WO2018104989A1 - 誘導加熱調理器 - Google Patents

誘導加熱調理器 Download PDF

Info

Publication number
WO2018104989A1
WO2018104989A1 PCT/JP2016/086003 JP2016086003W WO2018104989A1 WO 2018104989 A1 WO2018104989 A1 WO 2018104989A1 JP 2016086003 W JP2016086003 W JP 2016086003W WO 2018104989 A1 WO2018104989 A1 WO 2018104989A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
coil
surface temperature
induction heating
heating cooker
Prior art date
Application number
PCT/JP2016/086003
Other languages
English (en)
French (fr)
Inventor
文屋 潤
孝 小川
中村 輝男
Original Assignee
三菱電機株式会社
三菱電機ホーム機器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 三菱電機ホーム機器株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/086003 priority Critical patent/WO2018104989A1/ja
Priority to EP16923325.1A priority patent/EP3550933B1/en
Priority to JP2018555324A priority patent/JP6768830B2/ja
Priority to CN201680090014.4A priority patent/CN109997413B/zh
Publication of WO2018104989A1 publication Critical patent/WO2018104989A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/02Stoves or ranges heated by electric energy using microwaves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/12Cooking devices
    • H05B6/1209Cooking devices induction cooking plates or the like and devices to be used in combination with them
    • H05B6/1245Cooking devices induction cooking plates or the like and devices to be used in combination with them with special coil arrangements
    • H05B6/1272Cooking devices induction cooking plates or the like and devices to be used in combination with them with special coil arrangements with more than one coil or coil segment per heating zone
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/07Heating plates with temperature control means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present invention relates to an induction heating cooker that induction-heats an object to be heated by a plurality of coils.
  • an induction heating cooker having an inner heating coil, an outer heating coil, and a plurality of power supply units that independently supply high-frequency currents to each of the inner heating coil and the outer heating coil is proposed.
  • an induction heating cooker having an inner heating coil, an outer heating coil, and a plurality of power supply units that independently supply high-frequency currents to each of the inner heating coil and the outer heating coil is proposed.
  • an object to be heated in which ingredients are charged is induction heated by a plurality of coils.
  • the temperature of the food is not uniform depending on the shape or placement position of the food, and there is a problem that temperature unevenness occurs in the food. .
  • the present invention has been made in order to solve the above-described problems, and provides an induction heating cooker that can suppress temperature and heat unevenness of foods put into an object to be heated.
  • An induction heating cooker includes a top plate on which an object to be heated is placed, a first coil and a second coil disposed below the top plate, and a first coil that supplies power to the first coil.
  • a temperature detecting device that detects a first upper surface temperature and a second upper surface temperature that is a temperature of an upper surface of the object to be heated at a position above the second coil; and the first upper surface temperature and the second upper surface temperature.
  • a control device for controlling the driving of the first inverter circuit and the second inverter circuit so that the difference between them is reduced.
  • the temperature and heat of the food material put into the object to be heated is controlled by controlling the driving of the first inverter circuit and the second inverter circuit so that the difference between the first upper surface temperature and the second upper surface temperature is reduced. Unevenness can be suppressed.
  • FIG. 3 is a block diagram showing a drive circuit for first heating means of the induction heating cooker according to Embodiment 1. It is a side cross section which shows typically the position of the temperature detection by the upper surface temperature detection apparatus of the induction heating cooking appliance which concerns on Embodiment 1. FIG. It is a top view which shows typically the position of the temperature detection by the upper surface temperature detection apparatus of the induction heating cooking appliance which concerns on Embodiment 1.
  • FIG. 1 shows the 1st heating means and bottom face temperature detection apparatus of the induction heating cooking appliance which concerns on Embodiment 2.
  • FIG. 2 is a side cross section which shows typically the position of the temperature detection by the upper surface temperature detection apparatus and bottom surface temperature detection apparatus of the induction heating cooking appliance which concerns on Embodiment 2.
  • FIG. 2 is a flowchart which shows the heating operation of the induction heating cooking appliance which concerns on Embodiment 2.
  • FIG. 1 is a perspective view showing the overall configuration of the induction heating cooker according to the first embodiment.
  • the induction heating cooker 100 has a top plate 4 on which an object to be heated such as a pan or a frying pan into which food is put is placed.
  • the top plate 4 includes a first heating port 1, a second heating port 2, and a third heating port 3 as heating ports for induction heating of an object to be heated, and corresponds to each heating port.
  • the first heating means 11, the second heating means 12, and the third heating means 13 are provided, and an object to be heated can be placed on each heating port to perform induction heating. is there.
  • the top plate 4 has a circular shape indicating a rough placement position of the pan corresponding to the heating range (heating port) of the first heating means 11, the second heating means 12, and the third heating means 13.
  • the pan position indication is formed by applying paint or printing.
  • positioning of each heating port is not restricted to this. Further, the number of heating ports is not limited to three and may be any number.
  • An operation unit 40 is provided as an input device for setting a mode, a deep-fried food mode, and the like. Further, in the vicinity of the operation unit 40, a display unit 41 that displays an operation state of the induction heating cooker 100, input / operation contents from the operation unit 40, and the like is provided.
  • a first heating means 11, a second heating means 12, and a third heating means 13 are provided below the top plate 4 and inside the induction heating cooker 100.
  • Each heating means is a coil. It consists of The coil is configured by winding a conductive wire made of an arbitrary metal (for example, copper, aluminum, etc.) having an insulating film.
  • a high frequency magnetic field is generated from each coil by supplying a high frequency current to each coil by an inverter circuit 50 described later.
  • a control unit 45 (see FIG. 3) for controlling the operation of the entire induction heating cooker including the inverter circuit 50 is provided inside the induction heating cooker 100.
  • An upper surface temperature detection device 30 configured by a non-contact temperature sensor and detecting the temperature of the upper surface of the object to be heated or the food placed on the top plate 4 is installed above the top plate 4. Information on the temperature detected by the upper surface temperature detection device 30 is received by the receiving unit 42 provided on the front surface of the induction heating cooker 100.
  • the upper surface temperature detection device 30 may be attached to, for example, a casing of a ventilation fan provided above the induction heating cooker 100, or may be attached to a wall surface on which the induction heating cooker 100 is set. Note that the upper surface temperature detecting device 30 may be incorporated into a ventilation fan interlocking system installed above the induction heating cooker 100, for example. Details of the upper surface temperature detection device 30 will be described later.
  • the arrangement of the receiving unit 42 is not limited to the front surface of the induction heating cooker 100, and may be the upper surface of the induction heating cooker 100 (the surface of the top plate 4), or any position where communication with the upper surface temperature detection device 30 is possible. It ’s fine.
  • FIG. 2 is a diagram showing first heating means of the induction heating cooker according to the first embodiment.
  • the first heating means 11 is composed of a plurality of divided coils 11a to 11e.
  • the split coil 11 a is disposed at the center of the first heating port 1.
  • the split coils 11b to 11e are arranged around the split coil 11a.
  • the split coil 11a has a circular planar shape, and is configured by winding a conductive wire made of an arbitrary metal (for example, copper, aluminum, etc.) coated with an insulating film in the circumferential direction.
  • two split coils 11 a are configured by connecting two coils arranged substantially concentrically in series.
  • the split coils 11b to 11e are arranged around the split coil 11a so as to substantially follow the circular outer shape of the split coil 11a.
  • the four divided coils 11b to 11e have a substantially 1 ⁇ 4 arc shape (banana shape or pepper shape) planar shape, and conductive wires made of any metal (for example, copper, aluminum, etc.) coated with an insulating film. It is comprised by winding along a substantially 1/4 circular arc shape.
  • a substantially 1 ⁇ 4 arc shape banana shape or pepper shape
  • conductive wires made of any metal (for example, copper, aluminum, etc.) coated with an insulating film. It is comprised by winding along a substantially 1/4 circular arc shape.
  • the number of divided coils constituting the first heating means 11 is not limited to five. Further, the shape of each divided coil is not limited to this. For example, all of the divided coils 11b to 11e may be circular.
  • FIG. 3 is a block diagram showing a drive circuit of the first heating means of the induction heating cooker according to the first embodiment.
  • the divided coils 11a to 11e of the first heating unit 11 are independently driven and controlled by inverter circuits 50a to 50e.
  • An AC power supply (commercial power supply) 21 is connected to the inverter circuits 50a to 50e via a rectifier circuit (not shown). After the AC voltage input from the AC power source 21 is rectified, the inverter circuits 50a to 50e convert the AC voltage into high frequency AC power of about 20 kHz to 100 kHz, for example, and output it.
  • the control unit 45 includes a microcomputer or a DSP (digital signal processor).
  • the control unit 45 controls the inverter circuits 50a to 50e based on the operation content from the operation unit 40 and the like.
  • the control unit 45 performs display on the display unit 41 according to the operation state and the like.
  • the temperature information received by the receiving unit 42 from the upper surface temperature detection device 30 is input to the control unit 45.
  • the control unit 45 controls the inverter circuits 50a to 50e based on the temperature information input from the receiving unit.
  • the receiving unit 42 includes a communication device that performs wireless communication with the upper surface temperature detection device 30.
  • the receiving unit 42 is configured by a wireless communication interface that conforms to an arbitrary communication standard, such as Wi-Fi (registered trademark), Bluetooth (registered trademark), or infrared communication. Note that the communication between the receiving unit 42 and the upper surface temperature detection device 30 is not limited to wireless, and may be performed by wire.
  • FIG. 4 is a side cross-sectional view schematically showing the position of temperature detection by the upper surface temperature detection device of the induction heating cooker according to the first embodiment.
  • FIG. 5 is a plan view schematically showing a temperature detection position by the upper surface temperature detection device of the induction heating cooker according to the first embodiment.
  • the upper surface temperature detection device 30 has an upper surface temperature T1a that is the temperature of the upper surface of the object to be heated 5 or the food material put into the object to be heated 5 at a position above the split coils 11a to 11e. To T1e can be detected.
  • the upper surface temperature detection device 30 includes a plurality of infrared sensors provided corresponding to the divided coils 11a to 11e, and detects temperatures at positions above the divided coils 11a to 11e by an infrared method. To do. That is, the upper surface temperature detection device 30 is configured to detect the temperature of an object at a measurement position above the top plate 4 with a highly directional temperature sensor or the like, and the object to be heated 5 is placed on the top plate 4. If it is, the temperature of the upper surface of the object to be heated 5 is detected, and if food or the like is put in the object to be heated 5, the temperature of the upper surface of the object to be heated is detected.
  • Information on each temperature detected by the upper surface temperature detection device 30 is transmitted to the receiving unit 42 together with information for identifying the detection position.
  • the control unit 45 associates each temperature information acquired from the receiving unit 42 with information for identifying the detection position, and specifies the upper surface temperatures T1a to T1e corresponding to the divided coils 11a to 11e, respectively.
  • the method of temperature detection by the upper surface temperature detection device 30 is not limited to the infrared method. Any temperature detection method can be used as long as it detects the upper surface temperature of the article 5 to be heated by a non-contact method.
  • FIG. 6 is a plan view showing an object to be heated placed on the top plate of the induction heating cooker according to the first embodiment.
  • FIG. 7 is a flowchart showing the heating operation of the induction heating cooker according to the first embodiment.
  • a heating operation will be described with reference to FIG.
  • the control unit 45 starts the heating operation.
  • the control unit 45 is configured so that 600 W can be supplied to each of the divided coils 11a to 11e. Inverter circuits 50a to 50e are driven. As a result, a total of 3000 W of thermal power is applied to the article 5 to be heated. That is, at the start of the heating operation, the control unit 45 drives the inverter circuits 50a to 50e so that the power supplied to the divided coils 11a to 11e is the same.
  • the upper surface temperature detection device 30 starts operating, and starts temperature detection at a preset detection position (S1). For example, as shown in FIG. 6, when a plurality of food materials 5a to 5e such as hamburger are put into an object to be heated 5 such as a frying pan, the upper surface temperature detection device 30 has the food materials 5a to 5a at the positions of the divided coils 11a to 11e. The upper surface temperature T1a to T1e of 5e is detected.
  • FIG. 6 shows the case where foodstuff is mounted on all the upper part of the divided coils 11a to 11e, it is not limited to this.
  • the upper surface temperature detection device 30 detects the upper surface temperature of the article to be heated 5.
  • the control unit 45 acquires the temperature information received by the receiving unit 42 from the upper surface temperature detection device 30, and the heated object 5 at the position above the split coils 11a to 11e or the ingredients put into the heated object 5 Upper surface temperatures T1a to T1e, which are upper surface temperatures, are acquired (S2).
  • the control unit 45 determines whether or not the upper surface temperatures T1a to T1e are non-uniform (S3).
  • S3 the upper surface temperatures
  • the controller 45 determines whether or not the temperature of the food material is non-uniform by comparing the plurality of upper surface temperatures T1a to T1e. For example, among a plurality of upper surface temperatures, a certain upper surface temperature is compared with another upper surface temperature, and when the temperature difference is equal to or greater than a threshold value, it is determined that the temperature is not uniform.
  • step S3 If it is determined in step S3 that the top surface temperatures T1a to T1e are not uniform, the process returns to step S2 to repeat the above operation. On the other hand, if the upper surface temperatures T1a to T1e are not uniform in step S3, the control unit 45 performs temperature uniformity control (S4).
  • the control unit 45 controls each of the inverter circuits 50a to 50e so that the difference between the upper surface temperatures T1a to T1e is reduced. For example, the following control is performed as the temperature uniform control. After performing this temperature uniformity control, the process returns to step S2 again, and the above-described operation is repeated.
  • the control unit 45 determines that the temperature of the foodstuff above the split coil 11a is low. In this case, the control unit 45 controls the drive of the inverter circuit 50a so as to increase the electric power (input heating power) supplied to the split coil 11a. For example, the control unit 45 increases the input heating power of the split coil 11a from 600W to 750W. When the upper surface temperature T1a substantially coincides with the upper surface temperature T1 at another location, the control unit 45 returns the input heating power of the split coil 11a to 600W.
  • the control unit 45 may control the total heating power of each of the divided coils 11a to 11e to be lower than the upper limit value.
  • the controller 45 may control the total heating power to 3000 W by uniformly reducing the heating power of the divided coils 11b to 11e, for example.
  • demand control may be performed in which the heating power applied to the split coil having the lower upper surface temperature T1 is increased and the heating power applied to the split coil having the higher upper surface temperature T1 is decreased. Note that if the user's desired thermal power is equal to or less than the upper limit (for example, 2000 W), the demand control may not be performed.
  • the upper limit for example, 2000 W
  • the control unit 45 determines that the temperature of the foodstuff above the split coil 11a is high. In this case, the control unit 45 controls the drive of the inverter circuit 50a so as to reduce the power (input heating power) supplied to the split coil 11a. For example, the control unit 45 reduces the input heating power of the split coil 11a from 600W to 500W. When the upper surface temperature T1a substantially coincides with the upper surface temperature T1 at another location, the control unit 45 returns the input heating power of the split coil 11a to 600W.
  • the control unit 45 determines that the upper surface temperature T1a is the maximum value and determines the heating power of the divided coils 11b to 11e.
  • the drive of the inverter circuits 50b to 50e is controlled so as to increase.
  • the increase amount of the input heating power may be set according to, for example, the temperature difference between the maximum value of the upper surface temperature and the upper surface temperature T1 of the divided coil. That is, as the temperature difference between the maximum value of the upper surface temperature T1 and the upper surface temperature T1 of the divided coil is larger, the increase amount of the input heating power is set larger. Then, when the upper surface temperature of the divided coil whose input thermal power has been increased substantially coincides with the maximum value, the control unit 45 returns the input thermal power of the split coil to the thermal power before the increase.
  • the control unit 45 has the upper surface temperature T1a minimum.
  • the drive of the inverter circuits 50b to 50e is controlled so as to reduce the input heating power of the divided coils 11b to 11e.
  • the amount of decrease in the input heating power may be set according to, for example, the temperature difference between the minimum value of the upper surface temperature and the upper surface temperature T1 of the divided coil. That is, the larger the temperature difference between the minimum value of the upper surface temperature T1 and the upper surface temperature T1 of the divided coil, the larger the reduction amount of the input heating power.
  • the control unit 45 returns the input thermal power of the divided coil to the thermal power before the reduction.
  • control unit 45 calculates the average value of the upper surface temperatures T1b to T1e, and the divided coils so that each of the upper surface temperatures T1b to T1e matches the average value.
  • the input heating power of 11b to 11e is set. That is, the heating power of the split coils whose upper surface temperature T1 is lower than the average value is increased, and the power of heating of the split coils whose upper surface temperature T1 is higher than the average value is decreased.
  • the set value of the input heating power may be set, for example, according to the temperature difference between the upper surface temperature T1 of the division coil to be set and the average value. That is, the larger the temperature difference between the average value of the upper surface temperature T1 and the upper surface temperature T1 of the divided coil, the larger the change amount of the input heating power.
  • the control unit 45 acquires a target temperature input from the operation unit 40 or a target temperature set in advance by a cooking menu or the like, and each of the upper surface temperatures T1b to T1e is a target temperature. Is set so that the heating power of the split coils 11b to 11e is equal. That is, the heating power of the split coil whose upper surface temperature T1 is lower than the target temperature is increased, and the power of heating of the split coil whose upper surface temperature T1 is higher than the target temperature is decreased.
  • the set value of the input heating power may be set, for example, according to the temperature difference between the upper surface temperature T1 of the division coil to be set and the target temperature. That is, the larger the temperature difference between the target value of the upper surface temperature T1 and the upper surface temperature T1 of the divided coil, the larger the change amount of the input heating power.
  • the temperature uniform control is not limited to the above (1) to (6).
  • the control unit 45 can perform control for driving the plurality of inverter circuits 50 as temperature uniform control so that the temperature difference of the upper surface temperature T1 corresponding to each of the plurality of divided coils is reduced.
  • the control unit 45 may take a measure of stopping the heating operation or reducing the heating power. Further, the control unit 45 may notify the user of abnormality using the display unit 41.
  • the present invention is not limited to this, and at least two divided coils are provided. Just do it. Any one of the divided coils 11b to 11e corresponds to the “first coil” in the present invention, and the other one corresponds to the “second coil” in the present invention. Further, any one of the inverter circuits 50a to 50e corresponds to the “first inverter circuit” in the present invention, and the other one corresponds to the “second inverter circuit” in the present invention.
  • the upper surface temperature detection device 30 corresponds to the “temperature detection device” of the present invention. Further, the object to be heated 5 and the foods put in the object to be heated 5 correspond to the “object to be heated” of the present invention.
  • the object to be heated 5 or the upper surface temperature detection device 30 that detects the upper surface temperature T1 of the food charged in the object to be heated 5 is provided, and the control unit 45 includes a plurality of divided coils.
  • the driving of the plurality of inverter circuits 50 is controlled so that the temperature difference between the upper surface temperatures T1 corresponding to the respective temperatures decreases. For this reason, the temperature nonuniformity of the foodstuffs thrown into the to-be-heated material 5 can be suppressed.
  • the food is uniform regardless of the position where the frying pan is placed on the heating port, the thickness of the food, the position of the food in the frying pan, etc. Can be heated to any temperature.
  • a heated object 5 such as a frying pan
  • the food is uniform regardless of the position where the frying pan is placed on the heating port, the thickness of the food, the position of the food in the frying pan, etc.
  • by suppressing the temperature unevenness of the ingredients it is possible to avoid scorching and raw burning of the ingredients and improve the finishing of cooking. Therefore, it is possible to make the finish of the ingredients uniform at the end of cooking, and the usability can be improved.
  • Embodiment 2 FIG. In this Embodiment 2, the structure and operation
  • the configuration and operation of the induction heating cooker 100 according to the second embodiment will be described focusing on the differences from the first embodiment.
  • FIG. 8 is a plan view showing the first heating means and the bottom surface temperature detection device of the induction heating cooker according to the second embodiment.
  • FIG. 9 is a side cross-sectional view schematically showing the position of temperature detection by the upper surface temperature detection device and the bottom surface temperature detection device of the induction cooking device according to the second embodiment. In FIG. 9, illustration of a part of the configuration is omitted.
  • FIG. 9 shows a longitudinal section in a state in which a plurality of food materials 5a to 5e such as hamburgers are put into a heated object 5 such as a frying pan, and only the food materials 5a, 5c and 5e are shown.
  • bottom surface temperature detectors 35a to 35e for detecting the temperature of the lower surface of the object to be heated or the food placed on the top plate 4 are installed below the top plate 4. Yes.
  • the bottom surface temperature detectors 35a to 35e are disposed at substantially the center of the divided coils 11a to 11e, respectively.
  • the arrangement of the bottom surface temperature detectors 35a to 35e is not limited to this, and may be any position near the divided coils 11a to 11e. For example, it may be arranged in the gap between the divided coils 11a to 11e.
  • the bottom surface temperature detectors 35a to 35e are configured to be in contact with the bottom surface of the top plate 4, for example, and are constituted by contact type temperature sensors.
  • a thermistor can be used as the contact-type temperature sensor.
  • the bottom surface temperature detection devices 35a to 35e detect the bottom surface temperatures T2a to T2e, which are the temperatures of the heated object 5 or the bottom surface of the food material put into the heated object 5 at positions above the divided coils 11a to 11e, respectively.
  • Information on the bottom surface temperatures T2a to T2e detected by the bottom surface temperature detectors 35a to 35e is input to the controller 45. That is, the temperature of the bottom surface of the top plate 4 detected by the bottom surface temperature detecting devices 35a to 35e is substantially the same as the temperature of the bottom surface of the article 5 to be heated. Obtained as the bottom surface temperature T2 of the heated object 5.
  • the control unit 45 may correct the temperature detected by the bottom surface temperature detection devices 35a to 35e in consideration of heat loss due to heat transfer of the top plate 4 and use this as the bottom surface temperature T2.
  • the bottom surface temperature detectors 35a to 35e are not limited to contact-type temperature sensors, and non-contact-type temperature sensors may be used.
  • the temperature of the lower surface of the article to be heated 5 may be detected by detecting infrared light transmitted through the top plate 4 with an infrared sensor or the like disposed below the top plate 4.
  • the bottom surface temperature detectors 35a to 35e cause the bottom surface temperatures T2a to 5e of the food materials 5a to 5e at the positions of the divided coils 11a to 11e. T2e is detected.
  • the upper surface temperature detection device 30 detects the upper surface temperatures T1a to T1e of the ingredients 5a to 5e at the positions of the divided coils 11a to 11e.
  • the control unit 45 obtains a temperature difference ⁇ T between the bottom surface temperature T2 and the top surface temperature T1 at each position of the divided coils 11a to 11e, and the inverter circuit 50a so that the temperature difference ⁇ T is uniform in each of the ingredients 5a to 5e. Control drive of ⁇ 50e. Details of such an operation will be described with reference to FIG.
  • FIG. 10 is a flowchart showing a heating operation of the induction heating cooker according to the second embodiment.
  • the control unit 45 starts the heating operation.
  • the control unit 45 is configured so that 600 W can be supplied to each of the divided coils 11a to 11e.
  • Inverter circuits 50a to 50e are driven.
  • a total of 3000 W of thermal power is applied to the article 5 to be heated. That is, at the start of the heating operation, the control unit 45 drives the inverter circuits 50a to 50e so that the power supplied to the divided coils 11a to 11e is the same.
  • the upper surface temperature detection device 30 and the bottom surface temperature detection device 35 start to operate (S21). For example, when a plurality of food materials 5a to 5e are put into the object 5 to be heated, the upper surface temperature detection device 30 detects the upper surface temperatures T1a to T1e of the food materials 5a to 5e at the positions of the divided coils 11a to 11e.
  • the bottom surface temperature detectors 35a to 35e detect bottom surface temperatures T2a to T2e of the food materials 5a to 5e at the positions of the divided coils 11a to 11e.
  • the control unit 45 determines whether or not the bottom surface temperatures T2a to T2e detected by the bottom surface temperature detection devices 35a to 35e have reached a preset cooking appropriate temperature threshold B (S22). When all of the bottom surface temperatures T2a to T2e have reached the cooking appropriate temperature threshold value B, the control unit 45 proceeds to step S23. If all of the bottom surface temperatures T2a to T2e have not reached the optimum cooking temperature threshold B, step S22 is repeated.
  • step S23 the control unit 45 controls the inverter circuits 50a to 50e in order to reduce the heating power applied to the split coils 11a to 11e so that the bottom surface temperatures T2a to T2e maintain the cooking appropriate temperature threshold B.
  • the food material 5a placed above the split coil 11a It can be determined that there is almost no temperature difference in the thickness direction and heat is sufficiently transmitted to the inside of the food 5a.
  • it is placed above the split coil 11c It is possible to determine that there is a temperature difference in the thickness direction of the food 5c and that the temperature of the upper surface (surface) of the food 5c is low.
  • step S25 for the divided coil determined that the temperature difference ⁇ T is substantially zero, the control unit 45 controls the inverter circuit 50 of the divided coil so that the bottom surface temperature T2 maintains the cooking temperature threshold B.
  • the control in step S25 is heat retention control in which the heating power applied to the split coil is set smaller than the heating power in step S23. For example, among the 10 stages of thermal power, the thermal power in step S23 is set to “5”, and the thermal power in step S25 is set to “3”.
  • step S23 the control unit 45 controls each of the inverter circuits 50a to 50e so that the difference in temperature difference ⁇ T between the ingredients 5a to 5e is reduced.
  • each inverter circuit 50 is controlled by comparing the upper surface temperature T1 above each divided coil.
  • the temperature difference ⁇ T is used instead of the upper surface temperature T1.
  • the same control is performed using the temperature difference ⁇ T instead of the upper surface temperature T1.
  • the control unit 45 drives the inverter circuit 50a so as to increase the heating power applied to the split coil 11a.
  • the control unit 45 drives the inverter circuit 50a so as to reduce the heating power applied to the divided coil 11a.
  • the control unit 45 reduces the heating power applied to the split coil 11a and applies to the split coils 11b to 11e.
  • the drive of the inverter circuits 50a to 50e is controlled so as to increase the input heating power.
  • the temperature uniformity control is not limited to the above (1) to (6).
  • the control unit 45 can perform control for driving the plurality of inverter circuits 50 as uniform temperature control so that the difference in temperature difference ⁇ T corresponding to each of the plurality of divided coils is reduced.
  • the control unit 45 obtains the temperature difference ⁇ T between the bottom surface temperature T2 and the top surface temperature T1 at each position of the divided coils 11a to 11e, and the temperature in each of the foodstuffs 5a to 5e.
  • the drive of the inverter circuits 50a to 50e is controlled so that the difference ⁇ T becomes uniform. For this reason, the temperature nonuniformity with respect to the thickness direction of the foodstuffs thrown into the to-be-heated material 5 can be suppressed.
  • the cooking finish timing of the plurality of ingredients put into the article to be heated 5 is made substantially the same. Can do.
  • the control unit 45 controls the inverter circuit 50 of the divided coil so that the bottom surface temperature T2 maintains the optimum cooking temperature threshold B. For this reason, simultaneous control of heat retention control and heating control is realizable.
  • the cooking finish can be improved by performing heating control so that the temperature difference ⁇ T of each ingredient becomes substantially zero, and simultaneous cooking and heat retention can be controlled in one heated object 5, greatly improving usability. Can be improved.
  • Embodiment 3 FIG. In this Embodiment 3, the operation
  • the operation of the induction heating cooker 100 according to the third embodiment will be described focusing on differences from the first and second embodiments.
  • FIG. 11 is a flowchart showing the heating operation of the induction heating cooker according to the third embodiment.
  • a description will be given based on each step of FIG.
  • cooking modes other than the “preheating mode” are referred to as “normal modes”.
  • the control unit 45 starts the heating operation.
  • the upper surface temperature detection device 30 and the bottom surface temperature detection device 35 start to operate (S31).
  • the controller 45 determines whether or not the cooking mode is the preheating mode (S34). If the cooking mode is the preheating mode, the control unit 45 proceeds to step S35 and continues the preheating operation in the preheating mode (S35). That is, since the preheating mode is a cooking mode premised on empty baking, the subsequent operation is not performed.
  • the control unit 45 waits for a preset elapsed time (for example, 1 minute later) from the start of heating (S36), and step S37. Proceed to
  • step S37 the control unit 45 determines whether or not the temperature difference ⁇ T is substantially zero for each of the divided coils 11a to 11e.
  • the control unit 45 determines that the temperature difference ⁇ T is substantially zero.
  • the control unit 45 determines that the food is not baked into the object to be heated 5 and stops the heating operation ( S38).
  • the control unit 45 determines that food is placed in the article to be heated 5 and continues the heating operation (S39). ).
  • step S37 it is determined whether or not all the temperature differences ⁇ Ta to ⁇ Te of the divided coils 11a to 11e are substantially zero.
  • the present invention is not limited to this, and only a part of the temperature differences ⁇ T is used for emptying. You may judge baking. For example, when the temperature difference ⁇ Ta of the split coil 11a arranged at the center of the heating port is substantially zero, it may be determined that the baking is performed and the heating may be stopped.
  • the operation shifts to the operation in the first or second embodiment, and the control for making the temperature of the food material uniform is performed.
  • the driving of the inverter circuit 50 is stopped. For this reason, before the temperature of the to-be-heated material 5 reaches high temperature, the baking state of the to-be-heated material 5 can be detected. Therefore, it is possible to save energy without continuing useless heating. Further, it is possible to prevent the heated object 5 from being deteriorated.
  • the temperature of the object to be heated 5 is detected using a temperature sensor (infrared sensor, thermistor, etc.) under the top plate 4, and the object to be heated 5 is sufficient.
  • a temperature sensor infrared sensor, thermistor, etc.
  • Embodiment 4 FIG.
  • an operation for controlling the drive frequency of the inverter circuit 50 will be described.
  • the operation of the induction heating cooker 100 according to the fourth embodiment will be described focusing on differences from the first to third embodiments.
  • a magnetic metal is sprayed or pasted on the central part of a non-magnetic metal.
  • a magnetic metal such as stainless steel
  • thermal spray frying pans in which a magnetic material such as iron is coated on the bottom of the frying pan.
  • the central part (inner peripheral part) and the outer peripheral part (naked skin part) cannot be heated at the same temperature. That is, only the central portion of the heated object 5 on which the magnetic material such as iron is sprayed on the bottom surface is induction-heated, and the temperature of the pot skin portion of the heated object 5 that is a non-magnetic material does not rise compared to the central portion. .
  • driving with a high frequency generally 60 kHz to 100 kHz
  • a normal inverter driving frequency about 20 kHz to 30 kHz).
  • FIG. 12 is a flowchart showing a heating operation of the induction heating cooker according to the fourth embodiment.
  • the control unit 45 obtains the upper surface temperature T1a of the split coil 11a disposed at the center of the heating port as the center temperature DET_C.
  • the upper surface temperatures T1b to 11e of the divided coils 11b to 11e arranged on the outer peripheral portion (naked skin portion) of the heating port are acquired as the ladle skin temperature DET_S (S42).
  • the controller 45 calculates a difference ⁇ Tcs between the center temperature DET_C and the pot skin temperature DET_S (S43). And the control part 45 judges whether difference (DELTA) Tcs is larger than the threshold value C (S44). When the difference ⁇ Tcs is larger than the threshold value C, the control unit 45 determines that the article to be heated 5 is a sticking pan, and makes the drive frequency of the divided coils 11b to 11e higher than the drive frequency of the divided coil 11a. For example, the driving frequency of the divided coils 11b to 11e is increased from about 25 kHz to about 75 kHz so that the pot skin portion can be heated.
  • the increase amount of the drive frequency may be a preset frequency or a frequency corresponding to the difference ⁇ Tcs.
  • the drive frequency is set to a high frequency, it is also necessary to switch a resonance capacitor (not shown) constituting the inverter circuit 50.
  • control unit 45 performs normal driving with the drive frequencies of the divided coils being the same (S46).
  • the upper surface temperature of the center portion and the upper surface temperature of the pot skin portion are compared, and it is determined as a sticking pan only when the upper surface temperature of the pot skin portion does not rise.
  • the split coil inverter circuit 50 is controlled to be driven at a high frequency. For this reason, an inverter drive frequency is not uniquely determined by the material of the to-be-heated material 5, but an inverter drive frequency can be determined by the upper surface temperature of a foodstuff.
  • an inverter drive frequency is not uniquely determined by the material of the to-be-heated material 5, but an inverter drive frequency can be determined by the upper surface temperature of a foodstuff.
  • Loss increase can be avoided. Therefore, the exhaust temperature of the cooling air due to the heat generated by the inverter circuit 50 can be lowered, and usability can be improved.
  • Si (silicon) elements such as IGBTs have been applied to the switching devices constituting the inverter circuit 50.
  • SiC (silicon carbide) elements which are wide band gap semiconductors, the exhaust temperature can be further increased. Therefore, it is possible to further improve the usability.
  • application of a SiC (silicon carbide) element makes it possible to reduce the wind speed of the cooling air without changing the exhaust temperature, so that noise reduction can be achieved.
  • the material of the pot skin portion is not determined to be aluminum by determining the load of the object to be heated 5
  • control is performed to change the drive frequency by comparing the temperature of the center portion and the pot skin portion.
  • the control for driving the divided coils 11b to 11e at high frequency is not performed.
  • the inverter circuit is designed to be driven at high frequency only when the bottom skin temperature does not rise. 50 loss can be reduced.
  • FIG. 13 is a view showing a modification of the first heating means of the induction heating cooker.
  • the 1st heating means 11 is comprised with the some coil arrange
  • the first heating means 11 is composed of quadruple coils 11-1 to 11-4 arranged substantially concentrically. These coils 11-1 to 11-4 are configured by winding a conductive wire made of an arbitrary metal (for example, copper, aluminum, etc.) having an insulating film. These coils 11-1 to 11-4 are driven by independent inverter circuits 50a to 50d, respectively. Even in such a configuration, the same operation as in any of Embodiments 1 to 4 described above can be performed.
  • FIG. 14 is a perspective view showing a schematic configuration of the induction heating cooker according to the fifth embodiment.
  • a plurality of relatively small coils 80 are almost uniformly distributed below the top plate 4.
  • the plurality of coils 80 are individually driven by the inverter circuit 50.
  • the control part 45 in this Embodiment 5 performs the load determination of the to-be-heated material currently placed upward about each of the some coil 80.
  • the upper surface temperature detection apparatus 31 which detects the temperature of temperature detection range DET_A (refer FIG. 15) including all the arrangement positions of the some coil 80 on the top plate 4 is provided.
  • the upper surface temperature detection device 31 includes a compound-eye infrared temperature sensor that can detect the temperature of the food placed on the heated object 5 wherever the heated object 5 is placed on the top plate 4.
  • the upper surface temperature detection device 31 transmits temperature information about the front and rear and the left and right direction (XY axis direction) of the top plate 4 to the receiving unit 42. For example, the upper surface temperature detection device 31 transmits temperature information at each coordinate in the XY axis directions to the reception unit 42.
  • FIG. 15 is a diagram for explaining mapping information of the induction heating cooker according to the fifth embodiment.
  • FIG. 15 shows the positional relationship between the temperature detection range DET_A by the upper surface temperature detection device 31 and the plurality of coils 80.
  • the controller 45 includes mapping information for specifying each of the plurality of coils 80 in the XY coordinates of the temperature detection range DET_A in advance.
  • the coil is identified as the coil 80_11 disposed at the positions X1 and Y1, and is identified as the coil 80_21 disposed at the positions X2 and Y1.
  • information for associating the coordinates of the upper surface temperature detection device 31 with the plurality of coils 80 is identified as the coil 80_11 disposed at the positions X1 and Y1, and is identified as the coil 80_21 disposed at the positions X2 and Y1.
  • mapping information is not limited to storing in advance, for example, the object to be heated 5 is placed over a wide range on the top plate 4, or a heating metal sheet is placed on the top plate 4, It is good also as a structure which produces
  • control unit 45 When the user places the object to be heated 5 at an arbitrary position on the top 4 and instructs the operation unit 40 to start heating (heating power input), the control unit 45 performs a load determination process. The control unit 45 performs a load determination process for determining whether or not there is a load placed above each of the plurality of coils 80.
  • control unit 45 controls the inverter circuit 50 that drives the coil 80 that is determined to have the heated object 5 placed thereon among the plurality of coils 80, and responds to the heating power to be induction-heated. A heating operation for supplying high-frequency power is performed. Note that the control unit 45 stops the operation of the inverter circuit 50 that drives the coil 80 that has been determined to be unloaded.
  • the control unit 45 acquires temperature information of the temperature detection range DET_A detected by the upper surface temperature detection device 31 and refers to the mapping information, whereby the upper surface temperature of the object 5 to be heated above the coil 80 performing the heating operation. Get T1. Subsequent operations are the same as in any of the first to fourth embodiments, so that the temperature difference of the upper surface temperature T1 corresponding to each of the plurality of coils 80 on which the article to be heated 5 is placed is reduced. The driving of the plurality of inverter circuits 50 is controlled.
  • the plurality of coils 80 uniformly distributed below the top plate 4 and the top surface for detecting the temperature of the preset temperature detection range DET_A on the top surface of the top plate 4. And a temperature detection device 31. For this reason, the temperature detection over the wide range on the top plate 4 is enabled. As a result, it is possible to adapt to so-called free area induction heating, which is uniformly distributed below the top plate 4, and the user-friendliness can be greatly improved. Further, even when a plurality of objects to be heated 5 are placed adjacent to each other on the top plate 4 and the plurality of objects to be heated 5 are heated at the same time, for example, the temperature of the food in the object to be heated 5 is excessively increased. If it is, the power of the heating coil immediately below the object to be heated 5 is suppressed, so that the cooking finish timing with the ingredients in the other objects to be heated 5 can be matched, and the usability can be improved. it can.

Abstract

この発明に係る誘導加熱調理器は、被加熱物が載置される天板と、天板の下方に配置された第1コイル及び第2コイルと、第1コイルに電力を供給する第1インバータ回路と、第1インバータ回路とは別に設けられ、第2コイルに電力を供給する第2インバータ回路と、第1コイルの上方の位置における被加熱物の上面の温度である第1上面温度と、第2コイルの上方の位置における被加熱物の上面の温度である第2上面温度とを検知する温度検知装置と、第1上面温度と第2上面温度との差が少なくなるように、第1インバータ回路及び第2インバータ回路の駆動を制御する制御装置と、を備えたものである。

Description

誘導加熱調理器
 本発明は、複数のコイルにより被加熱物を誘導加熱する誘導加熱調理器に関する。
 従来の誘導加熱調理器においては、例えば、内側加熱コイルと、外側加熱コイルと、内側加熱コイル及び外側加熱コイルのそれぞれに独立して高周波電流を供給する複数の電源部とを備えたものが提案されている(例えば、特許文献1参照)。
特許第5495960号公報
 従来の誘導加熱調理器では、食材などが投入された被加熱物を、複数のコイルによって誘導加熱を行う。しかし、複数のコイルのそれぞれに供給される電力が同じであっても、食材の形状又は載置位置等によっては食材の温度が均一にならず、食材に温度ムラが生じるという問題点があった。
 本発明は、上記のような課題を解決するためになされたもので、被加熱物に投入された食材の温度熱ムラを抑制することができる誘導加熱調理器を得るものである。
 本発明に係る誘導加熱調理器は、被加熱物が載置される天板と、前記天板の下方に配置された第1コイル及び第2コイルと、前記第1コイルに電力を供給する第1インバータ回路と、前記第1インバータ回路とは別に設けられ、前記第2コイルに電力を供給する第2インバータ回路と、前記第1コイルの上方の位置における前記被加熱物の上面の温度である第1上面温度と、前記第2コイルの上方の位置における前記被加熱物の上面の温度である第2上面温度とを検知する温度検知装置と、前記第1上面温度と前記第2上面温度との差が少なくなるように、前記第1インバータ回路及び前記第2インバータ回路の駆動を制御する制御装置と、を備えたものである。
 本発明は、第1上面温度と第2上面温度との差が少なくなるように、第1インバータ回路及び第2インバータ回路の駆動を制御することにより、被加熱物に投入された食材の温度熱ムラを抑制することができる。
実施の形態1に係る誘導加熱調理器の全体構成を示す斜視図である。 実施の形態1に係る誘導加熱調理器の第1の加熱手段を示す図である。 実施の形態1に係る誘導加熱調理器の第1の加熱手段の駆動回路を示すブロック図である。 実施の形態1に係る誘導加熱調理器の上面温度検知装置による温度検知の位置を模式的に示す側断面である。 実施の形態1に係る誘導加熱調理器の上面温度検知装置による温度検知の位置を模式的に示す平面図である。 実施の形態1に係る誘導加熱調理器の天板上に載置された被加熱物を示す平面図である。 実施の形態1に係る誘導加熱調理器の加熱動作を示すフローチャートである。 実施の形態2に係る誘導加熱調理器の第1の加熱手段と底面温度検知装置を示す平面図である。 実施の形態2に係る誘導加熱調理器の上面温度検知装置及び底面温度検知装置による温度検知の位置を模式的に示す側断面である。 実施の形態2に係る誘導加熱調理器の加熱動作を示すフローチャートである。 実施の形態3に係る誘導加熱調理器の加熱動作を示すフローチャートである。 実施の形態4に係る誘導加熱調理器の加熱動作を示すフローチャートである。 誘導加熱調理器の第1の加熱手段の変形例を示す図である。 実施の形態5に係る誘導加熱調理器の概略構成を示す斜視図である。 実施の形態5に係る誘導加熱調理器のマッピング情報を説明する図である。
実施の形態1.
(全体構成)
 図1は、実施の形態1に係る誘導加熱調理器の全体構成を示す斜視図である。
 図1に示すように、誘導加熱調理器100の上部には、食材が投入される鍋やフライパンなどの被加熱物が載置される天板4を有している。天板4には、被加熱物を誘導加熱するための加熱口として、第1の加熱口1、第2の加熱口2、第3の加熱口3とを備え、各加熱口に対応して、第1の加熱手段11、第2の加熱手段12、第3の加熱手段13を備えており、それぞれの加熱口に対して被加熱物を載置して誘導加熱を行うことができるものである。
 天板4には、第1の加熱手段11、第2の加熱手段12、及び第3の加熱手段13の加熱範囲(加熱口)に対応して、鍋の大まかな載置位置を示す円形の鍋位置表示が、塗料の塗布や印刷等により形成されている。なお、各加熱口の配置はこれに限るものではない。また、加熱口の数は3つに限るものではなく任意の数で良い。
 天板4の手前側には、第1の加熱手段11、第2の加熱手段12、及び第3の加熱手段13で被加熱物を加熱する際の投入火力(投入電力)や調理メニュー(湯沸しモード、揚げ物モード等)を設定するための入力装置として、操作部40が設けられている。また、操作部40の近傍には、誘導加熱調理器100の動作状態や操作部40からの入力・操作内容等を表示する表示部41が設けられている。
 天板4の下方であって誘導加熱調理器100の内部には、第1の加熱手段11、第2の加熱手段12、及び第3の加熱手段13を備えており、各々の加熱手段はコイルで構成されている。コイルは、絶縁皮膜された任意の金属(例えば銅、アルミなど)からなる導電線を巻き付けることにより構成される。後述するインバータ回路50により高周波電流が各コイルに供給されることで、各コイルからは高周波磁界が発生する。
 また、誘導加熱調理器100の内部には、インバータ回路50を含め誘導加熱調理器全体の動作を制御するための制御部45(図3参照)が設けられている。
 天板4の上方には、非接触式の温度センサにより構成され、天板4上に載置された被加熱物又は食材の上面の温度を検知する上面温度検知装置30が設置されている。上面温度検知装置30が検知した温度の情報は、誘導加熱調理器100の前面に設けた受信部42によって受信される。上面温度検知装置30は、例えば、誘導加熱調理器100の上方に設けられた換気扇の筐体に取り付けても良いし、誘導加熱調理器100が設定される壁面に取り付けても良い。なお、上面温度検知装置30は、例えば、誘導加熱調理器100の上方に設置されている換気扇連動システムに組み込む形式でも良い。なお、上面温度検知装置30の詳細は後述する。なお、受信部42の配置は、誘導加熱調理器100の前面に限らず、誘導加熱調理器100の上面(天板4の面)としても良く、上面温度検知装置30と通信可能な位置であれば良い。
 図2は、実施の形態1に係る誘導加熱調理器の第1の加熱手段を示す図である。
 図2において、第1の加熱手段11は、複数の分割コイル11a~11eで構成されている。分割コイル11aは、第1の加熱口1の中央に配置されている。分割コイル11b~11eは、分割コイル11aの周囲に配置されている。
 分割コイル11aは、円形の平面形状を有し、絶縁被膜された任意の金属(例えば銅、アルミなど)からなる導電線が円周方向に巻回されることにより構成されている。なお、図2に示す例では、略同心円状に配置された2つのコイルを直列接続して1つの分割コイル11aを構成している。
 分割コイル11b~11eは、分割コイル11aの円形の外形にほぼ沿うようにして、分割コイル11aの周辺に配置されている。4つの分割コイル11b~11eは、略1/4円弧状(バナナ状または胡瓜状)の平面形状を有しており、絶縁皮膜された任意の金属(例えば銅、アルミなど)からなる導電線を略1/4円弧状の形状に沿って巻きつけることで構成される。
 なお、以下の説明において、複数の分割コイル11a~11eを区別しないときは単に、分割コイルと称する。
 なお、第1の加熱手段11を構成する分割コイルの数は5つに限定されるものではない。また、各分割コイルの形状もこれに限るものではなく、例えば分割コイル11b~11eを全てが円形でも良い。
 図3は、実施の形態1に係る誘導加熱調理器の第1の加熱手段の駆動回路を示すブロック図である。
 図3に示すように、第1の加熱手段11の分割コイル11a~11eは、インバータ回路50a~50eにより各々が独立して駆動制御される。
 インバータ回路50a~50eには、整流回路(図示せず)を介して交流電源(商用電源)21が接続される。交流電源21から入力された交流電圧が整流されたあと、インバータ回路50a~50eは、例えば20kHz~100kHz程度の高周波の交流電力に変換して出力する。
 制御部45は、マイコン又はDSP(デジタルシグナルプロセッサ)等で構成される。制御部45は、操作部40からの操作内容等に基づいて、インバータ回路50a~50eをそれぞれ制御する。また、制御部45は、動作状態などに応じて、表示部41への表示を行う。また、制御部45には、受信部42が上面温度検知装置30から受信した温度の情報が入力される。制御部45は、受信部42から入力された温度の情報に基づき、インバータ回路50a~50eをそれぞれ制御する。
 受信部42は、上面温度検知装置30と無線通信を行う通信機器により構成される。
受信部42は、例えば、Wi-Fi(登録商標)、Bluetooth(登録商標)、赤外線通信など、任意の通信規格に適合した無線通信インターフェースによって構成される。なお、受信部42と上面温度検知装置30との間の通信は、無線に限らず有線により通信を行ってもよい。
(上面温度検知装置30による温度検知)
 図4は、実施の形態1に係る誘導加熱調理器の上面温度検知装置による温度検知の位置を模式的に示す側断面である。
 図5は、実施の形態1に係る誘導加熱調理器の上面温度検知装置による温度検知の位置を模式的に示す平面図である。
 図4及び図5に示すように、上面温度検知装置30は、分割コイル11a~11eの上方の位置における被加熱物5又は被加熱物5に投入された食材の上面の温度である上面温度T1a~T1eが検知できるように構成される。
 例えば、上面温度検知装置30は、分割コイル11a~11eのそれぞれに対応して設けられた複数の赤外線センサにより構成され、赤外線方式により、分割コイル11a~11eのそれぞれの上方の位置における温度を検知する。即ち、上面温度検知装置30は、指向性の高い温度センサなどによって、天板4の上方の測定位置における物体の温度を検知するように構成され、天板4上に被加熱物5が載置された場合には被加熱物5の上面の温度を検知し、被加熱物5の内部に食材等が投入されている場合には、食材の上面の温度を検知する。
 上面温度検知装置30により検出された各温度の情報は、検知位置を識別する情報と共に受信部42に送信される。制御部45は、受信部42から取得した各温度の情報と検知位置を識別する情報とを対応付け、分割コイル11a~11eのそれぞれに対応する上面温度T1a~T1eを特定する。
 なお、上面温度検知装置30による温度検知の方式は、赤外線方式に限るものではない。被加熱物5の上面温度を非接触方式で検知するものであれば、任意の温度検知の方式を用いることができる。
(動作)
 次に、本実施の形態1における誘導加熱調理器100の動作について説明する。
 図6は、実施の形態1に係る誘導加熱調理器の天板上に載置された被加熱物を示す平面図である。
 図7は、実施の形態1に係る誘導加熱調理器の加熱動作を示すフローチャートである。
 以下、図7の各ステップに基づき、図6を参照しつつ加熱動作を説明する。
 使用者が誘導加熱調理器100の電源をオンし、加熱開始ボタンの押下等により加熱動作が開始されると、制御部45は加熱動作を開始する。
 加熱動作の開始において、使用者が例えば3000Wの所望火力で被加熱物5を加熱させようと動作開始させた場合、分割コイル11a~11eのそれぞれに600Wを火力投入できるように、制御部45はインバータ回路50a~50eを駆動する。これにより被加熱物5に対してトータル3000Wの火力投入がなされる。即ち、加熱動作の開始時には、制御部45は、分割コイル11a~11eに供給される電力がそれぞれ同じになるように、インバータ回路50a~50eを駆動する。
 加熱動作が開始されると上面温度検知装置30が稼働を開始し、予め設定された検知位置における温度検知を開始する(S1)。例えば図6に示すように、フライパンなどの被加熱物5に、ハンバーグなどの複数の食材5a~5eが投入された場合、上面温度検知装置30は、分割コイル11a~11eの位置における食材5a~5eの上面温度T1a~T1eを検知する。
 なお、図6に示す例では分割コイル11a~11eの上方の全てに食材が載置されている場合を示すがこれに限るものではない。食材が載置されていない場合には、上面温度検知装置30は、被加熱物5の上面温度を検知する。
 制御部45は、受信部42が上面温度検知装置30から受信した温度の情報等を取得し、分割コイル11a~11eの上方の位置における被加熱物5又は被加熱物5に投入された食材の上面の温度である上面温度T1a~T1eを取得する(S2)。
 次に、制御部45は、上面温度T1a~T1eが不均一であるか否かを判断する(S3)。
 被加熱物5に複数の食材が投入されている場合、分割コイル11a~11eに供給される電力がそれぞれ同じであっても、各食材の厚みや分割コイルに対する食材の載置位置によっては、各食材の上面温度が均一とならないことがある。
 制御部45は、複数の上面温度T1a~T1eをそれぞれ比較することで、食材の温度が不均一であるか否かを判断する。例えば、複数の上面温度のうち、ある上面温度と他の上面温度とをそれぞれ比較し、温度差が閾値以上の場合には、不均一であると判断する。
 ステップS3において、上面温度T1a~T1eが不均一でない場合にはステップS2に戻り、上述の動作を繰り返す。
 一方、ステップS3において、上面温度T1a~T1eが不均一である場合、制御部45は温度均一制御を行う(S4)。
(温度均一制御)
 温度均一制御において、制御部45は、上面温度T1a~T1eの差が少なくなるように、インバータ回路50a~50eのそれぞれを制御する。この温度均一制御として、例えば以下のような制御を行う。この温度均一制御を行ったあと、再びステップS2に戻り、上述の動作を繰り返す。
(1)上面温度が低い分割コイルに供給する電力を増加させる制御
 例えば、分割コイル11aの上方に載置された食材の上面温度T1aが40℃であり、その他の分割コイル11b~11eの上方に載置された食材の上面温度T1b~T1eが50℃であるとき、制御部45は分割コイル11aの上方の食材の温度が低いと判断する。この場合には、制御部45は、分割コイル11aに供給する電力(投入火力)を増加させるように、インバータ回路50aの駆動を制御する。
 例えば、制御部45は、分割コイル11aの投入火力を600Wから750Wへと増加させる。そして、上面温度T1aが他箇所の上面温度T1と略一致すると、制御部45は、分割コイル11aの投入火力を600Wに復帰させる。
 なお、1つの加熱口に対する投入火力には、上限が設けられているため、制御部45は、分割コイル11a~11eのそれぞれの投入火力の合計が、上限値を下回るように制御しても良い。
 例えば、1つの加熱口に対するトータルの投入火力の上限値が3000Wの場合、分割コイル11aの投入火力を600Wから750Wへと増加させるとトータルの投入電力が3150Wとなる。このため、制御部45は、例えば分割コイル11b~11eの投入火力を一律に低下させてトータルの投入火力が3000Wとなるように制御してもよい。即ち、上面温度T1が低い分割コイルへの投入火力を増加させ、上面温度T1が高い分割コイルへの投入火力を減少させるデマンド制御を行ってもよい。
 なお、使用者の所望火力が上限値以下(例えば2000W)であれば、デマンド制御を行わなくてもよい。
(2)上面温度が高い分割コイルに供給する電力を減少させる制御
 例えば、分割コイル11aの上方に載置された食材の上面温度T1aが60℃であり、その他の分割コイル11b~11eの上方に載置された食材の上面温度T1b~T1eが50℃であるとき、制御部45は分割コイル11aの上方の食材の温度が高いと判断する。この場合には、制御部45は、分割コイル11aに供給する電力(投入火力)を減少させるように、インバータ回路50aの駆動を制御する。
 例えば、制御部45は、分割コイル11aの投入火力を600Wから500Wへと減少させる。そして、上面温度T1aが他箇所の上面温度T1と略一致すると、制御部45は、分割コイル11aの投入火力を600Wに復帰させる。
(3)複数の上面温度のうち最大値に合わせる制御
 上記(1)及び(2)では、分割コイルの上方の食材の1箇所の上面温度T1が他箇所の上面温度T1と比較して高い、または低い場合の制御を示したが、分割コイル11a~11eの5箇所の温度が全て又は一部の温度が合致していない場合には次のような制御を行ってもよい。
 例えば、上面温度T1aが60℃であり、上面温度T1b~T1eが60℃未満である場合、制御部45は、上面温度T1aが最大値であると判断し、分割コイル11b~11eの投入火力を増加させるように、インバータ回路50b~50eの駆動を制御する。
 投入火力の増加量は、例えば上面温度の最大値と当該分割コイルの上面温度T1との温度差に応じて設定しても良い。つまり、上面温度T1の最大値と当該分割コイルの上面温度T1との温度差が大きいほど、投入火力の増加量を大きく設定する。そして、制御部45は、投入火力を増加させた分割コイルの上面温度が最大値と略一致すると、当該分割コイルの投入火力を増加前の火力に復帰させる。
(4)複数の上面温度のうち最小値に合わせる制御
 例えば、上面温度T1aが60℃であり、上面温度T1b~T1eが60℃を超える温度である場合、制御部45は、上面温度T1aが最小値であると判断し、分割コイル11b~11eの投入火力を減少させるように、インバータ回路50b~50eの駆動を制御する。
 投入火力の減少量は、例えば上面温度の最小値と当該分割コイルの上面温度T1との温度差に応じて設定しても良い。つまり、上面温度T1の最小値と当該分割コイルの上面温度T1との温度差が大きいほど、投入火力の減少量を大きく設定する。そして、制御部45は、投入火力を減少させた分割コイルの上面温度が最小値と略一致すると、当該分割コイルの投入火力を減少前の火力に復帰させる。
(5)複数の上面温度の平均値に合わせる制御
 例えば、制御部45は、上面温度T1b~T1eの平均値を算出し、上面温度T1b~T1eのそれぞれが平均値と一致するように、分割コイル11b~11eの投入火力を設定する。即ち、上面温度T1が平均値よりも低い分割コイルの投入火力を増加させ、上面温度T1が平均値よりも高い分割コイルの投入火力を減少させる。
 投入火力の設定値は、例えば設定対象の分割コイルの上面温度T1と平均値との温度差に応じて設定しても良い。つまり、上面温度T1の平均値と当該分割コイルの上面温度T1との温度差が大きいほど、投入火力の変化量を大きく設定する。
(6)目標温度に合わせる制御
 例えば、制御部45は、操作部40から入力された目標温度、又は調理メニューなどで予め設定された目標温度を取得し、上面温度T1b~T1eのそれぞれが目標温度と一致するように、分割コイル11b~11eの投入火力を設定する。即ち、上面温度T1が目標温度よりも低い分割コイルの投入火力を増加させ、上面温度T1が目標温度よりも高い分割コイルの投入火力を減少させる。
 投入火力の設定値は、例えば設定対象の分割コイルの上面温度T1と目標温度との温度差に応じて設定しても良い。つまり、上面温度T1の目標値と当該分割コイルの上面温度T1との温度差が大きいほど、投入火力の変化量を大きく設定する。
 なお、温度均一制御は、上記(1)~(6)に限定されるものではない。制御部45は、複数の分割コイルのそれぞれに対応する上面温度T1の温度差が少なくなるように、複数のインバータ回路50をそれぞれ駆動させる制御を、温度均一制御として行うことができる。
 なお、上記の動作に加えて、次のような動作を行ってもよい。即ち、上面温度T1a~T1eのうちの少なくとも1つが、予め設定した上限値を超えた場合、制御部45は、加熱動作の停止又は火力低下の措置を採るようにしてもよい。さらに、制御部45は表示部41により、使用者への異常報知を行ってもよい。
 なお、本実施の形態1においては、1つの加熱口に対して5つの分割コイル11a~11eを備えた場合を説明したが、本発明はこれに限定されず、少なくとも2つの分割コイルを備えていればよい。
 なお、分割コイル11b~11eのうちの任意の1つが、本発明における「第1コイル」に相当し、他の1つが、本発明の「第2コイル」に相当する。
 また、インバータ回路50a~50eのうちの任意の1つが、本発明における「第1インバータ回路」に相当し、他の1つが、本発明の「第2インバータ回路」に相当する。
 また、上面温度検知装置30は、本発明の「温度検知装置」に相当する。
 また、被加熱物5及びこの被加熱物5に投入された食材等は、本発明の「被加熱物」に相当する。
 以上のように本実施の形態においては、被加熱物5又は被加熱物5に投入された食材の上面温度T1を検知する上面温度検知装置30を備え、制御部45は、複数の分割コイルのそれぞれに対応する上面温度T1の温度差が少なくなるように、複数のインバータ回路50の駆動を制御する。
 このため、被加熱物5に投入された食材の温度ムラを抑制することができる。例えばフライパン等の被加熱物5でハンバーグ等の食材を加熱する場合を想定したとき、フライパンを加熱口に載置する位置や、食材の厚み、フライパン内の食材位置等によらず、食材を均一な温度に加熱することができる。
 また、食材の温度ムラを抑制することで、食材の焦げや生焼けを回避することができ、調理の仕上がりを改善することができる。
 したがって、調理の終了時に食材の仕上がり具合を均一にすることが可能となり、使い勝手を改善することができる。
実施の形態2.
 本実施の形態2においては、食材の厚み方向(上下方向)の温度差を検知する構成及び動作について説明する。
 以下、本実施の形態2における誘導加熱調理器100の構成及び動作を、上記実施の形態1との相違点を中心に説明する。
(構成)
 図8は、実施の形態2に係る誘導加熱調理器の第1の加熱手段と底面温度検知装置を示す平面図である。
 図9は、実施の形態2に係る誘導加熱調理器の上面温度検知装置及び底面温度検知装置による温度検知の位置を模式的に示す側断面である。なお、図9においては、一部の構成については図示を省略している。また、図9は、フライパンなどの被加熱物5に、ハンバーグなどの複数の食材5a~5eが投入された状態の縦断面を示しており、食材5a、5c、5eのみを図示している。
 図8及び図9に示すように、天板4の下方には、天板4上に載置された被加熱物又は食材の下面の温度を検知する底面温度検知装置35a~35eが設置されている。例えば、底面温度検知装置35a~35eは、それぞれ、分割コイル11a~11eの略中央に配置されている。なお、底面温度検知装置35a~35eの配置はこれに限らず、分割コイル11a~11eの近傍の位置であれば良く、例えば分割コイル11a~11eの間隙に配置しても良い。
 底面温度検知装置35a~35eは、例えば天板4の底面に接触して設けられ接触式の温度センサにより構成されている。接触式の温度センサとしては例えばサーミスタを用いることができる。
 底面温度検知装置35a~35eは、それぞれ、分割コイル11a~11eの上方の位置における被加熱物5又は被加熱物5に投入された食材の底面の温度である底面温度T2a~T2eを検知する。底面温度検知装置35a~35eのそれぞれが検知した底面温度T2a~T2eの情報は制御部45に入力される。即ち、底面温度検知装置35a~35eが検知した天板4の底面の温度は、被加熱物5の底面の温度と略同じであるため、制御部45は、天板4の底面の温度を被加熱物5の底面温度T2として取得する。なお、制御部45は、天板4の伝熱による熱損失を考慮して、底面温度検知装置35a~35eが検知した温度を補正してこれを底面温度T2としても良い。
 なお、底面温度検知装置35a~35eは、接触式の温度センサに限らず非接触式の温度センサを用いても良い。例えば、天板4の下方に配置された赤外線センサなどにより、天板4を透過した赤外線を検知することで、被加熱物5の下面の温度を検知しても良い。
(動作)
 次に、本実施の形態1における誘導加熱調理器100の動作について説明する。
 フライパンなどの被加熱物5に、ハンバーグなどの複数の食材5a~5eが投入されると、底面温度検知装置35a~35eは、分割コイル11a~11eの位置における食材5a~5eの底面温度T2a~T2eを検知する。また、上記実施の形態1と同様に、上面温度検知装置30は、分割コイル11a~11eの位置における食材5a~5eの上面温度T1a~T1eを検知する。
 制御部45は、分割コイル11a~11eのそれぞれの位置における、底面温度T2と上面温度T1との温度差ΔTを求め、各食材5a~5eにおいて温度差ΔTが均一になるように、インバータ回路50a~50eの駆動を制御する。
 このような動作の詳細を図10を用いて説明する。
 図10は、実施の形態2に係る誘導加熱調理器の加熱動作を示すフローチャートである。以下、図10の各ステップに基づき説明する。
 使用者が誘導加熱調理器100の電源をオンし、加熱開始ボタンの押下等により加熱動作が開始されると、制御部45は加熱動作を開始する。
 加熱動作の開始において、使用者が例えば3000Wの所望火力で被加熱物5を加熱させようと動作開始させた場合、分割コイル11a~11eのそれぞれに600Wを火力投入できるように、制御部45はインバータ回路50a~50eを駆動する。これにより被加熱物5に対してトータル3000Wの火力投入がなされる。即ち、加熱動作の開始時には、制御部45は、分割コイル11a~11eに供給される電力がそれぞれ同じになるように、インバータ回路50a~50eを駆動する。
 加熱動作が開始されると上面温度検知装置30及び底面温度検知装置35が稼働を開始する(S21)。例えば、被加熱物5に複数の食材5a~5eが投入された場合、上面温度検知装置30は、分割コイル11a~11eの位置における食材5a~5eの上面温度T1a~T1eを検知する。底面温度検知装置35a~35eは、分割コイル11a~11eの位置における食材5a~5eの底面温度T2a~T2eを検知する。
 次に、制御部45は、底面温度検知装置35a~35eにより検知された底面温度T2a~T2eが、予め設定された調理適温閾値Bに達したか否かを判断する(S22)。制御部45は、底面温度T2a~T2eの全てが調理適温閾値Bに達した場合、ステップS23に進む。底面温度T2a~T2eの全てが調理適温閾値Bに達していない場合にはステップS22を繰り返す。
 ステップS23において、制御部45は、底面温度T2a~T2eが調理適温閾値Bを維持するように、分割コイル11a~11eへの投入火力を減少させるためにインバータ回路50a~50eを制御する。
 次に、制御部45は、分割コイル11a~11eのそれぞれの位置における、底面温度T2と上面温度T1との温度差ΔT(=T2-T1)を算出する(S24)。
 そして、制御部45は、分割コイル11a~11eのそれぞれについて、温度差ΔTが略ゼロで有るか否かを判断し(S25)、温度差ΔTが略ゼロでない分割コイルに対する制御については、上記ステップS23に戻り上述の動作を繰り返す。
 例えば、分割コイル11aの上方の底面温度T2aと上面温度T1aとの温度差ΔTa(=T2a-T1a)が略ゼロの場合(ΔTa≒0)、分割コイル11aの上方に載置された食材5aの厚み方向に温度差が略無く、食材5aの内部に熱が十分に伝わっていると判断することができる。
 一方、例えば、分割コイル11cの上方の底面温度T2cと上面温度T1cとの温度差ΔTc(=T2c-T1c)が略ゼロでない場合(例えばΔTc≒20℃)、分割コイル11cの上方に載置された食材5cの厚み方向に温度差が生じており、食材5cの上面(表面)の温度が低いと判断することができる。
 ステップS25において、温度差ΔTが略ゼロで有ると判断した分割コイルについては、制御部45は、底面温度T2が調理適温閾値Bを維持するように当該分割コイルのインバータ回路50を制御する。
 なお、このステップS25の制御は、分割コイルへの投入火力をステップS23における投入火力よりも小さく設定した保温制御である。例えば、10段階の火力のうち、ステップS23における火力を「5」に設定し、ステップS25における火力を「3」に設定する。
(温度均一制御)
 上記ステップS23において、制御部45は、各食材5a~5eのそれぞれの温度差ΔTの差が少なくなるように、インバータ回路50a~50eのそれぞれを制御する。
 上述した実施の形態1では、各分割コイルの上方の上面温度T1を比較して、各インバータ回路50を制御したが、本実施の形態2においては、上面温度T1に代えて温度差ΔTを用いて温度均一制御を行う。即ち、上記実施の形態1で説明した温度均一制御(1)~(6)において、上面温度T1に代えて温度差ΔTを用いて同様の制御を行う。
 例えば、分割コイル11aの温度差ΔTaが分割コイル11b~11eの温度差ΔTb~Teよりも大きい場合、制御部45は、分割コイル11aへの投入火力を増加させるように、インバータ回路50aの駆動を制御する。
 また例えば、分割コイル11aの温度差ΔTaが分割コイル11b~11eの温度差ΔTb~Teよりも小さい場合、制御部45は、分割コイル11aへの投入火力を減少させるように、インバータ回路50aの駆動を制御する。
 また例えば、分割コイル11aの温度差ΔTaが分割コイル11b~11eの温度差ΔTb~Teよりも小さい場合、制御部45は、分割コイル11aへの投入火力を減少させ、分割コイル11b~11eへの投入火力を増加させるように、インバータ回路50a~50eの駆動を制御する。
 なお、温度均一制御は、上記(1)~(6)に限定されるものではない。制御部45は、複数の分割コイルのそれぞれに対応する温度差ΔTの差が少なくなるように、複数のインバータ回路50をそれぞれ駆動させる制御を、温度均一制御として行うことができる。
 以上のように本実施の形態2においては、制御部45は、分割コイル11a~11eのそれぞれの位置における、底面温度T2と上面温度T1との温度差ΔTを求め、各食材5a~5eにおいて温度差ΔTが均一になるように、インバータ回路50a~50eの駆動を制御する。
 このため、被加熱物5に投入された食材の厚み方向に対する温度ムラを抑制することができる。
また、底面温度T2と上面温度T1との温度差ΔTが均一になるように、温度均一制御を行うことで、被加熱物5に投入された複数の食材の調理仕上がりタイミングを略同じとすることができる。
 また、温度差ΔTが略ゼロで有ると判断した分割コイルについては、制御部45は、底面温度T2が調理適温閾値Bを維持するように当該分割コイルのインバータ回路50を制御する。
 このため、保温制御と加熱制御の同時制御を実現することができる。即ち、各食材の温度差ΔTが略ゼロとなるように加熱制御を行うことで調理仕上がりを改善でき、且つ1つの被加熱物5内で加熱調理と保温の同時制御が可能となり、使い勝手を大幅に改善することができる。
実施の形態3.
 本実施の形態3においては、被加熱物5に食材が投入されていない状態で加熱動作が継続される空焼きを検知する動作について説明する。
 以下、本実施の形態3における誘導加熱調理器100の動作を、上記実施の形態1及び2との相違点を中心に説明する。
 図11は、実施の形態3に係る誘導加熱調理器の加熱動作を示すフローチャートである。以下、図11の各ステップに基づき説明する。
 なお、誘導加熱調理器100のアプリケーションとして、被加熱物5の温度を設定温度まで加熱する「予熱モード」がある。以下、「予熱モード」以外の調理モードを「通常モード」と称する。
(空焼き検知動作)
 使用者が誘導加熱調理器100の電源をオンし、加熱開始ボタンの押下等により加熱動作が開始されると、制御部45は加熱動作を開始する。
 加熱動作が開始されると上面温度検知装置30及び底面温度検知装置35が稼働を開始する(S31)。
 次に、制御部45は、分割コイル11a~11eのそれぞれの位置における、底面温度T2と上面温度T1との温度差ΔT(=T2-T1)を算出する(S32)。
 制御部45は、調理モードが予熱モードであるか否かを判断し(S34)、予熱モードである場合には、ステップS35へ進み予熱モードにおける予熱動作を継続する(S35)。即ち、予熱モードにおいては空焼きを前提とする調理モードであるため、以降の動作を実施しない。
 一方、調理モードが予熱モードでない場合、即ち、調理モードが通常モードである場合、制御部45は、加熱開始からの予め設定した経過時間(例えば1分後)を待って(S36)、ステップS37へ進む。
 ステップS37において、制御部45は、分割コイル11a~11eのそれぞれについて、温度差ΔTが略ゼロで有るか否かを判断する。ここで、制御部45は、例えば、温度差ΔTが予め設定した閾値(例えば1℃)よりも小さい場合、温度差ΔTが略ゼロで有ると判断する。
 制御部45は、分割コイル11a~11eの温度差ΔTa~ΔTeの全てが略ゼロである場合、食材が被加熱物5に投入されていない空焼きであると判断し、加熱動作を停止させる(S38)。
 一方、分割コイル11a~11eの温度差ΔTa~ΔTeの全てが略ゼロでない場合、制御部45は、被加熱物5内に食材が載置されていると判断し、加熱動作を継続する(S39)。
 なお、ステップS37においては、分割コイル11a~11eの温度差ΔTa~ΔTeの全てが略ゼロであるか否かを判断したが、これに限定されず、一部の温度差ΔTのみを用いて空焼きを判断しても良い。例えば、加熱口の中央に配置された分割コイル11aの温度差ΔTaが略ゼロである場合には、空焼きであると判断して加熱を停止しても良い。
 なお、本実施の形態3における空焼き検知動作の後、加熱動作を継続した際には、上記実施の形態1又は2の動作に移行し、食材の温度を均一にする制御を実施する。
 以上のように本実施の形態3においては、インバータ回路50の駆動の開始から予め設定した経過時間後における温度差ΔTが閾値よりも小さい場合、インバータ回路50の駆動を停止させる。
 このため、被加熱物5の温度が高温に至る前に、被加熱物5の空焼き状態を検知することができる。よって、無駄な加熱を継続することがなく省エネルギー化を図ることができる。また、被加熱物5の劣化の防止を図ることができる。
 なお、従来の誘導加熱調理器における空焼き検知では、例えば天板4の下の温度センサ(赤外線センサ又はサーミスタ等)も用いて、被加熱物5の温度を検知し、被加熱物5が十分に高い温度(例えば300℃)に達したときに空焼きと判断して加熱停止がなされていた。
実施の形態4.
 本実施の形態4においては、インバータ回路50の駆動周波数を制御する動作について説明する。
 以下、本実施の形態4における誘導加熱調理器100の動作を、上記実施の形態1~3との相違点を中心に説明する。
 一般に、誘導加熱調理器用の被加熱物5の中には、非磁性体の金属の中央部に磁性金属を溶射又は貼り付けたものがある。例えば、非磁性体のアルミ材質のフライパンの底の中央部にステンレスなどの磁性体金属が貼り付けられた貼付フライパンや、フライパンの底に鉄などの磁性体をコーティングした溶射フライパンなどが多く存在する。
 このような異種金属の被加熱物5が加熱口に載置された場合、加熱口の中央に配置した分割コイル11aと、その周囲に配置した分割コイル11b~11eの駆動周波数を同一、あるいは近似した周波数に設定すると、中央部(内周部)と外周部(鍋肌部)を同じ温度で加熱することできない。すなわち、底面に鉄などの磁性材が溶射された被加熱物5の中心部分のみが誘導加熱され、非磁性体である被加熱物5の鍋肌部の温度は中心部と比較して上がらない。非磁性体のアルミ材質である鍋肌部を加熱するためには、通常のインバータ駆動周波数(20kHz~30kHz程度)に対し、高周波による駆動(一般に60kHz~100kHz)が必要となる。
 このような異種金属の被加熱物5を誘導加熱する動作を以下に説明する。
 図12は、実施の形態4に係る誘導加熱調理器の加熱動作を示すフローチャートである。以下、図12の各ステップに基づき説明する。
 加熱動作が開始されると上面温度検知装置30が稼働を開始する(S41)。
 次に、制御部45は、加熱口の中央に配置された分割コイル11aの上面温度T1aを、中心部温度DET_Cとして取得する。また、加熱口の外周部(鍋肌部)に配置された分割コイル11b~11eの上面温度T1b~11eを、鍋肌部温度DET_Sとして取得する(S42)。
 次に、制御部45は、中心部温度DET_Cと鍋肌部温度DET_Sとの差分ΔTcsを算出する(S43)。そして、制御部45は、差分ΔTcsが閾値Cよりも大きいか否かを判断する(S44)。
 差分ΔTcsが閾値Cよりも大きい場合、制御部45は、被加熱物5が貼付鍋であると判断し、分割コイル11b~11eの駆動周波数を、分割コイル11aの駆動周波数よりも高くする。例えば、分割コイル11b~11eの駆動周波数を約25kHz程度から約75kHz程度に上昇させて鍋肌部分の加熱を行えるようにする。なお、駆動周波数の上昇量は、予め設定した周波数でも良いし、差分ΔTcsに応じた周波数に設定してもよい。なお、駆動周波数を高周波とする際は、インバータ回路50を構成する共振用コンデンサ(図示せず)の切り替えも併せて必要となる。
 一方、差分ΔTcsが閾値Cよりも大きくない場合、制御部45は、各分割コイルの駆動周波数を同じにして、通常の駆動を行う(S46)。
 以上のように本実施の形態4においては、中心部分の上面温度と、鍋肌部分の上面温度を比較し、鍋肌部分の上面温度が上がらないときに限り貼付鍋と判定し、鍋肌部分の分割コイルのインバータ回路50を高周波駆動するように制御する。
 このため、被加熱物5の材質により一意的にインバータ駆動周波数を決定するのではなく、食材の上面温度によりインバータ駆動周波数を決定することができる。これにより、鍋肌部分がアルミ材料であっても、被加熱物5の伝熱により鍋肌部分の食材温度が上がっているときは高周波駆動としなくて良く、インバータ回路50の損失増大や分割コイルの損失増大を回避できる。したがって、インバータ回路50の発熱による冷却風の排気温度を下げることができ、使い勝手を向上させることができる。
 またインバータ回路50を構成するスイッチングデバイスに、従来はIGBT等のSi(シリコン)素子を適用していたが、ワイドバンドギャップ半導体であるSiC(シリコンカーバイド)素子を適用することで、排気温度を更に低下させることができるため、使い勝手の更なる向上を図ることが可能となる。さらにSiC(シリコンカーバイド)素子の適用で、排気温度を変えずに冷却風の風速を低下させることが可能となるため、静音化を図ることができる。
 また、被加熱物5の負荷判定により鍋肌部分の材質をアルミと判定するのではなく、中心部と鍋肌部の温度の比較によって、駆動周波数を変化させる制御を行うので、貼付鍋であっても伝熱により鍋肌部の温度が上がっているときは、分割コイル11b~11eを高周波駆動する制御を行わない。
 このため、貼付鍋の底面を略均一に加熱することができて使用者の使い勝手が向上することに加え、底面の鍋肌温度が上がらないときにのみ高周波駆動とするようにしたので、インバータ回路50の損失を低減することが可能となる。
(変形例)
 上記実施の形態1~4では、第1の加熱口1の中央に配置された分割コイル11aと、この分割コイル11aの周囲に配置された分割コイル11b~11eを備える構成について説明したが、これに限らず任意の配置でよい。
 図13は、誘導加熱調理器の第1の加熱手段の変形例を示す図である。
 図13に示すように、第1の加熱手段11は、略同心円状に配置された複数のコイルで構成されている。例えば、第1の加熱手段11は、略同心円状に配置された4重のコイル11-1~11-4で構成されている。これらコイル11-1~11-4は、絶縁皮膜された任意の金属(例えば銅、アルミ等)からなる導電線を巻き付けることにより構成される。これらコイル11-1~11-4は、それぞれ独立したインバータ回路50a~50dにより駆動される。
 このような構成においても、上述した実施の形態1~4のいずれかと同様の動作を行うことができる。
実施の形態5.
 図14は、実施の形態5に係る誘導加熱調理器の概略構成を示す斜視図である。
 図14に示すように、本実施の形態5に係る誘導加熱調理器100は、天板4の下方には、比較的小型の複数のコイル80がほぼ均一的に分散配置されている。複数のコイル80は、それぞれインバータ回路50によって個別に駆動される。
 また、本実施の形態5における制御部45は、複数のコイル80のそれぞれについて、上方に載置されている被加熱物の負荷判定を行う。
 また、上述した上面温度検知装置30に代わり、天板4上における複数のコイル80の配置位置をすべて含む温度検知範囲DET_A(図15参照)の温度を検知する上面温度検知装置31を備えている。即ち、上面温度検知装置31は、天板4上のどこに被加熱物5を載置しても被加熱物5に載置された食材の温度の検出が可能な複眼型の赤外線温度センサを備えている。上面温度検知装置31は、受信部42へ、天板4の前後及び左右方向(XY軸方向)に関する温度の情報を送信する。例えば、上面温度検知装置31は、XY軸方向の各座標における温度の情報を受信部42へ送信する。
 図15は、実施の形態5に係る誘導加熱調理器のマッピング情報を説明する図である。
 図15においては、上面温度検知装置31による温度検知範囲DET_Aと複数のコイル80の位置関係を示している。
 制御部45は、温度検知範囲DET_AのXY座標における、複数のコイル80それぞれを特定するマッピング情報を予め具備している。例えば図15に示すように、温度検知範囲DET_AのXY座標において、X1,Y1の位置に配置されているコイル80_11として特定し、X2,Y1の位置に配置されているコイル80_21として特定するように、上面温度検知装置31の座標と複数のコイル80とを対応付ける情報を具備している。
 なお、このマッピング情報は、予め保存する場合に限るものではなく、例えば、天板4上の広範囲に被加熱物5を載置する、もしくは加熱用金属シートを天板4上に載置させ、複数のコイル80を個別に順に通電した際の温度上昇位置から、複数のコイル80と座標関係とを特定するマッピング情報を生成する構成としてもよい。
(動作)
 使用者により天板4の任意の位置に被加熱物5が載置され、加熱開始(火力投入)の指示が操作部40に行われると、制御部45は負荷判定処理を行う。制御部45は、複数のコイル80のそれぞれについて、上方に載置された負荷の有無を判定する負荷判定処理を行う。
 次に、制御部45は、複数のコイル80のうち、上方に被加熱物5が載置されていると判定したコイル80を駆動するインバータ回路50を制御して、誘導加熱させる火力に応じた高周波電力を供給する加熱動作を行う。なお、制御部45は、無負荷であると判定したコイル80を駆動するインバータ回路50の動作を停止させる。
 制御部45は、上面温度検知装置31が検知した温度検知範囲DET_Aの温度情報を取得し、マッピング情報を参照することで、加熱動作を行っているコイル80の上方における被加熱物5の上面温度T1を取得する。
 以降の動作は、上記実施の形態1~4のいずれかと同様であり、上方に被加熱物5が載置されている複数のコイル80それぞれに対応する上面温度T1の温度差が少なくなるように、複数のインバータ回路50の駆動を制御する。
 以上のように本実施の形態5においては、天板4の下方に均一に分散配置された複数のコイル80と、天板4の上面の予め設定された温度検知範囲DET_Aの温度を検知する上面温度検知装置31とを備えている。
 このため、天板4上の広範囲にわたる温度検出を可能としている。これより天板4の下方に均一に分散配置された、所謂フリーエリア誘導加熱に適合することが可能となり、使用者の使い勝手を大幅に改善することができる。
 また、複数の被加熱物5を隣接して天板4に載置して、複数の被加熱物5を同時に加熱する場合においても、例えば被加熱物5内の食材の温度が過昇している場合には、当該被加熱物5の直下の加熱コイルの電力を抑制することで、他の被加熱物5内の食材との調理仕上がりタイミングを合わせることが可能となり、使い勝手を向上させることができる。
 1 第1の加熱口、2 第2の加熱口、3 第3の加熱口、4 天板、5 被加熱物、5a~5e 食材、6 天板、11 第1の加熱手段、11-1~11-4 コイル、11a~11e 分割コイル、12 第2の加熱手段、13 第3の加熱手段、21 交流電源、30 上面温度検知装置、31 上面温度検知装置、35a~35e 底面温度検知装置、40 操作部、41 表示部、42 受信部、45 制御部、50a~50e インバータ回路、80 コイル、80_11 コイル、80_21 コイル。

Claims (23)

  1.  被加熱物が載置される天板と、
     前記天板の下方に配置された第1コイル及び第2コイルと、
     前記第1コイルに電力を供給する第1インバータ回路と、
     前記第1インバータ回路とは別に設けられ、前記第2コイルに電力を供給する第2インバータ回路と、
     前記第1コイルの上方の位置における前記被加熱物の上面の温度である第1上面温度と、前記第2コイルの上方の位置における前記被加熱物の上面の温度である第2上面温度とを検知する温度検知装置と、
     前記第1上面温度と前記第2上面温度との差が少なくなるように、前記第1インバータ回路及び前記第2インバータ回路の駆動を制御する制御装置と、
     を備えた誘導加熱調理器。
  2.  前記制御装置は、
     前記第1上面温度が前記第2上面温度よりも低い場合、前記第1コイルに供給する電力を増加させる
     請求項1に記載の誘導加熱調理器。
  3.  前記制御装置は、
     前記第1上面温度が前記第2上面温度よりも低い場合、前記第2コイルに供給する電力を減少させる
     請求項1に記載の誘導加熱調理器。
  4.  前記制御装置は、
     前記第1上面温度が前記第2上面温度よりも低い場合、前記第1コイルに供給する電力を増加させ、前記第2コイルに供給する電力を減少させる
     請求項1に記載の誘導加熱調理器。
  5.  前記制御装置は、
     前記第1上面温度が前記第2上面温度よりも高い場合、前記第1コイルに供給する電力を減少させる
     請求項1~4の何れか一項に記載の誘導加熱調理器。
  6.  前記制御装置は、
     前記第1上面温度が前記第2上面温度よりも高い場合、前記第2コイルに供給する電力を増加させる
     請求項1~4の何れか一項に記載の誘導加熱調理器。
  7.  前記制御装置は、
     前記第1上面温度が前記第2上面温度よりも高い場合、前記第1コイルに供給する電力を減少させ、前記第2コイルに供給する電力を増加させる
     請求項1~4の何れか一項に記載の誘導加熱調理器。
  8.  前記第1コイルの上方の位置における前記被加熱物の底面の温度である第1底面温度と、前記第2コイルの上方の位置における前記被加熱物の底面の温度である第2底面温度とを検知する第2温度検知装置を、備え、
     前記制御装置は、
     前記第1底面温度と前記第1上面温度との温度差である第1温度差と、前記第2底面温度と前記第2上面温度との温度差である第2温度差との差が少なくなるように、前記第1インバータ回路及び前記第2インバータ回路の駆動を制御する
     請求項1~7の何れか一項に記載の誘導加熱調理器。
  9.  前記制御装置は、
     前記第1温度差が前記第2温度差よりも大きい場合、前記第1コイルに供給する電力を増加させる
     請求項8に記載の誘導加熱調理器。
  10.  前記制御装置は、
     前記第1温度差が前記第2温度差よりも大きい場合、前記第2コイルに供給する電力を減少させる
     請求項8に記載の誘導加熱調理器。
  11.  前記制御装置は、
     前記第1温度差が前記第2温度差よりも大きい場合、前記第1コイルに供給する電力を増加させ、前記第2コイルに供給する電力を減少させる
     請求項8に記載の誘導加熱調理器。
  12.  前記制御装置は、
     前記第1温度差が前記第2温度差よりも小さい場合、前記第1コイルに供給する電力を減少させる
     請求項8~11の何れか一項に記載の誘導加熱調理器。
  13.  前記制御装置は、
     前記第1温度差が前記第2温度差よりも小さい場合、前記第2コイルに供給する電力を増加させる
     請求項8~11の何れか一項に記載の誘導加熱調理器。
  14.  前記制御装置は、
     前記第1温度差が前記第2温度差よりも小さい場合、前記第1コイルに供給する電力を減少させ、前記第2コイルに供給する電力を増加させる
     請求項8~11の何れか一項に記載の誘導加熱調理器。
  15.  前記制御装置は、
     前記第1インバータ回路の駆動の開始から予め設定した経過時間後における前記第1温度差が、第1閾値よりも小さい場合、前記第1インバータ回路の駆動を停止させる
     請求項8~14の何れか一項に記載の誘導加熱調理器。
  16.  前記制御装置は、
     前記第2インバータ回路の駆動の開始から予め設定した経過時間後における前記第2温度差が、第2閾値よりも小さい場合、前記第2インバータ回路の駆動を停止させる
     請求項8~15の何れか一項に記載の誘導加熱調理器。
  17.  前記第2温度検知装置は、
     前記天板の底面に接触して設けられた接触式の温度センサにより構成された
     請求項8~16の何れか一項に記載の誘導加熱調理器。
  18.  前記温度検知装置は、
     前記天板の上方に設けられた非接触式の温度センサにより構成された
     請求項1~17の何れか一項に記載の誘導加熱調理器。
  19.  前記天板は、前記被加熱物の載置位置を示す加熱口が形成され、
     前記第1コイルは、前記加熱口の中央に配置され、
     前記第2コイルは、前記第1コイルの周辺に配置された
     請求項1~18の何れか一項に記載の誘導加熱調理器。
  20.  前記制御装置は、
     前記第2上面温度が前記第1上面温度よりも第3閾値以上低い場合、前記第2コイルに供給する電力の周波数を、前記第1コイルに供給する電力の周波数よりも高くする
     請求項19に記載の誘導加熱調理器。
  21.  被加熱物が載置される天板と、
     前記天板の下方に均一に分散配置された複数のコイルと、
     複数の前記コイルのそれぞれに設けられ、前記コイルに電力を供給する複数のインバータ回路と、
     複数の前記コイルのそれぞれについて、前記コイルの上方の位置における前記被加熱物の上面温度を検知する温度検知装置と、
     複数の前記コイルのうち、上方に前記被加熱物が載置されている前記コイルに電力を供給するように、複数の前記インバータ回路の駆動を制御する制御装置と、
     を備え、
     前記制御装置は、
     上方に前記被加熱物が載置されている複数の前記コイルそれぞれに対応する前記上面温度の温度差が少なくなるように、複数の前記インバータ回路の駆動を制御する
     誘導加熱調理器。
  22.  前記温度検知装置は、
     前記天板の上面の予め設定された温度検知範囲の温度を検知する赤外線センサにより構成され、
     前記制御装置は、
     複数の前記コイルのそれぞれの位置に対応する前記温度検知範囲における位置の情報であるマッピング情報を取得し、
     前記マッピング情報に基づき、複数の前記コイルそれぞれに対応する前記上面温度を取得する
     請求項21に記載の誘導加熱調理器。
  23.  前記第1インバータ回路及び前記第2インバータ回路を構成するするスイッチングデバイスに、ワイドバンドギャップ半導体を適用した
     請求項1~22の何れか一項に記載の誘導加熱調理器。
PCT/JP2016/086003 2016-12-05 2016-12-05 誘導加熱調理器 WO2018104989A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2016/086003 WO2018104989A1 (ja) 2016-12-05 2016-12-05 誘導加熱調理器
EP16923325.1A EP3550933B1 (en) 2016-12-05 2016-12-05 Induction heating cooker
JP2018555324A JP6768830B2 (ja) 2016-12-05 2016-12-05 誘導加熱調理器
CN201680090014.4A CN109997413B (zh) 2016-12-05 2016-12-05 感应加热烹调器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/086003 WO2018104989A1 (ja) 2016-12-05 2016-12-05 誘導加熱調理器

Publications (1)

Publication Number Publication Date
WO2018104989A1 true WO2018104989A1 (ja) 2018-06-14

Family

ID=62490816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086003 WO2018104989A1 (ja) 2016-12-05 2016-12-05 誘導加熱調理器

Country Status (4)

Country Link
EP (1) EP3550933B1 (ja)
JP (1) JP6768830B2 (ja)
CN (1) CN109997413B (ja)
WO (1) WO2018104989A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020056527A (ja) * 2018-10-01 2020-04-09 大阪瓦斯株式会社 調理支援システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7308675B2 (ja) * 2019-07-09 2023-07-14 三菱電機株式会社 加熱調理器、加熱調理システム、端末装置、および報知方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249336A (ja) * 2002-02-25 2003-09-05 Pepper Food Service:Kk 電磁誘導加熱を利用した加熱装置
JP2005317305A (ja) * 2004-04-28 2005-11-10 Mitsubishi Electric Corp 加熱調理器
JP2006302595A (ja) * 2005-04-19 2006-11-02 Hitachi Home & Life Solutions Inc 誘導加熱装置
JP2009094028A (ja) * 2007-10-12 2009-04-30 Mitsubishi Electric Corp 誘導加熱調理器
JP2009158225A (ja) * 2007-12-26 2009-07-16 Mitsubishi Electric Corp 誘導加熱調理器
JP2010244925A (ja) * 2009-04-08 2010-10-28 Panasonic Corp 誘導加熱調理器
JP2010267433A (ja) * 2009-05-13 2010-11-25 Mitsubishi Electric Corp 電磁調理器
JP2011054532A (ja) * 2009-09-04 2011-03-17 Mitsubishi Electric Corp 誘導加熱装置
JP2013029237A (ja) * 2011-07-27 2013-02-07 Maruzen Co Ltd 加熱調理装置
WO2014064922A1 (ja) * 2012-10-22 2014-05-01 パナソニック株式会社 誘導加熱調理器
JP5495960B2 (ja) 2010-06-07 2014-05-21 三菱電機株式会社 誘導加熱調理器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249158A (ja) * 2007-03-29 2008-10-16 Mitsubishi Electric Corp 加熱調理器
JP4982282B2 (ja) * 2007-07-19 2012-07-25 日立アプライアンス株式会社 誘導加熱調理器
JP2011060632A (ja) * 2009-09-11 2011-03-24 Panasonic Corp 誘導加熱調理器及びそのプログラム
EP2693837B1 (en) * 2011-03-29 2015-12-16 Mitsubishi Electric Corporation Induction heating cookware
DE102011081355A1 (de) * 2011-08-23 2013-02-28 BSH Bosch und Siemens Hausgeräte GmbH Einrichten einer Überwachungsvorrichtung für ein Kochfeld
JP2013137938A (ja) * 2011-12-28 2013-07-11 Panasonic Corp 誘導加熱調理器
JP2016025031A (ja) * 2014-07-23 2016-02-08 三菱電機株式会社 誘導加熱調理器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249336A (ja) * 2002-02-25 2003-09-05 Pepper Food Service:Kk 電磁誘導加熱を利用した加熱装置
JP2005317305A (ja) * 2004-04-28 2005-11-10 Mitsubishi Electric Corp 加熱調理器
JP2006302595A (ja) * 2005-04-19 2006-11-02 Hitachi Home & Life Solutions Inc 誘導加熱装置
JP2009094028A (ja) * 2007-10-12 2009-04-30 Mitsubishi Electric Corp 誘導加熱調理器
JP2009158225A (ja) * 2007-12-26 2009-07-16 Mitsubishi Electric Corp 誘導加熱調理器
JP2010244925A (ja) * 2009-04-08 2010-10-28 Panasonic Corp 誘導加熱調理器
JP2010267433A (ja) * 2009-05-13 2010-11-25 Mitsubishi Electric Corp 電磁調理器
JP2011054532A (ja) * 2009-09-04 2011-03-17 Mitsubishi Electric Corp 誘導加熱装置
JP5495960B2 (ja) 2010-06-07 2014-05-21 三菱電機株式会社 誘導加熱調理器
JP2013029237A (ja) * 2011-07-27 2013-02-07 Maruzen Co Ltd 加熱調理装置
WO2014064922A1 (ja) * 2012-10-22 2014-05-01 パナソニック株式会社 誘導加熱調理器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3550933A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020056527A (ja) * 2018-10-01 2020-04-09 大阪瓦斯株式会社 調理支援システム
JP7195104B2 (ja) 2018-10-01 2022-12-23 大阪瓦斯株式会社 調理支援システム

Also Published As

Publication number Publication date
EP3550933A1 (en) 2019-10-09
JPWO2018104989A1 (ja) 2019-03-07
EP3550933B1 (en) 2021-09-29
EP3550933A4 (en) 2019-12-25
CN109997413B (zh) 2022-02-25
JP6768830B2 (ja) 2020-10-14
CN109997413A (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
US10856368B2 (en) Heating cooker system, inductive heating cooker, and electric apparatus
WO2014068648A1 (ja) 誘導加熱調理器
EP3618568B1 (en) Induction heating device and method for controlling induction heating device
TWI495399B (zh) 可增加加熱範圍之電磁感應加熱裝置
US11293644B2 (en) Heating cooker system, and cooking device
WO2018104989A1 (ja) 誘導加熱調理器
JP4096813B2 (ja) 誘導加熱調理器
JP5369155B2 (ja) 誘導加熱調理器
TWI578853B (zh) Induction heating cooker
JP5058296B2 (ja) 誘導加熱調理器
JP6768464B2 (ja) 温度検知装置および加熱調理器
JP5029774B1 (ja) 誘導加熱調理器
JP2017183020A (ja) 加熱調理システム、受電装置、及び誘導加熱調理器
JP2019140074A (ja) 誘導加熱調理器
JP6270906B2 (ja) 温度検知装置および加熱調理器
JP2016201211A (ja) 温度検知装置および加熱調理器
JP2008135201A (ja) 誘導加熱調理器
JP2002075610A (ja) 誘導加熱調理器
WO2017081859A1 (ja) 誘導加熱調理器
US20220412567A1 (en) Electric range of which heat power is controlled without user intervention, and control method therefor
JP5445628B2 (ja) 誘導加熱調理器
JP5456001B2 (ja) 誘導加熱調理器
JP2014116123A (ja) 誘導加熱調理器
JP2014229425A (ja) 誘導加熱調理器
JP6452527B2 (ja) 誘導加熱調理器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018555324

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016923325

Country of ref document: EP