WO2018103683A1 - 表面清洁机器人及其履带生产工艺方法 - Google Patents

表面清洁机器人及其履带生产工艺方法 Download PDF

Info

Publication number
WO2018103683A1
WO2018103683A1 PCT/CN2017/114934 CN2017114934W WO2018103683A1 WO 2018103683 A1 WO2018103683 A1 WO 2018103683A1 CN 2017114934 W CN2017114934 W CN 2017114934W WO 2018103683 A1 WO2018103683 A1 WO 2018103683A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
hard layer
soft layer
cleaning robot
hard
Prior art date
Application number
PCT/CN2017/114934
Other languages
English (en)
French (fr)
Inventor
孙奇
Original Assignee
科沃斯机器人股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科沃斯机器人股份有限公司 filed Critical 科沃斯机器人股份有限公司
Priority to EP17877757.9A priority Critical patent/EP3552530B1/en
Priority to US16/467,300 priority patent/US11648716B2/en
Publication of WO2018103683A1 publication Critical patent/WO2018103683A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/18Tracks
    • B62D55/24Tracks of continuously flexible type, e.g. rubber belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L1/00Cleaning windows
    • A47L1/02Power-driven machines or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/008Manipulators for service tasks
    • B25J11/0085Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/005Manipulators mounted on wheels or on carriages mounted on endless tracks or belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/74Heating or cooling of the injection unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2029/00Belts or bands

Definitions

  • the invention relates to a surface cleaning robot and a crawler production process method thereof, and belongs to the technical field of small household appliance manufacturing.
  • Existing surface cleaning robots such as window cleaning robots, usually use a crawler type walking mechanism for the purpose of walking on the glass surface.
  • the window cleaning robot relies on the negative pressure generated by the fan to vertically attach to the glass surface of the window, and then freely moves on the glass surface by the crawler mounted on the bottom of the window cleaning robot.
  • the existing crawler structure is relatively simple and requires high material. If high hardness material is used, the track and the glass have poor adhesion and damage the glass; if low hardness material is used, the track and the gear mesh side are special. Easy to wear and fail.
  • there is also a composite crawler belt composed of at least two different hardness tapes superposed on each other, and the hardness from the outer ring to the inner ring is gradually increased.
  • the technical problem to be solved by the present invention is to provide a surface cleaning robot and a crawler belt production process method thereof according to the deficiencies of the prior art, and adopt a nested combined composite crawler belt to closely combine the inner and outer rings of different materials, and the process is simple.
  • the processing is convenient, but the overall strength and toughness of the crawler belt is greatly increased, and the problem that the crawler belt has poor running ability on the clean surface is overcome, thereby enhancing the work safety of the surface cleaning robot, reducing the production cost, the structure is simple, the manufacturing is convenient, and the application range is adopted. Wide and at the same time have the advantages of the timing belt, which improves the cleaning efficiency and service life of the surface cleaning robot.
  • a surface cleaning robot having a body, a bottom portion of the body is provided with a running portion, the running portion includes a crawler belt and a gear for driving the crawler belt, the crawler belt includes a hard layer engaged with the gear in the inner ring and the outer ring and the outer ring The soft layer in contact with the surface is cleaned, and the hard layer and the soft layer are nested and integrated.
  • the outer side of the hard layer is provided with a plurality of protrusions, and the protrusions are embedded in the soft layer so that the soft layer and the hard layer Nested between each other.
  • the hard layer is wavy, the inner side of the hard layer is meshed with the gear, and the soft layer is coated on the outer side of the hard layer.
  • the protrusions are a T-shaped structure, a Y-shaped structure, or a barbed structure.
  • holes may be provided on the hard layer, and the soft layer is embedded in the holes to nest the soft layer and the hard layer.
  • two outer half shells are fastened to each other outside the crawler belt; and a speed reducer is further arranged between the drive motor and the gear.
  • the soft layer is made of thermoplastic urethane rubber or polyvinyl chloride as needed; the hard layer is made of nylon glass fiber or thermoplastic polyester elastomer.
  • the present invention also provides a crawler belt production process, the crawler belt comprising a hard layer engaged with the gear in the inner ring and a soft layer in contact with the cleaning surface in the outer ring, the hard layer and the soft layer being nested in combination
  • the crawler production process specifically includes the following steps:
  • Step 100 heating the soft layer to melt it into a liquid state
  • Step 200 uniformly injecting the liquid soft layer into the mold with the hard layer, so that the soft layer covers the outside of the hard layer;
  • Step 300 Cooling the hard layer and the soft layer so that the two are nested and joined to each other and demolded.
  • the step 100 further includes a step 001: integrally forming a plurality of protrusions on the outer side of the hard layer, the protrusions for making the soft layer
  • the hard layers are nested together.
  • the step 100 and 200 further includes a step 110: opening a hole in the hard layer; the step 200 specifically includes: the soft layer is coated on the hard The outside of the layer is embedded in a hole formed in the hard layer.
  • the heating process parameters in the step 100 include: the heating temperature is: 150 ° C - 160 ° C, and the soft layer is melted into a liquid state.
  • the cooling process parameters in the step 300 include: the cooling temperature is: 20 ° C - 50 ° C, and the cooling time is: 30 seconds - 50 seconds.
  • the present invention provides a surface cleaning robot and a crawler production process thereof, which adopts a nested combined composite crawler belt to closely combine the inner and outer rings of different materials, has a simple process and is convenient to process, but greatly increases the number of processes.
  • the overall strength and toughness of the track overcomes the problem of poor running ability of the track on the clean surface, thereby enhancing the work safety of the surface cleaning robot, reducing the production cost, simple structure, easy manufacturing, wide application range, and simultaneous belt.
  • the advantage is that the surface cleaning robot has improved cleaning efficiency and service life.
  • FIG. 1 is a schematic view showing the overall structure of a surface cleaning robot of the present invention
  • Figure 2 is a partial exploded view of the walking portion of the present invention
  • Figure 3 is a schematic view showing the connection structure of the crawler belt and the gear of the present invention.
  • FIG. 4 is a schematic exploded view of a crawler belt according to an embodiment of the present invention.
  • FIG. 5 is a schematic view showing a crawler belt assembly structure according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural view of a crawler hard layer according to Embodiment 2 of the present invention.
  • Figure 7 is a partial enlarged view of a portion A of Figure 6;
  • Figure 8 is a schematic structural view of a third protrusion according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural view of a fourth protrusion according to an embodiment of the present invention.
  • FIG. 1 is a schematic view showing the overall structure of a surface cleaning robot of the present invention.
  • the present invention provides a surface cleaning robot 100, which may specifically be a window cleaning robot, including a body 110.
  • the control unit 120 for controlling cleaning and movement of the robot is provided in the body 110 for cleaning the window.
  • 2 is an exploded perspective view showing a portion of the walking portion of the present invention
  • FIG. 3 is a schematic view showing the connecting structure of the crawler belt and the transmission wheel of the present invention. As shown in FIG. 2 and FIG. 3, in conjunction with FIG.
  • the running portion 140 includes a driving motor 141 disposed in the body 110, a gear 142 driven and rotated by the driving motor 141, and a crawler belt 143 surrounding the gear 142 and driven thereby.
  • the crawler belt 143 in order to effectively protect the crawler belt 143, the crawler belt 143 is further provided with two half-shells 144 that are engaged with each other, and the crawler belt is exposed below the half-shell.
  • a speed reducer 145 is further disposed between the driving motor 141 and the gear 142.
  • the crawler belt 143 includes a hard layer 1430 disposed on the inner ring and the gear 142, and a soft layer 1433 disposed on the outer ring in contact with the surface of the window, and the two are nested and integrated.
  • the hard layer 1430 is wavy, the inner side of the hard layer 1430 is meshed with the gear 142, and the soft layer 1433 is nested in a wave shape. The outer side of the hard layer 1430.
  • one side of the hard layer 1430 that meshes with the gear 142 is the inner side of the hard layer 1430, and the outer side of the hard layer includes the other side of the hard layer 1430 except the mating surface.
  • the material of the track needs to be described as necessary.
  • the existing soft layer is usually made of silica gel because the silica gel and the glass are both silicon-based and rubbed on the glass. The residue will appear as a trace of friction. Therefore, the present invention adopts the principle of "outer soft and internal hard" on the material of the track, and the soft layer replaces the conventional silica gel with TPU (thermoplastic urethane rubber).
  • the soft layer 1433 is made of thermoplastic urethane rubber, polyvinyl chloride or the like; the hard layer 1430 is made of nylon glass fiber or thermoplastic polyester elastomer or hard plastic or the like.
  • the hard layer is made of the above materials, and has sufficient hardness to ensure long-term running-in with the gear. Since the present invention adopts a nested form, the affinity (adhesion) between different material layers is no longer important, so that the selection range of materials can be expanded.
  • the invention also provides the above-mentioned crawler production process method, which specifically comprises the following steps:
  • Step 100 heating the soft layer to melt it into a liquid state, the heating temperature is: 150 ° C -160 ° C;
  • Step 200 uniformly injecting the liquid soft layer into the mold with the hard layer, so that the soft layer covers the outer side of the hard layer;
  • Step 300 Cooling the hard layer and the soft layer to form a nesting bond with each other, and demolding; cooling temperature: 20 ° C - 50 ° C, cooling time: 30 seconds - 50 seconds.
  • the hard layer 1430 and the soft layer 1433 are nested and joined to each other, instead of maintaining the mutual fixation by conventional bonding resistance.
  • FIG. 6 is a schematic view showing the structure of a crawler hard layer according to Embodiment 2 of the present invention
  • FIG. 7 is a partially enlarged view of a portion A of FIG. 6.
  • the undulating outer side of the hard layer is further provided with protrusions 1432.
  • the protrusions have a T-shaped structure.
  • the invention also provides the above-mentioned crawler production process method, which specifically comprises the following steps:
  • Step 001 integrally forming a plurality of protrusions on an outer side of the hard layer, wherein the protrusions are used for nesting and bonding the soft layer and the hard layer to each other;
  • Step 100 heating the soft layer to melt it into a liquid state, the heating temperature is: 150 ° C -160 ° C;
  • Step 200 uniformly injecting the liquid soft layer into the mold with the hard layer, so that the soft layer covers the outer side of the hard layer;
  • Step 300 Cooling the hard layer and the soft layer to form a nesting bond with each other, and demolding; cooling temperature: 20 ° C - 50 ° C, cooling time: 30 seconds - 50 seconds.
  • FIG. 8 is a schematic view showing a structure of a protrusion according to an embodiment of the present invention. As shown in FIG. 8, this embodiment is a structural replacement based on the second embodiment, and the only difference from the second embodiment is the shape of the protrusion 1432. In the present embodiment, the shape of the protrusion 1432 is Y. Glyph.
  • FIG. 9 is a schematic view showing a structure of a protrusion according to an embodiment of the present invention. As shown in FIG. 9, this embodiment is also a structural replacement based on the second embodiment. The only difference from the second embodiment is the shape of the protrusion 1432. In the present embodiment, the shape of the protrusion 1432 is Barbed shape.
  • This embodiment is an improvement on the basis of the second embodiment, and the difference from the second embodiment is that no additional protrusions are added to the hard layer 1430, but a plurality of outer sides of the hard layer 1430 are drilled.
  • the hole realizes mutual fixation between the soft layer and the hard layer by inserting the soft layer 1433 into the hole, and is also a nested fixed structure.
  • the invention also provides the above-mentioned crawler production process method, which specifically comprises the following steps:
  • Step 100 heating the soft layer to melt it into a liquid state, the heating temperature is: 150 ° C -160 ° C;
  • Step 110 opening a hole in the hard layer
  • Step 200 uniformly injecting the liquid soft layer into the mold with the hard layer, so that the soft layer covers the outer side of the hard layer, and the soft layer is coated on the outer side of the hard layer and embedded in the hard layer. Inside the hole opened;
  • Step 300 Cooling the hard layer and the soft layer to form a nesting combination with each other, and demolding, the cooling temperature is: 20 ° C - 50 ° C, and the cooling time is: 30 seconds - 50 seconds.
  • the above-mentioned nesting process is also a simpler and more mature process, and the softness after heating is compared with the conventional method of inserting the inner and outer layers with fibers, or reinforcing the inner layer and the gear joint surface with fibers.
  • the layer uniformly covers the outside of the hard layer and is cooled.
  • the present invention provides a surface cleaning robot and a crawler production process thereof, which adopts a nested combined composite crawler to closely combine the inner and outer rings of different materials, has a simple process and is convenient to process, but is greatly
  • the overall strength and toughness of the track are increased, and the problem of poor running ability of the track on the glazing is overcome, thereby enhancing the work safety of the surface cleaning robot, reducing the production cost, the structure is simple, the manufacturing is convenient, the application range is wide, and both The advantages of the timing belt enable the cleaning efficiency and service life of the surface cleaning robot to be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

一种表面清洁机器人(100)及其履带(143)生产工艺方法,所述表面清洁机器人(100),具有机体(110),机体(110)底部设有行走部(140),行走部(140)包含履带(143)和驱动履带(143)转动的齿轮(142),履带(143)包括处于内圈与齿轮(142)啮合的硬质层(1430)以及处于外圈与清洁表面接触的软质层(1433),硬质层(1430)和软质层(1433)嵌套结合为一体。采用嵌套结合的复合履带(143),将不同材质的内、外圈紧密结合,工艺简单却大大增加了履带(143)整体强度和韧性,克服了履带(143)在清洁表面运行能力差的问题,从而增强了表面清洁机器人(100)的工作安全性,降低了生产成本,结构简单、便于制造、应用范围广,同时兼具同步带的优点,使表面清洁机器人(100)清洁效率和使用寿命得到提高。

Description

表面清洁机器人及其履带生产工艺方法 技术领域
本发明涉及一种表面清洁机器人及其履带生产工艺方法,属于小家电制造技术领域。
背景技术
现有的表面清洁机器人,如:擦窗机器人,为了方便在玻璃表面上的行走,通常都会采用履带式行走机构。擦窗机器人依靠风机产生的负压竖直依附在窗体的玻璃表面上,再通过安装在擦窗机器人底部的履带在玻璃表面上自由移动。然而,现有的履带结构比较单一且对材料要求较高,如果采用高硬度材料,履带与玻璃的粘附性差,而且还会损伤玻璃;如果采用低硬度材料,履带与齿轮啮合一侧则特别容易磨损失效。目前还存在一种复合式履带,由相互叠加的至少两种不同硬度的胶带组成,且由外圈向内圈硬度逐渐增强。这种复合式履带虽然解决了上述的问题,但是经过长时间运行后,不同胶带之间容易产生相对位移,从而导致履带失效。
发明内容
本发明所要解决的技术问题在于针对现有技术的不足,提供一种表面清洁机器人及其履带生产工艺方法,采用嵌套结合的复合履带,将不同材质的内、外圈紧密结合,工艺过程简单,加工方便,却大大增加了履带整体强度和韧性,克服了履带在清洁表面运行能力差的问题,从而增强了表面清洁机器人的工作安全性,降低了生产成本,结构简单、便于制造、应用范围广,同时兼具同步带的优点,使表面清洁机器人清洁效率和使用寿命得到提高。
本发明所要解决的技术问题是通过如下技术方案实现的:
一种表面清洁机器人,具有机体,所述机体底部设有行走部,所述行走部包含履带和驱动履带转动的齿轮,所述履带包括处于内圈与齿轮啮合的硬质层以及处于外圈与清洁表面接触的软质层,所述硬质层和软质层嵌套结合为一体。
为了在受摩擦阻力时保持硬质层和软质层间的有效固定,所述硬质层的外侧设有多个突起,所述突起嵌入所述软质层使得软质层与硬质层之间相互嵌套。
为了进一步增强固定,所述硬质层为波浪形,硬质层的内侧与齿轮啮合,所述软质层包覆在所述硬质层外侧。
具体来说,所述突起为T字形结构、Y字形结构或倒钩形结构。
除此之外,所述硬质层上还可以设有孔,所述软质层嵌入孔中使软质层与硬质层之间相互嵌套。
为了保护履带,所述履带外部还设有相互扣合的两个半壳;所述驱动电机和齿轮之间还设有减速器。
根据需要,所述软质层的材质为热塑性聚氨酯橡胶或聚氯乙烯;所述硬质层的材质为尼龙玻璃纤维或热塑性聚酯弹性体。
本发明还提供一种履带生产工艺方法,所述履带包括处于内圈与齿轮啮合的硬质层以及处于外圈与清洁表面接触的软质层,所述硬质层和软质层嵌套结合为一体,所述履带生产工艺具体包括如下步骤:
步骤100:对软质层进行加热使其熔化为液态;
步骤200:将液态软质层均匀注入装有硬质层的模具,使软质层覆盖在硬质层外侧;
步骤300:将硬质层和软质层冷却使两者相互嵌套结合,脱模成形。
具体来说,在本发明的其中一个实施例中,所述步骤100之前还包括步骤001:在所述硬质层外侧一体成型有多个突起,所述突起用于使所述软质层与硬质层之间相互嵌套结合。
在本发明的另一个实施例中,所述步骤100和200之间还包括步骤110:在硬质层上开设孔;所述步骤200具体包括:所述软质层包覆在所述硬质层外侧并嵌入硬质层上开设的孔内。
进一步地,所述步骤100中的加热工艺参数包括:加热温度为:150℃-160℃,使软质层熔化为液态。
所述步骤300中的冷却工艺参数包括:冷却温度为:20℃-50℃,冷却时间为:30秒-50秒。
综上所述,本发明提供一种表面清洁机器人及其履带生产工艺方法,采用嵌套结合的复合履带,将不同材质的内、外圈紧密结合,工艺过程简单,加工方便,却大大增加了履带整体强度和韧性,克服了履带在清洁表面运行能力差的问题,从而增强了表面清洁机器人的工作安全性,降低了生产成本,结构简单、便于制造、应用范围广,同时兼具同步带的优点,使表面清洁机器人清洁效率和使用寿命得到提高。
下面结合附图和具体实施例,对本发明的技术方案进行详细地说明。
附图说明
图1为本发明表面清洁机器人的整体结构示意图;
图2为本发明行走部的局部结构分解图;
图3为本发明履带与齿轮的连接结构示意图;
图4为本发明实施例一履带分解结构示意图;
图5为本发明实施例一履带装配结构示意图;
图6为本发明实施例二履带硬质层结构示意图;
图7为图6的A部局部放大图;
图8为本发明实施例三突起的结构示意图;
图9为本发明实施例四突起的结构示意图。
具体实施方式
实施例一
图1为本发明表面清洁机器人的整体结构示意图。如图1所示,本发明提供一种表面清洁机器人100,具体可以为擦窗机器人,包括机体110,机体110内设有用于控制机器人清洁和运动的控制部120,用于清洗窗体的清洁部130,驱动机器人运动的行走部140,以及用于使表面清洁机器人吸附在窗体表面的吸附部150。图2为本发明行走部的局部结构分解图、图3为本发明履带与传动轮的连接结构示意图。如图2、图3并结合图1所示,其中,行走部140包括设置在机体110内的驱动电机141,受驱动电机141驱动并旋转的齿轮142,围绕齿轮142并受其驱动的履带143。在本实施例中为了有效保护履带143,履带143外部还设有相互扣合的两个半壳144,半壳的下方将履带露出。另外,为了便于控制表面清洁机器人的行走速度,所述驱动电机141和齿轮142之间还设有减速器145。
图4为本发明实施例一履带分解结构示意图、图5为本发明实施例一履带装配结构示意图。结合图4至图5所示,履带143包括设置在内圈与齿轮142啮合的硬质层1430和设置在外圈与窗体表面接触的软质层1433,两者嵌套结合为一体。为了增强硬质层1430和软质层1433之间的固定,所述硬质层1430为波浪形,硬质层1430的内侧与齿轮142啮合,所述软质层1433嵌套包覆在波浪形硬质层1430的外侧。需要说明的是,所述硬质层1430与齿轮142啮合的一面为硬质层1430的内侧,而硬质层的外侧则包括硬质层1430上除啮合面之外的另一面。此外,对于履带的材质需要进行必要的说明,现有软质层通常由硅胶制成,因为硅胶与玻璃同为硅基,在玻璃上摩擦 会留下残留物,看上去为摩擦痕迹,因此,本发明在履带的材料上采用了“外软内硬”的构造原则,软质层采用TPU(热塑性聚氨酯橡胶)取代传统的硅胶。具体来说,所述软质层1433的材质采用热塑性聚氨酯橡胶或聚氯乙烯等等;所述硬质层1430的材质采用尼龙玻璃纤维或热塑性聚酯弹性体或硬质塑料等等。同时,硬质层采用上述材质制成,有足够的硬度保证与齿轮长时间磨合。本发明由于采用了嵌套形式,不同材料层之间的亲和度(粘合力)则不再重要,使得材料的选择范围得以扩充。
本发明还提供上述履带生产工艺方法,具体包括如下步骤:
步骤100:对软质层进行加热使其熔化为液态,加热温度为:150℃-160℃;
步骤200:将液态软质层均匀注入装有硬质层的模具,使软质层覆盖在硬质层的外侧;
步骤300:将硬质层和软质层冷却使两者相互嵌套结合,脱模成形;冷却温度为:20℃-50℃,冷却时间为:30秒-50秒。
由上述的加工过程可知,在本实施例中所述硬质层1430和软质层1433为相互嵌套结合在一起的,而不是通过传统的粘合阻力来保持两者之间相互固定。
实施例二
图6为本发明实施例二履带硬质层结构示意图;图7为图6的A部局部放大图。如图6并结合图7所示,在本实施例中,为了使硬质层1430和软质层1433结合更加紧密,所述硬质层的波浪形的外侧还设有突起1432。如图7所示,在本实施例中,所述突起为T字形结构。表面清洁机器人100在玻璃表面作业过程中,在窗体表面运动受到摩擦阻力时,软质层1433在突起1432的阻力作用下与硬质层1430保持固定。
本发明还提供上述履带生产工艺方法,具体包括如下步骤:
步骤001:在所述硬质层的外侧一体成型有多个突起,所述突起用于使所述软质层与硬质层之间相互嵌套结合;
步骤100:对软质层进行加热使其熔化为液态,加热温度为:150℃-160℃;
步骤200:将液态软质层均匀注入装有硬质层的模具,使软质层覆盖在硬质层的外侧;
步骤300:将硬质层和软质层冷却使两者相互嵌套结合,脱模成形;冷却温度为:20℃-50℃,冷却时间为:30秒-50秒。
实施例三
图8为本发明实施例三突起结构示意图。如图8所示,本实施例是在实例二基础上的结构替换,与实施例二之间唯一的不同之处在于所述突起1432的形状,在本实施例中,突起1432的形状为Y字形。
本实施例中的其他技术特征与上述实施例二相同,在此不再赘述。
实施例四
图9为本发明实施例四突起结构示意图。如图9所示,本实施例同样是在实例二基础上的结构替换,与实施例二之间唯一的不同之处在于所述突起1432的形状,在本实施例中,突起1432的形状为倒钩形。
本实施例中的其他技术特征与上述实施例二相同,在此不再赘述。
实施例五
本实施例则是在实例二基础上的改进,与实施例二之间的不同之处在于:没有在硬质层1430上增设额外的突起,而是在硬质层1430的的外侧钻若干个孔,通过使软质层1433嵌入孔中的方式来实现软质层与硬质层之间的相互固定,同样属于嵌套固定结构。
本实施例中的其他技术特征与上述实施例二相同,在此不再赘述。
本发明还提供上述履带生产工艺方法,具体包括如下步骤:
步骤100:对软质层进行加热使其熔化为液态,加热温度为:150℃-160℃;
步骤110:在硬质层上开设孔;
步骤200:将液态软质层均匀注入装有硬质层的模具,使软质层覆盖在硬质层的外侧,所述软质层包覆在所述硬质层的外侧并嵌入硬质层上开设的孔内;
步骤300:将硬质层和软质层冷却使两者相互嵌套结合,脱模成形,冷却温度为:20℃-50℃,冷却时间为:30秒-50秒。
需要说明的是,上述嵌套工艺也是一种更为简单成熟的工艺,相比现有用纤维穿插固定内、外层,或用纤维加强内层与齿轮接合面等方法,将加热后的软质层均匀覆盖硬质层的外侧并冷却即可。
综上所述,本发明提供一种表面清洁机器人及其履带生产工艺方法,采用嵌套结合的复合履带,将不同材质的内、外圈紧密结合,工艺过程简单,加工方便,却大大 增加了履带整体强度和韧性,克服了履带在玻璃窗上运行能力差的问题,从而增强了表面清洁机器人的工作安全性,降低了生产成本,结构简单、便于制造、应用范围广,同时兼具同步带的优点,使表面清洁机器人清洁效率和使用寿命得到提高。

Claims (13)

  1. 一种表面清洁机器人,具有机体(110),所述机体底部设有行走部(140),所述行走部包含履带(143)和驱动履带转动的齿轮(142),其特征在于,所述履带包括处于内圈与齿轮啮合的硬质层(1430)以及处于外圈与清洁表面接触的软质层(1433),所述硬质层和软质层嵌套结合为一体。
  2. 如权利要求1所述的表面清洁机器人,其特征在于,所述硬质层(1430)的外侧设有多个突起(1432),所述突起嵌入所述软质层(1433)使得软质层与硬质层之间相互嵌套。
  3. 如权利要求2所述的表面清洁机器人,其特征在于,所述硬质层(1430)为波浪形,硬质层的内侧与齿轮(142)啮合,所述软质层(1433)包覆在所述硬质层外侧。
  4. 如权利要求2所述的表面清洁机器人,其特征在于,所述突起(1432)为T字形结构、Y字形结构或倒钩形结构。
  5. 如权利要求1所述的表面清洁机器人,其特征在于,所述硬质层(1430)上设有孔,所述软质层(1433)嵌入孔中使软质层与硬质层之间相互嵌套。
  6. 如权利要求1-5任一项所述的表面清洁机器人,其特征在于,所述履带(143)外部还设有相互扣合的两个半壳(144);
    所述驱动电机(141)和齿轮(142)之间还设有减速器(145)。
  7. 如权利要求1所述的表面清洁机器人,其特征在于,所述软质层(1433)的材质采用热塑性聚氨酯橡胶或聚氯乙烯。
  8. 如权利要求1所述的表面清洁机器人,其特征在于,所述硬质层(1430)的材质采用尼龙玻璃纤维或热塑性聚酯弹性体或硬质塑料。
  9. 一种履带生产工艺方法,所述履带(143)包括处于内圈与齿轮(142)啮合的硬质层(1430)以及处于外圈与清洁表面接触的软质层(1433),所述硬质层和软质层嵌套结合为一体,其特征在于,所述履带生产工艺具体包括如下步骤:
    步骤100:对软质层进行加热使其熔化为液态;
    步骤200:将液态软质层均匀注入装有硬质层的模具内,使软质层覆盖在硬质层外侧;
    步骤300:将硬质层和软质层冷却使两者相互嵌套结合,脱模成形。
  10. 如权利要求9所述的工艺方法,其特征在于,
    所述步骤100之前还包括步骤001:在所述硬质层外侧一体成型有多个突起,所述突起用于使所述软质层与硬质层之间相互嵌套结合。
  11. 如权利要求9所述的工艺方法,其特征在于,
    所述步骤100和200之间还包括步骤110:在硬质层上开设孔;
    所述步骤200具体包括:所述软质层包覆在所述硬质层外侧并嵌入硬质层上开设的孔内。
  12. 如权利要求10或11所述的工艺方法,其特征在于,
    所述步骤100中的加热工艺参数包括:加热温度为:150℃-160℃,使软质层熔化为液态。
  13. 如权利要求10或11所述的工艺方法,其特征在于,
    所述步骤300中的冷却工艺参数包括:冷却温度为:20℃-50℃,冷却时间为:30秒-50秒。
PCT/CN2017/114934 2016-12-07 2017-12-07 表面清洁机器人及其履带生产工艺方法 WO2018103683A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17877757.9A EP3552530B1 (en) 2016-12-07 2017-12-07 Surface cleaning robot and process for manufacturing track thereof
US16/467,300 US11648716B2 (en) 2016-12-07 2017-12-07 Surface cleaning robot and process for manufacturing track thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611114372.2A CN108158477A (zh) 2016-12-07 2016-12-07 表面清洁机器人及其履带生产工艺方法
CN201611114372.2 2016-12-07

Publications (1)

Publication Number Publication Date
WO2018103683A1 true WO2018103683A1 (zh) 2018-06-14

Family

ID=62490699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114934 WO2018103683A1 (zh) 2016-12-07 2017-12-07 表面清洁机器人及其履带生产工艺方法

Country Status (4)

Country Link
US (1) US11648716B2 (zh)
EP (1) EP3552530B1 (zh)
CN (1) CN108158477A (zh)
WO (1) WO2018103683A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109008763A (zh) * 2018-07-12 2018-12-18 上海医修哥网络科技股份有限公司 一种可翻越边缘障碍的户外擦窗机器人及其越障方法
CN113073592A (zh) * 2021-04-22 2021-07-06 贵州省公路开发有限责任公司黔南营运管理中心 一种隧道反光环清洁装置
CN117773879A (zh) * 2024-02-27 2024-03-29 合肥小步智能科技有限公司 一种防抖动轨道巡检机器人

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102261119B1 (ko) * 2017-01-23 2021-06-07 미쓰비시덴키 가부시키가이샤 발전기 점검용 로봇의 무한 궤도 주행 장치
CN108888166A (zh) * 2018-08-28 2018-11-27 安徽星宇生产力促进中心有限公司 一种新型擦玻璃机器人的移动机构
CN110123190A (zh) * 2019-05-14 2019-08-16 成都茉茶科技有限公司 一种用于擦窗机器人的边界清刷及其擦窗机器人
CN113386105A (zh) * 2020-03-13 2021-09-14 科沃斯机器人股份有限公司 一种自移动机器人、同步带及同步带的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1880398A (zh) * 2006-05-10 2006-12-20 曲悦峰 硅胶与底材的复合方法及硅胶复合带和制备方法
CN203802380U (zh) * 2014-03-17 2014-09-03 科沃斯机器人科技(苏州)有限公司 擦玻璃机器人
CN104210570A (zh) * 2014-09-02 2014-12-17 中国矿业大学 可伸缩变形的弹性履带
US20150026909A1 (en) * 2011-11-08 2015-01-29 INDUSTRY-ACADEMIC COOPERATION FOUNDATION, YONSE; UNIVERSITY ,a corporation Window cleaning apparatus capable of supplying power in real-time from inner unit to outer unit
CN104709371A (zh) * 2015-03-09 2015-06-17 湖南农业大学 一种金属与橡胶复合式耐磨履带
CN105176065A (zh) * 2015-09-07 2015-12-23 沈阳化工大学 一种抗静电聚氨酯弹性体机器人履带及其制备方法
CN105212822A (zh) * 2015-10-08 2016-01-06 深圳市宝乐机器人技术有限公司 一种擦窗机器人
CN206576813U (zh) * 2016-12-07 2017-10-24 科沃斯机器人股份有限公司 表面清洁机器人

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3781067A (en) * 1972-09-21 1973-12-25 Goodyear Tire & Rubber Belt track structure
US4546842A (en) * 1983-05-27 1985-10-15 Yamaha Hatsudoki Kabushiki Kaisha Slide rail track drive system for a snowmobile
US5368376A (en) * 1991-08-26 1994-11-29 Edwards, Harper, Mcnew & Company Replacement endless vehicle tracks
JP2003034275A (ja) * 2001-07-23 2003-02-04 Komatsu Ltd 弾性履帯
CA2390209A1 (en) * 2001-08-10 2003-02-10 The Goodyear Tire & Rubber Company Endless two part rubber track comprised of polyurethane based tread component and rubber carcass component and vehicle containing such track
US7578565B2 (en) * 2003-11-20 2009-08-25 Tokyo Institute Of Technology Crawler belt, crawler unit and method for manufacturing crawler belt
EP2145573B1 (en) * 2005-02-18 2011-09-07 iRobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US20080136255A1 (en) * 2006-12-12 2008-06-12 Veyance Technologies, Inc. Endless track belt and method of making same
US7926598B2 (en) * 2008-12-09 2011-04-19 Irobot Corporation Mobile robotic vehicle
CN201399240Y (zh) 2009-01-15 2010-02-10 智慧天下(北京)科技有限公司 履带传动机构
US8157032B2 (en) * 2010-04-06 2012-04-17 Robotex Inc. Robotic system and method of use
JP5588284B2 (ja) * 2010-09-21 2014-09-10 株式会社ブリヂストン 弾性クローラ
US9067631B1 (en) * 2010-12-14 2015-06-30 Camoplast Solideal Inc. Endless track for traction of a vehicle
WO2013169312A1 (en) 2012-01-13 2013-11-14 Robotex Inc. Robotic system and methods of use
DK2781438T3 (en) * 2013-03-22 2016-06-13 Force Tech Vacuum-vægkravleindretning
US9215962B2 (en) 2014-03-13 2015-12-22 Ecovacs Robotics, Inc. Autonomous planar surface cleaning robot
CN104857655B (zh) * 2015-05-21 2018-01-30 北华大学 一种攀爬灭火、清洁机器人
KR101671951B1 (ko) * 2015-06-09 2016-11-03 (주)화승엑스윌 마모확인 타입 철광석 운송용 컨베이어 벨트 및 그 제조방법
CN105128965A (zh) * 2015-09-09 2015-12-09 沈阳化工大学 以芳纶为骨架的浇注型聚氨酯机器人履带及其制备方法
CN105150446A (zh) * 2015-09-10 2015-12-16 沈阳化工大学 一种聚氨酯机器人履带整体浇注成型工艺方法
MX2018009684A (es) * 2016-02-17 2019-01-24 Univ Tokyo Metodo de produccion para miembro compuesto y un miembro compuesto.
CN105962858B (zh) 2016-06-28 2018-10-12 佛山科学技术学院 一种用于清洁建筑外墙的越障式机器人
CA3047843A1 (en) * 2016-12-20 2018-06-28 Camso Inc. Track system for traction of a vehicle
CN106961594A (zh) 2017-02-28 2017-07-18 深圳市保千里电子有限公司 一种可变视差的3d图像拍摄装置及其拍摄方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1880398A (zh) * 2006-05-10 2006-12-20 曲悦峰 硅胶与底材的复合方法及硅胶复合带和制备方法
US20150026909A1 (en) * 2011-11-08 2015-01-29 INDUSTRY-ACADEMIC COOPERATION FOUNDATION, YONSE; UNIVERSITY ,a corporation Window cleaning apparatus capable of supplying power in real-time from inner unit to outer unit
CN203802380U (zh) * 2014-03-17 2014-09-03 科沃斯机器人科技(苏州)有限公司 擦玻璃机器人
CN104210570A (zh) * 2014-09-02 2014-12-17 中国矿业大学 可伸缩变形的弹性履带
CN104709371A (zh) * 2015-03-09 2015-06-17 湖南农业大学 一种金属与橡胶复合式耐磨履带
CN105176065A (zh) * 2015-09-07 2015-12-23 沈阳化工大学 一种抗静电聚氨酯弹性体机器人履带及其制备方法
CN105212822A (zh) * 2015-10-08 2016-01-06 深圳市宝乐机器人技术有限公司 一种擦窗机器人
CN206576813U (zh) * 2016-12-07 2017-10-24 科沃斯机器人股份有限公司 表面清洁机器人

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3552530A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109008763A (zh) * 2018-07-12 2018-12-18 上海医修哥网络科技股份有限公司 一种可翻越边缘障碍的户外擦窗机器人及其越障方法
CN113073592A (zh) * 2021-04-22 2021-07-06 贵州省公路开发有限责任公司黔南营运管理中心 一种隧道反光环清洁装置
CN113073592B (zh) * 2021-04-22 2023-07-18 贵州省公路开发有限责任公司黔南营运管理中心 一种隧道反光环清洁装置
CN117773879A (zh) * 2024-02-27 2024-03-29 合肥小步智能科技有限公司 一种防抖动轨道巡检机器人
CN117773879B (zh) * 2024-02-27 2024-04-26 合肥小步智能科技有限公司 一种防抖动轨道巡检机器人

Also Published As

Publication number Publication date
EP3552530B1 (en) 2023-06-14
EP3552530A4 (en) 2020-09-23
EP3552530A1 (en) 2019-10-16
US11648716B2 (en) 2023-05-16
US20200061884A1 (en) 2020-02-27
CN108158477A (zh) 2018-06-15

Similar Documents

Publication Publication Date Title
WO2018103683A1 (zh) 表面清洁机器人及其履带生产工艺方法
JP5137214B2 (ja) クローラ装置
CN105212845A (zh) 真空吸附式履带爬壁清洁机器人
CN206576813U (zh) 表面清洁机器人
JP5588284B2 (ja) 弾性クローラ
CN110803230A (zh) 一种仿生粘-吸复合式履带爬壁机器人
CN206900503U (zh) 履带式行走轮和扫地机器人
CN217523664U (zh) 一种用于清洁水族箱的机器人及其控制系统
CN208880732U (zh) 一种智能全方位移动视觉机器人
CN210278255U (zh) 一种玩具车用履带
CA2901329C (en) Rubber crawler and rubber crawler manufacturing method
CN203802380U (zh) 擦玻璃机器人
JP2001039364A (ja) 弾性クローラ用芯金及び弾性クローラ
JP3608425B2 (ja) 複合ローラの製造法
WO2021179933A1 (zh) 一种自移动机器人、同步带及同步带的制备方法
EP1363000B1 (en) Gates of throttle valves
CN207041493U (zh) 用于扫地机器人中的驱动轮
JP3890756B2 (ja) 密封装置
JP4180751B2 (ja) 弾性クローラ
CN2364986Y (zh) 具改进构造的软板清洁机
JP2006168661A (ja) クローラ装置およびその組立方法
CN219846320U (zh) 一种用于擦窗的履足复合式机器人
CN208468872U (zh) 一种硅橡胶密封圈制造设备
JP2003326561A (ja) 防水性成形品のシール部成形金型とその成形方法
CN214215968U (zh) 一种复合式履带

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017877757

Country of ref document: EP

Effective date: 20190708