WO2018105649A1 - ポリアミド - Google Patents

ポリアミド Download PDF

Info

Publication number
WO2018105649A1
WO2018105649A1 PCT/JP2017/043800 JP2017043800W WO2018105649A1 WO 2018105649 A1 WO2018105649 A1 WO 2018105649A1 JP 2017043800 W JP2017043800 W JP 2017043800W WO 2018105649 A1 WO2018105649 A1 WO 2018105649A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
mass
parts
salt
dicarboxylic acid
Prior art date
Application number
PCT/JP2017/043800
Other languages
English (en)
French (fr)
Inventor
亮介 小林
隆昌 秋月
望月 学
拓馬 伊藤
Original Assignee
ユニチカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカ株式会社 filed Critical ユニチカ株式会社
Priority to JP2018555036A priority Critical patent/JP7055383B2/ja
Priority to DE112017006180.6T priority patent/DE112017006180T5/de
Publication of WO2018105649A1 publication Critical patent/WO2018105649A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • the present invention relates to a bioplastic polyamide excellent in heat resistance, chemical resistance, mechanical properties, and gas barrier properties.
  • Patent Document 1 discloses a polylactic acid film comprising 67 to 96% by mass of a polylactic acid resin and 4 to 33% by mass of a plasticizer.
  • Patent Document 2 discloses a film comprising a lactic acid resin and an aliphatic polyester of 50 to 85:50 to 15 (mass ratio).
  • Patent Document 3 discloses a film made of microorganism-derived poly (3-hydroxybutyrate-co-3-hydroxyhexanoate.
  • Patent Document 4 discloses a plant-derived linear low-density polyethylene. A polyethylene film containing 20-70% by weight is disclosed.
  • Patent Document 5 discloses a plastic container having a laminated structure of polylactic acid and polyolefin.
  • the present inventors tried to produce a film using 2,5-bis (aminomethyl) furan and / or 2,5-bis (aminomethyl) tetrahydrofuran obtained from biomass.
  • the furan-based monomer is easily decomposed during polymerization, and conventionally known polyamide polymerization methods have a problem that it is difficult to produce a film and a bottle container because a polyamide having a high molecular weight cannot be obtained.
  • An object of the present invention is to provide a bioplastic polyamide excellent in heat resistance, chemical resistance, mechanical properties and gas barrier properties.
  • the bioplastic is a polymer containing a raw material derived from a living organism (particularly a plant) as a monomer component, particularly a polymer containing a furan ring and / or a tetrahydrofuran ring in the main chain.
  • the gist of the present invention is as follows.
  • a polyamide comprising a dicarboxylic acid component and a diamine component and having a number average molecular weight of 5000 or more, wherein the diamine component is 2,5-bis (aminomethyl) furan and / or 2,5-bis (aminomethyl) tetrahydrofuran ( A polyamide comprising A) in an amount of 15 to 85 mol% based on the total amount of the diamine component.
  • the diamine component further contains xylylenediamine (B).
  • a film comprising the polyamide according to any one of (1) to (6).
  • a bottle container comprising the polyamide according to any one of (1) to (6).
  • the diamine component contains 2,5-bis (aminomethyl) furan and / or 2,5-bis (aminomethyl) tetrahydrofuran (A) in an amount of 15 to 85 mol% based on the total amount of the diamine component.
  • a method for producing polyamide (10) The process for producing a polyamide as described in (9), wherein the “melting point of the resulting polyamide” is 150 to 245 ° C. (11) The method for producing a polyamide as described in (9) or (10), wherein the solvent has a boiling point not lower than the above temperature. (12) The method for producing a polyamide as described in any one of (9) to (11), wherein the solvent is an alicyclic hydrocarbon compound. (13) The method for producing a polyamide as described in any one of (9) to (12), wherein the amount of the solvent is 30 to 300 parts by mass with respect to 100 parts by mass of the salt.
  • the salt is prepared with two or more different combinations of the dicarboxylic acid component and the diamine component.
  • the polymerization is carried out at a temperature not lower than the melting point of the salt having the lowest melting point and not higher than the melting point of the resulting polyamide-20 ° C. A process for producing the polyamide as described.
  • a polyamide having excellent heat resistance, chemical resistance, mechanical properties and gas barrier properties can be provided.
  • the molded product obtained from the polyamide of the present invention can be suitably used as a food packaging film and / or a bottle container.
  • the polyamide of the present invention is composed of a dicarboxylic acid component and a diamine component.
  • dicarboxylic acid component examples include aromatic dicarboxylic acid, alicyclic dicarboxylic acid, and aliphatic dicarboxylic acid.
  • aromatic dicarboxylic acid examples include terephthalic acid, isophthalic acid, 4,4′-diphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, diphenyl ether-4,4′-dicarboxylic acid, Diphenoxyethane-4,4′-dicarboxylic acid, diphenoxybutane-4,4′-dicarboxylic acid, diphenylethane-4,4′-dicarboxylic acid, diphenyl ether-3,3′-dicarboxylic acid, diphenoxy ether-3 , 3′-dicarboxylic acid, diphenylethane-3,3′-dicarboxylic acid.
  • Examples of the alicyclic dicarboxylic acid include 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, and 2,5-norbornene dicarboxylic acid.
  • aliphatic dicarboxylic acid examples include aliphatic saturated dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, and hydrogenated dimer acid.
  • Acid Aliphatic unsaturated dicarboxylic acids such as fumaric acid, maleic acid, itaconic acid, citraconic acid and dimer acid.
  • the dicarboxylic acid components aliphatic dicarboxylic acids, particularly aliphatic saturated dicarboxylic acids are preferred, and adipic acid is most preferred because the resulting polyamide is excellent in both mechanical properties and gas barrier properties.
  • the content of aliphatic dicarboxylic acid (preferably aliphatic saturated dicarboxylic acid, particularly adipic acid) in the dicarboxylic acid component is preferably 50 mol% or more, more preferably 80 mol% or more, More preferably, it is 100 mol%.
  • the content is a ratio with respect to the total amount of the dicarboxylic acid component.
  • the above dicarboxylic acids may be used alone or in combination of two or more.
  • the dicarboxylic acid component contains two or more kinds of aliphatic dicarboxylic acids, the total content thereof may be within the above-described range.
  • the mechanical properties are at least properties related to tensile strength and impact resistance.
  • component (A) As the diamine component, it is necessary to contain 2,5-bis (aminomethyl) furan and / or 2,5-bis (aminomethyl) tetrahydrofuran (hereinafter sometimes referred to as “component (A)”).
  • component (A) all the properties of heat resistance, chemical resistance, mechanical properties and gas barrier properties can be made high even though it is a bioplastic.
  • the component (A) content needs to be 15 to 85 mol% in the diamine component, and further improves heat resistance, chemical resistance (especially chemical resistance to ammonia), mechanical properties and gas barrier properties. From the viewpoint, it is preferably 20 to 80 mol%, more preferably 50 to 80 mol%, still more preferably 60 to 80 mol%.
  • the content of the component (A) is a ratio with respect to the total amount of the diamine component, and when both 2,5-bis (aminomethyl) furan and 2,5-bis (aminomethyl) tetrahydrofuran are contained, the total amount of these components That is.
  • the content of the component (A) is too small, gas barrier properties and chemical resistance (especially chemical resistance against ammonia) are lowered, which is not preferable.
  • the molar ratio of the component (A) is too large, the mechanical properties, heat resistance and moldability of the resulting polyamide are lowered, which is not preferable.
  • Polyamide contains only 2,5-bis (aminomethyl) furan as component (A) to further improve heat resistance, chemical resistance (especially chemical resistance to ammonia), mechanical properties and gas barrier properties From the viewpoint of
  • 2,5-bis (aminomethyl) furan is obtained by reducing 5- (hydroxymethyl) furfural (HMF) to obtain furan-2,5-dimethanol, followed by chlorination, azidation, and reduction. Can be obtained.
  • 2,5-bis (aminomethyl) furan can also be obtained as a commercial product.
  • 2,5-bis (aminomethyl) tetrahydrofuran can be obtained, for example, by reducing HMF to obtain tetrahydrofuran-2,5-dimethanol, followed by sulfonation, azidation, and reduction.
  • 2,5-bis (aminomethyl) tetrahydrofuran can be obtained by reduction (hydrogenation) of 2,5-bis (aminomethyl) furan, or can be obtained as a commercial product.
  • the diamine component preferably contains xylylenediamine (hereinafter sometimes referred to as “component (B)”).
  • component (B) xylylenediamine
  • the content of component (B) is preferably 15 to 85 mol%, more preferably 20 to 80 mol% in the diamine component, from the viewpoint of further improving heat resistance, chemical resistance, mechanical properties and gas barrier properties.
  • the mol% more preferably 20 to 50 mol%, and most preferably 20 to 40 mol%.
  • Examples of the component (B) include paraxylylenediamine, metaxylylenediamine, and orthoxylylenediamine. Among these, metaxylylenediamine is preferable because of its excellent gas barrier properties.
  • Content of a component (B) is a ratio with respect to the diamine component whole quantity, and when 2 or more types of xylylenediamine is contained, it is these total amounts.
  • the molar ratio of component (A) to component (B) [(A) / (B)] is the heat resistance, chemical resistance, mechanical properties.
  • it is preferably 85/15 to 15/85, more preferably 80/20 to 20/80, and 80/20 to 50/50. More preferably, 80/20 to 60/40 is most preferable.
  • an aromatic ring-containing diamine different from 2,5-bis (aminomethyl) furan and xylylenediamine, 2,5-bis (amino) Alicyclic diamines different from (methyl) tetrahydrofuran and aliphatic diamines may be used.
  • the aromatic ring is a so-called aromatic carbon ring and heterocyclic ring, and examples thereof include a benzene ring, a naphthalene ring, and a furan ring.
  • An aromatic ring-containing diamine is a diamine containing one or more such aromatic rings in one molecule.
  • An alicyclic diamine is a diamine that does not contain an aromatic ring and contains at least one saturated or unsaturated carbocyclic or heterocyclic ring having no aromaticity in one molecule.
  • Aliphatic diamines are linear or branched diamines that do not contain carbocyclic and heterocyclic rings in one molecule.
  • aromatic ring-containing diamines different from 2,5-bis (aminomethyl) furan and xylylenediamine include phenylenediamine, 1,5-diaminonaphthalene, 1,8-diaminonaphthalene, 2,6-diaminonaphthalene, 4,4′-diaminodiphenyl ether is mentioned.
  • Examples of alicyclic diamines different from 2,5-bis (aminomethyl) tetrahydrofuran include 1,4-cyclohexanediamine, 1,3-cyclohexanediamine, 1,2-cyclohexanediamine, isophoronediamine, 4,4 ′.
  • Examples of the aliphatic diamine include 1,5-pentanediamine, 2-methyl-1,5-pentanediamine, 1,6-hexanediamine, 1,7-heptanediamine, 1,8-octanediamine, and 2-methyl.
  • heat resistance and moldability are improved by using an aliphatic diamine having 5 to 12 carbon atoms or an alicyclic diamine having 6 or more carbon atoms. be able to.
  • a linear aliphatic diamine having 5, 8, 9, or 10 carbon atoms By using a linear aliphatic diamine having 5, 8, 9, or 10 carbon atoms, the proportion of the raw material derived from living organisms can be increased.
  • a linear aliphatic diamine having 5, 8, 9, 10 carbon atoms is synthesized by synthesizing a corresponding dicarboxylic acid from a plant-derived raw material by biofermentation or ozonolysis, and then aminating it. Obtainable.
  • 1,5-pentanediamine can be obtained by amination of L-lysine obtained by fermentation of waste molasses.
  • 1,8-octanediamine and 1,9-nonanediamine can be obtained by amination of oleic acid obtained from olive oil and rice bran oil.
  • 1,10-decanediamine can be obtained by amination of ricinoleic acid obtained from castor oil.
  • the polyamide of the present invention can be produced by preparing a salt from a dicarboxylic acid component as a raw material monomer and a diamine and then polymerizing the salt. Specifically, the polyamide of the present invention is prepared by preparing one salt from raw material monomers and polymerizing at a temperature not lower than the melting point of the salt and not higher than “melting point of the resulting polyamide ⁇ 20 ° C.” (hereinafter referred to as “Method (X)”).
  • the “obtained polyamide” means “polyamide to be produced” or “target polyamide”. “The melting point of the resulting polyamide” is usually 150 to 245 ° C., preferably 200 to 245 ° C.
  • “preparing one salt from raw material monomers” means that in the following cases (1) and (2), all monomer components of the polyamide are mixed together to produce a salt: (1) When the polyamide contains one monomer each as a dicarboxylic acid component and a diamine component; and (2) Two or more monomers having different structures as at least one component of the dicarboxylic acid component or the diamine component. If contained.
  • “preparing two or more salts from raw material monomers” means that in the case of (2) above, two or more salts having different combinations of dicarboxylic acid components and diamine components are used for each type. It means to make by individual mixing.
  • the polyamide is preferably produced by the method (Y) from the viewpoint of further improving heat resistance and mechanical properties and further increasing the molecular weight of the polyamide.
  • polymerization in the above temperature range refers to polymerization in the above temperature range for 90% or more of the total polymerization time.
  • Polymerization at a temperature lower than the melting point of the salt is not preferable because the obtained polyamide has a number average molecular weight of less than 5000.
  • the color tone of the obtained polyamide may be deteriorated or the number average molecular weight may be less than 5,000.
  • the polymerization temperature may be always constant during the polymerization, or may be appropriately changed according to the progress of the polymerization.
  • the reaction time is usually 0.5 to 18 hours after reaching the reaction temperature, and may be 6 to 18 hours from the viewpoint of further improving the heat resistance and mechanical properties of the polyamide and further increasing the molecular weight of the polyamide. preferable.
  • the pressure is preferably set to atmospheric pressure or higher and 10 MPa or lower.
  • a solvent having a boiling point equal to or higher than the melting point of the salt that is, a polymerization solvent
  • the solvent is usually a liquid at the polymerization temperature
  • the melting point is not higher than the polymerization temperature
  • the boiling point is not lower than the polymerization temperature.
  • the upper limit of the boiling point of the solvent is not particularly limited, and the boiling point is usually 250 ° C. or lower, particularly 230 ° C. or lower.
  • the solvent include alicyclic hydrocarbon compounds such as decalin (boiling point: 185 to 195 ° C.), cyclodecane (boiling point: 201 ° C.); and undecane (boiling point: 196 ° C.), dodecane (boiling point: 216 ° C.).
  • the solvent is preferably an alicyclic hydrocarbon compound having a boiling point (particularly decalin) from the viewpoint of further improving the heat resistance and mechanical properties of the polyamide and further increasing the molecular weight of the polyamide.
  • the amount of the polymerization solvent is usually 30 to 300 parts by mass with respect to 100 parts by mass of the salt. From the viewpoint of further improving the heat resistance and mechanical properties of the polyamide and further increasing the molecular weight of the polyamide, preferably 50 to 200 parts by mass, more preferably 80 to 150 parts by mass.
  • the “salt of 100 parts by mass” is a total of 100 parts by mass of the two or more kinds of salts.
  • the polymerization may be continued under normal pressure or in an inert gas flow, or may be continued under reduced pressure.
  • the flow rate of the inert gas is preferably 0.01 to 10 L / (kg ⁇ min).
  • a pressure reduction degree shall be 1000 Pa or less.
  • the method for obtaining the corresponding salt is not particularly limited, and examples thereof include a method for obtaining a salt by reacting a dicarboxylic acid component and a diamine component in water, an organic solvent, or a mixed solvent thereof.
  • the amount of water and / or organic solvent to be used is preferably 2 parts by mass or more, more preferably 10 parts by mass or more, based on a total of 100 parts by mass of all dicarboxylic acid components and all diamine components. It is more preferably from 2000 to 2000 parts by mass, and most preferably from 500 to 1000 parts by mass.
  • the reaction temperature is preferably 20 to 100 ° C. under normal pressure, and preferably 100 to 150 ° C. under pressure.
  • the reaction time is preferably 0.1 to 5 hours after reaching the reaction temperature, more preferably 1 to 5 hours, and further preferably 2 to 4 hours.
  • a catalyst When polymerizing polyamide, it is preferable to use a catalyst from the viewpoint of improving the polymerization rate.
  • the catalyst include phosphoric acid, phosphorous acid, hypophosphorous acid, and salts thereof. These may be used alone or in combination of two or more. It is preferable that the usage-amount of a catalyst shall be 2 mol% or less with respect to the total number of moles of all the dicarboxylic acid components and all the diamine components.
  • a terminal blocking agent may be used for the purpose of adjusting the polymerization degree, decomposing, and suppressing coloring.
  • the terminal blocking agent include monocarboxylic acids and monoamines.
  • the monocarboxylic acid include acetic acid, lauric acid, stearic acid, and benzoic acid
  • examples of the monoamine include octylamine, cyclohexylamine, and aniline. These may be used alone or in combination of two or more. It is preferable that the usage-amount of terminal blocker shall be 5 mol% or less with respect to the total number of moles of all the dicarboxylic acid components and all the diamine components.
  • the melting point of the polyamide of the present invention is further improved in heat resistance, mechanical properties, gas barrier properties and chemical resistance, in particular from the viewpoint of further improvement in heat resistance related to whitening due to retorting, etc., and chemical resistance to ammonia. It is preferably 200 ° C or higher, more preferably 205 ° C or higher, further preferably 215 ° C or higher, particularly preferably 220 ° C or higher, and most preferably 230 ° C or higher.
  • the upper limit of the melting point of polyamide is not particularly limited, and the melting point is usually 300 ° C. or lower, particularly 260 ° C. or lower.
  • the number average molecular weight of the polyamide of the present invention is 5000 or more, and is preferably 8000 or more, more preferably 8500 or more, from the viewpoint of further improving heat resistance, mechanical properties, gas barrier properties and chemical resistance. .
  • the number average molecular weight can be controlled by controlling the temperature and time during polymerization.
  • the upper limit of the number average molecular weight of the polyamide is not particularly limited, and the molecular weight is usually 20000 or less, particularly 10,000 or less.
  • the water absorption rate of the polyamide is preferably 1% by mass or less, more preferably 0.8% by mass or less, and 0.5% by mass from the viewpoint of suppressing dimensional changes during long-time storage. More preferably, it is% or less.
  • the lower limit of the water absorption rate of the polyamide is not particularly limited, and the water absorption rate is usually 0.1% by mass or more, particularly 0.3% by mass or more.
  • the tensile strength is preferably 50 MPa or more, more preferably 60 MPa or more, from the viewpoint of further improving heat resistance and mechanical properties, and 70 MPa. More preferably, it is the above.
  • the upper limit value of the tensile strength is not particularly limited, and the tensile strength is usually 200 MPa or less, particularly 100 MPa or less.
  • the oxygen permeability coefficient at 23 ° C. and 80% relative humidity is preferably 5000 ⁇ m ⁇ mL / (m 2 ⁇ day ⁇ MPa) or less, preferably 3000 ⁇ m ⁇ mL / (m 2 ⁇ day ⁇ MPa) or less. More preferably.
  • the oxygen transmission coefficient is low.
  • the lower limit value of the oxygen permeability coefficient is not particularly limited, and the oxygen permeability coefficient is usually 100 ⁇ m ⁇ mL / (m 2 ⁇ day ⁇ MPa) or more, particularly 1000 ⁇ m ⁇ mL / (m 2 ⁇ day ⁇ MPa) or more.
  • additives such as an antioxidant, an antistatic agent, a flame retardant, a flame retardant aid, a heat stabilizer, a fibrous reinforcing material, a filler, and a pigment may be added.
  • the fibrous reinforcing material include glass fiber and / or carbon fiber
  • the filler include talc, swellable clay mineral, silica, alumina, glass beads, graphite, and filler. Examples thereof include titanium oxide and carbon black.
  • the additive is preferably 20% by mass or less based on the total of all dicarboxylic acid components and all diamine components or polyamide.
  • the organic phase was washed with water and saturated aqueous sodium hydrogen carbonate solution. Then, concentration was performed to obtain 2,5-bis (azidomethyl) tetrahydrofuran.
  • the obtained 2,5-bis (azidomethyl) tetrahydrofuran (167 parts by mass) and 10% by mass palladium-on-carbon (10.8 parts by mass) were added to methanol and overnight at room temperature under a hydrogen pressure of 1 atm. Stir. After completion of the reaction, the reaction product was filtered, and the filtrate was concentrated under vacuum to obtain 2,5-bis (aminomethyl) tetrahydrofuran.
  • the obtained 2,5-bis (aminomethyl) tetrahydrofuran was analyzed by NMR using deuterated methanol, and the cis / trans isomer ratio was 90/10.
  • Detector Differential refractive index detector RI-8020 manufactured by Tosoh Corporation Column: TSKgel GMHHR-H manufactured by Tosoh Corporation Eluent: Hexafluoroisopropanol containing 10 mM sodium trifluoroacetate Flow rate: 0.4 mL / min Measurement temperature: 40 ° C Standard sample: Polymethylmethacrylate Easi Via PM (registered trademark) manufactured by Agilent Technologies
  • Oxygen transmission coefficient A test film having a length of 100 mm and a width of 100 mm is cut out from the film obtained in (5), and oxygen is measured with an oxygen transmission rate measuring device OXTRAN2 / 21 manufactured by MOCON. The amount of permeation was measured. The measurement was carried out for 24 hours or more under the conditions of 23 ° C. and relative humidity 80%, and the value at a constant value was defined as the oxygen transmission amount.
  • the oxygen transmission coefficient was determined by the following formula.
  • a test piece (area: 60 mm ⁇ 60 mm, thickness: 1.0 mm) was molded by injection molding. The molding temperature was set to “polyamide melting point + 20” ° C. The obtained test piece was immersed in a test solution at 20 ° C. for 7 days, and the rate of decrease in tensile strength before and after immersion was determined.
  • ⁇ Evaluation criteria ⁇ : Less than 0.5% ⁇ : 0.5% or more and less than 2% ⁇ : 2% or more and less than 5% ⁇ : 5% or more
  • Example 1 To a solution obtained by dissolving 28.4 parts by mass of adipic acid in 400 parts by mass of ethanol, 24.5 parts by mass of 2,5-bis (aminomethyl) furan was added dropwise and stirred at 25 ° C. under normal pressure for 3 hours. The resulting precipitate was filtered off and dried in a vacuum dryer to obtain the corresponding ammonium salt (F6 salt). To a solution obtained by dissolving 28.4 parts by mass of adipic acid in 400 parts by mass of ethanol, 26.4 parts by mass of metaxylylenediamine was dropped and stirred at 25 ° C. under normal pressure for 3 hours. The resulting precipitate was filtered off and dried in a vacuum dryer to obtain the corresponding ammonium salt (M6 salt).
  • M6 salt ammonium salt
  • Example 2 Except changing the ratio of the F6 salt and M6 salt used so that it might become the resin composition of Table 1, operation similar to Example 1 was performed and polyamide was obtained.
  • the amount of decalin relative to 100 parts by mass of the total amount of F6 salt and M6 salt was 100 parts by mass.
  • Example 3 Except changing the ratio of the F6 salt and M6 salt used so that it might become the resin composition of Table 1, operation similar to Example 1 was performed and polyamide was obtained.
  • the amount of decalin relative to 100 parts by mass of the total amount of F6 salt and M6 salt was 100 parts by mass.
  • Example 4 To a solution obtained by dissolving 28.4 parts by mass of adipic acid in 400 parts by mass of ethanol, 24.9 parts by mass of 2,5-bis (aminomethyl) tetrahydrofuran was added dropwise and stirred at 25 ° C. under normal pressure for 3 hours. The resulting precipitate was filtered off and dried in a vacuum dryer to obtain the corresponding ammonium salt (TF6 salt). To a solution obtained by dissolving 28.4 parts by mass of adipic acid in 400 parts by mass of ethanol, 26.4 parts by mass of metaxylylenediamine was dropped and stirred at 25 ° C. under normal pressure for 3 hours.
  • TF6 salt ammonium salt
  • the resulting precipitate was filtered off and dried in a vacuum dryer to obtain the corresponding ammonium salt (M6 salt). 19.7 parts by mass of the obtained TF6 salt, 20.3 parts by mass of M6 salt and 40.0 parts by mass of decalin were put into a polymerization apparatus equipped with a stirring blade, a heater, a nitrogen inlet and an outlet, The mixture was heated and stirred at 180 ° C. for 12 hours. After cooling the reaction solution, the solid content was separated by filtration, washed with ethanol and hexane, and then dried under reduced pressure (50 ° C. ⁇ 12 hours) to obtain polyamide.
  • M6 salt ammonium salt
  • Example 5 Except changing the ratio of the TF6 salt and M6 salt used so that it might become the resin composition of Table 1, operation similar to Example 4 was performed and polyamide was obtained.
  • the amount of decalin relative to 100 parts by mass of the total amount of TF6 salt and M6 salt was 100 parts by mass.
  • Example 6 Except changing the ratio of the TF6 salt and M6 salt used so that it might become the resin composition of Table 1, operation similar to Example 4 was performed and polyamide was obtained.
  • the amount of decalin relative to 100 parts by mass of the total amount of TF6 salt and M6 salt was 100 parts by mass.
  • Example 7 Into a solution obtained by dissolving 28.4 parts by weight of adipic acid in 400 parts by weight of ethanol, 19.6 parts by weight of 2,5-bis (aminomethyl) furan and 5.31 parts by weight of metaxylylenediamine were added dropwise at 25 ° C. The mixture was stirred for 3 hours under normal pressure. The resulting precipitate was filtered off and dried in a vacuum dryer to obtain the corresponding ammonium salt. The obtained ammonium salt (39.5 parts by mass) and decalin (40.0 parts by mass) were charged into a polymerization apparatus equipped with a stirring blade, a heater, a nitrogen inlet and an outlet, and heated and stirred at 180 ° C. for 12 hours under a nitrogen stream. did. After cooling the reaction solution, the solid content was separated by filtration, washed with ethanol and hexane, and then dried under reduced pressure (50 ° C. ⁇ 12 hours) to obtain polyamide.
  • Example 8 To a solution obtained by dissolving 28.4 parts by mass of adipic acid in 400 parts by mass of ethanol, 24.5 parts by mass of 2,5-bis (aminomethyl) furan was added dropwise and stirred at 25 ° C. under normal pressure for 3 hours. The resulting precipitate was filtered off and dried in a vacuum dryer to obtain the corresponding ammonium salt (F6 salt). To a solution obtained by dissolving 28.4 parts by mass of adipic acid in 400 parts by mass of ethanol, 22.2 parts by mass of 1,4-cyclohexanediamine was added dropwise and stirred at 25 ° C. under normal pressure for 3 hours.
  • the resulting precipitate was filtered off and dried in a vacuum dryer to obtain the corresponding ammonium salt (C6 salt).
  • the obtained F6 salt (31.3 parts by mass), C6 salt (7.55 parts by mass) and decalin (40.0 parts by mass) were charged into a polymerization apparatus equipped with a stirring blade, a heater, a nitrogen inlet, and an outlet, The mixture was heated and stirred at 180 ° C. for 12 hours. After cooling the reaction solution, the solid content was separated by filtration, washed with ethanol and hexane, and then dried under reduced pressure (50 ° C. ⁇ 12 hours) to obtain polyamide.
  • Example 9 To a solution obtained by dissolving 28.4 parts by mass of adipic acid in 400 parts by mass of ethanol, 24.5 parts by mass of 2,5-bis (aminomethyl) furan was added dropwise and stirred at 25 ° C. under normal pressure for 3 hours. The resulting precipitate was filtered off and dried in a vacuum dryer to obtain the corresponding ammonium salt (F6 salt). To a solution obtained by dissolving 28.4 parts by mass of adipic acid in 400 parts by mass of ethanol, 33.4 parts by mass of 1,10-decanediamine was added and stirred at 25 ° C. under normal pressure for 3 hours. The resulting precipitate was filtered off and dried in a vacuum dryer to obtain the corresponding ammonium salt (D6 salt).
  • D6 salt ammonium salt
  • Example 10 To a solution obtained by dissolving 22.9 parts by mass of succinic acid in 400 parts by mass of ethanol, 24.5 parts by mass of 2,5-bis (aminomethyl) furan was added dropwise and stirred at 25 ° C. under normal pressure for 3 hours. The resulting precipitate was filtered off and dried in a vacuum dryer to obtain the corresponding ammonium salt (F4 salt). To a solution obtained by dissolving 22.9 parts by mass of succinic acid in 400 parts by mass of ethanol, 26.4 parts by mass of metaxylylenediamine was added dropwise and stirred at 25 ° C. under normal pressure for 3 hours. The resulting precipitate was filtered off and dried in a vacuum dryer to obtain the corresponding ammonium salt (M4 salt).
  • M4 salt ammonium salt
  • the obtained F4 salt 28.1 parts by mass, M4 salt 7.37 parts by mass and decalin 40.0 parts by mass were charged into a polymerization apparatus equipped with a stirring blade, a heater, a nitrogen inlet and an outlet, The mixture was heated and stirred at 180 ° C. for 12 hours. After cooling the reaction solution, the solid content was separated by filtration, washed with ethanol and hexane, and then dried under reduced pressure (50 ° C. ⁇ 12 hours) to obtain polyamide.
  • Example 11 To a solution obtained by dissolving 39.2 parts by mass of sebacic acid in 400 parts by mass of ethanol, 24.5 parts by mass of 2,5-bis (aminomethyl) furan was added dropwise and stirred at 25 ° C. under normal pressure for 3 hours. The resulting precipitate was filtered off and dried in a vacuum dryer to obtain the corresponding ammonium salt (F10 salt). To a solution obtained by dissolving 39.2 parts by mass of sebacic acid in 400 parts by mass of ethanol, 26.4 parts by mass of metaxylylenediamine was dropped and stirred at 25 ° C. under normal pressure for 3 hours. The resulting precipitate was filtered off and dried in a vacuum dryer to obtain the corresponding ammonium salt (M10 salt).
  • M10 salt ammonium salt
  • the obtained F10 salt (37.8 parts by mass), M10 salt (9.82 parts by mass) and decalin (40 parts by mass) were charged into a polymerization apparatus equipped with a stirring blade, a heater, a nitrogen inlet and an outlet, The mixture was stirred at 12 ° C. for 12 hours. After cooling the reaction solution, the solid content was separated by filtration, washed with ethanol and hexane, and then dried under reduced pressure (50 ° C. ⁇ 12 hours) to obtain polyamide.
  • Comparative Example 1 Except changing the ratio of the F6 salt and M6 salt used so that it might become the resin composition of Table 1, operation similar to Example 1 was performed and polyamide was obtained. The amount of decalin relative to 100 parts by mass of the total amount of F6 salt and M6 salt was 100 parts by mass.
  • Comparative Example 2 A polyamide was obtained in the same manner as in Example 1 except that the polymerization temperature was changed to 230 ° C. and decalin was not used. The obtained polyamide resin was extruded into a strand shape and cut to obtain pellets.
  • Comparative Example 3 Except changing the ratio of the TF6 salt and M6 salt used so that it might become the resin composition of Table 1, operation similar to Example 4 was performed and polyamide was obtained.
  • the amount of decalin relative to 100 parts by mass of the total amount of TF6 salt and M6 salt was 100 parts by mass.
  • Comparative Example 8 A polyamide was obtained in the same manner as in Example 2 except that no decalin was used. The obtained polyamide resin was extruded into a strand shape and cut to obtain pellets.
  • Table 1 shows the production conditions, resin composition and characteristic values of the polyamides obtained in the examples and comparative examples.
  • the polyamides of Examples 1 to 11 had a melting point of 200 ° C. or higher because a specific amount of 2,5-bis (aminomethyl) furan and / or 2,5-bis (aminomethyl) tetrahydrofuran was used in the diamine component. . Further, the obtained film had a tensile strength of 50 MPa or more and an oxygen permeability coefficient of 5000 ⁇ m ⁇ mL / (m 2 ⁇ day ⁇ MPa or less), and the polyamide was excellent in impact resistance and chemical resistance.
  • the polyamide of Comparative Example 6 contained a small amount of 2,5-bis (aminomethyl) furan or 2,5-bis (aminomethyl) tetrahydrofuran as a diamine component, the resulting film had an oxygen permeability coefficient of 5000 ⁇ m ⁇ mL / mL. (M 2 ⁇ day ⁇ MPa). The polyamide had low chemical resistance.
  • the polyamide of the present invention can be processed into various molded products by known molding methods such as injection molding, extrusion molding, and blow molding.
  • the polyamide molded product of the present invention can be suitably used as automobile parts, electrical / electronic parts, and daily necessities.
  • Examples of automobile parts include a base plate and an engine cover used for a pedestal such as a shift lever and a gear box.
  • Examples of electrical / electronic components include connectors, LED reflectors, switches, sensors, sockets, capacitors, jacks, fuse holders, relays, coil bobbins, resistors, IC and LED housings.
  • Examples of daily necessities include bottle containers (especially bottle containers for beverages).
  • the polyamide of the present invention can be processed into a film, sheet, or fiber by a known film forming method or spinning method.
  • Films and sheets can be used as, for example, speaker diaphragms, film capacitors, insulating films, and food packaging films.
  • the fiber can be used, for example, as an air bag base fabric or a filter.

Abstract

本発明は、耐熱性、耐薬品性、機械的特性およびガスバリア性に優れたバイオプラスチックのポリアミドを提供する。本発明は、ジカルボン酸成分とジアミン成分とからなる数平均分子量5000以上のポリアミドであって、ジアミン成分が2,5-ビス(アミノメチル)フランおよび/または2,5-ビス(アミノメチル)テトラヒドロフラン(A)をジアミン成分全量に対して15~85モル%含有することを特徴とするポリアミドに関する。

Description

ポリアミド
 本発明は、耐熱性、耐薬品性、機械的特性、ガスバリア性に優れたバイオプラスチックのポリアミドに関するものである。
 地球温暖化および石油資源枯渇の問題が深刻化しつつあり、地球環境保全の見地から、バイオプラスチックの利用が注目されている。近年、バイオプラスチックを食品包装フィルムおよびボトル容器に用いることが検討されている。食品包装フィルムに用いるためには、酸素に対するガスバリア性が高く、レトルト処理等に耐えるため、耐熱性ならびに衝撃耐性および引張強度等の機械的特性に優れていることが要求される。ボトル容器に用いるためには衝撃耐性および耐薬品性に優れていることが要求される。
 バイオプラスチックを用いた包装フィルムとしては、例えば、特許文献1には、ポリ乳酸系樹脂67~96質量%と可塑剤4~33質量%からなるポリ乳酸系フィルムが開示されている。特許文献2には、乳酸系樹脂と脂肪族系ポリエステルを50~85:50~15(質量比)からなるフィルムが開示されている。特許文献3には、微生物由来のポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエートからなるフィルムが開示されている。特許文献4には、植物由来の直鎖状低密度ポリエチレンを20~70質量%含有するポリエチレンフィルムが開示されている。
 バイオプラスチックを用いたボトル容器としては、例えば、特許文献5には、ポリ乳酸とポリオレフィンの積層構造からなるプラスチック容器が開示されている。
特開2004-90522号公報 特開2004-82512号公報 特開2006-45365号公報 特表2013-155343号公報 特開2009-214405号公報
 しかしながら、特許文献1~4のフィルムは、いずれも、融点が180℃未満で耐熱性に劣るものであった。また、特許文献5のボトル容器に十分な耐薬品性を付与するために容器を積層させなくてはならなかった。
 そこで、本発明者らは、バイオマスから得られる2,5-ビス(アミノメチル)フランおよび/または2,5-ビス(アミノメチル)テトラヒドロフランを用いてフィルムを製造することを試みた。しかしながら、前記フラン系のモノマーは重合時に分解しやすく、従来から知られるポリアミドの重合方法では、分子量が高いポリアミドを得ることができず、フィルムおよびボトル容器が製造しにくいという問題があった。
 本発明は、耐熱性、耐薬品性、機械的特性およびガスバリア性に優れたバイオプラスチックのポリアミドを提供することを目的とする。本明細書中、バイオプラスチックとは、生物(特に植物)由来の原料をモノマー成分として含有するポリマー、特に主鎖中にフラン環および/またはテトラヒドロフラン環を含有するポリマーのことである。
 本発明者らは、このような課題を解決するため鋭意検討の結果、ジアミン成分として、2,5-ビス(アミノメチル)フランおよび/または2,5-ビス(アミノメチル)テトラヒドロフラン特定量用いることにより、上記課題を解決することができることを見出し、本発明に到達した。
 すなわち、本発明の要旨は以下の通りである。
(1) ジカルボン酸成分とジアミン成分とからなる数平均分子量5000以上のポリアミドであって、ジアミン成分が2,5-ビス(アミノメチル)フランおよび/または2,5-ビス(アミノメチル)テトラヒドロフラン(A)をジアミン成分全量に対して15~85モル%含有することを特徴とするポリアミド。
(2) ジアミン成分が、さらにキシリレンジアミン(B)を含有することを特徴とする(1)に記載のポリアミド。
(3) ジアミン成分中のキシリレンジアミン(B)の含有量がジアミン成分全量に対して15~85モル%であることを特徴とする(2)に記載のポリアミド。
(4) キシリレンジアミン(B)がメタキシリレンジアミンであることを特徴とする(2)または(3)に記載のポリアミド。
(5) ジカルボン酸成分が脂肪族ジカルボン酸を含有することを特徴とする(1)~(4)のいずれかに記載のポリアミド。
(6) ジカルボン酸成分中の脂肪族ジカルボン酸の含有量がジカルボン酸成分全量に対して50モル%以上であることを特徴とする(5)に記載のポリアミド。
(7) (1)~(6)のいずれかに記載のポリアミドからなるフィルム。
(8) (1)~(6)のいずれかに記載のポリアミドからなるボトル容器。
(9) ジカルボン酸成分およびジアミン成分の塩を作製し、溶媒中、該塩の融点以上、「得られるポリアミドの融点-20℃」以下の温度で重合する数平均分子量5000以上のポリアミドの製造方法であって、ジアミン成分が2,5-ビス(アミノメチル)フランおよび/または2,5-ビス(アミノメチル)テトラヒドロフラン(A)をジアミン成分全量に対して15~85モル%含有することを特徴とするポリアミドの製造方法。
(10) 「得られるポリアミドの融点」が150~245℃であることを特徴とする(9)に記載のポリアミドの製造方法。
(11) 溶媒が前記温度以上の沸点を有することを特徴とする(9)または(10)に記載のポリアミドの製造方法。
(12) 溶媒が脂環族炭化水素化合物であることを特徴とする(9)~(11)のいずれかに記載のポリアミドの製造方法。
(13) 溶媒の量が前記塩100質量部に対して30~300質量部であることを特徴とする(9)~(12)のいずれかに記載のポリアミドの製造方法。
(14) ポリアミドがジカルボン酸成分またはジアミン成分の少なくとも一方の成分として構造の異なる2種以上のモノマーを含有する場合、前記塩を、ジカルボン酸成分とジアミン成分との組み合わせが異なる2種以上で作製し、該塩のうち最も低い融点を有する塩の融点以上、「得られるポリアミドの融点-20℃」以下の温度で重合することを特徴とする請求項(9)~(13)のいずれかに記載のポリアミドの製造方法。
 本発明によれば、耐熱性、耐薬品性、機械的特性およびガスバリア性に優れたポリアミドを提供することができる。本発明のポリアミドから得られる成形品は、食品包装フィルムおよび/またはボトル容器として好適に用いることができる。
 本発明のポリアミドは、ジカルボン酸成分とジアミン成分から構成される。
 ジカルボン酸成分としては、芳香族ジカルボン酸、脂環族ジカルボン酸、脂肪族ジカルボン酸が挙げられる。
 芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、4,4’-ジフェニルジカルボン酸、2,6-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、ジフェニルエーテル-4,4’-ジカルボン酸、ジフェノキシエタン-4,4’-ジカルボン酸、ジフェノキシブタン-4,4’-ジカルボン酸、ジフェニルエタン-4,4’-ジカルボン酸、ジフェニルエーテル-3,3’-ジカルボン酸、ジフェノキシエーテル-3,3’-ジカルボン酸、ジフェニルエタン-3,3’-ジカルボン酸が挙げられる。
 脂環族ジカルボン酸としては、例えば、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、2,5-ノルボルネンジカルボン酸が挙げられる。
 脂肪族ジカルボン酸としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、水添ダイマー酸等の脂肪族飽和ジカルボン酸;フマル酸、マレイン酸、イタコン酸、シトラコン酸、ダイマー酸等の脂肪族不飽和ジカルボン酸が挙げられる。
 ジカルボン酸成分の中でも、得られるポリアミドが機械的特性、ガスバリア性いずれにも優れていることから、脂肪族ジカルボン酸、特に脂肪族飽和ジカルボン酸が好ましく、アジピン酸が最も好ましい。この場合、ジカルボン酸成分中の脂肪族ジカルボン酸(好ましくは脂肪族飽和ジカルボン酸、特にアジピン酸)の含有量は50モル%以上であることが好ましく、80モル%以上であることがより好ましく、100モル%であることがさらに好ましい。当該含有量はジカルボン酸成分全量に対する割合である。ジカルボン酸成分は、上記のジカルボン酸を単独で用いてもよいし、2種以上を併用してもよい。ジカルボン酸成分が2種以上の脂肪族ジカルボン酸を含有する場合、これらの合計含有量が上記した範囲内であればよい。本明細書中、機械的特性は少なくとも引張強度および衝撃耐性に関する特性のことである。
 ジアミン成分としては、2,5-ビス(アミノメチル)フランおよび/または2,5-ビス(アミノメチル)テトラヒドロフラン(以下、「成分(A)」ということがある)を含有する必要がある。成分(A)を用いることにより、バイオプラスチックでありながらも、耐熱性、耐薬品性、機械的特性およびガスバリア性の全ての特性が高いものとすることができる。成分(A)の含有量は、ジアミン成分において、15~85モル%とすることが必要で、耐熱性、耐薬品性(特にアンモニアに対する耐薬品性)、機械的特性およびガスバリア性のさらなる向上の観点から、好ましくは20~80モル%、より好ましくは50~80モル%、さらに好ましくは60~80モル%である。成分(A)の含有量はジアミン成分全量に対する割合であり、2,5-ビス(アミノメチル)フランおよび2,5-ビス(アミノメチル)テトラヒドロフランの両方が含有される場合はこれらの合計量のことである。成分(A)の含有量が少なすぎる場合、ガスバリア性および耐薬品性(特にアンモニアに対する耐薬品性)が低くなるので好ましくない。一方、成分(A)のモル比率が多すぎる場合、得られるポリアミドの機械的特性、耐熱性および成形性が低下するので好ましくない。
 ポリアミドは、成分(A)として、2,5-ビス(アミノメチル)フランのみを含有することが、耐熱性、耐薬品性(特にアンモニアに対する耐薬品性)、機械的特性およびガスバリア性のさらなる向上の観点から好ましい。
 2,5-ビス(アミノメチル)フランは、例えば、5-(ヒドロキシメチル)フルフラール(HMF)を還元してフラン-2,5-ジメタノールを得たのち、塩素化、アジド化、還元することにより得ることができる。2,5-ビス(アミノメチル)フランは市販品として入手することもできる。また、2,5-ビス(アミノメチル)テトラヒドロフランは、例えば、HMFを還元してテトラヒドロフラン-2,5-ジメタノールを得たのち、スルホン化、アジド化、還元することにより得ることができる。2,5-ビス(アミノメチル)テトラヒドロフランは2,5-ビス(アミノメチル)フランの還元(水素化)によって得ることもできるし、または市販品として入手することもできる。
 ジアミン成分としては、キシリレンジアミン(以下、「成分(B)」ということがある)を含有することが好ましい。成分(B)の含有量は、耐熱性、耐薬品性、機械的特性およびガスバリア性のさらなる向上の観点から、ジアミン成分において、15~85モル%とすることが好ましく、より好ましくは20~80モル%、さらに好ましくは20~50モル%、最も好ましくは20~40モル%である。成分(B)としては、例えば、パラキシリレンジアミン、メタキシリレンジアミン、オルトキシリレンジアミンが挙げられ、中でも、ガスバリア性に優れていることから、メタキシリレンジアミンが好ましい。成分(B)の含有量はジアミン成分全量に対する割合であり、2種以上のキシリレンジアミンが含有される場合はこれらの合計量のことである。
 ジアミン成分にキシリレンジアミン(成分(B))を含有する場合、成分(A)と成分(B)のモル比率[(A)/(B)]は、耐熱性、耐薬品性、機械的特性、ガスバリア性いずれにもより一層、優れたものとするため、85/15~15/85とすることが好ましく、80/20~20/80とすることがより好ましく、80/20~50/50とすることがさらに好ましく、80/20~60/40とすることが最も好ましい。
 ジアミン成分には、成分(A)と成分(B)以外の他のジアミンとして、2,5-ビス(アミノメチル)フランおよびキシリレンジアミンとは異なる芳香環含有ジアミン、2,5-ビス(アミノメチル)テトラヒドロフランとは異なる脂環族ジアミン、ならびに脂肪族ジアミンを用いてもよい。芳香環とはいわゆる芳香族性を有する炭素環および複素環のことであり、例えば、ベンゼン環、ナフタレン環、フラン環が挙げられる。芳香環含有ジアミンは1分子中にそのような芳香環を1つ以上含有するジアミンである。脂環族ジアミンは1分子中に、芳香環を含有せず、かつ芳香族性を有さない飽和または不飽和の炭素環または複素環を1つ以上含有するジアミンである。脂肪族ジアミンは、1分子中に、炭素環および複素環を含有しない直鎖状または分枝鎖状ジアミンである。
 2,5-ビス(アミノメチル)フランおよびキシリレンジアミンとは異なる芳香環含有ジアミンとしては、例えば、フェニレンジアミン、1,5-ジアミノナフタレン、1,8-ジアミノナフタレン、2,6-ジアミノナフタレン、4,4‘-ジアミノジフェニルエーテルが挙げられる。
 2,5-ビス(アミノメチル)テトラヒドロフランとは異なる脂環族ジアミンとしては、例えば、1,4-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、1,2-シクロヘキサンジアミン、イソホロンジアミン、4,4’-メチレンビス(シクロヘキシルアミン)、4,4’-メチレンビス(2-メチルシクロヘキシルアミン)、ノルボルナンジアミンが挙げられる。
 脂肪族ジアミンとしては、例えば、1,5-ペンタンジアミン、2-メチル-1,5-ペンタンジアミン、1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,8-オクタンジアミン、2-メチル-1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン、1,11-ウンデカンジアミン、1,12-ドデカンジアミンが挙げられる。
 成分(A)と成分(B)以外の他のジアミンの中でも、炭素数5~12の脂肪族ジアミンまたは炭素数が6以上の脂環族ジアミンを用いることにより、耐熱性および成形性を高くすることができる。炭素数が5、8、9、10の直鎖状脂肪族ジアミンを用いることにより、生物由来の原料の割合を増やすことができる。炭素数が5、8、9、10の直鎖状脂肪族ジアミンは、植物由来の原料から、バイオ発酵またはオゾン分解等により、対応するジカルボン酸を合成し、さらに、それをアミノ化することにより得ることができる。例えば、1,5-ペンタンジアミンであれば、廃糖蜜の発酵で得られるL-リジンをアミノ化することにより得ることができる。また例えば、1,8-オクタンジアミンおよび1,9-ノナンジアミンであれば、オリーブ油および米糠油から得られるオレイン酸をアミノ化することにより得ることができる。また例えば、1,10-デカンジアミンであれば、ひまし油から得られるリシノール酸をアミノ化することにより得ることができる。
 本発明のポリアミドは、原料モノマーとしてのジカルボン酸成分およびジアミンから塩を作製した後、重合することにより製造することができる。詳しくは、本発明のポリアミドは、原料モノマーから1種の塩を作製し、塩の融点以上、「得られるポリアミドの融点-20℃」以下の温度で重合する(以下、「方法(X)」と称する)か、または、原料モノマーから2種以上の塩を作製し、前記塩のうち最も低い融点を有する塩の融点以上、「得られるポリアミドの融点-20℃」以下の温度で重合する(以下、「方法(Y)」と称する)かして、製造することが好ましい。ポリアミドの製造に際し、「得られるポリアミド」とは「製造予定のポリアミド」または「目的とするポリアミド」のことである。「得られるポリアミドの融点」は通常、150~245℃であり、好ましくは200~245℃である。
 方法(X)において「原料モノマーから1種の塩を作製」するとは、以下の場合(1)および(2)において、ポリアミドの全モノマー成分を一括混合して塩を作製するという意味である:
(1)ポリアミドがジカルボン酸成分およびジアミン成分としてそれぞれ1種ずつのモノマーを含有する場合;および
(2)ポリアミドがジカルボン酸成分またはジアミン成分の少なくとも一方の成分として構造の異なる2種以上のモノマーを含有する場合。
 方法(Y)において「原料モノマーから2種以上の塩を作製」するとは、上記(2)の場合において、ジカルボン酸成分とジアミン成分との組み合わせが異なる2種以上の塩を、当該種類ごとの個別の混合により作製するという意味である。上記(2)の場合においては、ポリアミドは、耐熱性および機械的特性のさらなる向上ならびにポリアミドのさらなる高分子量化の観点から、上記方法(Y)の方法により製造することが好ましい。具体的には、例えば、2,5-ビス(アミノメチル)フランとメタキシリレンジアミンとアジピン酸とからなるポリアミドを後者の方法(Y)により製造する場合、2,5-ビス(アミノメチル)フランとアジピン酸の塩(融点148℃)と、メタキシリレンジアミンとアジピン酸の塩(融点188℃)を個別の混合により作製し、これらを混合した後、148℃以上、201℃[=得られるポリアミドの融点(221℃)-20℃]以下の温度で重合することが好ましい。
 なお、本発明において、前記温度範囲で重合するとは、全重合時間のうち、90%以上の時間、前記温度範囲で重合することをいう。塩の融点未満の温度で重合した場合、得られるポリアミドの数平均分子量が5000未満となるので好ましくない。一方、「得られるポリアミドの融点-20℃」を超える温度で重合した場合、得られるポリアミドの色調が悪くなったり、数平均分子量が5000未満となったりする場合がある。
 重合温度は、重合中、常に一定としてもよいし、重合の進行に応じて、適宜変更してもよい。反応時間は通常、反応温度に達してから0.5~18時間であり、ポリアミドの耐熱性および機械的特性のさらなる向上ならびにポリアミドのさらなる高分子量化の観点から、6~18時間とすることが好ましい。圧力は、生成する水を系外に排出しつつ、ジアミン成分の揮発を抑制するため、大気圧以上10MPa以下とすることが好ましい。
 本発明においては、重合する際、合成されるポリアミドの分子量の低下を抑制しつつ系内の粘度を低下させるため、塩の融点以上の沸点を有する溶媒(すなわち重合溶媒)を用いる。溶媒は通常、重合温度において液体であるので、融点が重合温度以下であり、かつ沸点が重合温度以上である。溶媒の沸点の上限値は特に限定されず、沸点は通常は250℃以下、特に230℃以下である。溶媒を用いない場合、仮に上記重合温度範囲内の温度で重合を行っても、または上記重合温度範囲を超える温度で重合を行っても、ポリアミドの分子量が低下し、耐熱性および機械的特性が低下する。前記溶媒としては、例えば、デカリン(沸点:185~195℃)、シクロデカン(沸点:201℃)等の脂環族炭化水素化合物);およびウンデカン(沸点:196℃)、ドデカン(沸点:216℃)、トリデカン(沸点:234℃)等の脂肪族炭化水素化合物が挙げられる。溶媒は、ポリアミドの耐熱性および機械的特性のさらなる向上ならびにポリアミドのさらなる高分子量化の観点から、前記沸点を有する脂環族炭化水素化合物(特にデカリン)が好ましい。
 重合溶媒の量は通常、塩100質量部に対して、30~300質量部、であり、ポリアミドの耐熱性および機械的特性のさらなる向上ならびにポリアミドのさらなる高分子量化の観点から、好ましくは50~200質量部、より好ましくは80~150質量部である。2種以上の塩を作製して重合する場合において、上記「塩100質量部」は、当該2種以上の塩の合計100質量部のことである。
 なお、塩の重合をおこなった後、さらに分子量を上げるため、常圧下、不活性ガス流通下で重合を継続しておこなってもよいし、また減圧下で重合を継続しておこなってもよい。不活性ガス流通下で重合を継続する場合、不活性ガスの流量は0.01~10L/(kg・分)とすることが好ましい。また、減圧下で重合を継続する場合、減圧度は1000Pa以下とすることが好ましい。
 対応する塩を得る方法は特に限定されないが、例えば、ジカルボン酸成分とジアミン成分を水中、有機溶媒中またはこれらの混合溶媒中で反応させて塩を得る方法が挙げられる。用いる水および/または有機溶媒の量は、全ジカルボン酸成分と全ジアミン成分の合計100質量部に対して、2質量部以上とすることが好ましく、10質量部以上とすることがより好ましく、100~2000質量部とすることがさらに好ましく、500~1000質量部とすることが最も好ましい。反応温度は、常圧下では20~100℃とすることが好ましく、加圧条件下では100~150℃で反応させることが好ましい。反応時間は、反応温度に達してから0.1~5時間とすることが好ましく、1~5時間とすることがより好ましく、2~4時間とすることがさらに好ましい。
 ポリアミドを重合する際、重合速度向上の点から、触媒を用いることが好ましい。触媒としては、例えば、リン酸、亜リン酸、次亜リン酸またはそれらの塩が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。触媒の使用量は、全ジカルボン酸成分と全ジアミン成分の合計のモル数に対して、2モル%以下とすることが好ましい。
 また、重合度調整、分解、および着色抑制等の目的で、末端封鎖剤を用いてもよい。末端封鎖剤としては、モノカルボン酸、モノアミンが挙げられる。モノカルボン酸としては、例えば、酢酸、ラウリン酸、ステアリン酸、安息香酸が挙げられ、モノアミンとしては、例えば、オクチルアミン、シクロヘキシルアミン、アニリンが挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。末端封鎖剤の使用量は、全ジカルボン酸成分と全ジアミン成分の合計のモル数に対して、5モル%以下とすることが好ましい。
 本発明のポリアミドの融点は、耐熱性、機械的特性、ガスバリア性および耐薬品性のさらなる向上、特にフィルムへのレトルト処理等による白化に関する耐熱性およびアンモニアに対する耐薬品性のさらなる向上の観点から、200℃以上であることが好ましく、205℃以上であることがより好ましく、215℃以上であることがさらに好ましく、220℃以上であることが特に好ましく、230℃以上であることが最も好ましい。ポリアミドの融点の上限値は特に限定されず、当該融点は通常は300℃以下、特に260℃以下である。
 本発明のポリアミドの数平均分子量は5000以上であり、耐熱性、機械的特性、ガスバリア性および耐薬品性のさらなる向上の観点から、8000以上であることが好ましく、8500以上であることがより好ましい。数平均分子量が5000未満の場合、得られるポリアミドのフィルム化が困難になるほか、衝撃耐性および機械的特性が不十分となるので好ましくない。なお、数平均分子量は、重合時の温度と時間をコントロールすることにより制御することができる。ポリアミドの数平均分子量の上限値は特に限定されず、当該分子量は通常は20000以下、特に10000以下である。
 本発明において、ポリアミドの吸水率は、長時間保管時の寸法変化の抑制の観点から、1質量%以下であることが好ましく、0.8質量%以下であることがより好ましく、0.5質量%以下であることがさらに好ましい。ポリアミドの吸水率の下限値は特に限定されず、当該吸水率は通常は0.1質量%以上、特に0.3質量%以上である。
 また、本発明において、得られるポリアミドをフィルムとした場合の引張強度は、耐熱性および機械的特性のさらなる向上の観点から、50MPa以上であることが好ましく、60MPa以上であることがより好ましく、70MPa以上であることがさらに好ましい。引張強度の上限値は特に限定されず、当該引張強度は通常は200MPa以下、特に100MPa以下である。
 また、23℃かつ相対湿度80%下での酸素透過係数は、5000μm・mL/(m・day・MPa)以下であることが好ましく、3000μm・mL/(m・day・MPa)以下であることがより好ましい。なお、ガスバリア性が高い場合、酸素透過係数は低くなる。酸素透過係数の下限値は特に限定されず、当該酸素透過係数は通常は100μm・mL/(m・day・MPa)以上、特に1000μm・mL/(m・day・MPa)以上である。
 本発明のポリアミドには、酸化防止剤、帯電防止剤、難燃剤、難燃助剤、熱安定剤、繊維状補強材、充填材、顔料等の添加剤を加えてもよい。繊維状補強材としては、例えば、ガラス繊維および/または炭素繊維が挙げられ、充填材としては、例えば、タルク、膨潤性粘土鉱物、シリカ、アルミナ、ガラスビーズ、グラファイト、フィラーが挙げられ、顔料としては、例えば、酸化チタン、カーボンブラックが挙げられる。添加剤は、全ジカルボン酸成分と全ジアミン成分の合計またはポリアミドに対して、20質量%以下とすることが好ましい。
 以下、本発明を実施例によって具体的に説明するが、本発明はこれらによって限定されるものではない。
1.原料
(1)2,5-ビス(アミノメチル)フラン
 エタノール中に、HMF(225質量部)と、水素化ホウ素ナトリウム(90.0質量部)を連続して添加し、20℃で16時間撹拌した。反応終了後、10%塩酸水溶液をゆっくりと添加してpHを7とした。その後、40℃で、減圧蒸留により溶剤を蒸発させ、エタノールから白色固体を再結晶化させ、2,5-ビス(ヒドロキシメチル)フランを得た。
 得られた2,5-ビス(ヒドロキシメチル)フラン(215質量部)を、ピリジン(347質量部)に溶解し、それを、-20~0℃の塩化チオニル(580質量部)の酢酸エチル溶液に1時間かけて滴下した。その後、室温に昇温し、石油エーテルを添加し、さらに氷冷水を加えた。有機相を、10%炭酸カリウム水溶液を用いて洗浄し、乾燥させ、その後、減圧蒸留により溶剤を蒸発させ、2,5-ビス(クロロメチル)フランを得た。
 得られた2,5-ビス(クロロメチル)フラン(162質量部)と、アジ化ナトリウム(192質量部)を、ジメチルスルホキシドに添加し、50℃で16時間撹拌した。反応終了後、氷冷水と石油エーテルを用いて有機相を抽出し、乾燥させ、減圧濃縮し、2,5-ビス(アジドメチル)フランを得た。
 得られた2,5-ビス(アジドメチル)フラン(158質量部)と、Raneyニッケル(68.0質量部)を、メタノールに添加し、1気圧の水素下、室温で40時間撹拌した。反応終了後、反応物を濾過し、濾液を濃縮し、2,5-ビス(アミノメチル)フランを得た。
(2)2,5-ビス(アミノメチル)テトラヒドロフラン
 メタノール中に、HMFと、Raneyニッケル(HMFに対して1.5当量)を添加し、5.76気圧の水素圧力下、60℃で20時間攪拌した。反応終了後、濾過と蒸留を繰り返すことにより精製し、2,5-ビス(ヒドロキシメチル)テトラヒドロフランを得た。
 得られた2,5-ビス(ヒドロキシメチル)テトラヒドロフラン(119質量部)と、トリエチルアミン(455質量部)を、0℃のジクロロメタンに添加し、さらに、メタンスルホニルクロリド(308質量部)を滴下し、0℃で1時間攪拌した。その後、氷冷水を添加し、有機相を分離した。有機相を、1mol/L塩酸で洗浄した後、さらに飽和炭酸水素ナトリウム水溶液で洗浄し、(テトラヒドロフラン-2,5-ジイル)ビス(メチレン)ジメタンスルホネートを得た。
 得られた(テトラヒドロフラン-2,5-ジイル)ビス(メチレン)ジメタンスルホネート(237質量部)と、アジ化ナトリウム(270質量部)を、ジメチルスルホキシドに添加し、95℃で一晩撹拌した。反応終了後、氷冷水に添加し、酢酸エチルで3回抽出した。有機相を、水、飽和炭酸水素ナトリウム水溶液を用いて洗浄した。その後、濃縮して2,5-ビス(アジドメチル)テトラヒドロフランを得た。
 得られた2,5-ビス(アジドメチル)テトラヒドロフラン(167質量部)と、10質量%炭素担持パラジウム(10.8質量部)を、メタノールに添加し、1気圧の水素圧力下、室温で一晩撹拌した。反応終了後、反応物を濾過し、濾液を真空下で濃縮し、2,5-ビス(アミノメチル)テトラヒドロフランを得た。
 得られた2,5-ビス(アミノメチル)テトラヒドロフランを、NMRにより、重水素化メタノールを用いて分析したところ、シス/トランス異性体比は90/10であった。
2.分析方法
(1)樹脂組成
 高分解能核磁気共鳴装置(日本電子社製ECA500 NMR)を用いて、H-NMR分析することにより、それぞれの共重合成分のピーク強度から樹脂組成を求めた(分解能:500MHz、溶媒:トリフルオロ酢酸-d/重水=99/1(体積比)、温度:25℃)。
(2)数平均分子量
 ポリアミド7~8mgをヘキサフルオロイソプロパノール5mLに溶解後、0.45μmフィルターで濾過したサンプルを、東ソー社製ゲル浸透クロマトグラフ(GPC)を用いて、以下の条件で測定した。
 検出器:東ソー社製 示差屈折率検出器RI-8020
 カラム:東ソー社製 TSKgel GMHHR-H
 溶離液:トリフルオロ酢酸ナトリウムを10mM含有するヘキサフルオロイソプロパノール
 流速:0.4mL/分
 測定温度:40℃
 標準試料:Agilent Technologies社製 ポリメチルメタクリレート Easi Vial PM(登録商標)
(3)融点
 パーキンエルマー社製示差走査型熱量計DSC-7を用いて、常温から300℃まで20℃/分で昇温した後、5分間保持後、500℃/分で25℃まで降温し、5分間保持後、300℃まで20℃/分で昇温した。2回目の昇温時に得られた曲線の融解に由来するピークの頂点を融点とした。
(4)吸水率
 ポリアミドを十分に乾燥した後、射出成形機(東芝機械社製EC-100型)を用いて成形し、長さ125mm×幅12mm×厚み0.8mmの試験片を作製した。なお、シリンダ温度は「ポリアミドの融点+20」℃、金型温度は100℃とした。
 得られた試験片を、25℃の水中に24時間静置し、静置前の試験片の質量の値を基準として、下記式により吸水率を算出した。
Figure JPOXMLDOC01-appb-M000001
(5)引張強度
 ポリアミドを十分に乾燥した後、熱プレス機(林機械製作所社製)を用いてプレスした。その後、冷却し、厚み150μmのフィルムを得た。なお、熱プレス機のプレス板温度は、「ポリアミドの融点+20」℃に設定した。
 得られたフィルムから、長さ150mm×幅10mmの試験フィルムを切り抜き、その試験フィルムを用いて、JIS K-7127に準拠して、model-2020(INTESCO社製)で測定した。使用セルは1000N、試験速度は50mm/分、チャック間隔は100mmとした。
(6)酸素透過係数
 (5)で得られたフィルムから、長さ100mm×幅100mmの試験フィルムを切り抜き、その試験フィルムを用いて、MOCON社製の酸素透過率測定装置OXTRAN2/21で、酸素透過量を測定した。測定は、23℃、相対湿度80%の条件下24時間以上おこない、一定値になったところの値を酸素透過量とした。
 酸素透過係数は、次式により求めた。
Figure JPOXMLDOC01-appb-M000002
(7)衝撃耐性
 ポリアミドを十分に乾燥した後、ブロー成形によりボトル(容量:300mL、ブロー比:3倍、胴部平均肉厚:0.7mm)を成形した。成形温度は、「ポリアミドの融点+20」℃に設定した。
 得られたボトルを水で満たし、キャップにより密閉した後、1mの高さからコンクリートフロアに落下させてひび割れや凹み等の変化の有無を観察した。
〔評価基準〕
○:変化がなかった。
×:変化があった。
(8)耐薬品性
 ポリアミドを十分に乾燥した後、射出成形により試験片(面積:60mm×60mm、厚さ:1.0mm)を成形した。成形温度は、「ポリアミドの融点+20」℃に設定した。
 得られた試験片を20℃で試験液に7日間浸せきし、浸せき前後の引張強度の低下率を求めた。
〔評価基準〕
◎:0.5%未満
○:0.5%以上2%未満
□:2%以上5%未満
×:5%以上
実施例1
 アジピン酸28.4質量部をエタノール400質量部に溶解した溶液中に、2,5-ビス(アミノメチル)フラン24.5質量部を滴下し、25℃、常圧下で3時間撹拌した。得られた析出物をろ別した後、減圧乾燥器にて乾燥し、対応するアンモニウム塩(F6塩)を得た。
 アジピン酸28.4質量部をエタノール400質量部に溶解した溶液に、メタキシリレンジアミン26.4質量部を滴下し、25℃、常圧下で3時間撹拌した。得られた析出物をろ別した後、減圧乾燥器にて乾燥し、対応するアンモニウム塩(M6塩)を得た。
 得られたF6塩19.6質量部、M6塩20.4質量部とデカリン40.0質量部を、撹拌羽根、ヒーター、窒素流入口、排出口が備わった重合装置に投入し、窒素流通下、180℃で12時間加熱撹拌した。
 反応溶液の冷却後、固形分をろ別し、エタノールおよびヘキサンで洗浄した後、減圧下で乾燥し(50℃×12時間)、ポリアミドを得た。
実施例2
 表1の記載の樹脂組成になるように、用いるF6塩とM6塩の比率を変更する以外は、実施例1と同様の操作をおこなって、ポリアミドを得た。F6塩とM6塩との合計量100質量部に対するデカリンの量は100質量部であった。
実施例3
 表1の記載の樹脂組成になるように、用いるF6塩とM6塩の比率を変更する以外は、実施例1と同様の操作をおこなって、ポリアミドを得た。F6塩とM6塩との合計量100質量部に対するデカリンの量は100質量部であった。
実施例4
 アジピン酸28.4質量部をエタノール400質量部に溶解した溶液中に、2,5-ビス(アミノメチル)テトラヒドロフラン24.9質量部を滴下し、25℃、常圧下で3時間撹拌した。得られた析出物をろ別した後、減圧乾燥器にて乾燥し、対応するアンモニウム塩(TF6塩)を得た。
 アジピン酸28.4質量部をエタノール400質量部に溶解した溶液に、メタキシリレンジアミン26.4質量部を滴下し、25℃、常圧下で3時間撹拌した。得られた析出物をろ別した後、減圧乾燥器にて乾燥し、対応するアンモニウム塩(M6塩)を得た。
 得られたTF6塩19.7質量部、M6塩20.3質量部とデカリン40.0質量部を、撹拌羽根、ヒーター、窒素流入口、排出口が備わった重合装置に投入し、窒素流通下、180℃で12時間加熱撹拌した。
 反応溶液の冷却後、固形分をろ別し、エタノールおよびヘキサンで洗浄した後、減圧下で乾燥し(50℃×12時間)、ポリアミドを得た。
実施例5
 表1の記載の樹脂組成になるように、用いるTF6塩とM6塩の比率を変更する以外は、実施例4と同様の操作をおこなって、ポリアミドを得た。TF6塩とM6塩との合計量100質量部に対するデカリンの量は100質量部であった。
実施例6
 表1の記載の樹脂組成になるように、用いるTF6塩とM6塩の比率を変更する以外は、実施例4と同様の操作をおこなって、ポリアミドを得た。TF6塩とM6塩との合計量100質量部に対するデカリンの量は100質量部であった。
実施例7
 アジピン酸28.4質量部をエタノール400質量部に溶解した溶液中に、2,5-ビス(アミノメチル)フラン19.6質量部とメタキシリレンジアミン5.31質量部を滴下し、25℃、常圧下で3時間撹拌した。得られた析出物をろ別した後、減圧乾燥器にて乾燥し、対応するアンモニウム塩を得た。
 得られたアンモニウム塩39.5質量部とデカリン40.0質量部を、撹拌羽根、ヒーター、窒素流入口、排出口が備わった重合装置に投入し、窒素流通下、180℃で12時間加熱撹拌した。
 反応溶液の冷却後、固形分をろ別し、エタノールおよびヘキサンで洗浄した後、減圧下で乾燥し(50℃×12時間)、ポリアミドを得た。
実施例8
 アジピン酸28.4質量部をエタノール400質量部に溶解した溶液中に、2,5-ビス(アミノメチル)フラン24.5質量部を滴下し、25℃、常圧下で3時間撹拌した。得られた析出物をろ別した後、減圧乾燥器にて乾燥し、対応するアンモニウム塩(F6塩)を得た。
 アジピン酸28.4質量部をエタノール400質量部に溶解した溶液に、1,4-シクロヘキサンジアミン22.2質量部を滴下し、25℃、常圧下で3時間撹拌した。得られた析出物をろ別した後、減圧乾燥器にて乾燥し、対応するアンモニウム塩(C6塩)を得た。
 得られたF6塩31.3質量部、C6塩7.55質量部とデカリン40.0質量部を、撹拌羽根、ヒーター、窒素流入口、排出口が備わった重合装置に投入し、窒素流通下、180℃で12時間加熱撹拌した。
 反応溶液の冷却後、固形分をろ別し、エタノールおよびヘキサンで洗浄した後、減圧下で乾燥し(50℃×12時間)、ポリアミドを得た。
実施例9
 アジピン酸28.4質量部をエタノール400質量部に溶解した溶液中に、2,5-ビス(アミノメチル)フラン24.5質量部を滴下し、25℃、常圧下で3時間撹拌した。得られた析出物をろ別した後、減圧乾燥器にて乾燥し、対応するアンモニウム塩(F6塩)を得た。
 アジピン酸28.4質量部をエタノール400質量部に溶解した溶液に、1,10-デカンジアミン33.4質量部を添加し、25℃、常圧下で3時間撹拌した。得られた析出物をろ別した後、減圧乾燥器にて乾燥し、対応するアンモニウム塩(D6塩)を得た。
 得られたF6塩31.3質量部、D6塩9.24質量部とデカリン40.0質量部を、撹拌羽根、ヒーター、窒素流入口、排出口が備わった重合装置に投入し、窒素流通下、180℃で12時間加熱撹拌した。
 反応溶液の冷却後、固形分をろ別し、エタノールおよびヘキサンで洗浄した後、減圧下で乾燥し(50℃×12時間)、ポリアミドを得た。
実施例10
 コハク酸22.9質量部をエタノール400質量部に溶解した溶液中に、2,5-ビス(アミノメチル)フラン24.5質量部を滴下し、25℃、常圧下で3時間撹拌した。得られた析出物をろ別した後、減圧乾燥器にて乾燥し、対応するアンモニウム塩(F4塩)を得た。
 コハク酸22.9質量部をエタノール400質量部に溶解した溶液に、メタキシリレンジアミン26.4質量部を滴下し、25℃、常圧下で3時間撹拌した。得られた析出物をろ別した後、減圧乾燥器にて乾燥し、対応するアンモニウム塩(M4塩)を得た。
 得られたF4塩28.1質量部、M4塩7.37質量部とデカリン40.0質量部を、撹拌羽根、ヒーター、窒素流入口、排出口が備わった重合装置に投入し、窒素流通下、180℃で12時間加熱撹拌した。
 反応溶液の冷却後、固形分をろ別し、エタノールおよびヘキサンで洗浄した後、減圧下で乾燥し(50℃×12時間)、ポリアミドを得た。
実施例11
 セバシン酸39.2質量部をエタノール400質量部に溶解した溶液中に、2,5-ビス(アミノメチル)フラン24.5質量部を滴下し、25℃、常圧下で3時間撹拌した。得られた析出物をろ別した後、減圧乾燥器にて乾燥し、対応するアンモニウム塩(F10塩)を得た。
 セバシン酸39.2質量部をエタノール400質量部に溶解した溶液に、メタキシリレンジアミン26.4質量部を滴下し、25℃、常圧下で3時間撹拌した。得られた析出物をろ別した後、減圧乾燥器にて乾燥し、対応するアンモニウム塩(M10塩)を得た。
 得られたF10塩37.8質量部、M10塩9.82質量部とデカリン40質量部を、撹拌羽根、ヒーター、窒素流入口、排出口が備わった重合装置に投入し、窒素流通下、180℃で12時間加熱撹拌した。
 反応溶液の冷却後、固形分をろ別し、エタノールおよびヘキサンで洗浄した後、減圧下で乾燥し(50℃×12時間)、ポリアミドを得た。
比較例1
 表1の記載の樹脂組成になるように、用いるF6塩とM6塩の比率を変更する以外は、実施例1と同様の操作をおこなって、ポリアミドを得た。F6塩とM6塩との合計量100質量部に対するデカリンの量は100質量部であった。
比較例2
 重合温度を230℃に変更したこと、およびデカリンを用いなかったこと以外は、実施例1と同様の操作をおこなって、ポリアミドを得た。
 そして、得られたポリアミド樹脂をストランド状に押出し、切断し、ペレットを得た。
比較例3
 表1の記載の樹脂組成になるように、用いるTF6塩とM6塩の比率を変更する以外は、実施例4と同様の操作をおこなって、ポリアミドを得た。TF6塩とM6塩との合計量100質量部に対するデカリンの量は100質量部であった。
比較例4
 アジピン酸28.4質量部をエタノール400質量部に溶解した溶液中に、2,5-ビス(アミノメチル)フラン24.5質量部を滴下し、25℃、常圧下で3時間撹拌した。得られた析出物をろ別した後、減圧乾燥器にて乾燥し、対応するアンモニウム塩(F6塩)を得た。
 得られたF6塩39.2質量部とデカリン40.0質量部を、撹拌羽根、ヒーター、窒素流入口、排出口が備わった重合装置に投入し、窒素流通下、180℃で12時間加熱撹拌した。
 反応溶液の冷却後、固形分をろ別し、エタノールおよびヘキサンで洗浄した後、減圧下で乾燥し(50℃×12時間)、ポリアミドを得た。
比較例5
 アジピン酸28.4質量部をエタノール400質量部に溶解した溶液中に、2,5-ビス(アミノメチル)テトラヒドロフラン24.9質量部を滴下し、25℃、常圧下で3時間撹拌した。得られた析出物をろ別した後、減圧乾燥器にて乾燥し、対応するアンモニウム塩(TF6塩)を得た。
 得られたTF6塩39.4質量部とデカリン40.0質量部を、撹拌羽根、ヒーター、窒素流入口、排出口が備わった重合装置に投入し、窒素流通下、180℃で12時間加熱撹拌した。
 反応溶液の冷却後、固形分をろ別し、エタノールおよびヘキサンで洗浄した後、減圧下で乾燥し(50℃×12時間)、ポリアミドを得た。
比較例6
 アジピン酸28.4質量部をエタノール400質量部に溶解した溶液中にメタキシリレンジアミン26.4質量部を滴下し、25℃、常圧下で3時間撹拌した。得られた析出物をろ別した後、減圧乾燥器にて乾燥し、対応するアンモニウム塩(M6塩)を得た。
得られたM6塩40.7質量部とデカリン40.0質量部を撹拌羽根、ヒーター、窒素導入口、排出口が備わった重合装置に導入し、窒素流通下、200℃で12時間撹拌した。
 反応溶液の冷却後、固形分をろ別し、エタノールおよびヘキサンで洗浄した後、減圧下で乾燥し(50℃×12時間)、ポリアミドを得た。
比較例7
 アジピン酸28.4質量部をエタノール400質量部に溶解した溶液中に、2,5-ビス(アミノメチル)フラン12.2質量部とメタキシリレンジアミン13.2質量部を滴下し、25℃、常圧下で3時間撹拌した。得られた析出物をろ別した後、減圧乾燥器にて乾燥し、対応するアンモニウム塩を得た。
 得られたアンモニウム塩39.9質量部を、撹拌羽根、ヒーター、窒素流入口、排出口が備わった重合装置に投入し、窒素流通下、230℃で12時間加熱撹拌した。
 そして、得られたポリアミド樹脂をストランド状に押出し、切断し、ペレットを得た。
比較例8
 デカリンを用いなかったこと以外は、実施例2と同様の操作をおこなって、ポリアミドを得た。
 そして、得られたポリアミド樹脂をストランド状に押出し、切断し、ペレットを得た。
 表1に、実施例および比較例で得られたポリアミドの製造条件、樹脂組成および特性値を示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例1~11のポリアミドは、ジアミン成分において、2,5-ビス(アミノメチル)フランおよび/または2,5-ビス(アミノメチル)テトラヒドロフランを特定量用いたため、融点が200℃以上であった。また、得られるフィルムの引張強度が50MPa以上、酸素透過係数が5000μm・mL/(m・day・MPa以下であるとともに、当該ポリアミドは衝撃耐性及び耐薬品性に優れていた。
 比較例1および3~5のポリアミドは、ジアミン成分の2,5-ビス(アミノメチル)フランまたは2,5-ビス(アミノメチル)テトラヒドロフランの含有量が多かったため、得られるフィルムの引張強度および衝撃耐性が低かった。また、酸素透過係数は、測定中にフィルムが破れ、測定することができなかった。
 比較例2および7~8のポリアミドは、分子量が低かったため、機械的特性が低く、溶融成形サンプルが得られなかった。
 比較例6のポリアミドは、ジアミン成分の2,5-ビス(アミノメチル)フランまたは2,5-ビス(アミノメチル)テトラヒドロフランの含有量が少なかったため、得られるフィルムの酸素透過係数が5000μm・mL/(m・day・MPa)を超えていた。当該ポリアミドは耐薬品性が低かった。
 本発明のポリアミドは、射出成形、押出成形、ブロー成形等公知の成形方法により、各種成形品に加工することができる。
 本発明のポリアミド成形品は、自動車部品、電気・電子部品、日用品として好適に用いることができる。
 自動車部品としては、例えば、シフトレバー、ギアボックス等の台座に用いるベースプレート、エンジンカバーが挙げられる。
 電気・電子部品としては、例えば、コネクタ、LEDリフレクタ、スイッチ、センサー、ソケット、コンデンサー、ジャック、ヒューズホルダー、リレー、コイルボビン、抵抗器、ICやLEDのハウジングが挙げられる。
 日用品としては、ボトル容器(特に飲料用ボトル容器)が挙げられる。
 また、本発明のポリアミドは公知の製膜方法または紡糸方法により、フィルム、シート、繊維に加工することができる。
 フィルムおよびシートは、例えば、スピーカー振動板、フィルムコンデンサ、絶縁フィルム、食品包装フィルムとして用いることができる。
 繊維は、例えば、エアーバッグ基布、フィルターとして用いることができる。

Claims (14)

  1.  ジカルボン酸成分とジアミン成分とからなる数平均分子量5000以上のポリアミドであって、ジアミン成分が2,5-ビス(アミノメチル)フランおよび/または2,5-ビス(アミノメチル)テトラヒドロフラン(A)をジアミン成分全量に対して15~85モル%含有することを特徴とするポリアミド。
  2.  ジアミン成分が、さらにキシリレンジアミン(B)を含有することを特徴とする請求項1に記載のポリアミド。
  3.  ジアミン成分中のキシリレンジアミン(B)の含有量がジアミン成分全量に対して15~85モル%であることを特徴とする請求項2に記載のポリアミド。
  4.  キシリレンジアミン(B)がメタキシリレンジアミンであることを特徴とする請求項2または3に記載のポリアミド。
  5.  ジカルボン酸成分が脂肪族ジカルボン酸を含有することを特徴とする請求項1~4のいずれかに記載のポリアミド。
  6.  ジカルボン酸成分中の脂肪族ジカルボン酸の含有量がジカルボン酸成分全量に対して50モル%以上であることを特徴とする請求項5に記載のポリアミド。
  7.  請求項1~6のいずれかに記載のポリアミドからなるフィルム。
  8.  請求項1~6のいずれかに記載のポリアミドからなるボトル容器。
  9.  ジカルボン酸成分およびジアミン成分の塩を作製し、溶媒中、該塩の融点以上、「得られるポリアミドの融点-20℃」以下の温度で重合する数平均分子量5000以上のポリアミドの製造方法であって、ジアミン成分が2,5-ビス(アミノメチル)フランおよび/または2,5-ビス(アミノメチル)テトラヒドロフラン(A)をジアミン成分全量に対して15~85モル%含有することを特徴とするポリアミドの製造方法。
  10.  「得られるポリアミドの融点」が150~245℃であることを特徴とする請求項9に記載のポリアミドの製造方法。
  11.  溶媒が前記温度以上の沸点を有することを特徴とする請求項9または10に記載のポリアミドの製造方法。
  12.  溶媒が脂環族炭化水素化合物であることを特徴とする請求項9~11のいずれかに記載のポリアミドの製造方法。
  13.  溶媒の量が前記塩100質量部に対して30~300質量部であることを特徴とする請求項9~12のいずれかに記載のポリアミドの製造方法。
  14.  ポリアミドがジカルボン酸成分またはジアミン成分の少なくとも一方の成分として構造の異なる2種以上のモノマーを含有する場合、前記塩を、ジカルボン酸成分とジアミン成分との組み合わせが異なる2種以上で作製し、該塩のうち最も低い融点を有する塩の融点以上、「得られるポリアミドの融点-20℃」以下の温度で重合することを特徴とする請求項9~13のいずれかに記載のポリアミドの製造方法。
PCT/JP2017/043800 2016-12-07 2017-12-06 ポリアミド WO2018105649A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018555036A JP7055383B2 (ja) 2016-12-07 2017-12-06 ポリアミド
DE112017006180.6T DE112017006180T5 (de) 2016-12-07 2017-12-06 Polyamid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-237636 2016-12-07
JP2016237636 2016-12-07

Publications (1)

Publication Number Publication Date
WO2018105649A1 true WO2018105649A1 (ja) 2018-06-14

Family

ID=62492320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043800 WO2018105649A1 (ja) 2016-12-07 2017-12-06 ポリアミド

Country Status (3)

Country Link
JP (1) JP7055383B2 (ja)
DE (1) DE112017006180T5 (ja)
WO (1) WO2018105649A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117703A1 (ja) * 2019-12-11 2021-06-17 三菱瓦斯化学株式会社 ポリアミドの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014524953A (ja) * 2011-07-08 2014-09-25 ロディア オペレーションズ 新規なポリアミド、その製造方法及びその使用
JP2015514150A (ja) * 2012-03-30 2015-05-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company フラン系ポリアミド
JP2017101179A (ja) * 2015-12-03 2017-06-08 ユニチカ株式会社 ポリアミドおよびその製造方法
JP2017101180A (ja) * 2015-12-03 2017-06-08 ユニチカ株式会社 ポリアミドおよびその成形体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014524953A (ja) * 2011-07-08 2014-09-25 ロディア オペレーションズ 新規なポリアミド、その製造方法及びその使用
JP2015514150A (ja) * 2012-03-30 2015-05-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company フラン系ポリアミド
JP2017101179A (ja) * 2015-12-03 2017-06-08 ユニチカ株式会社 ポリアミドおよびその製造方法
JP2017101180A (ja) * 2015-12-03 2017-06-08 ユニチカ株式会社 ポリアミドおよびその成形体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117703A1 (ja) * 2019-12-11 2021-06-17 三菱瓦斯化学株式会社 ポリアミドの製造方法
CN114829454A (zh) * 2019-12-11 2022-07-29 三菱瓦斯化学株式会社 聚酰胺的制造方法

Also Published As

Publication number Publication date
JPWO2018105649A1 (ja) 2019-10-24
JP7055383B2 (ja) 2022-04-18
DE112017006180T5 (de) 2019-10-02

Similar Documents

Publication Publication Date Title
JP5257522B2 (ja) ポリアミド化合物
RU2415156C2 (ru) Полукристаллический полуароматический полиамид
JP4487687B2 (ja) 低吸水性部材
JP5546623B2 (ja) 半芳香族ポリアミドの製造方法
JP6773410B2 (ja) ポリアミドの製造方法
TWI513764B (zh) 聚醯胺組成物及成形品
JP5920543B2 (ja) ポリアミドの製造方法
TW201120095A (en) Polyamide and polyamide composition
JP2013006963A (ja) ポリアミドおよびその成形体
WO2008123534A1 (ja) 燃料部品用成形材料及びそれを用いた燃料部品
CN113150269A (zh) 半芳香族聚酰胺共聚物及其制备
WO2019121823A1 (en) Piperidine-containing semi-aromatic polyamide
JP6723005B2 (ja) ポリアミドおよびその成形体
TW201249901A (en) Copolyamide film
TW201414771A (zh) 聚醚聚醯胺組成物
JP7055383B2 (ja) ポリアミド
JPWO2016182001A1 (ja) ポリアミドエラストマー、医療機器及びポリアミドエラストマーの製造方法
WO2012082679A1 (en) Polyamides and methods of making and using same
JP6778678B2 (ja) ポリアミドエラストマー、医療機器及びポリアミドエラストマーの製造方法
JP2022100975A (ja) ポリアミド組成物及び成形体
JPH04178447A (ja) 樹脂組成物
KR20210102280A (ko) 반방향족 폴리아미드 수지 및 그의 제조 방법
CN112204075A (zh) 半芳香族聚酰胺树脂及其制造方法
TWI795339B (zh) 聚醯胺發泡成形體及其製造方法
KR101498159B1 (ko) 내열성 폴리아미드의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877428

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018555036

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17877428

Country of ref document: EP

Kind code of ref document: A1