的烷基,或C3-C20的环烷基、C6-C30的芳基、C7-C30的烷取代芳基或C7-C30的芳取代烷基。
其中,R″为C4-C10的直链烷基、苯基、单取代或多取代苯基、苄基、单取代或多取代苄基、1-萘基、2-萘基、2-蒽基、1-菲基、2-菲基或5-菲基。
其中,R1为氢、C1-C40饱和或不饱和烷基、卤代或非卤代烷基或含有元素周期表中第十三到第十七族元素杂原子的烷基,或C3-C40的环烷基、C6-C40的芳基、C7-C40的烷取代芳基或C7-C40的芳取代烷基。
其中,R1为氢、甲基、乙基、异丙基、叔丁基、苯基、苄基、2-呋喃基或2-噻吩基。
其中,R2和R3分别为氢、氟或R,其中,R是C1-C20的直链或支化烷基、饱和或不饱和烷基、卤代或非卤代烷基或含有元素周期表中第十三到第十七族元素杂原子的烷基,或C3-C20的环烷基、C6-C30的芳基、C7-C30的烷取代芳基或C7-C30的芳取代烷基。
其中,R4为氢、C1-C40饱和或不饱和烷基、卤代或非卤代烷基或含有元素周期表中第十三到第十七族元素杂原子的烷基,或C3-C40的环烷基、C6-C40的芳基、C7-C40的烷取代芳基或C7-C40的芳取代烷基。
其中,R4为H、甲基、三氟甲基、异丙基、叔丁基、苯基、对叔丁基苯基、对三甲基硅基苯基、对三氟甲基苯基、3,5-二氯-4-三甲基硅基苯基或2-萘基。
其中,L是二价自由基并具有下述化学式(III)、(IV)、(V)、(VI)、(VII)或(VIII)所示的结构:
Figure PCTCN2016073644-appb-000006
其中,符号﹡连接在化学键、原子或自由基上,表示﹡连接的此点与同类化学键、原子或自由基形成一个化学单键。
其中,化学式(III)和(IV)中,i是整数且i不等于零。
其中,化学式(III)和(IV)中,i为2。
其中,R5相同或不同,R5为C1-C40饱和或不饱和烷基、卤代或非卤代烷基或含有元素周期表中第十三到第十七族元素杂原子的烷基,或C3-C40的环烷基、C6-C40的芳基、C7-C40的烷取代芳基或C7-C40的芳取代烷基。
其中,R5为氢、氟或甲基。
其中,化学式(V)、(VI)、(VII)和(VIII)中R6和R7分别为氢、氟或R,其中,R是C1-C20的直链或支化烷基、饱和或不饱和烷基、卤代或非卤代烷基或含有元素周期表中第十三到第十七族元素杂原子的烷基,或C3-C20的环烷基、C6-C30的芳基、C7-C30的烷取代芳基或C7-C30的芳取代烷基。
其中,化学式(IX)、(X)、(XI)、(XII)、(XIII)、(XIV)和(XV)中符号﹡连接在化学键、原子或自由基上,表示﹡连接的此点与同类化学键、原子或自由基形成一个化学单键。
其中,化学式(IX)、(X)、(XI)、(XII)、(XIII)和(XIV)中R1为氢、C1-C40饱和或不饱和烷基、卤代或非卤代烷基或含有元素周期表中第十三到第十七族元素杂原子的烷基,或C3-C40的环烷基、C6-C40的芳基、C7-C40的烷取代芳基或C7-C40的芳取代烷基;化学式(X)、(XI)、(XIII)和(XV)中R2是氢、氟或R,其中,R是C1-C20的直链或支化烷基、饱和或不饱和烷基、卤代或非卤代烷基或含有元素周期表中第十三到第 十七族元素杂原子的烷基,或C3-C20的环烷基、C6-C30的芳基、C7-C30的烷取代芳基或C7-C30的芳取代烷基。
其中,化学式(IX)、(X)、(XI)、(XII)、(XIII)、和(XIV)中R1为氢、甲基、乙基、异丙基、叔丁基、苯基、苄基、2-呋喃基或2-噻吩基。
其中,R8相同或不同,R8为C1-C40饱和或不饱和烷基、卤代或非卤代烷基或含有元素周期表中第十三到第十七族元素杂原子的烷基,或C3-C40的环烷基、C6-C40的芳基、C7-C40的烷取代芳基或C7-C40的芳取代烷基。
其中,R8为甲基、乙基、异丙基、叔丁基或苯基。
其中,R9相同或不同,R9为C1-C40饱和或不饱和烷基、卤代或非卤代烷基或含有元素周期表中第十三到第十七族元素杂原子的烷基,或C3-C40的环烷基、C6-C40的芳基、C7-C40的烷取代芳基或C7-C40的芳取代烷基。
其中,R9为C1-C20的直链或支化的、饱和或不饱和的、部分或全部卤化的、线性的或环状的碳自由基。
其中,R10相同或不同,R10为氢、C1-C40饱和或不饱和烷基、卤代或非卤代烷基或含有元素周期表中第十三到第十七族元素杂原子的烷基,或C3-C40的环烷基、C6-C40的芳基、C7-C40的烷取代芳基或C7-C40的芳取代烷基。
其中,R10为氢、氟、氯、甲基、乙基或苯基。
其中,R11相同或不同,R11为氢、氟、氯、溴、OR、SR、OCOR、NR2、PR2,其中,R是C1-C20的直链或支化烷基、饱和或不饱和烷基、卤代或非卤代烷基或含有元素周期表中第十三到第十七族元素杂原子的烷基,或C3-C20的环烷基、C6-C30的芳基、C7-C30的烷取代芳基或C7-C30的芳取代烷基;或R11为C1-C40饱和或不饱和烷基、卤代或非卤代烷基或含有元素周期表中第十三到第十七族元素杂原子的烷基,或C3-C40的环烷基、C6-C40的芳基、C7-C40的烷取代芳基或C7-C40的芳取代烷基。
其中,J是元素周期表中第十三族或第十五族元素,包括硼、铝、镓、氮、磷和砷。
其中,J为氮或磷。
一种含杂原子的π-配体的茂金属络合物催化剂体系,包含化学式(Ia)所示的化合物,所述(Ia)所示的化合物由权利要求1中所述茂金属络合物(I)通过反应式(1)所示的活化反应制备:
Figure PCTCN2016073644-appb-000007
其中,LA是路易斯酸性物质。
其中,LA为在溶液中同时具有链状、环状和笼状结构平衡态的聚甲基铝氧烷或改性的聚甲基铝氧烷。
其中,活化反应在均相液体介质中完成,所述均相液体介质包括饱和烷烃液体介质和芳香类液体介质,所述饱和烷烃包括戊烷及其异构体、己烷及其异构体、庚烷及其异构体和辛烷及其异构体,所述芳香类液体介质包括苯、甲苯、二甲苯及异构体、三甲苯及异构体、氯苯、二氯苯及异构体、氟苯、二氟苯及异构体以及多氟苯及异构体。
其中,活化反应所使用的均相液体介质是二种或二种以上的混合液体介质,所述混合液体介质是指饱和烷烃与芳烃按体积百分比进行混合,其中一种液体介质的体积百分数不低于5%。
其中,活化反应在-100℃~+250℃的温度范围内完成,反应产物(Ia)的收率在95%以上。
其中,活化反应的反应温度在-75℃~150℃之间。
根据本发明所述的含杂原子的π-配体的茂金属络合物的合成方法,合成方法用下述含杂原子的π-配体的反应式(3)来表示:
Figure PCTCN2016073644-appb-000008
其中,T互相间相同或不同,所述T是单齿或双齿的中性配位体;
LG是脱离基团,其互相之间相同或不同,所述LG为氢、碱金属元素或第十四族重元素的有机自由基。
其中,所述单齿配位体包括醚类ROR、硫醚类RSR、三级胺类NR3、三级膦类PR3、环醚、环硫醚类、酮类、取代环酮类、取代吡啶类、取代吡咯类、取代哌啶类、酯类、内酯类、酰胺类和内酰胺类,其中R是C1-C20的直链或支化烷基、饱和或不饱和烷基、卤代或非卤代烷基或含有元素周期表中第十三到第十七族元素杂原子的烷基,或C3-C20的环烷基、C6-C30的芳基、C7-C30的烷取代芳基或C7-C30的芳取代烷基。
其中,所述双齿配位体包括邻位双醚类、α,
Figure PCTCN2016073644-appb-000009
-双醚类、邻位双胺类、α,
Figure PCTCN2016073644-appb-000010
-双胺类、邻位双硫醚类、α,
Figure PCTCN2016073644-appb-000011
-双硫醚类、邻位双膦类和α,
Figure PCTCN2016073644-appb-000012
-双膦类。
其中,x是0或整数1、2或3。
其中,所述碱金属元素包括锂、钠和钾;所述第十四族重元素的有机自由基包括SiR3、GeR3、SnR3、PdR3、ZnR、BaR、MgR和CaR,其中,R是C1-C20的直链或支化烷基、饱和或不饱和烷基、卤代或非卤代烷基或含有元素周期表中第十三到第十七族元素杂原子的烷基,或C3-C20的环烷基、C6-C30的芳基、C7-C30的烷取代芳基或C7-C30的芳取代烷基。
其中,合成过程中反应介质为饱和C5-C15烷烃、环烷烃或其中两种或两种以上的混合物。
其中,合成过程中反应介质为己烷、庚烷、辛烷、甲苯或二甲苯。
其中,反应温度范围为-100℃~+300℃。
其中,反应温度范围为-75℃~+250℃。
其中,反应温度范围为-50℃~+150℃。
所述的含杂原子的π-配体的茂金属络合物催化剂体系在本体淤浆或溶剂淤浆聚合工艺条件下在催化α-烯烃均聚合或共聚合中的应用。
本发明的有益效果:合成出准C2结构催化剂,制备等规度在50-90%区间可调控的聚烯烃材料。
具体实施方式
以下结合实施例详细说明本发明的技术方案,但本发明的保护范围包括但是不限于此。
1.一类含杂原子的π-配体的茂金属络合物
本发明涉及的新型茂金属络合物是一类桥连的双环戊二烯衍生物与第三族、第四族、第五族过渡金属以及镧系和錒系元素形成的、具有准C2对称结构(桥连的双环戊二烯衍生物结构具有C1对称性,但空间及区域选择性又具有C2对称结构的特性,故定义为准C2对称结构)的夹心络合物。其中至少一个环戊二烯衍生物含有杂原子如O、S、Se、N、P、As、Si、B等非金属元素。
本发明所述的新型的含杂原子的π-配体的茂金属络合物具有如下一般化学式(I)所示的通俗化学结构:
Figure PCTCN2016073644-appb-000013
化学式(I)中:
M:是元素周期表中第三、第四、第五或第六族过渡金属元素,包括镧系和錒系元素。其中优选第三、第四族或镧系金属元素,最优选第四族的锆、铪、钛。
X:相互之间相同或不同,是氢元素、卤素、烷基R、烷氧基OR、巯基SR、羧基OCOR、胺基(NR2),膦基(PR2)、-OR°O-或OSO2CF3。其中:
R:是C1-C20的直链或支化烷基、饱和或不饱和烷基、卤代或非卤代烷基、选择性地含有元素周期表中第十三到第十七族元素杂原子的烷基,或C3-C20的环烷基、C6-C30的芳基、C7-C30的烷取代芳基、C7-C30的芳取代烷基。C1-C20饱和烷基及卤代烷基的例子如:甲基、三氟甲基、乙基、1,1,1-三氟乙基、全氟代乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、正己基、正庚基、正辛基、正十二烷基、正十八烷基、三甲基硅基、三乙基硅基、三苯基硅基等,但不局限于此。C1-C20不饱和烷基的例子如:乙烯基、丙烯基、烯丙基等、但不局限于此。C3-C20环烷基的例子如:环丙基、环丁基、环戊基、环己基、环辛基、1-金刚烷等,但不局限于此。C6-C30的芳基的例子如:苯基、1-萘基、2-萘基、1-蒽基、2-蒽基、9-蒽基、1-菲基、2-菲基、3-菲基、4-菲基、9-菲基等,但不局限于此。C7-C30烷取代芳基的例子如:2-甲基苯基、2,6-二甲基苯基、2-氟-3-甲基苯基、2-氟-4-甲基苯基、2,6-二氟-3-甲基苯基、2,6-二氟-4-甲基苯基、2-氯-3-甲基苯基、2-氯-4-甲基苯基、2,6-二氯-3-甲基苯基、2,6-二氯-4-甲基苯基、2-乙基苯基、2,6-二乙基苯基、2-异丙基苯基、2,6-二异丙基苯基、3-甲基苯基、3,5-二甲基苯基、3-氟-4-甲基苯基、3,5-二氟-4-甲基苯基、3,5-二氟-4-乙基苯基、3,5-二氟-4-异丙基苯基、3,5-二氟-4-叔丁基苯基、3,5-二氟-4-三甲基硅基苯基、3-三氟甲基苯基、3,5-双三氟甲基苯基、4-甲基苯基、4-三氟甲基苯基、4-乙基苯基、4-异丙基苯基、4-叔丁基苯基、4-三甲基硅基苯基等,但不局限于此。C7-C30的芳取代烷基的例子如:苄基、对甲基苄基、对氟苄基、对氯苄基、对乙基苄基、对异丙基苄基、对叔丁基苄基等、对三氟甲基苄基、对三甲基硅基苄基、3,5-二氟苄基、3,4,5-三氟苄基、3,5-双三甲基苄基、3,5-双三氟甲基苄基、苯乙基、对甲基苯乙基、对氟苯乙基、对氯苯乙基、对异丙基苯乙基、对叔丁基苯乙基、对三甲基硅基苯乙基、2,6-二氟苯乙基、3,5—二氟苯乙基、3,4,5-三氟苯乙基、全氟代苯乙基、一位萘甲基、二位萘甲基等,但不局限于此。
R°:是二价自由基,如C2-C40的亚烷基、C6-C30的亚芳基、C7-C40的烷代亚芳基、C7-C40的芳代亚烷基。在-OR°O-结构中,两个氧原子可分别在自由基的任何位置,但优选两个氧原子的位置为在自由基的相邻(α、β-位)和相间(α、γ-位)位置的组合。
X在上述无限组合中优选为卤素的氯、溴,以及低碳烷基和芳基(如甲基、苯基、苄基等,但不局限于此)。
n:是从1到4的整数,n不等于零。n与X的电荷数的乘积所得电荷数等于中心金属原子M的电荷数减二。
Q:是二价自由基,如,=CR′2、=SiR′2、=GeR′2、=NR′、=PR′、=BR′。其中:
R′:相同或不同,是C1-C20的直链或支化烷基、饱和或不饱和烷基、卤代或非卤代烷基、选择性地含有元素周期表中第十三到第十七族元素杂原子如硼、铝、硅、锗、硫、氧、氟、氯等的烷基,或C3-C20的环烷基、C6-C30的芳基、C7-C30的烷取代芳基、C7-C30的芳取代烷基。C1-C20饱和及卤代烷基的例子如:甲基、三氟甲基、乙基、1,1,1-三氟乙基、全氟乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、正己基、正庚基、正辛基、正十二烷基、正十八烷基、三甲基硅基、三乙基硅基、三苯基硅基等,但不局限于此。C1-C20不饱和烷基的例子如:乙烯基、丙烯基、烯丙基等,但不局限于此。C3-C20环烷基的例子如:环丙基、环丁基、环戊基、环己基、环辛基、1-金刚烷基等,但不局限于此。C6-C30的芳基的例子如:苯基、1-萘基、2-萘基、1-蒽基、2-蒽基、9-蒽基、1-菲基、2-菲基、3-菲基、4-菲基、9-菲基等,但不局限于此。C7-C30烷取代芳基的例子如:2-甲基苯基、2,6-二甲基苯基、2-氟-3-甲基苯基、2-氟-4-甲基苯基、2,6-二氟-3-甲基苯基、2,6-二氟-4-甲基苯基、2-氯-3-甲基苯基、2-氯-4-甲基苯基、2,6-二氯-3-甲基苯基、2,6-二氯-4-甲基苯基、2-乙基苯基、2,6-二乙基苯基、2-异丙基苯基、2,6-二异丙基苯基、3-甲基苯基、3,5-二甲基苯基、3-氟-4-甲基苯基、3,5-二氟-4-甲基苯基、3,5-二氟-4-乙基苯基、3,5-二氟-4-异丙基苯基、3,5-二氟-4-叔丁基苯基、3,5-二氟-4-三甲基硅基苯基、3-三氟甲基苯基、3,5-双三氟甲基苯基、4-甲基苯基、4-三氟甲基苯基、4-乙基苯基、4-异丙基苯基、4-叔丁基苯基、4-三甲基硅基苯基等,但不局限于此。C7-C30的芳取代烷基的例子如:苄基、对甲基苄基、对氟苄基、对氯苄基、对乙基苄基、对异丙基苄基、对叔丁基苄基、对三氟甲基苄基、对三甲基硅基苄基、3,5-二氟苄基、3,4,5-三氟苄基、3,5-双三甲基苄基、3,5-双三氟甲基苄基、苯乙基、对甲基苯乙基、对氟苯乙基、对氯苯乙基、对异丙基苯乙基、对叔丁基苯乙基、对 三甲基硅基苯乙基、2,6-二氟苯乙基、3,5-二氟苯乙基、3,4,5-三氟苯乙基、全氟代苯乙基、一位萘甲基、二位萘甲基等,但不局限于此。
在上述的无限组合中,R′优选为甲基、乙基、异丙基、三甲基硅基、苯基或苄基。
A:是π-配位体,具有如化学式(II)所示的一般结构;
Figure PCTCN2016073644-appb-000014
一般化学式(II)中:符号﹡无论连接在化学键、原子或自由基上,表示此点可与同类化学键、原子或自由基形成一个化学单键。且下文中所有符号﹡具有相同意义。
E:是元素周期表中第十六族或第十五族元素的二价自由基,如氧自由基、硫自由基、砷自由基、NR″、PR″。其中:
R″:是C1-C20的直链或支化烷基、饱和或不饱和烷基、卤代或非卤代烷基、选择性地含有元素周期表中第十三到第十七族元素杂原子如硼、铝、硅、锗、硫、氧、氟、氯等的烷基或C3-C20的环烷基、C6-C30的芳基、C7-C30的烷取代芳基、C7-C30的芳取代烷基。C1-C20饱和及卤代烷基的例子如:甲基、三氟甲基、乙基、1,1,1-三氟乙基、全氟代乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、正己基、正庚基、正辛基、正十二烷基、正十八烷基、三甲基硅甲基、三乙基硅甲基、三苯基硅甲基等,但不局限于此。C1-C20不饱和烷基的例子如,乙烯基、丙烯基、烯丙基等,但不局限于此。C3-C20环烷基的例子如,环丙基、环丁基、环戊基、环己基、环辛基、1-金刚烷等,但不局限于此。C6-C30的芳基的例子如,苯基、1-萘基、2-萘基、1-蒽基、2-蒽基、9-蒽基、1-菲基、2-菲基、3-菲基、4-菲基、9-菲基等,但不局限于此。C7-C30烷取代芳基的例子如,2-甲基苯基、2,6-二甲基苯基、2-氟-3-甲基苯基、2-氟-4-甲基苯基、2,6-二氟-3-甲基苯基、2,6-二氟-4-甲基苯基、2-氯-3-甲基苯基、2-氯-4-甲基苯基、2,6-二氯-3-甲基苯基、2,6-二氯-4-甲基苯基、2-乙基苯基、2,6-二乙基苯基、2-异丙基苯基、2,6-二异丙基苯基、3-甲基苯基、3,5-二甲基苯基、3-氟-4-甲基苯基、3,5-二氟-4-甲基苯基、3,5-二氟-4-乙基苯基、3,5-二氟-4-异丙基苯基、3,5-二氟-4-叔丁基苯基、3,5-二氟-4-三甲基硅基苯基、3-三氟甲基苯基、3,5-双三氟甲基苯基、4-甲基苯基、4-三氟甲基苯基、4-乙基苯基、4-异丙基苯基、4-叔丁基苯基、4-三甲基硅基苯基等,但不局限于此。C7-C30的芳取代烷基的例子如,苄基、对甲基苄基、对氟苄基、对氯苄基、对乙基苄基、对异丙基苄基、对叔丁基苄基、对三氟甲基苄基、对三甲基硅基苄基、3,5- 二氟苄基、3,4,5-三氟苄基、3,5-双三甲基苄基、3,5-双三氟甲基苄基、苯乙基、对甲基苯乙基、对氟苯乙基、对氯苯乙基、对异丙基苯乙基、对叔丁基苯乙基、对三甲基硅基苯乙基、2,6-二氟苯乙基、3,5—二氟苯乙基、3,4,5-三氟苯乙基、全氟代苯乙基、一位萘甲基、二位萘甲基等,但不局限于此。
R″在上述无限组合中优选为C4-C10的直链烷基、苯基、单取代或多取代苯基、苄基、单取代或多取代苄基、1-萘基、2-萘基、2-蒽基、1-菲基、2-菲基、5-菲基。下文中所有R″具有相同意义。
E优选为元素硫、氧、NR″和PR″。其中R″如上述定义。
R1:是下述任意一种,氢、C1-C40饱和或不饱和烷基、卤代或非卤代烷基、选择性地含有元素周期表中第十三到第十七族元素杂原子如硼、铝、硅、锗、硫、氧、氟、氯等的烷基或C3-C40的环烷基、C6-C40的芳基、C7-C40的烷取代芳基、C7-C40的芳取代烷基。C1-C40饱和及卤代烷基的例子如,甲基、三氟甲基、乙基、1,1,1-三氟乙基、全氟代乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、正己基、正庚基、正辛基、正十二烷基、正十八烷基、三甲基硅甲基、三乙基硅甲基、三苯基硅甲基等,但不局限于此。C1-C20不饱和烷基的例子如,乙烯基、丙烯基、烯丙基等,但不局限于此。C3-C40环烷基的例子如,环丙基、环丁基、环戊基、环己基、环辛基、1-金刚烷等,但不局限于此。C6-C40的芳基的例子如,苯基、1-萘基、2-萘基、1-蒽基、2-蒽基、9-蒽基、1-菲基、2-菲基、3-菲基、4-菲基、9-菲基等,但不局限于此。C7-C40烷取代芳基的例子如,2-甲基苯基、2,6-二甲基苯基、2-氟-3-甲基苯基、2-氟-4-甲基苯基、2,6-二氟-3-甲基苯基、2,6-二氟-4-甲基苯基、2-氯-3-甲基苯基、2-氯-4-甲基苯基、2,6-二氯-3-甲基苯基、2,6-二氯-4-甲基苯基、2-乙基苯基、2,6-二乙基苯基、2-异丙基苯基、2,6-二异丙基苯基、3-甲基苯基、3,5-二甲基苯基、3-氟-4-甲基苯基、3,5-二氟-4-甲基苯基、3,5-二氟-4-乙基苯基、3,5-二氟-4-异丙基苯基、3,5-二氟-4-叔丁基苯基、3,5-二氟-4-三甲基硅基苯基、3-三氟甲基苯基、3,5-双三氟甲基苯基、4-甲基苯基、4-三氟甲基苯基、4-乙基苯基、4-异丙基苯基、4-叔丁基苯基、4-三甲基硅基苯基等,但不局限于此。C7-C40的芳取代烷基的例子如,苄基、对甲基苄基、对氟苄基、对氯苄基、对乙基苄基、对异丙基苄基、对叔丁基苄基、对三氟甲基苄基、对三甲基硅基苄基、3,5-二氟苄基、3,4,5-三氟苄基、3,5-双三甲基苄基、3,5-双三氟甲基苄基、苯乙基、对甲基苯乙基、对氟苯乙基、对氯苯乙基、对异丙基苯乙基、对叔丁基苯乙基、对三甲基硅基苯乙基、2,6-二氟苯乙基、3,5—二氟苯乙基、3,4,5-三氟苯乙基、全氟代苯乙 基、一位萘甲基、二位萘甲基等,但不局限于此。
R1优选为氢、甲基、乙基、异丙基、叔丁基、苯基、苄基、2-呋喃基、2-噻吩基。下文中所有R1具有相同意义。
R2和R3:为氢、氟或R。R如上述定义。R2和R3优选为氢。下文中所有R2和R3具有相同意义。
R4:是下述任意一种,氢、C1-C40饱和或不饱和烷基、卤代或非卤代烷基、选择性地含有元素周期表中第十三到第十七族元素杂原子如硼、铝、硅、锗、硫、氧、氟、氯等的烷基或C3-C40的环烷基、C6-C40的芳基、C7-C40的烷取代芳基、C7-C40的芳取代烷基。C1-C40饱和及卤代烷基的例子如,甲基、三氟甲基、乙基、1,1,1-三氟乙基、全氟代乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、正己基、正庚基、正辛基、正十二烷基、正十八烷基、三甲基硅基、三乙基硅基、三苯基硅基等,但不局限于此。C1-C20不饱和烷基的例子如,乙烯基、丙烯基、丙基等,但不局限于此。C3-C40环烷基的例子如,环丙基、环丁基、环戊基、环己基、环辛基、1-金刚烷等,但不局限于此。C6-C40的芳基的例子如,苯基、1-萘基、2-萘基、1-蒽基、2-蒽基、9-蒽基、1-菲基、2-菲基、3-菲基、4-菲基、9-菲基等,但不局限于此。C7-C40烷取代芳基的例子如,2-甲基苯基、2,6-二甲基苯基、2-氟-3-甲基苯基、2-氟-4-甲基苯基、2,6-二氟-3-甲基苯基、2,6-二氟-4-甲基苯基、2-氯-3-甲基苯基、2-氯-4-甲基苯基、2,6-二氯-3-甲基苯基、2,6-二氯-4-甲基苯基、2-乙基苯基、2,6-二乙基苯基、2-异丙基苯基、2,6-二异丙基苯基、3-甲基苯基、3,5-二甲基苯基、3-氟-4-甲基苯基、3,5-二氟-4-甲基苯基、3,5-二氟-4-乙基苯基、3,5-二氟-4-异丙基苯基、3,5-二氟-4-叔丁基苯基、3,5-二氟-4-三甲基硅基苯基、3-三氟甲基苯基、3,5-双三氟甲基苯基、4-甲基苯基、4-三氟甲基苯基、4-乙基苯基、4-异丙基苯基、4-叔丁基苯基、4-三甲基硅基苯基等,但不局限于此。C7-C40的芳取代烷基的例子如,苄基、对甲基苄基、对氟苄基、对氯苄基、对乙基苄基、对异丙基苄基、对叔丁基苄基、对三氟甲基苄基、对三甲基硅基苄基、3,5-二氟苄基、3,4,5-三氟苄基、3,5-双三甲基硅基苄基、3,5-双三氟甲基苄基、苯乙基、对甲基苯乙基、对氟苯乙基、对氯苯乙基、对异丙基苯乙基、对叔丁基苯乙基、对三甲基硅基苯乙基、2,6-二氟苯乙基、3,5—二氟苯乙基、3,4,5-三氟苯乙基、全氟代苯乙基、一位萘甲基、二位萘甲基等,但不局限于此。
R4优选为H、甲基、三氟甲基、异丙基、叔丁基、苯基、对叔丁基苯基、对三甲基硅基苯基、对三氟甲基苯基、3,5-二氯-4-三甲基硅基苯基、2-萘基。且下文中所有R4 具有相同意义。
L:是二价自由基并具有下述一般化学式(III)、(IV)、(V)、(VI)、(VII)、(VIII)的任意一种结构;
Figure PCTCN2016073644-appb-000015
符号﹡无论连接在化学键、原子、自由基上,表示此点可与同类化学键、原子、自由基形成一个化学单键。且下文中所有符号﹡具有相同意义。
一般化学式(III)和(IV)中:
i:是整数,i不等于零,i优选2。
R5:相同或不同,是下述任意一种,C1-C40饱和或不饱和烷基、卤代或非卤代烷基、选择性地含有元素周期表中第十三到第十七族元素杂原子如硼、铝、硅、锗、硫、氧、氟、氯等的烷基和C3-C40的环烷基、C6-C40的芳基、C7-C40的烷取代芳基,C7-C40的芳取代烷基。C1-C40饱和及卤代烷基的例子如,甲基、三氟甲基、乙基、1,1,1-三氟乙基、全氟代乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、正己基、正庚基、正辛基、正十二烷基、正十八烷基、三甲基硅基、三乙基硅基、三苯基硅基等,但不局限于此。C1-C20不饱和烷基的例子如,乙烯基、丙烯基、烯丙基等,但不局限于此。C3-C40环烷基的例子如,环丙基、环丁基、环戊基、环己基、环辛基、1-金刚烷等,但不局限于此。C6-C40的芳基的例子如,苯基、1-萘基、2-萘基、1-蒽基、2-蒽基、9-蒽基、1-菲基、2-菲基、3-菲基、4-菲基、9-菲基等,但不局限于此。C7-C40烷取代芳基的例子如,2-甲基苯基、2,6-二甲基苯基、2-氟-3-甲基苯基、2-氟-4-甲基苯基、2,6-二氟-3-甲基苯基、2,6-二氟-4-甲基苯基、2-氯-3-甲基苯基、2-氯-4-甲基苯基、2,6-二氯-3-甲基苯基、2,6-二氯-4-甲基苯基、2-乙基苯基、2,6-二乙基苯基、2-异丙基苯基、2,6-二异丙基苯基、3-甲基苯基、3,5-二甲基苯基、3-氟-4-甲基苯基、3,5-二氟-4-甲基苯 基、3,5-二氟-4-乙基苯基、3,5-二氟-4-异丙基苯基、3,5-二氟-4-叔丁基苯基、3,5-二氟-4-三甲基硅基苯基、3-三氟甲基苯基、3,5-双三氟甲基苯基、4-甲基苯基、4-三氟甲基苯基、4-乙基苯基、4-异丙基苯基、4-叔丁基苯基、4-三甲基硅基苯基等,但不局限于此。C7-C40的芳取代烷基的例子如,苄基、对甲基苄基、对氟苄基、对氯苄基、对乙基苄基、对异丙基苄基、对叔丁基苄基、对三氟甲基苄基、对三甲基硅基苄基、3,5-二氟苄基、3,4,5-三氟苄基、3,5-双三甲基硅基苄基、3,5-双三氟甲基苄基、苯乙基、对甲基苯乙基、对氟苯乙基、对氯苯乙基、对异丙基苯乙基、对叔丁基苯乙基、对三甲基硅基苯乙基、2,6-二氟苯乙基、3,5—二氟苯乙基、3,4,5-三氟苯乙基、全氟代苯乙基、一位萘甲基、二位萘甲基等,但不局限于此。
R5优选为氢、氟、甲基。且下文中所有R5具有相同意义。
一般化学式(V)、(VI)、(VII)、(VIII)中R6和R7等于R3。R3如上述定义。R6和R7优选为氢和氟元素。且下文中所有R6和R7具有相同意义。
一般化学式(I)中:
Z:是一种π-配位体。Z=A,A如前述定义。或Z具有下述一般化学式(IX)、(X)、(XI)、(XII)、(XIII)、(XIV)、(XV)所示的化学结构;
Figure PCTCN2016073644-appb-000016
符号﹡无论连接在化学键、原子、自由基上,表示此点可与同类化学键、原子、自由基形成一个化学单键。且下文中所有符号﹡具有相同意义。
上述一般化学式(IX)、(X)、(XI)、(XII)、(XIII)、(XIV)、(XV)中:
R1:如前定义。
R1优选为氢、甲基、乙基、异丙基、叔丁基、苯基、苄基、2-呋喃基、2-噻吩基。
R2:是氢、氟、R。R如前定义。R2优选为氢。
R8:相同或不同,是下述任意一种,C1-C40饱和或不饱和烷基、卤代或非卤代烷基、选择性地含有元素周期表中第十三到第十七族元素杂原子的烷基或C3-C40的环烷基、C6-C40的芳基、C7-C40的烷取代芳基、C7-C40的芳取代烷基。C1-C40饱和及卤代烷基的例子如,甲基、三氟甲基、乙基、1,1,1-三氟乙基、全氟代乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、正己基、正庚基、正辛基、正十二烷基、正十八烷基、三甲基硅基、三乙基硅基、三苯基硅基等,但不局限于此。C1-C20不饱和烷基的例子如,乙烯基、丙烯基、烯丙基等,但不局限于此。C3-C40环烷基的例子如,环丙基、环丁基、环戊基、环己基、环辛基、1-金刚烷等,但不局限于此。C6-C40的芳基的例子如,苯基、1-萘基、2-萘基、1-蒽基、2-蒽基、9-蒽基、1-菲基、2-菲基、3-菲基、4-菲基,9-菲基等,但不局限于此。C7-C40烷取代芳基的例子如,2-甲基苯基、2,6-二甲基苯基、2-氟-3-甲基苯基、2-氟-4-甲基苯基、2,6-二氟-3-甲基苯基、2,6-二氟-4-甲基苯基、2-氯-3-甲基苯基、2-氯-4-甲基苯基、2,6-二氯-3-甲基苯基、2,6-二氯-4-甲基苯基、2-乙基苯基、2,6-二乙基苯基、2-异丙基苯基、2,6-二异丙基苯基、3-甲基苯基、3,5-二甲基苯基、3-氟-4-甲基苯基、3,5-二氟-4-甲基苯基、3,5-二氟-4-乙基苯基、3,5-二氟-4-异丙基苯基、3,5-二氟-4-叔丁基苯基、3,5-二氟-4-三甲基硅基苯基、3-三氟甲基苯基、3,5-双三氟甲基苯基、4-甲基苯基、4-三氟甲基苯基、4-乙基苯基、4-异丙基苯基、4-叔丁基苯基、4-三甲基硅基苯基等,但不局限于此。C7-C40的芳取代烷基的例子如,苄基、对甲基苄基、对氟苄基、对氯苄基、对乙基苄基、对异丙基苄基、对叔丁基苄基、对三氟甲基苄基、对三甲基硅基苄基、3,5-二氟苄基、3,4,5-三氟苄基、3,5-双三甲基硅基苄基、3,5-双三氟甲基苄基、苯乙基、对甲基苯乙基、对氟苯乙基、对氯苯乙基、对异丙基苯乙基、对叔丁基苯乙基、对三甲基硅基苯乙基、2,6-二氟苯乙基、3,5—二氟苯乙基、3,4,5-三氟苯乙基、全氟代苯乙基、1-甲基萘、2-甲基萘等,但不局限于此。
R8优选为甲基、乙基、异丙基、叔丁基、苯基。且下文中所有R8具有相同意义。
R9:相同或不同,是下述任意一种,C1-C40饱和或不饱和烷基、卤代或非卤代烷基、选择性地含有元素周期表中第十三到第十七族元素杂原子的烷基和C3-C40的环烷基、C6-C40的芳基、C7-C40的烷取代芳基、C7-C40的芳取代烷基。C1-C40饱和及卤代烷基的例子如,甲基、三氟甲基、乙基、1,1,1-三氟乙基、全氟代乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、正己基、正庚基、正辛基、正十二烷基、正 十八烷基、三甲基硅基、三乙基硅基、三苯基硅基等,但不局限于此。C1-C20不饱和烷基的例子如,乙烯基、丙烯基、烯丙基等,但不局限于此。C3-C40环烷基的例子如,环丙基、环丁基、环戊基、环己基、环辛基、1-金刚烷等,但不局限于此。C6-C40的芳基的例子如,苯基、1-萘基、2-萘基、1-蒽基、2-蒽基、9-蒽基、1-菲基、2-菲基、3-菲基、4-菲基、9-菲基等,但不局限于此。C7-C40烷取代芳基的例子如,2-甲基苯基、2,6-二甲基苯基、2-氟-3-甲基苯基、2-氟-4-甲基苯基、2,6-二氟-3-甲基苯基、2,6-二氟-4-甲基苯基、2-氯-3-甲基苯基、2-氯-4-甲基苯基、2,6-二氯-3-甲基苯基、2,6-二氯-4-甲基苯基、2-乙基苯基、2,6-二乙基苯基、2-异丙基苯基、2,6-二异丙基苯基、3-甲基苯基、3,5-二甲基苯基、3-氟-4-甲基苯基、3,5-二氟-4-甲基苯基、3,5-二氟-4-乙基苯基、3,5-二氟-4-异丙基苯基、3,5-二氟-4-叔丁基苯基、3,5-二氟-4-三甲基硅基苯基、3-三氟甲基苯基、3,5-双三氟甲基苯基、4-甲基苯基、4-三氟甲基苯基、4-乙基苯基、4-异丙基苯基、4-叔丁基苯基、4-三甲基硅基苯基等,但不局限于此。C7-C40的芳取代烷基的例子如,苄基、对甲基苄基、对氟苄基、对氯苄基、对乙基苄基、对异丙基苄基、对叔丁基苄基、对三氟甲基苄基、对三甲基硅基苄基、3,5-二氟苄基、3,4,5-三氟苄基、3,5-双三甲基硅基苄基、3,5-双三氟甲基苄基、苯乙基、对甲基苯乙基、对氟苯乙基、对氯苯乙基、对异丙基苯乙基、对叔丁基苯乙基、对三甲基硅基苯乙基、2,6-二氟苯乙基、3,5-二氟苯乙基、3,4,5-三氟苯乙基、全氟代苯乙基、一位萘甲基、二位萘甲基等,但不局限于此。
R9优选为C1-C20的直链或支化的、饱和或不饱和的、部分或全部卤化的、线性的或环状的碳自由基。且下文中所有R9具有相同意义。
R10:相同或不同,是下述任意一种,氢、C1-C40饱和或不饱和烷基、卤代或非卤代烷基、选择性地含有元素周期表中第十三到第十七族元素杂原子如硼、铝、硅、锗、硫、氧、氟、氯等的烷基和C3-C40的环烷基、C6-C40的芳基、C7-C40的烷取代芳基、C7-C40的芳取代烷基。C1-C40饱和及卤代烷基的例子如,甲基、三氟甲基、乙基、1,1,1-三氟乙基、全氟代乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、正己基、正庚基、正辛基、正十二烷基、正十八烷基、三甲基硅基、三乙基硅基、三苯基硅基等,但不局限于此。C1-C20不饱和烷基的例子如,乙烯基、丙烯基、烯丙基等,但不局限于此。C3-C40环烷基的例子如,环丙基、环丁基、环戊基、环己基、环辛基、1-金刚烷等,但不局限于此。C6-C40的芳基的例子如,苯基、1-萘基、2-萘基、1-蒽基、2-蒽基、9-蒽基、1-菲基、2-菲基、3-菲基、4-菲基、9-菲基等,但不局限于此。C7-C40烷 取代芳基的例子如,2-甲基苯基、2,6-二甲基苯基、2-氟-3-甲基苯基、2-氟-4-甲基苯基、2,6-二氟-3-甲基苯基、2,6-二氟-4-甲基苯基、2-氯-3-甲基苯基、2-氯-4-甲基苯基、2,6-二氯-3-甲基苯基、2,6-二氯-4-甲基苯基、2-乙基苯基、2,6-二乙基苯基、2-异丙基苯基、2,6-二异丙基苯基、3-甲基苯基、3,5-二甲基苯基、3-氟-4-甲基苯基、3,5-二氟-4-甲基苯基、3,5-二氟-4-乙基苯基、3,5-二氟-4-异丙基苯基、3,5-二氟-4-叔丁基苯基、3,5-二氟-4-三甲基硅基苯基、3-三氟甲基苯基、3,5-双三氟甲基苯基、4-甲基苯基、4-三氟甲基苯基、4-乙基苯基、4-异丙基苯基、4-叔丁基苯基、4-三甲基硅基苯基等,但不局限于此。C7-C40的芳取代烷基的例子如,苄基、对甲基苄基、对氟苄基、对氯苄基、对乙基苄基、对异丙基苄基、对叔丁基苄基、对三氟甲基苄基、对三甲基硅基苄基、3,5-二氟苄基、3,4,5-三氟苄基、3,5-双三甲基硅基苄基、3,5-双三氟甲基苄基、苯乙基、对甲基苯乙基、对氟苯乙基、对氯苯乙基、对异丙基苯乙基、对叔丁基苯乙基、对三甲基硅基苯乙基、2,6-二氟苯乙基、3,5-二氟苯乙基、3,4,5-三氟苯乙基、全氟代苯乙基、一位萘甲基、二位萘甲基等,但不局限于此。
R10优选为氢、氟、氯、甲基、乙基或苯基。且下文中所有R10具有相同意义。
R11:相同或不同,是下述任意一种;氢、氟、氯、溴、OR、SR、OCOR、NR2、PR2。其中R如前述定义。或R11相同或不同,是下述任意一种,C1-C40饱和或不饱和烷基、卤代或非卤代烷基、选择性地含有元素周期表中第十三到第十七族元素杂原子如硼、铝、硅、锗、硫、氧、氟、氯等的烷基和C3-C40的环烷基、C6-C40的芳基、C7-C40的烷取代芳基、C7-C40的芳取代烷基。C1-C40饱和及卤代烷基的例子如,甲基、三氟甲基、乙基、1,1,1-三氟乙基、全氟代乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、正己基、正庚基、正辛基、正十二烷基、正十八烷基、三甲基硅基、三乙基硅基、三苯基硅基等,但不局限于此。C1-C20不饱和烷基的例子如,乙烯基、丙烯基、烯丙基等,但不局限于此。C3-C40环烷基的例子如,环丙基、环丁基、环戊基、环己基、环辛基、1-金刚烷等,但不局限于此。C6-C40的芳基的例子如,苯基、1-萘基、2-萘基、1-蒽基、2-蒽基、9-蒽基、1-菲基、2-菲基、3-菲基、4-菲基、9-菲基等,但不局限于此。C7-C40烷取代芳基的例子如,2-甲基苯基、2,6-二甲基苯基、2-氟-3-甲基苯基、2-氟-4-甲基苯基、2,6-二氟-3-甲基苯基、2,6-二氟-4-甲基苯基、2-氯-3-甲基苯基、2-氯-4-甲基苯基、2,6-二氯-3-甲基苯基、2,6-二氯-4-甲基苯基、2-乙基苯基、2,6-二乙基苯基、2-异丙基苯基、2,6-二异丙基苯基、3-甲基苯基、3,5-二甲基苯基、3-氟-4-甲基苯基、3,5-二氟-4-甲基苯基、3,5-二氟-4-乙基苯基、3,5-二氟-4-异丙基苯基、3,5-二氟-4-叔丁基 苯基、3,5-二氟-4-三甲基硅基苯基、3-三氟甲基苯基、3,5-双三氟甲基苯基、4-甲基苯基、4-三氟甲基苯基、4-乙基苯基、4-异丙基苯基、4-叔丁基苯基、4-三甲基硅基苯基等,但不局限于此。C7-C40的芳取代烷基的例子如,苄基、对甲基苄基、对氟苄基、对氯苄基、对乙基苄基、对异丙基苄基、对叔丁基苄基、对三氟甲基苄基、对三甲基硅基苄基、3,5-二氟苄基、3,4,5-三氟苄基、3,5-双三甲基硅基苄基、3,5-双三氟甲基苄基、苯乙基、对甲基苯乙基、对氟苯乙基、对氯苯乙基、对异丙基苯乙基、对叔丁基苯乙基、对三甲基硅基苯乙基、2,6-二氟苯乙基、3,5—二氟苯乙基、3,4,5-三氟苯乙基、全氟代苯乙基、一位萘甲基、二位萘甲基等,但不局限于此。
R11优选为氢、氟、氯、OCOR、OR、SR、NR2、PR2。且下文中所有R11具有相同意义。
J:是元素周期表中第十三族或第十五族元素,如硼、铝、镓、氮、磷、砷。
J优选为氮和磷。下文中所有J具有相同意义。
在一般化学结构式(I)中,A是一种一价阴离子π-配位体。且A的前驱体是一种中性的稳定有机化合物,具有如一般化学式(II)所示的化学结构;
Figure PCTCN2016073644-appb-000017
在一般化学式(II)中,R1、R2、R3、R4、L和E,如前定义。而一般化学式(II)中包含有由环戊二烯环的基本结构。环戊二烯结构中的活泼氢具有独特的亲电反应性,可与格氏试剂、有机锂试剂等亲核试剂进行交换反应。其基本反应如一般反应式(2)所示;
Figure PCTCN2016073644-appb-000018
一般反应式(2)中亲核试剂选择有机锂试剂RnLi作为特例,但实践中不局限于仅 仅使用有机锂试剂。Rn是C1-C6的烷基,或C6-C12的芳基。
本发明涉及的茂金属络合物的合成包括多步有机化学合成环戊二烯衍生物、高效高收率合成桥连配位体,以及高效高收率合成准C2对称性茂金属络合物。
本发明涉及的一类新的含杂原子的π-配位的茂金属络合物(如一般化学式(I)所示),其合成方法可用下述一般反应式(3)来表示;
Figure PCTCN2016073644-appb-000019
在一般反应式(3)中:
一般化学式(I)如上述定义。
一般化学式(XVIII)中,M、X和n如上述定义。
T:互相间相同或不同,是单齿或双齿的中性配位体。
单齿配位体如:醚类ROR、硫醚类RSR、三级胺类NR3、三级膦类PR3、环醚(如取代四氢呋喃、取代呋喃、取代二氧六环等)、环硫醚类、酮类、取代环酮类、取代吡啶类、取代吡咯类、取代哌啶类、酯类、内酯类、酰胺类、内酰胺类,等等。其中R如上述定义。
双齿配位体如:邻位双醚类、α,
Figure PCTCN2016073644-appb-000020
-双醚类、邻位双胺类、α,
Figure PCTCN2016073644-appb-000021
-双胺类、邻位双硫醚类、α,
Figure PCTCN2016073644-appb-000022
-双硫醚类、邻位双膦类、α,
Figure PCTCN2016073644-appb-000023
-双膦类,等等。
T在上述无限组合中优选中性单齿配位体环醚类和中性双齿配位体邻位双胺类。
x:是0或整数1、2或3。
一般化学式(XVII)中,Q、A和Z如上述定义。
LG:是脱离基团。其互相之间可相同或不同,是氢、碱金属元素如锂、钠、钾或第十四族重元素的有机自由基如SiR3、GeR3、SnR3、PdR3以及ZnR、BaR、MgR、CaR等,但不限于此。其中R如上述定义。
上述一般反应式(3)代表多种类型的复分解反应。其中最平庸的例子是LG等于碱金属阳离子的双阴离子配位体与金属卤化物之间的复分解反应,以消除碱金属卤化物(一般反应式(3)中LGX,LG如锂,X如氯),生成所需的茂金属络合物(I)。这一平庸的反应类型是合成茂金属络合物最为普遍采用的合成方法,也同样适用与本发明所涉及的新一类含杂原子的π-配位茂金属络合物的合成。一般化学式(XVII)中LG为碱金属阳离子(Li+、Na+、K+),一般化学式(XVIII)中X为卤素(Cl-、Br-、I-)时,这类复 分解反应通常是热力学控制的。因而其生成物中各异构体的比例接近统计平均值。
除了采用上述普遍适用的合成方法之外,本发明所涉及的新一类含杂原子的π-配位茂金属络合物还可采用多种其它制备方法。
例如,当一般化学式(XVII)中的脱离基团LG为氢时,一般化学式(XVIII)中X可选择R或NR2,其中R如上述定义。在这类反应中,中性配位体(LG等于H)与第三至第六族过渡金属烷基化合物或第三至第六族过渡金属有机胺基化合物,在适当的溶媒中和适当的温度范围内进行复分解反应,脱去中性烷烃或中性二级胺,同时生成所期待的π-配位的茂金属络合物(I)。其中第四族过渡金属有机胺与桥联的中性π-配位体,在适当有机溶媒中和适当温度范围内的反应,生成第四族过渡茂金属络合物的反应已有相当的实践应用(J.N.Christopher;G.M.Diamond;R.F.Jordan;J.L.Petersen,Organometallics 1996,15,4038.G.M.Diamond;R.F.Jordan;J.L.Petersen,JACS,1996,118,8024。)。
适当的溶媒可选择饱和C5-C15烷烃及环烷烃,如戊烷、环戊烷、正己烷、环己烷、庚烷、环庚烷、辛烷、环辛烷、正十二烷等;或芳香烃及取代芳香烃,如苯、甲苯、邻二甲苯,间二甲苯、对二甲苯、三甲苯、氯苯、邻二氯苯,间二氯苯、对二氯苯、三氯苯等,但不限于此。其中优选己烷、庚烷、辛烷、甲苯或二甲苯。亦可用上述有机溶媒的两种或两种以上的混合物为反应介质。适当的反应温度范围为-100~+300℃。更适当的反应温度范围一般为-75~+250℃。最适反应温度范围为-50~+150℃。
又例如,当一般化学式(XVII)中LG是第十四族重元素的有机自由基如SiR3、GeR3、SnR3、PdR3、ZnR、BaR、MgR、CaR等,而一般化学式(XVIII)中X可选择卤素(Cl、Br、I)、烷氧基OR、巯基SR、羧基OCOR、OCOCF3、OSO2CF3,R如上述定义。在这类反应中,中性配位体(第十四族重元素的有机自由基如SiR3、GeR3、SnR3、PdR3、ZnR、BaR、MgR、CaR等)与一般化学式(XVIII)所代表的化合物,在适当的溶媒中和适当的温度范围内进行复分解反应,脱去中性的有机分子。特例如,当一般化学式(XVII)中LG等于SnR3,一般化学式(XVIII)中X等于Cl,上述复分解反应脱去中性的ClSnR3分子;而当一般化学式(XVII)中LG是GeR3,一般化学式(XVIII)中X是OR时,上述复分解反应在适当的溶媒中和适当的温度范围内,脱去中性的ROGeR3分子,生成所期待的π-配位的茂金属络合物分子符合一般化学式(I)。应用这一类复分解反应制备第四族过渡茂金属络合物也有记载。例如US6657027(WO02076999,DE10114345,EP1373284)就采用Cp-LG(Cp等于取代环戊二烯、取代茚等,LG等于SnR3)与第四 族过渡金属卤化物反应,制备所谓的给与体-接受体桥联的多种第四族过渡茂金属络合物。
适当的溶媒可选择饱和C5-C15烷烃及环烷烃和芳香烃。烷烃及环烷烃如戊烷、环戊烷、正己烷、环己烷、庚烷、环庚烷、辛烷、环辛烷、正十二烷、以及上述部分氟代或全氟代烷烃及环烷烃等;芳香烃以及部分或全氟代的芳香烃如,苯、甲苯、三氟甲基苯、邻二甲苯、间二甲苯、对二甲苯、三甲苯、氟苯、邻二氟苯、间二氟苯、对二氟苯、三氟苯、全氟苯等,但不限于此。其中优选己烷、庚烷、辛烷、甲苯和二甲苯。亦可用上述有机溶媒的两种或两种以上的混合物为反应介质。适当的反应温度范围为-100~+300℃。更适当的反应温度范围一般为-75~+250℃。最适当的反应温度范围为-50~+150℃。
一般反应式(3)所代表的复分解反应中,当一般化学式(XVII)为中性时,也即LG为氢,而一般化学式(XVIII)中X为烷基R或胺基NR2时;或者当一般化学式(XVII)中LG为第十四族重元素的有机自由基如SiR3、GeR3、SnR3、PdR3、ZnR、BaR、MgR、CaR等,而一般化学式(XVIII)中X为卤素(Cl、Br、I)、烷氧基OR、烷硫基SR、羧基OCOR、OCOCF3、OSO2CF3(R如上述定义)时,这一类复分解反应可通过调节溶媒极性、反应温度等条件来调控反应热力学,以调节对生成产物的选择性,有利于热力学稳定性较高的异构体生成。例如,当一般化学式(I)中A等于Z时,一般化学式(I)所代表的是一类最常见的具有准C2对称结构的茂金属络合物。准C2对称结构的化合物通常具有两种异构体,即外消旋体(Racemic)和内消旋体(Meso)。当一般化学式(I)中A不等于Z时,其代表的是一类按定义为C1对称结构的茂金属络合物。本发明设定的为一类准C2对称结构的茂金属络合物,(pseudo-C2 symmetric metallocenes)因其催化活性中心的周边空间环境具备部分C2对称性特征。准C2对称结构的化合物通常也具有两种空间异构体,即顺式(Syn,本发明所涉及的茂金属络合物其R1取代基位于分子的同一侧)和反式(Anti,本发明所涉及的茂金属络合物其R1取代基位于分子的相反侧)。在C2对称性和准C2对称性茂金属络合物的异构体中,其外消旋(Rac)和反式(Anti)异构体一般具有相对于内消旋(Meso)及顺式(syn)异构体有较高的热力学稳定性。利用一般反应式(3)中的中性配位体一般化学式(XVII)与一般化学式(XVIII)代表的TxMXn之间的复分解反应具有热力学可控的特征,通过调节溶媒极性、反应温度、反应底物浓度,以及其它反应条件等,可以最大限度地提高具有较高热力学稳定性的异构体(外消旋、Rac,以及反式、anti)的生成速率。这一特殊的热力学选择性反应特征已被 成功地利用与制备所谓的给与体-接受体桥联的第四族过渡茂金属络合物(US6657027,WO0207699,DE10114345,EP1373284),以及利用胺消除反应以制备第四族过渡茂金属有机胺络合物(J.N.Christopher;G.M.Diamond,R.F.Jordan;J.L.Petersen,Organometallics 1996,15,4038.G.M.Diamond;R.F.Jordan;J.L.Petersen;JACS,1996,118,8024.)。
基于中心金属原子M的种类(从第三族到第六族金属,镧系和錒系金属),π-配位基A和Z的种类,π-配位基A和Z之间桥联基Q的种类,和配位体X的种类,以及Q、X、A、Z上取代基R、R°、R′、R″、R1到R11的种类颇为丰富,其互相组合将产生数量及其丰富的衍生物群。因此由一般化学式(I)所代表的新一类含杂原子的π-配位的茂金属络合物包含着数量庞大的新的具有特殊化学结构和反应及催化特性的茂金属络合物群体,无疑具有极大的进行基础理论研究和实际应用(如在不对称有机合成化学,烯烃和α-烯烃的均相或非均相催化聚合化学的应用)的探索价值。下述二甲基硅桥连的茂金属络合物合成路线所示此类准C2对称性第四族过渡茂金属络合物合成路线(如下反应式所示)展示本发明合成茂金属烯烃聚合催化剂所采用的一类典型方法,但不代表本发明实施例中所有茂金属络合物均可采用这一典型方法合成。
Figure PCTCN2016073644-appb-000024
不同类型茂金属络合物采用有可能完全不同的合成路线以求达到茂金属络合物的最佳产率和最佳纯度。下面反应式所示是同一种茂金属络合物分子的另外一种合成路线,充分展示了此类茂金属络合物合成路线的多重选择性。
Figure PCTCN2016073644-appb-000025
上面两组反应式均以
Figure PCTCN2016073644-appb-000026
为例进行说明,当式(II)为
Figure PCTCN2016073644-appb-000027
时,具有相同的反应过程,区别仅在于“E”和“L”空间位置的对换。
2.新型的含杂原子的π-配体的茂金属络合物为核心成分的催化剂体系
本发明合成的茂金属络合物经过特定活化处理和负载化形成活性催化剂体系。该体系的组成一般为载体ZT,助催化剂ZC,主催化剂ZH和活化剂HH。载体ZT一般为高比表面酸性无机氧化物,例如SiO2、Al2O3、蒙脱土、高岭土等合成或天然无机多孔或层状结构材料。助催化剂ZC一般为强路易斯酸性物质,如聚甲基铝氧烷(PMAO)、改性MAO(MMAO)、有机硼化合物、部分或全氟取代的芳香硼烷类化合物(如LiB(C6H5)4、B(C6F5)3、LiB(C6F5)4、Ph3CB(C6F5)4等)。主催化剂ZH为上述合成的一种茂金属络合物或两种茂金属络合物的组合。活化剂HH是任意一种可以对茂金属活性位上配位的阴离子(卤素、烷氧基、胺基、硅氧基等)进行取代或交换反应的化学物质(如烷基铝类化合物、烷基硼类化合物、格式试剂、有机锂试剂等),且该物质可以使茂金属络合物形成中性或阳离子化合物。催化剂体系的制备工艺可以按聚合工艺要求对ZT、ZC、ZH、HH四种组分进行分别处理和组合。一般常用的组合指标催化剂的程序可以表达为以下几种方式:①ZH+HH形成活化茂金属催化剂溶液,此溶液加入到ZT+ZC形成的负载助催化剂上;②ZH+HH形成的活性催化剂溶液加入到助催化剂ZC的溶液中混合,此混合溶液 加入到载体ZT上;③ZC+ZH形成的活性催化剂溶液加入到载体ZT上,最后加入活化剂HH(或活化剂HH可以被省略不加);④ZH+HH的活化催化剂溶液加入到ZT+HH形成的活化载体上(助催化剂ZC可以被省略不加)。本发明催化剂制备工艺的多样性使得该催化剂体系的聚合工艺适应性得到扩展和延伸。
本发明进一步涉及利用上述新型的含杂原子的π-配位的茂金属络合物为核心组分形成活性催化体系催化烯烃均聚合或共聚合。这里首先考虑利用上述新型的含杂原子的π-配位的茂金属络合物为核心组分形成活性催化体系的制备工艺。
众所周知,茂金属络合物的活化方法或活化工艺的选择直接影响催化剂的催化效率,如催化剂的高温热稳定性(催化剂的有效寿命),催化剂的活性(催化剂在单位时间内的聚合产出效率),催化剂对聚合链增长速率和链消除速率的相对选择性(聚合物的分子量大小和分子量分布),催化剂活性中心对烯烃的区域和立体选择性(聚合链的微观结构)。活化工艺的选择(活化剂本身,活化剂与茂金属络合物的比例,温度,介质,载体的种类,载体的物理形态)还直接影响聚合物的表观形态(凝聚态物理性质)。因此,催化工艺的成功与否以及聚合物的物理机械性能的优劣与催化剂的活化工艺关系尤为密切。
本发明所涉及的上述新型的含杂原子的π-配位的茂金属络合物为核心组分形成活性的催化体系的产生,即催化剂的活化工艺可由下述一般反应式(1)来表示;
Figure PCTCN2016073644-appb-000028
一般反应式(1)中结构式(I)如上述定义。LA是一类体积膨大,电子离域,配位性贫乏的路易斯酸性物质。这类物质的代表是在溶液中同时具有链状,环状和笼状结构平衡态的聚甲基铝氧烷(PMAO)以及在此基础上改性的聚甲基铝氧烷(MMAO)。
Figure PCTCN2016073644-appb-000029
本发明所述体积膨大,电子离域,和配位性贫乏的阴离子还有大量的例子可供选择,如;[B(C6H5)4]-,[(CH3)B(C6F5)3]-,[B(C6F5)4]-,[B(2,6-(CH3)2-C6H3)4]-,[B(2,4,6-(CH3)3-C6H2)4]-,[B(2,3,5,6-(CH3)4-C6H)4]-,[B(2,6-(CF3)2-C6H3)4]-,[B(2,4,6-(CF3)3-C6H2)4]-,[B(2,3,5,6-(CF3)4-C6H)4]-,[B(3,5-(CH3)2-C6H3)4]-,[B(3,4,5-(CH3)3-C6H2)4]-,[B(3,5-(CF3)2-C6H3)4]-,[B(3,4,5-(CF3)3-C6H2)4]-,[B(2,6-(CF3)2-C6F3)4]-,[B(2,4,6-(CF3)3-C6F2)4]-,[B(2,3,5,6-(CF3)4-C6F)4]-,[B(3,5-(CF3)2-C6F3)4]-,[B(3,4,5-(CF3)3-C6F2)4]-,[Al(C6H5)4]-,[(CH3)Al(C6F5)3]-,[Al(C6F5)4]-,[Al(2,6-(CH3)2-C6H3)4]-,[Al(2,4,6-(CH3)3-C6H2)4]-,[Al(2,3,5,6-(CH3)4-C6H)4]-,[Al(3,5-(CH3)2-C6H3)4]-,[Al(3,4,5-(CH3)3-C6H2)4]-,[Al(2,6-(CH3)2-C6F3)4]-,[Al(2,4,6-(CH3)3-C6F2)4]-,[Al(2,3,5,6-(CH3)4-C6F)4]-,[Al(3,5-(CH3)2-C6F3)4]-,[Al(3,4,5-(CH3)3-C6F2)4]-,[Al(2,6-(CF3)2-C6H3)4]-,[Al(2,4,6-(CF3)3-C6H2)4]-,[Al(2,3,5,6-(CF3)4-C6H)4]-,[Al(3,5-(CF3)2-C6H3)4]-,[Al(3,4,5-(CF3)3-C6H2)4]-,[Al(2,6-(CF3)2-C6F3)4]-,[Al(2,4,6-(CF3)3-C6F2)4]-,[Al(2,3,5,6-(CF3)4-C6F)4]-,[Al(3,5-(CF3)2-C6F3)4]-,[Al(3,4,5-(CF3)3-C6F2)4]-,{t-Bu-CH=C[B(C6F5)2]2(CH3)}-,{Ph-CH=C[B(C6F5)2]2(CH3)}-,{(C6F5)-CH=C[B(C6F5)2]2(CH3)}-,{t-Bu-CH=C[Al(C6F5)2]2(CH3)}-,{Ph-CH=C[Al(C6F5)2]2(CH3)}-,{(C6F5)-CH=C[Al(C6F5)2]2(CH3)}-,[1,1’-C12F8-2,2’=B(C6F5)2]-,[1,1’-C12F8-2,2’=Al(C6F5)2]-,[FB(1-C6F4-2-C6F5)3]-,[(CH3)B(1-C6F4-2-C6F5)3]-,[(C6F5)B(1-C6F4-2-C6F5)3]-,[(C6F5)Al(1-C6F4-2-C6F5)3]-,[FAl(1-C6F4-2-C6F5)3]-,[(CH3)Al(1-C6F4-2-C6F5)3]-,]-,[HB(1-C6F4-2-C6F5)3]-,[HAl(1-C6F4-2-C6F5)3]-,[(CH3)B(2-C10F7)3]-,[(CH3)Al(2-C10F7)3]-,[(CH3)B(p-C6F4SiMe3)3]-,[B(p-C6F4SiMe3)4]-,[(CH3)B(p-C6F4Si(n-Bu)3)3]-,[B(p-C6F4Si(n-Bu)3)4]-,[(CH3)B(p-C6F4Si(i-Bu)3)3]-,[B(p-C6F4Si(i-Bu)3)4]-,[(CH3)B(p-C6F4Si(t-Bu)3)3]-,[B(p-C6F4Si(t-Bu)3)4]-,[(C6F5)3B-C6F4-B(C6F5)2]-,[C6F4-1,2-(B(C6F5)3)2],[C6F4-1,2-(Al(C6F5)3)2],[(C6F4)-1,2-(B(C6F5)2)2-1’,2’-(C6F4)],[(C6F4)-1,2-(Al(C6F5)2)2-1’,2’-(C6F4)],[(C6F5)3B-CN-B(C6F5)3]-,[(C6F5)3Al-CN-Al(C6F5)3]-,[((C6F5)3BNC)4Ni],[((C6F5)3AlNC)4Ni],[(1,1’-C12F8)2-2,2’-B]-,[(1,1’-C12F8)2-2,2’-Al]-,[B(O-C6F5)4]-,[Al(O-C6F5)4]-,[(C6F5)3Al-C6F4-Al(C6F5)2]-,[(CH3)Al(p-C6F4SiMe3)3]-,[Al(p-C6F4SiMe3)4]-,[(CH3)Al(p-C6F4Si(n-Bu)3)3]-,[Al(p-C6F4Si(n-Bu)3)4]-,[(CH3)Al(p-C6F4Si(i-Bu)3)3]-,[Al(p-C6F4Si(i-Bu)3)4]-,[(CH3)Al(p-C6F4Si(t-Bu)3)3]-,[Al(p-C6F4Si(t-Bu)3)4]-,[C5(C6H5)5]-,[C5(2,6-(CH3)2-C6H3)5]-,[C5(2,4,6-(CH3)3-C6H2)5]-,[C5(3,5-(CH3)2-C6H3)5]-,[C5(3,4,5-(CH3)3-C6H2)5]-,[C5(2,6-(CF3)2-C6H3)5]-,[C5(2,4,6-(CF3)3-C6H2)5]-,[C5(3,5-(CF3)2-C6H3)5]-,[C5(3,4,5-(CF3)3-C6H2)5]-,[C5(2,6-(CH3)2-C6F3)5]-,[C5(2,4,6-(CH3)3-C6F2)5]-,[C5(3,5-(CH3)2-C6F3)5]-,[C5(3,4,5-(CH3)3-C6F2)5]-,[C5(2,6-(CF3)2-C6F3)5]-,[C5(2,4,6-(CF3)3-C6F2)5]-, [C5(3,5-(CF3)2-C6F3)5]-,[C5(3,4,5-(CF3)3-C6F2)5]-,[C5(C6F5)5]-,[Li(Ta(OC6F5)4(2-OC6F5)2)2]-,[Nb(OC6F5)6]-,[PF6]-,[AsF6]-,[SbF6]-,[BF4]-,[ClO4]-,炭硼烷阴离子如;[C2B9H12]-,[CB11H12]-.但不限于此。
由反应(1)所代表的催化剂活化反应一般在特定的均相液体介质中完成,常用的液体介质有多种,如C5-C12的饱和烷烃,C6-C12芳烃。最佳的液体介质是能够完全溶解结构(I)所代表的的金属络合物以及LA所代表的路易斯酸,形成均相的反应体系。常用的液体反应介质包括戊烷、己烷、庚烷、辛烷等饱和烷烃以及其异构体。芳香类液体介质包括苯、甲苯、二甲苯及异构体、三甲苯及异构体、氯苯、二氯苯及异构体、氟苯、二氟苯及异构体、以及多氟苯和其异构体。最常用的是戊烷及异构体、己烷及异构体、庚烷及异构体、甲苯、二甲苯及异构体。实践中首选己烷及异构体、庚烷及异构体、甲苯、氯苯等。由反应式(1)代表的催化剂活化反应部分情况下也使用二种或二种以上的混合液体介质。混合液体介质是指饱和烷烃与芳烃按一定的体积百分比进行混合,其中一种液体介质的体积百分数不低于5%。
由反应(1)所代表的的催化剂活化反应在特定均相介质中的反应需要在一定的温度范围内完成,形成95%以上的反应产物(Ia)。反应温度范围可选择-100~250℃区间,一般反应温度控制在-75~150℃之间。最佳反应温度区间与式(I)代表的金属络合物和LA的溶解性和反应性质有关。
本发明涉及利用上述新型的含杂原子的π-配位的茂金属络合物为核心组分形成活性催化体系催化烯烃均聚合或共聚合。上述方法形成的活性络合物催化剂具有在本体淤浆或溶剂淤浆聚合工艺条件下聚合alpha-烯烃的功能。
本发明使用上述茂金属催化剂体系对α-烯烃(如丙烯)聚合一般适用于本体淤浆聚合工艺。经适当聚合条件和催化剂调整也可适用于溶剂淤浆聚合工艺或气相聚合工艺。
本发明使用上述茂金属催化剂体系对α-烯烃(如丙烯)与烯烃(如乙烯)以及其他α-烯烃(如丁烯-1、戊烯-1、己烯-1等)共聚合,一般适用于本体淤浆聚合工艺。经适当聚合条件和催化剂调整也可适用于溶剂淤浆聚合工艺或气相聚合工艺。
本发明相关技术采用的分析表征方法如下:
配体和配合物的分析采用核磁和质谱仪分析,聚合物的分析采用熔融指数仪、DSC、GPC分析仪、核磁等分析手段。
熔融指数仪:6542型,意大利西斯特科学仪器厂
核磁:AV400,德国BRUKER
质谱分析仪:5973N,美国安捷伦
DSC分析仪:200F3,德国耐驰公司
GPC分析仪:Waters2000,美国Waters公司
实施例1
中间产物a1的合成:
Figure PCTCN2016073644-appb-000030
反应式中中间产物a1的合成:
利用苯硼酸为底物,通过3:1的PE/EA(石油醚/乙酸乙酯)将催化剂、四丁基溴化铵(TBAB)及乙二醇与产物分离,重复使用(TBAB及乙二醇),第三次反应可以得到82.2%的分离收率。
Figure PCTCN2016073644-appb-000031
中间产物b1的合成:
称取中间产物a15mmol放入100ml二口反应瓶中,加入THF(四氢呋喃)40ml,放于冰水浴中充分冷却;滴加入Red-Al(二氢双(2-甲氧基乙氧基)铝酸钠)5mmol,用15min全部滴加完,反应2h,升温至室温,室温反应过夜;配制10%的HCl溶液,向反应体系滴加,有白色固体析出,使体系呈酸性;用布氏漏斗抽滤,收集有机相,用THF萃取白色固体二次,收集萃取液;有机相和萃取液合并后干燥;旋蒸干燥得粗产品,收率68.4%。
配体Z1的合成:
将中间产物b1溶解于甲苯中,然后加入草酸和4A分子筛;混合物在120℃的温度下回流反应2h;在反应过程中用薄层色谱板来验证反应是否完全;反应完全后用过量的碳酸氢钠溶液洗涤,后分离出有机相;水层用乙酸乙酯萃取三次,合并有机相并干燥;旋蒸除去溶剂,得配体Z1,产率84%。
A1的合成:
Figure PCTCN2016073644-appb-000032
按照1mol产物量计算原料的用量,并放于2000ml单口反应瓶中,加入异丙醇;将油浴逐渐升温到80℃,搅拌条件下回流反应1.3h;后降至室温,溶液呈深棕色,用NaHCO3水溶液洗涤,得到棕色悬浮液;过滤,得到棕色粉末状固体26.5g(理论产量:28.1g);用层析柱提纯产物,配体A1收率为94.3%。
二氯化锆配合物的合成:
Figure PCTCN2016073644-appb-000033
反应式中中间产物1的合成:
在手套箱中称取配体A1(Fw=281.35,28.14克,100mmol)置于1000mL两口圆底烧瓶中,烧瓶从手套箱中取出,移到Sclenk系统上。在高纯氮气氛下溶于500mL无水乙醚中。将圆底烧瓶置于0℃以下冰水浴中冷却,并在不断搅拌下于高纯氮气氛中缓慢滴加正丁基锂的己烷溶液(2.40M/L溶液,44ml,105mmol)。滴加完成后反应体系自然升温至室温,溶液呈深红色。反应在25℃下保温4h。在氮气保护的条件下用Teflon毛细管将上述制备的有机锂溶液缓慢滴加到含二甲基二氯硅烷(Me2SiCl2,Fw=129.06,d=1.07g/mL,60.0ml,500mmol)的无水乙醚(30mL,<0℃)溶液中。反应在氮气保护条 件下搅拌过夜,在氮气保护下用虹吸过滤法滤去LiCl,剩余固体LiCl用少量无水乙醚萃洗,虹吸过滤。合并的滤液抽真空除去溶剂和未反应的Me2SiCl2得到中间产物1,收率98%。
反应式中中间产物2的合成:
在惰性气体手套箱中秤取2-甲基苯并茚有机分子(Fw=180.25,18.02g,100mmol)置入1000mL两口圆底烧瓶中,圆底烧瓶从手套箱转移到Schlenk系统上。在高纯氮气保护下将上述2-甲基苯并茚溶于500mL无水乙醚中,将圆底烧瓶置于0℃以下的冰水浴中。向上述2-甲基苯并茚乙醚溶液中缓慢滴加正丁基锂己烷溶液(2.40M/L,41.6mL,100mmol),滴加完成后让反应体系在25℃下保温反应5h,制得2-甲基苯并茚锂盐的乙醚溶液(中间产物2)。
反应式中中间产物3的合成:
在氮气保护下将中间产物1溶于无水乙醚中(500mL),冷至<0℃,用毛细管虹吸法缓慢滴加中间产物2的乙醚溶液到中间产物1的乙醚溶液中,滴加完毕后让体系自然升至室温,在28℃下于高纯氮气氛中搅拌过夜。上述深红色溶液经虹吸过滤法除去LiCl,剩余固体用少量无水乙醚萃洗一次,虹吸过滤。将合并的滤液真空减压除去溶剂,真空干燥到衡重,得中间产物3,纯度大于95%。
在惰性气体手套箱中秤取中间产物3(Fw=517.74,20.92g,40.4mmol)置入1000mL两口圆底烧瓶中,圆底烧瓶从手套箱转移到Schlenk系统上。在高纯氮气保护下将上述中间产物3溶于500mL无水乙醚中,将圆底烧瓶置于0℃以下的冰水浴中。向上述中间产物3的乙醚溶液中缓慢滴加正丁基锂己烷溶液(2.40M/L,33.6ml,80.8mmol),滴加完成后让反应体系在25℃下保温反应5h,制得中间产物3的锂盐的乙醚溶液。
在惰性气体手套箱中秤取ZrCl4(Fw=233.04,9.4g,40.4mmol)置入500mL两口圆底烧瓶中,圆底烧瓶从手套箱转移到Schlenk系统上。在高纯氮气保护和不断搅拌下向冷至0℃以下(冰盐水浴)ZrCl4固体加入250mL无水乙醚。将上述中间产物3的锂盐的乙醚溶液用毛细管虹吸法缓慢滴加到上述ZrCl4的悬浊液中,滴加完成后让反应体系在25℃下保温反应19h,制得准-C2对称性锆茂络合物。反应悬浊液呈樱桃红色,此悬浊液经减压除去溶剂,真空干燥到衡重,得到准-C2对称性锆茂络合物粗产品,从粗产品的核磁氢谱分析,杂质主要是己烷和大量LiCl,络合物纯度大于95%。
将5L反应釜抽真空、氮气置换3次,后加入3600μmol的MAO(甲基铝氧烷)溶液和1000g丙烯于反应釜中;用二氯化锆配合物8μmol和400μmol的MAO(甲基铝氧 烷)室温条件下活化30min,用高压氮气压入反应釜;升温到65℃,聚合反应1h,得到聚合产物139g,催化剂活性1.74×107gPP/molcat.h,分子量MW 22.5,分布2.0,等规度87%。
实施例2
Z2的合成如下,其它条件如实施例1。
Figure PCTCN2016073644-appb-000034
产品中间产物a2的合成:
按照1mol产物量计算原料的用量,并放于2500ml二口反应瓶中;冰水浴条件下搅拌20min;称取二溴-2-甲基丙酰溴和无水二氯甲烷加入分液漏斗中,缓慢滴加入反应瓶中;称取萘和无水二氯甲烷加入到分液漏斗中,迅速溶解后缓慢滴加到反应体系中,反应瓶内溶液颜色迅速变成黄色,逐渐变成棕红色,后加入无水二氯甲烷冲洗分液漏斗;反应30min后,将冰取出,使水浴缓慢升至室温;继续反应,观察无HBr气体放出,视为反应终点;用大量水洗涤,除去杂质和未反应的原料,分液后收集有机相;用无水二氯甲烷将水相中的产物萃取,反复三次;将萃取相和有机相合并干燥;用旋转蒸发仪将溶剂蒸出,提纯粗产品a2,产率为64.5%。
产品中间产物b2的合成:
称取中间产物a2放入1000ml二口反应瓶中,加入THF400ml,放于冰水浴中充分冷却;滴加入Red-Al,用15min全部滴加完,反应2h,升温至室温,室温反应过夜;配制10%的HCl溶液,向反应体系滴加,有白色固体析出,使体系呈酸性;用布氏漏斗抽滤,收集有机相,用THF萃取白色固体二次,收集萃取液;有机相和萃取液合并后干燥;旋蒸干燥得粗产品,收率68.4%。
配体Z2的合成:
将产品中间产物b2溶解于甲苯中,然后加入草酸和4A分子筛;混合物在120℃的温度下回流反应2h;在反应过程中用薄层色谱板来验证反应是否完全;反应完全后用过 量的碳酸氢钠溶液洗涤,后分离出有机相;水层用乙酸乙酯萃取三次,合并有机相并干燥;旋蒸除去溶剂,得配体Z2,产率84%。终产率是37.1%。
用配体Z2和配体A1反应制备二氯化锆配合物,按照实施例1中的条件进行聚合反应,得到聚合产物255g,催化剂活性3.19×107gPP/molcat.h,分子量MW 24.5,分布2.0,等规度76%。
实施例3-实施例24
按照实施例1的条件,中间产物a的结构及合成方法如下:
Figure PCTCN2016073644-appb-000035
依次称取4-溴-2-甲基-1-茚酮(0.056g,0.25mmol)、苯硼酸Ar-B(OH)2(0.3mmol)、碳酸钾K2CO3(0.069g,0.5mmol)、PEG-400(聚乙二醇-400)(2g)、四丁基溴化铵TBAB(0.08g,0.25mmol),加催化剂醋酸钯Pd(OAc)2,110℃加热搅拌,所得结果如下表。
Figure PCTCN2016073644-appb-000036
Figure PCTCN2016073644-appb-000037
Figure PCTCN2016073644-appb-000038
Figure PCTCN2016073644-appb-000039
Figure PCTCN2016073644-appb-000040
反应式中中间产物b的合成:
称取中间产物a 3mmol放入100ml二口反应瓶中,加入四氢呋喃THF40ml,放于冰水浴中充分冷却;滴加入红铝Red-Al,用15min全部滴加完,反应2h,升温至室温,室温反应过夜;配制10%的HCl溶液,向反应体系滴加,有白色固体析出,使体系呈酸性;用布氏漏斗抽滤,收集有机相,用四氢呋喃萃取白色固体二次,收集萃取液;有机相和萃取液合并后干燥;旋蒸干燥得粗产品。
反应式中配体Z的合成:
将中间产物b 2mmol溶解于甲苯中,然后加入草酸和4A分子筛;混合物在120℃的温度下回流反应2h;在反应过程中用薄层色谱板来验证反应是否完全;反应完全后用过量的碳酸氢钠溶液洗涤,后分离出有机相;水层用乙酸乙酯萃取三次,合并有机相并干燥;旋蒸除去溶剂,系列配体。
由此22个配体Z,按照实施例1的条件得到22个二氯化锆配合物,然后进行聚合反应,得到如下评价结果。
编号 催化剂活性 分子量MW 分子量分布 等规度
  ×107gPP/molcat.h    
实施例3 8.25 29 2.0 72
实施例4 0.55 19 2.1 56
实施例5 0.75 21 2.0 67
实施例6 1.64 21 2.3 60
实施例7 3.30 19 2.2 73
实施例8 36.25 28 2.0 78
实施例9 4.50 24 2.1 93
实施例10 18.30 26 2.0 88
实施例11 5.15 21 1.9 84
实施例12 0.15 26 2.0 45
实施例13 0.36 21 2.0 55
实施例14 1.12 18 1.9 60
实施例15 10.35 28 2.0 85
实施例16 0.85 22 2.0 74
实施例17 1.45 24 2.1 85
实施例18 7.35 25 2.0 82
实施例19 0.76 19.5 1.9 65
实施例20 10.55 27 2.0 78
实施例21 4.25 21 1.9 78
实施例22 7.45 24 2.0 84
实施例23 13.25 19 2.0 72
实施例24 6.50 16 1.9 66
实施例25
按照实施例1的操作过程,将A1化合物换成如下结构的化合物,其它条件不变。
Figure PCTCN2016073644-appb-000041
A2化合物的合成:
称取2.65g 1-茚酮(20mmol)加入到250mL的两口烧瓶中,然后加入100mL异丙醇,混合物缓慢搅拌至固体完全溶解。然后缓慢加入20mmol苯肼盐酸盐(1.0当量),加毕后反应混合物继续在室温下搅拌30分钟,然后用油浴缓慢加热到回流,混合物回流1.3小时后停止加热,冷却到室温,有少量固体析出。
后处理:配置50mL饱和碳酸氢钠溶液,缓慢加入到所得上述溶液中,继续搅拌有大量固体析出,过滤然后分别用碳酸氢钠溶液,水洗涤滤饼,得5.1g褐色固体,产率98%。
按照实施例1的聚合条件,用该A2结构化合物和Z1结构化合物得到的二氯化锆配合物8μmol进行聚合,得到聚合产物155g,催化剂活性1.94×107gPP/molcat.h,分子量MW 24,分布2.0,等规度85%。
实施例26
按照实施例1的操作过程,在聚合过程中加入30g己烯-1,得到聚合产物220g,催化剂活性2.75×107gPP/molcat.h,分子量MW 20,分布2.4,等规度71%。
实施例27
按照实施例1的操作过程,在聚合过程中加入2.4mmol的三异丁基铝,其它条件不变,得到聚合产物184g,催化剂活性2.3×107gPP/molcat.h,分子量MW 25.5,分布2.0,等规度88%。
实施例28
按照实施例1的操作过程,π-配体的茂金属络合物的合成反应温度为-75℃,其它条件不变,得到聚合产物95g,催化剂活性1.06×107gPP/molcat.h,分子量MW 19.5,分布2.1,等规度80%。
实施例29
按照实施例1的操作过程,在聚合过程中加入2L脱水己烷,然后通入聚合级丙烯,得到聚合产物45g,催化剂活性0.56×107gPP/molcat.h,分子量MW 27.4,分布2.2,等规度88%。
实施例30
按照实施例1的操作过程,π-配体的茂金属络合物的合成反应温度为150℃,其它条件不变,得到聚合产物255g,催化剂活性3.19×107gPP/molcat.h,分子量MW 24.8,分布2.1,等规度91%。
实施例31
中间产物a1和b1,以及配体Z1的合成同实施例1。
A1的合成:
Figure PCTCN2016073644-appb-000042
称取2.65g 2-茚酮(20mmol)加入到250mL的两口烧瓶中,然后加入100mL异丙醇,混合物缓慢搅拌至固体完全溶解。然后缓慢加入4.5克1,1-二苯肼盐酸盐(20mmol,1.0当量),加毕后反应混合物继续在室温下搅拌30分钟,然后用油浴缓慢加热到回流,混合物回流2小时后停止加热,冷却到室温,有少量固体析出。
后处理:配置50mL饱和碳酸氢钠溶液,缓慢加入到所得上述溶液中,继续搅拌有大量固体析出,过滤然后分别用碳酸氢钠溶液,水洗涤滤饼,得4.1g褐色固体,产率73%。
二氯化锆配合物的合成:
Figure PCTCN2016073644-appb-000043
称取配体A1 0.64g(Fw=219.28,2.9mmol)于安瓶中,加入30mL无水乙醚溶解。在高纯N2保护下将安瓶置于0℃冰水浴中冷却搅拌,用注射器向其中缓慢滴加1.75mL nBuLi/hexane(己烷)(2.01mol/L,3.5mmol)。滴加完后反应体系自然升至室温,溶液呈黑红色。反应在室温搅拌4h。N2保护下在0℃冰水浴中将上述锂盐溶液缓慢滴加(20min)到含有1.75mL二甲基二氯硅烷(Me2SiCl2,Fw=129.04,d=1.07g/mL,14.5mmol)的无水乙醚(20mL)溶液中。溶液呈黑红色,产生大量LiCl,反应在室温搅拌过夜,抽干 得到灰白色固体中间产物1。
称取配体Z1 0.60g(Fw=206.28,2.9mmol)移入安瓶中,20mL无水乙醚溶解,溶液呈无色。在高纯N2保护下将安瓶置于0℃冰水浴中冷却搅拌,用注射器向其中缓慢滴加1.45mL nBuLi/hexane(2.01mol/L,2.9mmol)。反应体系自然升温,溶液由无色变成黄色,最后变成橘黄色,室温搅拌5h得中间产物2。
5h后,将已抽干的中间产物1溶于30mL无水乙醚中,溶液呈黑红色。将中间产物1的乙醚溶液置于-30℃低温冷浴中冷却搅拌,将中间产物2的乙醚溶液缓慢滴加到中间产物1中(15min),滴加完毕后让反应体系自然升温,溶液呈黑红色,室温搅拌过夜。除去LiCl,旋干溶剂,得到中间产物3,总产率38.6%。
Figure PCTCN2016073644-appb-000044
将上述中间产物3(Fw=481.70,1.12mmol,540mg)溶于无水乙醚中,为灰白色悬浊物。将安瓶置于0℃冰水浴中冷却搅拌,在N2保护下缓慢加入1.42mL nBuLi/hexane(1.6mol/L,2.24mmol),不溶物渐渐溶解,溶液变成黄色。自然升至室温后室温搅拌5h制得中间产物3的锂盐溶液。从手套箱中取出0.262g ZrCl4(Fw=233.04,1.12mmol)于安瓶中,在N2保护下加入30mL无水乙醚。将ZrCl4的乙醚溶液置于-40℃低温冷浴中冷却搅拌,将上述中间产物3的锂盐溶液缓慢加入到ZrCl4的悬浊液中(20min),滴加完成后自然升至室温,在室温下搅拌过夜,制备二氯化锆配合物。有黄色的固体析出,过滤抽干,产物为橘黄色固体482mg,产率66.7%。
将5L反应釜抽真空、氮气置换3次,后加入3600μmol的MAO(甲基铝氧烷)溶液和1000g丙烯于反应釜中;用二氯化锆配合物8μmol和400μmol的MAO(甲基铝氧烷)室温条件下活化30min,用高压氮气压入反应釜;升温到65℃,聚合反应1h,得到聚合产物155g,催化剂活性1.94×107gPP/molcat.h,分子量MW 23.5,分布2.1,等规度85%。
实施例32
Z2的合成如下,其它条件如实施例31。
Figure PCTCN2016073644-appb-000045
中间产物a2的合成:
按照1mol产物量计算原料的用量,并放于2500ml二口反应瓶中;冰水浴条件下搅拌20min;称取二溴-2-甲基丙酰溴和无水二氯甲烷加入分液漏斗中,缓慢滴加入反应瓶中;称取萘和无水二氯甲烷加入到分液漏斗中,迅速溶解后缓慢滴加到反应体系中,反应瓶内溶液颜色迅速变成黄色,逐渐变成棕红色,后加入无水二氯甲烷冲洗分液漏斗;反应30min后,将冰取出,使水浴缓慢升至室温;继续反应,观察无HBr气体放出,视为反应终点;用大量水洗涤,除去杂质和未反应的原料,分液后收集有机相;用无水二氯甲烷将水相中的产物萃取,反复三次;将萃取相和有机相合并干燥;用旋转蒸发仪将溶剂蒸出,提纯粗产品a2,产率为64.5%。
中间产物b2的合成:
称取中间产物a2放入1000ml二口反应瓶中,加入THF400ml,放于冰水浴中充分冷却;滴加入Red-Al,用15min全部滴加完,反应2h,升温至室温,室温反应过夜;配制10%的HCl溶液,向反应体系滴加,有白色固体析出,使体系呈酸性;用布氏漏斗抽滤,收集有机相,用THF萃取白色固体二次,收集萃取液;有机相和萃取液合并后干燥;旋蒸干燥得粗产品,收率68.4%。
配体Z2的合成:
将中间产物b2溶解于甲苯中,然后加入草酸和4A分子筛;混合物在120℃的温度下回流反应2h;在反应过程中用薄层色谱板来验证反应是否完全;反应完全后用过量的碳酸氢钠溶液洗涤,后分离出有机相;水层用乙酸乙酯萃取三次,合并有机相并干燥;旋蒸除去溶剂,得配体Z2,产率84%。终产率是37.1%。
用配体Z2和配体A1反应制备二氯化锆配合物,按照实施例1中的条件进行聚合反应,得到聚合产物460g,催化剂活性5.75×107gPP/molcat.h,分子量MW 25.4,分布2.0,等规度66%。
实施例33-实施例54
由实施例3到实施例24共22个配体Z,按照实施例31的条件得到22个二氯化锆配合物,然后进行聚合反应,得到如下评价结果。
Figure PCTCN2016073644-appb-000046
实施例55
按照实施例31的操作过程,将A1化合物换成如下结构的化合物,其它条件不变。
Figure PCTCN2016073644-appb-000047
A2化合物的合成:
称取2.65g 2-茚酮(20mmol)加入到250mL的两口烧瓶中,然后加入100mL异丙醇,混合物缓慢搅拌至固体完全溶解。然后缓慢加入20mmol苯肼盐酸盐(1.0当量),加毕后反应混合物继续在室温下搅拌30分钟,然后用油浴缓慢加热到回流,混合物回流2小 时后停止加热,冷却到室温,有少量固体析出。
后处理:配置50mL饱和碳酸氢钠溶液,缓慢加入到所得上述溶液中,继续搅拌有大量固体析出,过滤然后分别用碳酸氢钠溶液,水洗涤滤饼,得4.1g褐色固体,产率93%。
按照实施例1的聚合条件,用该A2结构化合物和Z1结构化合物得到的二氯化锆配合物8μmol进行聚合,得到聚合产物134g,催化剂活性1.68×107gPP/molcat.h,分子量MW 22,分布2.0,等规度88%。
实施例56
按照实施例311的操作过程,在聚合过程中加入30g己烯-1,得到聚合产物234g,催化剂活性2.93×107gPP/molcat.h,分子量MW 19.5,分布2.4,等规度63%。
实施例57
按照实施例31的操作过程,在聚合过程中加入2.4mmol的三异丁基铝,其它条件不变,得到聚合产物145g,催化剂活性1.81×107gPP/molcat.h,分子量MW 26.5,分布2.1,等规度85%。
实施例58
按照实施例31的操作过程,π-配体的茂金属络合物的合成反应温度为-75℃,其它条件不变,得到聚合产物145g,催化剂活性0.61×107gPP/molcat.h,分子量MW 22.5,分布2.0,等规度86%。
实施例59
按照实施例31的操作过程,在聚合过程中加入2L脱水己烷,然后通入聚合级丙烯,得到聚合产物65g,催化剂活性0.81×107gPP/molcat.h,分子量MW 25.5,分布2.2,等规度86%。
实施例60
按照实施例31的操作过程,π-配体的茂金属络合物的合成反应温度为150℃,其它条件不变,得到聚合产物220g,催化剂活性2.75×107gPP/molcat.h,分子量MW 24,分布2.1,等规度85%。
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明权利要求的保护范围。

Claims (56)

  1. 一种含杂原子的π-配体的茂金属络合物,其特征在于,所述茂金属络合物具有如下化学式(I)所示的化学结构:
    Figure PCTCN2016073644-appb-100001
    其中,M是元素周期表中第三、第四、第五或第六族过渡金属元素,包括镧系和錒系元素;
    X相互之间相同或不同,选自氢元素、卤素、烷基R、烷氧基OR、巯基SR、羧基OCOR、胺基NR2、膦基PR2、-OR°O-和OSO2CF3
    n是从1到4的整数,n不等于零;n与X的电荷数的乘积所得电荷数等于中心金属原子M的电荷数减二;
    Q是二价自由基,包括=CR′2、=SiR′2、=GeR′2、=NR′、=PR′、=BR′;
    A是π-配位体,具有如化学式(II)所示的结构:
    Figure PCTCN2016073644-appb-100002
    Z是一种π-配位体,Z=A,或Z具有下述化学式(IX)、(X)、(XI)、(XII)、(XIII)、(XIV)或(XV)所示的化学结构:
    Figure PCTCN2016073644-appb-100003
    Figure PCTCN2016073644-appb-100004
  2. 根据权利要求1所述的含杂原子的π-配体的茂金属络合物,其特征在于,化学结构式(I)中,A的一价阴离子π-配位体,具有化学式(II)-Li+所示的化学结构;化学式(II))中包含有环戊二烯环的基本结构,环戊二烯结构中的活泼氢具有亲电反应性,可与亲核试剂进行交换反应生成化学式(II)-Li+所示化合物,其基本反应如反应式(2)所示:
    Figure PCTCN2016073644-appb-100005
  3. 根据权利要求2所述的含杂原子的π-配体的茂金属络合物,其特征在于,反应式(2)中亲核试剂为有机锂试剂RnLi,其中,Rn是C1-C6的烷基或C6-C12的芳基。
  4. 根据权利要求1所述的含杂原子的π-配体的茂金属络合物,其特征在于,M为第四族的锆、铪或钛。
  5. 根据权利要求1所述的含杂原子的π-配体的茂金属络合物,其特征在于,R是C1-C20的直链或支化烷基、饱和或不饱和烷基、卤代或非卤代烷基或含有元素周期表中第十三到第十七族元素杂原子的烷基,或C3-C20的环烷基、C6-C30的芳基、C7-C30的烷取代芳基或C7-C30的芳取代烷基。
  6. 根据权利要求1所述的含杂原子的π-配体的茂金属络合物,其特征在于,R°是二价自由基,包括C2-C40的亚烷基、C6-C30的亚芳基、C7-C40的烷代亚芳基、C7-C40的芳 代亚烷基;在-OR°O-结构中,两个氧原子分别在自由基的任何位置。
  7. 根据权利要求6所述的含杂原子的π-配体的茂金属络合物,其特征在于,在-OR°O-结构中,两个氧原子的位置为在自由基的相邻α,β-位和相间α,γ-位的组合。
  8. 根据权利要求1所述的含杂原子的π-配体的茂金属络合物,其特征在于,X为氯、溴、C1-C20低碳烷基或芳基。
  9. 根据权利要求1所述的含杂原子的π-配体的茂金属络合物,其特征在于,R′相同或不同,是C1-C20的直链或支化烷基、饱和或不饱和烷基、卤代或非卤代烷基或含有元素周期表中第十三到第十七族元素杂原子的烷基,或C3-C20的环烷基、C6-C30的芳基、C7-C30的烷取代芳基或C7-C30的芳取代烷基。
  10. 根据权利要求9所述的含杂原子的π-配体的茂金属络合物,其特征在于,R′为甲基、乙基、异丙基、三甲基硅基、苯基或苄基。
  11. 根据权利要求1或2所述的含杂原子的π-配体的茂金属络合物,其特征在于,化学式(II)中符号﹡连接在化学键、原子或自由基上,表示﹡连接的此点与同类化学键、原子或自由基形成一个化学单键。
  12. 根据权利要求11所述的含杂原子的π-配体的茂金属络合物,其特征在于,化学式(II)中E是元素周期表中第十六族或第十五族元素的二价自由基,包括氧自由基、硫自由基、硒自由基、NR″和PR″。
  13. 根据权利要求12所述的含杂原子的π-配体的茂金属络合物,其特征在于,R″是C1-C20的直链或支化烷基、饱和或不饱和烷基、卤代或非卤代烷基或含有元素周期表中第十三到第十七族元素杂原子的烷基,或C3-C20的环烷基、C6-C30的芳基、C7-C30的烷取代芳基或C7-C30的芳取代烷基。
  14. 根据权利要求12所述的含杂原子的π-配体的茂金属络合物,其特征在于,R″为C4-C10的直链烷基、苯基、单取代或多取代苯基、苄基、单取代或多取代苄基、1-萘基、2-萘基、2-蒽基、1-菲基、2-菲基或5-菲基。
  15. 根据权利要求11所述的含杂原子的π-配体的茂金属络合物,其特征在于,R1为氢、C1-C40饱和或不饱和烷基、卤代或非卤代烷基或含有元素周期表中第十三到第十七族元素杂原子的烷基,或C3-C40的环烷基、C6-C40的芳基、C7-C40的烷取代芳基或C7-C40的芳取代烷基。
  16. 根据权利要求15所述的含杂原子的π-配体的茂金属络合物,其特征在于,R1为氢、甲基、乙基、异丙基、叔丁基、苯基、苄基、2-呋喃基或2-噻吩基。
  17. 根据权利要求11所述的含杂原子的π-配体的茂金属络合物,其特征在于,R2和R3分别为氢、氟或R,其中,R是C1-C20的直链或支化烷基、饱和或不饱和烷基、卤代或非卤代烷基或含有元素周期表中第十三到第十七族元素杂原子的烷基,或C3-C20的环烷基、C6-C30的芳基、C7-C30的烷取代芳基或C7-C30的芳取代烷基。
  18. 根据权利要求11所述的含杂原子的π-配体的茂金属络合物,其特征在于,R4为氢、C1-C40饱和或不饱和烷基、卤代或非卤代烷基或含有元素周期表中第十三到第十七族元素杂原子的烷基,或C3-C40的环烷基、C6-C40的芳基、C7-C40的烷取代芳基或C7-C40的芳取代烷基。
  19. 根据权利要求18所述的含杂原子的π-配体的茂金属络合物,其特征在于,R4为H、甲基、三氟甲基、异丙基、叔丁基、苯基、对叔丁基苯基、对三甲基硅基苯基、对三氟甲基苯基、3,5-二氯-4-三甲基硅基苯基或2-萘基。
  20. 根据权利要求5、15、17和18任意一项所述的含杂原子的π-配体的茂金属络合物,其特征在于,所述元素周期表中第十三到第十七族元素杂原子为硼、铝、硅、锗、硫、氧、氟或氯。
  21. 根据权利要求11所述的含杂原子的π-配体的茂金属络合物,其特征在于,L是二价自由基并具有下述化学式(III)、(IV)、(V)、(VI)、(VII)或(VIII)所示的结构:
    Figure PCTCN2016073644-appb-100006
  22. 根据权利要求21所述的含杂原子的π-配体的茂金属络合物,其特征在于,符号﹡连接在化学键、原子或自由基上,表示﹡连接的此点与同类化学键、原子或自由基形成一个化学单键。
  23. 根据权利要求21所述的含杂原子的π-配体的茂金属络合物,其特征在于,化学式(III)和(IV)中,i是整数且i不等于零。
  24. 根据权利要求21所述的含杂原子的π-配体的茂金属络合物,其特征在于,化学式(III)和(IV)中,i为2。
  25. 根据权利要求21所述的含杂原子的π-配体的茂金属络合物,其特征在于,R5相同或不同,R5为C1-C40饱和或不饱和烷基、卤代或非卤代烷基或含有元素周期表中第十三到第十七族元素杂原子的烷基,或C3-C40的环烷基、C6-C40的芳基、C7-C40的烷取代芳基或C7-C40的芳取代烷基。
  26. 根据权利要求21所述的含杂原子的π-配体的茂金属络合物,其特征在于,R5为氢、氟或甲基。
  27. 根据权利要求21所述的含杂原子的π-配体的茂金属络合物,其特征在于,化学式(V)、(VI)、(VII)和(VIII)中R6和R7分别为氢、氟或R,其中,R是C1-C20的直链或支化烷基、饱和或不饱和烷基、卤代或非卤代烷基或含有元素周期表中第十三到第十七族元素杂原子的烷基,或C3-C20的环烷基、C6-C30的芳基、C7-C30的烷取代芳基或C7-C30的芳取代烷基。
  28. 根据权利要求1所述的含杂原子的π-配体的茂金属络合物,其特征在于,化学式(IX)、(X)、(XI)、(XII)、(XIII)、(XIV)和(XV)中符号﹡连接在化学键、原子或自由基上,表示﹡连接的此点与同类化学键、原子或自由基形成一个化学单键。
  29. 根据权利要求1所述的含杂原子的π-配体的茂金属络合物,其特征在于,化学式(IX)、(X)、(XI)、(XII)、(XIII)和(XIV)中R1为氢、C1-C40饱和或不饱和烷基、卤代或非卤代烷基或含有元素周期表中第十三到第十七族元素杂原子的烷基,或C3-C40的环烷基、C6-C40的芳基、C7-C40的烷取代芳基或C7-C40的芳取代烷基;化学式(X)、(XI)、(XIII)和(XV)中R2是氢、氟或R,其中,R是C1-C20的直链或支化烷基、饱和或不饱和烷基、卤代或非卤代烷基或含有元素周期表中第十三到第十七族元素杂原子的烷基,或C3-C20的环烷基、C6-C30的芳基、C7-C30的烷取代芳基或C7-C30的芳取代烷基。
  30. 根据权利要求1所述的含杂原子的π-配体的茂金属络合物,其特征在于,化学式(IX)、(X)、(XI)、(XII)、(XIII)、和(XIV)中R1为氢、甲基、乙基、异丙基、叔丁基、苯基、苄基、2-呋喃基或2-噻吩基。
  31. 根据权利要求1所述的含杂原子的π-配体的茂金属络合物,其特征在于,R8相同或不同,R8为C1-C40饱和或不饱和烷基、卤代或非卤代烷基或含有元素周期表中第十三到第十七族元素杂原子的烷基,或C3-C40的环烷基、C6-C40的芳基、C7-C40的烷取代芳基或C7-C40的芳取代烷基。
  32. 根据权利要求1所述的含杂原子的π-配体的茂金属络合物,其特征在于,R8为甲基、乙基、异丙基、叔丁基或苯基。
  33. 根据权利要求1所述的含杂原子的π-配体的茂金属络合物,其特征在于,R9相同或不同,R9为C1-C40饱和或不饱和烷基、卤代或非卤代烷基或含有元素周期表中第十三到第十七族元素杂原子的烷基,或C3-C40的环烷基、C6-C40的芳基、C7-C40的烷取代芳基或C7-C40的芳取代烷基。
  34. 根据权利要求1所述的含杂原子的π-配体的茂金属络合物,其特征在于,R9为C1-C20的直链或支化的、饱和或不饱和的、部分或全部卤化的、线性的或环状的碳自由基。
  35. 根据权利要求1所述的含杂原子的π-配体的茂金属络合物,其特征在于,R10相同或不同,R10为氢、C1-C40饱和或不饱和烷基、卤代或非卤代烷基或含有元素周期表中第十三到第十七族元素杂原子的烷基,或C3-C40的环烷基、C6-C40的芳基、C7-C40的烷取代芳基或C7-C40的芳取代烷基。
  36. 根据权利要求35所述的含杂原子的π-配体的茂金属络合物,其特征在于,R10为氢、氟、氯、甲基、乙基或苯基。
  37. 根据权利要求1所述的含杂原子的π-配体的茂金属络合物,其特征在于,R11相同或不同,R11为氢、氟、氯、溴、OR、SR、OCOR、NR2、PR2,其中,R是C1-C20的直链或支化烷基、饱和或不饱和烷基、卤代或非卤代烷基或含有元素周期表中第十三到第十七族元素杂原子的烷基,或C3-C20的环烷基、C6-C30的芳基、C7-C30的烷取代芳基或C7-C30的芳取代烷基;或R11为C1-C40饱和或不饱和烷基、卤代或非卤代烷基或含有元素周期表中第十三到第十七族元素杂原子的烷基,或C3-C40的环烷基、C6-C40的芳基、 C7-C40的烷取代芳基或C7-C40的芳取代烷基。
  38. 根据权利要求1所述的含杂原子的π-配体的茂金属络合物,其特征在于,J是元素周期表中第十三族或第十五族元素,包括硼、铝、镓、氮、磷和砷。
  39. 根据权利要求1所述的含杂原子的π-配体的茂金属络合物,其特征在于,J为氮或磷。
  40. 一种含杂原子的π-配体的茂金属络合物催化剂体系,其特征在于,包含化学式(Ia)所示的化合物,所述(Ia)所示的化合物由权利要求1中所述茂金属络合物(I)通过反应式(1)所示的活化反应制备:
    Figure PCTCN2016073644-appb-100007
    其中,LA是路易斯酸性物质。
  41. 根据权利要求40所述的含杂原子的π-配体的茂金属络合物催化剂体系,其特征在于,LA为在溶液中同时具有链状、环状和笼状结构平衡态的聚甲基铝氧烷或改性的聚甲基铝氧烷。
  42. 根据权利要求40所述的含杂原子的π-配体的茂金属络合物催化剂体系,其特征在于,活化反应在均相液体介质中完成,所述均相液体介质包括饱和烷烃液体介质和芳香类液体介质,所述饱和烷烃包括戊烷及其异构体、己烷及其异构体、庚烷及其异构体和辛烷及其异构体,所述芳香类液体介质包括苯、甲苯、二甲苯及异构体、三甲苯及异构体、氯苯、二氯苯及异构体、氟苯、二氟苯及异构体以及多氟苯及异构体。
  43. 根据权利要求40所述的含杂原子的π-配体的茂金属络合物催化剂体系,其特征在于,活化反应所使用的均相液体介质是二种或二种以上的混合液体介质,所述混合液体介质是指饱和烷烃与芳烃按体积百分比进行混合,其中一种液体介质的体积百分数不低于5%。
  44. 根据权利要求40所述的含杂原子的π-配体的茂金属络合物催化剂体系,其特征在于,活化反应在-100℃~+250℃的温度范围内完成,反应产物(Ia)的收率在95%以上。
  45. 根据权利要求40所述的含杂原子的π-配体的茂金属络合物催化剂体系,其特征在于,活化反应的反应温度在-75℃~150℃之间。
  46. 权利要求1所述的含杂原子的π-配体的茂金属络合物的合成方法,其特征在于,合成方法用下述含杂原子的π-配体的反应式(3)来表示:
    Figure PCTCN2016073644-appb-100008
    其中,T互相间相同或不同,所述T是单齿或双齿的中性配位体;
    LG是脱离基团,其互相之间相同或不同,所述LG为氢、碱金属元素或第十四族重元素的有机自由基。
  47. 根据权利要求46所述的含杂原子的π-配体的茂金属络合物的合成方法,其特征在于,所述单齿配位体包括醚类ROR、硫醚类RSR、三级胺类NR3、三级膦类PR3、环醚、环硫醚类、酮类、取代环酮类、取代吡啶类、取代吡咯类、取代哌啶类、酯类、内酯类、酰胺类和内酰胺类,其中R是C1-C20的直链或支化烷基、饱和或不饱和烷基、卤代或非卤代烷基或含有元素周期表中第十三到第十七族元素杂原子的烷基,或C3-C20的环烷基、C6-C30的芳基、C7-C30的烷取代芳基或C7-C30的芳取代烷基。
  48. 根据权利要求46所述的含杂原子的π-配体的茂金属络合物的合成方法,其特征在于,所述双齿配位体包括邻位双醚类、α,
    Figure PCTCN2016073644-appb-100009
    双醚类、邻位双胺类、α,
    Figure PCTCN2016073644-appb-100010
    双胺类、邻位双硫醚类、α,
    Figure PCTCN2016073644-appb-100011
    双硫醚类、邻位双膦类和α,
    Figure PCTCN2016073644-appb-100012
    双膦类。
  49. 根据权利要求46所述的含杂原子的π-配体的茂金属络合物的合成方法,其特征在于,x是0或整数1、2或3。
  50. 根据权利要求46所述的含杂原子的π-配体的茂金属络合物的合成方法,其特征在于,所述碱金属元素包括锂、钠和钾;所述第十四族重元素的有机自由基包括SiR3、GeR3、SnR3、PdR3、ZnR、BaR、MgR和CaR,其中,R是C1-C20的直链或支化烷基、饱和或不饱和烷基、卤代或非卤代烷基或含有元素周期表中第十三到第十七族元素杂原子的烷基,或C3-C20的环烷基、C6-C30的芳基、C7-C30的烷取代芳基或C7-C30的芳取代烷基。
  51. 根据权利要求46所述的含杂原子的π-配体的茂金属络合物的合成方法,其特征在于,合成过程中反应介质为饱和C5-C15烷烃、环烷烃或其中两种或两种以上的混合物。
  52. 根据权利要求46所述的含杂原子的π-配体的茂金属络合物的合成方法,其特征在于,合成过程中反应介质为己烷、庚烷、辛烷、甲苯或二甲苯。
  53. 根据权利要求46所述的含杂原子的π-配体的茂金属络合物的合成方法,其特征在于,反应温度范围为-100℃~+300℃。
  54. 根据权利要求46所述的含杂原子的π-配体的茂金属络合物的合成方法,其特征在于,反应温度范围为-75℃~+250℃。
  55. 根据权利要求46所述的含杂原子的π-配体的茂金属络合物的合成方法,其特征在于,反应温度范围为-50℃~+150℃。
  56. 权利要求40所述的含杂原子的π-配体的茂金属络合物催化剂体系在本体淤浆或溶剂淤浆聚合工艺条件下在催化α-烯烃均聚合或共聚合中的应用。
PCT/CN2016/073644 2015-02-06 2016-02-05 含杂原子的π-配体的茂金属络合物及其制备方法、其催化剂体系和催化剂体系的应用 WO2016124157A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/548,793 US20180079843A1 (en) 2015-02-06 2016-02-05 Metallocene complex with a heteroatom-containing pi-ligand and preparation method therefor, catalyst system containing the same and use thereof
JP2017559755A JP6735292B2 (ja) 2015-02-06 2016-02-05 ヘテロ原子含有π−配位子のメタロセン錯体及びその製造方法、その触媒系及び触媒系の応用
US16/671,295 US20200062874A1 (en) 2015-02-06 2019-11-01 Metallocene complex with a heteroatom-containing pi-ligand and preparation method therefor, catalyst system containing the same and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510064976X 2015-02-06
CN2015100649774 2015-02-06
CN201510064977.4A CN105985368B (zh) 2015-02-06 2015-02-06 含杂原子的π-配体的茂金属络合物及其制备方法、其催化剂体系和催化剂体系的应用
CN201510064976.XA CN105985383B (zh) 2015-02-06 2015-02-06 含杂原子的π-配体的茂金属络合物及其制备方法、其催化剂体系和催化剂体系的应用

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/548,793 A-371-Of-International US20180079843A1 (en) 2015-02-06 2016-02-05 Metallocene complex with a heteroatom-containing pi-ligand and preparation method therefor, catalyst system containing the same and use thereof
US16/671,295 Division US20200062874A1 (en) 2015-02-06 2019-11-01 Metallocene complex with a heteroatom-containing pi-ligand and preparation method therefor, catalyst system containing the same and use thereof

Publications (1)

Publication Number Publication Date
WO2016124157A1 true WO2016124157A1 (zh) 2016-08-11

Family

ID=56563482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073644 WO2016124157A1 (zh) 2015-02-06 2016-02-05 含杂原子的π-配体的茂金属络合物及其制备方法、其催化剂体系和催化剂体系的应用

Country Status (3)

Country Link
US (2) US20180079843A1 (zh)
JP (1) JP6735292B2 (zh)
WO (1) WO2016124157A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105865A1 (ko) * 2016-12-05 2018-06-14 주식회사 엘지화학 을레핀 공중합체 합성용 촉매 조성물 및 올레핀 공중합체의 제조 방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210019522A (ko) * 2018-06-13 2021-02-22 바스프 에스이 금속 또는 반금속-함유 필름의 제조 방법
CN117304374A (zh) * 2022-06-22 2023-12-29 中国石油天然气股份有限公司 一种烯烃聚合茂金属催化剂组合物及其制备和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1249756A (zh) * 1997-11-12 2000-04-05 蒙特尔技术有限公司 金属茂和烯烃聚合催化剂
CN1805980A (zh) * 2003-06-16 2006-07-19 伊奎斯塔化学有限公司 生产单中心聚烯烃的方法
WO2009032048A1 (en) * 2007-09-04 2009-03-12 Equistar Chemicals, Lp Olefin polymerization process
WO2009032051A1 (en) * 2007-09-04 2009-03-12 Equistar Chemicals, Lp Olefin polymerization process
WO2015016423A1 (ko) * 2013-08-01 2015-02-05 주식회사 엘지화학 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용하는 올레핀계 중합체의 제조방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10450390B2 (en) * 2014-12-15 2019-10-22 Lg Chem, Ltd. Metallocene compound, metallocene-supported catalyst, and method of preparing polyolefin using the same
WO2016122018A1 (ko) * 2015-01-28 2016-08-04 주식회사 엘지화학 메탈로센 화합물, 이를 포함하는 촉매 조성물, 및 이를 이용하는 폴리올레핀의 제조방법
WO2016122017A1 (ko) * 2015-01-28 2016-08-04 주식회사 엘지화학 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용하는 올레핀계 중합체의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1249756A (zh) * 1997-11-12 2000-04-05 蒙特尔技术有限公司 金属茂和烯烃聚合催化剂
CN1805980A (zh) * 2003-06-16 2006-07-19 伊奎斯塔化学有限公司 生产单中心聚烯烃的方法
WO2009032048A1 (en) * 2007-09-04 2009-03-12 Equistar Chemicals, Lp Olefin polymerization process
WO2009032051A1 (en) * 2007-09-04 2009-03-12 Equistar Chemicals, Lp Olefin polymerization process
WO2015016423A1 (ko) * 2013-08-01 2015-02-05 주식회사 엘지화학 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용하는 올레핀계 중합체의 제조방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105865A1 (ko) * 2016-12-05 2018-06-14 주식회사 엘지화학 을레핀 공중합체 합성용 촉매 조성물 및 올레핀 공중합체의 제조 방법
CN108401432A (zh) * 2016-12-05 2018-08-14 Lg化学株式会社 用于合成烯烃共聚物的催化剂组合物和制备烯烃共聚物的方法
US10669363B2 (en) 2016-12-05 2020-06-02 Lg Chem, Ltd. Catalyst composition for synthesizing olefin copolymer and method for preparing olefin copolymer
CN108401432B (zh) * 2016-12-05 2020-11-06 Lg化学株式会社 用于合成烯烃共聚物的催化剂组合物和制备烯烃共聚物的方法

Also Published As

Publication number Publication date
JP2018509465A (ja) 2018-04-05
US20180079843A1 (en) 2018-03-22
JP6735292B2 (ja) 2020-08-05
US20200062874A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
Volkis et al. Group 4 octahedral benzamidinate complexes: Syntheses, structures, and catalytic activities in the polymerization of propylene modulated by pressure
JP3073227B2 (ja) シンジオタクチツク重合体の製造方法および製造用触媒
US7405261B2 (en) Organometallic transition metal compound, biscyclopentadienyl ligand system, catalyst system and process for preparing polyolefins
CN105985383B (zh) 含杂原子的π-配体的茂金属络合物及其制备方法、其催化剂体系和催化剂体系的应用
EP2220101B1 (en) Transition metal compounds
US20200062874A1 (en) Metallocene complex with a heteroatom-containing pi-ligand and preparation method therefor, catalyst system containing the same and use thereof
Richter et al. Metallocene analogues containing bulky heteroallylic ligands and their use as new olefin polymerization catalysts
Zhai et al. Rare-earth-metal complexes bearing an iminodibenzyl-PNP pincer ligand: Synthesis and reactivity toward 3, 4-selective polymerization of 1, 3-dienes
CN105985368B (zh) 含杂原子的π-配体的茂金属络合物及其制备方法、其催化剂体系和催化剂体系的应用
Iluc et al. Snapshots of the oxidative-addition process of silanes to nickel (0)
JP4658335B2 (ja) 不飽和化合物重合用有機金属触媒
KR100961079B1 (ko) 올레핀 중합용 촉매 및 이를 이용한 올레핀의 중합방법
EP1742954A2 (en) Process for the racemoselective preparation of ansa-metallocenes
US7635783B2 (en) Meso-selective synthesis of ansa-metallocenes
Abdelbagi et al. 2, 2′-Bis (methylene) biphenylidene-bridged bis (3-indenyl) dichloride complexes of Ti, Zr and Hf as catalyst precursors for ethylene polymerization
WO2006002924A2 (en) Process for the racemoselective synthesis of ansa-metallocenes
Schumann et al. Synthesis, crystal structure and catalytic activity of some new chiral ansa-metallocenes of yttrium, lanthanum, samarium, lutetium and of zirconium
Havlík et al. Highly substituted zirconium and hafnium cyclopentadienyl bifunctional β-diketiminate complexes–Synthesis, structure, and catalytic activity towards ethylene polymerization
JP2005501142A (ja) オレフィン重合用触媒およびポリオレフィンの製造方法
Gómez-Ruiz et al. Synthesis, characterization and catalytic behaviour of ansa-zirconocene complexes containing tetraphenylcyclopentadienyl rings: X-ray crystal structures of [Zr {Me2Si (η5-C5Ph4)(η5-C5H3R)} Cl2](R= H, But)
Thiele et al. Synthesis of a chiral meso-like ansa-zirconocene complex and its use for the catalytic formation of low molecular weight polypropylene
Polo et al. A sterically hindered bis-η-alkylcyclopentadienylzirconium compound as catalyst for the polymerization of ethene and propene
Musikabhumma et al. Tritylpyridinium tetrakis (pentafluorophenyl) borate as an efficient activator for “constrained-geometry” catalysts in ethylene polymerization
Rodriguez Villanueva Novel Olefin Polymerization Pre-Catalyst Bearing an Inversely-Polarized Phosphaalkene Ethenolate Monoanionic Bidentate Ligand and its Polymerization Studies
WO2023246009A1 (zh) 一种烯烃聚合茂金属催化剂组合物及其制备和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746152

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017559755

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15548793

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 16746152

Country of ref document: EP

Kind code of ref document: A1