WO2018101158A1 - モータとその制御装置 - Google Patents

モータとその制御装置 Download PDF

Info

Publication number
WO2018101158A1
WO2018101158A1 PCT/JP2017/042157 JP2017042157W WO2018101158A1 WO 2018101158 A1 WO2018101158 A1 WO 2018101158A1 JP 2017042157 W JP2017042157 W JP 2017042157W WO 2018101158 A1 WO2018101158 A1 WO 2018101158A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
rotor
winding
motor
stator
Prior art date
Application number
PCT/JP2017/042157
Other languages
English (en)
French (fr)
Inventor
梨木 政行
Original Assignee
梨木 政行
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017004918A external-priority patent/JP7126150B2/ja
Application filed by 梨木 政行 filed Critical 梨木 政行
Priority to CN201780085312.9A priority Critical patent/CN110235356B/zh
Priority to US16/465,685 priority patent/US11283385B2/en
Priority to EP17876042.7A priority patent/EP3570431A4/en
Publication of WO2018101158A1 publication Critical patent/WO2018101158A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/32Arrangements for controlling wound field motors, e.g. motors with exciter coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/26Power factor control [PFC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/0094Structural association with other electrical or electronic devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/34Cascade arrangement of an asynchronous motor with another dynamo-electric motor or converter
    • H02K17/40Cascade arrangement of an asynchronous motor with another dynamo-electric motor or converter with a rotary AC/DC converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0085Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed
    • H02P21/0089Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed using field weakening
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/0086Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for high speeds, e.g. above nominal speed
    • H02P23/009Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for high speeds, e.g. above nominal speed using field weakening
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • H02P9/26Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices
    • H02P9/30Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices
    • H02P9/302Brushless excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Definitions

  • the present invention relates to a main motor, an industrial motor, an aircraft motor, and the like of an electric vehicle EV.
  • motor technology it is a motor and its control device that can freely control the magnitude and torque of the field magnetic flux, and further relates to a motor and its control device that hardly generate an armature reaction at a large peak torque. is there.
  • the problem with the motor with a built-in permanent magnet is that the position of the field magnetic flux changes in the circumferential direction due to the armature reaction that generates a torque current component. Further, since many permanent magnets are used to improve the motor efficiency, it is caused by the fact that field-weakening control is required at high speed rotation.
  • the armature reaction refers to an adverse effect such as the distribution of the field magnetic flux being biased in the circumferential direction due to an electromagnetic action that generates a torque current component.
  • FIG. 28 shows a model of the induction motor.
  • induction motors are considered to be inefficient because of their low power factor and copper loss in the rotor windings.
  • it is robust, does not use expensive permanent magnets, and is produced in large quantities and is inexpensive.
  • Particularly relevant to the present invention is that it does not generate an armature reaction and is excellent in characteristics of constant output control by field weakening control and high-speed rotation operation.
  • Reference numeral 251 denotes a stator
  • reference numeral 252 denotes a rotor, which is a two-pole motor
  • Reference numerals 253 and 254 denote field current components Id, which generate field magnetic flux ⁇ a of 25B, 255, and the like.
  • the field current component Id is rotated in the circumferential direction at a speed higher than the rotor rotational speed Vr by the sliding speed Vs.
  • a voltage proportional to the field magnetic flux ⁇ a and the slip speed Vs in the counterclockwise direction CCW is generated in the q-axis winding, and the rotor secondary currents 256 and 257 are energized.
  • the field current component Id is connected to a voltage source with a low power source impedance, such as a three-phase, 50/60 Hz, 200 V commercial power source. Accordingly, the q-axis current components Iq 258 and 259 are energized so as to compensate for the field magnetic flux ⁇ a being lowered by the rotor secondary currents 256 and 257.
  • the rotor secondary currents 256 and 257 and the q-axis current component Iq 258 and 259 have the same current value and the opposite current directions.
  • a torque T indicated by an arrow 25A proportional to the field magnetic flux ⁇ a and the rotor secondary currents 256 and 257 is generated in the CCW.
  • the circuit integral of the magnetic field strength H along 25C is the sum of 258 and 256 and is zero, the magnetic flux component in this direction is zero, and the armature reaction is It does not occur. Similarly, the magnetic flux component along 25C is also zero, and no armature reaction occurs. This is also explained by Ampere's law. In addition, it can be said that the induction motor is magnetically isotropic in all directions and does not function as a motor if there is an armature reaction. This point is different from a motor that uses reluctance torque.
  • JP 06-205570 (FIG. 3) Japanese Patent Laid-Open No. 06-253510 (FIG. 4) JP2015-65803 (FIG. 1)
  • the main motor of an electric vehicle is required to have both high torque at low speed rotation, high power factor, and field weakening characteristics at high speed rotation, which are used when driving on a steep slope.
  • An object of the present invention is to realize a large torque output with high efficiency, and to realize a motor and a control device for the motor so that the motor voltage does not become excessive at high speed rotation. At the same time, miniaturization, weight reduction, and cost reduction are necessary.
  • the motor configuration does not cause armature reaction, and the configuration allows the magnetic flux in the circumferential direction to be concentrated in the vicinity of the air gap portion, enabling a large torque output far exceeding conventional common sense. .
  • a motor configuration with easy field flux control enables constant output control and high-speed rotation control by field weakening.
  • a multi-phase stator winding SW arranged on the rotor side circumference in the stator, a rotor winding RW arranged on the stator side circumference in the rotor, and the stator Stator current supply means MSC for supplying current SIG of winding SW, rotor current supply means MRC for supplying current RIG of rotor winding RW, current SIG of stator winding SW and current RIG of rotor winding RW
  • a motor and a control device therefor comprising: a current control means MCC for controlling, and energizing the current SIG so that part or all of the current direction of the current SIG and the current direction of the current RIG are relatively opposite to each other It is the composition.
  • a current control means MCC for controlling, and energizing the current SIG so that part or all of the current direction of the current SIG and the current direction of the current RIG are relatively opposite to each other It is the composition.
  • the rotor current supply means MRC rectifies the rotary transformer RTT that supplies the rotor current or the AC generator AG and the output AC voltage and AC current into a DC rotor current. It is the structure of a motor characterized by including rectification
  • a motor in which the rotor current supply unit MRC supplies a rotor current using a current of the stator winding SW generated by the stator current supply unit MSC.
  • the rotor current can be supplied with a simple configuration.
  • the rotor current supply means MRC excites an AC magnetic flux component having a QN times period of 360 ° in electrical angle in the circumferential direction of the stator, with QN being an integer of 2 or more.
  • Stator feed winding PSW, winding pitch in the circumferential direction is an integral multiple of an electrical angle of 360 °, and rotor receiving winding PRW that receives rotor power, and rectifies the AC voltage and AC current into DC rotor current
  • the current control means MCC is such that the total torque IWSP of the stator torque current components is equal to the total torque IWRN of the rotor torque current components that are energized facing each other through the air gap portion. And a control device for the motor. According to this configuration, the field current component of the motor can be freely increased or decreased, and a large torque output or high-speed rotation drive can be realized.
  • the invention according to claim 6 is the configuration of the motor and its control device, wherein the current control means MCC controls the current phase ⁇ i of the stator with respect to the circumferential position ⁇ r of the rotor winding RW. .
  • the field current component of the motor can be freely increased or decreased, and a large torque output or high-speed rotation drive can be realized.
  • the current control means MCC controls the stator current phase ⁇ i with respect to the circumferential position ⁇ r of the rotor winding RW, and a field is provided at the circumferential position of the rotor winding RW.
  • the configuration of the motor and its control device is characterized by adding and controlling the field current component SFC of the stator or the field magnetic flux generation means RFC of the rotor so that the magnetic flux is generated. According to this configuration, the field current component of the motor can be increased, and the rotor current can be reduced.
  • the invention according to claim 8 is provided with a position sensor SPS for detecting the rotor position in the stator-side rotary transformer RTS of the rotary transformer RTT, and magnetically detects the rotor position in the rotor-side rotary transformer RTR of the rotary transformer RTT.
  • a configuration of a motor and a control device thereof including a portion having a small resistance and a portion having a large magnetic resistance. According to this configuration, it is possible to detect the rotor rotational position by using a part of the rotary transformer RTT that supplies the rotor current.
  • the invention described in claim 9 includes a power supply means MSP to the rotor which is a part of the rotor current supply means MRC, and a current control means RCC of the rotor which is a part of the rotor current supply means MRC.
  • a power supply means MSP to the rotor which is a part of the rotor current supply means MRC
  • a current control means RCC of the rotor which is a part of the rotor current supply means MRC.
  • the feature of the motor of the present invention is that the armature reaction does not occur or is greatly reduced.
  • the magnetic flux density in the circumferential direction in the vicinity of the air gap can be increased, and the magnetic flux density in the circumferential direction in the vicinity of the air gap can be increased.
  • a good constant output control can be realized by realizing the field weakening control with higher accuracy. Specifically, it is possible to realize control so that the motor voltage does not become excessive at high speed rotation, improve the power factor in the high speed rotation region, and improve torque output.
  • high performance, downsizing, weight reduction, and cost reduction of the main motor of the electric vehicle can be realized, and the current capacity of the inverter can be reduced and downsizing can be achieved.
  • Example of cross section of motor of the present invention Example of cross section of motor of the present invention
  • Example of linear development of motor of the present invention Example of linear development of motor of the present invention
  • Example of linear development of motor of the present invention Explanatory drawing of the operation of rotating the rotor
  • Example of driving with trapezoidal current Example of longitudinal section of the motor of the present invention
  • Example of motor and control device of the present invention Example of relationship between current phase angle ⁇ i and torque T
  • Example of relationship between current I and torque T Partial enlarged view for explaining the operation of the motor of the present invention
  • Example of motor cross-sectional view excluding stator and rotor teeth Example of configuration with reduced tooth width
  • Example of motor and control device of the present invention in a star connection A configuration that uses a brush and slip ring to energize the rotor current Motor configuration for supplying field excitation power to the rotor without contact Driving device and winding for supplying field excitation power to the rotor without contact Rotor side winding and rectifier circuit when field excitation power is supplied to
  • Examples of rotary transformers and generators Example of driving with rectangular current Configuration of energizing rotor current using DC-AC converter Diagram showing torque characteristics required for main motors of electric vehicles The figure which shows the d of the conventional induction motor, q-axis current, rotor current, and each magnetic flux component example
  • FIG. 1 shows a cross-sectional view of the motor of the present invention.
  • 11 is a stator
  • 12 is a rotor, and is a two-pole synchronous motor.
  • the stator winding has a five-phase full-pitch winding and concentrated winding.
  • SA is a winding of the A phase of the stator, and makes a round with the winding SA / arranged on the opposite side of 180 °, and is wound around the circumferential direction at a pitch of an electrical angle of 180 °.
  • A-phase current Ia is passed through winding SA, and reverse current -Ia flows through winding SA /.
  • SB is a circuit in which a B-phase current Ib is passed through a B-phase winding of the stator and -Ib is passed through winding SB /.
  • SC is a C-phase winding of the stator and is energized with a C-phase current Ic, and -Ic is energized with winding SC /.
  • SD is a D-phase winding of the stator, which is energized with a D-phase current Id, and -Id is energized with the winding SD /.
  • SE is an E-phase winding of the stator, and an E-phase current Ie is energized, and -Ie is energized to winding SE /.
  • the method of energizing the stator winding of the motor of the present invention includes a method of driving with a sine wave voltage and current, a method of driving with a rectangular wave voltage and current, a method of driving with a trapezoidal voltage and current, and the like.
  • the energizing method can be applied.
  • a method of driving with a five-phase trapezoidal wave voltage and current will be described.
  • three-phase sinusoidal drive is the mainstream, but driving with rectangular and trapezoidal voltage and current with multi-phase alternating current such as five-phase and seven-phase improves motor efficiency and makes inverter smaller There is a possibility of becoming. There is a new possibility that is different from a sine wave.
  • the motor of FIG. 1 is an AC motor
  • the current value of each phase alternately takes a positive value and a negative value as the rotor 12 rotates, and there is a timing when it becomes zero.
  • a rectangular wave current having a current amplitude of Imax it is not impossible to control the current value from + Imax to ⁇ Imax in an instant, and the time when the current becomes zero can be ignored at a high speed.
  • problems such as motor torque ripple, vibration, noise, and loss.
  • Ia, Ib, Ic, Id, and Ie are current waveforms of Iak, Ibk, Ick, Idk, and Iek in FIG.
  • the horizontal axis is the electrical angle of the rotor rotation angle ⁇ r.
  • each winding is a symbol, and a symbol in which a current flows from the front side to the back side of the paper is a symbol in which an X-shaped mark is written in a circle.
  • a current is a positive current. I will say.
  • the current is referred to as a negative current in the present invention as a symbol with a dot in a circle. It is a symbol that is commonly used and is shown so that it can be easily visually judged.
  • the phase windings on the upper side of the stator on the paper surface are SA, SD /, SB, SE /, SC in the circumferential direction, and the energization currents of the windings are Ia, -Id, Ib , -Ie, Ic.
  • the rotor current is Ir
  • Ia ⁇ Id + Ib ⁇ Ie + Ic 4 ⁇ Ir
  • All the currents of the phase windings on the upper side of the stator in the drawing are all positive currents. Equation (3) is the total positive current of the stator.
  • the current of each phase winding below the stator on the paper surface is all negative.
  • the rotor 12 rotates freely in the circumferential direction, and the rotor rotation position ⁇ r in FIG. 1 is 0 °.
  • each winding of the stator and each winding of the rotor are just opposite each other through the air gap portion. A current in the direction opposite to the current of the opposing stator winding is applied to each winding of the rotor.
  • the rotor winding R1 is energized with a rotor current of ⁇ 0.5 ⁇ Ir, and the winding R1 / is energized with a current of 0.5 ⁇ Ir to make a round.
  • the rotor winding -R2 is energized with the rotor current -Ir, and the winding R2 / is energized with the current Ir.
  • the rotor winding -R3 is energized with the rotor current -Ir, and the winding R3 / is energized with the current Ir.
  • the rotor winding -R4 is energized with the rotor current -Ir, and the winding R4 / is energized with the current Ir.
  • the rotor winding R5 is energized with a rotor current of ⁇ 0.5 ⁇ Ir, and the winding R5 / is energized with a current of 0.5 ⁇ Ir to make a round.
  • stator slots There are 10 stator slots and 10 rotor slots.
  • stator winding and the rotor winding that are just opposite to each other have the same current magnitude, and the current direction is opposite.
  • the current Ib flows from the front side to the back side of the paper surface to the stator winding SB
  • the current Ir flows from the back side to the front side of the paper surface to the rotor winding R3
  • the integral of the magnetic field strength H of the path indicated by the two-dot chain line of the magnetic flux 13 is zero according to Ampere's law because the current passing through this path cancels and is zero.
  • the component of the magnetic flux 13 is zero.
  • the rotor windings facing each stator winding through the air gap are in the same state, and the magnetic flux of the entire motor of FIG. 1 is zero.
  • a partial magnetic flux is generated around each current, it does not affect the whole. In the state of FIG. 1, no field magnetic flux is generated, and the torque generated by the motor is zero.
  • the motor shown in FIG. 1 shows a basic state in order to explain the operation after FIG.
  • the direction of the current phase is represented by an electrical angle with the clockwise direction CW being the positive direction.
  • the circumferential electrical angle position of each phase winding of the stator in the counterclockwise direction is 0 ° for the A phase winding, 72 ° for the B phase winding, 144 ° for the C phase winding, and 216 for the D phase winding.
  • °, E-phase winding is 288 °.
  • the control angle of the stator current of each phase is as follows.
  • the stator current is relatively moved by 36 ° in the clockwise direction CW.
  • the current Ia of the A-phase winding SA changes from 0.5 ⁇ Ir to Ir
  • the C-phase current Ic of the C-phase winding SC changes from 0.5 ⁇ Ir to ⁇ 0.5 ⁇ .
  • the E-phase current Ie of the E-phase winding SE changes from ⁇ Ir to ⁇ 0.5 ⁇ Ir.
  • the B phase current Ib and the D phase current Id are not changed. Note that the rotor rotational position ⁇ r in FIG. 2 is the same as that in FIG.
  • each phase current in FIG. 2 is a characteristic obtained by moving the current waveform of FIG. 6 to the right side of the drawing by 36 °.
  • the current phase ⁇ i in the state of FIG. 2 is controlled to be fixed at 36 °.
  • the currents of the windings SC / and R1 / in FIG. 2 are 0.5 ⁇ Ir and 0.5 ⁇ Ir, and the sum of both currents is 1.0 ⁇ Ir. Contribute to.
  • the currents in the windings SA and R1 are Ir and ⁇ 0.5 ⁇ Ir, the sum of both currents 0.5 ⁇ Ir contributes to the excitation of the field magnetic flux.
  • the currents of the windings SC and R5 are ⁇ 0.5 ⁇ Ir and ⁇ 0.5 ⁇ Ir, the sum of the two currents ⁇ Ir contributes to the excitation of the field magnetic flux.
  • the currents of the windings SE / and R4 are 0.5 ⁇ Ir and ⁇ Ir, the sum of both currents ⁇ 0.5 ⁇ Ir contributes to the excitation of the field magnetic flux.
  • the currents of windings SA / and R5 / are -Ir and 0.5 ⁇ Ir, the sum of both currents -0.5 ⁇ Ir contributes to the excitation of field magnetic flux.
  • the total field current IFN of these six windings is ⁇ 2 ⁇ Ir.
  • the currents 2 ⁇ Ir and ⁇ 2 ⁇ Ir of the twelve windings of these two groups are field current components that generate magnetic fluxes 21, 22, 23, etc. indicated by two-dot chain lines.
  • each stator current and the opposing rotor current cancel each other, so the field current component is zero.
  • the current phase ⁇ i 72 °
  • 4 ⁇ Ir and ⁇ 4 ⁇ Ir field current components are generated.
  • a field current component is generated according to the magnitude of the current phase ⁇ i.
  • magnetomotive force cancels out current components other than the field current IFP and the field current IFN among the 12 currents of the two groups in FIG.
  • stator current ITS and the rotor current ITR which cancel out these magnetomotive forces, act on the field magnetic flux to generate torque, and can be regarded as torque current components.
  • the field magnetic flux and these rotor currents ITR generate an electromagnetic action to generate rotor torque.
  • the field magnetic flux and the stator current ITS have an electromagnetic action to generate torque in the opposite direction.
  • Torque is generated in the relationship of action and reaction via field magnetic flux. This state of action and reaction is a basic configuration that generates torque without generating armature reaction.
  • the field magnetic flux can be increased or decreased by changing the current phase ⁇ i of the stator current.
  • the current components of both the stator current and the rotor current excite the field magnetic flux.
  • the field current component often exists in one of the stator and the rotor, which is one of the features of the motor of the present invention. 1 and 2 have the same magnetic resistance in any direction of each motor angle ⁇ z, and the rotor has no magnetic saliency. This is a feature of the motor of the present invention. one of.
  • various field magnetic fluxes can be excited if the magnetomotive force acting on the outside is canceled by the current of the winding of the stator and the current of the opposing rotor.
  • the method to do becomes possible.
  • a method of adding a field excitation current component to the stator a method of adding a permanent magnet, a method of a variable magnet that changes the strength of the permanent magnet by the magnetizing and demagnetizing current, and adding a slit
  • Various methods such as a method for arranging a slit and a permanent magnet in close contact, and a shape for imparting saliency to a rotor can be effectively applied. It is also possible to use these methods in combination.
  • the current flowing through the slot refers to [A ⁇ Turn], which is the product of the winding current and the number of turns.
  • a winding current of 5A is the same as a slot winding frequency of 20 and a winding current of 10A is the slot winding frequency of 10 times.
  • half the slot current means reducing the current value or the number of windings.
  • the winding voltage can be selected by the number of windings.
  • the current to be passed through the windings of each slot is superimposed on the same winding with the field current component and the torque current component. You may do it.
  • Fig. 3 shows a diagram in which the circular motor of Fig. 2 is developed on a straight line so that the relationship between the motor elements can be easily understood.
  • the motor shown in FIG. 2 is transformed into a four-pole motor, and the motor angle ⁇ z therein is shown in detail from 0 ° to 360 °.
  • the slot shape shown in FIG. 2 is omitted.
  • the description outside the wavy broken line is omitted.
  • the same numbers as those in FIG. 31 is a stator, 32 is a rotor, and there is an air gap between them.
  • a motor angle ⁇ z of 0 ° to 360 ° corresponds to FIG.
  • the winding surrounded by the broken lines 37, 38, 39, 3A includes the field exciting current component as described in FIG. 2, and the field magnetic fluxes 21, 22, 23, 33, 34 shown by the two-dot chain lines. , 35, 36, etc. are excited.
  • the other winding currents are torque current components without field excitation.
  • Torque T acting on the right side of the paper acts on the torque current component of the stator 31, and torque T acting on the left side of the paper acts on the torque current component of the rotor 32. Both torques are relative to each other via the field magnetic flux. It works in the same way.
  • FIG. 4 shows an example in which the current phase ⁇ i in FIG. 3 is increased from 36 ° to 72 °.
  • the winding current surrounded by the broken lines 41, 42, 43, and 44 includes a field excitation current component, and the field excitation current component increases twice as much as that in FIG. 41, 42, 43, 44, 45, 46, 47 etc. are field magnetic fluxes.
  • the field current component is increased by increasing the value of the current phase ⁇ i to 72 °.
  • increasing the current phase ⁇ i to increase the field flux current component ratio increases the torque and improves the motor efficiency. Become.
  • FIGS. 1 and 2 an example is shown in which there are ten stator slots and ten rotor slots.
  • This motor model is selected because this shape is easy to explain the principle of the present invention.
  • these rotor rotational positions ⁇ r 0 °. If the current phase ⁇ i and the rotor rotational position ⁇ r are integer multiples of 36 °, the operations are easily illustrated and described.
  • FIGS. 1 and 2 show examples of five-phase stators, three-phase and four-phase are possible, and the number of phases such as six-phase, seven-phase, nine-phase, and eleven-phase can be increased. It is preferable to increase the number of slots of the rotor and arrange them uniformly in the circumferential direction, thereby reducing the discreteness.
  • the discreteness can be reduced by skewing the stator and the rotor.
  • the number of slots in the rotor can be set to a value different from the number of slots in the stator, and the discreteness can be reduced by the averaging effect.
  • full-pitch winding and concentrated winding are used, but the stator winding can be distributed winding to reduce discreteness.
  • the discreteness can be further reduced as a short-pitch winding. If the discreteness of one of the stator and the rotor is reduced, the adverse effect of the discreteness as the motor characteristic can be reduced.
  • it is effective to appropriately select the countermeasures including the number of poles.
  • IWSP-IWRN 0 (9)
  • IWSP and 1WRN are current components that are substantially opposed via the air gap portion, and the directions of the current components of IWSP and 1WRN are opposite.
  • the definition of “the current components that are roughly opposed to each other and the direction of the current components of IWSP and 1WRN are opposite” is used as d-axis current and q-axis current in the so-called dq-axis theory.
  • the definition is ambiguous to the extent that it does.
  • IWSP is 3 ⁇ Ir among the currents of the stator windings SA, SD /, SB and SE /.
  • ⁇ IWRN is ⁇ 3 ⁇ Ir among the currents of the rotor windings R1, R2, R3, and R4.
  • the stator current is described as the sum of the torque current component and the field current component.
  • the stator torque current component IWSP is a current component having the same current value as that of the torque current component IWRN of the rotor that is substantially opposed via the air gap portion, and the current direction is the opposite direction. Therefore, the sum of both torque current components (IWSP-IWRN) is a generic term for current components that do not generate magnetomotive force in other parts of the motor and do not affect field magnetic flux.
  • a current other than the torque current component is used as a field current component, which is related to the magnitude and distribution of the field magnetic flux.
  • the field current component may generate torque depending on the distribution state of the field magnetic flux, the distinction between the torque current component and the field current component is not strict in that sense.
  • the currents defined by the torque current components IWSP and IWRN and the field current component can be defined by the current phase ⁇ i and the current magnitude Ims as used in the description of FIGS.
  • the definition can be expressed when the current magnitude Ims of the stator is equal to the current magnitude Imr of the rotor.
  • the field current component of the stator side field current component Ifs and the rotor side field current component Ifr of the field current component may not be the same value.
  • the difference field current component Ifr is treated differently in terms of control, so that the motor current can be expressed by the current magnitude Ims and the current phase ⁇ i.
  • the approximate ratio of the field current component to the torque current component can be recognized and controlled by the value of the current phase ⁇ i. Later, as shown in FIG. 9 and the description thereof, a characteristic diagram of the current phase ⁇ i and the torque T can be created.
  • the method for controlling the current phase ⁇ i has been described as a method for controlling the magnitude of the field magnetic flux, there is of course a method for controlling the magnitude of the current.
  • the voltage of the motor is proportional to the product of the magnitude of the field magnetic flux and the rotational speed, it is necessary to control the field magnetic flux according to the operating condition.
  • field weakening is required in the high-speed rotation region, and the field magnetic flux needs to be controlled small. The field weakening will be described later.
  • FIG. 7 shows a longitudinal sectional view of the motor shown in FIGS. 1 and 2 and an example of a configuration for supplying the rotor current Ir using a rotary transformer.
  • Reference numeral 71 denotes a stator
  • 72 denotes a rotor
  • 73 denotes a coil end portion of a stator winding
  • 74 denotes a rotor winding and a coil end portion
  • 75 denotes a rotor shaft.
  • Reference numeral 76 denotes a rotary transformer that transmits electric power for energizing the rotor current Ir from the driving device to the rotor winding 74 of the rotor 72.
  • 7A is a stator of the rotary transformer
  • 7B is a rotor of the rotary transformer
  • Reference numeral 78 denotes a stator side winding of the rotary transformer, which has a circular shape.
  • Reference numeral 79 denotes a rotor-side winding of the rotary transformer, which has a circular shape.
  • 7H is a rectifier circuit
  • 7G is a connection line from the rotor side winding of the rotary transformer to 7H.
  • the output of the rectifier circuit 7H is connected to the rotor winding 74 by the connection line 7J, and the rotor current Ir is supplied.
  • the rotary transformer 76 is exaggerated and greatly illustrated.
  • the electric power supplied to the rotor is mainly the resistance loss of the rotor winding, and is a small value compared to the motor output.
  • the core size can be reduced and the number of winding turns can be reduced as in the case of a transformer of a switching regulator power supply.
  • the rotor has a diameter of about 150 mm and is multipole such as 8 poles, there is a space on the inner diameter side of the rotor, and the rotary transformer 76 and the rectifier circuit 7H can be disposed there.
  • the outer diameter side and the inner diameter side of the stator 7A and the rotor 7B of the rotary transformer can be reversed, and the rotor 72 of the motor and the rotor 7B of the rotary transformer can be integrated.
  • This is also advantageous in terms of measures against centrifugal force of the rotor-side winding 79 of the rotary transformer.
  • the magnetic material to be used is advantageous for miniaturization, such as amorphous, ferrite, and thin iron core.
  • the rotary transformer 76 is excited in the rotor axial direction, it is effective to take measures such as using a non-magnetic material in part.
  • FIG. 24 (a) shows an example of a rotary transformer 241 that solves the problem of the rotor axial magnetomotive force generated by the rotary transformer 76 of FIG.
  • Reference numeral 242 denotes a stator of the rotary transformer
  • reference numeral 243 denotes a rotor of the rotary transformer, which has a circular cross section in FIG.
  • Reference numerals 244 and 245 denote stator side windings of the rotary transformer, which are connected in series in opposite directions, and each winding has a circular shape.
  • Reference numerals 246 and 247 denote rotor-side windings of the rotary transformer, which are connected in series in the opposite direction, and the output 248 is connected to the rectifier circuit 7H of FIG.
  • Each of the rotor side windings 246 and 247 has a circular shape.
  • magnetic fluxes 24G and 24H indicated by two-dot chain lines in the 7K direction are generated.
  • the axial magnetomotive force of the rotor shaft 75 cancels out and is not generated, and problems such as adhesion of surrounding iron powder can be solved.
  • FIG. 24A the same alternating current is applied to two sets of circular windings in opposite directions, but two different phases may be used. However, in that case, it is necessary to change the connection method to the rectifier circuit 7H and the rectifier circuit. Further, the configuration of the circular winding and the iron core in FIG. 24A can be made into three sets to form a three-phase AC rotary transformer. In that case, it is necessary to change the connection method to the rectifier circuit 7H and the three-phase rectifier circuit.
  • FIG. 24 (b) shows an example of a generator 249 that can be used in place of the rotary transformer 76 of FIG.
  • Reference numeral 24A denotes a stator which inputs a three-phase voltage and current to an input line 24D of a three-phase winding of 24C.
  • a rotor 24B connects the output line 24F of the three-phase winding 24E to the rectifier circuit 7H in FIG. In this case, it is a three-phase full-wave rectifier circuit.
  • FIG. 8 shows an example of a driving device for supplying current and voltage to each winding of the motor of the present invention shown in FIGS.
  • Reference numeral 81 denotes a DC power source.
  • Reference numeral 87 denotes an A-phase winding, which corresponds to SA and SA / in FIG.
  • Reference numeral 88 denotes an output of the current detection means, which detects the A-phase current Ia in FIG.
  • Reference numerals 82, 83, 84, and 85 denote power conversion elements such as transistors, and the current of the A-phase winding 87 is driven by PWM control or the like to have any positive or negative value.
  • Reference numeral 86 denotes these four transistors, and 89, 8C, 8F, 8J, and 8M are power drive units having the same functions as 86.
  • Reference numeral 8A denotes a B-phase winding, which corresponds to SB and SB / in FIG. 8B is the output of the current detection means, which detects the B-phase current Ib in FIG. 8D is a C-phase winding, which corresponds to SC and SC / in FIG. 8E is the output of the current detection means, and detects the C-phase current Ic in FIG.
  • Reference numeral 8G denotes a D-phase winding, which corresponds to SD and SD / in FIG. 8H is the output of the current detection means and detects the D-phase current Id in FIG.
  • E-phase winding which corresponds to SE and SE / in FIG. 8L is the output of the current detection means, which detects the E-phase current Ie in FIG.
  • various things such as a semiconductor using MOSFET, IGBT, GaN, and SiC, can be used, and highly integrated elements and modules can be used.
  • a control command signal 812 includes a motor position command.
  • 813 is a rotor position detecting means, and its output 814 is the rotor rotation angle ⁇ r.
  • the rotor rotation angle ⁇ r is feedback-controlled with respect to the position command, and the difference is used as the speed command.
  • the time differential value of the rotor rotation angle ⁇ r is feedback-controlled with respect to the speed command, and the difference is set as the torque command 95.
  • the motor 97 is a current command generating means for obtaining 99 current amplitude Imax, 98 current phase ⁇ i, etc. using torque command 95 and motor information 96.
  • the information processing is such that the motor torque, the motor voltage, and the motor current have appropriate values.
  • the motor information 96 is information specific to the motor as shown in FIG. 9 and FIG. Reference numeral 9A denotes an adder, which obtains current phase information ( ⁇ i + ⁇ r) of 9B.
  • 9C is a current control means, which inputs current amplitude Imax, current phase information ( ⁇ i + ⁇ r), and outputs 88, 8B, 8E, 8H, and 8L of the current detection means, and performs feedback control of each phase current. It becomes a control angle of each phase current as shown in equations (4) to (8). Then, the drive outputs 9D for PWM control are performed by turning on and off the transistors of the power drive units 86, 89, 8C, 8F, 8J, and 8M. The rotation of the motor can be controlled by the control of the control device 811 described above.
  • 8M is a power drive unit similar to 86, and is driven and controlled by a drive output 81B.
  • 8N surrounded by a broken line is the rotary transformer 76 shown in FIG. 7, 8P is the stator side winding 78 in FIG. 7, and 8Q is the rotor side winding 79 in FIG.
  • the controller 811 estimates and calculates the rotor current Ir based on the current value 8R detected by the current detection means for the current flowing through the stator side winding 8P.
  • the estimation calculation method and the operation of the rotary transformer 76 will be described with reference to FIG. 8S corresponds to the rectifier circuit 7H of FIG. 7, rectifies the output of the rotary transformer 76, and energizes the rotor current Ir.
  • the controller 811 is configured as described above, and drives the currents Ia, Ib, Ic, Id, Ie and the rotor current Ir of each phase of the stator, and controls the rotational position, speed, torque, and the like of the motor.
  • the horizontal axis in FIG. 9 indicates the current phase ⁇ i from 0 ° to 360 °.
  • the operating point 92 is that the field current component increases, but the increase of the field magnetic flux decreases due to the saturation magnetic characteristics of the magnetic steel sheet, and the product of the field magnetic flux and the torque current component becomes maximum.
  • the torque T 0 when the field magnetic flux is maximized but the torque current component is zero.
  • 94 is the maximum point of negative torque. This is a point target characteristic when viewed from an operating point where the current phase ⁇ i is 0 ° and an operating point of 180 °.
  • FIG. 10 represents the motor current with the continuous rated current set to 1. For example, 4 on the horizontal axis is a state in which a current four times the continuous rated current is applied.
  • the vertical axis represents the torque T.
  • the torque T increases linearly in proportion to the current up to about 3 times the continuous rated torque, but more than 3 times is not guaranteed and the torque saturates at about 5 times.
  • a magnetic material such as an electromagnetic steel plate is magnetically saturated and the operating point of the permanent magnet is also changed. As a result, the power factor is reduced, the copper loss is increased, and the efficiency is lowered.
  • the rotor current Ir, the current amplitude Imax of each phase of the stator, and the current phase ⁇ i are changed to obtain the maximum torque point such as the operating point 92 in FIG.
  • the torque characteristic 102 in FIG. 10 is obtained.
  • the motor of the present invention needs to pass the rotor current, which is disadvantageous.
  • a large torque can be generated in a large current region that is five times or more the continuous rating.
  • the torque can be generated much larger than the linear shape, such as increasing the current value to the 1.3th power or more in the large current region.
  • the motor of the present invention can output a large torque, as described above, since the stator current and the rotor current are opposed to each other centering on the air gap surface, and the positive current and the negative current are generated, both currents are generated. This is to cancel the magnetic force and not generate a magnetomotive force around both currents. That is, the field current component creates a field magnetic flux, and the torque current component generates torque, but does not generate an armature reaction and does not adversely affect the field magnetic flux.
  • Equation (12) represents the circumferential force acting on the air gap portion of the motor.
  • FEN (BR ⁇ BEN) / ⁇
  • FEN is a circumferential force
  • BR is a radial magnetic flux density component of the air gap portion
  • BEN is a circumferential magnetic flux density component of the air gap portion
  • is a vacuum magnetic permeability.
  • This formula (12) has no motor current, and is expressed by magnetic flux density as a result of electromagnetic action. It can be considered what kind of magnetic flux state and distribution can generate the force FEN in the circumferential direction. It is easy to consider the magnetic flux that contributes to the generation of the force FEN in the circumferential direction and the magnetic flux that does not contribute much to the generation of the force FEN.
  • FIG. 11 is an enlarged partial view of only the central portion where the motor angle ⁇ z in FIG. 3 is between ⁇ 36 ° and 180 °.
  • the same components as those in FIG. It is a linear development view, and the upper part is a stator and the lower part is a rotor in the drawing.
  • Reference numeral 113 denotes an air gap surface of the stator
  • 114 denotes an air gap surface of the rotor
  • a space 115 is an air gap portion.
  • the outside of the stator wavy broken line 118 and the outside of the rotor wavy broken line 119 are not shown. Note that the air gap portion 115 is greatly exaggerated for the sake of explanation.
  • the outer shape of the slot shown in FIG. 2 is omitted.
  • the current waveform in a rectangular waveform is such that all the positive currents, which are symbols in which a letter X is written in a circle, are energized with current Ir from the front side to the back side of the page, and dots are entered in the circles. For all negative currents as symbols, current Ir is applied from the back side to the front side.
  • FIG. 3 is a development view of FIG. 2 and FIG. 11 is an enlarged view of a part of FIG. 3. Therefore, the windings TC /, T1 /, SA, SD /, SB, and SE / of FIG. A certain Ir is energized.
  • a negative current ⁇ Ir is applied to the windings R1, R2, R3, R4, R5, and SC.
  • FIG. 25 shows an example of the rectangular waveform of the current waveform in FIG.
  • the current phase ⁇ i 36 °
  • the horizontal axis is the rotor rotational position ⁇ r
  • the vertical axis is each current.
  • (A) of FIG. 25 is the A-phase field current component Iaf
  • (f) is the A-phase torque current component Iat
  • (P) in FIG. 25 is the rotor current Ir.
  • the current waveform of each phase it can correct according to a motor characteristic, and can perform improvement, such as torque ripple reduction. Further, at high speed rotation, it can be appropriately modified such as a smoother increase / decrease waveform or a more sinusoidal waveform.
  • the circular integral value of the magnetic field strength H vector along the two-dot chain line path 11E is 0 according to Ampere's law because the total sum of the passing currents inside thereof is 0A. Accordingly, the magnetic flux along the path 11E is zero. However, a partial magnetomotive force is generated inside the path 11E, and the circular integral value of the magnetic field strength H vector along the path of the magnetic flux 111 indicated by a two-dot chain line is determined by the Ampere's law.
  • the total of the passing currents of the stator windings SA, SD /, SB, and SE / is 4 ⁇ Ir.
  • the circular integral value of the magnetic field strength H vector along the path of the magnetic flux 112 indicated by the two-dot chain line is the sum of the currents of the rotor windings R1, R2, R3, and R4 in accordance with Ampere's law. 4 ⁇ Ir. Note that rectangular wave current drive is non-linear, and an algorithm that compensates for excess and deficiency associated with rotor rotation with the total motor current is effective.
  • the magnetic flux 111 and the magnetic flux 112 create a circumferential magnetic flux component MFG in the air gap portion 115 and its vicinity.
  • the combined magnetic flux of the radial direction magnetic flux component 22 and the circumferential direction magnetic flux component MFG in the air gap portion 115 and the vicinity thereof can be drawn as magnetic fluxes 117, 11A, and 11D. Since the figure becomes complicated, these combined magnetic fluxes are drawn locally only in the air gap portion 115.
  • This magnetic flux density can be divided into a radial magnetic flux density component and a circumferential magnetic flux density component and substituted into the equation (12) to obtain the circumferential force acting between the stator and the rotor. Further, the torque can be calculated by multiplying the radius of the rotor.
  • the motor of the present invention shown in FIG. Can be made closer to the air gap length. Therefore, even if the radial magnetic flux density of the air gap portion 115 is a large magnetic flux density exceeding 2 Tesla, the circumferential cross-sectional area of the air gap portion and its vicinity is small, and the amount of magnetic flux in the circumferential direction is relatively small. small.
  • the radial width of the back yoke portion on the outer diameter side opposite to the air gap portion of the stator is several tens of times wider than the air gap length of 0.5 mm.
  • the magnetic flux density component in the circumferential direction of the back yoke portion of the magnetic flux 111 is small, and the magnetic resistance at this portion of the magnetic flux 111 is small.
  • the rotor-side magnetic flux 112 is opposite to the air gap portion, and the back yoke portion on the inner diameter side of the rotor is wide, so the magnetic flux density component in the circumferential direction of the back yoke portion of the magnetic flux 112 is also small.
  • the magnetoresistance at the part is small.
  • the influence of the magnetic flux density which these magnetic flux 111 and magnetic flux 112 have on the radial direction magnetic flux component 22 in a back yoke part is small.
  • the circumferential magnetic flux component MFG in the air gap portion is thin with both the currents of the stator windings SA, SD /, SB, SE / and the currents of the rotor windings R1, R2, R3, R4.
  • the magnetic fluxes 111 and 112 the magnetic resistance of the back yoke portion is small, and the magnetomotive force consumption is small.
  • these eight currents can increase the magnetic flux density component BEN of the circumferential magnetic flux component MFG in the air gap portion to a very large value.
  • the radial direction magnetic flux component 22 passes through the air gap portion 115. Even if the circumferential magnetic flux density component of the air gap portion 115 is very large, the distance is a small value such as 0.5 mm. Easy.
  • the radial flux which is a field magnetic flux component
  • the directional magnetic flux component 22 can be increased. That is, the radial magnetic flux density BR of the equation (12) can be increased. Since the influence of the armature reaction is small, the field magnetic flux component is generated by other means such as a permanent magnet disposed in the rotor or a field winding dedicated to the field magnetic flux disposed in the stator and the rotor. Is also relatively easy.
  • the torque in the large current region is as shown in FIG.
  • the value can be larger than the value proportional to the current.
  • the magnetic flux density of the combined magnetic fluxes 117, 11A, 11D, etc. can be increased to 2 Tesla or higher.
  • the torque increase curve in the large current region of the torque characteristics shown in FIG. 10 is a product of both magnetic flux densities BR and BEN in a simple model. You can think of it as it approaches.
  • the magnetic flux density of the composite magnetic fluxes 117, 11A, 11D, etc. is increased.
  • the stator current and the rotor current are as radial as possible. It is necessary to have a configuration that approaches. It is not only the size of the air gap length 115. From this point of view, a configuration in which the radial dimensions of the stator winding and the rotor winding can be reduced as in the motors shown in FIGS.
  • the motor of the present invention can obtain excellent characteristics with large torque density and output density.
  • the circumferential magnetic flux density component BEN of the circumferential magnetic flux component MFG exceeds 2 Tesla, which is the saturation magnetic flux density of a normal electrical steel sheet, by energizing a large torque current component.
  • a large magnetic flux density such as 4 Tesla and 6 Tesla can be locally generated.
  • the magnitude of the magnetic flux density near the air gap portion in FIG. 11 is related to the magnitude of the generated torque.
  • the magnetic flux density in other parts such as the back yoke does not contribute to torque generation, and is preferably rather small for the convenience of motor design.
  • a motor in which the torque generating part operates at substantially 6 Tesla can be made using a magnetic material having a saturation magnetic flux density of 2 Tesla.
  • the magnitude of the magnetic flux density in the vicinity of the air gap portion of the radial direction magnetic flux component 22 which is a field magnetic flux component is not limited in principle. Even if a magnetic material having a saturation magnetic flux density of 2 Tesla is used, the field excitation current component can be made extremely large to obtain a magnetic flux density of 2 Tesla or higher.
  • the relative permeability approaches 1 at an operating point of 2 Tesla or more, but there is no structural or principle restriction. As shown in the equation (12), the torque is proportional to the radial magnetic flux density component BR in the vicinity of the air gap portion, and BR is important for torque generation.
  • the circumferential force of equation (12) derived from Maxwell's stress equation expresses the generated force by the magnetic flux density at the operating point, and therefore the magnetic material constituting the motor has a high magnetic flux density.
  • the force generated in the place can be expressed up to a region, that is, a region where the relative permeability approaches 1 so that the magnetic saturation upper limit is exceeded.
  • the motor of the present invention has not only the effect of reducing the bias of the field magnetic flux due to the armature reaction, but also the magnetic flux density of the air gap portion is higher than the saturation magnetic flux density of the soft magnetic material.
  • FIG. 11 is considered to be a diagram showing a basic configuration for generating a large electromagnetic force.
  • FIG. 11 shows the N pole of the rotor and its vicinity when the motor angle ⁇ z is 0 ° to 180 °, but the S pole of the rotor and its vicinity when the motor angle ⁇ z is 180 ° to 360 °.
  • the direction of current and the direction of magnetic flux are opposite.
  • the direction and magnitude of the force and torque are the same as in FIG.
  • FIG. 11 is an example of a motor that outputs a large torque by energizing a large current.
  • the magnitude of the radial direction magnetic flux component 22 in FIG. 11 when the magnitude of the magnetic flux is 2 Tesla or less, the magnetic resistance is relatively small. However, when the radial magnetic flux component 22 is further increased, the magnetic flux must be passed through the magnetically saturated teeth and slot portions.
  • the air gap length of 115 can be reduced to about 0.5 mm, but the radial length from the inner diameter side of the 116 rotor winding to the outer shape side of the stator winding can be seen from the slot shape of FIG.
  • the size is 50 mm.
  • the air gap is 100 times as large as 0.5 mm.
  • the air gap part 115 is enlarged and exaggerated.
  • the radial direction magnetic flux component 22 has a small magnetic resistance up to an average magnetic flux density of about half of 2 Tesla, considering the magnetic flux passing through the teeth, but the magnetic resistance is greatly increased at an average magnetic flux density exceeding that.
  • the saturation magnetic flux density of a normal electromagnetic steel sheet used for a motor is 2 Tesla.
  • FIG. 12 shows a cross-sectional view of a so-called coreless structure motor in which the teeth of the stator and the teeth of the rotor are deleted.
  • the structure of the motor of the present invention such as that shown in FIG. 1 can be modified to the structure shown in FIG. 121 is a stator back yoke, 122 is a stator winding, 123 is a rotor back yoke, and 124 is a rotor winding.
  • the stator winding 122 is formed by, for example, forming a multiphase winding so as to be folded with a round wire or a rectangular wire, and molding and fixing with a high heat resistant resin or the like.
  • the radial length 125 is the radial length of the winding portion, and since the winding can be arranged also in the tooth portion of the motor of FIG. 1 and the like, the radial length is longer than the radial length 116 of the winding in FIG. 125 can be reduced to about 1 ⁇ 2 by simple comparison. Naturally, in the motor having the structure of FIG. 12, the radial length 125 can be further reduced in terms of motor design. Therefore, when the average magnetic flux density in the radial direction is set to a large average magnetic flux density of 1 Tesla or more, for example, 2 Tesla, the excitation load of the radial field can be rather reduced in the motor of FIG.
  • the coreless structure motor shown in FIG. 12 has a motor structure that exhibits features such as downsizing, weight reduction, vibration reduction, and noise reduction when a large current is supplied and a large torque is output. It is. However, when a small torque is output with a relatively small current, the field excitation load is relatively large, so the motor efficiency is low.
  • FIG. 13 shows and describes an intermediate motor configuration between the motor of FIG. 1 and the motor of FIG.
  • the partial shape of the stator of FIG. 13 is a modification of the stator shape of FIG. 16 in which the motor of FIG.
  • a slot shape 137 indicated by a broken line is the slot shape of FIG. 16 before deformation.
  • 134 is a stator tooth
  • slot 135 is a slot. The outside of the wavy broken line is omitted.
  • 131 is the tooth width of the stator teeth 134
  • 132 is the width of the slot 135 on the inner diameter side.
  • the tooth width 131 and the width 132 on the slot inner diameter side are about the same size, but are greatly reduced.
  • the cross-sectional area of the slot 135 can be increased, and the radial length 133 of the slot can be reduced. It can be electromagnetically approximated to the motor of FIG.
  • the stator teeth 134 can align or firmly fix the stator windings even if the tooth width 131 is reduced.
  • the holding strength of the winding against the centrifugal force is very important, and the slot opening can be closed to increase the strength.
  • the tooth width 131 of the motor of the present invention it is possible to secure the manufacturability of the winding and secure the fixing strength of the winding as compared with the motor of FIG.
  • a cooling pipe or the like indicated by 136 can be arranged inside the slot, in the vicinity of the back yoke portion, or in a part of the teeth 134 and fixed by the teeth 134.
  • stator and the rotor can be used in combination with the configurations shown in FIGS. 1, 12, 13 and the like.
  • the cooling performance is important, and various cooling means are required.
  • the field magnetic flux can be controlled.
  • currents other than the field current component can be energized so that the magnetomotive force cancels out between the stator side current and the rotor side current, so that the armature reaction does not occur or is a small effect.
  • the field current component by increasing or decreasing the field current component, it is possible to control the field strength to be stronger or weaker without being affected by the torque current component.
  • field weakening control is performed so that the motor voltage becomes a constant value by field weakening, and if the torque current component is kept constant at that time, the product of motor voltage and motor current is constant. Becomes a so-called constant output control state.
  • FIG. 14 shows a drive circuit when the motor winding is a star connection unlike FIG.
  • the A phase current Ia is supplied to the A phase winding 141 by the transistor 147 and the transistor 148
  • the B phase current Ib is supplied to the B phase winding 142 by the transistor 149 and the transistor 14A
  • the C phase is set by the transistors 14B and 14C.
  • the phase winding 143 is energized with the C phase current Ic
  • the transistor 14D and the transistor 14E are energized with the D phase current Id
  • the transistor 14F and the transistor 14G are energized with the E phase winding 145.
  • Ie is energized.
  • each phase current is individually driven by four transistors, and each is independent, so that it can be freely controlled.
  • the star-connected driver circuit of FIG. 14 has a feature that the number of transistors can be reduced from 20 to 10 in FIG.
  • the configuration of FIG. 8 is free from the current constraint of equation (13) and has a high degree of freedom in current control.
  • the distribution of the winding voltage and current changes in the motors of FIGS.
  • the product of the current capacity and the number of each transistor of the inverter is not greatly different between the inverter configurations of FIGS. 8 and 14 when the motor output is the same.
  • the motor of the present invention can be controlled by either method.
  • phase windings 141, 142, 143, 144, and 145 in FIG. 15 are the same as the phase windings in FIG. 14, but a diode bridge of 151 is inserted at the neutral point 146 portion, and each phase current is Rectified.
  • Reference numeral 152 denotes a brush attached to the stator side
  • reference numeral 153 denotes a slip ring attached to the rotor side.
  • 154 is a brush and 155 is a slip ring.
  • the windings 8T, 8U, 8V, 8W, and 8X are the rotor windings R1 and R1 /, R2 and R2 /, R3 and R3 /, R4 and R4 /, and R5 and R5 / shown in FIGS. .
  • the stator current rectified by the diode bridge 151 is supplied to the rotor side using the two brushes 152 and 154 and the slip rings 153 and 155, and is supplied as the rotor current Ir.
  • a brush and a slip ring are attached.
  • the rotor current Ir can be created using the diode bridge 151 by utilizing the stator current, so that the drive circuit of the rotor current Ir as shown in FIG. 8 can be simplified. Further, the magnitude of the rotor current Ir also passively coincides with the stator current, and the balance between the stator side and the rotor side can be reliably maintained. Simple configuration and small error. However, in the case of the configuration and method shown in FIG. 15, there are reliability and life of the brush and slip ring, and maintenance burden. This method is suitable for applications where the operation rate is low at low speed. Further, the rotor current Ir may be energized by a drive circuit such as the power drive unit 8M of FIG.
  • the DC current which is the output of the diode bridge 151, is converted into an AC current by the transistors 291, 292, 293, and 294 of the DC-AC converter 290, and the primary winding 8P of the rotary transformer is energized.
  • Reference numeral 295 denotes a capacitor, filter, etc., which prevents overvoltage.
  • the output of the secondary winding 8Q of the rotary transformer is converted into direct current by the rectifier circuit 8S, and the rotor current Ir is supplied to the rotor windings 8T, 8U, 8V, 8W, and 8X.
  • the function of FIG. 26 is almost the same as the function of the configuration of FIG. 15, and the magnitude of the rotor current Ir can be passively matched with the stator current.
  • connection to the brushes 152 and 154 may be inserted between the DC power source 81 and the inverter in FIG. 14, that is, at a portion indicated by an arrow 14H.
  • This is the amount of direct current to the inverter.
  • an amount of current circulating between the inverter and the motor winding that is, a so-called flywheel current does not flow to the rotor side, so an error occurs between the stator current and the rotor current.
  • the problem can be covered by, for example, phase adjustment of the stator current.
  • FIG. 16 is a cross-sectional view of a motor in which the motor of FIG. There are 20 slots in the stator and 20 slots in the rotor.
  • the stator winding has a five-phase full-pitch winding and concentrated winding.
  • FIG. 17 shows a drive circuit for each winding. Compared with FIG. 14, the A-phase winding 141 is divided into an A1-phase winding 171 and an A2-phase winding 172.
  • the A1 phase winding 171 is energized with a current Ia1 of 178 by transistors 174 and 175.
  • the A2 phase winding 172 is energized with the current Ia2 of 179 by the transistors 176 and 177. Between the A1 phase winding 171 and the A2 phase winding 172, in order to supply the power of the rotor, a feeding current Ifa which is an alternating current different from the motor 5-phase current is superposed and energized.
  • FIG. 16 a method of supplying electric power for energizing the rotor current from the stator side to the rotor side will be described. Since power is supplied using the A1 phase winding 171 and the A2 phase winding 172, only the A1 phase winding 171 and the A2 phase winding 172 are shown in FIG. As described above, the motor shown in FIG. 1 has a four-pole configuration. Except for the A-phase winding, the windings of the other phases have the same configuration as that shown in FIGS.
  • Windings 161, 162, 163 and windings 164, 165, 166 with an electrical angle of motor angle ⁇ z of 0 ° to 360 ° are A1 phase windings 171 and windings 167, 168 with an electrical angle of 360 ° to 720 °.
  • 169 and windings 16A, 16B, 16C are A2-phase windings 172.
  • the direction of the A-phase current is the direction of the current symbol described in FIG.
  • the current symbols 167, 168, 16A, and 16B of the A2-phase winding are reversed from the equation (15).
  • the feeding current Ifa As for the feeding current Ifa, 165 and 167 cancel each other, and 161 and 16B cancel each other.
  • the energization direction of the feeding current Ifa of 168 and 16A is opposite to the current symbol.
  • the magnetic flux ⁇ sup excited by the feeding current Ifa is 16 F indicated by a two-dot chain line. This means that a magnetic flux having a period of 720 ° is excited by the feeding current Ifa that is energized and superimposed on the A-phase current Ia.
  • the B phase, the C phase, the D phase, and the E phase have the same configuration and operation as those in FIG.
  • the power receiving G winding 16G and the power receiving H winding 16H are wound around the rotor, and the magnetic flux ⁇ sup is linked.
  • the power receiving G winding 16G and the power receiving H winding 16H are wound at a pitch of 360 ° and have a period of 720 °.
  • the power receiving G winding 16G is input to the diode bridge 181, and the AC voltage is rectified to DC.
  • the received H winding 16H is input to the diode bridge 182, and the AC voltage is rectified to DC.
  • the electric power necessary for the rotor current Ir can be supplied from the stator side to the rotor side in a non-contact manner.
  • the alternating current feeding current Ifa and the direct current rotor current have a simple relationship such as the primary current and secondary current of the transformer, the rotor current Ir can be estimated from the stator side.
  • the rotor current Ir can be accurately controlled.
  • the five-phase current having an electrical angle of 360 ° and the feeding current Ifa having a cycle of 720 ° are in principle non-interfering and have little influence on the function and performance of the five-phase motor.
  • the feed power is the resistance consumption of the rotor winding and the magnitude thereof is relatively small, the burden and influence that the supply of the rotor power has on the control of the stator current is relatively small.
  • the voltage drop of the diode bridges 181, 182 is the voltage of four diodes, and by adding the diode 183, the voltage drop when the rotor current Ir circulates can be reduced to 1 ⁇ 4.
  • the methods described in FIGS. 16 and 17 can be variously modified such as windings, rectifiers, and inverters. Phases other than the A phase can also be used. All phases can be used. Also, in applications where the motor is used at a substantially constant rotation, a permanent magnet is attached to the stator, and the rotor current Ir is supplied using the power receiving G winding 16G and the power receiving H winding 16H as a generator winding.
  • the power receiving winding on the rotor side may be a single phase or a multi-phase of three or more phases instead of the two-phase windings G and H in FIG. Further, the present invention can be similarly applied to a motor having a different number of phases other than five phases.
  • each phase winding has two windings and a 10 phase winding configuration. Similar to the relationship between the A1 phase winding and the A2 phase winding, the B1 phase winding and the B2 phase winding, the C1 phase winding and the C2 phase winding, the D1 phase winding and the D2 phase winding, and the E1 phase winding. A wire and an E2-phase winding are formed.
  • each winding can be configured to pass a feed current Ifb, a feed current Ifc, a feed current Ifd, and a feed current Ife.
  • These currents are currents having a period of 720 ° of the motor.
  • the configuration is as follows. The relationship between the phase currents Ib, Ic, Id, and Ie and the feeding currents Ifb, Ifc, Ifd, and Ife is the same as in the equations (14), (15), (16), and (17).
  • the feeding current Ifa described in FIG. 16 and FIG. 17 is a single phase, it is a single-phase alternating current and voltage, but the five-phase feeding currents Ifa, Ifb, Ifc, Ifd and Ife are five-phase alternating currents. And These five-phase feeding currents generate a rotating magnetic flux ⁇ im having a period of 720 ° to the rotor. An arbitrary value can be selected for the frequency Fim of the rotating magnetic flux ⁇ im.
  • the rotating magnetic flux having a period of 720 ° by the five-phase feeding currents Ifa, Ifb, Ifc, Ifd, Ife is linked to the receiving G winding 16G and the receiving H winding 16H to generate voltages Vg and Vh in both windings. .
  • the voltages Vg and Vh are proportional to the product of (the magnitude of the rotating magnetic flux) and (the difference between the frequency of the rotating magnetic flux and 1/2 of the electrical angular rotation frequency of the rotor rotation). As shown in FIG. 18, since the voltages Vg and Vh are rectified and the rotor current Ir is supplied, it is necessary to accurately control the amplitude and frequency Fim of the five-phase feeding current according to the rotor rotational speed.
  • One method for easily understanding the feeding current is to supply a five-phase feeding current so that (the frequency of the difference between the electrical angular frequency Fim of the rotating magnetic flux ⁇ im and 1/2 of the electrical angular rotational frequency of the rotor) becomes a constant value Fs.
  • the frequency Fim is determined and controlled.
  • the frequency of the voltage induced in the power receiving G winding 16G and the power receiving H winding 16H is Fs.
  • the amplitude of the five-phase feeding current may be determined and controlled according to the magnitude of the rotor current Ir to be energized.
  • the power receiving G winding 16G and the power receiving H winding 16H are windings of a generator that generates power by the rotating magnetic flux.
  • the rotating magnetic flux ⁇ im is 720 °, which is twice the cycle of the motor, has been described, similar power feeding can be realized by applying and modifying it to an integral multiple of 360 °.
  • a pulse current or a high-frequency current is superimposed on the power drive units 86, 89, 8C, 8F, 8J, and 8M in FIG. 8, and the rotor windings 8T, 8U, 8V,
  • the magnetic flux can be linked to 8W and 8X, and the rotor current Ir can be held as a flywheel current by the diode 183 in FIG.
  • a receiving winding for receiving the pulse current or the high-frequency current is provided, and the voltage of the receiving winding is full-wave rectified to pass the rotor current Ir to the rotor windings 8T, 8U, 8V, 8W, 8X. You can also.
  • a magnetic flux component of spatial harmonics is generated in the air gap portion by the motor structure or the stator current, and a winding WKM interlinking with the spatial harmonic magnetic flux is arranged on the rotor side, and the voltage of the winding WKM is changed.
  • the rotor current Ir can be energized by rectification.
  • claim 5 The contents of claim 5 are the method and apparatus for controlling the motor of the present invention shown in FIGS. 1 to 5, 8, 9, 11, 11, (9), (10) and the like.
  • the torque of the motor of the present invention can be controlled by controlling the magnitude of the stator current and the magnitude of the rotor current and the relative phase difference between them.
  • the total torque IWSP of the stator torque current components is set to a value equal to the total torque IWRN of the rotor torque current components, that is, control is performed as in equation (9).
  • This method not only reduces the armature reaction, but also makes it possible to concentrate the magnetic flux density component BEN in the circumferential direction shown in the equation (12) in the vicinity of the air gap, and the force FEN shown in the equation (12) It can be a large value.
  • the field current component creates a radial magnetic flux density component BR.
  • claim 6 The contents of claim 6 are the motor of the present invention shown in FIGS. 1 to 6, 8, 9, 11 and the like, and the method and apparatus for controlling the stator current thereof.
  • the stator current phase ⁇ i with respect to the circumferential position ⁇ r of the rotor winding RW is controlled.
  • the current phase ⁇ i By controlling the current phase ⁇ i, the ratio of the field current component and the torque current component can be controlled to an arbitrary value.
  • the rotor current Ir is energized so as to balance the sum of the field current component and the torque current component. Examples of these controls have been described with reference to FIGS.
  • the magnitude of the torque and the magnitude of the field magnetic flux can be controlled by varying not only the current phase ⁇ i but also the magnitude and amplitude of each current.
  • the unbalanced field current component Ifrx in the equation (10) is treated as another variable. Deformation is possible. This method not only reduces the armature reaction, but also makes it possible to concentrate the magnetic flux density component BEN in the circumferential direction shown in the equation (12) in the vicinity of the air gap, and the force FEN shown in the equation (12) It can be a large value. Moreover, although the handling of the variable of control differs between Claim 6 and Claim 5, the objective is substantially the same.
  • One of the other features of the method for controlling the current phase ⁇ i as a parameter is that the field current component and the torque current component are separated by the current phase ⁇ i, so that the magnitude of the stator current of the specific phase is larger than the current value of the other phase. There is little bias in current such as increasing. Therefore, the load on each transistor of the drive inverter can be made uniform, and the load on the drive inverter can be reduced.
  • the rotor current is rectified by the diode rectifier circuit 8S from the AC voltage output from the rotary transformer 8N, and the rotor current is transferred to the rotor windings 8T, 8U, 8V, 8W, and 8X. Ir is energized. With this configuration, if the rotor current Ir is to be rapidly decreased, the rotor current Ir circulates between the rotor winding and the diode rectifier circuit 8S, and it is difficult to rapidly reduce the current.
  • the field magnetic flux component can be quickly changed to a small value by changing the current phase ⁇ i to a small value even when the rotor current Ir is gradually decreased.
  • the torque can be reduced.
  • a rapid decrease from a large torque output is an essential function and performance essential for safety. Note that, if the stator current is simply suddenly reduced in order to rapidly reduce the torque, the field magnetic flux is increased by the rotor current, which may cause new problems such as excessive voltage during high-speed rotation.
  • FIGS. 1 to 5 an example in which the rotor current is a five-phase stator current and the windings of the slots are connected in series and the same current is applied.
  • the waveform shape of the stator current an example of a rectangular wave current and a substantially trapezoidal wave current has been described.
  • the waveform shape of the stator current can be a sine wave shape, or various waveforms between a rectangular wave and a sine wave.
  • a drive circuit such as 86 in FIG. 8 can be controlled to a free current waveform.
  • the motor of the present invention is different from the conventional motor control in that a rotor current exists and a part of the rotor current becomes a field current component. Further, unbalanced control can be performed between the stator current and the rotor current. However, it should be noted that the component that the magnetomotive force of the two currents does not cancel affects the size and distribution of the field magnetic flux.
  • One of the aims of the motor of the present invention is to reduce the loss of the motor and the current capacity of the inverter in the region of a large current and a large torque output at low speed. This leads to cost reduction and downsizing.
  • the output is 0.5 W in the case of an AC voltage and an AC current having an amplitude of 1 V and 1 A with a sine wave.
  • the output is 1 W.
  • a square wave motor can output twice as much. Therefore, there is a possibility that the rectangular wave motor can reduce the size of the inverter to 1/2.
  • the loss is assumed to be zero.
  • the copper loss is the product of the square of the current and the winding resistance, so the copper loss at the same output can be reduced to 1/2 in the rectangular wave motor. Therefore, there is a possibility that the rectangular wave motor can reduce the motor size.
  • the motor size and inverter capacity are determined by the capability of large current and large torque output at low speed. Since the motor rotates at a low speed, it is possible to control a motor with a voltage waveform and current waveform close to a rectangular wave, which is advantageous in terms of downsizing and cost reduction.
  • a motor in operation at a high speed rotation, operation at a medium torque load, operation at a light load, etc., there is no significant inconvenience even when the waveform is approximated to a sine wave from a rectangular wave. Rather, it is often preferable to approximate a sinusoidal waveform from the viewpoints of low torque ripple, low noise, and reduction of loss due to harmonic components. It can be used properly as appropriate.
  • the rotor current As for the rotor current, an example in which the windings of each slot are connected in series and the same current is supplied to each slot has been described. However, the number of windings in each slot is not the same. For example, the winding number distribution of each slot in the circumferential direction can be modified to be a sine wave. Further, although the motor becomes complicated, it is possible to create a plurality of types of rotor windings and a plurality of types of rotor currents.
  • the motor of the present invention is energized with the torque current component IWSP of the stator and the torque current component IWRN of the rotor facing each other through the air gap, and one of the opposing currents is The positive current is used and the other is a negative current.
  • This is the relationship such as equation (1) and equation (9).
  • the field magnetic flux can be generated relatively easily by various methods.
  • a field magnetic flux can be generated using a combination of these methods and the method for controlling the current phase.
  • the generated force and torque can be expressed by equations (11) and (12). As one expression, it can be considered that a force acts in the direction of the field magnetic flux ⁇ x and the IWSP, and a force acts in the opposite direction of the field magnetic flux ⁇ x and the IWRN. As a result, it can be considered that a force is relatively generated between the stator and the rotor via the field magnetic flux ⁇ x.
  • the field current component ISFAD of the stator is, for example, applied to the winding SA in FIG. 19 from the front side to the back side of the page, and added with the current component Iu to be returned from the winding SA /
  • a current flux Iv is applied from the front side to the back side, and the current component Iv returned from the winding SC is added, and a field magnetic flux as shown in 196, 197 can be generated by Iu, Iv or the like.
  • the field current component IRFAD of the rotor includes, for example, the windings 194 and 195 of FIG. It is possible to generate a field magnetic flux as indicated by 196 and 197 when energized. If it is desired to control the magnitude of the field magnetic flux independently of the rotor current Ir, the windings 194 and 195 different from the windings R1 / and R5 are arranged to energize the necessary field current Ix. There is a need to.
  • the windings 194 and 195 may be distributed in a plurality of slots, or a slot different from the windings R1 / and R5 may be provided. Also, modifications such as superimposing current are possible.
  • permanent magnets 191 and 19A without the permanent magnets 191 and 19A, slits or gaps called flux barriers as shown in 192 and 193, nonmagnetic materials, etc. can be added, and the number can be increased or decreased. Further, permanent magnets may be disposed in the flux barriers 192 and 193 and the like. In particular, by arranging the gap or nonmagnetic material 199 in close contact with the N and S poles of the permanent magnet 198, the amount of magnetic flux generated by the permanent magnet is reduced, but the magnetomotive force applied from the outside is reduced. It is effective because it exhibits a large magnetic field strength and has a strong characteristic against magnetomotive force disturbance. Further, both permanent magnets 191 and 19A and flux barriers 192 and 193 may be added.
  • the radial magnetic flux component 22 can be created by the permanent magnets 191 and 19A.
  • the current burden of field excitation can be reduced.
  • the change of the magnetic characteristics of the permanent magnets 191 and 19A can be magnetized and demagnetized using the stator current and rotor current of each phase.
  • a permanent magnet and a field current component can be used in combination.
  • the motor according to the present invention does not cause an armature reaction, the margin for demagnetization of the permanent magnet can be greatly reduced. And it can be comprised with a small amount of permanent magnets, such as making a magnet thickness thin, can reduce a cost burden, and it becomes easier to change the strength of a permanent magnet. Even if it is unintentionally demagnetized, it can be magnetized.
  • the motor shown in FIG. 19 reduces the rotor current Ir and the field current component by using the permanent magnets 191 and 19A, the flux barriers 192 and 193, etc. in a relatively small torque region, and the conventional permanent magnet motor. As described above, high efficiency can be achieved.
  • FIGS. 1 to 5 In the large torque region, the operations shown in FIGS. 1 to 5 are performed. In the intermediate torque region, each operation can be optimized. Thus, the characteristics of the motor shown in FIGS. 1 to 5 and the like and the characteristics of the conventional permanent magnet motor can be obtained.
  • FIG. 19 shows a two-pole model for explaining the principle. However, when the number of poles is increased to about eight, the permanent magnet can be deformed into a more practical shape such as a flat plate.
  • the rotor of FIG. 19 shows an example of a substantially circular shape
  • the outer periphery of the rotor may be an uneven shape.
  • the function and performance are limited by the simple configuration, but various modifications are possible.
  • one rotor winding is provided for each pole, and a thick copper wire is disposed in the rotor slot for only one turn, so that the winding can be simplified.
  • the stator structure can be a simple configuration with concentrated winding.
  • FIG. 20 is a time chart showing the voltage and current around the rotary transformer.
  • the horizontal axis is time, which is an example of driving the rotary transformer at 100 kHz, and one period is 10 ⁇ sec.
  • FIG. 20A shows an example of the input voltage Vrp of the rotary transformer 8N shown in FIG.
  • a portion 201 has a wide pulse width and a relatively large average voltage
  • a portion 202 has a narrow pulse width and a relatively small average voltage.
  • FIG. 20B shows a DC voltage Vrs obtained by rectifying the output of the rotary transformer, and has a waveform shape obtained by rectifying the input voltage Vrp.
  • FIG. 20C shows an example of the rotor current Ir. Since the rotor winding has a large inductance and the winding resistance is small, the rotor current Ir has a current value that is a first-order lag of the applied voltage.
  • FIG. 20D shows an example of the waveform of the input current Irp of the rotary transformer 8N.
  • a broken line 203 is a waveform of the rotor current Ir, and a broken line 204 is a negative value of 203.
  • the rotor current Ir and the input current Irp of the rotary transformer 8N are in a proportional relationship, and the rotor current Ir Can be measured.
  • the input current Irp of the rotary transformer 8N can be measured by the current detection value 8R in FIG. That is, if the current value Itv supplied to the rotary transformer 8N is measured at the timing of supplying a large voltage to the rotary transformer 8N, the value is a value proportional to the rotor current Ir, and the value of the rotor current Ir is measured. be able to.
  • the motor of the present invention is effective because it is necessary to measure the rotor current Ir, and the rotation transformer can supply the rotor current Ir and detect the rotor current Ir.
  • the rotor current Ir is circulated by the rectifier circuit 8S of FIG. 8 and enters a flywheel state. It can be calculated as an electric circuit of the rotary transformer 8N, the rectifier circuit 8S, the inductance Lr, and the winding resistance Rr.
  • FIG. 20E shows a voltage waveform when the maximum voltage is supplied by the rotary transformer.
  • FIG. 21 is a diagram in which the horizontal axis represents the motor angle ⁇ z, and each part of the rotational position detection device is horizontally developed linearly in a circumferential shape facing the air gap between the stator and the rotor.
  • FIG. 21A is a position sensor portion on the stator side, which is 7E in FIG. In this example, quadrangular convex portions 211 are arranged in the circumferential direction at a period of 22.5 ° in electrical angle.
  • FIG. 21 is a diagram in which the horizontal axis represents the motor angle ⁇ z, and each part of the rotational position detection device is horizontally developed linearly in a circumferential shape facing the air gap between the stator and the rotor.
  • FIG. 21A is a position sensor portion on the stator side, which is 7E in FIG.
  • quadrangular convex portions 211 are arranged in the circumferential direction at a period of 22.5 ° in electrical angle.
  • reference numeral 212 denotes a sensor magnetic pole arranged on the rotor side. In order to detect the rotor position, a place where the magnetic flux passes and a place where the magnetic flux does not pass are shown. Produced by the unevenness.
  • the rotor rotational position ⁇ r in FIG. 21 is 0 °.
  • the sensor magnetic pole 212 is a convex portion having an electrical angle of 45 ° and the circumferential pitch is 90 °. The remaining 45 ° is a recess.
  • the convex portion 211 and the sensor magnetic pole 212 are opposed to each other through an air gap.
  • an A-phase detection winding 213 having an electrical angle of 45 ° is wound around the convex portion 211, and its output is Sa.
  • a similar B-phase detection winding 214 is arranged with a phase difference of 22.5 ° in the circumferential direction with respect to the A-phase detection winding 213, has a 45 ° pitch, and its output is Sb.
  • the Sa and Sb signals use a part of the magnetic flux of the rotary transformer 76, as shown in the example of the voltage waveform in FIG. This is an AC voltage whose pulse width varies from 0 to 5 ⁇ sec.
  • each is full-wave rectified to generate AC to DC signals Sax and Sbx.
  • normalization is performed so that Sax and Sbx are not affected by the supply voltage of the rotary transformer. Since the voltage obtained by rectifying the supply voltage of the rotary transformer is Vrs in FIG. 20B, this voltage is filtered to produce an average value Vrsa.
  • Vrsa the voltage obtained by rectifying the supply voltage of the rotary transformer
  • Pb Sbx / Vrsa (19)
  • the position signals Pa and Pb in FIG. 22 are triangular wave signals having a 90 ° period in terms of the electrical angle of the rotor, and have a phase difference of 22.5 °. Periodic rotor rotational position signals can be generated. The description of the technique for interpolating the position from the two-phase sine wave signal will be omitted.
  • the shape of the sensor magnetic pole 212 can be changed from a square shape to a rounded shape so as to approximate a triangular wave signal to a sine wave signal.
  • the period of (a) and (b) of FIG. 21 can be set to an electrical angle of 360 °.
  • a multi-layer position detection method such as double or triple can be used.
  • Reference numeral 215 in FIG. 21C denotes a position sensor portion on the stator side, which is 90 degrees wide.
  • 216 of (d) is a sensor magnetic pole arranged on the rotor side, which has a width of 180 degrees, and these constitute a rotational position detecting device having an electrical angle of 360 °.
  • the winding 217 is a C-phase detection winding and has a 180 ° pitch, and its output is Sc.
  • the winding 218 is a D-phase detection winding and has a 180 ° pitch, is arranged with a phase difference of 90 ° in the circumferential direction with respect to the C-phase detection winding 217, and its output is Sd.
  • the configurations of (c) and (d) of FIG. 21 are not shown in FIG. 7, and can be added in the same manner as the position sensor unit 7E and the sensor magnetic pole 7F.
  • the signals Sc and Sd can generate Pc and Pd in FIG. 22 by the same method as the signal processing of Sa and Sb, and can perform rotor position detection with an electrical angle of 360 degrees. Then, in combination with a rotor position signal having a period of 90 degrees created from Pa and Pb, highly accurate rotor position detection with an electrical angle of 360 degrees can be performed. In this way, dense and coarse multi-stage position detection can be performed. In addition, accurate position detection by (a) and (b) in FIG. 21 may be difficult because position processing at high speed rotation shortens the processing time. In high speed rotation, (c) and (d) in FIG. It is also possible to control mainly using the information of the coarse position detection unit.
  • the configurations shown in FIGS. 7, 21, and 22 can be variously modified and combined.
  • the windings 213, 214, 217, and 218 have a configuration of one turn, but it is necessary to optimize the number of windings for practical use.
  • the windings are also wound around other in-phase position sensor units and connected in series.
  • the position detection accuracy can be improved and a signal that is resistant to disturbances such as eccentricity of the rotor can be obtained.
  • the absolute position of the mechanical angle of 360 ° may be realized by the detection means for the specific position of the motor angle ⁇ z and the incremental position detection of FIGS. 21A and 21B.
  • the motor of the present invention and its control device can be configured by using completely different position detection devices, sensorless position detection, and the like.
  • the rotor is provided with various control circuits, and each current of the rotor is controlled as necessary.
  • the same rotary transformer 8N as in FIG. 8 is used as the power supply means of the rotor.
  • the voltage of the rotary transformer 8N is the voltage shown in FIG. 20 (e), which functions as a high-frequency AC voltage source, supplies power from the stator side to the rotor side, rectifies to obtain a DC voltage, and performs various controls on the rotor side.
  • power regeneration can also be performed from the rotor side to the stator side.
  • 23Q is a transmission / reception circuit on the stator side, which outputs transmission signals such as a rotor current Ir command and a field current command, and receives rotor information from the rotor side.
  • Reference numeral 23R denotes a communication means, such as communication using radio waves, communication using light, or communication using a high-frequency current component passing through the rotary transformer 8N.
  • 23G is a transmission / reception circuit on the rotor side, which receives the transmission signal of 23Q and outputs it to the rotor side control circuit 23H.
  • the rotor side information from the rotor side control circuit 23H is sent to the stator side transmission / reception circuit 23Q. Send.
  • the rotor current Ir When the rotor current Ir is applied to the windings 8T, 8U, 8V, 8W, and 8X in FIG. 23, the AC voltage of 23E and 23F supplied from the rotary transformer 8N is parallel to the transistors of 231, 232, 233, and 234. Rectification is performed with the connected diode, and the DC voltage is stabilized with a 23D capacitor. Then, the rotor current Ir is energized by the transistors 235 and 238. At this time, when power regeneration is not performed from the rotor side to the stator side, the transistors 231, 232, 233, and 234 in FIG. 23 are not necessary. Further, in the case where only one-way current is supplied to each winding load, the transistors 236 and 237 are unnecessary.
  • the rotor-side control circuit 23H detects a current value 23M of the rotor current Ir, compares it with the command value of the rotor current Ir, and outputs a control signal 23K of the transistors 231, 232, 233, 234 to output the rotor current Ir. To control. In this way, AC power is supplied from the stator side to the input winding 8P of the rotary transformer 8N, the command value of the rotor current Ir is transmitted to the rotor side by the communication means 23R, and the rotor current Ir is controlled autonomously on the rotor side. can do.
  • the control signal 23L of the transistors 239, 23A, 23B, and 23C is output according to the command value of the current Ifx transmitted by the communication unit 23R and the current value 23N of the current Ifx. Then, the current Ifx is controlled.
  • the rotary transformer 8N in FIGS. 23 and 8 indicates the rotary transformer 76 in FIG. 7.
  • the rotary transformer 241 shown in FIG. 24A may be used, and a three-phase AC rotary transformer may be used. it can.
  • the generator 249 shown in FIG. 24B can also be used.
  • it is necessary to modify the power supply circuit such as the transistor and the diode in FIG. In these cases, power supply from the stator side to the rotor side and power regeneration from the rotor side to the stator side can also be performed.
  • Reference numeral 815 in FIG. 8 denotes abnormal operation monitoring means for monitoring the state of the motor and its control device. Detection of disconnection of the motor winding, insulation failure, etc., detection of abnormality of the transistor and its driver, and the like. Determine the state. Also, the operation of the failed part, the part that has operated abnormally, etc. is stopped, and a command is given to drive the motor using the normal part.
  • the configuration of FIG. 8 is configured such that the winding of each phase of the stator and the transistor bridge that drives the current can be electrically separated and insulated from the other phases. As a result, the failure part can be easily stopped and separated, emergency driving can be realized with higher probability, and reliability can be improved.
  • the number of phases of the stator winding and the rotor winding of the motor can be transformed into three phases, five phases, seven phases, eleven phases, and the like.
  • Various skews and the number of slots can be selected, and the discreteness caused by the number of slots can be eliminated.
  • the performance and characteristics of the motor of the present invention can be exhibited by multiphase.
  • the number of parts of the driving device increases due to the multi-phase, a high integration technique or the like is possible, and there is theoretically no increase in power of the power unit.
  • the example in which the number of poles is mainly two poles has been described, but 4, 6, 8, etc. can be selected for practical use.
  • the winding method can be a concentrated winding, distributed winding, short-pitch winding, toroidal winding or the like.
  • Superconducting windings and various cooling mechanisms can also be used.
  • As the motor shape an outer rotor type motor, an axial gap type motor, a linear motor, or a motor shape such as a conical shape or a multistage shape can be selected. It can be set as the structure of the composite motor which used the several motor element in the inner-outer diameter direction or the rotor axial direction. It is also possible to combine with other types of motor elements.
  • Various materials can be used for the soft magnetic material of the motor and the rotary transformer, such as thinned electromagnetic steel sheet, 6.5% silicon steel sheet, amorphous metal, ferrite, magnetic core, and permendur.
  • Various permanent magnets can be used.
  • Various strengthening materials and mechanisms can also be used.
  • Various sensors, position detectors, and sensorless position detection technology can also be used.
  • various techniques for reducing motor torque ripple, vibration, and noise can be applied. Further, since the main motor for automobiles is mainly forward, a motor structure that gives priority to one-way torque may be used. What applied these techniques to this invention is included in this invention.
  • the motor of the present invention and its control device are suitable as a motor for a main machine of an electric vehicle that requires both large torque at low speed rotation and high speed rotation characteristics.
  • As an industrial motor it is suitable for applications requiring high torque and applications requiring high-speed rotation. In the future, electrification of aircraft is expected, and a very large motor output density is required for weight reduction. Therefore, the motor of the present invention and its control device are suitable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

【課題】大きなトルク出力を可能とし、界磁弱めによる定出力特性を容易とする。 【解決手段】円周上に配置したステータ巻線SWと、円周上に円周方向に配置したロータ巻線RWとを備え、前記ステータ巻線SWへ多相の電流SIGを通電し、前記ロータ巻線RWへ電流RIGを通電し、前記SIGのトルク電流成分と前記RIGのトルク電流成分とを逆向きの電流とすることにより両トルク電流成分の合計の起磁力を0とし、トルク電流成分がモータの界磁磁束に与える影響を低減するとともに、エアギャップ部近傍に円周方向磁束成分を集中させて大きなトルク出力を得、また、定出力制御を容易とする。

Description

モータとその制御装置
 大きなピークトルクを必要とするような用途、界磁弱め制御による定出力制御が必要な用途、あるいは、それらの両方を必要とする用途のモータに関わる技術である。具体的には、電気自動車EVの主機用モータ、産業用モータ、航空機用モータなどに関わる。モータ技術的には、界磁磁束の大きさとトルクの制御が自由にできるモータとその制御装置であり、さらには、大きなピークトルク時に電機子反作用がほとんど発生しないモータとその制御装置に関わるものである。
 現在、ハイブリッド自動車用の主機モータとして永久磁石内蔵型モータが多く使用されている。今後、小型から大型の電気自動車などに広く普及していくことが予想される。しかし、急坂道の登坂運転では、低速回転ではあるが大トルクが必要となり、大トルク時の力率が低下する問題がある。図27の速度VとトルクTの特性に示す領域Aの動作点である。縦軸はトルクTで横軸は回転数Vであり、定出力特性を示している。例えば、力率が0.6に低下する場合、力率が1のモータに比較して電流が1.666倍に増加し、モータ銅損は2.777倍に増加することになり、効率が低下するのでモータが大型化し、コストも増大する問題がある。モータを駆動するインバータも大型化する問題がある。
 また、高速道路での高速走行時などではモータの高速回転が必要となるが、モータの弱め界磁制御を自在に行うことが難しく、モータ電圧が過大となる傾向がある。図27に示す領域Bの動作点である。その結果、駆動用インバータの負担が大きくなり、力率も低下し、大型、高コストになる問題がある。大トルク時には界磁磁束をできるだけ大きくし、高速回転では界磁磁束を小さくする必要があり、界磁磁束についてこれらの2つの運転モードでの界磁制御は相反する関係の特性が求められる。
 前記永久磁石内蔵型モータの問題点は、トルク電流成分が発生する電機子反作用により界磁磁束の位置が円周方向へ変化することに起因している。また、モータ効率を向上するため永久磁石を多く使用しているため、高速回転では弱め界磁制御が必要となっていることにも起因している。ここで、電機子反作用とは、トルク電流成分が発生する電磁気的な作用により界磁磁束の分布状態が円周方向に偏るなどの弊害を指している。
 一方、電気自動車の主機用モータとして、欧米では、誘導電動機が使われていることが知られている。図28に誘導電動機をモデル化した図を示す。一般的に、誘導電動機は力率が低く、ロータ巻線の銅損が発生するため効率が劣ると考えられている。しかし、堅牢で有り、高価な永久磁石を使用せず、大量に生産されていることも有り安価である。本発明にも関わり、特に注目すべき点は、電機子反作用を発生せず、界磁弱め制御による定出力制御、高速回転運転の特性に優れている点である。
 図28の誘導電動機をモデル化した図で、その電磁気的な動作の公知技術について説明する。251はステータ、252はロータで、2極のモータである。253と254は界磁電流成分Idであり、界磁磁束Φaの25B、255などを発生する。界磁電流成分Idは、ロータ回転速度Vrよりすべり速度Vsだけ速い速度で円周方向に回転させる。q軸巻線には界磁磁束Φaと反時計回転方向CCWのすべり速度Vsに比例した電圧が発生し、ロータ2次電流256、257が通電する。一方、そもそも、前記界磁電流成分Idは、3相、50/60Hz、200Vの商用電源のように電源インピーダンスの低い電圧源に接続されていることを前提としている。従って、前記ロータ2次電流256、257により界磁磁束Φaが低下することを補うようにq軸電流成分Iqである258、259が通電する。この時、ロータ2次電流256、257とq軸電流成分Iqである258、259とは、電流値が同じで電流の向きは反対方向である。誘導電動機のトルクTは、前記界磁磁束Φaと前記ロータ2次電流256、257に比例した矢印25Aで示すトルクTがCCWへ発生する。
 ここで、特に注目すべき点は、25Cに沿った磁界の強さHの周回積分は、258と256の和で有って零となり、この方向の磁束成分は零であり、電機子反作用が発生しないことである。同様に、25Cに沿った磁束成分も零であり、電機子反作用が発生しない。これは、アンペアの法則でも説明される。また、誘導電動機電動機は磁気的には全方向に等方性であり、電機子反作用があればモータとして機能しないともいえる。この点は、リラクタンストルクを利用するモータと異なる点である。
 以上、誘導電動機の理想的な動作について記述したが、現実にはロータ2次電流256、257が巻線インダクタンスにより位相遅れを発生することなどにより、ピークトルクが制約される問題、界磁電流成分Idと前記位相遅れにより力率が低下する問題などがある。その結果、モータ効率が低下し、モータが大型化する問題がある。ロータの巻線抵抗値Rrが重要なパラメータであるが、巻線抵抗値Rrの温度変化が大きく、制御が難しい問題がある。ロータ電流の検出、もしくは、界磁磁束の検出が難しい問題がある。
特開平06-205570(図3) 特開平06-253510(図4) 特開2015-65803(図1)
平成28年電気学会産業応用部門大会論文誌、3_36(式1)
 電気自動車の主機用モータには、急坂道の登坂運転時に使用する低速回転での大トルク、高力率、および、高速回転時の弱め界磁特性との両方の特性が求められる。本発明の課題は、大きなトルク出力を高効率に実現すること、高速回転でモータ電圧が過大とならないようなモータとその制御装置を実現することである。この時同時に、小型化、軽量化、および、低コスト化が必要である。
 技術的には、電機子反作用が発生しないモータ構成とし、また、エアギャップ部近傍に円周方向磁束を集中させることが可能な構成とし、従来常識を遙かに超える大きなトルク出力を可能とする。そして、界磁磁束制御の容易なモータ構成とし、界磁弱めによる定出力制御、高速回転制御を可能とする。
 請求項1に記載の発明は、ステータにおいてそのロータ側の円周上に配置した多相のステータ巻線SWと、ロータにおいてそのステータ側の円周上に配置したロータ巻線RWと、前記ステータ巻線SWの電流SIGを供給するステータ電流供給手段MSCと、前記ロータ巻線RWの電流RIGを供給するロータ電流供給手段MRCと、ステータ巻線SWの電流SIGとロータ巻線RWの電流RIGを制御する電流制御手段MCCとを備え、前記電流SIGの電流方向と前記電流RIGの電流方向の一部あるいは全部が相対的に逆方向となるように通電することを特徴とするモータとその制御装置の構成である。
 この構成によれば、電機子反作用を排除、あるいは、低減できるので大きなトルク出力が可能で、高速回転域での界磁弱め制御に優れたモータとその制御装置を実現することができる。
 請求項2に記載の発明は、前記ロータ電流供給手段MRCが、ロータ電流を供給する回転トランスRTT、あるいは、交流発電機AGと、その出力の交流電圧、交流電流を直流のロータ電流へ整流する整流部REC1とを備えることを特徴とするモータとその制御装置の構成である。
 この構成によれば、簡素な構成でロータ電流を供給することができ、かつ、非接触な給電なので信頼性も高い。
 請求項3に記載の発明は、前記ロータ電流の供給手段MRCは、前記ステータ電流供給手段MSCが生成する前記ステータ巻線SWの電流を使用してロータ電流を供給することを特徴とするモータとその制御装置の構成である。
 この構成によれば、簡素な構成でロータ電流を供給することができる。
 請求項4に記載の発明は、前記ロータ電流の供給手段MRCは、QNが2以上の整数として、ステータの円周方向に電気角で360°のQN倍の周期の交流磁束の成分を励磁するステータ給電巻線PSWと、円周方向の巻線ピッチが電気角360°の整数倍であって、ロータ電力を受け取るロータ受電巻線PRWと、その交流電圧、交流電流を直流のロータ電流へ整流する整流部REC2とを備えることを特徴とするモータとその制御装置の構成である。
 この構成によれば、ステータの巻線構成を流用してロータ電流を供給することができるのでモータを簡素に構成でき、非接触なので信頼性も高い。
 請求項5に記載の発明は、前記電流制御手段MCCは、ステータのトルク電流成分の総和IWSPが、エアギャップ部を介しておおよそ対向して通電するロータのトルク電流成分の総和IWRNに等しくなるように制御することを特徴とするモータとその制御装置である。この構成によれば、モータの界磁電流成分を自在に増減することができ、大きなトルクの出力、あるいは、高速回転駆動などを実現することができる。
 請求項6に記載の発明は、前記電流制御手段MCCは、前記ロータ巻線RWの円周方向位置θrに対するステータの電流位相θiを制御することを特徴とするモータとその制御装置の構成である。
 この構成によれば、モータの界磁電流成分を自在に増減することができ、大きなトルクの出力、あるいは、高速回転駆動などを実現することができる。
 請求項7に記載の発明は、前記電流制御手段MCCは、前記ロータ巻線RWの円周方向位置θrに対するステータの電流位相θiを制御し、前記ロータ巻線RWの円周方向位置に界磁磁束が生成されるように、ステータの界磁電流成分SFC、あるいは、ロータの界磁磁束生成手段RFCを付加して制御することを特徴とするモータとその制御装置の構成である。
 この構成によれば、モータの界磁電流成分を増加させることができ、ロータ電流を軽減することができる。
 請求項8に記載の発明は、前記回転トランスRTTのステータ側回転トランスRTSにロータ位置を検出する位置センサーSPSを備え、前記回転トランスRTTのロータ側回転トランスRTRにロータ位置を検出するために磁気抵抗の小さな部分と磁気抵抗の大きな部分とを備えることを特徴とするモータとその制御装置の構成である。
 この構成によれば、ロータ電流を供給する回転トランスRTTの一部を流用してロータ回転位置を検出することができる。
 請求項9に記載の発明は、前記ロータ電流供給手段MRCの一部であるロータへの電力供給手段MSPと、前記ロータ電流供給手段MRCの一部であるロータの電流制御手段RCCとを備えることを特徴とするモータとその制御装置の構成である。
 この構成によれば、ロータ電流をより正確に、高速に制御することができる。
 本発明モータの特徴は、電機子反作用を発生しない、あるいは、大幅に低減する。また同時に、エアギャップ部近傍に円周方向磁束を集中させることが可能な構成とし、エアギャップ部近傍の円周方向の磁束密度を高めることができる。その結果、従来より極めて大きなトルク出力を実現することが可能となる。極めて大きなモータ出力密度を実現することが可能となる。そして、界磁弱め制御をより高精度に実現することにより良好な定出力制御を実現できる。具体的には、高速回転におけるモータ電圧が過大とならないような制御を実現し、高速回転域での力率を改善し、トルク出力を改善することが可能となる。その結果、電気自動車の主機用モータなどの高性能化、小型化、軽量化、低コスト化を実現し、インバータの電流容量も低減でき小型化できる。
本発明モータの横断面図例 本発明モータの横断面図例 本発明モータの直線展開図例 本発明モータの直線展開図例 ロータを回転する動作の説明図 台形状の電流で駆動する例 本発明モータの縦断面図例 本発明のモータとその制御装置の例 電流位相角θiとトルクTの関係例 電流IとトルクTの関係例 本発明モータの作用を説明する部分拡大図 ステータとロータの歯を排除したモータ横断面図の例 歯幅を小さくした構成の例 星形結線とした本発明のモータとその制御装置の例 ブラシとスリップリングを使用し、ロータの電流を通電する構成 ロータへ界磁励磁の電力を非接触で供給するモータ構成 ロータへ界磁励磁の電力を非接触で供給する駆動装置と巻線 ロータへ界磁励磁の電力を非接触で供給する時のロータ側巻線と整流回路 本発明モータの横断面図例 回転トランスを利用してロータ電流を推測、計測する方法を説明する図 回転トランスを活用してロータ回転位置を計測する方法を説明する図 回転トランスの一部を活用してロータ回転位置を計測する場合の特性 ロータ側へ電源回路と電流制御回路を配置し、多様に制御する構成例 回転トランス、発電機の例 矩形状の電流で駆動する例 DC-ACコンバータを使用してロータの電流を通電する構成 電気自動車の主機モータなどに求められるトルク特性を示す図 従来の誘導電動機のd、q軸電流、ロータ電流、各磁束成分例を示す図
 図1に本発明のモータの横断面図を示す。11はステータ、12はロータで、2極の同期モータである。ステータに10個のスロットがあり、ロータに10個のスロットがあるモータ構成の例である。ステータの巻線は、5相の全節巻き、集中巻きの構成となっている。SAはステータのA相の巻線であり、180°反対側に配置する巻線SA/とで一巡していて、円周方向に相互に電気角180°のピッチで巻回している。巻線SAにはA相電流Iaを通電し、巻線SA/には逆向きの電流-Iaが流れる。同様に、SBはステータのB相の巻線でB相電流Ibを通電し、巻線SB/には-Ibを通電し、一巡している。SCはステータのC相の巻線でC相電流Icを通電し、巻線SC/には-Icを通電し、一巡している。SDはステータのD相の巻線でD相電流Idを通電し、巻線SD/には-Idを通電し、一巡している。SEはステータのE相の巻線でE相電流Ieを通電し、巻線SE/には-Ieを通電し、一巡している。
 
 本発明モータのステータ巻線への通電方法は、正弦波の電圧と電流で駆動する方法、矩形波の電圧と電流で駆動する方法、台形波の電圧と電流で駆動する方法などがあり、種々の通電方法を適用することができる。まず最初に、5相の台形波の電圧と電流で駆動する方法について説明する。現状モータ技術では3相の正弦波駆動が主流であるが、5相、7相などの多相交流で、矩形波状、台形波状の電圧と電流で駆動する方がモータ効率の向上、インバータの小型化の可能性がある。正弦波とは異なる新たな可能性も出てくる。
 図1のモータは交流モータなので、ロータ12の回転と共に各相の電流値が正の値と負の値とを交互にとることになり、0となるタイミングも存在する。電流振幅がImaxの矩形波電流を想定すると、一瞬で電流値が+Imaxから-Imaxへ変化し、電流が0となる時間は無視できる程度に高速で制御することも不可能ではない。しかし、モータのトルクリップル、振動、騒音、損失などの問題もある。ここでは、電流振幅がImaxで台形波電流の例について説明する。例えば、図6のような台形状の波形で、前記Ia、Ib、Ic、Id、Ieは、それぞれ、図6のIak、Ibk、Ick、Idk、Iekの電流波形である。横軸はロータ回転角θrの電気角である。
 なお、各巻線を示す形状でありシンボルは、電流が紙面の表側から裏側へ流れる巻線については丸印の中にXの字マークを書き入れたシンボルとして、本発明ではそのような電流を正電流と言うことにする。電流が紙面の裏側から表側に流れる巻線については丸印に点を書き入れたシンボルとして、本発明ではそのような電流を負電流と言うことにする。一般的に良く使用されるシンボルであり、視覚的に判断し易いように示している。
 今、図1の状態で、紙面でステータの上側の各相巻線は円周方向の順でSA、SD/、SB、SE/、SCで、各巻線の通電電流はIa、-Id、Ib、-Ie、Icの順となる。そして、ロータ電流をIrとすると、次式の関係とする。
  -Id=Ib=-Ie=Ir                   (1)
  Ia=Ic=0.5×Ir                    (2)
  Ia-Id+Ib-Ie+Ic=4×Ir             (3)
紙面でステータの上側の各相巻線の電流は全て正電流である。(3)式はステータの正電流の総和である。また、図6のロータ回転角θr=0°の各相電流の値でもあり、その近傍ではIa+Ic=Irである。そして、図1の紙面で下側の各相巻線は円周方向の順でSA/、SD、SB/、SE、SC/で、各巻線の通電電流は-Ia、Id、-Ib、Ie、-Icの順となる。紙面でステータの下側の各相巻線の電流は全て負電流である。
 ロータ12は円周方向に自在に回転し、図1のロータ回転位置θrは0°である。反時計回転方向CCWへ回転するとθrの値は増加し、2極のモータなのでCCWへ半回転するとθr=180°である。図1では、ステータの各巻線とロータの各巻線とが、エアギャップ部を介して、丁度対向している。ロータの各巻線へは対向するステータ巻線の電流とは逆方向の電流を通電する。ロータの巻線R1にロータ電流-0.5×Irを通電し、巻線R1/には電流0.5×Irを通電し、一巡している。ロータの巻線R2にロータ電流-Irを通電し、巻線R2/には電流Irを通電し、一巡している。ロータの巻線R3にロータ電流-Irを通電し、巻線R3/には電流Irを通電し、一巡している。ロータの巻線R4にロータ電流-Irを通電し、巻線R4/には電流Irを通電し、一巡している。ロータの巻線R5にロータ電流-0.5×Irを通電し、巻線R5/には電流0.5×Irを通電し、一巡している。
 なお、巻線R1、巻線R1/、巻線R5、巻線R5/の電流×巻き回数は他の巻線の半分なので、これらの巻線の巻き回数を1/2にし、他の巻線と同一の電流を通電することができる。その場合、これらのロータ巻線を直列に接続して、同一の電流が流すことができる。また、巻線接続の自由度があるので、同一の電流が流れる巻線は、その接続を相互に変更することもできる。巻線巻回の容易な方法、あるいは、コイルエンド部の巻線量の少ない方法などを選択できる。
 図1のステータのスロットは10個で、ロータのスロットも10個である。図1のθr=0°の状態では、ステータのスロットおよびその巻線とロータのスロットおよびその巻線とが、ステータとロータ間のエアギャップを介して、丁度対向している。図1の状態では、丁度対向するステータ巻線とロータ巻線は、電流の大きさは同じで、電流の向きを反対方向としている。
 例えば、ステータ巻線SBへは紙面の表側から裏側へ電流Ibが流れ、ロータ巻線R3へは紙面の裏側から表側へ電流Irが流れ、電流の大きさはIb=Irである。従って、磁束13の2点鎖線で示す経路の磁界の強さHの積分は、この経路を通過する電流が相殺して零なので、アンペアの法則に従って零である。磁束13の成分は零である。各ステータ巻線とエアギャップを介して対向しているロータ巻線も同様な状態であり、図1のモータ全体の磁束が零である。但し、部分的な磁束は各電流の周辺で発生するが全体としては影響しない。図1の状態では、界磁磁束が発生せず、モータの発生するトルクは零である。図1のモータは、図2以降の動作を説明するために、基本となる状態を示している。
 次に、ロータ回転位置θrに対するステータ電流の位相、通電状態を定義し、図1の状態をステータの電流位相θi=0°と定義する。電流位相の方向は時計回転方向CWが正方向で、電気角で表す。ステータの各相巻線の反時計回転方向の円周方向電気角位置は、A相巻線が0°、B相巻線が72°、C相巻線が144°、D相巻線が216°、E相巻線が288°である。各相のステータ電流の制御角は次式となる。
  (A相のステータ電流の制御角)θa=-0°-θi+θr     (4)
  (B相のステータ電流の制御角)θb=-72°-θi+θr    (5)
  (C相のステータ電流の制御角)θc=-144°-θi+θr   (6)
  (D相のステータ電流の制御角)θd=-216°-θi+θr   (7)
  (E相のステータ電流の制御角)θe=-288°-θi+θr   (8)
 次に、図2の状態は電流位相θi=36°である。ステータ電流が相対的に時計回転方向CWへ36°移動した関係となっている。図1の状態に比較し、A相巻線SAの電流Iaが0.5×IrからIrに変化し、C相巻線SCのC相電流Icが0.5×Irから-0.5×Irに変化し、E相巻線SEのE相電流Ieが-Irから-0.5×Irに変化している。B相電流IbとD相電流Idは変化していない。なお、図2のロータ回転位置θrは図1と同じで、ロータ回転位置θr=0°であり、ロータ電流Irも変化していない。これらの各相の電流の制御角は(4)、(5)、(6)、(7)、(8)式の通りである。また、図6は電流位相θi=0°の場合の特性なので、図2の各相電流は図6の電流波形を紙面の右側へ36°移動した特性となる。
 また、例えば、図2の状態からロータが回転し、ロータ回転位置θrの値が0°からΔθr増加する時、図2の状態の電流位相θi=36°に固定した条件で制御している場合には、A相のステータ電流の制御角θaの値は(4)式に従って(-0°-36°+0°)=-36°から(-0°-36°+Δθr)へ変化して制御する。他の相の電流の制御角θb、θc、θd、θeも同様である。
 また、図1などのモータ中心点から見たモータ角度θz各部の方向を定義し、図2に示す。モータの中心から紙面で図2の右側水平方向をモータ角度θz=0°とし、紙面の上側をθz=90°、紙面の左側水平方向をモータ角度θz=180°とする。
 図2の状態は、ロータ回転位置θr=0°で、電流位相θi=36°となっていて、界磁磁束を生成する界磁電流成分が発生している。前記の各巻線の電流値から、図2の巻線SC/とR1/の電流は0.5×Irと0.5×Irなので、両電流の和1.0×Irが界磁磁束の励磁に寄与する。同様に、巻線SAとR1の電流はIrと-0.5×Irなので、両電流の和0.5×Irが界磁磁束の励磁に寄与する。巻線SEとR2/の電流は-0.5×IrとIrなので、両電流の和0.5×Irが界磁磁束の励磁に寄与する。これら6個の巻線の合計の界磁電流IFPは2×Irである。
 一方、巻線SCとR5の電流は-0.5×Irと-0.5×Irなので、両電流の和-Irが界磁磁束の励磁に寄与する。巻線SE/とR4の電流は0.5×Irと-Irなので、両電流の和-0.5×Irが界磁磁束の励磁に寄与する。巻線SA/とR5/の電流は-Irと0.5×Irなので、両電流の和-0.5×Irが界磁磁束の励磁に寄与する。これら6個の巻線の合計の界磁電流IFNは-2×Irである。
 これら2グループの12個の巻線の電流2×Irと-2×Irとが、2点鎖線で示す磁束21、22、23などを生成する界磁電流成分となっている。なお、図2の状態での界磁磁束方向は、モータ角度θz=72°の方向である。図1の電流位相θi=0の場合、各ステータ電流と対向するロータ電流とが相殺するので、界磁電流成分は0である。電流位相θi=72°の場合は4×Irと-4×Irの界磁電流成分が発生する。このように、電流位相θiの大きさに応じて界磁電流成分が発生する構成となっている。
 また、逆に、図2の前記2グループの12個の電流の内、前記界磁電流IFPと前記界磁電流IFN以外の電流成分は、起磁力が相殺している。そして、図2のステータのB相電流IbとD相電流Idと、これらに対向するロータの巻線R3、R3/、R2、R4/の電流とはお互いに起磁力を相殺し、周囲に磁気的な影響を与えていない。
 しかしこの時、これらの起磁力が相殺するステータ電流ITSとロータ電流ITRは、界磁磁束と作用してトルクを生成するので、トルク電流成分とみることができる。界磁磁束とこれらのロータ電流ITRとは電磁気的な作用が発生して、ロータのトルクを生成している。同時に、界磁磁束とステータ電流ITSとは電磁気的な作用が発生して、反対方向のトルクを生成していると考えることができる。界磁磁束を介して作用、反作用の関係でトルクを発生している。なお、この作用、反作用の状態は、電機子反作用を発生せずにトルクを生成する基本的な構成である。
 このように、ステータ電流の電流位相θiを変えることにより界磁磁束を増減できる構成としている。また、図2において、ステータ電流とロータ電流の両方の電流成分が界磁磁束を励磁している。従来のモータは、界磁電流成分がステータとロータのどちらか片方に存在していることが多く、この点は本発明モータの特徴の一つである。また、図1、図2のモータは、各モータ角度θzのいずれの方向にも磁気抵抗は等しく、ロータは磁気的な突極性を持たない構成となっていて、この点は本発明モータの特徴の一つである。
 以上のことから、前記のトルクを発生する巻線の電流がエアギャップを介して対向する2個の電流で起磁力を相殺するため、図1、図2の説明で示したように、それら2個の電流の外側へは起磁力を生成しない。即ち、各トルク電流成分が電機子反作用を起こさないという大きな特徴である。例えば、連続定格電流の100倍というような大きなモータ電流を通電しても、電流位相θiの制御により適切な界磁磁束の大きさを維持しながら、大きなトルクの生成が可能であることを論理的に示している。但し、図1、図2のモータ構成は説明を容易にするために簡単な構造の例を示しているが、後に説明するように、ステータのスロットおよびロータのスロットの離散性などはトルクリップル等の問題がある。また、現実のモータ構造上の制約などもある。これらの問題点については、目的に応じて離散性の解消法など種々の改良が効果的である。
 なお、図1の説明で示したように、ステータのある巻線の電流と対向するロータの電流とでそれらの外部に作用する起磁力を相殺する構成であれば、種々の界磁磁束を励磁する方法が可能となる。例えば、後に説明するが、ステータに界磁励磁電流成分を付加する方法、永久磁石を付加する方法、永久磁石の強さを着磁、脱磁の電流で可変する可変磁石の方法、スリットを付加する方法、スリットと永久磁石を密接させて配置する方法、ロータに突極性を持たせる形状など種々の方法を効果的に作用させることができる。これらの方法を複合的に活用することも可能である。
 また、本発明の記述で、スロットに流れる電流とは巻線の電流と巻き回数の積の[A・Turn]をさしている。例えば、巻線電流5Aでスロットの巻き回数20回と、巻線電流10Aでスロットの巻き回数10回とは同じである。例えば、半分のスロット電流とは、電流値か巻き回数を減らすことを意味している。なお、巻き回数で巻線電圧を選択できる。また、各スロットの巻線に通電する電流は、図2の巻線SA、SA/、R2/、R4の例に示したように、界磁電流成分とトルク電流成分とを同一巻線に重畳しても良い。
 なお、図1、2のようにロータの磁気的な突極性が無く、ロータ電流とステータ電流が円周上に分布している場合には、トルク値を単純な計算式で示すことが難しい。正確に定量的に求めるためには、有限要素法解析などでコンピュータ解析を行って、電流、電圧、トルクなどの関係を求める方法が効果的である。
 図3にモータ要素の関係が解り易いように、円状の図2のモータを直線上に展開した図を示す。図2のモータを4極のモータに変形し、その中のモータ角度θzが0°から360°について詳しく示している。ロータ回転位置θr=0°、電流位相θi=36°である。図2で示すスロット形状は省略している。波状の破線の外側は記載を省略している。図3では、各巻線の番号は図2と同じ番号を使用している。31はステータで、32はロータであり、これらの間はエアギャップ部である。モータ角度θzが0°から360°が図2に相当する。破線37、38、39、3Aで囲った巻線は、図2で説明したように、界磁励磁電流成分を含んでおり、2点鎖線で示す界磁磁束21、22、23、33、34、35、36などを励磁している。その他の巻線の電流は界磁励磁は行わずトルク電流成分である。ステータ31のトルク電流成分には紙面で右側へ作用するトルクTが作用し、ロータ32のトルク電流成分には紙面で左側へ作用するトルクTが作用し、両トルクは界磁磁束を介して相対的に作用する。
 図4は、図3の電流位相θiを36°から72°へ増加した例である。破線41、42、43、44で囲った巻線の電流には界磁励磁電流成分を含んでおり、界磁励磁電流成分が図3の2倍に増加している。41、42、43、44、45、46、47などが界磁磁束である。電流位相θiの値を72°に増加して界磁電流成分を増加した例を示している。なお、モータの負荷が比較的軽負荷で、電流振幅が小さいような動作領域では、電流位相θiを大きくして界磁磁束電流成分の比率を大きくした方がトルクが増加し、モータ効率が良くなる。
 次に、ステータとロータのスロット数に起因する離散性の問題点とその解決方法の例について説明する。図1、図2では、ステータのスロットは10個で、ロータのスロットも10個の例を示している。この形状は、本発明の原理的な説明が容易なのでこのモータモデルを選んでいる。図1は電流位相θi=0°で、図2はθi=36°、図4はθi=72°で、これらのロータ回転位置θr=0°の例である。電流位相θi、ロータ回転位置θrが36°の整数倍であればそれらの動作の図示、説明が容易である。
 しかし、図1、図2ではステータとロータのスロットの間隔は36°と離れていて、離散性が大きい。従って、大きなトルクリップルが危惧される。電流位相θiと界磁磁束の大きさとの線形性も低下する。離散性の問題を低減する一つの方法は、相数を増加することである。図1、図2では5相のステータ例を示しているが、3相、4相も可能であり、6相、7相、9相、11相など相数を増加することができる。ロータのスロット数を増加し、円周方向に均一に並べて配置することにより離散性が低減し、好適である。また、ステータ、ロータのスキューを行うことにより離散性を低減できる。また、誘導電動機で行われているように、ロータのスロット数をステータのスロット数とは異なる値にして、平均化効果により離散性を低減できる。また、図1、図2では、全節巻き、集中巻きとしているが、ステータ巻線を分布巻きとし、離散性を低減できる。また、分布巻きの場合、短節巻きとして離散性をさらに低減できる。なお、ステータとロータの片方の離散性が小さくなれば、モータ特性としての離散性の弊害を低減することができる。本発明モータの実用化設計時には、極数を含め、前記対策を適宜選択することが効果的である。
 特に、5相以上の相数では、離散性の低減、トルクリップルの軽減が顕著であり、本発明の効果と品質の確保が容易となる。また、ロータ電流が1種類で、Irの場合について説明したが、2以上の種類のロータ電流を通電することも可能である。ただし、ロータ電流の供給方法、駆動回路などが複雑化する。その場合には、ロータ電流の自由度が増すので、ステータの各相電流との組み合わせで、界磁磁束分布の変更、トルク電流成分の分布状態の改良なども可能である。
 また、電機子反作用をなくす、あるいは、低減するためには、ステータの正側のトルク電流成分の総和IWSPが、ロータの負側のトルク電流成分の総和IWRNに等しい値とし、次式のように、これらの電流が周辺に起磁力を発生しないように制御すれば良い。
   (IWSP-IWRN)=0                   (9)
ここで、IWSPと1WRNは、エアギャップ部を介しておおよそ対向している電流成分で、IWSPと1WRNの電流成分の向きは逆方向である。
 また、図1、図2の原理説明用モータの場合、(1)式、(2)式、(3)式などを使用して説明したが、実用的なモータでは、エアギャップ部を介して両スロットが真正面に対向する状態は一つの状態に過ぎず、もちろん、前記両スロットが真正面に対向していない状態が大半である。そして、おおよそ対向する前記両スロットの電流の大きさも、個々のスロットでは同じでない場合が多い。モータ設計的には、スロットの離散性の問題を低減するために、ステータのスロット数とロータのスロット数に異なる素数を含ませ、トルクリップルなどの問題を低減する。その場合には、前記の「おおよそ対向している電流成分で、IWSPと1WRNの電流成分の向きは逆方向」との定義は、いわゆるdq軸理論でd軸電流、q軸電流と称して使用している程度に曖昧な定義となる。
 例えば、ステータのスロット数が14で、ロータのスロット数が22の場合は、ステータの各スロットの電流値とロータの各スロットの電流値とを直接対比することは難しく、(9)式のような表現となる。図2の場合、IWSPはステータ巻線SA、SD/、SB、SE/の電流の内の3×Irである。この時、-IWRNはロータ巻線R1、R2、R3、R4の電流の内の-3×Irである。
 また、本発明では、ステータ電流をトルク電流成分と界磁電流成分の和として説明している。ここでは、ステータトルク電流成分IWSPとは、エアギャップ部を介しておおよそ対向しているロータのトルク電流成分IWRNと同じ電流値であって、電流の向きが反対方向の電流成分である。従って、両トルク電流成分の和(IWSP-IWRN)はモータの他の部分へ起磁力を生成せず、界磁磁束へも影響しない電流成分の総称である。他方、トルク電流成分以外の電流を界磁電流成分としていて、界磁磁束の大きさ、分布に関わる。ただし、前記界磁電流成分は、界磁磁束の分布状態によってトルクを生成することもあるので、トルク電流成分と界磁電流成分の区分けは、その意味では、厳密ではない。
 また、トルク電流成分IWSP、IWRNと界磁電流成分による電流の定義は、図1から図5の説明で使用しているように、電流位相θiと電流の大きさImsで定義することもできる。但し、その定義は、ステータの電流の大きさImsとロータの電流大きさImrが等しい場合に表現することができる。つまり、本発明モータでは、界磁電流成分については、ステータ側の界磁電流成分Ifsとロータ側の界磁電流成分Ifrとは同じ値でなくても良い。
 この不整合の問題を解決する一つの方法として、ロータ側の界磁電流成分Ifrを次のように定義する。
   Ifr=Ifs+Ifrx                    (10)
Ifrxはステータ側の界磁電流成分Ifsとロータ側の界磁電流成分Ifrとの差分であり、アンバランスな界磁電流成分である。この差分の界磁電流成分Ifrは、制御的に別の扱いとすることにより、モータ電流を電流の大きさImsと電流位相θiで表現することができる。そして、電流位相θiの値により、おおよその界磁電流成分とトルク電流成分の比率を認識して制御することができる。後に、図9とその説明で示すように、電流位相θiとトルクTの特性図を作成することができる。
 なお、界磁磁束の大きさを制御する方法として、電流位相θiを制御する方法を説明したが、もちろん、電流の大きさを制御する方法もある。また、モータの電圧は、界磁磁束の大きさと回転数の積に比例するので、運転状況に応じた界磁磁束の制御が必要である。特に、高速回転域では界磁弱めが必要となり、界磁磁束を小さく制御する必要がある。界磁弱めについては後述する。
 次に、図5に、図2のロータが回転する時のモータ断面図の例を示す。電流位相θi=36°の例である。図2はロータ回転位置θr=0°で界磁磁束の向きは磁束22の方向である。図5の(a)はロータ回転位置θr=18°で界磁磁束の向きは2点鎖線で示す51の方向である。図5の(b)はロータ回転位置θr=36°で界磁磁束の向きは2点鎖線で示す52の方向である。図5の(c)はロータ回転位置θr=54°で界磁磁束の向きは2点鎖線で示す53の方向である。図5の(d)はロータ回転位置θr=72°で界磁磁束の向きは2点鎖線で示す54の方向である。この時、ロータ電流Irは一定値で、ロータが回転してもロータの各巻線の電流値は一定としている。そして、ステータの電流は、ロータが回転しても、ロータの各電流に対するステータの電流は相対的に同じ関係、即ち、電流位相θi=36°となるようにステータの各相電流を(4)から(8)式に従って制御する。図6の各相の電流波形は電流位相θi=0°の時の各相の電流波形なので、電流位相θi=36°となるように位相を36°遅らせる。即ち、図6の紙面で、各電流波形を右側へ36°移動すると、図5の各相の電流波形となる。
 次に、請求項2について説明する。図1、図2等のモータの縦断面図と、回転トランスを用いてロータ電流Irを供給する構成の例を図7に示す。71はステータ、72はロータ、73はステータの巻線のコイルエンド部、74はロータの巻線でコイルエンド部、75はロータ軸である。76は、ロータ電流Irを通電するための電力を、駆動装置からロータ72のロータ巻線74へ伝達する回転トランスである。7Aは回転トランスのステータ、7Bは回転トランスのロータで、図7の断面を円形にした形状である。78は回転トランスのステータ側巻線で、円形の形状となっている。79は回転トランスのロータ側巻線で、円形の形状となっている。ステータ側巻線78にシンボルの方向に電流を流すと、7Kの方向に2点鎖線で示す磁束が生成される。7Hは整流回路で、7Gは回転トランスのロータ側巻線から7Hへの接続線である。整流回路7Hの出力は接続線7Jによりロータ巻線74接続され、ロータ電流Irが供給される。
 図7において、図解、説明のため、回転トランス76を誇張して、大きく記載している。しかし、ロータへ供給する電力は、ロータ巻線の抵抗損失分が主であり、モータ出力に比べれば小さな値である。しかも、100kHz以上の高周波交流で駆動すれば、スイッチングレギュレータ電源の変圧器のように小さなコアサイズ、小さな巻線巻き回数とすることができ、小型化が可能である。例えば、ロータの直径が150mm程度で8極などの多極であれば、ロータの内径側にスペースが有り、そこへ回転トランス76、および、整流回路7Hを配置することができる。その時、回転トランスのステータ7Aとロータ7Bとの外径側と内径側を逆にし、モータのロータ72と回転トランスのロータ7Bを一体化することもできる。回転トランスのロータ側巻線79の遠心力対策の点でも有利である。なお、使用する磁性体は鉄損が過大とならないように、アモルファス、フェライト、薄板鉄心などが小型化に有利である。また、回転トランス76はロータ軸方向へ励磁するので、一部に非磁性体を使用するなどの対策が効果的である。
 図24の(a)に、図7の回転トランス76で発生するロータ軸方向起磁力の問題点を解決する回転トランス241の例を示す。242は回転トランスのステータ、243は回転トランスのロータで、図24の断面を円形にした形状である。244と245は回転トランスのステータ側巻線で、逆向きに直列に接続していて、それぞれの巻線は円形の形状となっている。246と247は回転トランスのロータ側巻線で、逆向きに直列に接続していて、出力248は図7の整流回路7Hへ接続する。ロータ側巻線246、247は、それぞれ、円形の形状となっている。ステータ側巻線244と245にシンボルの方向に電流を流すと、7Kの方向に2点鎖線で示す磁束24G、24Hが生成される。図24の(a)の構成にすることにより、ロータ軸75の軸方向起磁力は相殺し、生成されず、周囲の鉄粉が付着するなどの問題を解決できる。
 また、図24の(a)は、2組の円形状巻線に同一の交流を逆向きに作用させているが、異なる2つの相であっても良い。但しその場合は、整流回路7Hへの接続方法と整流回路の変更が必要である。また、図24の(a)の円形状巻線と鉄芯の構成を3組とし、3相交流の回転トランスとすることもできる。その場合は、整流回路7Hへの接続方法の変更と、3相整流回路への変更が必要である。
 図24の(b)に、図7の回転トランス76の代わりに使用できる発電機249の例を示す。24Aはステータで、24Cの3相巻線の入力線24Dへ3相の電圧、電流を入力する。24Bはロータで、24Eの3相巻線の出力線24Fを図7の整流回路7Hへ接続する。この場合、3相全波整流回路である。入力線24Dへ一定振幅の3相交流を入力すると、その周波数FFMで発電機の回転界磁磁束が作られ、ロータ回転周波数がFFRであるとすると、出力線24Fの周波数は(FFM-FFR)となり、発電電圧も(FFM-FFR)に比例する。なお、出力線24Fを、ロータ側の3相交流電源として活用することもできる。また、入力線24Dへ入力する電圧振幅を変化させて、振幅変調することもできる。ロータ側の出力線24Fへはロータ回転周波数FFRだけ周波数が変化した電圧が出力される。また、図24の(b)の発電機は、発電すると共に正あるいは負のトルクも発生するので、ロータ軸75のトルク出力の一部として活用することができる。また、発電機249の場合も、ロータ軸75の軸方向に起磁力は生成されない。同様に、その他の種類の発電機を使用することもできる。
 次に、図8は図1、図2等に示した本発明モータの各巻線へ電流、電圧を供給する駆動装置の例である。81は直流電源である。87はA相巻線で、図1のSA、SA/に相当する。88は電流検出手段の出力で、図1のA相電流Iaを検出する。82、83、84、85はトランジスタなどの電力変換素子で、前記A相巻線87の電流をPWM制御などで駆動し、正あるいは負の任意の値とする。86はこれら4個のトランジスタを指していて、89、8C、8F、8J、8Mは86と同一の機能を持つ電力駆動ユニットである。8AはB相巻線で、図1のSB、SB/に相当する。8Bは電流検出手段の出力で、図1のB相電流Ibを検出する。8DはC相巻線で、図1のSC、SC/に相当する。8Eは電流検出手段の出力で、図1のC相電流Icを検出する。8GはD相巻線で、図1のSD、SD/に相当する。8Hは電流検出手段の出力で、図1のD相電流Idを検出する。8KはE相巻線で、図1のSE、SE/に相当する。8Lは電流検出手段の出力で、図1のE相電流Ieを検出する。なお、電力変換素子としては、MOSFET、IGBT、GaNやSiCを活用した半導体など種々のものが使え、また、高集積化した素子、モジュールなどが使える。
 811はこれらの駆動回路を制御する制御装置であり、モータの位置、速度、トルク、電流などを制御する。812は制御指令信号で有り、モータ位置指令を含んでいる。813はロータの位置検出手段で、その出力814はロータ回転角θrである。モータの位置制御は、位置指令に対しロータ回転角θrをフィードバック制御して、その差分を速度指令とする。モータの速度制御は、速度指令に対してロータ回転角θrの時間微分値をフィードバック制御して、その差分をトルク指令95とする。
 97は電流指令作成手段で、トルク指令95とモータ諸情報96を使用して、99の電流振幅Imax、98の電流位相θiなどを求める。モータトルクとモータ電圧、および、モータ電流が適正な値となるような情報処理である。なお、前記モータ諸情報96とは、ロータ回転角θr、ロータ速度、図9、図10に示すようなモータ固有情報である。9Aは加算器であり、9Bの電流位相情報(-θi+θr)を求める。
 9Cは電流制御手段で、電流振幅Imax、電流位相情報(-θi+θr)、前記電流検出手段の出力88、8B、8E、8H、8Lを入力し、各相電流のフィードバック制御を行う。(4)式から(8)式のような各相電流の制御角となる。そして、電力駆動ユニット86、89、8C、8F、8J、8Mの各トランジスタをオン、オフしてPWM制御するためのそれらの駆動出力9Dを出力する。以上の制御装置811の制御によりモータの回転制御を行うことができる。
 また、8Mは86と同様の電力駆動ユニットで、駆動出力81Bにより駆動し、制御する。破線で囲う8Nは図7に示した回転トランス76であり、8Pは図7のステータ側巻線78、8Qは図7のロータ側巻線79である。ステータ側巻線8Pに流れる電流を電流検出手段により検出した電流値8Rで、制御装置811でロータ電流Irを推測計算する。推測計算の方法、回転トランス76の動作は図20で説明する。8Sは図7の整流回路7Hに相当するもので、回転トランス76の出力を整流し、ロータ電流Irを通電する。8T、8U、8V、8W、8Xはロータの各巻線で、図1のロータ巻線R1とR1/、R2とR2/、R3とR3/、R4とR4/、R5とR5/に相当する巻線であり、直列に接続している。制御装置811は、前記のような構成で、ステータ各相の電流Ia、Ib、Ic、Id、Ieとロータ電流Irを駆動し、モータの回転位置、速度、トルクなどを制御する。
 次に、図1、図2のモータの電流位相θiとトルクTの定性的な関係を図9に示し、説明する。図9の横軸は電流位相θiで0°から360°までを示している。縦軸はトルクTである。図1の通電状態で、電流位相をθi=0から360°まで変化させた時のトルク91の特性である。この時、各相の電流制御角は(4)式から(8)式の関係で変化し、ロータ回転角はθr=0°で固定である。例えば、電流位相θi=0°の動作点では、図1の通電状態になっていて、ステータの電流とロータの電流とが起磁力を相殺して界磁磁束ができない状態なので、トルクTは0となる。電流位相θi=36°の動作点は、図2、図3の状態で、界磁電流成分が増加して界磁磁束が増加し、トルクも増加している。92の動作点は、界磁電流成分は増加するが電磁鋼板の飽和磁気特性により界磁磁束の増加が少なくなってきて、界磁磁束とトルク電流成分の積が最大となる点である。電流位相θi=180°の動作点は、界磁磁束が最大になるがトルク電流成分が0となる点でトルクT=0となる。94は負のトルクの最大点である。電流位相θiが0°の動作点、180°の動作点からみて点対象の特性となっている。
 図9のトルク特性91に対し、ロータ電流Irとステータ各相の電流振幅Imaxの比率を同じにし、大きさを変えた場合は、図9の上下にトルクが増減し、トルク特性91とほぼ相似形の特性となる。しかし、ロータ電流Irとステータ各相の電流振幅Imaxをそれぞれ変えた場合は、図9のグラフ上で様々な特性となる。その特性も活用できる。
 次に、モータの電流IとトルクTの関係について、従来モータと本発明モータを比較して、図10に示し、定性的に比較、説明する。図10の横軸は連続定格電流を1としたモータ電流である。例えば、横軸の4は連続定格電流の4倍の電流を通電した状態である。縦軸はトルクTである。
 図10の特性101は、従来の磁石内蔵型同期モータIPMSMなどの特性例である。現在市販されているモータは、連続定格トルクの3倍程度まではトルクTが直線的に電流に比例して増加するが、3倍以上は保証されておらず5倍程度でトルクが飽和することが多い。大きな電流領域では、一般的に、電磁鋼板などの磁性体が磁気飽和し、永久磁石の動作点も変化するので、その結果、力率が低下し、銅損が増加し、効率が低下する。
 一方、本発明モータは、ロータ電流Irとステータ各相の電流振幅Imaxと電流位相θiとを変化させて、図9の動作点92のような最大トルク点を求め、モータの電流IとトルクTの関係を描くと、図10の102のトルク特性となる。電流の小さい領域では、従来モータと大差のない特性であり、むしろ本発明モータはロータ電流を通電する必要があり、不利な面もある。しかし、連続定格の5倍以上の大きな電流領域では大きなトルク発生が可能となる。しかも、トルクの増加は、大電流領域では電流値の1.3乗以上になるなど、直線状より遙かに大きなトルク発生が可能である。
 本発明モータが大きなトルクを出力できる説明として、その一つは前記のように、ステータ電流とロータ電流がエアギャップ面を中心に対向していて、かつ、正電流と負電流なので両電流の起磁力を相殺し、両電流の周囲に起磁力を発生しないことである。即ち、界磁電流成分は界磁磁束を作り、トルク電流成分はトルクを発生するが電機子反作用を発生せず、界磁磁束に悪影響しないことである。
 一般的に、発生する力Fとして次式がよく知られている。
   F=B・I・L                         (11)
Bは磁束密度、Iは電流、Lは磁束が作用する電線長である。トルクTは力Fと半径の積である。しかし、従来モータでは、電機子反作用により、大電流時に磁束密度Bの分布が変化し、界磁磁束を一定に保つことが難しい。そして、トルク定数が低下し、トルク飽和などの問題も発生する。従って、(11)式の問題点の一つは、大きな電流領域、大きなトルク領域では磁束密度Bが変化する点である。また、実際のモータモデルにおいて、力が発生する部分での電磁気的作用を解析、分析するには不十分である。
 なお、BがIに比例するような構成のモータであって、Bが磁気飽和していなければ、力Fは(11)式に従い、電流の2乗のトルクを生成できることになる。
 そこで、マクスウェルの応力式から導かれる次式に基づいて、本発明モータのトルク発生メカニズムを図11に示し、説明する。(12)式は、モータのエアギャップ部に作用する円周方向の力を示す。
   FEN=(BR×BEN)/μ                  (12)
ここで、FENは円周方向の力、BRはエアギャップ部のラジアル方向の磁束密度成分、BENはエアギャップ部の円周方向の磁束密度成分、μは真空の透磁率である。この(12)式にはモータ電流は無く、電磁気的な作用の結果としての磁束密度で表されている。どのような磁束の状態、分布にすれば円周方向の力FENを発生できるのかを考えることができる。円周方向の力FENの発生に寄与する磁束と力FENの発生にあまり寄与していない磁束などについても考察し易い。
 図11は、図3のモータ角度θzが-36°から180°の間の中央部のみを拡大した部分的な図である。図3と同一のものは同じ符号をつけている。直線状の展開図であり、紙面で上方はステータ、下方はロータである。113はステータのエアギャップ面、114はロータのエアギャップ面で、115の間がエアギャップ部である。ステータの波状の破線118の外側、および、ロータの波状の破線119の外側は省略して記載していない。なお、エアギャップ部115は説明のため大きく誇張して描いている。図2に示したスロットの外形形状は省略している。
 図1、図2、図3の説明では、ロータ回転に伴う各相のステータ電流の変化が急変しない電流波形として図6のような台形状の電流波形で駆動する例を説明した。しかし、この図11では、特に、低速回転での大電流、大トルク出力の領域の動作について説明するので、矩形波状の電流波形で駆動する例を示す。後に示すように、矩形波駆動はモータの損失低減、インバータの小型化の点で有利である。また、図11のモータについて、(12)式に基づく力FENを簡潔に説明できる。矩形波状の電流波形は、図2において、丸印の中にXの字マークを書き入れたシンボルである正電流には全て紙面の表側から裏側へ電流Irを通電し、丸印に点を書き入れたシンボルである負電流には全て紙面の裏側から表側へ電流Irを通電する。図2の状態は、電流位相θi=36°、ロータ回転位置θr=0°である。図2の展開図が図3で、図3の一部を拡大した図が図11なので、図11の巻線TC/、T1/、SA、SD/、SB、SE/へはそれぞれ正電流であるIrを通電する。巻線R1、R2、R3、R4、R5、SCへは負電流である-Irを通電する。
 図11の矩形波状の電流波形の例を図25に示す。電流位相θi=36°で、横軸をロータ回転位置θrとし、縦軸は各電流である。図25の(a)はA相の界磁電流成分Iafで、(f)はA相のトルク電流成分Iatで、(k)はA相電流Ia=(Iaf+Iat)である。B相、C相、D相、E相も同様である。図25の(p)はロータ電流Irである。なお、各相の電流波形については、モータ特性に応じて修正し、トルクリップル低減などの改良を行える。また、高速回転では、より滑らかな増減波形とする、より正弦波状の波形とするなど、適宜、変形することができる。
 前記通電状態では、破線11Bで囲って示す巻線TC/とT1/の電流2×Irと破線11Cで囲って示す巻線SCとR5の電流-2×Irにより、それらの電流の間の領域に、2点鎖線で示すラジアル方向磁束成分22を作っている。ロータ119のN極を通る磁束成分22はステータ118のバックヨーク部を通り、モータ角度θzが-180°から0°の間のロータS極、もしくは、モータ角度θzが180°から360°の間のロータS極を通り、ロータ119のバックヨーク部を通り、一巡している。ステータ巻線SAの正電流Irとロータ巻線R1の負電流-Irとが近接していて、これら2巻線の合計起磁力は相殺して0Aなので、アンペアの法則により、これら2巻線が周囲に与える起磁力は0である。同様に、巻線SD/とR2、巻線と、巻線SBとR3、巻線SE/とR4についても、それぞれ周囲に与える起磁力は0である。これら8個の電流は、エアギャップ部115を介して対向する電流が相互に起磁力を相殺しているので、これら8個の電流の外側へは起磁力を生成せず、電機子反作用を発生しない。
 さらに具体的には、2点鎖線の経路11Eに沿った磁界の強さHベクトルの周回積分値は、その内部の通過電流の総和が0Aなので、アンペアの法則により0である。従って、経路11Eに沿うような磁束は0である。しかし、前記経路11Eの内側の部分的な起磁力は発生していて、2点鎖線で示す磁束111の経路に沿った磁界の強さHベクトルの周回積分値は、アンペアの法則により、その内部のステータ巻線SA、SD/、SB、SE/の通過電流の総和で4×Irである。また、2点鎖線で示す磁束112の経路に沿った磁界の強さHベクトルの周回積分値は、アンペアの法則により、その内部のロータ巻線R1、R2、R3、R4の電流の総和で-4×Irである。なお、矩形波電流駆動は非線形であり、ロータ回転に伴う過不足をモータ全電流で補うアルゴリズムが効果的である。
 磁束111と磁束112とがエアギャップ部115とその近傍に円周方向磁束成分MFGを作っている。エアギャップ部115とその近傍におけるラジアル方向磁束成分22と円周方向磁束成分MFGとの合成磁束は、磁束117、11A、11Dのように描ける。図が煩雑となるので、これらの合成磁束はエアギャップ部115だけに局部的に描いている。この磁束密度をラジアル方向磁束密度成分と円周方向磁束密度成分に分割し、(12)式に代入して、ステータとロータ間に作用する円周方向の力を求めることができる。さらに、ロータの半径を乗じてトルクを計算できる。
 ステータコア内周部とロータコア外周部との間のエアギャップ長は0.5mm程度に小さくできるので、図11の本発明モータではステータ巻線とロータ巻線をできるだけ近接して、両巻線の隙間をエアギャップ長に近づけることが可能である。従って、エアギャップ部115のラジアル方向磁束密度が2テスラを超える大きな磁束密度になっても、エアギャップ部とその近傍の円周方向の通過断面積は小さく、円周方向の磁束量は比較的小さい。一方、ステータのエアギャップ部とは反対側で、外径側のバックヨーク部のラジアル方向幅は、エアギャップ長の0.5mmに比較し、数10倍も広い。従って、磁束111のバックヨーク部の円周方向磁束密度成分は小さく、磁束111のこの部分での磁気抵抗は小さい。また、ロータ側の磁束112についても、エアギャップ部とは反対側で、ロータの内径側のバックヨーク部は広いので磁束112のバックヨーク部の円周方向磁束密度成分も小さく、磁束112のこの部分での磁気抵抗は小さい。そして、これらの磁束111、磁束112がバックヨーク部でラジアル方向磁束成分22へ与える磁束密度の影響は小さい。
 このように本発明モータは、ステータ巻線SA、SD/、SB、SE/の電流とロータ巻線R1、R2、R3、R4の電流の両方でエアギャップ部の円周方向磁束成分MFGを薄いエアギャップ部とその近傍に閉じ込める効果がある。前記のように、磁束111、112に関して、バックヨーク部の磁気抵抗は小さく、起磁力の消費は小さい。その結果、これらの8個の電流がエアギャップ部の円周方向磁束成分MFGの磁束密度成分BENを非常に大きな値にまで高めることが可能である。
 また、ラジアル方向磁束成分22がエアギャップ部115を通過することは、エアギャップ部115の円周方向磁束密度成分が非常に大きくても、距離は0.5mm等の小さな値であり、比較的容易である。
 合成磁束117、11A、11Dの方向に、ステータとロータの相互に吸引力が作用し、(12)式に従って円周方向の力が発生する。しかし、ステータ巻線SA、SD/、SB、SE/の電流とロータ巻線R1、R2、R3、R4の電流の総和は0で、これらの電流の起磁力は相殺し、ラジアル方向磁束成分22へ与える影響はマクロ的には小さい。即ち、これらの巻線の電流は、原理的には、周囲へ電機子反作用を発生しない。
 そして、ステータ巻線TC/とSC、および、ロータ巻線T1/と39へ大きな電流を通電することにより、他の電流による電機子反作用の影響を受けることなく、界磁磁束成分である、ラジアル方向磁束成分22を大きくすることができる。即ち、(12)式のラジアル方向の磁束密度BRを大きくすることができる。なお、電機子反作用の影響が小さいので、ロータに配置する永久磁石、あるいは、ステータおよびロータに配置する界磁磁束専用の界磁巻線などの他の手段で、界磁磁束成分を生成することも比較的容易である。
 このように、(12)式に示されるラジアル方向の磁束密度成分BRと円周方向の磁束密度成分BENとの両方を大きくすることができるので、大電流域におけるトルクを、図10に示すように、電流に比例した値よりも大きな値とすることができる。具体的には、合成磁束117、11A、11Dなどの磁束密度を2テスラ以上に高めることも可能である。図10に示すトルク特性の大電流域におけるトルク増加の曲線は、単純モデル的には両磁束密度BRとBENの積なので、大きな電流を通電することにより原理的に電流の2乗の特性曲線に近づくと考えることができる。
 特に、合成磁束117、11A、11Dなどの磁束密度を高めるが、しかし、エアギャップ近傍の円周方向の磁束の量を小さな値とするためには、ステータ電流とロータ電流とができるだけ径方向に接近する構成とする必要がある。エアギャップ長115の大きさだけではない。この観点では、後に示す図12、図13のモータのように、ステータ巻線とロータ巻線の径方向寸法を小さくできる構成が有利である。
 また、大電流を通電して大トルクを得る場合には、巻線部の磁束密度が大きくなり、導線部内での渦電流損が、高速回転で問題となる。この対策として、細い絶縁電線を多数の並列巻線とする方法が効果的である。並列巻線の電流アンバランス問題については、撚り線とする、あるいは、巻線位置のアンバランスを解消する変位などの方法が効果的である。
 前記説明のように、本発明モータはトルク密度、出力密度の大きな優れた特性を得ることが可能である。図11のエアギャップ部の近傍において、円周方向磁束成分MFGの円周方向磁束密度成分BENは、大きなトルク電流成分を通電することにより、通常の電磁鋼板の飽和磁束密度である2テスラを超えた4テスラ、6テスラなどの大きな磁束密度を局部的に生成可能である。(12)式のように、図11のエアギャップ部の近傍の磁束密度の大きさが発生トルクの大きさに関わる。バックヨークなどの他の部分の磁束密度は、トルク発生に寄与せず、モータ設計の都合上むしろ小さい方が良い。例えば本発明モータの場合、トルク発生部が実質6テスラで作用するモータを、飽和磁束密度が2テスラの磁性材料を使用して作ることができることになる。
 界磁磁束成分であるラジアル方向磁束成分22のエアギャップ部近傍の磁束密度の大きさも原理的な制限は無い。飽和磁束密度が2テスラの磁性材料を使用していても、界磁励磁電流成分を極端に大きくし、2テスラ以上の磁束密度とすることもできる。2テスラ以上の動作点では比透磁率が1に近づくが、構成的、原理的な制約は無い。(12)式に示されるように、トルクはエアギャップ部近傍のラジアル方向の磁束密度成分BRに比例し、BRはトルク生成に重要である。
 なお、マクスウェルの応力式から導かれた(12)式の円周方向の力は、発生する力をその動作点の磁束密度で表現しているので、モータを構成する磁性体の磁束密度が大きい領域、即ち、比透磁率が1に近づくような、いわゆる磁気飽和上限以上の領域まで、その場所で発生する力を表現できる。また、図11に示し説明したように、本発明モータは、単に電機子反作用による界磁磁束の偏りを低減するという効果だけでなく、エアギャップ部の磁束密度を軟磁性体の飽和磁束密度以上に高めて高トルクを実現し、また、ラジアル方向の磁束密度成分を自在に制御して高速回転時の界磁弱めを実現するものである。そして、図11は電磁気的に大きな力を発生する基本構成を示す図であると考えている。
 なお、図11では、モータ角度θzが0°から180°の間のロータのN極とその近傍について示したが、モータ角度θzが180°から360°の間のロータのS極とその近傍の作用については、電流の向きと磁束の向きが反対となる。しかし、力、および、トルクの発生する方向と大きさは図11と同じである。
 次に、図1とは異なる本発明のモータの形態例を図12に示し、説明する。大電流を通電して大トルクを出力するモータ例である。まず、図11のラジアル方向磁束成分22の大きさについて考えると、磁束の大きさがロータの歯およびステータの歯の磁束密度が2テスラ以下の場合その磁気抵抗は比較的小さい。しかし、さらにラジアル方向磁束成分22が大きくなると、磁気飽和した歯およびスロットの部分に磁束を通さなければならない。図11において、115のエアギャップ長は0.5mm程度に小さくできるが、116のロータ巻線の内径側からステータ巻線の外形側までの径方向長さは、図1のスロット形状から分かるように、例えば50mmなどの大きさである。エアギャップ部の0.5mmの100倍にもなる。図11では、エアギャップ部115を拡大し、誇張して描いている。また、ラジアル方向磁束成分22は、歯を通過する磁束を考えると、2テスラの半分程度の平均磁束密度までは磁気抵抗が小さいが、それを超える平均磁束密度では磁気抵抗が大幅に大きくなる問題がある。なおここで、モータに使用する通常の電磁鋼板の飽和磁束密度を2テスラとしている。
 図12に、ステータの歯とロータの歯を削除した、いわゆるコアレス構造のモータの横断面図を示す。図1等の本発明モータの構造を変形して図12の構造とすることができる。121はステータのバックヨーク、122はステータ巻線、123はロータのバックヨーク、124はロータ巻線である。ステータ巻線122は、例えば、丸線あるいは平角線などで折りたたむ様に多相巻線を形成し、高耐熱の樹脂などで成形、固定する。125は巻線部分の径方向長さであり、図1などのモータの歯の部分にも巻線を配置できることから、図11の巻線の径方向長さ116に比べて、径方向長さ125を、単純比較で、1/2程度に縮小することができる。当然、図12の構造のモータでは、モータ設計的に、径方向長さ125をさらに小さくすることもできる。従って、径方向の平均磁束密度を1テスラ以上の、例えば2テスラなどの大きな平均磁束密度とする場合、図12のモータではそのラジアル方向界磁の励磁負担をむしろ軽減することができる。また、径方向の平均磁束密度を大きくできれば、ステータ巻線122およびロータ巻線124の電流を小さくしても、大きなトルク、大きな出力を生成することが可能となる。以上説明したように、図12に示すコアレス構造のモータは、大きな電流を通電して大きなトルクを出力する時に、小型化、軽量化、低振動化、低騒音化等の特徴を発揮するモータ構造である。但し、比較的小さな電流で小さなトルクを出力する時は、界磁の励磁負担が相対的に大きいので、モータ効率は低くなる。
 次に、図13に、図1のモータと図12のモータとの中間的なモータ構成を示し、説明する。図13のステータの部分形状は、図1のモータを4極化した図16のステータ形状を変形したものである。破線で示すスロット形状137は、変形前の図16のスロット形状である。134はステータの歯、スロット135はスロットである。波状の破線の外側は省略している。131はステータの歯134の歯幅、132はスロット135の内径側の広さである。通常は、歯幅131とスロット内径側の広さ132は同じくらいの大きさであるが、大幅に縮小している。ここで、ステータの歯134の歯幅131を小さくすることによりスロット135の断面積を増加させ、スロットのラジアル方向長さ133を小さくすることが可能となる。電磁気的に、図12のモータに近づけることができる。
 この結果、ステータの歯134は、その歯幅131が小さくなっても、ステータ巻線を整列したり、強固に固定することができる。特にロータ側の場合には遠心力に対する巻線の保持強度が大変重要であり、スロット開口部を閉じて高強度化することもできる。このように、本発明モータの歯幅131を小さくすることにより、図12のモータに比較すると、巻線の製作性を確保し、巻線の固定強度を確保することができる。
 また、用途によっては、大電流時の大トルクを出力するだけでなく、低トルク域での高効率が同時に求められることもある。そのような場合には、低トルク時に必要な最低限の歯幅131とすることにより、低トルク時の径方向の平均磁束密度を高めることができ、大電流時の大トルク化とバランス良く両立させることも可能である。また、大電流時の大トルクの生成はモータの電流密度が大きくなるため、巻線の銅損が大きくなり、モータの積極的な冷却が必要となる。136に示す冷却用パイプなどをスロット内部、バックヨーク部近傍、あるいは、歯134の一部などに配置し、歯134により固定することができる。用途により、ステータとロータは、図1、図12、図13等の構成を組み合わせて使用、変形して使用することができる。特に、大きな電流を通電する場合、高速回転を行う場合には、冷却性能が重要であり、種々冷却手段が必要となる。
 次に、界磁弱め制御による高速回転、および、定出力制御について説明する。図1、図2、図3、図4を示し、説明したように、界磁磁束の制御が可能である。定性的には、界磁電流成分以外の電流はステータ側電流とロータ側電流とで起磁力が相殺するように通電できるので、電機子反作用が発生しないか、あるいは小さな作用である。その状態で、界磁電流成分を増減することにより、トルク電流成分の影響を受けることなく、界磁の強め、弱めの制御を行うことができる。
 図27の速度VとトルクTの特性に示す領域Aの動作点では、図2などで界磁電流成分が最大で、トルク電流成分も最大の状態である。図9の電流位相θiとトルクTの定性的特性では92の動作点などである。図27の領域Bの動作点では、図2などで界磁電流成分が弱められ、トルク電流成分が大きな状態である。図9の電流位相θiとトルクTの特性では93の動作点などである。界磁磁束が小さい時はモータの誘起電圧定数が小さいので、モータ回転数を高速回転で駆動することができる。モータの基底回転数から高速回転まで、界磁弱めによりモータ電圧が一定値になるように界磁弱め制御を行い、その時トルク電流成分を一定に保てば、モータ電圧とモータ電流の積が一定値となり、いわゆる定出力制御の状態となる。
 次に、図14に図8とは異なり、モータ巻線を星形結線とした場合の駆動回路を示す。トランジスタ147とトランジスタ148とでA相巻線141にA相電流Iaを通電し、トランジスタ149とトランジスタ14AとでB相巻線142にB相電流Ibを通電し、トランジスタ14Bとトランジスタ14CとでC相巻線143にC相電流Icを通電し、トランジスタ14Dとトランジスタ14EとでD相巻線144にD相電流Idを通電し、トランジスタ14Fとトランジスタ14GとでE相巻線145にE相電流Ieを通電する。ここで、星形結線の場合は、各相の通電電流に次式の制約が発生する。
  Ia+Ib+Ic+Id+Ie=0                (13)
 図8の駆動回路では、各相電流を4個のトランジスタによってそれぞれ個別に駆動して、それぞれが独立しているので自在な制御が可能である。図14の星形結線の駆動回路では(13)式の制約があるものの、トランジスタの数を図8の20個から10個に減らすことができ、駆動回路を簡素化できる特徴がある。逆に、図8の構成は(13)式の電流制約が無く、電流制御の自由度が高い。なお、モータ出力が同一の時、図8と図14とのモータでは、巻線の電圧と電流の配分が変わる。そして、インバータの各トランジスタの電流容量と個数との積は、モータ出力が同一の時、図8と図14とのインバータ構成で大差が無い。本発明モータはどちらの方法でも制御することができる。
 次に、請求項3の実施例について、図15に示し、説明する。請求項2の回転トランスを使用する方法とは異なる方法で、ロータ電流Irを供給する方法である。図15の各相巻線141、142、143、144、145は図14の各相巻線と同じものであるが、中性点146の部分に151のダイオードブリッジを挿入し、各相電流を整流している。152はステータ側へ取り付けたブラシで、153はロータ側に取り付けたスリップリングである。同様に、154はブラシで、155はスリップリングである。各巻線8T、8U、8V、8W、8Xは、図1、図2に示したロータ巻線R1とR1/、R2とR2/、R3とR3/、R4とR4/、R5とR5/である。前記ダイオードブリッジ151で整流したステータ電流を、2個のブラシ152、154とスリップリング153、155を使用してロータ側へ供給し、ロータ電流Irとして通電する。図7の回転トランス76、整流回路7Hに置き換えて、ブラシとスリップリングを取り付ける。
 図15の構成の場合、ステータ電流を活用してダイオードブリッジ151を使用してロータ電流Irを作ることができるので、図8に示すようなロータ電流Irの駆動回路を簡素化できる。また、ロータ電流Irの大きさについても、受動的にステータ電流と一致し、ステータ側とロータ側のバランスを確実に維持することができる。簡素な構成であり、誤差も小さい。しかし、図15の構成、方法の場合、ブラシとスリップリングの信頼性と寿命およびメンテナンス負担がある。低速回転で稼働率が低い用途ではこの方法が好適である。また、ロータ電流Irを図8の電力駆動ユニット8Mのような駆動回路で通電しても良い。
 また他の方法として、図15のブラシとスリップリングを使用しない方法を図26に示し説明する。ブラシとスリップリングに換えて、破線290で囲うDC-ACコンバータと回転トランス8Nと整流回路8Sを使用している。図26の紙面で電流検出手段の出力8Rおよび回転トランス8Nより右側は、図8の構成と同じである。
 DC-ACコンバータ290のトランジスタ291、292、293、294により、ダイオードブリッジ151の出力である直流電流を交流電流に変換し、回転トランスの1次側巻線8Pに通電する。295はコンデンサー、フィルターなどであり、過電圧を防止する。回転トランスの2次側巻線8Qの出力を整流回路8Sで直流に変換し、ロータ巻線8T、8U、8V、8W、8Xへロータ電流Irを通電する。図26の機能は、図15の構成の機能とほぼ同じで、ロータ電流Irの大きさを受動的にステータ電流と一致させることができる。そして、ブラシとスリップリングの信頼性と寿命の問題およびメンテナンス負担を解消することができる。ただし、図15、図26の構成において、ステータ電流が急激に減少する場合は、ロータ電流Irがダイオードで循環するために減少が遅れるので電流位相θiの制御等の対応が必要である。なお、DC-ACコンバータ290は種々形態の回路を使用できる。
 また、ブラシ152、154への接続を図14の直流電源81とインバータとの間、すなわち、14Hの矢印で指す部分に挿入しても良い。インバータへの直流電流分である。但し、この場合はインバータとモータ巻線間で循環する電流分、いわゆるフライホイール電流分はロータ側へ流れないので、ステータ電流とロータ電流との間に誤差が発生する。特に、EV等で重要となる運転モードの一つとして、低速回転で大きなトルクを発生する必要がある。その場合には、前記誤差が極端に増大し、しかも、回転数により大きく変化するので、大きな問題である。しかし、ほぼ一定回転で、ほぼ一定トルクで運転する場合には、例えばステータ電流の位相調整などで問題をカバーすることもできる。
 但し、この場合はインバータとモータ巻線間で循環する電流分、いわゆるフライホイール電流分はロータ側へ流れないので、ステータ電流とロータ電流との間に誤差が発生する。特に、EV等で重要となる運転モードの一つとして、低速回転で大きなトルクを発生する必要がある。その場合には、前記誤差が極端に増大し、しかも、回転数により大きく変化するので、大きな問題である。しかし、ほぼ一定回転で、ほぼ一定トルクで運転する場合には、例えばステータ電流の位相調整などで問題をカバーすることもできる。
 次に、請求項4の実施例について、図16、図17に示し、説明する。請求項2、請求項3とは異なる方法で、ロータ電流Irを供給する方法である。図16は、図1のモータを4極化したモータ横断面図である。ステータに20個のスロットがあり、ロータに20個のスロットがある。ステータの巻線は、5相の全節巻き、集中巻きの構成となっている。各巻線の駆動回路は図17であり、図14と比較すると、A相巻線141がA1相巻線171とA2相巻線172に分かれている。A1相巻線171へは、トランジスタ174と175で178の電流Ia1を通電する。A2相巻線172へは、トランジスタ176と177で179の電流Ia2を通電する。A1相巻線171とA2相巻線172との間には、ロータの電力を供給するために、モータ5相電流とは別の交流電流である給電電流Ifaを重畳して通電する。これらの関係は次式となる。
  Ia1=Ia/2+Ifa                     (14)
  Ia2=Ia/2-Ifa                     (15)
  Ia=Ia1+Ia2                       (16)
  Ifa=(Ia1-Ia2)/2                  (17)
A1相巻線171とA2相巻線172の巻き回数は、電圧が同じになるように、他相と同じ巻き回数にする。A1相とA2相以外は、図14と図17は同じであり、説明を省略する。
 図16において、ステータ側からロータ側へロータ電流を通電すための電力を供給する方法について説明する。A1相巻線171とA2相巻線172を使用して給電するので、図16ステータの巻線はA1相巻線171とA2相巻線172だけを示している。前記のように、図1のモータを4極化した構成であり、A相巻線を除いて、他の相の巻線は図16と図1は同じ構成である。モータ角度θzの電気角で0°から360°の巻線161、162、163と巻線164、165、166がA1相巻線171で、電気角で360°から720°の巻線167、168、169と巻線16A、16B、16CがA2相巻線172である。A相電流の電流の向きは図16に記載した電流シンボルの方向である。ここで、重畳して通電する給電電流Ifaだけについて考えると、(15)式より、A2相巻線の前記電流シンボル167、168、16A、16Bは逆向きになる。そして、給電電流Ifaに関しては、165と167が相殺し、161と16Bが相殺する。168と16Aの給電電流Ifaの通電方向は、電流シンボルと逆方向の向きとなる。その結果、給電電流Ifaが励磁する磁束Φsupは2点鎖線で示す16Fとなる。A相電流Iaに重畳して通電する給電電流Ifaにより720°周期の磁束を励磁したことになる。B相、C相、D相、E相については図14と同じ構成、作用である。
 一方、ロータには直交する受電G巻線16Gと受電H巻線16Hを巻回していて、前記磁束Φsupが鎖交する。受電G巻線16Gと受電H巻線16Hは、それぞれ、360°のピッチで巻回していて、720°周期の巻線である。図18に示すように、受電G巻線16Gはダイオードブリッジ181に入力され交流電圧が直流に整流される。受電H巻線16Hはダイオードブリッジ182に入力され交流電圧が直流に整流される。それらの電圧は足し合わされ、図15と同じロータ巻線8T、8U、8V、8W、8Xへ接続され、ロータ電流Irが通電される。このように、A相巻線を流用して、ステータ側から、非接触でロータ側へロータ電流Irに必要な電力を供給することができる。また、交流の給電電流Ifaと直流のロータ電流とは、変圧器の1次電流と2次電流のような単純な関係なので、ステータ側からロータ電流Irを推測することができ、フィードバック制御により、ロータ電流Irを正確に制御することができる。また、電気角で360°周期の5相電流と720°周期の前記給電電流Ifaとは原理的に非干渉な関係であり、5相モータとしての機能、性能には影響が少ない。また、給電電力がロータ巻線の抵抗消費分であって大きさが相対的に小さいので、このロータ電力の供給がステータ電流の制御に与える負担、影響は比較的小さい。
 図18でダイオードブリッジ181、182の電圧降下はダイオード4個分の電圧であり、ダイオード183を追加することにより、ロータ電流Irが循環する時の電圧降下を1/4に低減することもできる。図16、図17で説明した方法は、巻線、整流器、インバータなどの種々の変形も可能である。A相以外の相を利用することもできる。全部の相を利用することもできる。また、モータをほぼ一定の回転で使用するような用途では、ステータに永久磁石を取り付け、前記受電G巻線16Gと受電H巻線16Hを発電機巻線として使用してロータ電流Irを供給することもできる。ロータ側の受電巻線についても、図16のG、Hの2相巻線ではなく、単相にしたり、3相以上の多相にすることも可能である。また、5相以外の、相数が異なるモータへも同様に適用できる。
 次に、図16、図17で説明した方法を変形して、5相の巻線を活用する方法で、ロータ電流Irを供給する方法について説明する。そのステータ巻線構成は、B相、C相、D相、E相についても、A相と同様に、それぞれの相の巻線を2個の巻線とし、10相の巻線構成とする。前記のA1相巻線とA2相巻線の関係と同様に、B1相巻線とB2相巻線、C1相巻線とC2相巻線、D1相巻線とD2相巻線、E1相巻線とE2相巻線を構成する。それぞれの巻線には、A相の給電電流Ifaと同様に、給電電流Ifb、給電電流Ifc、給電電流Ifd、給電電流Ifeを通電できる構成とし、これらの電流はそれぞれモータの720°周期の電流となる構成とする。各相電流Ib、Ic、Id、Ieと前記各給電電流Ifb、Ifc、Ifd、Ifeとの関係は、(14)、(15)、(16)、(17)式と同様である。
 図16、図17で説明した給電電流Ifaは単相であったので、単相の交流電流、電圧だったが、5相の給電電流Ifa、Ifb、Ifc、Ifd、Ifeは5相の交流電流とする。これら5相の給電電流がロータへ720°周期の回転磁束Φimを作ることになる。回転磁束Φimの周波数Fimは任意の値を選択できる。図16、図18に示すロータ側の受電G巻線16Gと受電H巻線16H、および、整流器181、182と接続方法などは同じである。
 5相の給電電流Ifa、Ifb、Ifc、Ifd、Ifeによる720°周期の前記回転磁束が受電G巻線16Gと受電H巻線16Hに鎖交して両巻線に電圧Vg、Vhを発生する。その電圧Vg、Vhは、(回転磁束の大きさ)と(回転磁束の周波数とロータ回転の電気角回転周波数の1/2との差)との積に比例する。図18に示すように、前記電圧Vg、Vhを整流してロータ電流Irを通電するので、ロータ回転数に応じて、5相の給電電流の振幅と周波数Fimを正確に制御する必要がある。
 給電電流の解り易い一つの方法は、(回転磁束Φimの電気角周波数Fimとロータの電気角回転周波数の1/2との差の周波数)が一定値Fsとなるように、5相の給電電流の周波数Fimを決定、制御する。この時、受電G巻線16Gと受電H巻線16Hに誘起する電圧の周波数はFsとなる。そして、通電すべきロータ電流Irの大きさに応じて5相の給電電流の振幅を決定、制御すれば良い。なお、この時、受電G巻線16Gと受電H巻線16Hは、前記回転磁束によって発電する発電機の巻線となっていると考えることもできる。なお、前記回転磁束Φimはそのモータの周期の2倍の720°となる例について説明したが、応用、変形して360°の整数倍でも同様の電力給電を実現できる。
 ロータへ電力を供給する他の方法として、図8の電力駆動ユニット86、89、8C、8F、8J、8Mでパルス電流、あるいは、高周波電流などを重畳し、ロータ巻線8T、8U、8V、8W、8Xへその磁束が鎖交するようにし、図18のダイオード183によりロータ電流Irがフライホイール電流として保持させることもできる。また、前記パルス電流、あるいは、高周波電流を受け取る受電巻線を設け、受電巻線の電圧を全波整流して、ロータ巻線8T、8U、8V、8W、8Xへロータ電流Irを通電することもできる。また、モータ構造、あるいは、ステータ電流により、エアギャップ部に空間高調波の磁束成分を生成し、ロータ側へその空間高調波磁束と鎖交する巻線WKMを配置し、巻線WKMの電圧を整流し、ロータ電流Irを通電することもできる。
 次に、請求項5について説明する。請求項5の内容は、図1から図5、図8、図9、図11、および、(9)式、(10)式等に示す、本発明モータを制御する方法、装置である。本発明モータのトルクは、概略として、ステータ電流の大きさとロータ電流の大きさ、そして、それらの相対的な位相差を制御することにより制御することができる。そして、電機子反作用をなくす、あるいは、低減するために、ステータのトルク電流成分の総和IWSPがロータのトルク電流成分の総和IWRNに等しい値とし、すなわち(9)式のように制御する。この方法により、電機子反作用を低減するだけでなく、(12)式に示す円周方向の磁束密度成分BENをエアギャップ部近傍に集中させることが可能となり、(12)式に示す力FENを大きな値とすることができる。なお、界磁電流成分がラジアル方向の磁束密度成分BRをつくる。
 
 次に、請求項6について説明する。請求項6の内容は、図1から図6、図8、図9、図11等に示す本発明モータとそのステータ電流の制御方法、装置である。具体的には、ロータ巻線RWの円周方向位置θrに対するステータの電流位相θiを制御する。電流位相θiを制御することにより、界磁電流成分とトルク電流成分との比率を任意の値に制御することができる。この時、ロータ電流Irは、界磁電流成分とトルク電流成分との和にバランスするように通電する。これらの制御の例については、図1から図6などで説明した。もちろん、トルクの大きさ、界磁磁束の大きさの制御には、電流位相θiだけでなく、各電流の大きさ、振幅を可変して制御することができる。
 なお、ステータ側の界磁電流成分Ifsとロータ側の界磁電流成分Ifrとの差分が発生する場合は、(10)式のアンバランスな界磁電流成分Ifrxを別の変数として扱うなど、種々変形が可能である。この方法により、電機子反作用を低減するだけでなく、(12)式に示す円周方向の磁束密度成分BENをエアギャップ部近傍に集中させることが可能となり、(12)式に示す力FENを大きな値とすることができる。また、請求項6と請求項5とは、制御の変数の取り扱いが異なるが、目的はほぼ同じである。
 電流位相θiをパラメータとして制御する方法の他の特徴の一つは、電流位相θiにより界磁電流成分とトルク電流成分と分離するので、特定相のステータ電流の大きさが他相の電流値より大きくなるなどの電流の偏りが少ないことである。従って、駆動インバータの各トランジスタの負担を均一にでき、駆動インバータの負担を軽減できる。
 また、他の特徴として、モータトルク指令が急減する時にも、良好なモータトルクの応答性を得ることができる。具体的には、図8の実施例の場合、ロータ電流は回転トランス8Nの出力である交流電圧をダイオード整流回路8Sで整流し、ロータの各巻線8T、8U、8V、8W、8Xへロータ電流Irを通電している。この構成で、ロータ電流Irを急激に減少させようとすると、ロータ巻線とダイオード整流回路8Sでロータ電流Irが循環することになり、急激な電流減少は困難である。そこで、電流位相θiを制御する方法であれば、ロータ電流Irがゆるやかに減少する時にでも、電流位相θiを小さな値に変えることにより界磁磁束成分を素早く小さな値に変えることができるので、急激にトルクを減少させることができる。EVの駆動において、大きなトルク出力から急速に減少することは、安全上必須で重要な機能、性能である。なお、トルクを急激に減少させるために、ステータの電流を単純に急減すると、ロータ電流により界磁磁束が増加するので、高速回転時には過大電圧となるなど、新たな問題が発生することがある。
 また、図1から図5では、5相のステータ電流で、ロータ電流は各スロットの巻線を直列に接続し、同一の電流を通電する例について説明した。ステータ電流の波形形状についても矩形波形状の電流、ほぼ台形波形状の電流の例について説明した。しかし、ステータ電流の波形形状は正弦波の波形形状とすることも可能であり、矩形波と正弦波の間の種々波形とすることも可能である。図8の86などの駆動回路であれば、自在な電流波形に制御することができる。
 特に、高速回転になると、ステータ電流が矩形波形状に近い場合、電流値が急変する部分が出てきて電流の制御が難しくなる。従って、高速回転になるにつれ、ステータの各相電流の波形を正弦波に近づける制御方法が効果的である。前記(9)式を満たすように制御することにより、電機子反作用を低減するという効果が得られる。
 ステータの各相電流の波形が正弦波に近づくと、従来の磁石内蔵型モータの正弦波制御との類似点が出てくる。しかし、本発明モータではロータ電流が存在する点、ロータ電流の一部が界磁電流成分となる点などは、従来のモータ制御と異なる点である。また、ステータの電流とロータの電流とでアンバランスな制御もできる。しかし、両電流の起磁力が相殺しない成分は界磁磁束の大きさ、分布に影響するので注意を要する。
 本発明モータの狙いの一つは、低速回転での大電流、大トルク出力の領域において、モータの損失を低減すること、インバータの電流容量を低減することである。低コスト化、小型化につながる。この観点で正弦波と矩形波を比較すると、正弦波で振幅が1V、1Aの交流電圧と交流電流の場合、出力は0.5Wとなる。矩形波で振幅が1V、1Aの交流電圧と交流電流の場合、出力は1Wとなる。同一の電圧、電流のインバータで比較すると、矩形波のモータの方が2倍の出力が可能となる。従って、矩形波モータはインバータを1/2に小型化できる可能性がある。ここで、損失は0としている。モータの巻線の損失について考えると、銅損は電流の2乗と巻線抵抗の積なので、同一出力時の銅損は矩形波モータの方が1/2に小さくできる。従って、矩形波モータはモータサイズを小型化できる可能性がある。
 電気自動車の主機モータでは、低速回転での大電流、大トルク出力の能力によりモータサイズ、インバータ容量が決まる。低速回転なので矩形波に近い電圧波形、電流波形のモータ制御が可能であり、小型化、低コスト化の点で有利である。一方、高速回転での運転、中トルク負荷での運転、軽負荷での運転などでは、矩形波から正弦波に近づけた波形としても大きな不都合は無い。むしろ、低トルクリップル化、低騒音化、高調波成分に起因する損失の低減などの観点では、正弦波波形に近づけた方が好ましいことも多い。適宜、使い分けができる。
 ロータ電流は各スロットの巻線を直列に接続し、同一の電流を各スロットに通電する例について説明した。しかし、各スロットの巻き回数を同一とせず、例えば、円周方向の各スロットの巻き回数分布を正弦波状とするなどの変形も可能である。また、モータが複雑化するが、複数種類のロータ巻線、複数種類のロータ電流を作ることも可能である。
 次に、請求項7の実施例を図19に示し、説明する。図1、図2等に示したように、本発明モータは、エアギャップ部を介してステータのトルク電流成分IWSPとロータのトルク電流成分IWRNとが対向して通電され、対向する電流は片方が正電流で他方が負電流とする構成としている。(1)式、(9)式などの関係である。そして、それぞれに対向する正電流と負電流とで周囲に与える起磁力が相殺し、それらの周囲へは電機子反作用をほとんど発生しない。
 その状態では、トルク電流成分の影響を受けないので、界磁磁束を種々の方法で比較的容易に生成できる。ステータに通電する界磁電流成分ISFAD、ロータに通電する界磁電流成分IRFAD、ロータに配置する永久磁石などである。これらの方法と前記の電流位相を制御する手法とを組み合わせて使用して界磁磁束を生成することができる。なお、発生する力、トルクは、(11)式、(12)式などの表現ができる。一つの表現として、この界磁磁束Φxと前記IWSPとである方向に力が作用し、前記界磁磁束Φxと前記IWRNとでその反対方向に力が作用すると考えることができる。結果として、前記界磁磁束Φxを介して相対的にステータとロータの間に力が発生すると考えることができる。
 ステータの前記界磁電流成分ISFADは、例えば、図19の巻線SAへ紙面の表から裏側へ通電し、巻線SA/からもどす電流成分Iuを付加し、あるいは、巻線SC/の紙面の表側から裏側へ通電し、巻線SCからもどす電流成分Ivを付加し、IuやIvなどで196、197に示すような界磁磁束を生成することができる。
 ロータの前記界磁電流成分IRFADは、例えば、図19の巻線194と195とを追加し、巻線194へ紙面の表側から裏側へ通電し、巻線195により裏側から表側へもどす電流Ixを通電し、196、197に示すような界磁磁束を生成することができる。なお、界磁磁束の大きさを前記ロータ電流Irとは独立に制御したい場合には、巻線R1/、R5とは別の巻線194、195を配置し、必要な界磁電流Ixを通電する必要がある。なお、巻線194、195は複数のスロットに分布させても良く、巻線R1/、R5とは別のスロットを設けても良い。また、電流を重畳させるなどの変形も可能である。
 ロータ巻線へロータ電流Irを通電して駆動する場合、ロータ内の界磁磁束の方向はほぼ固定方向となるので、ロータへ191、19Aのような永久磁石を配置して界磁磁束を生成することもできる。界磁磁束の増減が必要な場合は、前記の界磁電流成分ISFAD、あるいは、前記界磁電流成分IRFAD、あるいは、電流位相θiを制御する手法と併用することができる。
 負のトルクを発生する回生、逆方向回転等を含む4象限運転は、界磁磁束の方向、電流の方向などを変える必要がある。図2等に示したモータでは電流位相θiを正の値から負の値として、界磁磁束の方向を逆転し、負のトルクを生成することができる。しかし、図19のモータで永久磁石191、19Aを備える場合は、負のトルクを発生するためにこれら永久磁石の極性方向とは反対方向の界磁励磁を行う、永久磁石を反対方向に着磁する方法がある。あるいは、ロータ電流を零としてステータ電流の通電方向を逆向きとする。あるいは、ロータ電流とステータ電流の両方の通電方向を逆向きとする。このように、図2等のモータよりは少し複雑になる。
 また、永久磁石191、19Aの無い状態で、192、193に示すようなスリットあるいはフラックスバリアといわれる空隙、非磁性体などを追加することもでき、その数は増減できる。また、フラックスバリア192、193などの中に永久磁石を配置しても良い。特に、永久磁石198のNとS極の磁極方向に空隙部あるいは非磁性体199を密着させて配置することにより、永久磁石が発生する磁束量を減少させ、しかし、外部から印可される起磁力に対しては大きな磁界の強さを発揮し、起磁力外乱に強い特性とすることができ、効果的である。また、永久磁石191、19Aとフラックスバリア192、193などの両方を付加しても良い。
 特に、永久磁石191、19Aを着磁、減磁、あるいは、任意の強さの磁気特性が得られる永久磁石とすることにより、ラジアル方向磁束成分22を永久磁石191、19Aで作成することができ、界磁励磁の電流負担を軽減することができる。永久磁石191、19Aの磁気特性の可変は、各相のステータ電流、ロータ電流などを活用して着磁、減磁できる。また、勿論、永久磁石と界磁電流成分などとの併用もできる。
 本発明モータでは、電機子反作用が発生しないので、永久磁石の減磁などに対する余裕を大幅に低減しすることができる。そして、磁石厚みを薄くするなど、少量の永久磁石で構成でき、コスト的な負担を少なくでき、永久磁石の強さを可変することがより容易となる。もし、意図せず減磁しても着磁すれば良い。
 図1から図5などに示したモータで大きなトルクを発生する場合には、図19に示す永久磁石191、19A、フラックスバリア192、193等を付加してもその効果は限定的である。しかし、図1から図5に示したモータで比較的小さなトルクを発生する場合には、ロータ電流Irによる抵抗損失、および、界磁電流成分の抵抗損失が負担となり、モータ効率が低下する問題がある。従って、図19に示すモータは、比較的小さなトルク領域では、永久磁石191、19A、フラックスバリア192、193等を利用して、ロータ電流Irと界磁電流成分を低減し、従来の永久磁石モータのように、高効率化が可能である。そして、大きなトルク領域では、図1から図5などに示した動作を行う。中間のトルク領域では、各動作の適正化を行うことができる。このように、図1から図5などに示したモータの特長と従来の永久磁石モータの特長とを合わせ持った特性とすることができる。なお、図19は原理を説明するため2極のモデルを示しているが、8極程度に多極化した場合には永久磁石を平板形状にするなど、より実用的な形状に変形できる。
 また、図19のロータはほぼ円形の形状例を示しているが、ロータ外周が凹凸の形状でも良い。また、簡素な構成とすることにより機能、性能は限定されるが、種々変形が可能である。例えば、8極以上の多極の構成では、ロータ巻線を各極当たり1本とし、ロータのスロットへ太めの銅線を1ターンだけ配置する構成とし、巻線実装上の簡素化を図れる。その場合には、ロータ電流が大きくなるため、回転トランス76の巻線比を大きくする必要がある。また、ステータ構造を集中巻きの簡素な構成とすることもできる。
 次に、図7に示す回転トランス76、および、図8の回転トランス8Nの入力電圧Vrp、入力電流Irpとロータ電流Irの関係、ロータ電流Irの検出方法について説明する。図20は回転トランス周辺の電圧、電流を示すタイムチャートである。横軸は時間で、回転トランスを100kHzで駆動する例であり、その1周期は10μsecである。図20の(a)は、図8の回転トランス8Nの入力電圧Vrpの例である。201の部分はパルス幅が広くて比較的大きな平均電圧であり、202の部分はパルス幅が狭くて比較的小さな平均電圧の領域である。図20の(b)は、回転トランスの出力を整流した直流電圧Vrsであり、前記入力電圧Vrpを整流した波形形状となっている。図20の(c)はロータ電流Irの例である。ロータ巻線はインダクタンスが大きく、巻線抵抗は小さいので、ロータ電流Irは印加電圧の1次遅れの電流値となる。図20の(d)は、回転トランス8Nの入力電流Irpの波形の例である。破線203はロータ電流Irの波形であり、破線204は203の負の値である。
 注目すべき点は、入力電圧Vrpがオンであって、正あるいは負の大きな電圧を出力している間は、ロータ電流Irと回転トランス8Nの入力電流Irpとは比例関係にあり、ロータ電流Irを計測できることである。回転トランス8Nの入力電流Irpは、図8の電流検出値8Rにより計測することができる。即ち、回転トランス8Nへ大きな電圧を供給するタイミングで回転トランス8Nへ供給している電流値Itvを計測すれば、その値がロータ電流Irの比例する値であり、ロータ電流Irの値を計測することができる。本発明モータではロータ電流Irを計測する必要があり、回転トランスでロータ電流Irの供給とロータ電流Irの検出とを行えるので効果的である。なお、入力電圧Vrpがオフでほぼ零ボルトの間は、ロータ電流Irは図8の整流回路8Sにより循環し、フライホイール状態となる。回転トランス8N、整流回路8S、インダクタンスLr、巻線抵抗Rrの電気回路として計算できる。また、図20の(e)は、回転トランスで最大の電圧を供給する場合の電圧波形である。
 次に、請求項8について、図7、図21、図22に示し、説明する。図7の回転トランス76が高周波で励磁していることを利用して、回転トランス76の一部にロータの回転位置検出装置を備える技術である。図21は横軸をモータ角度θzとし、回転位置検出装置の各部をそのステータとそのロータとの間のエアギャップに面した円周方向形状を直線状に水平展開した図である。図21の(a)は、図7の7Eで、ステータ側の位置センサー部である。この例では、電気角で22.5°の周期で円周方向に四角形の凸部211が並んでいる。図21の(b)は、図7の7Fで、その内、212はロータ側に配置したセンサー磁極で、ロータ位置を検出するために、磁束の通過する場所と磁束が通過しない場所とを、その凹凸で作り出している。図21のロータ回転位置θrは0°である。この例では、前記センサー磁極212は電気角で45°幅の凸部で、円周方向ピッチは90°である。残りの45°の間は凹部となっている。前記凸部211とセンサー磁極212とはエアギャップを介して対向している。一方、前記凸部211には電気角で45°ピッチのA相検出巻線213を巻回していて、その出力はSaである。同様のB相検出巻線214は、A相検出巻線213と円周方向に22.5°の位相差を持って配置され、45°ピッチであり、その出力はSbである。
 前記センサー磁極212の図21のロータ回転位置θrを0°とすると、前記Saに発生する電圧は、θr=0°の時に最大となり、θr=45°の時に最小となり、90°周期で最大と最小を繰り返す。前記Sbに発生する電圧は、Saより22.5°円周方向位置が異なるので、、θr=22.5°の時に最大となり、θr=67.5°の時に最小となり、90°周期で最大と最小を繰り返す。また、SaとSbの信号は回転トランス76の磁束の一部を流用するので、図20の(a)にその電圧波形の例を示すように、例えば、100kHzの周波数の場合、給電電力の大きさにより0から5μsecまでパルス幅が変化する交流電圧である。
 SaとSbからロータ回転位置情報とするために、それぞれを全波整流して交流から直流の信号Sax、Sbxを作る。次に、Sax、Sbxを回転トランスの供給電圧に影響されないように正規化を行う。回転トランスの供給電圧を整流した電圧は図20の(b)のVrsなので、この電圧をフィルター処理して平均値Vrsaを作る。前記Sax、SbxをVrsaで除算することにより、図22に示す2相の位置信号Pa、Pbを作成する。
   Pa=Sax/Vrsa                     (18)
   Pb=Sbx/Vrsa                     (19)
 また、電気角で位相の90°異なる正弦波をそれぞれ二乗して加算するとその正弦波の振幅値の二乗となり、一定値になることが知られている。正規化の方法として、前記Sax、Sbxよりその振幅値CXVを求め、(18)、(19)式のVrsaの代わりにCXVを代入することにより、Pa、Pbの正規化信号を得ることもできる。また、前記2つの正規化方法の組み合わせでも良い。また、2つの正弦波信号で、相対的に90°位相差のある2相正弦波信号からその正弦波周期内の位置を内挿計算する技術については、位置検出用のレゾルバー、光式エンコーダ、磁気式エンコーダなどで使用され、主流の位置検出技術として良く知られている。図22の位置信号Pa、Pbは、ロータの電気角で90°周期の三角波信号で、22.5°の位相差があり、同じような手法で内挿計算して、ロータの電気角90°周期のロータ回転位置信号を作ることができる。なお、前記の2相正弦波信号から位置を内挿計算する技術の説明は省略する。また、センサー磁極212の形状を四角形から丸みを持たせた形状へ変形して、三角波信号から正弦波信号に近づけることもできる。
 モータの各相電流、各相電圧を制御するためには、ロータの電気角360°周期の絶対位置情報が必要である。図21の(a)と(b)の周期を電気角360°とすることもできるが、ロータの位置検出精度を高めるために2重、3重などの多層の位置検出方法とすることもできる。図21の(c)の215はステータ側の位置センサー部で、90度幅である。(d)の216はロータ側に配置したセンサー磁極で180度幅あり、これらは電気角360°周期の回転位置検出装置を構成する。巻線217はC相検出巻線で、180°ピッチであり、その出力はScである。巻線218はD相検出巻線で、180°ピッチであり、C相検出巻線217と円周方向に90°の位相差を持って配置され、その出力はSdである。なお、図21の(c)と(d)の構成は、図7には記載しておらず、位置センサー部7E、センサー磁極7Fと同様に追加することができる。
 前記信号ScとSdは、SaとSbの信号処理と同様の方法で、図22のPcとPdを作成することができ、電気角360度のロータ位置検出を行うことができる。そして、PaとPbから作成する90度周期のロータ位置信号と組み合わせて、高精度な電気角360度のロータ位置検出を行うことができる。このように、密と粗の多段の位置検出とすることができる。また、図21の(a)と(b)による精密な位置検出は、高速回転での位置検出は処理時間が短くなるため難しくなる場合があり、高速回転では図21の(c)と(d)の粗の位置検出部の情報を主として利用し制御することもできる。
 なお、図7、図21、図22に示した各構成は、種々変形、組み合わせなどが可能である。例えば、巻線213、214、217、218は1ターンの構成を図示したが、実用上、巻き回数を適正化する必要があり、他の同相の位置センサー部へも巻回し、直列に接続することにより、位置検出精度を向上し、ロータの偏心などの外乱にも強い信号とすることができる。また、モータ角度θzの特定位置の検出手段と図21の(a)と(b)のインクレメンタルな位置検出とで機械角360°の絶対位置化を実現しても良い。なお、全く異なる位置検出装置、センサーレス位置検出などを利用して、本発明モータとその制御装置を構成することも、勿論可能である。
 次に、請求項9について、図23に示し、説明する。ロータに各種制御回路を備え、必要に応じて、ロータの各電流を制御する方法である。図23の例では、ロータの電力供給手段に、図8と同じ回転トランス8Nを用いている。回転トランス8Nの電圧は、図20の(e)に示す電圧として、高周波交流電圧源として機能させ、ステータ側からロータ側へ電力を供給し、整流して直流電圧を得、ロータ側の各種制御に使うことができる。また、図23の構成では、ロータ側からステータ側へ電力回生も行なうことができる。
 23Qはステータ側の送信受信回路であり、ロータ電流Irの指令、界磁電流の指令などの送信信号を出力し、また一方、ロータ側からのロータ情報を受信する。23Rは通信手段を示していて、電波による通信、光による通信、あるいは、回転トランス8Nを通る高周波電流成分による通信等である。23Gはロータ側の送信受信回路であり、23Qの前記送信信号を受信してロータ側制御回路23Hへ出力し、また一方、ロータ側制御回路23Hからのロータ側情報をステータ側送信受信回路23Qへ送信する。
 図23の各巻線8T、8U、8V、8W、8Xへロータ電流Irを通電する場合、回転トランス8Nから供給される23E、23Fの交流電圧を、231、232、233、234のトランジスタに並列に接続したダイオードで整流し、23Dのコンデンサーなどで直流電圧を安定化する。そして、トランジスタ235と238でロータ電流Irを通電する。この時、ロータ側からステータ側へ電力回生は行わない場合、図23のトランジスタ231、232、233、234は不要である。また、各巻線負荷へ供給するが片方向の電流だけの場合は、トランジスタ236、237は不要である。
 前記ロータ側制御回路23Hは、例えば、ロータ電流Irの電流値23Mを検出し、ロータ電流Irの指令値と比較してトランジスタ231、232、233、234の制御信号23Kを出力してロータ電流Irを制御する。このように、ステータ側からは回転トランス8Nの入力巻線8Pへ交流電力を供給し、ロータ電流Irの指令値を通信手段23Rでロータ側へ伝え、ロータ側で自律的にロータ電流Irを制御することができる。
 界磁巻線23Pへ電流Ifxを通電する場合は、通信手段23Rにより伝えられる電流Ifxの指令値と電流Ifxの電流値23Nの値により、トランジスタ239、23A、23B、23Cの制御信号23Lを出力し、電流Ifxを制御する。
 また、ロータのその他の電流制御も、必要に応じて同様に追加することができる。図23の構成であれば、ロータ側で多くの種類の電流を制御することができるので、モータの機能、性能を改善できる。例えば、ロータの電流を多相にして制御することができる。ロータ側に界磁を励磁する巻線を追加して、界磁励磁を行うこともできる。
 また、図23の構成であれば、トランジスタ231、232、233、234と回転トランス8Nを利用して、ロータ側からステータ側へ電力回生を行うこともできる。従って、ロータ側の巻線、電流によって励磁されている磁束のエネルギをステータ側へ回生でき、これらの電流を急減することができ、これらの電流制御の応答性を高めることができる。また、ステータ側へ回生することの意味は、電解コンデンサなどの強度、寿命などに不安のある素子をロータ側へ配置しないこと、あるいは、減少することでもある。
 また、図23、図8の回転トランス8Nは図7の回転トランス76を指しているが、図24の(a)に示した回転トランス241でも良く、3相交流の回転トランスを使用することもできる。また、図24の(b)に示した発電機249を使用することもできる。ただし、図23のトランジスタ、ダイオードなどの電源回路を修正する必要がある。そして、これらの場合についても、ステータ側からロータ側への電力供給と、ロータ側からステータ側への電力回生も行うことができる。
 次に、図8に示すような本発明モータとその制御装置において、信頼性、安全性を高める方法について説明する。電気自動車は、極寒の地、猛暑の地、紛争地帯などの危険地帯で使用されることもあり、万が一、一部の部品などが破損するなどの故障を起こしても、残った正常な部分を活用してモータの駆動を行うことができれば、信頼性、安全性を高めることができる。図8の815は、モータとその制御装置の状態を監視する異常動作監視手段であり、モータ巻線の断線、絶縁不良などの検出、トランジスタおよびのそのドライバーなどの異常などの検出、そして、異常状態の判断を行なう。また、故障した部品、異常な動作をした部分等の動作を停止させ、正常な部分を使用してモータを駆動するように指令する。その結果、不完全であっても最低限のモータ駆動を実現し、非常時駆動を行える。特に図8の構成は、ステータの各相の巻線とその電流を駆動するトランジスタブリッジが他の相とは電気的に分離、絶縁できる構成としている。その結果、故障部分の停止、分離が容易となり、非常時駆動をより高い確率で実現でき、信頼性を高められる。
 以上本発明について説明したが、種々の変形、応用、組み合わせが可能である。モータのステータ巻線およびロータ巻線の相数は、3相、5相、7相、11相などへ変形できる。各種スキュー、スロット数の選択もでき、スロット数に起因する離散性も解消できる。特に多相化により、本発明モータの性能、特徴を発揮することができる。多相化により駆動装置の部品点数は増加するが、高集積技術などが可能であり、パワー部の電力的な増加は理論的に無い。極数は主に2極の例について説明したが、実用化には4、6、8極などを選択できる。巻線の巻回方法は、集中巻き、あるいは、分布巻き、短節巻き、トロイダル巻きなどの構成とすることができる。超電導の巻線、種々冷却機構も使用できる。
 モータ形状は、アウターロータ型モータ、アキシャルギャップ型モータ、リニアモータ、あるいは、円錐状、多段状などのモータ形状を選択できる。内外径方向に、あるいは、ロータ軸方向に、複数のモータ要素とした複合モータの構成とすることができる。また、他の種類のモータ要素と組み合わせることも可能である。
 モータ、および、回転トランスの軟磁性体には電磁鋼板の薄板化、6.5%ケイ素鋼板、アモルファス金属、フェライト、圧分磁心、パーメンジュールなどの種々の材料が使える。また、種々の永久磁石が使用できる。種々の高強度化材料、機構も使用できる。
 各種センサー、位置検出器、センサレス位置検出技術の活用も可能である。また、モータのトルクリップル、振動、騒音を低減するための種々技術を適用できる。また、自動車用の主機モータは前進が主なので、片方向トルクを優先するモータ構造であっても良い。本発明にこれらの技術を適用したものは、本発明に含むものである。
 本発明モータとその制御装置は、低速回転などでの大トルクと高速回転の特性との両方が必要となる電気自動車の主機用モータとして好適である。産業用モータとしても、高トルクの必要な用途、高速回転の必要な用途に好適である。将来は、航空機の電動化も予想され、軽量化のため極めて大きなモータ出力密度が必要となるので、本発明モータとその制御装置は好適である。
11 ステータ
12 ロータ
SA、SA/ A相巻線
SB、SB/ B相巻線
SC、SC/ C相巻線
SD、SD/ D相巻線
SE、SE/ E相巻線
R1、RI/ ロータの巻線R1
R2、R2/ ロータの巻線R2
R3、R3/ ロータの巻線R3
R4、R4/ ロータの巻線R4
R5、R5/ ロータの巻線R5
81 直流電源
86、89、8C、8F、8J、8M 電力駆動ユニット
88、8B、8E、8H、8L 各相の電流検出手段の出力
811 制御装置
812 制御指令
81A、81B 各トランジスタの駆動信号
76、8N 回転トランス
813 ロータの位置検出手段
  

Claims (9)

  1.  ステータにおいてそのロータ側の円周上に配置した多相のステータ巻線SWと、
     ロータにおいてそのステータ側の円周上に配置したロータ巻線RWと、
     前記ステータ巻線SWの電流SIGを供給するステータ電流供給手段MSCと、
     前記ロータ巻線RWの電流RIGを供給するロータ電流供給手段MRCと、
     ステータ巻線SWの電流SIGとロータ巻線RWの電流RIGを制御する電流制御手段MCCとを備え、
     前記電流SIGの電流方向と前記電流RIGの電流方向の一部あるいは全部が相対的に逆方向となるように通電する
    ことを特徴とするモータとその制御装置。
  2.  請求項1において、
     前記ロータ電流供給手段MRCが、ロータ電流を供給する回転トランスRTT、あるいは、交流発電機AGと、その出力の交流電圧、交流電流を直流のロータ電流へ整流する整流部REC1
    とを備えることを特徴とするモータとその制御装置。
  3.  請求項1において、
     前記ロータ電流の供給手段MRCは、前記ステータ電流供給手段MSCが生成する前記ステータ巻線SWの電流を使用してロータ電流を供給する
    ことを特徴とするモータとその制御装置。
  4.  請求項1において、
     前記ロータ電流の供給手段MRCは、QNが2以上の整数として、ステータの円周方向に電気角で360°のQN倍の周期の交流磁束の成分を励磁するステータ給電巻線PSWと、
     円周方向の巻線ピッチが電気角360°の整数倍であって、ロータ電力を受け取るロータ受電巻線PRWと、
     その交流電圧、交流電流を直流のロータ電流へ整流する整流部REC2
    とを備えることを特徴とするモータとその制御装置。
  5.  請求項1において、
     前記電流制御手段MCCは、ステータのトルク電流成分の総和IWSPが、エアギャップ部を介しておおよそ対向して通電するロータのトルク電流成分の総和IWRNに等しくなるように制御する
    ことを特徴とするモータとその制御装置。
  6.  請求項1において、
     前記電流制御手段MCCは、前記ロータ巻線RWの円周方向位置θrに対するステータの電流位相θiを制御する
    ことを特徴とするモータとその制御装置。
  7.  請求項1において、
     前記電流制御手段MCCは、前記ロータ巻線RWの円周方向位置θrに対するステータの電流位相θiを制御し、
     前記ロータ巻線RWの位置θrに応じて界磁磁束を生成するステータの界磁電流成分SFC、あるいは、ロータの界磁磁束生成手段RFC、あるいは、永久磁石を付加して制御する
    ことを特徴とするモータとその制御装置。
  8.  請求項2において、
     前記回転トランスRTTのステータ側回転トランスRTSにロータ位置を検出する位置センサーSPSを備え、
     前記回転トランスRTTのロータ側回転トランスRTRにロータ位置を検出するために磁気抵抗の小さな部分と磁気抵抗の大きな部分とを備える
    ことを特徴とするモータとその制御装置。
  9.  請求項1において、
     前記ロータ電流供給手段MRCの一部であるロータへの電力供給手段MSPと、
     前記ロータ電流供給手段MRCの一部であるロータの電流制御手段RCCと
    を備えることを特徴とするモータとその制御装置。
     
     
PCT/JP2017/042157 2016-12-02 2017-11-24 モータとその制御装置 WO2018101158A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780085312.9A CN110235356B (zh) 2016-12-02 2017-11-24 电机及其控制装置
US16/465,685 US11283385B2 (en) 2016-12-02 2017-11-24 Motor system provided with both motor having multiple-phase stator windings and control device controlling the motor
EP17876042.7A EP3570431A4 (en) 2016-12-02 2017-11-24 MOTOR AND CONTROL DEVICE FOR IT

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-234618 2016-12-02
JP2016234618 2016-12-02
JP2017-004918 2017-01-16
JP2017004918A JP7126150B2 (ja) 2016-12-02 2017-01-16 モータ

Publications (1)

Publication Number Publication Date
WO2018101158A1 true WO2018101158A1 (ja) 2018-06-07

Family

ID=62242646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042157 WO2018101158A1 (ja) 2016-12-02 2017-11-24 モータとその制御装置

Country Status (2)

Country Link
US (1) US11283385B2 (ja)
WO (1) WO2018101158A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112989599A (zh) * 2021-03-11 2021-06-18 云南电网有限责任公司电力科学研究院 一种提升变压器抗短路能力的绕组结构改进方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11621598B2 (en) * 2020-03-10 2023-04-04 Qatar University Torque density pseudo six-phase induction machine
KR20210115138A (ko) * 2020-03-12 2021-09-27 현대자동차주식회사 헤어핀 권선 타입 고정자 검사 장치 및 방법
US11923733B2 (en) * 2020-08-28 2024-03-05 Quantentech Limited High efficiency high density motor and generator with multiple airgaps
US20230060549A1 (en) * 2021-08-30 2023-03-02 Abb Schweiz Ag Tapped winding method for extended constant horsepower speed range
IT202200015762A1 (it) * 2022-07-26 2024-01-26 Alessandro Scorcioni Motore elettrico brushless

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53810A (en) * 1976-06-24 1978-01-07 Toshiba Corp Controller for commutatorless motor
US4573003A (en) * 1983-09-30 1986-02-25 Wisconsin Alumni Research Foundation AC Machine optimized for converter operation
JPS62104491A (ja) * 1985-10-31 1987-05-14 Secoh Giken Inc 半導体電動機
JPH06205570A (ja) 1992-12-28 1994-07-22 Mitsui Miike Mach Co Ltd かご形誘導電動機
JPH06253510A (ja) 1993-02-25 1994-09-09 Meidensha Corp Vvvf用誘導電動機
CN1825739A (zh) * 2005-02-26 2006-08-30 丁振荣 一种感应磁阻电机及其变频装置
JP2006521080A (ja) * 2003-03-19 2006-09-14 フォルスカーパテント イー エスイーデー アーベー 同期機
JP2008109823A (ja) * 2006-10-27 2008-05-08 Denso Corp 回転電機装置
EP2782226A2 (en) * 2013-03-20 2014-09-24 Hamilton Sundstrand Corporation Flux controlled PM electric machine rotor
JP2015065803A (ja) 2013-08-26 2015-04-09 梨木 政行 モータ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US418446A (en) 1889-12-31 chorlton
US4004203A (en) * 1973-12-22 1977-01-18 C.A.V. Limited Drive systems using a. c. motors
JP4407120B2 (ja) * 2002-01-08 2010-02-03 トヨタ自動車株式会社 車両用操舵装置
US7034499B2 (en) * 2003-10-03 2006-04-25 Rt Patent Company, Inc. Electromagnetic motor
US7227271B2 (en) * 2004-09-21 2007-06-05 Honeywell International Inc. Method and apparatus for controlling an engine start system
US7508086B2 (en) 2006-03-24 2009-03-24 General Electric Company Aircraft engine starter/generator and controller
US7880424B2 (en) 2006-09-28 2011-02-01 Denso Corporation Rotary electric apparatus having rotor with field winding inducing current therethrough for generating magnetic field
JP5206130B2 (ja) * 2008-06-05 2013-06-12 三菱電機株式会社 コイル界磁式同期モーター回生システムおよびその制御方法
JP5626306B2 (ja) * 2012-10-09 2014-11-19 トヨタ自動車株式会社 回転電機制御システム
US9209741B2 (en) * 2014-02-24 2015-12-08 The Boeing Company Method and system for controlling synchronous machine as generator/starter

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53810A (en) * 1976-06-24 1978-01-07 Toshiba Corp Controller for commutatorless motor
US4573003A (en) * 1983-09-30 1986-02-25 Wisconsin Alumni Research Foundation AC Machine optimized for converter operation
JPS62104491A (ja) * 1985-10-31 1987-05-14 Secoh Giken Inc 半導体電動機
JPH06205570A (ja) 1992-12-28 1994-07-22 Mitsui Miike Mach Co Ltd かご形誘導電動機
JPH06253510A (ja) 1993-02-25 1994-09-09 Meidensha Corp Vvvf用誘導電動機
JP2006521080A (ja) * 2003-03-19 2006-09-14 フォルスカーパテント イー エスイーデー アーベー 同期機
CN1825739A (zh) * 2005-02-26 2006-08-30 丁振荣 一种感应磁阻电机及其变频装置
JP2008109823A (ja) * 2006-10-27 2008-05-08 Denso Corp 回転電機装置
EP2782226A2 (en) * 2013-03-20 2014-09-24 Hamilton Sundstrand Corporation Flux controlled PM electric machine rotor
JP2015065803A (ja) 2013-08-26 2015-04-09 梨木 政行 モータ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IEE-JAPAN INDUSTRY APPLICATIONS SOCIETY CONFERENCE, 2016, pages 3 - 36
See also references of EP3570431A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112989599A (zh) * 2021-03-11 2021-06-18 云南电网有限责任公司电力科学研究院 一种提升变压器抗短路能力的绕组结构改进方法
CN112989599B (zh) * 2021-03-11 2023-07-14 云南电网有限责任公司电力科学研究院 一种提升变压器抗短路能力的绕组结构改进方法

Also Published As

Publication number Publication date
US20200099327A1 (en) 2020-03-26
US11283385B2 (en) 2022-03-22

Similar Documents

Publication Publication Date Title
WO2018101158A1 (ja) モータとその制御装置
CN110235356B (zh) 电机及其控制装置
US9083276B2 (en) Rotary electric machine driving system
US20130334937A1 (en) Rotary electric machine driving system
JP5827026B2 (ja) 回転電機及び回転電機駆動システム
US9124159B2 (en) Electromagnetic rotary electric machine
JP5866074B1 (ja) シンクロナスリラクタンスモータ
JP2010022185A (ja) 同期機
WO2018131318A1 (ja) モータとその制御装置
JP2007185082A (ja) 界磁巻線型同期機
JP2012222941A (ja) 回転電機
CN111247736A (zh) 防止电机中的永磁体消磁的系统和方法
US10063127B2 (en) Multiple-phase AC electric motor whose rotor is equipped with field winding and diode
US20120038301A1 (en) Polyphase AC Motor, Driving Device and Driving Method Therefor
JP5626306B2 (ja) 回転電機制御システム
JP5426916B2 (ja) 界磁巻線型同期機および界磁巻線型同期機の制御方法
JP2010136523A (ja) 回転電機の駆動制御装置
JP5885423B2 (ja) 永久磁石式回転電機
JP5623346B2 (ja) 回転電機駆動システム
CN110391701B (zh) 旋转电机
CN112292810A (zh) 马达控制装置
JP2014166022A (ja) 回転電機制御システム
JP2013110942A (ja) 回転電機及び回転電機制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017876042

Country of ref document: EP

Effective date: 20190702