WO2021179933A1 - 一种自移动机器人、同步带及同步带的制备方法 - Google Patents

一种自移动机器人、同步带及同步带的制备方法 Download PDF

Info

Publication number
WO2021179933A1
WO2021179933A1 PCT/CN2021/078490 CN2021078490W WO2021179933A1 WO 2021179933 A1 WO2021179933 A1 WO 2021179933A1 CN 2021078490 W CN2021078490 W CN 2021078490W WO 2021179933 A1 WO2021179933 A1 WO 2021179933A1
Authority
WO
WIPO (PCT)
Prior art keywords
inner ring
outer ring
groove
ring
timing belt
Prior art date
Application number
PCT/CN2021/078490
Other languages
English (en)
French (fr)
Inventor
苗青
栾福进
吴洲
陈爱兵
Original Assignee
科沃斯机器人股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科沃斯机器人股份有限公司 filed Critical 科沃斯机器人股份有限公司
Publication of WO2021179933A1 publication Critical patent/WO2021179933A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L1/00Cleaning windows
    • A47L1/02Power-driven machines or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0009Constructional details, e.g. manipulator supports, bases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0009Constructional details, e.g. manipulator supports, bases
    • B25J9/0015Flexure members, i.e. parts of manipulators having a narrowed section allowing articulation by flexion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C69/00Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore
    • B29C69/02Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore of moulding techniques only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/06Driving-belts made of rubber
    • F16G1/08Driving-belts made of rubber with reinforcement bonded by the rubber
    • F16G1/10Driving-belts made of rubber with reinforcement bonded by the rubber with textile reinforcement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/22Driving-belts consisting of several parts
    • F16G1/26Driving-belts consisting of several parts in the form of strips or lamellae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/28Driving-belts with a contact surface of special shape, e.g. toothed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/02Gearings for conveying rotary motion by endless flexible members with belts; with V-belts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/02Gearings for conveying rotary motion by endless flexible members with belts; with V-belts
    • F16H7/023Gearings for conveying rotary motion by endless flexible members with belts; with V-belts with belts having a toothed contact surface or regularly spaced bosses or hollows for slipless or nearly slipless meshing with complementary profiled contact surface of a pulley
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • B29C2043/185Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/709Articles shaped in a closed loop, e.g. conveyor belts
    • B29L2031/7094Driving belts

Definitions

  • This application relates to the field of robotics, and in particular to a method for preparing a self-moving robot, a timing belt, and a timing belt.
  • AMR Autonomous Mobile Robots
  • the current self-moving robots are usually driven by a timing belt.
  • the performance of the timing belt directly affects the performance of the self-moving robot.
  • the timing belt includes an inner ring and an outer ring.
  • the inner surface of the inner ring is the driving surface
  • the outer surface of the outer ring is the working surface. Driving force.
  • the existing timing belts are usually made of silica gel, but they are limited by the ability of silica gel to stick to dust. Its friction performance is poor under complex working conditions, the adhesion between the inner ring and the outer ring is not ideal, and the tensile strength is relatively high. It is difficult to meet the drive and work requirements of the new self-moving robot.
  • the embodiments of the present application provide a self-moving robot, a timing belt, and a preparation method of the timing belt to solve the technical defects in the prior art.
  • the present application discloses a self-moving robot, including a body, the bottom of the body is provided with a timing belt, the timing belt includes an inner ring and an outer ring, the outer ring is in rolling contact with the walking surface, and the inner ring is in contact with the walking surface.
  • the outer ring is made of mixed polyurethane, the Shore hardness of the inner ring is 60A-90A, and the Shore hardness of the outer ring is 30A-60A.
  • the outer surface of the inner ring and/or the inner surface of the outer ring is coated with an adhesive, and the inner ring and the outer ring are bonded by the adhesive.
  • the inner ring is provided with a groove
  • the outer ring is provided with a protrusion adapted to the groove
  • the inner ring and the outer ring are connected with the protrusion through the groove.
  • the groove is an open groove, a narrow groove or a straight groove.
  • the groove of the inner ring includes a groove bottom and a groove wall
  • the protrusion of the outer ring includes a top surface and a side surface
  • the groove bottom is a flat surface or a curved surface
  • the top surface of the protrusion is in line with the
  • the groove bottom is a flat or curved surface
  • the groove wall is a flat or curved surface
  • the convex side surface is a flat or curved surface that matches the groove wall.
  • a wire harness is arranged between the inner ring and the outer ring.
  • the wire harness is composed of fibers, the surface of the wire harness is coated with an adhesive and is wound on a surface of the groove, and the wire harness is covered by the outer ring.
  • the wire harness is composed of an aramid fiber rope, and the cross-sectional diameter of the aramid fiber rope is 0.1 mm-1.5 mm.
  • the application also discloses a self-moving robot, including a body, the bottom of the body is provided with a timing belt, the timing belt includes an inner ring and an outer ring, both the inner ring and the outer ring are made of mixed polyurethane Therefore, the Shore hardness of the inner ring is greater than or equal to the Shore hardness of the outer ring.
  • the outer surface of the inner ring and/or the inner surface of the outer ring is coated with an adhesive, and the inner ring and the outer ring are bonded by the adhesive.
  • the inner ring is provided with a groove
  • the outer ring is provided with a protrusion adapted to the groove
  • the inner ring and the outer ring are connected with the protrusion through the groove.
  • This application also discloses a timing belt, including an inner ring and an outer ring, wherein the inner ring and the outer ring are both made of mixed polyurethane, and the inner ring has a Shore hardness of 60A-90A, The Shore hardness of the outer ring is 30A-60A.
  • the outer surface of the inner ring and the inner surface of the outer ring are both coated with an adhesive, and the inner ring and the outer ring are bonded by the adhesive.
  • the inner ring is provided with a groove
  • the outer ring is provided with a protrusion adapted to the groove
  • the inner ring and the outer ring are connected with the protrusion through the groove.
  • a wire harness is arranged between the inner ring and the outer ring.
  • the application also discloses a method for preparing a timing belt, including:
  • the step of "putting the mixed raw polyurethane rubber into a mold for semi-vulcanization to obtain an inner ring" specifically includes:
  • the mixed raw polyurethane rubber is subjected to semi-vulcanization treatment in an environment of 150° C.-185° C. for 50 minutes and then taken out to obtain an inner ring.
  • the method further includes:
  • An adhesive is coated on the outer surface of the inner ring, and the adhesive is subjected to high-temperature treatment in an environment of 50°C-90°C.
  • winding the fiber pre-coated with the adhesive on the outer surface of the inner ring to form a wire bundle includes:
  • the outer surface of the inner ring is wound with multiple turns of the aramid fiber rope pre-coated with the adhesive to form a wire bundle, wherein the cross-sectional diameter of the aramid fiber rope is 0.1 mm-1.5 mm.
  • the Shore hardness of the inner ring is 60A-90A
  • the Shore hardness of the outer ring is 30A-60A.
  • the self-moving robot provided by this application has a synchronous belt made of mixed polyurethane to make the inner ring and outer ring. Compared with the synchronous belts of other materials, it has good wear resistance and can maintain under the condition of low hardness. Higher wear resistance can effectively increase the friction between the self-moving robot's timing belt and glass and other working media, improve the self-moving robot's work efficiency and cleaning range, and expand the self-moving robot's use range.
  • the inner ring of the synchronous belt of the self-moving robot provided by the present application is provided with grooves, and the outer ring is provided with protrusions adapted to the grooves.
  • the cooperation between the grooves of the inner ring and the protrusions of the outer ring can further enhance the inner ring
  • the binding force between the ring and the outer ring enhances the stability of the timing belt, thereby enhancing the stability of the self-moving robot.
  • the self-mobile robot provided by the present application is also provided with a wire harness between the inner ring and the outer ring.
  • the arrangement of the wire harness can effectively reduce the elongation of the timing belt, improve the tensile strength and compression resistance of the inner ring, and thereby Improve the tensile strength of the synchronous belt and the compression resistance of the self-moving robot.
  • the timing belt provided by this application includes an inner ring and an outer ring. Both the inner ring and the outer ring are made of mixed polyurethane, which has good wear resistance, and can realize that the timing belt can maintain a high level under the condition of low hardness. Wear resistance, and at the same time enhance the surface bonding and adhesion between the inner ring and the outer ring, improve the stability and wear resistance of the timing belt, and can effectively extend the service life of the timing belt.
  • the method for preparing the timing belt provided in this application adopts a semi-vulcanization mode of molding and vulcanization process to prepare the inner ring.
  • the surface bonding force and bonding performance of the inner ring are increased, and the inner ring and the outer ring of the timing belt are improved.
  • the bonding force between the rings improves the stability of the timing belt and the scope of application of the timing belt to meet the driving and working requirements of the self-moving robot.
  • the process is simple, easy to operate, and has good economic benefits.
  • FIG. 1 is a schematic diagram of the overall structure of the synchronous belt according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of the inner ring structure of the synchronous belt according to the embodiment of the present application.
  • FIG. 3 is a schematic diagram of the structure of the outer ring of the synchronous belt according to the embodiment of the present application.
  • FIG. 4 is a schematic diagram of the structure of the inner ring of the timing belt and the wire harness according to the embodiment of the present application;
  • Fig. 5 is a schematic diagram of a step flow diagram of a method for preparing a timing belt according to an embodiment of the present application.
  • Tear strength refers to the force required to tear thin specimens.
  • Abrasion Also known as abrasion loss or abrasion reduction, it is the amount of surface material loss due to relative movement of two objects in the abrasion process.
  • Tensile strength Also known as tensile strength, it is the critical value for the transition of metal from uniform plastic deformation to local concentrated plastic deformation, and it is also the maximum load-bearing capacity of metal under static tension.
  • Elongation at break refers to the ratio of the elongation length before and after stretching to the length before stretching when the fiber is subjected to external force to break. It is called the elongation at break, expressed in percentage.
  • Molding vulcanization a process in which rubber or semi-finished products are put into a mold and heated and vulcanized under pressure.
  • This embodiment discloses a self-moving robot, including a body, the bottom of the body is provided with a timing belt 1, the timing belt 1 includes an inner ring 2 and an outer ring 3, the outer ring 3 is in rolling contact with the walking surface, so The inner ring 2 and the outer ring 3 are made of mixed polyurethane, the inner ring 2 has a Shore hardness of 60A-90A, and the outer ring 3 has a Shore hardness of 30A-60A.
  • the structure of belt 1 is shown in Figure 1.
  • the mixed polyurethane is a low molecular weight (about 20,000-30,000) linear polymer composed of polyester flexible segments and urethane rigid segments, which can be modified by mixing. Elastomers with required properties.
  • the hardness, tear strength, abrasion, tensile strength, and elongation at break of the mixed polyurethane and cast polyurethane were tested.
  • the test results show that the hardness of the mixed polyurethane Compared with castable polyurethane, the tear strength, tensile strength and elongation at break of the mixed polyurethane are significantly greater than that of castable polyurethane, and the abrasion is significantly less than that of castable polyurethane.
  • the timing belt 1 described in this embodiment can still maintain excellent wear resistance even when the hardness of the inner ring 2 and the outer ring 3 is low, maintain a high degree of wear resistance, and can effectively improve the wear resistance of the timing belt 1 Damage and working stability of the self-moving robot, extending the service life of the synchronous belt 1 and the self-moving robot.
  • the Shore hardness of the inner ring 2 can be 60A, 65A, 70A, 75A, 80A, 85A, 90A, etc.
  • the Shore hardness of the outer ring 3 can be 30A. , 35A, 40A, 45A, 50A, 55A, 60A, etc., depending on the specific circumstances, this application does not limit this.
  • the Shore hardness of the inner ring 2 of the timing belt 1 is greater than or equal to the Shore hardness of the outer ring 3.
  • the inner ring 2 can provide sufficient support for the outer ring 3 to strengthen the inner ring 2
  • the binding force with the outer ring 3 improves the stability of the timing belt 1, thereby improving the compression resistance and stability of the self-moving robot.
  • the outer ring 3 of the timing belt 1 is in rolling contact with the walking surface.
  • the walking surface is the surface that carries the self-mobile robot for movement and work.
  • the walking surface of the self-mobile robot can be the ground, wall, window surface, etc., and the material of the walking surface can be glass, marble, Wood material, etc., this application does not impose restrictions on this.
  • the inner ring 2 of the timing belt 1 is prepared by a semi-vulcanization mode molding vulcanization process.
  • the timing belt 1 can be effectively improved.
  • the binding force between the inner ring 2 and the outer ring 3 further enhances the stability of the timing belt 1 and the working efficiency of the self-moving robot.
  • the outer surface of the inner ring 2 and/or the inner surface of the outer ring 3 is coated with an adhesive, and the inner ring 2 and the outer ring 3 are bonded by the adhesive.
  • the outer surface of the inner ring 2 and the inner surface of the outer ring 3 are both coated with an adhesive to further improve the bonding force between the inner ring 2 and the outer ring 3.
  • Adhesives are substances with good adhesion properties, which are used to connect objects through adhesion and cohesion from the surface.
  • the adhesive can be, for example, cellulose ester, vinyl polymer, polyester, polyether, polyamide, polyacrylate, a-cyanoacrylate, polyvinyl acetal, ethylene-vinyl acetate
  • Thermoplastic adhesives such as copolymers, or epoxy resins, phenolic resins, urea-formaldehyde resins, melamine-formaldehyde resins, silicone resins, furan resins, unsaturated polyesters, acrylic resins, polyimides, polybenzo Thermosetting adhesives such as imidazole, phenolic-polyvinyl acetal, phenolic-polyamide, phenolic-epoxy, epoxy-polyamide, etc., or such as neoprene, styrene butadiene rubber, butyl rubber, butadiene rubber, Synthetic
  • -Nitrile rubber epoxy-polysulfide rubber and other rubber resin adhesives, or such as hardened glue, potting glue, silicone rubber, polyvinyl chloride glue, general epoxy glue, modified epoxy glue, insulating glue, Adhesive products such as polyimide glue, modified phenolic glue, acrylate glue, or any combination of the above-mentioned adhesives or adhesive products, etc., may be determined according to specific circumstances, and this application does not limit this.
  • a thermally vulcanized polyurethane adhesive is preferably used.
  • the inner ring 2 and the outer ring 3 of the timing belt 1 are bonded by an adhesive.
  • the adhesive density is low, the bonding process is simple, the bonding speed is fast, the bonding is firm, environmentally friendly, pollution-free, and will not Damage to the structure of the inner ring 2 and outer ring 3 of the timing belt 1, which can effectively improve the bonding force between the inner ring 2 and the outer ring 3 of the timing belt 1, thereby improving the overall stability of the timing belt 1 and the self-moving robot The stability.
  • the inner ring 2 is provided with a groove 4
  • the outer ring 3 is provided with a protrusion 8 adapted to the groove 4
  • the inner ring 2 and the outer ring 3 are connected to the protrusion 8 through the groove 4.
  • the inner surface of the inner ring 2 of the timing belt 1 is the driving surface, and is provided with a number of belt teeth 7, which mesh with gears to transmit power.
  • the outer surface of the outer ring 3 of the timing belt 1 is the working surface, which is in contact with glass and other working media. Generate driving force.
  • the outer surface of the inner ring 2 of the timing belt 1 is attached to the inner surface of the outer ring 3 to form a complete timing belt 1, so the groove 4 is located on the outer surface of the inner ring 2 of the timing belt 1, and the protrusion 8 is located on the timing belt 1.
  • the groove 4 may be an open groove, a narrow groove, a straight groove or other types of groove structure, depending on the specific situation, and this application does not limit this.
  • the groove 4 of the inner ring 2 includes a groove bottom 6 and a groove wall 5
  • the protrusion 8 of the outer ring 3 includes a top surface and a side surface.
  • the included angle between the bottom 6 of the groove 4 and the groove wall 5 is greater than 90°, and correspondingly, the included angle between the top surface and the side surface of the protrusion 8 is less than 90°; in the case that the groove 4 is a narrow groove, the angle between the bottom 6 of the groove 4 and the groove wall 5 is less than 90°, and correspondingly, the angle between the top surface and the side surface of the protrusion 8 The included angle is greater than 90°.
  • the included angle between the bottom 6 of the groove 4 and the groove wall 5 and the included angle between the top surface and the side surface of the protrusion 8 are both Is 90°.
  • the groove bottom 6 is a flat surface or a curved surface
  • the top surface of the protrusion 8 is a flat surface or a curved surface that matches the groove bottom 6
  • the groove wall 5 is a flat surface or a curved surface
  • the protrusion 8 The side surface of is a plane or a curved surface that matches the groove wall 5.
  • the top surface of the protrusion 8 of the outer ring 3 is a flat surface that matches the groove bottom 6, and the groove 4 of the inner ring 2
  • the top surface of the protrusion 8 of the outer ring 3 is a curved surface that matches the groove bottom 6, and when the groove wall 5 of the groove 4 of the inner ring 2 is flat, the outer ring
  • the side surface of the protrusion 8 of the ring 3 is a plane that matches the groove wall 5.
  • the side surface of the protrusion 8 of the outer ring 3 is the same as the groove wall 5 Compatible curved surfaces.
  • a wire harness 9 is provided between the inner ring 2 and the outer ring 3.
  • the wire harness 9 is wound in the groove 4 of the inner ring 2 to avoid the deformation or displacement of the wire harness 9 due to the pressing force generated when the outer ring 3 and the inner ring 2 are combined.
  • the depth of the groove 4 of the inner ring 2 that is, the height of the groove wall 5 of the groove 4 is greater than the cross-sectional diameter of the wire harness 9, so as to improve the tensile strength of the inner ring 2 of the timing belt 1, and pass the groove
  • the cooperation between the groove 4 and the protrusion 8 enhances the bonding force between the inner ring 2 and the outer ring 3 of the timing belt 1;
  • the groove bottom 6 and groove wall 5 of the groove 4 of the inner ring 2 have a certain roughness to The friction force and the degree of adhesion between the wire harness 9 and the groove bottom 6 of the groove 4 are improved to prevent the wire harness 9 from being displaced due to the pressing force generated by the inner ring 2 and the outer ring 3.
  • the wire harness 9 is composed of fibers, the surface of the wire harness 9 is coated with an adhesive and wound on a surface of the groove 4, and the wire harness 9 is covered by the outer ring 3.
  • the wire harness 9 may be composed of organic fibers such as polyester, acrylic, nylon, polypropylene, aramid, ultra-high molecular weight ethylene fiber, PBO fiber, PBI fiber, polyimide fiber, etc., or may be composed of glass fiber, boron fiber, metal It is composed of inorganic fibers such as fibers, and can also be composed of metal wires such as iron wire, copper wire, stainless steel, nickel wire, etc., depending on the specific circumstances, and this application does not limit this.
  • organic fibers such as polyester, acrylic, nylon, polypropylene, aramid, ultra-high molecular weight ethylene fiber, PBO fiber, PBI fiber, polyimide fiber, etc.
  • glass fiber boron fiber
  • metal is composed of inorganic fibers such as fibers, and can also be composed of metal wires such as iron wire, copper wire, stainless steel, nickel wire, etc., depending on the specific circumstances, and this application does not limit this.
  • the wire harness 9 is composed of an aramid fiber rope, and the cross-sectional diameter of the aramid fiber rope is 0.1 mm-1.5 mm.
  • the cross-sectional diameter of the aramid fiber rope can be 0.2mm, 0.4mm, 0.6mm, 0.8mm, 1.0mm, 1.2mm, etc., which can be determined according to specific circumstances, and this application does not limit this.
  • the aramid fiber rope is woven from aramid fiber, the tensile strength of the aramid fiber is high, and the aramid fiber rope woven by the aramid fiber is wound to the outside of the inner ring 2 of the timing belt 1
  • the surface can have a shaping effect on the inner ring 2 of the timing belt 1 to increase the tensile strength of the inner ring 2 and the stability of the inner ring 2, thereby improving the compression resistance and stability of the timing belt 1.
  • the diameter of the aramid fiber rope is 0.1mm-1.5mm, which can avoid the problem that the wire harness 9 is too thick to have an adverse effect on the bonding between the inner ring 2 and the outer ring 3, and the wire harness 9 is too thin to improve the tensile strength of the inner ring 2 Faint problem.
  • the radius of the aramid fiber rope is 0.4 mm, that is, the cross-sectional diameter of the wire harness 9 is 0.8 mm.
  • the cross-sectional diameter of the wire harness 9 is 0.8 mm, the tensile strength of the inner ring 2 of the timing belt 1 can be improved, and the combination of the inner ring 2 and the outer ring 3 of the timing belt 1 will not be adversely affected.
  • coating the surface of the wire harness 9 with an adhesive can effectively improve the surface bonding strength of the wire harness 9 and the outer surface of the inner ring 2, so that the wire harness 9 can be fixed more firmly.
  • the working process of a self-moving robot is as follows, taking a window cleaning robot as an example:
  • the controller of the self-mobile robot After receiving the start instruction, the controller of the self-mobile robot outputs the first drive signal, and the motor receives the first drive signal to drive the gear teeth to rotate in the positive direction, and the positive rotation of the gear teeth drives the timing belt 1 that meshes with the gear teeth.
  • the inner ring 2 rotates in the positive direction, the synchronous belt 1 and the inner ring 2 drive the synchronous belt 1 and the outer ring 3 to synchronously rotate in the positive direction. To movement.
  • the sensor of the self-moving robot outputs a steering signal when it detects an obstacle ahead.
  • the controller After receiving the steering signal, the controller outputs a second drive signal.
  • the motor receives the second drive signal to drive the gear teeth to rotate in the reverse direction.
  • the synchronous belt 1 inner ring 2 that meshes with the gear teeth to rotate in the reverse direction
  • the outer surface of the synchronous belt 1 outer ring 3 and the glass surface Contact produces frictional driving force, which drives the self-moving robot to move in the opposite direction.
  • the synchronous belt 1 of the self-moving robot provided by this embodiment is made of the inner ring 2 and the outer ring 3 by using mixed polyurethane. Compared with the synchronous belt 1 of other materials, it has good wear resistance and can be Maintaining high abrasion resistance under the condition of low hardness can effectively increase the friction between the self-moving robot and working media such as glass, improve the working efficiency and cleaning range of the self-moving robot, and expand the use range of the self-moving robot .
  • the timing belt 1 of the self-moving robot provided by this embodiment is provided with a groove 4 in the inner ring 2, and a protrusion 8 adapted to the groove 4 is provided in the outer ring 3, and the groove 4 of the inner ring 2 and the outer ring
  • the cooperation between the protrusions 8 of 3 can further enhance the bonding force between the inner ring 2 and the outer ring 3, enhance the stability of the timing belt 1, and further enhance the stability of the self-moving robot.
  • a wire harness 9 is also arranged between the inner ring 2 and the outer ring 3 of the timing belt 1 of the self-mobile robot provided in this embodiment.
  • the arrangement of the wire harness 9 can effectively improve the tensile strength and compressive strength of the inner ring 2 and thereby Improve the tensile strength of the timing belt 1 and the compression resistance of the self-moving robot.
  • This embodiment discloses a self-moving robot, including a body, the bottom of the body is provided with a timing belt 1, the timing belt 1 includes an inner ring 2 and an outer ring 3, the inner ring 2 and the outer ring 3 are both It is made of mixed polyurethane, the Shore hardness of the inner ring 2 is greater than or equal to the Shore hardness of the outer ring 3, and the structure of the timing belt is shown in FIG. 1.
  • the Shore hardness of the inner ring 2 of the timing belt 1 is greater than or equal to the Shore hardness of the outer ring 3.
  • the inner ring 2 can provide sufficient supporting force for the outer ring 3 to enhance the inner ring
  • the binding force of the ring 2 and the outer ring 3 improves the stability of the timing belt 1, thereby improving the compression resistance and stability of the self-moving robot.
  • the Shore hardness of the inner ring 2 and the outer ring 3 can be determined according to actual requirements, which is not limited in this application.
  • the Shore hardness of the inner ring 2 is preferably 60A-90A, and the Shore hardness of the outer ring 3 is preferably 30A-60A.
  • the outer surface of the inner ring 2 and/or the inner surface of the outer ring 3 is coated with an adhesive, and the inner ring 2 and the outer ring 3 are bonded by the adhesive.
  • the inner ring 2 is provided with a groove 4
  • the outer ring 3 is provided with a protrusion 8 adapted to the groove 4
  • the inner ring 2 and the outer ring 3 pass through the groove 4 is connected to the protrusion 8.
  • the groove 4 is an open groove, a narrow groove or a straight groove.
  • the groove 4 of the inner ring 2 includes a groove bottom 6 and a groove wall 5
  • the protrusion 8 of the outer ring 3 includes a top surface and a side surface
  • the groove bottom 6 is a flat surface or a curved surface
  • the protrusion 8 includes a top surface and a side surface.
  • the top surface of 8 is a plane or a curved surface that fits the groove bottom 6
  • the groove wall 5 is a plane or a curved surface
  • the side surface of the protrusion 8 is a plane or curved surface that fits the groove wall 5 .
  • a wire harness 9 is provided between the inner ring 2 and the outer ring 3.
  • the wire harness 9 is composed of fibers, the surface of the wire harness 9 is coated with an adhesive and wound on a surface of the groove 4, and the wire harness 9 is covered by the outer ring 3.
  • the wire harness 9 is made of aramid fiber rope, and the cross-sectional diameter of the aramid fiber rope is 0.1 mm-1.5 mm.
  • the timing belt 1 of the inner ring 2 and the outer ring 3 is made of mixed polyurethane. Compared with the timing belt 1 of other materials, it has good wear resistance and can be hardened. Maintaining a high degree of wear resistance under low conditions can effectively increase the friction between the self-moving robot and working media such as glass, improve the working efficiency and cleaning range of the self-moving robot, and expand the use range of the self-moving robot.
  • the timing belt 1 of the self-moving robot provided by this embodiment is provided with a groove 4 in the inner ring 2, and a protrusion 8 adapted to the groove 4 is provided in the outer ring 3, and the groove 4 of the inner ring 2 and the outer ring
  • the cooperation between the protrusions 8 of 3 can further enhance the bonding force between the inner ring 2 and the outer ring 3, enhance the stability of the timing belt 1, and further enhance the stability of the self-moving robot.
  • a wire harness 9 is also arranged between the inner ring 2 and the outer ring 3 of the timing belt 1 of the self-mobile robot provided in this embodiment.
  • the arrangement of the wire harness 9 can effectively improve the tensile strength and compressive strength of the inner ring 2 and thereby Improve the tensile strength of the timing belt 1 and the compression resistance of the self-moving robot.
  • this embodiment discloses a timing belt 1, including an inner ring 2 and an outer ring 3, wherein the inner ring 2 and the outer ring 3 are made of mixed polyurethane
  • the Shore hardness of the inner ring 2 is 60A-90A
  • the Shore hardness of the outer ring 3 is 30A-60A.
  • the outer surface of the inner ring 2 and/or the inner surface of the outer ring 3 is coated with an adhesive, and the inner ring 2 and the outer ring 3 are bonded by the adhesive.
  • the inner ring 2 is provided with a groove 4
  • the outer ring 3 is provided with a protrusion 8 adapted to the groove 4
  • the inner ring 2 and the outer ring 3 pass through the groove 4 is connected to the protrusion 8.
  • the groove 4 is an open groove, a narrow groove or a straight groove.
  • the groove 4 of the inner ring 2 includes a groove bottom 6 and a groove wall 5
  • the protrusion 8 of the outer ring 3 includes a top surface and a side surface
  • the groove bottom 6 is a flat surface or a curved surface
  • the protrusion The top surface of 8 is a plane or a curved surface that fits the groove bottom 6
  • the groove wall 5 is a plane or a curved surface
  • the side surface of the protrusion 8 is a plane or curved surface that fits the groove wall 5 .
  • a wire harness 9 is provided between the inner ring 2 and the outer ring 3.
  • the wire harness 9 is composed of fibers, the surface of the wire harness 9 is coated with an adhesive and wound on a surface of the groove 4, and the wire harness 9 is covered by the outer ring 3.
  • the wire harness 9 is made of aramid fiber rope, and the cross-sectional diameter of the aramid fiber rope is 0.1 mm-1.5 mm.
  • the timing belt 1 provided in this embodiment includes an inner ring 2 and an outer ring 3. Both the inner ring 2 and the outer ring 3 are made of mixed polyurethane, which has good wear resistance and can realize that the timing belt 1 has a lower hardness. In the case of maintaining a high degree of wear resistance, while enhancing the adhesion between the inner ring 2 and the outer ring 3, improving the stability and wear resistance of the timing belt 1, it can effectively extend the service life of the timing belt 1.
  • the inner ring 2 is provided with a groove 4
  • the outer ring 3 is provided with a protrusion 8 adapted to the groove 4
  • the inner ring 2 has a groove 4 and an outer ring 3 with a protrusion 8 The cooperation of, can further enhance the binding force between the inner ring 2 and the outer ring 3, and enhance the stability of the timing belt 1.
  • a wire harness 9 is also arranged between the inner ring 2 and the outer ring 3.
  • the arrangement of the wire harness 9 can effectively improve the tensile strength and compression resistance of the inner ring 2, thereby improving the timing belt 1.
  • the timing belt 1 provided in this embodiment can also be applied to various fields such as robots, automobiles, chemicals, food, machinery, mining, metallurgy, medical equipment, precision machine tools, and precision instruments, and has a wide range of applications.
  • this embodiment provides a method for preparing the timing belt 1 for preparing the timing belt 1 described in the foregoing embodiment, including steps S510 to S530.
  • step S510 includes step S511 to step S513.
  • the mold is a mold and tool used to make the timing belt 1, the inner ring 2, and the outer ring 3.
  • the specifications of the mold may be determined according to specific conditions, and this application does not restrict it.
  • S512 Close the mold containing the mixed raw polyurethane rubber, and perform exhaust treatment, vacuum treatment and pressure maintaining treatment on the closed mold.
  • the exhaust treatment refers to the removal of bubbles generated in the mold during the filling process.
  • Vacuum treatment refers to pumping out the gas in the mold to keep the vacuum in the mold for 2 minutes.
  • Pressure holding treatment refers to maintaining the pressure in the mold at 10-20kpa and maintaining it for 10min-20min.
  • the purpose of exhausting, vacuuming, and holding pressure on the closed mold cavity is to make the product material free of bubbles, increase wear resistance, and improve the quality of the timing belt 1.
  • S513 Perform a semi-vulcanization treatment on the raw mixed polyurethane rubber in an environment of 150° C.-185° C. for 50 minutes and then take it out to obtain the inner ring 2.
  • the normal vulcanization time is generally 90 minutes.
  • the vulcanization time is shortened to 50 minutes, which not only shortens the preparation time, but also improves the bonding force between the inner ring 2 and the outer ring 3 of the timing belt 1 with different hardness.
  • the Shore hardness of the inner ring 2 is 60A-90A.
  • the outer surface of the inner ring 2 can be polished, and the outer surface of the inner ring 2 can be coated with adhesive.
  • the adhesive is subjected to high temperature treatment in an environment of 50°C-90°C.
  • the outer surface of the inner ring 2 is polished until the groove bottom 6 of the groove 4 of the inner ring 2 and the groove wall 5 have a certain roughness, which can improve the groove 4 of the inner ring 2 and the wiring harness 9, and the protrusion 8 of the outer ring 3
  • the friction between the inner ring 2 and the wire harness 9 and the inner ring 2 and the outer ring 3 are promoted;
  • the outer surface of the inner ring 2 is coated with adhesive and kept in an environment of 50°C-90°C
  • the high temperature treatment of the adhesive can improve the adhesion between the inner ring 2 and the wire harness 9 and the adhesion between the inner ring 2 and the outer ring 3.
  • the fibers pre-coated with adhesive are wound on the outer surface of the inner ring 2 to form a wire harness 9, preferably five turns.
  • the arrangement of the wire harness 9 can effectively increase the tensile strength of the inner ring 2 of the timing belt 1, thereby improving synchronization.
  • the stability of the inner ring 2 of the belt 1 facilitates the bonding of the inner ring 2 and the outer ring 3 of the synchronous belt 1.
  • the wiring harness 9 can have various arrangements, for example, a grid-type wiring harness arrangement, a radial wiring harness arrangement, or a circumferential wiring harness arrangement, etc., which are not limited in this application.
  • the aramid fiber rope pre-coated with the adhesive is wound five times on the outer surface of the inner ring 2 to form the wire harness 9, wherein the cross-sectional diameter of the aramid fiber rope is 0.1mm-1.5mm, and more Preferably, the cross-sectional diameter of the aramid fiber rope is 0.3 mm.
  • the raw mixed polyurethane rubber and the inner ring 2 prepared in the above steps can be put into the mold for preparing the timing belt 1, and the synchronous belt including the inner ring 2 and the outer ring 3 can be obtained after compression and vulcanization.
  • the vulcanization time of compression vulcanization can be determined according to actual needs, and can be 50 min, 70 min, 90 min, etc., which is not limited in this application.
  • the Shore hardness of the outer ring 3 is 30A-60A.
  • the method for preparing the timing belt 1 provided in this embodiment adopts a semi-vulcanization mode compression vulcanization process to prepare the inner ring 2.
  • the surface bonding force and bonding performance of the inner ring 2 are increased, and the timing belt is improved 1
  • the bonding force between the inner ring 2 and the outer ring 3 improves the stability of the timing belt 1 and the scope of application of the timing belt 1 to meet the driving and working requirements of the self-moving robot.
  • the process is simple and the operation is convenient. Good economic benefits.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Textile Engineering (AREA)
  • Belt Conveyors (AREA)

Abstract

一种自移动机器人、同步带及同步带的制备方法。其中,自移动机器人包括机体,机体底部设置有同步带(1),同步带(1)包括内圈(2)和外圈(3),外圈(3)与行走表面滚动接触,内圈(2)与外圈(3)均采用混炼型聚氨酯制成,内圈(2)的邵氏硬度为60A-90A,外圈(3)的邵氏硬度为30A-60A。自移动机器人的同步带具有良好的耐磨性能,可以在硬度较低的情况下保持较高的耐磨度,可以有效提高自移动机器人与玻璃等工作介质之间的摩擦力,提高自移动机器人的工作效率和清洁范围,扩大自移动机器人的使用范围。

Description

一种自移动机器人、同步带及同步带的制备方法
交叉引用
本申请引用于2020年03月13日递交的名称为“一种自移动机器人、同步带及同步带的制备方法”的第2020101756717号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请涉及机器人技术领域,特别涉及一种自移动机器人、同步带及同步带的制备方法。
背景技术
自移动机器人(Autonomous Mobile Robots,AMR)是一种携带各种传感器,通过编程实现自主移动的机器人。目前的自移动机器人通常采用同步带进行驱动,同步带作为自移动机器人的关键部件,其性能直接影响到自移动机器人的性能。
同步带包括内圈和外圈,内圈的内表面为驱动面,外圈的外表面为工作面,驱动面通过带齿与齿轮的啮合而传递动力,工作面与玻璃等工作介质接触,产生驱动力。
现有的同步带通常采用硅胶材质,但受限于硅胶自身的易黏灰性能,其摩擦性能在复杂工况下较差,内圈与外圈的粘结力不甚理想,拉伸强度较差,难以满足新型自移动机器人的驱动需求和工作需求。
发明内容
有鉴于此,本申请实施例提供了一种自移动机器人、同步带及同步带的制备方法,以解决现有技术中存在的技术缺陷。
本申请公开了一种自移动机器人,包括机体,所述机体底部设置有同步带,所述同步带包括内圈和外圈,所述外圈与行走表面滚动接触,所述内圈与所述外圈均采用混炼型聚氨酯制成,所述内圈的邵氏硬度为60A-90A,所述外圈的邵氏硬度为30A-60A。
进一步地,所述内圈的外表面和/或所述外圈的内表面涂覆有胶粘剂,所述内圈与所述外圈通过所述胶粘剂粘接。
进一步地,所述内圈设置有凹槽,所述外圈设置有与所述凹槽适配的凸起,所述内圈与所述外圈通过所述凹槽与所述凸起相连。
进一步地,所述凹槽为开口槽、收口槽或直槽。
进一步地,所述内圈的凹槽包括槽底和槽壁,所述外圈的凸起包括顶面和侧面,所述槽底为平面或曲面,所述凸起的顶面为与所述槽底相适配的平面或曲面,所述槽壁为平面或曲面,所述凸起的侧面为与所述槽壁相适配的平面或曲面。
进一步地,所述内圈与所述外圈之间设置有线束。
进一步地,所述线束由纤维构成,所述线束的表面涂覆有胶粘剂并缠绕于凹槽的一表面,且所述线束被所述外圈包覆。
进一步地,所述线束由芳纶纤维绳构成,所述芳纶纤维绳的横截面直径为0.1mm-1.5mm。
本申请还公开了一种自移动机器人,包括机体,所述机体底部设置有同步带,所述同步带包括内圈和外圈,所述内圈与所述外圈均采用混炼型聚氨酯制成,所述内圈的邵氏硬度大于或等于所述外圈的邵氏硬度。
进一步地,所述内圈的外表面和/或所述外圈的内表面涂覆有胶粘剂,所述内圈与所述外圈通过所述胶粘剂粘接。
进一步地,所述内圈设置有凹槽,所述外圈设置有与所述凹槽适配的凸 起,所述内圈与所述外圈通过所述凹槽与所述凸起相连。
本申请还公开了一种同步带,包括内圈和外圈,其中,所述内圈与所述外圈均采用混炼型聚氨酯制成,所述内圈的邵氏硬度为60A-90A,所述外圈的邵氏硬度为30A-60A。
进一步地,所述内圈的外表面与所述外圈的内表面均涂覆有胶粘剂,所述内圈与所述外圈通过所述胶粘剂粘接。
进一步地,所述内圈设置有凹槽,所述外圈设置有与所述凹槽适配的凸起,所述内圈与所述外圈通过所述凹槽与所述凸起相连。
进一步地,所述内圈与所述外圈之间设置有线束。
本申请还公开了一种同步带的制备方法,包括:
将混炼型聚氨酯生胶放入模具中进行半硫化处理,制得内圈;
在所述内圈凹槽的表面缠绕预先涂覆有胶粘剂的纤维形成线束;
将混炼型聚氨酯生胶放入模具中进行模压硫化处理,制得包括所述内圈与外圈的同步带。
进一步地,步骤“将混炼型聚氨酯生胶放入模具中进行半硫化处理,制得内圈”,具体包括:
将混炼型聚氨酯生胶放入模具中;
将装有所述混炼型聚氨酯生胶的模具闭合,对闭合的所述模具进行排气处理、抽真空处理和保压处理;
对所述混炼型聚氨酯生胶在150℃-185℃的环境下进行半硫化处理50min后取出,制得内圈。
进一步地,步骤“在所述内圈凹槽的表面缠绕预先涂覆有胶粘剂的纤维形成线束”之前,还包括:
对所述内圈的外表面进行打磨处理;
在所述内圈的外表面涂覆胶粘剂,并在50℃-90℃的环境中对所述胶粘剂进行高温处理。
进一步地,在所述内圈的外表面缠绕预先涂覆有所述胶粘剂的纤维形成线束,包括:
在所述内圈外表面缠绕多圈预先涂覆有所述胶粘剂的芳纶纤维绳形成线束,其中,所述芳纶纤维绳的横截面直径为0.1mm-1.5mm。
进一步地,所述内圈的邵氏硬度为60A-90A,所述外圈的邵氏硬度为30A-60A。
本申请提供的自移动机器人,其同步带采用混炼型聚氨酯制成内圈与外圈,相对于其他材质的同步带而言,具有良好的耐磨性能,可以在硬度较低的情况下保持较高的耐磨度,可以有效提高自移动机器人的同步带与玻璃等工作介质之间的摩擦力,提高自移动机器人的工作效率和清洁范围,扩大自移动机器人的使用范围。
再者,本申请提供的自移动机器人的同步带内圈设置有凹槽,外圈设置有与凹槽适配的凸起,内圈凹槽与外圈凸起的配合,可以进一步地增强内圈与外圈之间的结合力,增强同步带的稳定性,进而增强自移动机器人的稳定性。
此外,本申请提供的自移动机器人的同步带内圈与外圈之间还设置有线束,线束的设置可以有效降低同步带的伸长率,提高内圈的拉伸强度和抗压能力,进而提高同步带的拉伸强度和自移动机器人的抗压能力。
本申请提供的同步带包括内圈和外圈,其内圈与外圈均由混炼型聚氨酯制成,具有良好的耐磨性能,可以实现同步带在硬度较低的情况下保持较高的耐磨度,同时增强内圈与外圈之间的表面结合力、粘结力,提高同步带的稳定性、耐磨损性,可以有效延长同步带的使用寿命。
本申请提供的同步带的制备方法,采用半硫化模式的模压硫化工艺制备内圈,通过将常规的硫化时间缩短一半,增加内圈的表面结合力与粘结性能,提高同步带内圈与外圈之间的粘结力,提高同步带的稳定性,提高同步带的适用范围,以满足自移动机器人的驱动和工作需求,并且工艺简单,操作方便,具有良好的经济效益。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
在附图中:
图1是本申请实施例所述的同步带整体结构示意图;
图2是本申请实施例所述的同步带内圈结构示意图;
图3是本申请实施例所述的同步带外圈结构示意图;
图4是本申请实施例所述的同步带内圈与线束的结构示意图;
图5是本申请实施例所述的同步带制备方法步骤流程示意图。
附图标记
1-同步带,2-内圈,3-外圈,4-凹槽,5-槽壁,6-槽底,7-带齿,8-凸起,9-线束。
具体实施方式
下面结合附图对本申请的具体实施方式进行描述。
首先,对本发明一个或多个实施例涉及的名词术语进行解释。
撕裂强度:是指撕裂薄型试样所需的力。
磨耗量:又称磨耗损失或磨耗减量,是两物体在磨损过程中,相对运动的表面材料损失量。
拉伸强度:又称抗拉强度,是金属由均匀塑性形变向局部集中塑性变形过渡的临界值,也是金属在静拉伸条件下的最大承载能力。
断裂伸长率:是指纤维受外力作用至拉断时,拉伸前后的伸长长度与拉伸前长度的比值称断裂伸长率,用百分率表示。
模压硫化:一种将胶料或半成品装入模具中,在加压下加热硫化的过程。
实施例1
本实施例公开了一种自移动机器人,包括机体,所述机体底部设置有同步带1,所述同步带1包括内圈2和外圈3,所述外圈3与行走表面滚动接触,所述内圈2与所述外圈3均采用混炼型聚氨酯制成,所述内圈2的邵氏硬度为60A-90A,所述外圈3的邵氏硬度为30A-60A,所述同步带1的结构如图1所示。
其中,混炼型聚氨酯是一种分子量较低(约2万-3万)的由聚酯柔性链段和氨基甲酸酯刚性链段构成的线性聚合物,可通过混炼的方法改性制备所需性能的弹性体。
如表1所示,本实施例对混炼型聚氨酯以及浇注型聚氨酯的硬度、撕裂强度、磨耗量、拉伸强度、断裂伸长率进行测试,测试结果表明对于硬度相当的混炼型聚氨酯和浇注型聚氨酯而言,混炼型聚氨酯的撕裂强度、拉伸强度和断裂伸长率明显大于浇注型聚氨酯,而磨耗量明显小于浇注型聚氨酯。
所以采用混炼型聚氨酯制作同步带1的内圈2和外圈3,可以有效提高同步带1内圈2和外圈3的耐磨性能,相对于浇注型聚氨酯等材质制作的同步带1,本实施例所述的同步带1可以在内圈2、外圈3硬度均较低的情况下依 旧保持优良的耐磨性能,保持较高的耐磨度,可以有效提高同步带1的耐磨损性和自移动机器人的工作稳定性,延长同步带1及自移动机器人的使用寿命。
表1
Figure PCTCN2021078490-appb-000001
在实际应用中,本实施例所述的同步带1,其内圈2的邵氏硬度可以为60A、65A、70A、75A、80A、85A、90A等,外圈3的邵氏硬度可以为30A、35A、40A、45A、50A、55A、60A等,可视具体情况而定,本申请对此不做限制。
本实施例所述的自移动机器人,其同步带1的内圈2的邵氏硬度大于或等于外圈3的邵氏硬度,内圈2可以为外圈3提供足够的支撑力,增强内圈2与外圈3的结合力,提高同步带1的稳定性,进而提高自移动机器人的抗压能力和稳定性。
本实施例所述的自移动机器人,其同步带1的外圈3与行走表面滚动接触。其中,行走表面是承载自移动机器人进行移动、工作的表面,在本实施例中,自移动机器人的行走表面可以为地面、墙面、窗面等等,行走表面的材质可以为玻璃、大理石、木材质等等,本申请对此不做限制。
此外,本实施例所述的自移动机器人,其同步带1的内圈2采用半硫化 模式的模压硫化工艺制备而成,通过将模压硫化工艺中的硫化时间缩短一半,可以有效提高同步带1的内圈2与外圈3之间的结合力,进一步增强同步带1的稳定性和自移动机器人的工作效率。
在本实施例中,内圈2的外表面和/或所述外圈3的内表面涂覆有胶粘剂,内圈2与外圈3通过所述胶粘剂粘接。优选地,内圈2的外表面与所述外圈3的内表面均涂覆有胶粘剂,以进一步提高内圈2与外圈3之间的结合力。
胶粘剂是具有很好粘合性能的物质,通过粘附力和内聚力由表面粘合而起连接物体的作用。在本实施例中,胶粘剂可以是如纤维素酯、烯类聚合物、聚酯、聚醚、聚酰胺、聚丙烯酸酯、a-氰基丙烯酸酯、聚乙烯醇缩醛、乙烯-乙酸乙烯酯共聚物等的热塑性胶粘剂,或是如环氧树脂、酚醛树脂、脲醛树脂、三聚氰-甲醛树脂、有机硅树脂、呋喃树脂、不饱和聚酯、丙烯酸树脂、聚酰亚胺、聚苯并咪唑、酚醛-聚乙烯醇缩醛、酚醛-聚酰胺、酚醛-环氧树脂、环氧-聚酰胺等的热固性胶粘剂,或是如氯丁橡胶、丁苯橡胶、丁基橡胶、丁钠橡胶、异戊橡胶、聚硫橡胶、聚氨酯橡胶、氯磺化聚乙烯弹性体、硅橡胶等的合成橡胶型胶粘剂,或是如酚醛-丁腈胶、酚醛-氯丁胶、酚醛-聚氨酯胶、环氧-丁腈胶、环氧-聚硫胶等的橡胶树脂型胶粘剂,或是如硬化胶、灌封胶、硅橡胶、聚氯乙烯胶、通用环氧胶、改性环氧胶、绝缘胶、聚酰亚胺胶、改性酚醛胶、丙烯酸酯胶等的胶粘剂产品,或是上述胶粘剂或胶粘剂产品的任意组合等,可视具体情况而定,本申请对此不做限制。本实施例优选采用热硫化型聚氨酯胶粘剂。
本实施例所述的自移动机器人,同步带1的内圈2与外圈3通过胶粘剂粘接,胶粘剂密度小、粘接工艺简单、粘接速度快、粘接牢固,环保无污染且不会对同步带1的内圈2与外圈3的结构产生破坏,可以有效提高同步带1的内圈2与外圈3之间的结合力,进而提高同步带1整体的稳固性与自移动 机器人的稳固性。
如图2、图3所示,在本实施例中,所述内圈2设置有凹槽4,所述外圈3设置有与所述凹槽4适配的凸起8,所述内圈2与所述外圈3通过所述凹槽4与所述凸起8相连。
需要说明的是,同步带1的一面是驱动面,一面是工作面。同步带1的内圈2内表面是驱动面,设置有若干带齿7,带齿7与齿轮啮合而传递动力,同步带1的外圈3外表面是工作面,与玻璃等工作介质接触,产生驱动力。同步带1的内圈2外表面与外圈3内表面相贴合,以构成完整成型的同步带1,故凹槽4位于同步带1的内圈2外表面,凸起8位于同步带1的外圈3内表面。
具体地,所述凹槽4既可以是开口槽,也可以是收口槽,还可以是直槽或其他类型的槽体结构,可视具体情况而定,本申请对此不做限制。
其中,内圈2的凹槽4包括槽底6和槽壁5,外圈3的凸起8包括顶面和侧面。
在所述凹槽4为开口槽的情况下,凹槽4的槽底6和槽壁5之间的夹角大于90°,相应的,凸起8的顶面和侧面之间的夹角小于90°;在所述凹槽4为收口槽的情况下,凹槽4的槽底6和槽壁5之间的夹角小于90°,相应的,凸起8的顶面和侧面之间的夹角大于90°,在所述凹槽4为直槽的情况下,凹槽4的槽底6和槽壁5之间的夹角以及凸起8的顶面和侧面之间的夹角均为90°。
此外,所述槽底6为平面或曲面,所述凸起8的顶面为与所述槽底6相适配的平面或曲面,所述槽壁5为平面或曲面,所述凸起8的侧面为与所述槽壁5相适配的平面或曲面。
具体地,在内圈2的凹槽4的槽底6为平面的情况下,外圈3的凸起8 的顶面为与槽底6相适配的平面,在内圈2的凹槽4的槽底6为曲面的情况下,外圈3的凸起8的顶面为与槽底6相适配的曲面,在内圈2的凹槽4的槽壁5为平面的情况下,外圈3的凸起8的侧面为与槽壁5相适配的平面,在内圈2的凹槽4的槽壁5为曲面的情况下,外圈3的凸起8的侧面为与槽壁5相适配的曲面。
如图4所示,在本实施例中,所述内圈2与所述外圈3之间设置有线束9。
具体地,所述线束9缠绕于所述内圈2的凹槽4内,可以避免外圈3与内圈2相结合时产生的挤压力使线束9发生变形或位移。
需要说明的是,首先,内圈2的凹槽4深度即凹槽4的槽壁5的高度大于线束9的横截面直径,以在提高同步带1内圈2拉伸强度的同时,通过凹槽4与凸起8之间的配合增强同步带1内圈2与外圈3之间的结合力;其次,内圈2的凹槽4的槽底6和槽壁5具有一定粗糙度,以提高线束9与凹槽4的槽底6之间的摩擦力与贴合度,防止线束9由于内圈2与外圈3产生的挤压力而发生位移。
在本实施例中,所述线束9由纤维构成,所述线束9的表面涂覆有胶粘剂并缠绕于凹槽4的一表面,且所述线束9被所述外圈3包覆。
具体地,线束9可以由涤纶、腈纶、锦纶、丙纶、芳纶、超高分子量乙烯纤维、PBO纤维、PBI纤维、聚酰亚胺纤维等有机纤维构成,也可以由玻璃纤维、硼纤维、金属纤维等无机纤维构成,还可以由铁丝、铜丝、不锈钢、镍丝等金属丝构成,可视具体情况而定,本申请对此不做限制。
优选地,所述线束9由芳纶纤维绳构成,所述芳纶纤维绳的横截面直径为0.1mm-1.5mm。在实际应用中,芳纶纤维绳的横截面直径可以为0.2mm、0.4mm、0.6mm、0.8mm、1.0mm、1.2mm等,可视具体情况确定,本申请对此不做限制。
其中,所述芳纶纤维绳是由芳纶纤维编织而成,芳纶纤维的拉伸强度大,将芳纶纤维编织得到的芳纶纤维绳缠绕至同步带1内圈2凹槽4的外表面可以对同步带1的内圈2起到塑形的效果,提高内圈2的拉伸强度,提高内圈2的稳固性,进而提高同步带1的抗压能力和稳固性能。
芳纶纤维绳的直径为0.1mm-1.5mm,如此可以避免线束9过粗对于内圈2与外圈3之间的结合产生不良影响的问题以及线束9过细对于提高内圈2拉伸强度能力微弱的问题。更为优选地,所述芳纶纤维绳的半径为0.4mm,即线束9的横截面直径为0.8mm。线束9的横截面直径在0.8mm的情况下,既可以提高同步带1内圈2的拉伸强度,也不会对同步带1的内圈2与外圈3的结合产生不良影响。
此外,在线束9的表面涂覆胶粘剂可以有效提高线束9与内圈2外表面的表面结合强度,使线束9固定更为牢固。
使用场景
自移动机器人的工作过程如下,以擦窗机器人为例:
1)用户启动自移动机器人,自移动机器人对玻璃表面进行清洁。
2)自移动机器人的控制器在接收到启动指令后,输出第一驱动信号,电机接收第一驱动信号驱动轮齿正向转动,轮齿的正向转动带动与轮齿相啮合的同步带1内圈2正向转动,同步带1内圈2进而带动同步带1外圈3同步正向转动,同步带1外圈3的外表面与玻璃表面接触,产生摩擦驱动力,带动自移动机器人正向运动。
3)自移动机器人的传感器在检测前方有障碍时,输出转向信号,控制器在接收到转向信号后,输出第二驱动信号,电机接收第二驱动信号驱动轮齿反向转动,轮齿的反向转动带动与轮齿相啮合的同步带1内圈2反向转动,同步带1内圈2进而带动同步带1外圈3同步反向转动,同步带1外圈3的 外表面与玻璃表面接触,产生摩擦驱动力,带动自移动机器人反向运动。
4)用户关闭自移动机器人,在自移动机器人的控制器接收到关闭指令后,输出停止信号,电机停止运行,清洁完毕。
总而言之,本实施例提供的自移动机器人,其同步带1通过采用混炼型聚氨酯制成内圈2与外圈3,相对于其他材质的同步带1而言,具有良好的耐磨性能,可以在硬度较低的情况下保持较高的耐磨度,可以有效提高自移动机器人与玻璃等工作介质之间的摩擦力,提高自移动机器人的工作效率和清洁范围,扩大自移动机器人的使用范围。
再者,本实施例提供的自移动机器人的同步带1内圈2设置有凹槽4,外圈3设置有与凹槽4适配的凸起8,内圈2的凹槽4与外圈3的凸起8之间的配合,可以进一步地增强内圈2与外圈3之间的结合力,增强同步带1的稳定性,进而增强自移动机器人的稳定性。
此外,本实施例提供的自移动机器人的同步带1的内圈2与外圈3之间还设置有线束9,线束9的设置可以有效提高内圈2的拉伸强度和抗压能力,进而提高同步带1的拉伸强度和自移动机器人的抗压能力。
实施例2
本实施例公开了一种自移动机器人,包括机体,所述机体底部设置有同步带1,所述同步带1包括内圈2和外圈3,所述内圈2与所述外圈3均采用混炼型聚氨酯制成,所述内圈2的邵氏硬度大于或等于所述外圈3的邵氏硬度,所述同步带的结构如图1所示。
其中,本实施例所述的自移动机器人,其同步带1内圈2的邵氏硬度大于或等于外圈3的邵氏硬度,内圈2可以为外圈3提供足够的支撑力,增强内圈2与外圈3的结合力,提高同步带1的稳定性,进而提高自移动机器人的抗压能力和稳定性。内圈2与外圈3的邵氏硬度可以根据实际需求确定, 本申请对此不做限制。内圈2的邵氏硬度优选为60A-90A,外圈3的邵氏硬度优选为30A-60A。
进一步地,所述内圈2的外表面和/或所述外圈3的内表面涂覆有胶粘剂,所述内圈2与所述外圈3通过所述胶粘剂粘接。
进一步地,所述内圈2设置有凹槽4,所述外圈3设置有与所述凹槽4适配的凸起8,所述内圈2与所述外圈3通过所述凹槽4与所述凸起8相连。
进一步地,所述凹槽4为开口槽、收口槽或直槽。
进一步地,所述内圈2的凹槽4包括槽底6和槽壁5,所述外圈3的凸起8包括顶面和侧面,所述槽底6为平面或曲面,所述凸起8的顶面为与所述槽底6相适配的平面或曲面,所述槽壁5为平面或曲面,所述凸起8的侧面为与所述槽壁5相适配的平面或曲面。
进一步地,所述内圈2与所述外圈3之间设置有线束9。
进一步地,所述线束9由纤维构成,所述线束9的表面涂覆有胶粘剂并缠绕于凹槽4的一表面,且所述线束9被所述外圈3包覆。
进一步地,所述线束9由芳纶纤维绳制成,所述芳纶纤维绳的横截面直径为0.1mm-1.5mm。
上述为本实施例的一种自移动机器人的示意性方案。需要说明的是,本实施例的自移动机器人的技术方案与上述实施例1的自移动机器人的技术方案属于同一构思,本实施例的自移动机器人的技术方案未详细描述的细节内容,均可以参见上述实施例1的自移动机器人的技术方案的描述。
本实施例提供的自移动机器人,其同步带1通过采用混炼型聚氨酯制成内圈2与外圈3,相对于其他材质的同步带1而言,具有良好的耐磨性能,可以在硬度较低的情况下保持较高的耐磨度,可以有效提高自移动机器人与玻璃等工作介质之间的摩擦力,提高自移动机器人的工作效率和清洁范围,扩 大自移动机器人的使用范围。
再者,本实施例提供的自移动机器人的同步带1内圈2设置有凹槽4,外圈3设置有与凹槽4适配的凸起8,内圈2的凹槽4与外圈3的凸起8之间的配合,可以进一步地增强内圈2与外圈3之间的结合力,增强同步带1的稳定性,进而增强自移动机器人的稳定性。
此外,本实施例提供的自移动机器人的同步带1的内圈2与外圈3之间还设置有线束9,线束9的设置可以有效提高内圈2的拉伸强度和抗压能力,进而提高同步带1的拉伸强度和自移动机器人的抗压能力。
实施例3
如图1-图4所示,本实施例公开了一种同步带1,包括内圈2和外圈3,其中,所述内圈2与所述外圈3均采用混炼型聚氨酯制成,所述内圈2的邵氏硬度为60A-90A,所述外圈3的邵氏硬度为30A-60A。
进一步地,所述内圈2的外表面和/或所述外圈3的内表面涂覆有胶粘剂,所述内圈2与所述外圈3通过所述胶粘剂粘接。
进一步地,所述内圈2设置有凹槽4,所述外圈3设置有与所述凹槽4适配的凸起8,所述内圈2与所述外圈3通过所述凹槽4与所述凸起8相连。
进一步地,所述凹槽4为开口槽、收口槽或直槽。
进一步地,所述内圈2的凹槽4包括槽底6和槽壁5,所述外圈3的凸起8包括顶面和侧面,所述槽底6为平面或曲面,所述凸起8的顶面为与所述槽底6相适配的平面或曲面,所述槽壁5为平面或曲面,所述凸起8的侧面为与所述槽壁5相适配的平面或曲面。
进一步地,所述内圈2与所述外圈3之间设置有线束9。
进一步地,所述线束9由纤维构成,所述线束9的表面涂覆有胶粘剂并缠绕于凹槽4的一表面,且所述线束9被所述外圈3包覆。
进一步地,所述线束9由芳纶纤维绳制成,所述芳纶纤维绳的横截面直径为0.1mm-1.5mm。
上述为本实施例的一种同步带1的示意性方案。需要说明的是,本实施例的同步带1的技术方案与上述实施例1的自移动机器人的技术方案属于同一构思,本实施例的同步带1的技术方案未详细描述的细节内容,均可以参见上述实施例1的自移动机器人的技术方案的描述。
本实施例提供的同步带1包括内圈2和外圈3,其内圈2与外圈3均由混炼型聚氨酯制成,具有良好的耐磨性能,可以实现同步带1在硬度较低的情况下保持较高的耐磨度,同时增强内圈2与外圈3之间的粘结力,提高同步带1的稳定性、耐磨损性,可以有效延长同步带1的使用寿命。
再者,本实施例提供的同步带1,内圈2设置有凹槽4,外圈3设置有与凹槽4适配的凸起8,内圈2凹槽4与外圈3凸起8的配合,可以进一步地增强内圈2与外圈3之间的结合力,增强同步带1的稳定性。
此外,本实施例提供的同步带1,内圈2与外圈3之间还设置有线束9,线束9的设置可以有效提高内圈2的拉伸强度和抗压能力,进而提高同步带1的拉伸强度和抗压能力。
本实施例提供的同步带1,还可以应用于机器人、汽车、化工、食品、机械、采矿、冶金、医疗器械、精密机床、精密仪器等各种领域,适用范围大。
实施例4
如图5所示,本实施例提供一种同步带1的制备方法,用于制备上述实施例所述的同步带1,包括步骤S510至步骤S530。
S510、将混炼型聚氨酯生胶放入模具中进行半硫化处理,制得内圈2。
具体地,所述步骤S510包括步骤S511至步骤S513。
S511、将混炼型聚氨酯生胶放入模具中。
具体地,模具是用于制作同步带1、内圈2、外圈3的模子和工具。模具的规格可视具体情况而定,本申请对此不做限制。
S512、将装有所述混炼型聚氨酯生胶的模具闭合,对闭合的所述模具进行排气处理、抽真空处理和保压处理。
具体地,排气处理是指去除模具内在装料过程中产生的气泡。
抽真空处理是指抽除模具内的气体,以使模具内保持真空状态,并维持2min。
保压处理是指保持模具内的压强处于10-20kpa,并维持10min-20min。
在本实施例中,通过对闭合的模腔进行排气处理、抽真空处理和保压处理的目的是使产品材料中不含有气泡,增加耐磨性,提高同步带1的质量。
S513、对所述混炼型聚氨酯生胶在150℃-185℃的环境下进行半硫化处理50min后取出,制得内圈2。
目前,正常的硫化时间一般为90min,本实施例将硫化时间缩短至50min,不仅可以缩短制备时间,还可以提高同步带1不同硬度的内圈2与外圈3之间的粘接力,提高同步带1内圈2与外圈3的粘接稳定性。
优选地,内圈2的邵氏硬度为60A-90A。
S520、在所述内圈2凹槽的表面缠绕预先涂覆有胶粘剂的纤维形成线束9。
具体地,在内圈2凹槽的表面缠绕预先涂覆有胶粘剂的纤维形成线束9之前,还可以对内圈2的外表面进行打磨处理,并在内圈2的外表面涂覆胶粘剂,在50℃-90℃的环境中对所述胶粘剂进行高温处理。
其中,对内圈2的外表面进行打磨处理至内圈2凹槽4的槽底6、槽壁5具有一定粗糙度,可以提高内圈2凹槽4与线束9、外圈3凸起8之间的摩擦力,促进内圈2与线束9之间、内圈2与外圈3之间的粘接;在内圈2的外 表面涂覆胶粘剂,并在50℃-90℃的环境中对所述胶粘剂进行高温处理,可以提高内圈2与线束9之间的粘接力以及内圈2与外圈3之间的粘接力。
具体地,预先涂覆有胶粘剂的纤维在内圈2的外表面缠绕多圈形成线束9,优选为五圈,线束9的设置可以有效提高同步带1内圈2的拉伸强度,进而提高同步带1内圈2的稳固性,便于同步带1内圈2与外圈3的粘接。根据实际需要,线束9可以有多种排布方式,例如,网格型的线束排布,径向的线束排布,或周向的线束排布等均可,本申请对此不做限制。
优选地,在所述内圈2外表面缠绕五圈预先涂覆有所述胶粘剂的芳纶纤维绳形成线束9,其中,所述芳纶纤维绳的横截面直径为0.1mm-1.5mm,更为优选地,所述芳纶纤维绳的横截面直径为0.3mm。
S530、将混炼型聚氨酯生胶放入模具中进行模压硫化处理,制得包括所述内圈2与外圈3的同步带1。
具体地,可以将混炼型聚氨酯生胶与上述步骤中制得的内圈2一同放入用于制备同步带1的模具中,经过模压硫化处理制得包括内圈2与外圈3的同步带1;也可以将混炼型聚氨酯生胶放入用于制备外圈3的模具中,经过模压硫化处理制得外圈3,再将外圈3的内表面和/或内圈2的外表面涂覆胶粘剂,将外圈3的凸起8放置于内圈2的凹槽4中,通过胶粘剂进行粘接,粘接完成后冷却数秒或数分钟至胶粘剂固化,制得同步带1,本申请对此不做限制。
其中,模压硫化的硫化时间可以根据实际需求确定,可以为50min、70min、90min等,本申请对此不做限制。
优选地,外圈3的邵氏硬度为30A-60A。
本实施例提供的同步带1的制备方法,采用半硫化模式的模压硫化工艺制备内圈2,通过将常规的硫化时间缩短一半,增加内圈2的表面结合力与粘 结性能,提高同步带1内圈2与外圈3之间的粘结力,提高同步带1的稳定性,提高同步带1的适用范围,以满足自移动机器人的驱动和工作需求,并且工艺简单,操作方便,具有良好的经济效益。
在本文中,“上”、“下”、“前”、“后”、“左”、“右”等仅用于表示相关部分之间的相对位置关系,而非限定这些相关部分的绝对位置。
在本文中,“第一”、“第二”等仅用于彼此的区分,而非表示重要程度及顺序、以及互为存在的前提等。
在本文中,“相等”、“相同”等并非严格的数学和/或几何学意义上的限制,还包含本领域技术人员可以理解的且制造或使用等允许的误差。
除非另有说明,本文中的数值范围不仅包括其两个端点内的整个范围,也包括含于其中的若干子范围。
上面结合附图对本申请优选的具体实施方式和实施例作了详细说明,但是本申请并不限于上述实施方式和实施例,在本领域技术人员所具备的知识范围内,还可以在不脱离本申请构思的前提下做出各种变化。

Claims (20)

  1. 一种自移动机器人,包括机体,所述机体底部设置有同步带(1),所述同步带(1)包括内圈(2)和外圈(3),其特征在于,所述外圈(3)与行走表面滚动接触,所述内圈(2)与所述外圈(3)均采用混炼型聚氨酯制成,所述内圈(2)的邵氏硬度为60A-90A,所述外圈(3)的邵氏硬度为30A-60A。
  2. 根据权利要求1所述的自移动机器人,其特征在于,所述内圈(2)的外表面和/或所述外圈(3)的内表面涂覆有胶粘剂,所述内圈(2)与所述外圈(3)通过所述胶粘剂粘接。
  3. 根据权利要求1所述的自移动机器人,其特征在于,所述内圈(2)设置有凹槽(4),所述外圈(3)设置有与所述凹槽(4)适配的凸起(8),所述内圈(2)与所述外圈(3)通过所述凹槽(4)与所述凸起(8)相连。
  4. 根据权利要求3所述的自移动机器人,其特征在于,所述凹槽(4)为开口槽、收口槽或直槽。
  5. 根据权利要求3或4所述的自移动机器人,其特征在于,所述内圈(2)的凹槽(4)包括槽底(6)和槽壁(5),所述外圈(3)的凸起(8)包括顶面和侧面,所述槽底(6)为平面或曲面,所述凸起(8)的顶面为与所述槽底(6)相适配的平面或曲面,所述槽壁(5)为平面或曲面,所述凸起(8)的侧面为与所述槽壁(5)相适配的平面或曲面。
  6. 根据权利要求1或3所述的自移动机器人,其特征在于,所述内圈(2)与所述外圈(3)之间设置有线束(9)。
  7. 根据权利要求6所述的自移动机器人,其特征在于,所述线束(9)由纤维构成,所述线束(9)的表面涂覆有胶粘剂并缠绕于凹槽(4)的一表面,且所述线束(9)被所述外圈(3)包覆。
  8. 根据权利要求7所述的自移动机器人,其特征在于,所述线束(9)由芳 纶纤维绳构成,所述芳纶纤维绳的横截面直径为0.1mm-1.5mm。
  9. 一种自移动机器人,包括机体,所述机体底部设置有同步带(1),所述同步带(1)包括内圈(2)和外圈(3),其特征在于,所述内圈(2)与所述外圈(3)均采用混炼型聚氨酯制成,所述内圈(2)的邵氏硬度大于或等于所述外圈(3)的邵氏硬度。
  10. 根据权利要求9所述的自移动机器人,其特征在于,所述内圈(2)的外表面和/或所述外圈(3)的内表面涂覆有胶粘剂,所述内圈(2)与所述外圈(3)通过所述胶粘剂粘接。
  11. 根据权利要求9所述的自移动机器人,其特征在于,所述内圈(2)设置有凹槽(4),所述外圈(3)设置有与所述凹槽(4)适配的凸起(8),所述内圈(2)与所述外圈(3)通过所述凹槽(4)与所述凸起(8)相连。
  12. 一种同步带,其特征在于,包括内圈(2)和外圈(3),其中,所述内圈(2)与所述外圈(3)均采用混炼型聚氨酯制成,所述内圈(2)的邵氏硬度为60A-90A,所述外圈(3)的邵氏硬度为30A-60A。
  13. 根据权利要求12所述的同步带,其特征在于,所述内圈(2)的外表面或所述外圈(3)的内表面涂覆有胶粘剂,所述内圈(2)与所述外圈(3)通过所述胶粘剂粘接。
  14. 根据权利要求12所述的同步带,其特征在于,所述内圈(2)设置有凹槽(4),所述外圈(3)设置有与所述凹槽(4)适配的凸起(8),所述内圈(2)与所述外圈(3)通过所述凹槽(4)与所述凸起(8)相连。
  15. 根据权利要求12或14所述的同步带,其特征在于,所述内圈(2)与所述外圈(3)之间设置有线束(9)。
  16. 一种同步带的制备方法,其特征在于,包括:
    将混炼型聚氨酯生胶放入模具中进行半硫化处理,制得内圈(2);
    在所述内圈(2)凹槽的表面缠绕预先涂覆有胶粘剂的纤维形成线束(9);
    将混炼型聚氨酯生胶放入模具中进行模压硫化处理,制得包括所述内圈(2)与外圈(3)的同步带(1)。
  17. 根据权利要求16所述的同步带的制备方法,其特征在于,步骤“将混炼型聚氨酯生胶放入模具中进行半硫化处理,制得内圈”,具体包括:
    将混炼型聚氨酯生胶放入模具中;
    将装有所述混炼型聚氨酯生胶的模具闭合,对闭合的所述模具进行排气处理、抽真空处理和保压处理;
    对所述混炼型聚氨酯生胶在150℃-185℃的环境下进行半硫化处理50min后取出,制得内圈(2)。
  18. 根据权利要求16所述的同步带的制备方法,其特征在于,步骤“在所述内圈(2)凹槽的表面缠绕预先涂覆有胶粘剂的纤维形成线束(9)”之前,还包括:
    对所述内圈(2)的外表面进行打磨处理;
    在所述内圈(2)的外表面涂覆胶粘剂,并在50℃-90℃的环境中对所述胶粘剂进行高温处理。
  19. 根据权利要求18所述的同步带的制备方法,其特征在于,在所述内圈(2)的外表面缠绕预先涂覆有所述胶粘剂的纤维形成线束(9),包括:
    在所述内圈(2)外表面缠绕多圈预先涂覆有所述胶粘剂的芳纶纤维绳形成线束(9),其中,所述芳纶纤维绳的横截面直径为0.1mm-1.5mm。
  20. 根据权利要求16-19任意一项所述的同步带的制备方法,其特征在于,所述内圈(2)的邵氏硬度为60A-90A,所述外圈(3)的邵氏硬度为30A-60A。
PCT/CN2021/078490 2020-03-13 2021-03-01 一种自移动机器人、同步带及同步带的制备方法 WO2021179933A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010175671.7 2020-03-13
CN202010175671.7A CN113386105A (zh) 2020-03-13 2020-03-13 一种自移动机器人、同步带及同步带的制备方法

Publications (1)

Publication Number Publication Date
WO2021179933A1 true WO2021179933A1 (zh) 2021-09-16

Family

ID=77616020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078490 WO2021179933A1 (zh) 2020-03-13 2021-03-01 一种自移动机器人、同步带及同步带的制备方法

Country Status (2)

Country Link
CN (1) CN113386105A (zh)
WO (1) WO2021179933A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104963998A (zh) * 2015-06-26 2015-10-07 广东元星工业新材料有限公司 一体式聚氨酯同步带及其制备方法
CN108158477A (zh) * 2016-12-07 2018-06-15 科沃斯机器人股份有限公司 表面清洁机器人及其履带生产工艺方法
CN108561504A (zh) * 2018-06-04 2018-09-21 青岛科技大学 一种3d打印成型的同步带材料及其制备方法
WO2019057001A1 (zh) * 2017-09-20 2019-03-28 科沃斯机器人股份有限公司 一种tpu共混物、tpu共混物用途及履带制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104963998A (zh) * 2015-06-26 2015-10-07 广东元星工业新材料有限公司 一体式聚氨酯同步带及其制备方法
CN108158477A (zh) * 2016-12-07 2018-06-15 科沃斯机器人股份有限公司 表面清洁机器人及其履带生产工艺方法
WO2019057001A1 (zh) * 2017-09-20 2019-03-28 科沃斯机器人股份有限公司 一种tpu共混物、tpu共混物用途及履带制备方法
CN108561504A (zh) * 2018-06-04 2018-09-21 青岛科技大学 一种3d打印成型的同步带材料及其制备方法

Also Published As

Publication number Publication date
CN113386105A (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
CN106272015B (zh) 一种工业钢材表面抛光机
TWI273030B (en) Belt
WO2018103683A1 (zh) 表面清洁机器人及其履带生产工艺方法
JP2002005238A (ja) 動力伝達ベルト
WO2021179933A1 (zh) 一种自移动机器人、同步带及同步带的制备方法
CN202520855U (zh) 一种聚酯龙带
CN214443742U (zh) 一种汽车车门总成自动化焊接装备
CN213706796U (zh) 一种钢管自动输送设备
CN214869579U (zh) 一种钢管连接头的打磨装置
CN212173470U (zh) 一种耐磨输送带
CN219362190U (zh) 一种耐磨型输送带
CN216268053U (zh) 一种新型高性能的纤维复合材料
CN213053976U (zh) 泡棉管加工用同步打磨机构
CN202517358U (zh) 钢芯表面抛光装置
CN208812581U (zh) 一种车用复合胶管成型设备
CN110171664B (zh) 一种毛刷同步带、带体钻孔装置及毛刷同步带的加工方法
CN102606678B (zh) 联组底胶夹布式v带
CN113120177A (zh) 一种方便收缩的皮艇下潜安全绳临时连接结构
CN212422218U (zh) 一种用于接管件内壁打磨形成毛绒状的设备
CN202768729U (zh) 碳纤维布传动带
CN205500431U (zh) 一种排线机
CN109404486A (zh) 一种微型齿楔带及其制备方法
CN202484196U (zh) 一种联组底胶夹布式v带
CN101832029A (zh) 新型混凝土振动棒软管及其制造工艺
CN216735964U (zh) 一种抗拉伸耐磨损的钢丝绳芯输送带

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21768585

Country of ref document: EP

Kind code of ref document: A1