WO2018103536A1 - 一种内烯烃的异构化与氢甲酰化反应方法和催化剂 - Google Patents
一种内烯烃的异构化与氢甲酰化反应方法和催化剂 Download PDFInfo
- Publication number
- WO2018103536A1 WO2018103536A1 PCT/CN2017/112598 CN2017112598W WO2018103536A1 WO 2018103536 A1 WO2018103536 A1 WO 2018103536A1 CN 2017112598 W CN2017112598 W CN 2017112598W WO 2018103536 A1 WO2018103536 A1 WO 2018103536A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cis
- ruthenium
- reaction
- catalyst
- ligand
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/24—Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
- B01J31/2404—Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
- B01J31/2409—Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring with more than one complexing phosphine-P atom
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/26—Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
- B01J31/28—Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
- B01J31/30—Halides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/49—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
- C07C45/50—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
- C07C45/505—Asymmetric hydroformylation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/30—Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
- B01J2231/32—Addition reactions to C=C or C-C triple bonds
- B01J2231/321—Hydroformylation, metalformylation, carbonylation or hydroaminomethylation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/02—Compositional aspects of complexes used, e.g. polynuclearity
- B01J2531/0202—Polynuclearity
- B01J2531/0205—Bi- or polynuclear complexes, i.e. comprising two or more metal coordination centres, without metal-metal bonds, e.g. Cp(Lx)Zr-imidazole-Zr(Lx)Cp
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/02—Compositional aspects of complexes used, e.g. polynuclearity
- B01J2531/0202—Polynuclearity
- B01J2531/0208—Bimetallic complexes, i.e. comprising one or more units of two metals, with metal-metal bonds but no all-metal (M)n rings, e.g. Cr2(OAc)4
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/02—Compositional aspects of complexes used, e.g. polynuclearity
- B01J2531/0238—Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
- B01J2531/0241—Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/82—Metals of the platinum group
- B01J2531/821—Ruthenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/82—Metals of the platinum group
- B01J2531/822—Rhodium
Definitions
- the invention relates to a method and a catalyst for isomerization and hydroformylation of internal olefins, in particular to a catalytic system combining a bismuth bimetallic complex with a biphenyltriphosphine ligand for a homogeneous reaction system.
- Method for isomerization and hydroformylation of a long chain internal olefin in particular to a catalytic system combining a bismuth bimetallic complex with a biphenyltriphosphine ligand for a homogeneous reaction system.
- the olefinic compound is formed by hydroformylation of an olefin with carbon monoxide and hydrogen.
- a chemical such as a fragrance
- the further aldehydes obtained by further hydrogenation, oxidation and amination reaction can be converted into compounds such as alcohols, carboxylic acids and amines, and used in bulk chemicals, plasticizers, coatings and other optical materials and the like.
- the hydroformylation technique also known as the "oxo synthesis" has been discovered by Professor Otten Roelen in 1938 (Chem.Abstr. 1944, 3631) and the first set of carbonyls was established by Ruhrchemie AG.
- hydroformylation reaction is the largest homogeneous catalytic reaction in the industry, with a total of 10.4 million tons of carbonyl chemicals produced by hydroformylation (SRI Consulting, 2010).
- the reaction of an olefin with carbon monoxide and hydrogen produces an aldehyde and an alcohol, the aldehyde and the alcohol having one more carbon atom than the starting olefin.
- This reaction can be catalyzed by hydridometal carbonyls, particularly Group VIII metal carbonyls, with hydrazine being the most suitable metal.
- hydridometal carbonyls particularly Group VIII metal carbonyls
- hydrazine being the most suitable metal.
- ruthenium dicarbonyl acetylacetonate (I) is the most reported in the hydroformylation literature, and is also a catalyst which is particularly useful for phosphorus modification.
- the ratio of normal aldehydes to isomeric aldehydes is mainly determined by the ligand used and produces relative activity and corresponding selectivity. Catalyst.
- the isomerization catalyst used in the present invention carbonyl hydrogenation [6-(di-tert-butylphosphinomethyl)-2(N,N-diethylaminomethyl)pyridine] ruthenium chloride (II) is also known as Milstein Catalyst, its synthesis method and route was reported by the David Milstein group (J. Am. Chem. Soc., 2005, 127, 10840).
- PPh 3 is not only poorly selective in the hydroformylation reaction, but also a large amount of triphenylphosphine added is difficult to separate and post-treat.
- the bidentate phosphine ligand (Bisbi) was invented and patented by Eastman and UCC (now Dow) (US 4,694,109 and US 4,686,651), and it is now known that bidentate phosphine ligands developed by chemical companies such as Dow, Davy have been used in many factories. . Therefore, the development of highly efficient tridentate phosphine ligands to replace triphenylphosphine and bidentate phosphine ligands has great practical value.
- the Xantphos-derivatized ligand of the Van Leeuwen group has an orthorhombic ratio of 9.5 (Angew. Chem. Int. Ed., 1999, 38, 336).
- the aldehyde product of the Naphos-type ligand of the Beller group has an ectopic ratio of 10.1 (Angew. Chem. Int. Ed., 2001, 40, 3408).
- the ortho-isophosphite phosphine ligand of the subject group has an orthorhombic ratio of 2.2 in the octene isomeric mixture (Angew. Chem. Int. Ed., 2001, 40, 1696).
- the technical problem to be solved by the present invention is to provide a catalyst and internal olefin which combines a ruthenium bimetallic with a tridentate phosphine ligand. Hydroformylation process.
- the catalytic system of the invention has the advantages of high conversion rate, high aspect ratio, stable catalyst at high temperature and the like.
- the ruthenium complex containing a biphenyltriphosphine ligand, a biphenyldiphosphine ligand ruthenium complex, and a triphenylphosphine ruthenium complex have the following structural formula:
- the present invention provides a novel catalyst for isomerization and hydroformylation of internal olefins, which consists of a ruthenium complex and a ruthenium compound which are complexed with a ruthenium compound and an organophosphine ligand. .
- the molar ratio of the ruthenium complex to the ruthenium compound is from 1:1 to 5:1, and the molar ratio of the organophosphine ligand to the ruthenium compound is from 1:1 to 10:1.
- the ruthenium compound may be ruthenium trichloride (RhCl 3 ), ruthenium dicarbonyl acetylacetonate (I) (Rh(acac)(CO) 2 ), acetylacetone (1,5-cyclooctadiene) ruthenium (I) ( Rh(acac)(COD)), carbonyl ruthenium (Rh 6 (CO) 16 or Rh 4 (CO) 12 ), ruthenium (II) acetate (Rh 2 (OAc) 4 ), ruthenium (III) nitrate (Rh (NO) 3 ) 3 ) or other suitable hydrazine compound, preferably bis(carbonyl) carbonylacetonate (I).
- the concentration of the ruthenium compound is from 50 to 1,500 ppm, and preferably from 100 to 800 ppm.
- the organophosphine ligand may be a monophosphine ligand such as triphenylphosphine (PPh 3 ), triphenyl phosphite (P(OC 6 H 5 ) 3 ), or the like, or a polydentate phosphine ligand such as 2,2.
- a monophosphine ligand such as triphenylphosphine (PPh 3 ), triphenyl phosphite (P(OC 6 H 5 ) 3 ), or the like, or a polydentate phosphine ligand such as 2,2.
- the biphenyl type triphosphine ligand 2,2,6-tris(diphenylphosphinomethyl)-1,1'-biphenyl (Tribi) has a hydroformylation effect compared with other phosphine ligands. the best. It is characterized by easy synthesis, high yield and amplification synthesis.
- the structure of the compound and its derivatives is as follows:
- Ar may be benzene, p-methylbenzene, m-trifluoromethylbenzene, p-trifluoromethylbenzene, 3,5-ditrifluoromethylbenzene, 3,5-difluorobenzene, 3, 5–Dimethylbenzene, 3,5-di-tert-butylbenzene, 3,5-di-tert-butyl-4-methoxybenzene, p-methoxybenzene, p-dimethylaminobenzene, 2-pyridine, pair Fluorobenzene, 2,3,4,5,6-pentafluorobenzene.
- the ruthenium compound may be ruthenium tricarbonyl (Ru 3 (CO) 12 ), ruthenium trichloride (RuCl 3 ), tris(triphenylphosphine) ruthenium (II) dichloride (RuCl 2 (PPh 3 )) 3 ), dichlorotricarbonyl ruthenium dimer ([RuCl 2 (CO) 3 ] 2 ), (1,5-cyclooctadiene) ruthenium (II) chloride ([RuCl 2 (COD)] n ) Carbonyl hydrogenation [6–(di-tert-butylphosphinomethyl)–2–(N,N-diethylaminomethyl)pyridine]phosphonium(II) chloride (RuH(Cl)(PNN)(CO)) [6-(di-tert-butylphosphinomethylene)-2(N,N-diethylaminomethyl)pyridine]carbonyl ruthen
- the concentration of the ruthenium compound is from 10 to 2000 ppm, with 100 to 1000 ppm being most preferred.
- the preparation method of the internal olefin isomerization and hydroformylation catalyst of the present invention is as follows:
- the weighed ruthenium compound and the organophosphorus ligand are stirred and stirred at room temperature for 30-90 min in an organic solvent; then, the ruthenium compound is added to the complexation.
- the ruthenium complex solution was stirred at room temperature for 15 to 30 minutes.
- the internal olefin substrate used in the present invention is 2-octene (cis-mixed mixture), and the components of the cis, trans-2, octene are analyzed by gas chromatography, and 19.5% of the mixture component is cis-2 octene. 80.5% of the mixture component is trans-2–octene.
- the ratio of the amount of the cerium compound to the reactant is between 0.005 and 0.15 mol%, and preferably 0.01 to 0.08 mol%.
- the organophosphine ligand to rhodium compound molar ratio is between 1:1 and 10:1, with 4:1 and 6:1 being optimal.
- a certain pressure of CO and H 2 is injected into the reaction device equipped with the glass bottle, and the pressure ratio of hydrogen to carbon monoxide is between 1.5:1 and 10:1, wherein 1:1 is optimal and the total pressure is It is between about 0.2 MPa and 4 MPa, with 0.4 MPa to 1 MPa being most preferred.
- the temperature of the above hydroformylation reaction is between about 80 ° C and 140 ° C, with 120 ° C to 140 ° C being most preferred.
- a catalyst solution of a ruthenium bimetallic complex and a biphenyltriphosphine ligand is prepared to carry out homogeneous internal olefin isomerization and hydroformylation.
- inert gas weigh a certain amount of cerium compound into the complex ruthenium metal complex solution, add a certain amount of internal standard n-decane and determine the mass of isopropanol, and add a certain amount of solvent.
- the internal olefin in the substrate is added.
- the ratio of the amount of the cerium compound to the reactant is between 0.001 and 0.2 mol%, and preferably 0.01 to 0.1 mol%.
- a certain pressure of CO and H 2 is injected into the reaction device equipped with the glass bottle, and the pressure ratio of hydrogen to carbon monoxide is between 1.5:1 and 10:1, wherein 1:1 is optimal and the total pressure is It is between about 0.2 MPa and 4 MPa, with 0.4 MPa to 1 MPa being most preferred.
- the temperature of the above hydroformylation reaction is between about 80 ° C and 140 ° C, with 120 ° C to 140 ° C being most preferred.
- the gas chromatography analysis method used in the present invention comprises the following steps: (1) preparing a mixed solution of 2-octene (cis-mixture) and n-decane in different concentration ratios, and calculating internal standard and 2 by GC analysis; - Correction factor K of octene (cis-mixing mixture); (2) Analysis by gas chromatograph, HP-5 as stationary phase, flame ionization detection, split ratio set to 20, gasification port temperature 250 °C, detection The temperature of the column is 260 ° C, the column initial column temperature is 60 ° C, held for 8 minutes, and then raised to a column temperature of 120-180 ° C at 5 ° C / min.
- the above analysis method can ensure that the high-boiling aldehyde product is completely separated on the column; (3) According to the peak time of the aldehyde products n-nonanal ( ⁇ -aldehyde) and 2-methyl octanal ( ⁇ -aldehyde), the corresponding peaks can be integrated to obtain the linear aldehyde percentage, ortho-ratio; 4) Calculate the peak area according to the peak time of the reactant 2–octene (cis-mixing mixture) and the internal standard, and calculate the conversion rate, conversion number, etc., together with the correction factor.
- the present invention provides a reaction process for isomerization and hydroformylation of internal olefins.
- the catalyst of the present invention is used to flush CO and H 2 with a total pressure of between 0.2 MPa and 4 MPa, and a reaction temperature of between 80 ° C and 140 ° C.
- the organic solvent suitable for the above process may be toluene, dichloromethane, ethyl acetate, methanol, ethanol, isopropanol, dioxane, acetonitrile, tetrahydrofuran or the like.
- the alcohol solvent is particularly effective for the bimetallic catalyst of the present invention.
- Internal olefins suitable for the bimetallic catalytic homogeneous system of the present invention from C 4 to C 8 : 2 - butene, cis - 2 - pentene, cis - 2 - hexene, cis - 3 - Hexene, cis-trans-2–heptene, cis-trans-3–heptene, cis-trans-2–octene, cis-trans-3–octene, cis-trans-4–octene hydroformylation
- the formula 1–5 is shown.
- the catalytic system of the ruthenium bimetallic complex described in the present invention combined with the biphenyltriphosphine ligand is compared to the industrial conventional ruthenium/triphenylphosphine and ruthenium/biphenyl diphosphine ligand homogeneous catalytic system.
- 2-octene cis-mixture
- it has high conversion (high conversion number), high normal aldehyde and isomeric aldehyde ratio, stable catalyst at high temperature and industrial amplification.
- the industrial large-scale hydroformylation process uses low-cost mixed internal olefins and terminal olefins as olefin raw materials, in which more internal olefins and fewer terminal olefins, so the method provided by the invention has great industrial application value.
- Example 1 Hydrogenation of acetylacetone dicarbonyl ruthenium (Rh(acac)(CO) 2 ) and 2,2,6-tris(diphenylphosphinomethyl)-1,1'-biphenyl (Tribi) Acylation reaction (different phosphine ratio L/Rh)
- Rh(acac)(CO) 2 (2.6 mg, 0.01 mmol), 2 , 2, 6–3 was weighed in a glove box according to the different molar ratios of phosphine ligands listed in Table 1 below.
- Diphenylphosphinomethyl)-1,1'-diphenyl (Tribi) (7.5 mg, 0.01 mmol; 15 mg, 0.02 mmol; 22 mg, 0.03 mmol; 30 mg, 0.04 mmol; 45 mg, 0.06 mmol) in a complex bottle
- the oxygen/water toluene (Toluene, 1.73 g, 18.8 mmol) solvent was placed in a bottle and stirred to dissolve to form a complex solution of ruthenium and biphenyltriphosphine ligand.
- l/b selectivity is the ratio of normal aldehyde to isomeric aldehyde
- conversion rate It is calculated based on the amount of the internal standard n-decane and 2-octene in the GC analysis.
- Linearity is the percentage of the linear product
- TON is the number of conversions, which is calculated by GC based on the conversion of the substrate.
- Example 2 Hydrogenation of acetylacetone dicarbonyl ruthenium (Rh(acac)(CO) 2 ) and 2,2,6-tris(diphenylphosphinomethyl)-1,1'-biphenyl (Tribi) Acylation reaction (different reaction temperature)
- the rhodium catalyst Rh(acac)(CO) 2 (2.6 mg, 0.01 mmol), 2, 2 was weighed in a glove box according to the molar ratio of phosphine ligand to rhodium (4:1) listed in Table 2 below.
- 6-tris(diphenylphosphinomethyl)-1,1'-diphenyl (Tribi) (30 mg, 0.04 mmol) into a complex bottle, and then deoxidized/water toluene (Toluene, 1.73 g, 18.8 mmol)
- the solvent is placed in a bottle and stirred to dissolve to form a complex solution of hydrazine with a biphenyltriphosphine ligand.
- the same concentration of the ruthenium catalyst complex solution was prepared in a glove box, and the high pressure reaction kettle was placed in a glove box, and 200 ⁇ l of the complexed ruthenium catalyst solution was transferred to the magnetized reaction with a micro syringe.
- a vial 5 ml
- 100 ⁇ l of the internal standard n-decane and 400 ⁇ l of toluene solvent were added, and finally 2–octene (cis-mix) (224.4 mg, 2 mmol) was added.
- reaction vessel containing the reaction flask was taken out from the glove box, and the high-purity argon gas in the kettle was replaced with H 2 three times, and the total pressure of the reaction vessel was raised to 4 bar at a pressure ratio of CO/H 2 of 1:1. 5 bar, 10 bar, 20 bar and 40 bar, and the reactor was stirred at 120 ° C and 140 ° C for 4 hours, respectively.
- the rhodium catalyst Rh(acac)(CO) 2 (5.2 mg) was weighed in a glove box. , 0.02 mmol), 2,2,6-tris(diphenylphosphinomethyl)-1,1'-biphenyl (Tribi) (60 mg, 0.08 mmol) into a complex bottle, followed by deoxygenation/water Toluene (8.66 g, 94.0 mmol) of the solvent was placed in a bottle and stirred to dissolve to form a complex solution of ruthenium and biphenyltriphosphine ligand.
- Example 5 Hydrogenation of ruthenium acetylacetonate (Rh(acac)(CO) 2 ) and 2,2,6-tris(diphenylphosphinomethyl)-1,1'-biphenyl (Tribi) Acylation reaction (different reaction time)
- the same concentration of the ruthenium catalyst complex solution was prepared in a glove box, and the high pressure reaction kettle was placed in a glove box, and 200 ⁇ l of the complexed ruthenium catalyst solution was transferred to the magnetized reaction with a micro syringe.
- a vial 5 ml
- 100 ⁇ l of the internal standard n-decane and 400 ⁇ l of toluene solvent were added, and finally 2–octene (cis-mixture) (224.4 mg, 2 mmol) was added.
- reaction vessel containing the reaction flask was taken out from the glove box, and the high-purity argon gas in the kettle was replaced with H 2 three times, and the total pressure of the reaction vessel was raised to 4 bar at a pressure ratio of CO/H 2 of 1:1.
- the kettle was then stirred at 140 for 1, 2, 4, 6, 8 and 12 hours, respectively.
- the isomerization reaction can be carried out by stirring the reaction with the olefin in the glove box at normal temperature, so that only the hydroformylation catalyst ⁇ is sensitive to the reaction conditions.
- the solvent screening and ligand comparison of the ruthenium bimetallic and tridentate phosphine ligand catalyst systems were carried out according to the optimized conditions selected in Examples 1 to 5.
- Example 6 using acetylacetone dicarbonyl ruthenium (Rh(acac)(CO) 2 ), carbonyl hydrogenation [6-(di-tert-butylphosphinomethyl)-2-(N,N-diethylaminomethyl) Pyridine ruthenium chloride (RuH(Cl)(PNN)(CO)) and 2,2,6-tris(diphenylphosphinomethyl)-1,1'-biphenyl (Tribi) isomerization and hydrogen Formylation reaction (solvent screening)
- the ruthenium compound Rh(acac)(CO) 2 (5.2 mg, 0.02 mmol) and 2,2,6-tris(diphenylphosphinomethyl)-1 were weighed in a glove box.
- 1'-Biphenyl (Tribi) 60mg, 0.08mmol
- Toluene, 1.73g, 18.8mmol deoxidized / water toluene
- a ruthenium compound RuH(Cl)(PNN)(CO) (9.8 mg, 0.02 mmol) was weighed in a glove box, added to the complexed ruthenium catalyst solution, and stirred at room temperature to dissolve.
- a micro syringe to remove 100 ⁇ l of the complexed ruthenium catalyst solution into a magnetic reactor-containing reaction flask (5 ml), and add 100 ⁇ l of the internal standard n-decane and 150 ⁇ l of the additive. And 350 ⁇ l of solvent (solvent listed in Table 6), and finally 2-octene (cis-mixture) (224.4 mg, 2 mmol).
- reaction vessel containing the reaction flask was taken out from the glove box, and the high-purity argon gas in the kettle was replaced with H 2 three times, and the total pressure of the reaction vessel was raised to 4 bar at a pressure ratio of CO/H 2 of 1:1.
- the kettle was then stirred at 140 ° C for 4 hours.
- “isomerization” refers to the percentage of 2-octene isomerized to 1-octene.
- the aldehyde product has a relatively high normality. Since the solubility of the tridentate phosphine ligand in the alcohol solvent is extremely poor or insoluble, in the practice of the present invention, the catalyst is complexed by using dichloromethane as a solvent for the ruthenium bimetallic compound and the phosphine ligand. And mixed with the reaction substrate and the reaction solvent.
- Example 7 Using a single metal rhodium (Rh(acac)(CO) 2 ) and a biphenyl triphosphine ligand (Tribi) with a rhodium bimetallic (Rh(acac)(CO) 2 , RuH(Cl)(PNN) (CO)) and isomerization of triphenylphosphine ligand (Tribi) in three alcohol solvents with hydroformylation (comparison of solvent results for single metal and bimetallic catalysis)
- Rh(acac)(CO) 2 5.2 mg, 0.02 mmol
- 2,2,6-tris(diphenylphosphinomethyl)-1,1'-biphenyl (Tribi) were weighed in a glove box. (60 mg, 0.08 mmol) into a complex bottle, and then deoxidized/dichloromethane (Dichloromethane, 2.65 g, 31.2 mmol) solvent was placed in a bottle and stirred to dissolve to form hydrazine and biphenyltriphosphine ligand. Complex solution.
- the autoclave was placed in a glove box, and 100 ⁇ l of the complexed ruthenium catalyst solution was transferred to a magnetic cylinder-containing reaction flask (5 ml) using a micro syringe, and 100 ⁇ l of the internal standard n-decane, 150 ⁇ l of the additive and 350 ⁇ l of solvent, and finally 2 - octene (cis-mix) (224.4 mg, 2 mmol).
- the reaction kettle equipped with a reaction flask was removed from the glove box, the replacement tank of high purity argon gas (99.999%) high purity hydrogen (99.999%) three times to CO / H 2 1: 1 pressure ratio
- the total pressure of the autoclave was raised to 4 bar, and then the reaction vessel was placed in a preheated 140 ° C oil bath mixer for 4 hours.
- Rh(acac)(CO) 2 5.2 mg, 0.02 mmol
- 2,2,6-tris(diphenylphosphinomethyl)-1,1'-biphenyl (Tribi) were weighed in a glove box. (60 mg, 0.08 mmol) into a complex bottle, and then deoxidized/dichloromethane (Dichloromethane, 2.65 g, 31.2 mmol) solvent was placed in a bottle and stirred to dissolve to form hydrazine and biphenyltriphosphine ligand. Complex solution.
- a rhodium catalyst RuH(Cl)(PNN)(CO) (9.8 mg, 0.02 mmol) was weighed in a glove box, added to the complexed rhodium catalyst solution, and stirred at room temperature to dissolve.
- a micro syringe to remove 100 ⁇ l of the complexed ruthenium catalyst solution into a magnetic reactor-containing reaction flask (5 ml), and add 100 ⁇ l of the internal standard n-decane and 150 ⁇ l of the additive. And 350 ⁇ l of solvent, and finally 2-octene (cis-mixture) (224.4 mg, 2 mmol).
- reaction vessel containing the reaction flask was taken out from the glove box, and the high-purity argon gas in the kettle was replaced with H 2 three times, and the total pressure of the reaction vessel was raised to 4 bar at a pressure ratio of CO/H 2 of 1:1.
- the kettle was then stirred at 140 ° C for 4 hours.
- Example 8 acetylacetone dicarbonyl ruthenium (Rh(acac)(CO) 2 ), carbonyl hydrogenation [6-(di-tert-butylphosphinomethyl)-2-(N,N-diethylaminomethyl) Pyridine] ruthenium chloride (RuH(Cl)(PNN)(CO)) and 2,2,6-tris(diphenylphosphinomethyl)-1,1'-biphenyl (Tribi), and two industrial types Ligand: isomerization of biphenyl diphosphine ligand (Bisbi) and triphenylphosphine (PPh 3 ) with hydroformylation (comparison of results for the same phosphine ratio and phosphine ratio)
- the rhodium catalyst Rh(acac)(CO) 2 (5.2 mg, 0.02 mmol) and 2,2,6-tris(diphenylphosphinomethyl) were weighed in a glove box.
- 1,1'-Biphenyl (Tribi) 60 mg, 0.08 mmol was placed in a complex bottle, and then deoxygenated/dichloromethane (Dichloromethane, 2.65 g, 31.2 mmol) solvent was placed in a bottle and stirred.
- a solution of a complex of ruthenium and a biphenyltriphosphine ligand is dissolved.
- a rhodium catalyst RuH(Cl)(PNN)(CO) (9.8 mg, 0.02 mmol) was weighed in a glove box, added to the complexed rhodium catalyst solution, and stirred at room temperature to dissolve.
- a micro syringe to remove 100 ⁇ l of the complexed ruthenium catalyst solution into a magnetic reactor-containing reaction flask (5 ml), and add 100 ⁇ l of the internal standard n-decane and 150 ⁇ l of the additive. And 350 ⁇ l of solvent, and finally 2-octene (cis-mixture) (224.4 mg, 2 mmol).
- reaction vessel containing the reaction flask was taken out from the glove box, and the high-purity argon gas in the kettle was replaced with H 2 three times, and the total pressure of the reaction vessel was raised to 4 bar at a pressure ratio of CO/H 2 of 1:1.
- the kettle was then stirred at 140 ° C for 4 hours.
- Rh(acac)(CO) 2 2.6 mg, 0.01 mmol
- 2,2'-bis(diphenylphosphino)methyl-1,1'-biphenyl (Bisbi) were weighed in a glove box. (22 mg, 0.04 mmol) into a complex bottle, and then deoxidized/dichloromethane (Dichloromethane, 1.33 g, 15.6 mmol) solvent was placed in a bottle and stirred to dissolve to form hydrazine and biphenyl diphosphine ligand. Complex solution.
- a rhodium catalyst RuH(Cl)(PNN)(CO) (4.9 mg, 0.01 mmol) was weighed in a glove box, added to the complexed rhodium catalyst solution, and stirred at room temperature to dissolve.
- a micro syringe to remove 100 ⁇ l of the complexed ruthenium catalyst solution into a magnetic reactor-containing reaction flask (5 ml), and add 100 ⁇ l of the internal standard n-decane and 150 ⁇ l of the additive. And 350 ⁇ l of solvent, and finally 2-octene (cis-mixture) (224.4 mg, 2 mmol).
- reaction vessel containing the reaction flask was taken out from the glove box, and the high-purity argon gas in the kettle was replaced with H 2 three times, and the total pressure of the reaction vessel was raised to 4 bar at a pressure ratio of CO/H 2 of 1:1.
- the kettle was then stirred at 140 ° C for 4 hours.
- Rh(acac)(CO) 2 2.6 mg, 0.01 mmol
- triphenylphosphine 10.5 mg, 0.04 mmol
- a rhodium catalyst RuH(Cl)(PNN)(CO) (4.9 mg, 0.01 mmol) was weighed in a glove box, added to the complexed rhodium catalyst solution, and stirred at room temperature to dissolve.
- a micro syringe to remove 100 ⁇ l of the complexed ruthenium catalyst solution into a magnetic reactor-containing reaction flask (5 ml), and add 100 ⁇ l of the internal standard n-decane and 150 ⁇ l of the additive. And 350 ⁇ l of solvent, and finally 2-octene (cis-mixture) (224.4 mg, 2 mmol).
- reaction vessel containing the reaction flask was taken out from the glove box, and the high-purity argon gas in the kettle was replaced with H 2 three times, and the total pressure of the reaction vessel was raised to 4 bar at a pressure ratio of CO/H 2 of 1:1.
- the kettle was then stirred at 140 ° C for 4 hours.
- Example 9 acetylacetone dicarbonyl ruthenium (Rh(acac)(CO) 2 ), carbonyl hydrogenation [6-(di-tert-butylphosphinomethyl)-2-(N,N-diethylaminomethyl) Pyridine] ruthenium chloride (RuH(Cl)(PNN)(CO)) and 2,2,6-tris(diphenylphosphinomethyl)-1,1'-biphenyl (Tribi), and two industrial types Ligand: isomerization of biphenyl diphosphine ligand (Bisbi) and triphenylphosphine (PPh 3 ) with hydroformylation (comparison of results for different phosphine ratios and phosphine ratios but at the same ligand mass)
- the rhodium catalyst Rh(acac)(CO) 2 (5.2 mg, 0.02 mmol) and 2,2,6-tris(diphenylphosphinomethyl) were weighed in a glove box.
- 1,1'-Biphenyl (Tribi) 60 mg, 0.08 mmol was placed in a complex bottle, and then deoxygenated/dichloromethane (Dichloromethane, 2.65 g, 31.2 mmol) solvent was placed in a bottle and stirred.
- a solution of a complex of ruthenium and a biphenyltriphosphine ligand is dissolved.
- a rhodium catalyst RuH(Cl)(PNN)(CO) (9.8 mg, 0.02 mmol) was weighed in a glove box, added to the complexed rhodium catalyst solution, and stirred at room temperature to dissolve.
- a micro syringe to remove 100 ⁇ l of the complexed ruthenium catalyst solution into a magnetic reactor-containing reaction flask (5 ml), and add 100 ⁇ l of the internal standard n-decane and 150 ⁇ l of the additive. And 350 ⁇ l of solvent, and finally 2-octene (cis-mixture) (224.4 mg, 2 mmol).
- reaction vessel containing the reaction flask was taken out from the glove box, and the high-purity argon gas in the kettle was replaced with H 2 three times, and the total pressure of the reaction vessel was raised to 4 bar at a pressure ratio of CO/H 2 of 1:1.
- the kettle was then stirred at 140 ° C for 4 hours.
- Rh(acac)(CO) 2 2.6 mg, 0.01 mmol
- 2,2'-bis(diphenylphosphino)methyl-1,1'-biphenyl (Bisbi) were weighed in a glove box. (30 mg, 0.0545 mmol) into a complex bottle, and then deoxidized/dichloromethane (Dichloromethane, 1.33 g, 15.6 mmol) solvent was placed in a bottle and stirred to dissolve to form hydrazine and biphenyl diphosphine ligand. Complex solution.
- a rhodium catalyst RuH(Cl)(PNN)(CO) (4.9 mg, 0.01 mmol) was weighed in a glove box, added to the complexed rhodium catalyst solution, and stirred at room temperature to dissolve.
- a micro syringe to remove 100 ⁇ l of the complexed ruthenium catalyst solution into a magnetic reactor-containing reaction flask (5 ml), and add 100 ⁇ l of the internal standard n-decane and 150 ⁇ l of the additive. And 350 ⁇ l of solvent, and finally 2-octene (cis-mixture) (224.4 mg, 2 mmol).
- reaction vessel containing the reaction flask was taken out from the glove box, and the high-purity argon gas in the kettle was replaced with H 2 three times, and the total pressure of the reaction vessel was raised to 4 bar at a pressure ratio of CO/H 2 of 1:1.
- the kettle was then stirred at 140 ° C for 4 hours.
- the rhodium catalyst Rh(acac)(CO) 2 (2.6 mg, 0.01 mmol) and triphenylphosphine (30 mg, 0.1144 mmol) were weighed into a glove bottle in a glove box, and then deoxygenated/water dichloromethane was removed. (Dichloromethane, 1.33 g, 15.6 mmol) The solvent was placed in a bottle and stirred to dissolve to form a complex solution of ruthenium and triphenylphosphine.
- a rhodium catalyst RuH(Cl)(PNN)(CO) (4.9 mg, 0.01 mmol) was weighed in a glove box, added to the complexed rhodium catalyst solution, and stirred at room temperature to dissolve.
- a micro syringe to remove 100 ⁇ l of the complexed ruthenium catalyst solution into a magnetic reactor-containing reaction flask (5 ml), and add 100 ⁇ l of the internal standard n-decane and 150 ⁇ l of the additive. And 350 ⁇ l of solvent, and finally 2-octene (cis-mixture) (224.4 mg, 2 mmol).
- reaction vessel containing the reaction flask was taken out from the glove box, and the high-purity argon gas in the kettle was replaced with H 2 three times, and the total pressure of the reaction vessel was raised to 4 bar at a pressure ratio of CO/H 2 of 1:1.
- the kettle was then stirred at 140 ° C for 4 hours.
- Example 10 using acetylacetone dicarbonyl ruthenium (Rh(acac)(CO) 2 ), carbonyl hydrogenation [6-(di-tert-butylphosphinomethyl)-2-(N,N-diethylaminomethyl) Pyridine ruthenium chloride (RuH(Cl)(PNN)(CO)) and 2,2,6-tris(diphenylphosphinomethyl)-1,1'-biphenyl (Tribi) isomerization and hydrogen Formylation, and isomerization of biphenyl diphosphine ligand (Bisbi) with hydroformylation (comparison of various ⁇ –, ⁇ –, ⁇ –olefins)
- the rhodium catalyst Rh(acac)(CO) 2 (5.2 mg, 0.02 mmol) and 2,2,6-tris(diphenylphosphinomethyl) were weighed in a glove box.
- 1,1'-Biphenyl (Tribi) (60 mg, 0.08 mmol) was placed in a complex bottle, and deoxygenated/water dichloromethane (Toluene, 1.73 g, 18.8 mmol) was placed in a bottle and stirred.
- a solution of a complex of ruthenium and a biphenyltriphosphine ligand is dissolved.
- a rhodium catalyst RuH(Cl)(PNN)(CO) (9.8 mg, 0.02 mmol) was weighed in a glove box, added to the complexed rhodium catalyst solution, and stirred at room temperature to dissolve.
- a micro syringe to remove 100 ⁇ l of the complexed ruthenium catalyst solution into the reaction bottle containing the magnets (5 ml), add 100 ⁇ l of the internal standard n-decane, and the appropriate amount of additives. With the corresponding solvent, the final ⁇ -, ⁇ -, ⁇ -olefin (1 mmol) was added in batches.
- reaction vessel containing the reaction flask was taken out from the glove box, and the high-purity argon gas in the kettle was replaced with H 2 three times, and the total pressure of the reaction vessel was raised to 4 bar at a pressure ratio of CO/H 2 of 1:1.
- the kettle was then stirred at 140 ° C for 2 hours.
- Rh(acac)(CO) 2 2.6 mg, 0.01 mmol
- 2,2'-bis(diphenylphosphino)methyl-1,1'-biphenyl (Bisbi) were weighed in a glove box. (22 mg, 0.04 mmol) into a complex bottle, and then deoxidized/dichloromethane (Dichloromethane, 1.33 g, 15.6 mmol) solvent was placed in a bottle and stirred to dissolve to form hydrazine and biphenyl diphosphine ligand. Complex solution.
- a rhodium catalyst RuH(Cl)(PNN)(CO) (4.9 mg, 0.01 mmol) was weighed in a glove box, added to the complexed rhodium catalyst solution, and stirred at room temperature to dissolve.
- a micro syringe to remove 100 ⁇ l of the complexed ruthenium catalyst solution into the reaction bottle containing the magnets (5 ml), add 100 ⁇ l of the internal standard n-decane, and the appropriate amount of additives. With the corresponding solvent, the final ⁇ -, ⁇ -, ⁇ -olefin (1 mmol) was added in batches.
- reaction vessel containing the reaction flask was taken out from the glove box, and the high-purity argon gas in the kettle was replaced with H 2 three times, and the total pressure of the reaction vessel was raised to 4 bar at a pressure ratio of CO/H 2 of 1:1.
- the kettle was then stirred at 140 ° C for 2 hours.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
Abstract
一种长链内烯烃的异构化与氢甲酰化均相催化反应方法和催化剂,采用铑、钌两种金属配合物作为催化剂;配体采用了三齿磷配体。催化体系在一定温度和压力下可进行均相的内烯烃异构化和氢甲酰化反应得到高正异比的醛产物。不仅适用于长链内烯烃(> C8)而且也适用于碳数目小于8的内烯烃。
Description
本发明涉及一种内烯烃的异构化与氢甲酰化反应方法和催化剂,尤其涉及一种铑钌双金属配合物与联苯三膦配体相结合的催化体系,用于均相反应体系下的长链内烯烃的异构化与氢甲酰化反应方法。
烯烃与一氧化碳及氢气进行氢甲酰化反应制成醛类化合物,除了可以作为香料等化学品,也是重要的中间体。所得到醛类再进一步氢化、氧化与胺基化反应可以转化为醇类、羧酸类与胺类等化合物,用于散装化学品、塑化剂、涂料及其它光学材料等等。氢甲酰化技术,又称为“羰基合成法”,自从1938年被Otten Roelen教授意外发现以来(Chem.Abstr.1944,3631),并由德国鲁尔(Ruhrchemie AG)公司建成第一套羰基合成装置后,生产规模不断扩大,生产技术日益改进。时至今日,氢甲酰化反应是工业当中最大规模的均相催化反应,各类由氢甲酰化反应生产的羰基化学品达到1040万吨(SRI Consulting,2010)。
氢甲酰化从发现至今经历了:第一代为Ruhrchemie(现Celanese)的羰基钴或氢羰基钴(US2327066A);第二代是上世纪60年代为Shell开发的以亚磷酸盐或磷做配体的改性钴中压法(US3400163;US3420898);第三代是上世纪70年代Union Carbide Corp.(现Dow)、Davy Mckee和Johnson Matthey三家公司开发的以PPh3为配体的低压铑法(US3527809);第四代是上世纪80年代Ruhrchemie/Rhone-Poulenc(现Celanese/Hoechst)共同开发的两相工艺,即以三苯基膦三间磺酸钠盐(TPPTS)为配体的水溶性铑催化剂(US4483802A)。我国目前采用的全是从国外引进的均相催化反应技术,所使用的催化剂是第二代或第三代油溶性均相催化剂。
使烯烃与一氧化碳和氢气反应(加氢甲酰化)可以生产醛和醇,醛和醇比起始烯烃多一个碳原子。这一反应可由金属羰基化物(hydridometal carbonyls)、特别是第VIII族金属羰基化物所催化,其中铑是最合适的金属。而在含铑的金属配合物中,二羰基乙酰丙酮铑(I)在氢甲酰化文献中报道最多,也是特别有助于磷改性的催化剂。铑催化的加氢甲酰化的产物醛中,正构醛与异构醛(正异比n:i或者l:b)比率主要由所使用的配体决定,并且产生相对活性和对应选择性的催化剂。
由于铑金属在氢甲酰化反应上的成功,从1970年起至今,绝大部分科研和工业上的研究都是围绕着铑来发展新型催化剂。但是,随着世界范围内对贵金属铑在科研与工业生产中需求越来越大,以及它昂贵的价格促使人们寻找可替代的过渡金属,其中钌成为了研究热点。钌金属在氢化反应中的活性很好,所以,大部分关于铑钌双金属催化的文献都是关于氢甲酰化与氢化反应制备醇类的,而有关铑钌双金属异构化与氢甲酰化制备醛类的文献报道几乎没有。
本发明所使用的异构化催化剂:羰基氢化[6–(二叔丁基膦甲基)–2–(N,N-二乙基氨基甲基)吡啶]氯化钌(II)又称为米尔斯坦催化剂(Milstein Catalyst),其合成方法和路线由David Milstein课题组所报道(J.Am.Chem.Soc.,2005,127,10840)。其中与钌金属形成螯合物的6–(二叔丁基膦甲基)–2–(N,N-二乙基氨基甲基)吡啶(PNN)由3步反应制成,所得到的PNN复合物与三(三苯基膦)羰基氢氯化钌(II)反应得到RuH(Cl)(PNN)(CO)。S.Perdriau等人(Chem.Eur.J.,2014,47,15434)报道了使用RuH(Cl)(PNN)(CO)催化剂把末端烯烃异构化到内烯烃的实验,这是有关RuH(Cl)(PNN)(CO)烯烃异构化反应屈指可数的报道。
在氢甲酰化反应中,虽然双齿膦配体(Bisbi,Naphos,Xantphos,Biphephos等)被国外大型化学公司如BASF、Dow、Shell和Eastman及一些研究小组广泛报导及专利化,三齿膦配体却很少被报导(Org.Lett.2013,15,1048)。在氢甲酰化的工业生产中,目前很多氢甲酰化工艺仍使用PPh3作为配体,虽然铑/三苯基膦体系成功地实施于世界范围的工厂中,但它将正构与异构醛产物的比率限制为约10:1,此外,PPh3在氢甲酰化反应中不仅选择性差,而且加入的大量的三苯基膦难以分离和后处理。双齿膦配体(Bisbi)由Eastman和UCC公司(现Dow)所发明并且专利化(US4694109和US4668651),现已知由Dow、Davy等化学公司开发的二齿膦配体已应用于很多工厂。因此,发展高效的三齿膦配体取代三苯基膦和双齿膦配体的新方法具有很大的实用价值。
以2–辛烯的氢甲酰化反应为例,Van Leeuwen课题组的Xantphos衍生化配体的正异比为9.5(Angew.Chem.Int.Ed.,1999,38,336)。Beller课题组的Naphos型配体的醛产物正异比可达到10.1(Angew.Chem.Int.Ed.,2001,40,3408)。课题组的酰亚磷酸酯膦配体在辛烯异构混合物的正异比为2.2(Angew.Chem.Int.Ed.,2001,40,1696)。Union Carbide Corp.(现陶氏化学,Dow)的大位阻亚磷酸酯膦配体在2–己
稀与2–辛烯的正异比分别为n:i=19和17(US4769498)。以上所提及的文献和专利均使用单一金属铑作为催化剂。
发明内容
针对现有内烯烃氢甲酰化催化体系较低的醛产物正异比的缺陷,本发明所要解决的技术问题是提供一种铑钌双金属与三齿膦配体相结合的催化剂和内烯烃氢甲酰化方法。本发明催化体系具有高转化率、高正异比、催化剂高温下稳定等优点。
本发明中所述含联苯三膦配体的铑络合物、联苯二膦配体铑络合物以及三苯基膦铑络合物,其络合物结构式如下:
本发明提供一种新型的用于内烯烃异构化和氢甲酰化的催化剂,由铑络合物和钌化合物组成,所述铑络合物由铑化合物和有机膦配体络合而成。
上述的催化剂,铑络合物和钌化合物的摩尔比介于1:1至5:1,有机膦配体对铑化合物摩尔比介于1:1至10:1。
其中铑化合物可为三氯化铑(RhCl3)、二羰基乙酰丙酮铑(I)(Rh(acac)(CO)2)、乙酰丙酮(1,5–环辛二烯)铑(I)(Rh(acac)(COD))、羰基铑(Rh6(CO)16或Rh4(CO)12)、醋酸铑(II)(Rh2(OAc)4)、硝酸铑(III)(Rh(NO3)3)或其它适合的铑化合物,最好为二羰基乙酰丙酮铑(I)。在氢甲酰化反应中,铑化合物浓度介于50至1500ppm,其中以100~800ppm为最佳。
有机膦配体可以为单膦配体如三苯基膦(PPh3)、亚磷酸三苯基酯(P(OC6H5)3)等,也可以是多齿膦配体如2,2’–二(二苯基膦基)甲基–1,1’–联苯(Bisbi)、2,2,6–三(二苯基膦甲基)–1,1’–联苯(Tribi)、2,2’–二(二苯苯基膦基)甲基–1,1–联
萘(Naphos)、4,5,–双二苯基膦–9,9–二甲基氧杂蒽(Xantphos)、6,6’–[(3,3’–二叔丁基–5,5’–二甲氧基–1,1’–二苯基–2,2’–二基)双(氧)]双(二苯并[D,F][1,3,2]二噁膦杂庚英)(Biphephos)、四齿膦配体(Tetraphosphone、Tetraphosphoramidite)或其它合适的膦基来源。其中,联苯型三膦配体即:2,2,6–三(二苯基膦甲基)–1,1’–联苯(Tribi)与其他膦配体相比,氢甲酰化效果最好。其特点是易于合成,收率较高以及可以放大合成,该化合物及其衍生物的结构表示如下:
通式II中,Ar可以是苯、对甲基苯、间三氟甲基苯、对三氟甲基苯、3,5–二三氟甲基苯、3,5–二氟苯、3,5–二甲基苯、3,5–二叔丁基苯、3,5–二叔丁基–4–甲氧基苯、对甲氧基苯、对二甲氨基苯、2–吡啶、对氟苯、2,3,4,5,6–五氟苯。
所述钌化合物可以为十二羰基三钌(Ru3(CO)12)、三氯化钌(RuCl3)、三(三苯基膦)二氯化钌(II)(RuCl2(PPh3)3)、二氯三羰基钌二聚体([RuCl2(CO)3]2)、(1,5–环辛二烯)二氯化钌(II)([RuCl2(COD)]n)、羰基氢化[6–(二叔丁基膦甲基)–2–(N,N–二乙基氨基甲基)吡啶]氯化钌(II)(RuH(Cl)(PNN)(CO))、[6–(二叔丁基膦亚甲基)–2–(N,N-二乙基氨基甲基)吡啶]羰基氢化钌(II)(RuH(PNN)(CO))等。其中钌化合物RuH(Cl)(PNN)(CO)与RuH(PNN)(CO)的结构式见通式IA和IB:
在异构化与氢甲酰化反应中,钌化合物浓度介于10至2000ppm,其中以100~1000ppm为最佳。
本发明所述的内烯烃异构化和氢甲酰化催化剂的制备方法如下:
在惰性气体保护(无水无氧条件)下,在有机溶剂中,将称量好的铑化合物与有机膦配体在室温下搅拌络合30~90min;随后,称取钌化合物加入络合好的铑络合物溶液中,室温搅拌15~30min。
为了筛选与优化内烯烃异构化和氢甲酰化的实验条件,先进行单一铑金属化合物和联苯三膦配体的均相内烯烃异构化和氢甲酰化预备实验。在惰性气体保护下,称量一定量的络合好的铑金属络合物溶液到放有搅拌磁子的玻璃瓶中,加入一定量的内标物正癸烷,同时补加一定量的溶剂,最后加入底物内烯烃。本发明所用内烯烃底物为2–辛烯(顺反混合物),通过气相色谱分析,顺、反–2–辛烯的组分为,19.5%的混合物组分为顺–2–辛烯,80.5%的混合物组分为反–2–辛烯。铑化合物与反应物的量之比介于0.005至0.15mol%之间,其中以0.01~0.08mol%最佳。有机膦配体对铑化合物摩尔比介于1:1至10:1之间,其中以4:1和6:1为最佳。加料完毕后,向装有玻璃瓶的反应装置内冲入一定压力的CO与H2,氢气与一氧化碳压力比介于1.5:1至10:1之间,其中以1:1最佳,总压约为0.2MPa至4MPa之间,其中以0.4MPa至1MPa最佳。上述的氢甲酰化反应的温度约为80℃至140℃之间,其中以120℃至140℃最佳。
在完成条件筛选与优化后,配制铑钌双金属配合物和联苯三膦配体的催化剂溶液,进行均相的内烯烃异构化和氢甲酰化反应。在惰性气体保护下,称量一定量的钌化合物加入络合好的铑金属络合物溶液,加入一定量的内标物正癸烷和确定质量的异丙醇,同时补加一定量的溶剂,最后加入底物内烯烃。钌化合物与反应物的量之比介于0.001至0.2mol%之间,其中以0.01~0.1mol%最佳。加料完毕后,向装有玻璃瓶的反应装置内冲入一定压力的CO与H2,氢气与一氧化碳压力比介于1.5:1至10:1之
间,其中以1:1最佳,总压约为0.2MPa至4MPa之间,其中以0.4MPa至1MPa最佳。上述的氢甲酰化反应的温度约为80℃至140℃之间,其中以120℃至140℃最佳。
本发明所使用的气相色谱法分析方法,包括下述步骤:(1)配制不同浓度比例的2–辛烯(顺反混合物)和正癸烷的混合溶液,通过GC分析,计算内标物与2–辛烯(顺反混合物)的校正因子K;(2)采用气相色谱仪进行分析,以HP-5为固定相,火焰离子化检测,分流比设置为20,气化口温度250℃,检测器温度260℃,色谱柱起始柱温60℃,保持8分钟,然后以5℃/min升至柱温120~180℃,以上分析方法可以确保高沸点醛类产物在色谱柱上完全分离;(3)根据醛类产物正壬醛(α–醛)与2-甲基辛醛(β–醛)的出峰时间,向对应的峰求积分可以得到直链醛百分比,正异比;(4)根据反应物2–辛烯(顺反混合物)与内标物的出峰时间,计算峰面积,结合校正因子,可以计算出转化率,转化数等。
总之,本发明提供一种内烯烃异构化和氢甲酰化的反应方法。在反应装置的有机溶剂中,使用本发明所述的催化剂,冲入CO与H2,总压为0.2MPa至4MPa之间,反应温度为80℃至140℃之间。
适用于上述过程的有机溶剂可为甲苯、二氯甲烷、乙酸乙酯、甲醇、乙醇、异丙醇、二氧六环、乙腈、四氢呋喃等。醇类溶剂对本发明的双金属催化剂的效果尤其好。
适合本发明所述的双金属催化均相体系下的内烯烃,从C4到C8:2–丁烯,顺反–2–戊烯,顺反–2–己烯,顺反–3–己烯,顺反–2–庚烯,顺反–3–庚烯,顺反–2–辛烯,顺反–3–辛烯,顺反–4–辛烯的氢甲酰化反应如第1–5式所示。
本发明所介绍的铑钌双金属配合物与联苯三膦配体相结合的催化体系,相比于工业上传统的铑/三苯基膦与铑/联苯二膦配体均相催化体系,在2–辛烯(顺反混合物)的氢甲酰化反应中,具有高转化率(高转化数)、高正构醛与异构醛比例、催化剂高温下稳定以及可以工业化放大等特点。
因为内烯烃与端烯烃相比,更容易生成支链醛、支链烷烃等副产物,而且氢甲酰化效果更复杂,醛产物正异比较低。工业上大规模的氢甲酰化工艺过程都采用低成本的混合内烯烃与端烯烃作为烯烃原料,其中内烯烃较多,端烯烃较少,所以本发明提供的方法有较大工业应用价值。
为了使本领域技术人员更清楚本发明的特征,下面通过实施例对本发明的方案以及工艺路线进行具体描述,有必要指出的是,本实施例只用于对本发明作进一步说明,
该领域的技术人员可以根据本发明的内容作出一些改进和调整。
实施例1:采用乙酰丙酮二羰基铑(Rh(acac)(CO)2)和2,2,6–三(二苯基膦甲基)–1,1’–联苯(Tribi)的氢甲酰化反应(不同膦铑比L/Rh)
根据下表1中列出的膦配体相对铑的不同摩尔比率,在手套箱中秤取铑催化剂Rh(acac)(CO)2(2.6mg,0.01mmol)、2,2,6–三(二苯基膦甲基)–1,1’–联苯(Tribi)(7.5mg,0.01mmol;15mg,0.02mmol;22mg,0.03mmol;30mg,0.04mmol;45mg,0.06mmol)至络合瓶中,再将除氧/水的甲苯(Toluene,1.73g,18.8mmol)溶剂置入瓶中,搅拌使其溶解形成铑与联苯三膦配体的络合物溶液。将高压反应釜放入手套箱内,用微量进样针移取200μl络合好的铑催化剂溶液到放有磁子的反应瓶中(5ml),加入100μl内标物正癸烷和400μl甲苯溶剂,最后加入2–辛烯(顺反混合物)(224.4mg,2mmol)。随后将装有反应瓶的反应釜从手套箱取出,用高纯氢气(99.999%)置换釜中的高纯氩气(99.999%)3次,以CO/H2为1:1的压力比将反应釜的总压升至10bar,然后将反应釜放入预热好的120℃油浴搅拌器中,反应4个小时。
表1
所用配体和催化剂物质的量之比、反应时间、转化率、l/b选择性、线性产物百分率以及转化数均列于表1中。其中,l/b选择性值为正构醛与异构醛的比例,转化率
是基于GC分析内标物正癸烷以及2–辛烯的量来计算的,“线性”为线性产物的百分率,TON为转化数,是由GC根据底物的转化算得。
实施例2:采用乙酰丙酮二羰基铑(Rh(acac)(CO)2)和2,2,6–三(二苯基膦甲基)–1,1’–联苯(Tribi)的氢甲酰化反应(不同反应温度)
根据下表2中列出的膦配体相对铑的摩尔比率(4:1),在手套箱中秤取铑催化剂Rh(acac)(CO)2(2.6mg,0.01mmol)、2,2,6–三(二苯基膦甲基)–1,1’–联苯(Tribi)(30mg,0.04mmol)至络合瓶中,再将除氧/水的甲苯(Toluene,1.73g,18.8mmol)溶剂置入瓶中,搅拌使其溶解形成铑与联苯三膦配体的络合物溶液。将高压反应釜放入手套箱内,用微量进样针移取200μl络合好的铑催化剂溶液到放有磁子的反应瓶中(5ml),加入100μl内标物正癸烷和400μl甲苯溶剂,最后加入2–辛烯(顺反混合物)(224.4mg,2mmol)。随后将装有反应瓶的反应釜从手套箱取出,用H2置换釜中的高纯氩气3次,以CO/H2为1:1的压力比将反应釜的总压升至10bar,然后将反应釜在80℃、90℃、100℃、120℃以及140℃下搅拌4个小时。
表2
实施例3:采用乙酰丙酮二羰基铑(Rh(acac)(CO)2)和2,2,6–三(二苯基膦甲基)–1,1’–联苯(Tribi)的氢甲酰化反应(不同反应压力,S/C=2000,S/C为反应物与催化剂的摩尔比)
根据实例2在手套箱里配制相同浓度的铑催化剂络合物溶液,将高压反应釜放入手套箱内,用微量进样针移取200μl络合好的铑催化剂溶液到放有磁子的反应瓶中(5
ml),加入100μl内标物正癸烷和400μl甲苯溶剂,最后加入2–辛烯(顺反混合物)(224.4mg,2mmol)。随后将装有反应瓶的反应釜从手套箱取出,用H2置换釜中的高纯氩气3次,以CO/H2为1:1的压力比分别将反应釜的总压升至4bar、5bar、10bar、20bar以及40bar,然后将反应釜分别在120℃和140℃下搅拌4个小时。
表3
实施例4:采用乙酰丙酮二羰基铑(Rh(acac)(CO)2)和2,2,6–三(二苯基膦甲基)–1,1’–联苯(Tribi)的氢甲酰化反应(不同反应压力S/C=10000)
根据下表4中底物与催化剂的物质的量之比(10000:1),以及膦铑比(4:1),在手套箱中秤取铑催化剂Rh(acac)(CO)2(5.2mg,0.02mmol)、2,2,6–三(二苯基膦甲基)–1,1’–联苯(Tribi)(60mg,0.08mmol)至络合瓶中,再将除氧/水的甲苯(Toluene,8.66g,94.0mmol)溶剂置入瓶中,搅拌使其溶解形成铑与联苯三膦配体的络合物溶液。将高压反应釜放入手套箱内,用微量进样针移取100μl络合好的铑催化剂溶液到放有磁子的反应瓶中(5ml),加入100μl内标物正癸烷和400μl甲苯溶剂,最后加入2–辛烯(顺反混合物)(224.4mg,2mmol)。随后将装有反应瓶的反应釜从手套箱取出,用H2置换釜中的高纯氩气3次,以CO/H2为1:1的压力比分别将反
应釜的总压升至4bar、5bar、10bar、20bar以及40bar,然后将反应釜分别在120℃和140℃下搅拌4个小时。
表4
实施例5:采用乙酰丙酮二羰基铑(Rh(acac)(CO)2)和2,2,6–三(二苯基膦甲基)–1,1’–联苯(Tribi)的氢甲酰化反应(不同反应时间)
根据实例2在手套箱里配制相同浓度的铑催化剂络合物溶液,将高压反应釜放入手套箱内,用微量进样针移取200μl络合好的铑催化剂溶液到放有磁子的反应瓶中(5ml),加入100μl内标物正癸烷和400μl甲苯溶剂,最后加入2–辛烯(顺反混合物)(224.4mg,2mmol)。随后将装有反应瓶的反应釜从手套箱取出,用H2置换釜中的高纯氩气3次,以CO/H2为1:1的压力比将反应釜的总压升至4bar,然后将反应釜在140下分别搅拌1、2、4、6、8和12个小时。
表5
根据以上单铑金属与三齿膦配体的内烯烃氢甲酰化反应实例(实例1~5),本发明优化后的反应条件为:底物与催化剂物质的量之比(S/C=2000)、膦铑比(L/Rh=4)、CO与H2压力比(2.0:2.0bar)、反应温度(140℃)、反应时间(4h),以及膦钌比(L/Ru=4)。由于钌催化剂(Milstein Catalyst)很宝贵,合成步骤复杂。并且钌作为异构化催化剂在常温下手套箱里跟烯烃搅拌反应就可以起异构化作用,所以对反应条件敏感的就只有氢甲酰化催化剂铑。下面按实施例1~5筛选出来的优化条件,对铑钌双金属与三齿膦配体催化体系进行溶剂筛选和配体比较。
实施例6:采用乙酰丙酮二羰基铑(Rh(acac)(CO)2)、羰基氢化[6–(二叔丁基膦甲基)–2–(N,N–二乙基氨基甲基)吡啶]氯化钌(RuH(Cl)(PNN)(CO))和2,2,6–三(二苯基膦甲基)–1,1’–联苯(Tribi)的异构化与氢甲酰化反应(溶剂筛选)
根据预备实验所得到的优化条件,在手套箱中秤取铑化合物Rh(acac)(CO)2(5.2mg,0.02mmol)、2,2,6–三(二苯基膦甲基)–1,1’–联苯(Tribi)(60mg,0.08mmol)至络合瓶中,再将除氧/水的甲苯(Toluene,1.73g,18.8mmol)溶剂置入瓶中,搅拌使其溶解形成铑与联苯三膦配体的络合物溶液。随后,在手套箱里称取钌化合物RuH(Cl)(PNN)(CO)(9.8mg,0.02mmol),加入到络合好的铑催化剂溶液中,在室温下搅拌使其溶解。将高压反应釜放入手套箱内,用微量进样针移取100μl络合好的铑钌催化剂溶液到放有磁子的反应瓶中(5ml),加入100μl内标物正癸烷、150μl添加剂和350μl溶剂(表6中所列溶剂),最后加入2–辛烯(顺反混合物)(224.4mg,2
mmol)。随后将装有反应瓶的反应釜从手套箱取出,用H2置换釜中的高纯氩气3次,以CO/H2为1:1的压力比将反应釜的总压升至4bar,然后将反应釜在140℃下搅拌4个小时。
表6
表6中,“异构化”指2–辛烯异构化为1–辛烯的百分率。上表中,以甲醇、乙醇和三氟乙醇等醇类作为溶剂时,醛产物的正异比较高。因为三齿膦配体在醇类溶剂中的溶解度极差或者不溶,所以,本发明在实施过程中,先采用二氯甲烷作为铑钌双金属化合物与膦配体的溶剂,对催化剂进行络合,再和反应底物、反应溶剂混合。
实施例7:采用单金属铑(Rh(acac)(CO)2)和联苯三膦配体(Tribi)与铑钌双金属(Rh(acac)(CO)2、RuH(Cl)(PNN)(CO))和联苯三膦配体(Tribi)在三种醇类溶剂里的异构化与氢甲酰化反应(单金属与双金属催化下的溶剂结果对比)
根据表6所得到的结果,为了证明铑钌双金属催化体系比铑单金属催化体系具有
更高正异比,高转化率和TON等优势,分别配制了铑钌双金属和Tribi与铑单金属和Tribi的催化剂溶液,并对比2–辛烯(顺反混合物)在三种醇类溶剂即:三氟乙醇、甲醇和乙醇中的氢甲酰化反应结果。
在手套箱中秤取铑催化剂Rh(acac)(CO)2(5.2mg,0.02mmol)、2,2,6–三(二苯基膦甲基)–1,1’–联苯(Tribi)(60mg,0.08mmol)至络合瓶中,再将除氧/水的二氯甲烷(Dichloromethane,2.65g,31.2mmol)溶剂置入瓶中,搅拌使其溶解形成铑与联苯三膦配体的络合物溶液。将高压反应釜放入手套箱内,用微量进样针移取100μl络合好的铑催化剂溶液到放有磁子的反应瓶中(5ml),加入100μl内标物正癸烷、150μl添加剂和350μl溶剂,最后加入2–辛烯(顺反混合物)(224.4mg,2mmol)。随后将装有反应瓶的反应釜从手套箱取出,用高纯氢气(99.999%)置换釜中的高纯氩气(99.999%)3次,以CO/H2为1:1的压力比将反应釜的总压升至4bar,然后将反应釜放入预热好的140℃油浴搅拌器中,反应4个小时。
在手套箱中秤取铑催化剂Rh(acac)(CO)2(5.2mg,0.02mmol)、2,2,6–三(二苯基膦甲基)–1,1’–联苯(Tribi)(60mg,0.08mmol)至络合瓶中,再将除氧/水的二氯甲烷(Dichloromethane,2.65g,31.2mmol)溶剂置入瓶中,搅拌使其溶解形成铑与联苯三膦配体的络合物溶液。随后,在手套箱里称取钌催化剂RuH(Cl)(PNN)(CO)(9.8mg,0.02mmol),加入到络合好的铑催化剂溶液中,在室温下搅拌使其溶解。将高压反应釜放入手套箱内,用微量进样针移取100μl络合好的铑钌催化剂溶液到放有磁子的反应瓶中(5ml),加入100μl内标物正癸烷、150μl添加剂和350μl溶剂,最后加入2–辛烯(顺反混合物)(224.4mg,2mmol)。随后将装有反应瓶的反应釜从手套箱取出,用H2置换釜中的高纯氩气3次,以CO/H2为1:1的压力比将反应釜的总压升至4bar,然后将反应釜在140℃下搅拌4个小时。
表7
实施例8:采用乙酰丙酮二羰基铑(Rh(acac)(CO)2)、羰基氢化[6–(二叔丁基膦甲基)–2–(N,N–二乙基氨基甲基)吡啶]氯化钌(RuH(Cl)(PNN)(CO))和2,2,6–三(二苯基膦甲基)–1,1’–联苯(Tribi),以及两种工业型配体:联苯二膦配体(Bisbi)和三苯基膦(PPh3)的异构化与氢甲酰化反应(相同膦铑比和膦钌比下的结果对比)
根据表6中所得到的优化条件,在手套箱中秤取铑催化剂Rh(acac)(CO)2(5.2mg,0.02mmol)、2,2,6–三(二苯基膦甲基)–1,1’–联苯(Tribi)(60mg,0.08mmol)至络合瓶中,再将除氧/水的二氯甲烷(Dichloromethane,2.65g,31.2mmol)溶剂置入瓶中,搅拌使其溶解形成铑与联苯三膦配体的络合物溶液。随后,在手套箱里称取钌催化剂RuH(Cl)(PNN)(CO)(9.8mg,0.02mmol),加入到络合好的铑催化剂溶液中,在室温下搅拌使其溶解。将高压反应釜放入手套箱内,用微量进样针移取100μl络合好的铑钌催化剂溶液到放有磁子的反应瓶中(5ml),加入100μl内标物正癸烷、150μl添加剂和350μl溶剂,最后加入2–辛烯(顺反混合物)(224.4mg,2mmol)。随后将装有反应瓶的反应釜从手套箱取出,用H2置换釜中的高纯氩气3次,以CO/H2为1:1的压力比将反应釜的总压升至4bar,然后将反应釜在140℃下搅拌4个小时。
在手套箱中秤取铑催化剂Rh(acac)(CO)2(2.6mg,0.01mmol)、2,2’–二(二苯基膦基)甲基–1,1’–联苯(Bisbi)(22mg,0.04mmol)至络合瓶中,再将除氧/水的二氯甲烷(Dichloromethane,1.33g,15.6mmol)溶剂置入瓶中,搅拌使其溶解形成铑与联苯二膦配体的络合物溶液。随后,在手套箱里称取钌催化剂RuH(Cl)(PNN)(CO)(4.9mg,0.01mmol),加入到络合好的铑催化剂溶液中,在室温下搅拌使其溶解。将高压
反应釜放入手套箱内,用微量进样针移取100μl络合好的铑钌催化剂溶液到放有磁子的反应瓶中(5ml),加入100μl内标物正癸烷、150μl添加剂和350μl溶剂,最后加入2–辛烯(顺反混合物)(224.4mg,2mmol)。随后将装有反应瓶的反应釜从手套箱取出,用H2置换釜中的高纯氩气3次,以CO/H2为1:1的压力比将反应釜的总压升至4bar,然后将反应釜在140℃下搅拌4个小时。
在手套箱中秤取铑催化剂Rh(acac)(CO)2(2.6mg,0.01mmol)、三苯基膦(10.5mg,0.04mmol)至络合瓶中,再将除氧/水的二氯甲烷(Dichloromethane,1.33g,15.6mmol)溶剂置入瓶中,搅拌使其溶解形成铑与三苯基膦的络合物溶液。随后,在手套箱里称取钌催化剂RuH(Cl)(PNN)(CO)(4.9mg,0.01mmol),加入到络合好的铑催化剂溶液中,在室温下搅拌使其溶解。将高压反应釜放入手套箱内,用微量进样针移取100μl络合好的铑钌催化剂溶液到放有磁子的反应瓶中(5ml),加入100μl内标物正癸烷、150μl添加剂和350μl溶剂,最后加入2–辛烯(顺反混合物)(224.4mg,2mmol)。随后将装有反应瓶的反应釜从手套箱取出,用H2置换釜中的高纯氩气3次,以CO/H2为1:1的压力比将反应釜的总压升至4bar,然后将反应釜在140℃下搅拌4个小时。
表8
实施例9:采用乙酰丙酮二羰基铑(Rh(acac)(CO)2)、羰基氢化[6–(二叔丁基膦甲基)–2–(N,N–二乙基氨基甲基)吡啶]氯化钌(RuH(Cl)(PNN)(CO))和2,2,6–三(二
苯基膦甲基)–1,1’–联苯(Tribi),以及两种工业型配体:联苯二膦配体(Bisbi)和三苯基膦(PPh3)的异构化与氢甲酰化反应(不同膦铑比和膦钌比但相同配体质量下的结果对比)
根据表6中所得到的优化条件,在手套箱中秤取铑催化剂Rh(acac)(CO)2(5.2mg,0.02mmol)、2,2,6–三(二苯基膦甲基)–1,1’–联苯(Tribi)(60mg,0.08mmol)至络合瓶中,再将除氧/水的二氯甲烷(Dichloromethane,2.65g,31.2mmol)溶剂置入瓶中,搅拌使其溶解形成铑与联苯三膦配体的络合物溶液。随后,在手套箱里称取钌催化剂RuH(Cl)(PNN)(CO)(9.8mg,0.02mmol),加入到络合好的铑催化剂溶液中,在室温下搅拌使其溶解。将高压反应釜放入手套箱内,用微量进样针移取100μl络合好的铑钌催化剂溶液到放有磁子的反应瓶中(5ml),加入100μl内标物正癸烷、150μl添加剂和350μl溶剂,最后加入2–辛烯(顺反混合物)(224.4mg,2mmol)。随后将装有反应瓶的反应釜从手套箱取出,用H2置换釜中的高纯氩气3次,以CO/H2为1:1的压力比将反应釜的总压升至4bar,然后将反应釜在140℃下搅拌4个小时。
在手套箱中秤取铑催化剂Rh(acac)(CO)2(2.6mg,0.01mmol)、2,2’–二(二苯基膦基)甲基–1,1’–联苯(Bisbi)(30mg,0.0545mmol)至络合瓶中,再将除氧/水的二氯甲烷(Dichloromethane,1.33g,15.6mmol)溶剂置入瓶中,搅拌使其溶解形成铑与联苯二膦配体的络合物溶液。随后,在手套箱里称取钌催化剂RuH(Cl)(PNN)(CO)(4.9mg,0.01mmol),加入到络合好的铑催化剂溶液中,在室温下搅拌使其溶解。将高压反应釜放入手套箱内,用微量进样针移取100μl络合好的铑钌催化剂溶液到放有磁子的反应瓶中(5ml),加入100μl内标物正癸烷、150μl添加剂和350μl溶剂,最后加入2–辛烯(顺反混合物)(224.4mg,2mmol)。随后将装有反应瓶的反应釜从手套箱取出,用H2置换釜中的高纯氩气3次,以CO/H2为1:1的压力比将反应釜的总压升至4bar,然后将反应釜在140℃下搅拌4个小时。
在手套箱中秤取铑催化剂Rh(acac)(CO)2(2.6mg,0.01mmol)、三苯基膦(30mg,0.1144mmol)至络合瓶中,再将除氧/水的二氯甲烷(Dichloromethane,1.33g,15.6mmol)溶剂置入瓶中,搅拌使其溶解形成铑与三苯基膦的络合物溶液。随后,在手套箱里称取钌催化剂RuH(Cl)(PNN)(CO)(4.9mg,0.01mmol),加入到络合好的铑催化剂溶液中,在室温下搅拌使其溶解。将高压反应釜放入手套箱内,用微量进样针移取100μl络合好的铑钌催化剂溶液到放有磁子的反应瓶中(5ml),加入100μl内标
物正癸烷、150μl添加剂和350μl溶剂,最后加入2–辛烯(顺反混合物)(224.4mg,2mmol)。随后将装有反应瓶的反应釜从手套箱取出,用H2置换釜中的高纯氩气3次,以CO/H2为1:1的压力比将反应釜的总压升至4bar,然后将反应釜在140℃下搅拌4个小时。
表9
实施例10:采用乙酰丙酮二羰基铑(Rh(acac)(CO)2)、羰基氢化[6–(二叔丁基膦甲基)–2–(N,N–二乙基氨基甲基)吡啶]氯化钌(RuH(Cl)(PNN)(CO))和2,2,6–三(二苯基膦甲基)–1,1’–联苯(Tribi)的异构化与氢甲酰化反应,以及联苯二膦配体(Bisbi)的异构化与氢甲酰化反应(各种α–,β–,γ–烯烃结果对比)
根据表6中所得到的优化条件,在手套箱中秤取铑催化剂Rh(acac)(CO)2(5.2mg,0.02mmol)、2,2,6–三(二苯基膦甲基)–1,1’–联苯(Tribi)(60mg,0.08mmol)至络合瓶中,再将除氧/水的二氯甲烷(Toluene,1.73g,18.8mmol)溶剂置入瓶中,搅拌使其溶解形成铑与联苯三膦配体的络合物溶液。随后,在手套箱里称取钌催化剂RuH(Cl)(PNN)(CO)(9.8mg,0.02mmol),加入到络合好的铑催化剂溶液中,在室温下搅拌使其溶解。将高压反应釜放入手套箱内,用微量进样针移取100μl络合好的铑钌催化剂溶液到放有磁子的反应瓶中(5ml),加入100μl内标物正癸烷、适量添加
剂和相对应的溶剂,最后分批次加入各种α–,β–,γ–烯烃(1mmol)。随后将装有反应瓶的反应釜从手套箱取出,用H2置换釜中的高纯氩气3次,以CO/H2为1:1的压力比将反应釜的总压升至4bar,然后将反应釜在140℃下搅拌2个小时。
在手套箱中秤取铑催化剂Rh(acac)(CO)2(2.6mg,0.01mmol)、2,2’–二(二苯基膦基)甲基–1,1’–联苯(Bisbi)(22mg,0.04mmol)至络合瓶中,再将除氧/水的二氯甲烷(Dichloromethane,1.33g,15.6mmol)溶剂置入瓶中,搅拌使其溶解形成铑与联苯二膦配体的络合物溶液。随后,在手套箱里称取钌催化剂RuH(Cl)(PNN)(CO)(4.9mg,0.01mmol),加入到络合好的铑催化剂溶液中,在室温下搅拌使其溶解。将高压反应釜放入手套箱内,用微量进样针移取100μl络合好的铑钌催化剂溶液到放有磁子的反应瓶中(5ml),加入100μl内标物正癸烷、适量添加剂和相对应的溶剂,最后分批次加入各种α–,β–,γ–烯烃(1mmol)。随后将装有反应瓶的反应釜从手套箱取出,用H2置换釜中的高纯氩气3次,以CO/H2为1:1的压力比将反应釜的总压升至4bar,然后将反应釜在140℃下搅拌2个小时。
表10
Claims (10)
- 一种催化剂,由铑络合物和钌化合物组成,所述铑络合物由铑化合物和有机磷配体络合而成。
- 根据权利要求1所述的催化剂,其特征在于,铑络合物和钌化合物的摩尔介于1:1至5:1,有机磷配体对铑化合物摩尔比介于1:1至10:1。
- 根据权利要求1所述的催化剂,其特征在于,其中铑化合物为RhCl3、二Rh(acac)(CO)2、Rh(acac)(COD)、Rh6(CO)16或Rh4(CO)12)、Rh2(OAc)4、Rh(NO3)3。
- 根据权利要求1所述的催化剂,其特征在于,有机磷配体为三苯基磷、亚磷酸三苯基酯、2,2’–二(二苯基膦基)甲基–1,1’–联苯、2,2,6–三(二苯基膦甲基)–1,1’–联苯、2,2’–二(二苯苯基磷基)甲基–1,1–联萘、4,5,–双二苯基膦–9,9–二甲基氧杂蒽、6,6’–[(3,3’–二叔丁基–5,5’–二甲氧基–1,1’–二苯基–2,2’–二基)双(氧)]双(二苯并[D,F][1,3,2]二噁磷杂庚英)、或四齿磷配体。
- 根据权利要求1所述的催化剂,其特征在于,所述钌化合物为Ru3(CO)12、RuCl3、RuCl2(PPh3)3、[RuCl2(CO)3]2、[RuCl2(COD)]n、RuH(Cl)(PNN)(CO)、或RuH(PNN)(CO)。
- 一种内烯烃异构化和氢甲酰化的反应方法,其特征在于,在反应装置的有机溶剂中,使用权利要求1~6中任一种所述的催化剂,冲入CO与H2,总压为0.2MPa至4MPa之间,反应温度为80℃至140℃之间。
- 根据权利要求7所述的反应方法,其特征在于,有机溶剂为甲苯、二氯甲烷、乙酸乙酯、甲醇、乙醇、异丙醇、二氧六环、乙腈或四氢呋喃。
- 根绝权利要求7所述的反应方法,其特征在于,所述内烯烃为:2–丁烯,顺反–2–戊烯,顺反–2–己烯,顺反–3–己烯,顺反–2–庚烯,顺反–3–庚烯,顺反–2–辛烯,顺反–3–辛烯,顺反–4–辛烯,顺反–2–壬烯,顺反–3–壬烯,顺反–4–壬烯,顺反–2–癸烯,顺反–3–癸烯,顺反–4–癸烯,或顺反–5–癸烯。
- 权利要求1~6中任一种所述的催化剂用于催化内烯烃异构化和氢甲酰化的用途。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611121100.5A CN106622376B (zh) | 2016-12-08 | 2016-12-08 | 一种内烯烃的异构化与氢甲酰化反应方法和催化剂 |
CN201611121100.5 | 2016-12-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018103536A1 true WO2018103536A1 (zh) | 2018-06-14 |
Family
ID=58819238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/112598 WO2018103536A1 (zh) | 2016-12-08 | 2017-11-23 | 一种内烯烃的异构化与氢甲酰化反应方法和催化剂 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106622376B (zh) |
WO (1) | WO2018103536A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113087601A (zh) * | 2019-12-23 | 2021-07-09 | 内蒙古伊泰煤基新材料研究院有限公司 | 一种基于费托烯烃的高碳醚制备方法及高碳醚类相变材料 |
CN113121614A (zh) * | 2021-04-22 | 2021-07-16 | 中国科学院上海高等研究院 | 一种水溶性金属基络合物及其制备方法和用途 |
CN113956289A (zh) * | 2021-10-12 | 2022-01-21 | 复旦大学 | 一种氮膦配体及其制备方法和在芳基乙烯氢甲酰化反应中的应用 |
CN116408147A (zh) * | 2023-04-10 | 2023-07-11 | 中国科学院兰州化学物理研究所 | 一种共价三嗪有机聚合物负载铑催化材料的制备及其应用 |
WO2024129290A1 (en) | 2022-12-13 | 2024-06-20 | Dow Technology Investments Llc | Process to minimize polyphosphine usage by making use of degradation products |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106622376B (zh) * | 2016-12-08 | 2019-10-11 | 武汉凯特立斯科技有限公司 | 一种内烯烃的异构化与氢甲酰化反应方法和催化剂 |
CN106824282B (zh) * | 2017-01-12 | 2019-10-11 | 武汉凯特立斯科技有限公司 | 一种采用铑钌双金属与四齿膦配体的氢甲酰化反应方法和催化剂 |
CN108940367A (zh) * | 2018-06-28 | 2018-12-07 | 南京荣欣化工有限公司 | 一种用于烯烃氢甲酰化反应的催化剂的制备方法 |
CN110862307A (zh) * | 2018-08-27 | 2020-03-06 | 中国石油化工股份有限公司 | 一种混合碳四氢甲酰化反应制备醛的方法 |
CN111450886A (zh) * | 2019-01-22 | 2020-07-28 | 中国科学院上海高等研究院 | 用于催化炔烃生成反式烯烃的催化剂及其制备方法和用途 |
CN112121864A (zh) * | 2019-06-24 | 2020-12-25 | 内蒙古伊泰煤基新材料研究院有限公司 | 一种长链烯烃的氢甲酰化催化剂及氢甲酰化方法 |
CN110343209B (zh) * | 2019-07-15 | 2021-09-17 | 中国科学院青岛生物能源与过程研究所 | 一种二齿磷配体聚合物及其制备方法和在烯烃氢甲酰化反应中的应用 |
CN110423250A (zh) * | 2019-08-13 | 2019-11-08 | 成都欣华源科技有限责任公司 | 用于催化不饱和油酯氢甲酰化的钳形双膦配体、其催化剂及催化剂的制备方法与应用 |
CN112570032A (zh) * | 2020-11-17 | 2021-03-30 | 广东仁康达材料科技有限公司 | 一种水溶性氢甲酰化催化剂及其应用 |
CN112642489B (zh) * | 2020-12-23 | 2022-09-20 | 山东新和成药业有限公司 | 一种均相双金属络合催化剂、其制备方法及其在醇制备醛中的应用 |
CN113385234B (zh) * | 2021-01-12 | 2022-05-24 | 杭州师范大学 | 一种催化剂体系及其制备己二胺的方法 |
CN114644652A (zh) * | 2022-04-22 | 2022-06-21 | 广东欧凯新材料有限公司 | 一种大位阻双苯酚化合物及其双膦配体的制备方法 |
CN115490576B (zh) * | 2022-10-11 | 2024-03-08 | 青岛科技大学 | 一种反式-2-烯烃的合成方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6646106B1 (en) * | 1999-03-01 | 2003-11-11 | Rhodia Chimie | Optically active linear polymer used as ligand in the preparation of metallic complexes designed for asymmetric catalysis |
CN1610688A (zh) * | 2000-11-17 | 2005-04-27 | 宾夕法尼亚州研究基金会 | 邻位取代的手性膦和三价膦酸酯及其在不对称催化反应中的用途 |
CN101331144A (zh) * | 2005-12-15 | 2008-12-24 | 宾夕法尼亚州研究基金会 | 用于催化加氢甲酰基化和相关反应的四磷配体 |
CN106622376A (zh) * | 2016-12-08 | 2017-05-10 | 武汉凯特立斯科技有限公司 | 一种内烯烃的异构化与氢甲酰化反应方法和催化剂 |
CN106824282A (zh) * | 2017-01-12 | 2017-06-13 | 武汉凯特立斯科技有限公司 | 一种采用铑钌双金属与四齿膦配体的氢甲酰化反应方法和催化剂 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4361711A (en) * | 1981-12-18 | 1982-11-30 | The Standard Oil Company | Alcohols from olefins and synthesis gas |
FR2983478B1 (fr) * | 2011-12-01 | 2013-11-15 | Arkema France | Procede de preparation d'aminoacide comprenant une etape d'hydroformylation d'un nitrile gras insature |
CN102875599B (zh) * | 2012-09-29 | 2015-11-04 | 武汉大学 | 三齿膦配体及其在线性氢甲酰化及类似反应中的应用 |
CN104874423B (zh) * | 2014-02-27 | 2017-03-22 | 中国石油化工股份有限公司 | 一种含铑、钌双金属催化剂的制备方法 |
-
2016
- 2016-12-08 CN CN201611121100.5A patent/CN106622376B/zh active Active
-
2017
- 2017-11-23 WO PCT/CN2017/112598 patent/WO2018103536A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6646106B1 (en) * | 1999-03-01 | 2003-11-11 | Rhodia Chimie | Optically active linear polymer used as ligand in the preparation of metallic complexes designed for asymmetric catalysis |
CN1610688A (zh) * | 2000-11-17 | 2005-04-27 | 宾夕法尼亚州研究基金会 | 邻位取代的手性膦和三价膦酸酯及其在不对称催化反应中的用途 |
CN101331144A (zh) * | 2005-12-15 | 2008-12-24 | 宾夕法尼亚州研究基金会 | 用于催化加氢甲酰基化和相关反应的四磷配体 |
CN106622376A (zh) * | 2016-12-08 | 2017-05-10 | 武汉凯特立斯科技有限公司 | 一种内烯烃的异构化与氢甲酰化反应方法和催化剂 |
CN106824282A (zh) * | 2017-01-12 | 2017-06-13 | 武汉凯特立斯科技有限公司 | 一种采用铑钌双金属与四齿膦配体的氢甲酰化反应方法和催化剂 |
Non-Patent Citations (1)
Title |
---|
KSENIA KARTASHOVA: "Synthesis of a bimetallic P-N bridged rhodium (I)-ru- thenium (II) complex: Application in the hydroformylation reaction", JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 799, 22 October 2015 (2015-10-22), pages 226 - 231, XP029350871 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113087601A (zh) * | 2019-12-23 | 2021-07-09 | 内蒙古伊泰煤基新材料研究院有限公司 | 一种基于费托烯烃的高碳醚制备方法及高碳醚类相变材料 |
CN113087601B (zh) * | 2019-12-23 | 2023-12-26 | 内蒙古伊泰煤基新材料研究院有限公司 | 一种基于费托烯烃的高碳醚制备方法及高碳醚类相变材料 |
CN113121614A (zh) * | 2021-04-22 | 2021-07-16 | 中国科学院上海高等研究院 | 一种水溶性金属基络合物及其制备方法和用途 |
CN113956289A (zh) * | 2021-10-12 | 2022-01-21 | 复旦大学 | 一种氮膦配体及其制备方法和在芳基乙烯氢甲酰化反应中的应用 |
WO2024129290A1 (en) | 2022-12-13 | 2024-06-20 | Dow Technology Investments Llc | Process to minimize polyphosphine usage by making use of degradation products |
CN116408147A (zh) * | 2023-04-10 | 2023-07-11 | 中国科学院兰州化学物理研究所 | 一种共价三嗪有机聚合物负载铑催化材料的制备及其应用 |
CN116408147B (zh) * | 2023-04-10 | 2023-09-29 | 中国科学院兰州化学物理研究所 | 一种共价三嗪有机聚合物负载铑催化材料的制备及其应用 |
Also Published As
Publication number | Publication date |
---|---|
CN106622376A (zh) | 2017-05-10 |
CN106622376B (zh) | 2019-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018103536A1 (zh) | 一种内烯烃的异构化与氢甲酰化反应方法和催化剂 | |
US10766833B2 (en) | Hydroformylation method and catalyst using rhodium-ruthenium dual metal and tetradentate phosphine ligand | |
CN109806911B (zh) | 一种高选择性制备直链醛的催化剂及其制备和应用 | |
Leung et al. | Catalytic intermolecular hydroacylation of C–C π-bonds in the absence of chelation assistance | |
Weber | Phosphorus heterocycles: From laboratory curiosities to ligands in highly efficient catalysts | |
Bohnen et al. | Hydroformylation of alkenes: An industrial view of the status and importance | |
CN101248030B (zh) | 用于复分解反应的具有环状含磷配体和环状有机配体的过渡金属化合物 | |
van Engelen et al. | Suitable ligands for homogeneous ruthenium-catalyzed hydrogenolysis of esters | |
JP4571140B2 (ja) | 燐を含む触媒組成物及びそれを利用したヒドロホルミル化の方法 | |
Achard | Advances in Homogeneous Catalysis Using Secondary Phosphine Oxides (SPOs): Pre-ligands for Metal Complexes | |
TW201233668A (en) | Method for hydroformylation of unsaturated compounds | |
CN106513048A (zh) | 用于内烯烃氢甲酰化反应的催化剂及其制备方法和应用 | |
Heck | Cobalt and palladium reagents in organic synthesis: The beginning | |
Cadierno et al. | Neutral and cationic (η6-arene)-ruthenium (II) complexes containing the iminophosphorane–phosphine ligand Ph2PCH2P ( Np-C5F4N) Ph2: influence of the arene ring in catalytic transfer hydrogenation of cyclohexanone | |
JPH09124534A (ja) | オレフィン性不飽和化合物のヒドロホルミル化方法 | |
CN103987690B (zh) | 由甲酸酯和烯属不饱和化合物制备酯的方法 | |
Ungváry | Application of transition metals in hydroformylation annual survey covering the year 2001 | |
Phillips et al. | A new class of rhodium (I) κ1-P and κ2-P, N complexes with rigid PTN (R) ligands (PTN= 7-phospha-3-methyl-1, 3, 5-triazabicyclo [3.3. 1] nonane) | |
Yoshioka et al. | Development of Effective Bidentate Diphosphine Ligands of Ruthenium Catalysts toward Practical Hydrogenation of Carboxylic Acids | |
Díaz-Álvarez et al. | Imination reactions of free and coordinated 2-diphenylphosphino-1-phenyl-phospholane: Access to regioisomeric ruthenium (ii) complexes containing novel iminophosphorane–phosphine ligands | |
KR102340629B1 (ko) | 하이드로포밀화 반응용 헤테로 리간드 배위결합 촉매 조성물 및 이의 용도 | |
JP2005508242A (ja) | コバルト−鉄触媒を用いた酸化エチレンと合成ガスからの1,3−プロパンジオールの一段での製造 | |
Mizushima et al. | Synthesis of [Ru (CO) 2 (PPh3)(SP)] and [Ru (CO)(PPh3) 2 (SP)] and their catalytic activities for the hydroamination of phenylacetylene | |
CN113980052A (zh) | 一种单磷酸酯配体及其制备方法和在氢甲酰化反应中的应用 | |
Ungváry | Application of transition metals in hydroformylation annual survey covering the year 1998 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17878436 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17878436 Country of ref document: EP Kind code of ref document: A1 |