WO2018105625A1 - トレッド用ゴム組成物およびタイヤ - Google Patents

トレッド用ゴム組成物およびタイヤ Download PDF

Info

Publication number
WO2018105625A1
WO2018105625A1 PCT/JP2017/043699 JP2017043699W WO2018105625A1 WO 2018105625 A1 WO2018105625 A1 WO 2018105625A1 JP 2017043699 W JP2017043699 W JP 2017043699W WO 2018105625 A1 WO2018105625 A1 WO 2018105625A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
rubber
less
content
Prior art date
Application number
PCT/JP2017/043699
Other languages
English (en)
French (fr)
Inventor
眞吾 姫田
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Priority to CN201780076050.XA priority Critical patent/CN110050023B/zh
Priority to EP17877713.2A priority patent/EP3553124B1/en
Priority to JP2018528089A priority patent/JP7067475B2/ja
Priority to US16/467,833 priority patent/US11180640B2/en
Publication of WO2018105625A1 publication Critical patent/WO2018105625A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/06Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring
    • C08K5/46Heterocyclic compounds having sulfur in the ring with oxygen or nitrogen in the ring
    • C08K5/47Thiazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • C08L91/06Waxes

Definitions

  • the present invention relates to a rubber composition for a tread and a tire having a tread composed of the rubber composition.
  • tread patterns (grooves) and have independent blocks.
  • This block contributes to the transmission of driving force and braking force, the handling stability on snow and on muddy roads, and the improvement of drainage.
  • block chipping is likely to occur due to bad road running or aging deterioration, and when the chipping occurs, it becomes difficult to exhibit the original performance of the tire.
  • Patent Document 1 describes a rubber composition for tread in which the resistance to block chipping is improved by containing crystallized crystallized carbon black, but there is room for improvement.
  • An object of the present invention is to provide a rubber composition for a tread excellent in block chip resistance and a tire having a tread composed of the rubber composition.
  • styrene butadiene rubber having a styrene content of 15% by mass or less and a vinyl content of 30 to 50% by mol is 25 to 45% by mass
  • isoprene-based rubber is 45 to 65% by mass
  • butadiene rubber is 5 to 15% by mass.
  • the present invention relates to a rubber composition for a tread in which the content of carbon black B is 0.6 to 4.5 X parts by mass when the content of carbon black A is X parts by mass.
  • the present invention also relates to a tire having a tread composed of the rubber composition for a tread.
  • a tire having a tread composed of the rubber composition for a tread of the present invention is excellent in block chip resistance.
  • a rubber composition for a tread according to an embodiment of the present invention contains a predetermined amount of a carbon component including a predetermined styrene-butadiene rubber, isoprene-based rubber and butadiene rubber, and carbon black A and carbon black B having different iodine adsorption amounts. It is characterized by that.
  • the rubber composition for a tread according to the present embodiment has a styrene butadiene rubber dispersed in an isoprene / butadiene polymer, so that impact generated when traveling on a rough road is mitigated.
  • rubber low styrene SBR
  • carbon black A having a small particle size
  • the contact effect between SBR and carbon black A is increased, so that the reinforcing effect on the rubber composition is improved and the block chip resistance is excellent.
  • the SBR has a small styrene content, the amount of heat generated is small, and a decrease in block rigidity due to running can be suppressed. Therefore, it is considered that the block chipping resistance is synergistically improved.
  • the rubber component contains predetermined low styrene styrene butadiene rubber (low styrene SBR), isoprene-based rubber and butadiene rubber (BR).
  • low styrene SBR low styrene styrene butadiene rubber
  • BR butadiene rubber
  • the styrene content of the low styrene SBR is 15% by mass or less, and preferably 12% by mass or less. When the styrene content exceeds 15% by mass, the effect of the present invention tends to be insufficient.
  • the styrene content is preferably 2% by mass or more, more preferably 5% by mass or more, and even more preferably 8% by mass or more, from the reason that the effects of the present invention are sufficiently obtained.
  • the styrene content of SBR in this specification is calculated by H 1 -NMR measurement.
  • the vinyl content of the low styrene SBR is 30 mol% or more, preferably 33 mol% or more, and more preferably 35 mol% or more. When the vinyl content is less than 30 mol%, the wet performance tends to decrease.
  • the vinyl content is 50 mol% or less, preferably 48 mol% or less, and more preferably 45 mol% or less. When the vinyl content exceeds 50 mol%, the exothermicity tends to increase.
  • the weight average molecular weight (Mw) of the low styrene SBR is preferably 100,000 or more, more preferably 150,000 or more, and further preferably 250,000 or more from the viewpoint of wear resistance. Further, Mw is preferably 2 million or less, more preferably 1 million or less, from the viewpoint of cross-linking uniformity and the like. Mw is based on a value measured by gel permeation chromatography (GPC) (GPC-8000 series manufactured by Tosoh Corp., detector: differential refractometer, column: TSKGEL SUPERMALTPORE HZ-M manufactured by Tosoh Corp.). In addition, it can be determined by standard polystyrene conversion.
  • GPC gel permeation chromatography
  • the low styrene SBR is not particularly limited, and examples thereof include solution polymerization SBR (S-SBR), emulsion polymerization SBR (E-SBR), and modified SBRs thereof (modified S-SBR, modified E-SBR).
  • S-SBR solution polymerization SBR
  • E-SBR emulsion polymerization SBR
  • modified SBRs thereof modified S-SBR, modified E-SBR.
  • modified SBR include SBR having a terminal and / or main chain modified, modified SBR coupled with tin, a silicon compound, or the like (condensate, one having a branched structure, or the like). Of these, S-SBR is preferred.
  • S-SBR examples include S-SBR manufactured and sold by JSR Corporation, Sumitomo Chemical Co., Ltd., Ube Industries, Ltd., Asahi Kasei Corporation, Nippon Zeon Corporation, and the like.
  • the content of the low styrene SBR in the rubber component is 25% by mass or more, preferably 30% by mass or more, and more preferably 35% by mass or more. When the amount is less than 25% by mass, the effect of the present invention tends to be insufficient.
  • the content of low styrene SBR is 45% by mass or less, and preferably 42% by mass or less. When it exceeds 45 mass%, the exothermic property tends to be high.
  • Isoprene-based rubber includes natural rubber (NR) and modified natural rubber such as epoxidized natural rubber (ENR), hydrogenated natural rubber (HNR), deproteinized natural rubber (DPNR), and high-purity natural rubber (UPNR). And natural rubber containing isoprene rubber (IR).
  • NR natural rubber
  • EMR epoxidized natural rubber
  • HNR hydrogenated natural rubber
  • DPNR deproteinized natural rubber
  • UPNR high-purity natural rubber
  • IR natural rubber containing isoprene rubber
  • SIR20, RSS # 3, TSR20, and the like can be used.
  • IR IR generally used in the tire industry can be used.
  • the content of the isoprene-based rubber in the rubber component is 45% by mass or more, and preferably 48% by mass or more. When it is less than 45% by mass, the effect of the present invention tends to be insufficient. Further, the content of the isoprene-based rubber is 65% by mass or less, and preferably 60% by mass or less. When it exceeds 65 mass%, there exists a tendency for crack growth resistance to fall.
  • the BR is not particularly limited.
  • high cis BR having a cis-1,4 bond content of 90% or more modified BR having a modified terminal and / or main chain, 1,2-syndiotactic polybutadiene crystal (SPB) BR containing SP (SPB-containing BR), modified BR (condensate, one having a branched structure, etc.) coupled with tin, silicon compound and the like.
  • SPB-containing BR 1,2-syndiotactic polybutadiene crystal
  • modified BR condensate, one having a branched structure, etc. coupled with tin, silicon compound and the like.
  • high cis BR is preferable because of its excellent wear resistance.
  • Hisis BR that can be used in the present embodiment includes Hisys BR manufactured and sold by JSR Corporation, Sumitomo Chemical Co., Ltd., Ube Industries, Ltd., Asahi Kasei Corporation, Nippon Zeon Corporation, and the like.
  • the content of BR in the rubber component is 5% by mass or more, preferably 8% by mass or more. When it is less than 5% by mass, the effect of the present invention tends to be insufficient. Moreover, content of BR is 15 mass% or less, and 12 mass% or less is preferable. When it exceeds 15% by mass, block chipping tends to occur.
  • the rubber component according to this embodiment may contain a rubber component other than the low styrene SBR, the isoprene-based rubber and the BR.
  • examples of other rubber components include SBR other than low styrene SBR, styrene-isoprene-butadiene copolymer rubber (SIBR), styrene-isobutylene-styrene block copolymer (SIBS), and the like. These other rubber components may be used alone or in combination of two or more.
  • the rubber composition for a tread according to this embodiment includes a small particle carbon black (carbon black A) having an iodine adsorption amount of 130 mg / g or more and a general-purpose carbon black (carbon) having an iodine adsorption amount of 110 mg / g or more and less than 130 mg / g. It is characterized by containing a predetermined amount of black B).
  • carbon black A small particle carbon black
  • carbon black B general-purpose carbon black
  • the blending amount and ratio of both are determined as follows.
  • the iodine adsorption amount of carbon black A is 130 mg / g or more, preferably 135 mg / g or more, and more preferably 140 mg / g or more.
  • the iodine adsorption amount of the carbon black A is less than 130 mg / g, the block chipping resistance tends to be insufficient.
  • the upper limit of the iodine adsorption amount of the carbon black A is not particularly limited, but is preferably 180 mg / g or less, more preferably 160 mg / g or less, and further preferably 150 mg / g or less from the viewpoint of workability.
  • the content of carbon black A with respect to 100 parts by mass of the rubber component is 10 parts by mass or more, and preferably 15 parts by mass or more. When the amount is less than 10 parts by mass, the resistance to block chipping tends to be insufficient. Moreover, content of carbon black A is 30 mass parts or less, 25 mass parts or less are preferable, and 20 mass parts or less are more preferable. When it exceeds 30 mass parts, it tends to generate heat easily.
  • the iodine adsorption amount of carbon black B is 110 mg / g or more, preferably 115 mg / g or more, and more preferably 120 mg / g or more.
  • the iodine adsorption amount of carbon black B is less than 110 mg / g, the reinforcing property tends to be insufficient.
  • the iodine adsorption amount of carbon black B is less than 130 mg / g, and more preferably 125 mg / g or less.
  • heat tends to be easily generated.
  • the content of carbon black B with respect to 100 parts by mass of the rubber component is 20 parts by mass or more, and preferably 22 parts by mass or more. When the amount is less than 20 parts by mass, the effect of the present invention tends to be insufficient.
  • the content of carbon black B is 50 parts by mass or less, preferably 40 parts by mass or less. When it exceeds 50 mass parts, there exists a tendency for reinforcement property to become inadequate.
  • the content of the carbon black A with respect to 100 parts by mass of the rubber component is X parts by mass
  • the content of the carbon black B is 0.6X to 4.5X parts by mass, and 1.0X to 2.5X Part by mass is preferred.
  • the rubber composition for a tread of the present embodiment is a compounding agent generally used in the production of rubber compositions, for example, fillers (other fillers) other than the above carbon black, oxidation Zinc, stearic acid, anti-aging agents, processing aids, waxes, softeners, vulcanizing agents, vulcanization accelerators and the like can be appropriately contained.
  • the other filler is not particularly limited, and examples thereof include silica, aluminum hydroxide, alumina (aluminum oxide), calcium carbonate, talc, and the like. These fillers can be used alone or in combination of two or more. It can also be used.
  • the silica is not particularly limited, and examples thereof include dry method silica (anhydrous silicic acid), wet method silica (hydrous silicic acid), and the like, but wet method silica is preferable because of its large number of silanol groups.
  • the nitrogen adsorption specific surface area (N 2 SA) of silica is preferably 80 m 2 / g or more, more preferably 100 m 2 / g or more, from the viewpoint of durability and elongation at break.
  • the N 2 SA of the silica from the viewpoint of fuel economy and workability, preferably 250 meters 2 / g or less, more preferably 220 m 2 / g.
  • the N 2 SA of silica in the present specification is a value measured according to ASTM D3037-93.
  • the content with respect to 100 parts by mass of the rubber component is preferably 5 parts by mass or more, and more preferably 10 parts by mass or more from the viewpoint of durability and elongation at break. Further, the content of silica is 200 parts by mass from the viewpoint of improving dispersibility at the time of kneading, and suppressing reduction of workability due to re-aggregation of silica during heating during rolling and storage after rolling. The following is preferable, and 150 parts by mass or less is more preferable.
  • Silica is preferably used in combination with a silane coupling agent.
  • silane coupling agent any silane coupling agent conventionally used in combination with silica can be used in the rubber industry.
  • any silane coupling agent conventionally used in combination with silica can be used in the rubber industry.
  • vinyltriethoxysilane Vinyl such as 3-aminopropyl triethoxysilane, glycidoxy such as ⁇ -glycidoxypropyltriethoxysilane, nitro such as 3-nitropropyltrimethoxysilane, 3-ch
  • the content with respect to 100 parts by mass of silica in the case of containing a silane coupling agent is 4.0 parts by mass or more because the effect of improving the filler dispersibility and the effect of reducing the viscosity can be obtained.
  • it is 6.0 parts by mass or more.
  • the content of the silane coupling agent is preferably 12 parts by mass or less, and is preferably 10 parts by mass or less because sufficient coupling effect and silica dispersion effect cannot be obtained and the reinforcing property is lowered. It is more preferable.
  • the anti-aging agent is not particularly limited, and those used in the rubber field can be used, and examples thereof include quinoline-based, quinone-based, phenol-based, and phenylenediamine-based anti-aging agents.
  • the content relative to 100 parts by mass of the rubber component is preferably 0.5 parts by mass or more, and more preferably 0.8 parts by mass or more.
  • the content of the anti-aging agent is preferably 2.0 parts by mass or less, more preferably 1.5 parts by mass or less, and 1.2 parts by mass from the viewpoints of dispersibility of fillers, elongation at break, and kneading efficiency. Part or less is more preferable.
  • processing aids include fatty acid metal salts such as zinc stearate.
  • fatty acid soap-based processing aids such as EF44 and WB16 manufactured by Straktor are listed.
  • the blending ratio of the processing aid is preferably 0.1 parts by mass or more, preferably 5 parts by mass or less, and particularly preferably 3 parts by mass or less, per 100 parts by mass of the total amount of rubber.
  • the content with respect to 100 parts by mass of the rubber component is preferably 0.2 parts by mass or more and more preferably 1 part by mass or more from the viewpoint of the vulcanization speed. Moreover, from a workability viewpoint, 10 mass parts or less are preferable, and 5 mass parts or less are more preferable.
  • the content with respect to 100 parts by mass of the rubber component is preferably 0.5 parts by mass or more and more preferably 1 part by mass or more from the viewpoint of the vulcanization speed. Moreover, from a viewpoint of abrasion resistance performance, 10 mass parts or less are preferable, and 5 mass parts or less are more preferable.
  • the content with respect to 100 parts by mass of the rubber component is preferably 0.5 parts by mass or more and more preferably 1 part by mass or more from the viewpoint of the weather resistance of the rubber. Moreover, from a viewpoint of the whitening of the tire by Bloom, 10 mass parts or less are preferable, and 5 mass parts or less are more preferable.
  • the softener means a component soluble in acetone, and examples thereof include oils such as process oils and vegetable oils, and liquid diene polymers. These softeners may be used alone or in combination of two or more. Of these, oil is preferred.
  • oils examples include process oil, vegetable oil and fat, and a mixture thereof.
  • process oil examples include paraffinic process oil, naphthenic process oil, aromatic process oil (aromatic oil) and the like.
  • Vegetable oils include castor oil, cottonseed oil, sesame oil, rapeseed oil, soybean oil, palm oil, palm oil, peanut oil, rosin, pine oil, pineapple, tall oil, corn oil, rice bran oil, beet flower oil, sesame oil, Examples include olive oil, sunflower oil, palm kernel oil, camellia oil, jojoba oil, macadamia nut oil, and tung oil. Of these, aroma oil is preferable.
  • the liquid diene polymer is not particularly limited as long as it is a diene polymer having a weight average molecular weight of 50000 or less.
  • a liquid styrene butadiene copolymer liquid styrene butadiene rubber (liquid SBR)
  • liquid SBR liquid styrene butadiene rubber
  • a liquid butadiene polymer (liquid butadiene rubber (liquid BR)) is preferable because the effect of improving the wear resistance performance is large.
  • the weight average molecular weight (Mw) of the liquid diene polymer is preferably 1000 or more, more preferably 1500 or more, because it is excellent in the effect of improving wear resistance. Moreover, from a viewpoint of performance on snow and ice, 50000 or less is preferable, 20000 or less is more preferable, and 15000 or less is more preferable.
  • the weight average molecular weight (Mw) is a gel permeation chromatograph (GPC) (GPC-8000 series manufactured by Tosoh Corporation, detector: differential refractometer, column: TSKGEL manufactured by Tosoh Corporation). It can be determined by standard polystyrene conversion based on the measured value by SUPERMALTPORE HZ-M).
  • the content of the softening agent with respect to 100 parts by mass of the rubber component is preferably 1 part by mass or more and more preferably 3 parts by mass or more from the viewpoint of processability. Further, the content of the softening agent is preferably 10 parts by mass or less, and more preferably 5 parts by mass or less, from the viewpoint of block resistance performance and wear resistance.
  • the vulcanizing agent is not particularly limited, and those commonly used in the tire industry can be used. From the point that the effect of the present invention can be obtained satisfactorily, sulfur is preferable, and powdered sulfur is more preferable. Sulfur may be used in combination with other vulcanizing agents.
  • Other vulcanizing agents include, for example, Tacrol V200 manufactured by Taoka Chemical Co., Ltd., DURALINK HTS (1,6-hexamethylene-sodium dithiosulfate dihydrate) manufactured by Flexis, and KA9188 manufactured by LANXESS.
  • Examples thereof include vulcanizing agents containing sulfur atoms such as (1,6-bis (N, N′-dibenzylthiocarbamoyldithio) hexane) and organic peroxides such as dicumyl peroxide.
  • sulfur atoms such as (1,6-bis (N, N′-dibenzylthiocarbamoyldithio) hexane) and organic peroxides such as dicumyl peroxide.
  • the content with respect to 100 parts by mass of the rubber component is preferably 0.1 parts by mass or more, and more preferably 0.5 parts by mass or more. Moreover, 15 mass parts or less are preferable, and, as for content of a vulcanizing agent, 5 mass parts or less are more preferable.
  • vulcanization accelerator examples include sulfenamide, thiazole, thiuram, thiourea, guanidine, dithiocarbamic acid, aldehyde-amine or aldehyde-ammonia, imidazoline, or xanthate vulcanization accelerators. Etc. These vulcanization accelerators may be used alone or in combination of two or more. Of these, sulfenamide vulcanization accelerators, thiazole vulcanization accelerators, and guanidine vulcanization accelerators are preferable, and sulfenamide vulcanization accelerators are more preferable.
  • sulfenamide vulcanization accelerator examples include N-tert-butyl-2-benzothiazolylsulfenamide (TBBS), N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), N, N -Dicyclohexyl-2-benzothiazolylsulfenamide (DCBS) and the like.
  • TBBS N-tert-butyl-2-benzothiazolylsulfenamide
  • CBS N-cyclohexyl-2-benzothiazolylsulfenamide
  • CBS N-cyclohexyl-2-benzothiazolylsulfenamide
  • Examples of the thiazole vulcanization accelerator include 2-mercaptobenzothiazole, cyclohexylamine salt of 2-mercaptobenzothiazole, di-2-benzothiazolyl disulfide, and the like. Of these, 2-mercaptobenzothiazole is preferable.
  • Examples of guanidine vulcanization accelerators include 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine, 1-o-tolylbiguanide, dicatechol borate di-o-tolylguanidine salt, 1, Examples include 3-di-o-cumenyl guanidine, 1,3-di-o-biphenyl guanidine, 1,3-di-o-cumenyl-2-propionyl guanidine, and the like. Of these, 1,3-diphenylguanidine is preferable.
  • the content with respect to 100 parts by mass of the rubber component is preferably 0.5 parts by mass or more, and more preferably 1.0 part by mass or more from the viewpoint of securing a sufficient vulcanization rate. Further, the content of the vulcanization accelerator is preferably 10 parts by mass or less, more preferably 5 parts by mass or less from the viewpoint of suppressing blooming.
  • the rubber composition for a tread according to this embodiment can be produced by a general method.
  • a known kneader used in a general rubber industry such as a Banbury mixer, a kneader, and an open roll
  • after kneading components other than the crosslinking agent and the vulcanization accelerator among the above components Further, it can be produced by a method of adding a crosslinking agent and a vulcanization accelerator, kneading and then vulcanizing.
  • a tire which is another embodiment of the present invention can be manufactured by a normal method using the rubber composition for a tread. That is, the rubber composition in which the above compounding agent is blended as necessary with respect to the rubber component is extruded in accordance with the shape of the tread, and is bonded together with other tire members on a tire molding machine.
  • the tire can be manufactured by forming an unvulcanized tire by molding and heating and pressurizing the unvulcanized tire in a vulcanizer.
  • NR TSR20
  • SBR1 Non-oil extended solution polymerization SBR (weight average molecular weight: 250,000, styrene content: 10% by mass, vinyl content: 40 mol%)
  • SBR2 Non-oil-extended solution polymerization SBR (weight average molecular weight: 450,000, styrene content: 24 mass%, vinyl content: 17 mol%)
  • BR UBEPOL BR150B manufactured by Ube Industries, Ltd. (High cis BR, cis-1,4 bond content: 96%)
  • Carbon black 1 Show black N110 manufactured by Cabot Japan Co., Ltd.
  • the unvulcanized rubber composition is extruded into a tire tread shape with an extruder equipped with a predetermined-shaped die, and bonded together with other tire members to form an unvulcanized tire, and press vulcanized.
  • a test tire (12R22.5, truck bus tire) was manufactured.
  • Block chipping resistance index (Score of each formulation example) / (Score of Comparative Example 1) ⁇ 100
  • the rubber composition for a tread of the present invention containing a predetermined amount of a predetermined styrene-butadiene rubber, isoprene-based rubber, a rubber component containing butadiene rubber, carbon black A and carbon black B having different iodine adsorption amounts. It can be seen that the tire having the constructed tread is synergistically improved in the resistance to block chipping and the average performance of block chipping resistance, wear resistance and low heat build-up by the interaction of these materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Abstract

スチレン含量が15質量%以下でありビニル含量が30~50モル%のスチレンブタジエンゴムを25~45質量%、イソプレン系ゴムを45~65質量%、ブタジエンゴムを5~15質量%含むゴム成分100質量部に対して、ヨウ素吸着量が130mg/g以上のカーボンブラックAを10~30質量部、ヨウ素吸着量が110mg/g以上、130mg/g未満のカーボンブラックBを20~50質量部含有し、カーボンブラックAの含有量をX質量部とした場合のカーボンブラックBの含有量が0.6X~4.5X質量部であるトレッド用ゴム組成物。

Description

トレッド用ゴム組成物およびタイヤ
 本発明はトレッド用ゴム組成物およびこのゴム組成物により構成されたトレッドを有するタイヤに関する。
 一部のタイヤ、特にトラックやバスなどの重荷重用タイヤ、不整地走行用タイヤのトレッドにはトレッドパターン(溝)で囲まれ、独立したブロックが設けられている。このブロックは、駆動力および制動力の伝達、雪上やぬかるんだ路面などでの操縦安定性、および排水性の向上に貢献している。しかしながら、悪路走行や経年劣化によりブロック欠けが生じやすく、欠けが生じるとタイヤ本来の性能を発揮しにくくなる。
 特許文献1には、結晶化された結晶化カーボンブラックを含有することで耐ブロック欠け性能を向上させたトレッド用ゴム組成物が記載されているが、改善の余地がある。
特開2014-024890号公報
 本発明は、耐ブロック欠け性能に優れたトレッド用ゴム組成物およびこのゴム組成物により構成されたトレッドを有するタイヤを提供することを目的とする。
 本発明は、スチレン含量が15質量%以下でありビニル含量が30~50モル%のスチレンブタジエンゴムを25~45質量%、イソプレン系ゴムを45~65質量%、ブタジエンゴムを5~15質量%含むゴム成分100質量部に対して、
ヨウ素吸着量が130mg/g以上のカーボンブラックAを10~30質量部、
ヨウ素吸着量が110mg/g以上、130mg/g未満のカーボンブラックBを20~50質量部含有し、
カーボンブラックAの含有量をX質量部とした場合のカーボンブラックBの含有量が0.6X~4.5X質量部であるトレッド用ゴム組成物に関する。
 また、本発明は前記トレッド用ゴム組成物により構成されたトレッドを有するタイヤに関する。
 本発明のトレッド用ゴム組成物により構成されたトレッドを有するタイヤは、耐ブロック欠け性能に優れる。
 本発明の一実施形態であるトレッド用ゴム組成物は、所定のスチレンブタジエンゴム、イソプレン系ゴムおよびブタジエンゴムを含むゴム成分、ならびにヨウ素吸着量の異なるカーボンブラックAおよびカーボンブラックBを所定量含有することを特徴とする。
 本実施形態に係るトレッド用ゴム組成物は、イソプレン/ブタジエンポリマーにスチレンブタジエンゴムを分散させることで、悪路面走行時に発生する衝撃が緩和され、さらに、スチレンブタジエンゴムとして、低スチレン含量のスチレンブタジエンゴム(低スチレンSBR)、および粒子径の小さいカーボンブラックAを使用することにより、SBRとカーボンブラックAとの接触が増加することでゴム組成物に対する補強効果が向上し、耐ブロック欠け性能に優れると考えられる。また、SBRのスチレン含量が少ないことから、発熱量が少なく、走行によるブロック剛性の低下を抑えることができるため、相乗的に、耐ブロック欠け性能が向上していると考えられる。
<ゴム成分>
 前記ゴム成分は、所定の低スチレンスチレンブタジエンゴム(低スチレンSBR)、イソプレン系ゴムおよびブタジエンゴム(BR)を含有する。
(SBR)
 低スチレンSBRのスチレン含量は15質量%以下であり、12質量%以下が好ましい。スチレン含量が15質量%を超える場合は、本発明の効果が不十分となる傾向がある。また、当該スチレン含量は、本発明の効果が十分得られるという理由から、2質量%以上が好ましく、5質量%以上がより好ましく、8質量%以上がさらに好ましい。なお、本明細書におけるSBRのスチレン含量は、H1-NMR測定により算出される。
 低スチレンSBRのビニル含量は30モル%以上であり、33モル%以上が好ましく、35モル%以上がより好ましい。ビニル含量が30モル%未満の場合は、ウェット性能が低下する傾向がある。また、当該ビニル含量は、50モル%以下であり、48モル%以下が好ましく、45モル%以下がより好ましい。ビニル含量が50モル%を超える場合は、発熱性が高くなる傾向がある。
 低スチレンSBRの重量平均分子量(Mw)は、耐摩耗性能の観点から、10万以上が好ましく、15万以上がより好ましく、25万以上がさらに好ましい。また、Mwは、架橋均一性等の観点から、200万以下が好ましく、100万以下がより好ましい。なお、Mwは、ゲルパーミエーションクロマトグラフィー(GPC)(東ソー(株)製GPC-8000シリーズ、検出器:示差屈折計、カラム:東ソー(株)製のTSKGEL SUPERMALTPORE HZ-M)による測定値を基に、標準ポリスチレン換算により求めることができる。
 低スチレンSBRとしては特に限定はなく、溶液重合SBR(S-SBR)、乳化重合SBR(E-SBR)、これらの変性SBR(変性S-SBR、変性E-SBR)などが挙げられる。変性SBRとしては、末端および/または主鎖が変性されたSBR、スズ、ケイ素化合物などでカップリングされた変性SBR(縮合物、分岐構造を有するものなど)などが挙げられる。なかでもS-SBRが好ましい。
 本実施形態で使用できるS-SBRとしては、JSR株式会社、住友化学株式会社、宇部興産株式会社、旭化成株式会社、日本ゼオン株式会社などによって製造販売されるS-SBRが挙げられる。
 低スチレンSBRのゴム成分中の含有量は、25質量%以上であり、30質量%以上が好ましく、35質量%以上がより好ましい。25質量%未満の場合は、本発明の効果が不十分となる傾向がある。また、低スチレンSBRの含有量は、45質量%以下であり、42質量%以下が好ましい。45質量%を超える場合は、発熱性が高くなる傾向がある。
(イソプレン系ゴム)
 イソプレン系ゴムとしては、天然ゴム(NR)、およびエポキシ化天然ゴム(ENR)、水素化天然ゴム(HNR)、脱タンパク質天然ゴム(DPNR)、高純度天然ゴム(UPNR)などの改質天然ゴムを含む天然ゴム、ならびにイソプレンゴム(IR)が挙げられる。NRとしては、例えば、SIR20、RSS♯3、TSR20など、IRとしては、タイヤ工業において一般的に使用されるIRなどが使用できる。
 イソプレン系ゴムのゴム成分中の含有量は、45質量%以上であり、48質量%以上が好ましい。45質量%未満の場合は、本発明の効果が不十分となる傾向がある。また、イソプレン系ゴムの含有量は、65質量%以下であり、60質量%以下が好ましい。65質量%を超える場合は、耐亀裂成長性が低下する傾向がある。
(BR)
 BRとしては特に限定されず、例えば、シス-1,4結合含量が90%以上のハイシスBR、末端および/または主鎖が変性された変性BR、1,2-シンジオタクチックポリブタジエン結晶(SPB)を含有するBR(SPB含有BR)、スズ、ケイ素化合物などでカップリングされた変性BR(縮合物、分岐構造を有するものなど)などが挙げられる。これらのBRのなかでも、耐摩耗性に優れるという理由から、ハイシスBRが好ましい。
 本実施形態で使用できるハイシスBRとしては、JSR株式会社、住友化学株式会社、宇部興産株式会社、旭化成株式会社、日本ゼオン株式会社などによって製造販売されるハイシスBRが挙げられる。
 BRのゴム成分中の含有量は、5質量%以上であり、8質量%以上が好ましい。5質量%未満の場合は、本発明の効果が不十分となる傾向がある。また、BRの含有量は、15質量%以下であり、12質量%以下が好ましい。15質量%を超える場合は、ブロック欠けが発生しやすくなる傾向がある。
(その他のゴム成分)
 本実施形態に係るゴム成分は、前記の低スチレンSBR、イソプレン系ゴムおよびBR以外のゴム成分を含有してもよい。他のゴム成分としては、例えば、低スチレンSBR以外のSBR、スチレン-イソプレン-ブタジエン共重合ゴム(SIBR)、スチレン-イソブチレン-スチレンブロック共重合体(SIBS)などが挙げられる。これらその他のゴム成分は単独で用いてもよく、2種以上を併用してもよい。
<カーボンブラック>
 本実施形態に係るトレッド用ゴム組成物は、ヨウ素吸着量が130mg/g以上の小粒子カーボンブラック(カーボンブラックA)およびヨウ素吸着量が110mg/g以上、130mg/g未満の汎用カーボンブラック(カーボンブラックB)を所定量含有することを特徴とする。本実施形態に係るトレッド用ゴム組成物の、耐ブロック欠け性能、低発熱性等のバランスを考慮し、下記のように両者の配合量および比率が決定されている。
 カーボンブラックAのヨウ素吸着量は130mg/g以上であり、135mg/g以上が好ましく、140mg/g以上がより好ましい。カーボンブラックAのヨウ素吸着量が130mg/g未満の場合は、耐ブロック欠け性能が不十分となる傾向がある。また、カーボンブラックAのヨウ素吸着量の上限は特に限定されないが、加工性の観点から180mg/g以下が好ましく、160mg/g以下がより好ましく、150mg/g以下がさらに好ましい。
 カーボンブラックAのゴム成分100質量部に対する含有量は、10質量部以上であり、15質量部以上が好ましい。10質量部未満の場合は、耐ブロック欠け性能が不十分となる傾向がある。また、カーボンブラックAの含有量は、30質量部以下であり、25質量部以下が好ましく、20質量部以下がより好ましい。30質量部を超える場合は、発熱しやすくなる傾向がある。
 カーボンブラックBのヨウ素吸着量は110mg/g以上であり、115mg/g以上が好ましく、120mg/g以上がより好ましい。カーボンブラックBのヨウ素吸着量が110mg/g未満の場合は、補強性が不十分となる傾向がある。また、カーボンブラックBのヨウ素吸着量は130mg/g未満であり、125mg/g以下がより好ましい。カーボンブラックBのヨウ素吸着量が130mg/g以上の場合は、発熱しやすくなる傾向がある。
 カーボンブラックBのゴム成分100質量部に対する含有量は、20質量部以上であり、22質量部以上が好ましい。20質量部未満の場合は、本発明の効果が不十分となる傾向がある。また、カーボンブラックBの含有量は、50質量部以下であり、40質量部以下が好ましい。50質量部を超える場合は、補強性が不十分となる傾向がある。
 さらに、前記カーボンブラックAのゴム成分100質量部に対する含有量をX質量部とした場合のカーボンブラックBの含有量は、0.6X~4.5X質量部であり、1.0X~2.5X質量部が好ましい。カーボンブラックAの含有量に対するカーボンブラックBの含有量を前記範囲とすることで、本発明の効果が十分に発揮される。
<その他の成分>
 本実施形態のトレッド用ゴム組成物は、前記成分以外にも、ゴム組成物の製造に一般的に使用される配合剤、例えば、前記のカーボンブラック以外の充填剤(他の充填剤)、酸化亜鉛、ステアリン酸、老化防止剤、加工助剤、ワックス、軟化剤、加硫剤、加硫促進剤などを適宜含有することができる。
 前記他の充填剤としては特に限定されず、シリカ、水酸化アルミニウム、アルミナ(酸化アルミニウム)、炭酸カルシウム、タルクなどが挙げられ、これらの充填剤を単独で用いることも、2種以上を組み合わせて用いることもできる。
 シリカとしては特に限定されず、例えば、乾式法シリカ(無水ケイ酸)、湿式法シリカ(含水ケイ酸)等が挙げられるが、シラノール基が多いという理由から、湿式法シリカが好ましい。
 シリカのチッ素吸着比表面積(N2SA)は、耐久性や破断時伸びの観点から、80m2/g以上が好ましく、100m2/g以上がより好ましい。また、シリカのN2SAは、低燃費性および加工性の観点から、250m2/g以下が好ましく、220m2/g以下がより好ましい。なお、本明細書におけるシリカのN2SAとは、ASTM D3037-93に準じて測定された値である。
 シリカを含有する場合のゴム成分100質量部に対する含有量は、耐久性や破断時伸びの観点から、5質量部以上が好ましく、10質量部以上がより好ましい。また、シリカの含有量は、混練時の分散性向上の観点、圧延時の加熱や圧延後の保管中にシリカが再凝集して加工性が低下することを抑制するという観点から、200質量部以下が好ましく、150質量部以下がより好ましい。
 シリカは、シランカップリング剤と併用することが好ましい。シランカップリング剤としては、ゴム工業において、従来からシリカと併用される任意のシランカップリング剤を使用することができ、例えば、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(3-トリエトキシシリルプロピル)テトラスルフィドなどのスルフィド系、3-メルカプトプロピルトリメトキシシラン、Momentive社製のNXT-Z100、NXT-Z45、NXTなどのメルカプト系(メルカプト基を有するシランカップリング剤)、ビニルトリエトキシシランなどのビニル系、3-アミノプロピルトリエトキシシランなどのアミノ系、γ-グリシドキシプロピルトリエトキシシランなどのグリシドキシ系、3-ニトロプロピルトリメトキシシランなどのニトロ系、3-クロロプロピルトリメトキシシランなどのクロロ系などが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 シランカップリング剤を含有する場合のシリカ100質量部に対する含有量は、十分なフィラー分散性の改善効果や、粘度低減等の効果が得られるという理由から、4.0質量部以上であることが好ましく、6.0質量部以上であることがより好ましい。また、十分なカップリング効果、シリカ分散効果が得られず、補強性が低下するという理由から、シランカップリング剤の含有量は、12質量部以下であることが好ましく、10質量部以下であることがより好ましい。
 前記老化防止剤としては特に限定されず、ゴム分野で使用されているものが使用可能であり、例えば、キノリン系、キノン系、フェノール系、フェニレンジアミン系老化防止剤などが挙げられる。
 老化防止剤を含有する場合のゴム成分100質量部に対する含有量は、0.5質量部以上が好ましく、0.8質量部以上がより好ましい。また、老化防止剤の含有量は、充填剤等の分散性、破断時伸び、混練効率の観点から、2.0質量部以下が好ましく、1.5質量部以下がより好ましく、1.2質量部以下がより好ましい。
 加工助剤としては、例えば、ステアリン酸亜鉛等の脂肪酸金属塩等が挙げられる。具体的には、例えば、ストラクトール社製のEF44、WB16等の脂肪酸石鹸系加工助剤が挙げられる。加工助剤の配合割合は、ゴム分の総量100質量部あたり0.1質量部以上であるのが好ましく、5質量部以下、特に3質量部以下であるのが好ましい。
 ステアリン酸を含有する場合のゴム成分100質量部に対する含有量は、加硫速度の観点から、0.2質量部以上が好ましく、1質量部以上がより好ましい。また、加工性の観点からは、10質量部以下が好ましく、5質量部以下がより好ましい。
 酸化亜鉛を含有する場合のゴム成分100質量部に対する含有量は、加硫速度の観点から、0.5質量部以上が好ましく、1質量部以上がより好ましい。また、耐摩耗性能の観点からは、10質量部以下が好ましく、5質量部以下がより好ましい。
 ワックスを含有する場合のゴム成分100質量部に対する含有量は、ゴムの耐候性の観点から、0.5質量部以上が好ましく、1質量部以上がより好ましい。また、ブルームによるタイヤの白色化の観点からは、10質量部以下が好ましく、5質量部以下がより好ましい。
 前記軟化剤は、アセトンに可溶な成分を意味し、例えば、プロセスオイルや植物油脂等のオイル、液状ジエン系重合体等が挙げられる。これらの軟化剤は、単独で用いてもよく、2種以上を併用してもよい。なかでも、オイルが好ましい。
 オイルとしては、例えば、プロセスオイル、植物油脂、その混合物などが挙げられる。プロセスオイルとしては、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイル(アロマオイル)等が挙げられる。植物油脂としては、ひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落花生油、ロジン、パインオイル、パインタール、トール油、コーン油、こめ油、べに花油、ごま油、オリーブ油、ひまわり油、パーム核油、椿油、ホホバ油、マカデミアナッツ油、桐油等が挙げられる。なかでも、アロマオイルが好ましい。
 液状ジエン系重合体としては、重量平均分子量が50000以下のジエン系重合体であれば特に限定されず、例えば、スチレンブタジエン共重合体(ゴム)、ブタジエン重合体(ゴム)、イソプレン重合体(ゴム)、アクリロニトリルブタジエン共重合体(ゴム)等が挙げられる。液状ジエン系重合体のなかでも、雪氷上性能に優れるという理由からは、液状スチレンブタジエン共重合体(液状スチレンブタジエンゴム(液状SBR))が好ましい。また、耐摩耗性能の向上効果が大きいという理由からは、液状ブタジエン重合体(液状ブタジエンゴム(液状BR))が好ましい。
 液状ジエン系重合体の重量平均分子量(Mw)は、耐摩耗性の向上効果に優れるという理由から、1000以上が好ましく、1500以上がより好ましい。また、雪氷上性能の観点から、50000以下が好ましく、20000以下がより好ましく、15000以下がより好ましい。なお、本明細書において、重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフ(GPC)(東ソー(株)製GPC-8000シリーズ、検出器:示差屈折計、カラム:東ソー(株)製のTSKGEL SUPERMALTPORE HZ-M)による測定値を基に標準ポリスチレン換算により求めることができる。
 軟化剤のゴム成分100質量部に対する含有量は、加工性の観点から、1質量部以上が好ましく、3質量部以上がより好ましい。また、軟化剤の含有量は、耐ブロック性能および耐摩耗性の観点から、10質量部以下が好ましく、5質量部以下がより好ましい。
 前記加硫剤としては特に限定されず、タイヤ工業において一般的なものを使用できる。本発明の効果が良好に得られるという点からは、硫黄が好ましく、粉末硫黄がより好ましい。また、硫黄は他の加硫剤と併用してもよい。他の加硫剤としては、例えば、田岡化学工業(株)製のタッキロールV200、フレキシス社製のDURALINK HTS(1,6-ヘキサメチレン-ジチオ硫酸ナトリウム・二水和物)、ランクセス社製のKA9188(1,6-ビス(N,N’-ジベンジルチオカルバモイルジチオ)ヘキサン)などの硫黄原子を含む加硫剤や、ジクミルパーオキサイドなどの有機過酸化物などが挙げられる。
 加硫剤を含有する場合のゴム成分100質量部に対する含有量は、0.1質量部以上が好ましく、0.5質量部以上がより好ましい。また、加硫剤の含有量は、15質量部以下が好ましく、5質量部以下がより好ましい。
 加硫促進剤としては、例えば、スルフェンアミド系、チアゾール系、チウラム系、チオウレア系、グアニジン系、ジチオカルバミン酸系、アルデヒド-アミン系若しくはアルデヒド-アンモニア系、イミダゾリン系、又はキサンテート系加硫促進剤等が挙げられる。これら加硫促進剤は、単独で用いてもよく、2種以上を併用してもよい。なかでも、スルフェンアミド系加硫促進剤、チアゾール系加硫促進剤、およびグアニジン系加硫促進剤が好ましく、スルフェンアミド系加硫促進剤がより好ましい。
 スルフェンアミド系加硫促進剤としては、例えば、N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド(TBBS)、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(CBS)、N,N-ジシクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(DCBS)等が挙げられる。なかでも、N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド(TBBS)、およびN-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(CBS)が好ましい。
 チアゾール系加硫促進剤としては、例えば、2-メルカプトベンゾチアゾール、2-メルカプトベンゾチアゾールのシクロヘキシルアミン塩、ジ-2-ベンゾチアゾリルジスルフィド等が挙げられる。なかでも、2-メルカプトベンゾチアゾールが好ましい。
 グアニジン系加硫促進剤としては、例えば、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジン、1-o-トリルビグアニド、ジカテコールボレートのジ-o-トリルグアニジン塩、1,3-ジ-o-クメニルグアニジン、1,3-ジ-o-ビフェニルグアニジン、1,3-ジ-o-クメニル-2-プロピオニルグアニジン等が挙げられる。なかでも、1,3-ジフェニルグアニジンが好ましい。
 加硫促進剤を含有する場合のゴム成分100質量部に対する含有量は、十分な加硫速度を確保するという観点から、0.5質量部以上が好ましく、1.0質量部以上が好ましい。また、加硫促進剤の含有量は、ブルーミングを抑制するという観点から、10質量部以下が好ましく、5質量部以下がより好ましい。
 本実施形態のトレッド用ゴム組成物は、一般的な方法で製造できる。例えば、バンバリーミキサーやニーダー、オープンロールなどの一般的なゴム工業で使用される公知の混練機で、前記各成分のうち、架橋剤および加硫促進剤以外の成分を混練りした後、これに、架橋剤および加硫促進剤を加えてさらに混練りし、その後加硫する方法などにより製造できる。
 本発明の別の実施形態であるタイヤは、前記トレッド用ゴム組成物を用いて、通常の方法により製造できる。すなわち、ゴム成分に対して前記の配合剤を必要に応じて配合した前記ゴム組成物を、トレッドの形状にあわせて押出し加工し、タイヤ成型機上で他のタイヤ部材とともに貼り合わせ、通常の方法にて成型することにより、未加硫タイヤを形成し、この未加硫タイヤを加硫機中で加熱加圧することにより、タイヤを製造することができる。
 実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。
 実施例および比較例で使用した各種薬品について説明する。
NR:TSR20
SBR1:非油展溶液重合SBR(重量平均分子量:25万、スチレン含量:10質量%、ビニル含量:40モル%)
SBR2:非油展溶液重合SBR(重量平均分子量:45万、スチレン含量:24質量%、ビニル含量:17モル%)
BR:宇部興産(株)製のUBEPOL BR150B(ハイシスBR、シス-1,4結合含量:96%)
カーボンブラック1:キャボットジャパン(株)製のショウブラックN110(ヨウ素吸着量:145mg/g)
カーボンブラック2:キャボットジャパン(株)製のショウブラックN220(ヨウ素吸着量:121mg/g)
ワックス:日本精蝋(株)製のオゾエース355
老化防止剤:大内新興化学工業(株)製のノクラック6C(N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン)
ステアリン酸:日油(株)製のビーズステアリン酸「椿」
酸化亜鉛:三井金属鉱業(株)製の酸化亜鉛2種
オイル:(株)ジャパンエナジー製のTDAEオイル
硫黄:鶴見化学工業(株)製の粉末硫黄
加硫促進剤:大内新興化学工業(株)製のノクセラーNS(N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド(TBBS))
実施例および比較例
 表1に示す配合処方にしたがい、1.7Lの密閉型バンバリーミキサーを用いて、硫黄および加硫促進剤以外の薬品を排出温度170℃になるまで5分間混練りし、混練物を得た。さらに、得られた混練物を前記バンバリーミキサーにより、排出温度150℃で4分間、再度混練りした(リミル)。次に、2軸オープンロールを用いて、得られた混練物に硫黄および加硫促進剤を添加し、4分間、105℃になるまで練り込み、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物を170℃で12分間プレス加硫することで、試験用ゴム組成物を作製した。
 また、前記未加硫ゴム組成物を所定の形状の口金を備えた押し出し機でタイヤトレッドの形状に押し出し成形し、他のタイヤ部材とともに貼り合わせて未加硫タイヤを形成し、プレス加硫することにより、試験用タイヤ(12R22.5、トラック バス用タイヤ)を製造した。
 得られた未加硫ゴム組成物、加硫ゴム組成物および試験用タイヤについて下記の評価を行った。評価結果を表1に示す。
耐ブロック欠け性能指数
 各試験用タイヤを車両(トラック)の全輪に装着し、走行距離8000km後のブロック欠け状態を目視で観察して評点をつけた。結果は比較例1の評点を100とし、下記計算式による指数で示す。指数が大きいほど、ブロック欠けが発生しておらず、耐ブロック欠け性能が高いことを示す。
(耐ブロック欠け性能指数)=(各配合例の評点)/(比較例1の評点)×100
耐摩耗性能
 各試験用タイヤを車両(トラック)の全輪に装着し、走行距離8000km後のタイヤトレッド部の溝深さを測定し、タイヤ溝深さが1mm減るときの走行距離を求めた。結果は比較例1のタイヤ溝が1mm減るときの走行距離を100とし、下記計算式による指数で示す。指数が大きいほど耐摩耗性が良好であることを示す。指数は次の式で求めた。
(耐摩耗性指数)=(各配合例のタイヤ溝が1mm減るときの走行距離)/(比較例1のタイヤ溝が1mm減るときの走行距離)×100
発熱性指数
 (株)岩本製作所製の粘弾性スペクトロメーターVESを用いて、温度70℃、初期歪み10%、動歪み2%、周波数10Hzの条件下で各加硫ゴム組成物の損失正接(tanδ)を測定した。結果は比較例1のtanδを100とし、下記計算式による指数で示す。指数が大きいほど低発熱性(低燃費性)に優れることを示す。
(発熱性指数)=(比較例1のtanδ)/(各配合のtanδ)×100
Figure JPOXMLDOC01-appb-T000001
 表1の結果より、所定のスチレンブタジエンゴム、イソプレン系ゴム、およびブタジエンゴムを含むゴム成分、ヨウ素吸着量が異なるカーボンブラックAおよびカーボンブラックBを所定量含有する本発明のトレッド用ゴム組成物により構成されたトレッドを有するタイヤは、これらの材料による相互作用により、耐ブロック欠け性能、ならびに耐ブロック欠け性能、耐摩耗性および低発熱性の平均性能が相乗的に改善されることがわかる。

Claims (3)

  1. スチレン含量が15質量%以下でありビニル含量が30~50モル%のスチレンブタジエンゴムを25~45質量%、イソプレン系ゴムを45~65質量%、ブタジエンゴムを5~15質量%含むゴム成分100質量部に対して、
    ヨウ素吸着量が130mg/g以上のカーボンブラックAを10~30質量部、
    ヨウ素吸着量が110mg/g以上、130mg/g未満のカーボンブラックBを20~50質量部含有し、
    カーボンブラックAの含有量をX質量部とした場合のカーボンブラックBの含有量が0.6X~4.5X質量部であるトレッド用ゴム組成物。
  2. スチレン含量が15質量%以下でありビニル含量が30~50モル%のスチレンブタジエンゴムを25~45質量%、イソプレン系ゴムを45~65質量%、ブタジエンゴムを5~15質量%含むゴム成分100質量部に対して、
    ヨウ素吸着量が130mg/g以上のカーボンブラックAを10~30質量部、
    ヨウ素吸着量が110mg/g以上、130mg/g未満のカーボンブラックBを20~40質量部含有し、
    カーボンブラックAの含有量をX質量部とした場合のカーボンブラックBの含有量が0.6X~2.5X質量部である、請求項1に記載のトレッド用ゴム組成物。
  3. 請求項1または2に記載のトレッド用ゴム組成物により構成されたトレッドを有するタイヤ。
PCT/JP2017/043699 2016-12-09 2017-12-05 トレッド用ゴム組成物およびタイヤ WO2018105625A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780076050.XA CN110050023B (zh) 2016-12-09 2017-12-05 胎面用橡胶组合物和轮胎
EP17877713.2A EP3553124B1 (en) 2016-12-09 2017-12-05 Rubber composition for treads and tire
JP2018528089A JP7067475B2 (ja) 2016-12-09 2017-12-05 トレッド用ゴム組成物およびタイヤ
US16/467,833 US11180640B2 (en) 2016-12-09 2017-12-05 Rubber composition for tread and tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016239408 2016-12-09
JP2016-239408 2016-12-09

Publications (1)

Publication Number Publication Date
WO2018105625A1 true WO2018105625A1 (ja) 2018-06-14

Family

ID=62491985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043699 WO2018105625A1 (ja) 2016-12-09 2017-12-05 トレッド用ゴム組成物およびタイヤ

Country Status (5)

Country Link
US (1) US11180640B2 (ja)
EP (1) EP3553124B1 (ja)
JP (1) JP7067475B2 (ja)
CN (1) CN110050023B (ja)
WO (1) WO2018105625A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018522988A (ja) * 2015-07-29 2018-08-16 コンパニー ゼネラール デ エタブリッスマン ミシュラン 航空機タイヤ
EP3693186A1 (en) * 2019-02-06 2020-08-12 Sumitomo Rubber Industries, Ltd. Rubber composition for tire and pneumatic tire

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57207629A (en) * 1981-06-16 1982-12-20 Yokohama Rubber Co Ltd:The Rubber composition
JPS6061313A (ja) * 1983-09-16 1985-04-09 Yokohama Rubber Co Ltd:The 高速用大型空気入りタイヤ
JP2000211313A (ja) * 1999-01-21 2000-08-02 Bridgestone Corp ゴム組成物及びこれを用いた空気入りタイヤ
JP2000219778A (ja) * 1999-02-02 2000-08-08 Yokohama Rubber Co Ltd:The 重荷重用タイヤ又はその更生タイヤ用のトレッドゴム組成物
JP2014024890A (ja) 2012-07-24 2014-02-06 Sumitomo Rubber Ind Ltd 二輪車用タイヤのトレッド用ゴム組成物及び二輪車用タイヤ
JP2015164985A (ja) * 2014-03-03 2015-09-17 横浜ゴム株式会社 タイヤトレッド用ゴム組成物
JP2015206029A (ja) * 2014-04-21 2015-11-19 ハンコック タイヤ カンパニー リミテッド タイヤトレッド用ゴム組成物及びそれを用いて製造したタイヤ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2601321B2 (ja) * 1988-07-11 1997-04-16 横浜ゴム株式会社 タイヤトレッド用ゴム組成物
JP5001736B2 (ja) * 2007-07-17 2012-08-15 住友ゴム工業株式会社 タイヤ用ゴム組成物および空気入りタイヤ
JP5740207B2 (ja) 2011-05-23 2015-06-24 東洋ゴム工業株式会社 タイヤトレッド用ゴム組成物及び空気入りタイヤ
CN102798295A (zh) 2012-09-07 2012-11-28 中国能源建设集团广东省电力设计研究院 加肋冷却塔
JP6010060B2 (ja) * 2014-02-21 2016-10-19 住友ゴム工業株式会社 タイヤ用ゴム組成物、及び空気入りタイヤ
CN106046459B (zh) 2016-06-30 2017-08-25 肇庆骏鸿实业有限公司 一种抗湿滑的雪地胎胎面胶及其制备方法
CN110023395B (zh) * 2016-11-24 2021-12-21 住友橡胶工业株式会社 胎面用橡胶组合物和轮胎

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57207629A (en) * 1981-06-16 1982-12-20 Yokohama Rubber Co Ltd:The Rubber composition
JPS6061313A (ja) * 1983-09-16 1985-04-09 Yokohama Rubber Co Ltd:The 高速用大型空気入りタイヤ
JP2000211313A (ja) * 1999-01-21 2000-08-02 Bridgestone Corp ゴム組成物及びこれを用いた空気入りタイヤ
JP2000219778A (ja) * 1999-02-02 2000-08-08 Yokohama Rubber Co Ltd:The 重荷重用タイヤ又はその更生タイヤ用のトレッドゴム組成物
JP2014024890A (ja) 2012-07-24 2014-02-06 Sumitomo Rubber Ind Ltd 二輪車用タイヤのトレッド用ゴム組成物及び二輪車用タイヤ
JP2015164985A (ja) * 2014-03-03 2015-09-17 横浜ゴム株式会社 タイヤトレッド用ゴム組成物
JP2015206029A (ja) * 2014-04-21 2015-11-19 ハンコック タイヤ カンパニー リミテッド タイヤトレッド用ゴム組成物及びそれを用いて製造したタイヤ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018522988A (ja) * 2015-07-29 2018-08-16 コンパニー ゼネラール デ エタブリッスマン ミシュラン 航空機タイヤ
EP3693186A1 (en) * 2019-02-06 2020-08-12 Sumitomo Rubber Industries, Ltd. Rubber composition for tire and pneumatic tire
CN111533961A (zh) * 2019-02-06 2020-08-14 住友橡胶工业株式会社 轮胎用橡胶组合物和充气轮胎
CN111533961B (zh) * 2019-02-06 2024-04-05 住友橡胶工业株式会社 轮胎用橡胶组合物和充气轮胎

Also Published As

Publication number Publication date
US11180640B2 (en) 2021-11-23
JPWO2018105625A1 (ja) 2019-10-24
CN110050023A (zh) 2019-07-23
EP3553124B1 (en) 2021-02-03
JP7067475B2 (ja) 2022-05-16
CN110050023B (zh) 2021-12-03
US20210332220A1 (en) 2021-10-28
EP3553124A1 (en) 2019-10-16
EP3553124A4 (en) 2019-11-06

Similar Documents

Publication Publication Date Title
JP7139947B2 (ja) トレッド用ゴム組成物およびタイヤ
US20120016056A1 (en) Rubber composition for tread and pneumatic tire
JP6010060B2 (ja) タイヤ用ゴム組成物、及び空気入りタイヤ
WO2019111717A1 (ja) 空気入りタイヤ
JP6434585B1 (ja) 空気入りタイヤ
JP2019026712A (ja) 空気入りタイヤ
JP7259374B2 (ja) トレッド用ゴム組成物およびタイヤ
WO2016021467A1 (ja) ゴム組成物およびタイヤ
JP5658098B2 (ja) トレッド用ゴム組成物及び空気入りタイヤ
JP6358965B2 (ja) タイヤ用ゴム組成物の製造方法およびタイヤ
WO2018105230A1 (ja) ゴム組成物、及び空気入りタイヤ
JP2018095676A (ja) 空気入りタイヤ
JP6285214B2 (ja) 冬用空気入りタイヤ
JP7067475B2 (ja) トレッド用ゴム組成物およびタイヤ
JP2019182908A (ja) タイヤ用ゴム組成物および空気入りタイヤ
EP3549784B1 (en) Rubber composition for tread and tire
JP6448973B2 (ja) 冬用空気入りタイヤ
JP2019151738A (ja) トレッド用ゴム組成物およびタイヤ
JP2019189673A (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP6013926B2 (ja) スタッドレスタイヤ用ゴム組成物、及びスタッドレスタイヤ
JP6170270B1 (ja) ゴム組成物、及び空気入りタイヤ
JP2023030045A (ja) タイヤ用ゴム組成物およびタイヤ
JP2019167469A (ja) ベーストレッド用ゴム組成物
EP3683259A1 (en) Vulcanized rubber composition and tire

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018528089

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017877713

Country of ref document: EP

Effective date: 20190709