WO2018100969A1 - 重合体ラテックスの製造方法 - Google Patents

重合体ラテックスの製造方法 Download PDF

Info

Publication number
WO2018100969A1
WO2018100969A1 PCT/JP2017/039741 JP2017039741W WO2018100969A1 WO 2018100969 A1 WO2018100969 A1 WO 2018100969A1 JP 2017039741 W JP2017039741 W JP 2017039741W WO 2018100969 A1 WO2018100969 A1 WO 2018100969A1
Authority
WO
WIPO (PCT)
Prior art keywords
rosin
weight
acid
latex
synthetic polyisoprene
Prior art date
Application number
PCT/JP2017/039741
Other languages
English (en)
French (fr)
Inventor
俊仁 相原
小出村 順司
吉隆 佐藤
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to EP17876637.4A priority Critical patent/EP3549973A4/en
Priority to CN201780067804.5A priority patent/CN109890875A/zh
Priority to JP2018553733A priority patent/JP7036028B2/ja
Priority to BR112019011002-0A priority patent/BR112019011002B1/pt
Priority to US16/465,226 priority patent/US11174376B2/en
Publication of WO2018100969A1 publication Critical patent/WO2018100969A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/07Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from polymer solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/10Latex
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/003Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/14Dipping a core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/02Direct processing of dispersions, e.g. latex, to articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J109/00Adhesives based on homopolymers or copolymers of conjugated diene hydrocarbons
    • C09J109/10Latex
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2007/00Use of natural rubber as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0058Liquid or visquous
    • B29K2105/0064Latex, emulsion or dispersion
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/10Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2353/02Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2409/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2409/10Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2453/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2453/02Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2493/00Characterised by the use of natural resins; Derivatives thereof
    • C08J2493/04Rosin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/52Aqueous emulsion or latex, e.g. containing polymers of a glass transition temperature (Tg) below 20°C
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2409/00Presence of diene rubber
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2493/00Presence of natural resin

Definitions

  • the present invention relates to a method for producing a polymer latex capable of giving a dip-molded article excellent in tensile strength and tear strength.
  • a latex composition containing latex of natural rubber is dip-molded to obtain a dip-molded body that is used in contact with a human body such as a nipple, a balloon, a glove, a balloon, and a sack.
  • natural rubber latex contains a protein that causes allergic symptoms in the human body, there are cases in which there is a problem as a dip-molded product that is in direct contact with a living mucous membrane or an organ. Therefore, studies have been made on using synthetic rubber latex instead of natural rubber latex.
  • Patent Document 1 discloses a synthetic polyisoprene latex produced by using a metal salt of rosin as an emulsifier as a latex used for dip molding.
  • a metal salt of rosin as an emulsifier
  • the resulting synthetic polyisoprene latex can obtain a dip-molded product that is somewhat excellent in tensile strength and tear strength, but tensile strength and tear strength. Further improvements in strength were desired.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a method for producing a polymer latex capable of providing a dip-molded article excellent in tensile strength and tear strength.
  • the inventors of the present invention have used synthetic polyisoprene and / or styrene-isoprene-styrene block copolymer by using a predetermined rosin and / or metal salt of rosin as an emulsifier.
  • a predetermined rosin and / or metal salt of rosin as an emulsifier.
  • a polymer solution of synthetic polyisoprene and / or styrene-isoprene-styrene block copolymer is emulsified in water in the presence of rosin and / or a metal salt of rosin, thereby emulsifying.
  • a polymer using a rosin and / or a metal salt of the rosin, wherein the total content of these salts is 5% by weight or less as the rosin and / or metal salt of the rosin A method for producing a latex is provided.
  • the synthetic polyisoprene and / or the styrene-isoprene-styrene block copolymer obtained by polymerization by anionic polymerization.
  • a polymer solution of the synthetic polyisoprene and / or the styrene-isoprene-styrene block copolymer is obtained by polymerization by anionic polymerization, and the polymer solution is coagulated. It is preferable to directly emulsify using an aqueous solution of the rosin and / or metal salt of rosin without passing through the above.
  • the total content of the rosin and / or metal salt of rosin in the polymer latex is such that the synthetic polyisoprene and / or the styrene contained in the polymer latex. -More than 1.5 parts by weight with respect to 100 parts by weight of the total of the isoprene-styrene block copolymer.
  • a method for producing a latex composition comprising a step of adding a vulcanizing agent to the polymer latex obtained by the above production method.
  • the manufacturing method of a dip molded object provided with the process of dip-molding the latex composition obtained by said manufacturing method is provided. Furthermore, according to the present invention, the polymer latex obtained by the above production method is applied on the first sheet base material and / or the second sheet base material to form a coating film. At least a part of the first sheet base material and at least a part of the second sheet base material are bonded and laminated, and an object to be packaged is provided between the first sheet base material and the second sheet base material. A method of manufacturing a package structure that can be accommodated is provided.
  • the method for producing a polymer latex of the present invention comprises emulsifying a polymer solution of synthetic polyisoprene and / or styrene-isoprene-styrene block copolymer in water in the presence of rosin and / or a metal salt of rosin.
  • the rosin and / or the metal salt of the rosin is abietic acid, neoabietic acid and parastrinic acid, and the total content of these salts is 5% by weight or less. It is characterized by using.
  • the polymer solution of synthetic polyisoprene and / or styrene-isoprene-styrene block copolymer includes a polymer solution of synthetic polyisoprene, a polymer solution of styrene-isoprene-styrene block copolymer, or a synthetic polyisoprene. And a polymer solution containing a styrene-isoprene-styrene block copolymer can be used.
  • the synthetic polyisoprene contained in the synthetic polyisoprene polymer solution may be a homopolymer of isoprene or other ethylenically unsaturated monomers copolymerizable with isoprene. May be copolymerized.
  • the content of isoprene units in the synthetic polyisoprene is flexible, and it is easy to obtain a film molded body such as a dip molded body having excellent tensile strength. More preferred is 90% by weight or more, still more preferred is 95% by weight or more, and particularly preferred is 100% by weight (isoprene homopolymer).
  • Examples of other ethylenically unsaturated monomers copolymerizable with isoprene include conjugated diene monomers other than isoprene such as butadiene, chloroprene and 1,3-pentadiene; acrylonitrile, methacrylonitrile, fumaronitrile, ⁇ - Ethylenically unsaturated nitrile monomers such as chloroacrylonitrile; vinyl aromatic monomers such as styrene and alkylstyrene; methyl (meth) acrylate (meaning “methyl acrylate and / or methyl methacrylate”; The same applies to ethyl (meth) acrylate, etc.), ethylenically unsaturated carboxylic acid ester monomers such as ethyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate; Is mentioned.
  • Synthetic polyisoprene may be polymerized in any manner such as a conventionally known method, coordination polymerization or anionic polymerization.
  • a Ziegler polymerization catalyst is used when polymerizing by coordination polymerization.
  • a preferred method is to obtain a polymer solution of synthetic polyisoprene by solution polymerization of isoprene and other copolymerizable ethylenically unsaturated monomers used as necessary in an inert polymerization solvent. is there.
  • the Ziegler-based polymerization catalyst is not particularly limited and may be a known one. For example, it can be obtained by reducing titanium tetrachloride with an organoaluminum compound and further treating with various electron donors and electron acceptors.
  • a catalyst system in which a titanium trichloride composition and an organoaluminum compound are combined a supported catalyst system in which titanium tetrachloride and various electron donors are brought into contact with magnesium halide, and among these, titanium tetrachloride and A catalyst system using an organoaluminum compound is preferred, and a catalyst system using titanium tetrachloride and trialkylaluminum is particularly preferred.
  • an isoprene and another copolymerizable ethylenically unsaturated monomer used as necessary are used in an inert polymerization solvent using an organic alkali metal catalyst.
  • a method of obtaining a polymer solution of synthetic polyisoprene by solution polymerization is suitable.
  • anionic polymerization can proceed with a high living property, so a synthetic polyisoprene having a high weight average molecular weight can be obtained in a high yield. Therefore, it is preferable.
  • the organic alkali metal catalyst is not particularly limited, and a known one can be used.
  • Monolithium compounds organic polylithium such as dilithiomethane, 1,4-dilithiobutane, 1,4-dilithio-2-ethylcyclohexane, 1,3,5-trilithiobenzene, 1,3,5-tris (lithiomethyl) benzene
  • organic sodium compounds such as sodium naphthalene
  • organic power lium compounds such as potassium naphthalene
  • organic alkali metal catalysts can be used alone or in combination of two or more.
  • polymerization solvent used for the polymerization examples include organic solvents such as aromatic hydrocarbon solvents such as benzene, toluene and xylene; alicyclic hydrocarbon solvents such as cyclopentane, cyclopentene, cyclohexane and cyclohexene; And aliphatic hydrocarbon solvents such as butane, pentane, hexane and heptane; halogenated hydrocarbon solvents such as methylene chloride, chloroform and ethylene dichloride; and the like. Of these, aliphatic hydrocarbon solvents are preferred, butane, hexane and pentane are more preferred, hexane is further preferred, and normal hexane is particularly preferred.
  • isoprene units in the synthetic polyisoprene which are cis bond units, trans bond units, 1,2-vinyl bond units, and 3,4-vinyl bond units, depending on the bond state of isoprene.
  • the content of cis-bond units in the isoprene units contained in the synthetic polyisoprene is preferably 70% by weight or more, more preferably 90% by weight based on the total isoprene units. % Or more, more preferably 95% by weight or more.
  • the weight average molecular weight of the synthetic polyisoprene is preferably 10,000 to 5,000,000, more preferably 500,000 to 5,000,000, and even more preferably, in terms of standard polystyrene by gel permeation chromatography analysis. Is 800,000 to 3,000,000.
  • the polymer Mooney viscosity (ML 1 + 4 , 100 ° C.) of the synthetic polyisoprene is preferably 50 to 80, more preferably 60 to 80, and still more preferably 70 to 80.
  • Styrene-isoprene-styrene block copolymer contained in the polymer solution of styrene-isoprene-styrene block copolymer is a block of styrene and isoprene. It is a copolymer (“S” represents a styrene block, and “I” represents an isoprene block).
  • the content ratio of the styrene unit and the isoprene unit in the SIS is usually 1:99 to 90:10, preferably 3:97 to 70:30, more preferably 5:95 in a weight ratio of “styrene unit: isoprene unit”. It is in the range of ⁇ 50: 50, more preferably 10:90 to 30:70.
  • the SIS may be polymerized by any known method, such as coordination polymerization or anionic polymerization.
  • a Ziegler polymerization catalyst is used, and the SIS is inert.
  • a method of obtaining a SIS polymer solution by solution polymerization of a monomer containing styrene and a monomer containing isoprene in a polymerization solvent is suitable.
  • the Ziegler polymerization catalyst is not particularly limited, and the Ziegler polymerization catalyst described above can be used.
  • SIS-containing monomer and isoprene-containing monomer are solution-polymerized in an inert polymerization solvent using an organic alkali metal catalyst.
  • a method for obtaining a polymer solution of is preferable.
  • an organic alkali metal catalyst as a polymerization catalyst for anionic polymerization, anionic polymerization can proceed with a high living property, so a synthetic polyisoprene having a high weight average molecular weight can be obtained in a high yield. Therefore, it is preferable.
  • It does not specifically limit as an organic alkali metal catalyst The organic alkali metal catalyst mentioned above can be used.
  • the inert polymerization solvent is not particularly limited as long as it is inert to the polymerization reaction.
  • the above-described organic solvents can be used.
  • the polymerization temperature at the time of solution polymerization of the monomer containing styrene and the monomer containing isoprene is preferably 35 to 80 from the viewpoint that a polymer latex can be produced with high productivity. ° C, more preferably 40 to 75 ° C.
  • the weight average molecular weight of SIS is preferably 50,000 to 500,000, more preferably 70,000 to 400,000, and still more preferably 100,000 to 350 in terms of standard polystyrene by gel permeation chromatography analysis. , 000.
  • SIS has a molecular weight distribution (Mw / Mn) of preferably 1.0 to 2.6, more preferably 1.0 to 2.4, and further preferably 1.0 to 2.2.
  • Mw / Mn molecular weight distribution
  • either one of the above-mentioned synthetic polyisoprene or SIS may be used, or both may be used. It is preferable to produce a synthetic polyisoprene latex as a combined latex.
  • a polymer is obtained by using the synthetic polyisoprene and / or SIS polymer solution obtained by the above coordination polymerization or anion polymerization, for example, by the following method.
  • Latex can be produced. That is, (1) Synthetic polyisoprene and / or SIS that has been coagulated once is obtained from a polymer solution of synthetic polyisoprene and / or SIS obtained by coordination polymerization or anionic polymerization, and this is dissolved or dissolved in an organic solvent.
  • a synthetic polyisoprene and / or SIS polymer solution (solution or fine suspension) is obtained, and the obtained synthetic polyisoprene and / or SIS polymer solution is added with rosin as an emulsifier and (2)
  • a method for producing a polymer latex by emulsification in water in the presence of a metal salt of rosin (2) a polymer solution of synthetic polyisoprene obtained by coordination polymerization or anionic polymerization is subjected to coagulation. And then emulsifying directly in water in the presence of rosin and / or a metal salt of rosin as an emulsifier.
  • any of the above methods (1) and (2) may be adopted.
  • the heat history due to coagulation can be reduced.
  • the method (2) is preferred.
  • Examples of the organic solvent used in the production method (1) above include aromatic hydrocarbon solvents such as benzene, toluene and xylene; alicyclic hydrocarbon solvents such as cyclopentane, cyclopentene, cyclohexane and cyclohexene; pentane, hexane, And aliphatic hydrocarbon solvents such as heptane; halogenated hydrocarbon solvents such as methylene chloride, chloroform and ethylene dichloride; Of these, aliphatic hydrocarbon solvents are preferred, hexane is more preferred, and normal hexane is particularly preferred.
  • the amount of the organic solvent used is preferably 2,000 parts by weight or less, more preferably 20 to 1,500 parts by weight, and still more preferably 500 to 1, 500 parts by weight.
  • rosin and / or a metal salt of rosin (hereinafter referred to as “rosin”) is used as an emulsifier for emulsifying synthetic polyisoprene and / or SIS.
  • rosin surfactant the total content of abietic acid, neoabietic acid and parastrinic acid, and salts thereof is used. Using 5% by weight or less.
  • rosin surfactant by using the above specific rosin surfactant as an emulsifier, it is possible to improve the tensile strength and tear strength when the resulting polymer latex is a dip-molded product.
  • the emulsifier remains slightly in the obtained polymer latex.
  • the rosin-based surfactant is used as an emulsifier, the present inventors will leave a slight amount of rosin-based surfactant in the resulting polymer latex.
  • a latex composition obtained by adding a vulcanizing agent such as sulfur is obtained, and when it is intended to be molded into a dip-molded product, a resin acid derived from a rosin-based surfactant contained in the polymer latex (In particular, abietic acid having a conjugated double bond, neoabietic acid, and parastolic acid) reacts with a vulcanizing agent such as sulfur, thereby reducing the crosslinking efficiency of the dip-molded product and increasing the tensile strength of the dip-molded product. It was found that the strength and tear strength were reduced.
  • a resin acid derived from a rosin-based surfactant contained in the polymer latex In particular, abietic acid having a conjugated double bond, neoabietic acid, and parastolic acid
  • a vulcanizing agent such as sulfur
  • the emulsifier is obtained by using a rosin-based surfactant having a total content of 5% by weight or less of abietic acid, neoabietic acid and parastrinic acid, and salts thereof.
  • a rosin-based surfactant having a total content of 5% by weight or less of abietic acid, neoabietic acid and parastrinic acid, and salts thereof.
  • rosin used in the present invention those using natural resins containing a resin acid such as abietic acid, neoabietic acid, parastrinic acid, pimaric acid, isopimaric acid and dehydroabietic acid as raw materials can be used.
  • a resin acid such as abietic acid, neoabietic acid, parastrinic acid, pimaric acid, isopimaric acid and dehydroabietic acid
  • examples include tall rosin obtained from crude tall oil by-produced in the pulp production process; gum rosin obtained from raw pine crabs; wood rosin extracted from felled pine; among these, tall rosin is preferred.
  • rosin metal salts those obtained by metallizing resin acids contained in these rosins may be used.
  • rosin potassium salt (a mixture of potassium salts of resin acids contained in rosin)
  • rosin Sodium salt (a mixture of sodium salts of resin acids contained in rosin)
  • potassium salt of tall rosin and sodium salt of tall rosin are more preferable.
  • the rosin and / or rosin metal salt (rosin-based surfactant) used in the present invention has a total content of 5% by weight of abietic acid, neoabietic acid and parastrinic acid, and salts thereof. However, it is preferably 3% by weight or less, more preferably 1% by weight or less. If the total content of abietic acid, neoabietic acid and parastrinic acid, and their salts is too large, the effect of suppressing the decrease in tensile strength and tear strength of the resulting dip-molded product will be insufficient. . In addition, the minimum of the total content rate of abietic acid, neoabietic acid, parastrinic acid, and these salts is not specifically limited.
  • the rosin-based surfactant used in the present invention may be abietic acid, neoabietic acid, and parastrinic acid, and the total content of these salts as long as it is 5% by weight or less.
  • the content ratio of the acid and its salt is 5% by weight or less, preferably 3% by weight or less, more preferably 1% by weight or less.
  • abietic acid and its salt are relatively highly reactive with vulcanizing agents such as sulfur, and have the effect of reducing the crosslinking efficiency of the resulting dip-formed product. Since it is large, the tensile strength and tear strength of the resulting dip-molded product can be further improved by controlling the content ratio of such abietic acid and its salt within the above range.
  • the rosin surfactant is not particularly limited as a method for controlling the total content of abietic acid, neoabietic acid and parastrinic acid, and salts thereof within the above range. A method of disproportionation using a catalyst is preferred.
  • the disproportionation catalyst is not particularly limited.
  • supported catalysts such as palladium-carbon, rhodium-carbon, platinum-carbon; metal powders such as nickel and platinum; iodine, iron iodide, nickel iodide, and iodide.
  • Known catalysts such as iodine-based catalysts such as tin, zinc iodide, cobalt iodide, and copper iodide can be used.
  • supported catalysts are preferable, and palladium-carbon is more preferable.
  • the reaction conditions for disproportionating the rosin surfactant are not particularly limited, but it is preferable to carry out the reaction in the presence of a disproportionation catalyst in an inert gas atmosphere such as nitrogen gas.
  • the reaction temperature at this time is not particularly limited, but is preferably 100 to 300 ° C, more preferably 200 to 250 ° C.
  • the reaction time is not particularly limited, but is preferably 1 to 10 hours, more preferably 2 to 5 hours.
  • rosin surfactant When the rosin surfactant is disproportionated, among the resin acids contained in the rosin surfactant, at least a part of abietic acid, neoabietic acid, and parastrinic acid is caused by a disproportionation reaction. Dehydroabietic acid and the like.
  • the content ratio of dehydroabietic acid in the disproportionated rosin surfactant is not particularly limited, but is preferably 70 to 100% by weight, more preferably 80% by weight or more, still more preferably 90% by weight or more, more preferably Is 96% by weight or less, more preferably 93% by weight or less.
  • the content ratio of abietic acid, neoabietic acid and parastrinic acid, and salts thereof in the rosin-based surfactant can be reduced, and as a result, the resulting dip
  • the tensile strength and tear strength of the molded body can be further improved.
  • the amount of the rosin surfactant used as an emulsifier in emulsifying the synthetic polyisoprene and / or SIS is preferably 1 to 15 parts by weight with respect to 100 parts by weight of the total of the synthetic polyisoprene and SIS.
  • the amount is more preferably 3 to 12 parts by weight, still more preferably 5 to 10 parts by weight.
  • the amount of water used in emulsifying the synthetic polyisoprene and / or SIS is preferably 10 to 200 parts by weight, more preferably 30 to 30 parts by weight with respect to 100 parts by weight of the polymer solution of the synthetic polyisoprene and / or SIS. 100 parts by weight, most preferably 50 to 70 parts by weight.
  • the water to be used include hard water, soft water, ion exchange water, distilled water, zeolite water and the like, and soft water, ion exchange water and distilled water are preferable. If the amount of water used is too small, emulsification will be insufficient, while if too much, productivity will decrease.
  • emulsifiers that are generally marketed as emulsifiers or dispersers are particularly limited. Can be used without The method for adding the rosin surfactant to the synthetic polyisoprene and / or SIS polymer solution is not particularly limited, and is either water or a synthetic polyisoprene and / or SIS polymer solution in advance, or It may be added to both, or during the emulsification operation, it may be added to the emulsion, or it may be added all at once or in divided portions.
  • emulsifier examples include batch type emulsification such as trade name “Homogenizer” (manufactured by IKA), trade name “Polytron” (manufactured by Kinematica), trade name “TK auto homomixer” (manufactured by Tokushu Kika Kogyo Co., Ltd.), etc.
  • a method for removing the organic solvent from the emulsion a method capable of setting the content of the organic solvent (preferably an aliphatic hydrocarbon solvent) in the emulsion to 500 ppm by weight or less is preferable.
  • methods such as atmospheric distillation, steam distillation, and centrifugal separation can be employed, vacuum distillation is preferred from these viewpoints because the organic solvent can be removed appropriately and efficiently.
  • Additives usually added in the latex field such as pH adjusters, antifoaming agents, preservatives, chelating agents, oxygen scavengers, dispersants, anti-aging agents, etc. May be.
  • the pH adjuster include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; alkali metal hydrogen carbonates such as sodium bicarbonate; ammonia
  • An organic amine compound such as trimethylamine or triethanolamine; an alkali metal hydroxide or ammonia is preferred.
  • the solid content concentration in the polymer latex after removing the organic solvent, it is desirable to perform a concentration operation by a method such as vacuum distillation, atmospheric distillation, centrifugation, membrane concentration, etc., in order to increase the solid content concentration in the polymer latex, if necessary.
  • a concentration operation by a method such as vacuum distillation, atmospheric distillation, centrifugation, membrane concentration, etc.
  • centrifugation from the viewpoint that the solid content concentration in the polymer latex can be increased and the content of the rosin surfactant in the polymer latex can be adjusted.
  • Centrifugation can be performed using, for example, a continuous centrifuge or a batch centrifuge, but is preferably performed using a continuous centrifuge from the viewpoint of excellent polymer latex productivity.
  • a polymer latex can be obtained as a light liquid that is a part of the dispersion after centrifugation.
  • the final liquid obtained by removing the polymer latex as the light liquid is contained in the residual liquid after the desired amount of rosin surfactant to be removed is contained.
  • the content of the rosin surfactant in the combined latex can be adjusted appropriately.
  • the content ratio of the rosin surfactant in the finally obtained polymer latex is preferably 1.5 parts by weight with respect to 100 parts by weight of the synthetic polyisoprene and / or SIS contained in the latex. More than, more preferably more than 1.7 parts by weight, still more preferably 1.8 parts by weight or more, preferably 10 parts by weight or less, more preferably 5 parts by weight or less, still more preferably 3 parts by weight or less.
  • the solid concentration of the emulsion used for centrifugation is preferably 5 to 11% by weight, more preferably 7 to 10.7% by weight, still more preferably 9 to 10.5% by weight. is there.
  • the solid content concentration of the emulsion before centrifugation is preferably 5 to 11% by weight, more preferably 7 to 10.7% by weight, still more preferably 9 to 10.5% by weight. is there.
  • the amount of the rosin surfactant in the finally obtained polymer latex can be appropriately adjusted to a desired amount, which is preferable.
  • the centrifugal acceleration is preferably 5,000 to 11,000 G, more preferably 6,000 to 10,000 G, and still more preferably. Is 7,000 to 9,500 G, and the feed amount of the emulsion to the continuous centrifuge is preferably 0.5 to 1.5 m 3 / hour, more preferably 0.7 to 1.45 m 3 / hour. More preferably, it is 0.9 to 1.4 m 3 / hour, and the residence time in the continuous centrifuge is preferably 2.0 to 4.0 minutes, more preferably 2.5 to 3.0 minutes, The back pressure (gauge pressure) of the centrifuge is preferably 0.03 to 1.6 MPa.
  • the centrifugation conditions as described above, aggregation of the synthetic polyisoprene, SIS, etc. during the centrifugation can be prevented, thereby improving the mechanical stability of the emulsion and finally
  • the amount of the rosin surfactant in the polymer latex obtained in the above is preferable because it can be appropriately adjusted to a desired amount.
  • the amount of the rosin surfactant in the polymer latex is mainly used when emulsifying the polymer solution of synthetic polyisoprene and / or SIS in water. It can adjust by combining suitably the solid content density
  • Latex Composition The method for producing a latex composition of the present invention comprises a step of adding a vulcanizing agent to the above-described polymer latex of the present invention.
  • the vulcanizing agent examples include sulfur such as powdered sulfur, sulfur white, precipitated sulfur, colloidal sulfur, surface-treated sulfur, insoluble sulfur, etc .; sulfur chloride, sulfur dichloride, morpholine disulfide, alkylphenol disulfide, N, N'- Examples thereof include sulfur-containing compounds such as dithio-bis (hexahydro-2H-azepinone-2), phosphorus-containing polysulfides, polymer polysulfides, and 2- (4′-morpholinodithio) benzothiazole. Among these, sulfur can be preferably used. Vulcanizing agents can be used alone or in combination of two or more.
  • the content of the vulcanizing agent is not particularly limited, but is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 3 parts, based on 100 parts by weight of the synthetic polyisoprene and SIS contained in the latex. Parts by weight. By making content of a vulcanizing agent into the said range, the tensile strength of the dip molding obtained can be raised more.
  • the latex composition preferably further contains a vulcanization accelerator.
  • a vulcanization accelerator those usually used in the method for obtaining dip molding can be used.
  • Dithiocarbamic acids such as acids and zinc salts thereof; 2-mercaptobenzothiazole, 2-mercaptobenzothiazole zinc, 2-mercaptothiazoline, dibenzothiazyl disulfide, 2- (2,4-dinitrophenylthio) benzothiazole, 2 -(N, N-diethylthiocarbaylthio) benzothiazole, 2- (2,6-dimethyl-4-morpholinothio) benzothiazole, 2- (4'-morpholino dithio) Nzothiazole, 4-morpholinyl-2-benzothiazyl disulfide, 1,3-bis (2-benzothiazyl mercaptomethyl) urea, and the like, zinc diethyldithiocarbamate, zinc dibutyldithiocarbamate
  • the content of the vulcanization accelerator is preferably 0.05 to 5 parts by weight, more preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of the total of synthetic polyisoprene and SIS contained in the latex. It is. By making content of a vulcanization accelerator into the said range, the tensile strength of the dip molding obtained can be raised more.
  • the latex composition preferably further contains an anti-aging agent.
  • Antiaging agents include 2,6-di-4-methylphenol, 2,6-di-t-butylphenol, butylhydroxyanisole, 2,6-di-t-butyl- ⁇ -dimethylamino-p-cresol, Octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, styrenated phenol, 2,2′-methylene-bis (6- ⁇ -methyl-benzyl-p-cresol), 4, Butylation of 4'-methylenebis (2,6-di-t-butylphenol), 2,2'-methylene-bis (4-methyl-6-t-butylphenol), alkylated bisphenol, p-cresol and dicyclopentadiene Phenol-based antioxidants containing no sulfur atom, such as reaction products; 2,2′-thiobis- (4-methyl-6-tert-butylphenol) 4,4′-thiobis- (6
  • anti-aging agents can be used alone or in combination of two or more.
  • a phenolic anti-aging agent is preferable and a phenolic anti-aging agent containing no sulfur atom is more preferable because it has a small effect of inhibiting the vulcanization reaction and a large antioxidant effect.
  • the content of the anti-aging agent is preferably 0.1 to 10 parts by weight, more preferably 1 to 7 parts by weight, and still more preferably 3 parts by weight based on 100 parts by weight of the synthetic polyisoprene and SIS contained in the latex. ⁇ 6 parts by weight.
  • the content of the antioxidant is preferably 0.1 to 10 parts by weight, more preferably 1 to 7 parts by weight, and still more preferably 3 parts by weight based on 100 parts by weight of the synthetic polyisoprene and SIS contained in the latex. ⁇ 6 parts by weight.
  • the latex composition preferably further contains zinc oxide.
  • the content of zinc oxide is not particularly limited, but is preferably 0.1 to 5 parts by weight, more preferably 0.2 to 2 parts by weight with respect to 100 parts by weight of the total of synthetic polyisoprene and SIS contained in the latex. Part.
  • the latex composition may further contain a compounding agent such as a dispersant; a reinforcing agent such as carbon black, silica, or talc; a filler such as calcium carbonate or clay; an ultraviolet absorber; a plasticizer; Can do.
  • a compounding agent such as a dispersant
  • a reinforcing agent such as carbon black, silica, or talc
  • a filler such as calcium carbonate or clay
  • an ultraviolet absorber such as calcium carbonate or clay
  • a plasticizer such as a plasticizer
  • the method for preparing the latex composition of the present invention is not particularly limited.
  • a dispersing machine such as a ball mill, a kneader, or a disper
  • the polymer latex is added with a vulcanizing agent and / or a vulcanization accelerator, and necessary.
  • the method of mixing with polymer latex is mentioned.
  • the latex composition preferably has a pH of 7 or more, more preferably in the range of 7 to 13, and even more preferably in the range of 8 to 12.
  • the solid content concentration of the latex composition is preferably in the range of 15 to 65% by weight.
  • the latex composition is preferably aged (pre-crosslinked) before being subjected to dip molding from the viewpoint of further improving the mechanical properties of the resulting dip molded article.
  • the pre-crosslinking time is not particularly limited and depends on the pre-crosslinking temperature, but is preferably 1 to 14 days, and more preferably 1 to 7 days.
  • the pre-crosslinking temperature is preferably 20 to 40 ° C. After pre-crosslinking, it is preferably stored at a temperature of 10 to 30 ° C. until it is used for dip molding. When stored at a high temperature, the tensile strength of the resulting dip-molded product may decrease.
  • Dip Molded Body The method for producing a dip molded body of the present invention includes a step of dip molding the latex composition.
  • Dip molding is a method in which a mold is immersed in a latex composition, the composition is deposited on the surface of the mold, the mold is then lifted from the composition, and then the composition deposited on the mold surface is dried. is there.
  • the mold before being immersed in the latex composition may be preheated. Further, a coagulant can be used as necessary before the mold is immersed in the latex composition or after the mold is pulled up from the latex composition.
  • the method of using the coagulant include a method in which the mold before dipping in the latex composition is immersed in a solution of the coagulant to attach the coagulant to the mold (anode coagulation dipping method), and the latex composition is deposited.
  • anode coagulation dipping method There is a method of immersing the formed mold in a coagulant solution (Teag adhesion dipping method), etc., but the anode adhesion dipping method is preferable in that a dip-formed product with little thickness unevenness can be obtained.
  • coagulants include metal halides such as barium chloride, calcium chloride, magnesium chloride, zinc chloride, and aluminum chloride; nitrates such as barium nitrate, calcium nitrate, and zinc nitrate; acetic acid such as barium acetate, calcium acetate, and zinc acetate. Salts; water-soluble polyvalent metal salts such as calcium sulfate, magnesium sulfate, and sulfates such as aluminum sulfate; Of these, calcium salts are preferable, and calcium nitrate is more preferable. These water-soluble polyvalent metal salts can be used alone or in combination of two or more.
  • the coagulant is preferably used in the form of an aqueous solution.
  • This aqueous solution may further contain a water-soluble organic solvent such as methanol or ethanol, or a nonionic surfactant.
  • concentration of the coagulant varies depending on the type of the water-soluble polyvalent metal salt, but is preferably 5 to 50% by weight, more preferably 10 to 30% by weight.
  • the deposit formed on the mold is usually dried by heating. What is necessary is just to select drying conditions suitably.
  • the heating conditions at the time of crosslinking are not particularly limited, but are preferably 60 to 150 ° C., more preferably 100 to 130 ° C., and preferably 10 to 120 minutes.
  • the heating method is not particularly limited, and there are a method of heating with warm air in an oven, a method of heating by irradiating infrared rays, and the like.
  • the mold may be washed with water or warm water to remove water-soluble impurities (for example, excess surfactant or coagulant) before or after heating the mold on which the latex composition is deposited.
  • water-soluble impurities for example, excess surfactant or coagulant
  • the hot water used is preferably 40 ° C. to 80 ° C., more preferably 50 ° C. to 70 ° C.
  • the dip-formed body after crosslinking is detached from the mold.
  • the desorption method include a method of peeling from a mold by hand, a method of peeling by water pressure or compressed air pressure, and the like. If the dip-formed product in the middle of crosslinking has sufficient strength against desorption, it may be desorbed in the middle of crosslinking, and then the subsequent crosslinking may be continued.
  • the dip-molded body is obtained by using the latex composition obtained by the production method of the present invention, it has excellent tensile strength and can be particularly suitably used as a glove.
  • the dip-molded body is a glove, in order to prevent the dip-molded bodies from sticking to each other at the contact surface, and to improve the slippage when attaching and detaching, the glove is made of inorganic fine particles such as talc and calcium carbonate or organic fine particles such as starch particles. It may be dispersed on the surface, an elastomer layer containing fine particles may be formed on the surface of the glove, or the surface layer of the glove may be chlorinated.
  • the dip-molded body includes medical supplies such as nipples for baby bottles, syringes, tubes, water pillows, balloon sacks, catheters and condoms; toys such as balloons, dolls and balls; It can also be used for industrial goods such as gas storage bags;
  • the method for producing a packaging structure of the present invention comprises forming the coating film by applying the polymer latex on the first sheet base material and / or the second sheet base material. A step of bonding and laminating at least part of the first sheet base material and at least part of the second sheet base material.
  • the packaging structure obtained by the production method of the present invention has a structure in which a first sheet base material and a second sheet base material coated with a polymer latex are bonded and laminated, and a packaged object can be accommodated. Specifically, in the packaging structure, the first sheet base material and the second sheet base material face each other so that the surfaces coated with the polymer latex (latex coated surface) face each other as necessary.
  • the first sheet base material and the second sheet base material are sandwiched between the first sheet base material and the second sheet base material by pressing in a state where the latex coated surfaces of the first sheet base material and the second sheet base material are in contact with each other. Are bonded to each other, whereby the packaged object can be packaged.
  • a to-be-packaged object For example, the various to-be-packaged goods which it is desired to sterilize like medical goods, such as a bandage, are mentioned.
  • a 1st sheet base material and a 2nd sheet base material For example, paper materials, such as glassine paper, a high density polyethylene nonwoven fabric, a polyolefin film, a polyester film, etc. are mentioned, Among these, Paper materials are preferred, and glassine paper is particularly preferred from the viewpoints of excellent handleability (a point of moderate bending ease) and low cost.
  • Weight average molecular weight (Mw) Diluted with tetrahydrofuran so that the solid content concentration of the synthetic polyisoprene contained in the polymer solution is 0.1% by weight, this solution was subjected to gel permeation chromatography analysis, and the weight in terms of standard polystyrene Average molecular weight (Mw) was calculated.
  • the content ratio of each resin acid in the disproportionated rosin acid resin After the disproportionated rosin acid resin was converted to a methyl ester derivative by the diazomethane method, the derivatives were described in “Rosin acids,%” described in ASTM D803. According to the analysis method, the content ratio of abietic acid, neoabietic acid, parastrinic acid, dehydroabietic acid, and other components in the disproportionated rosin acid resin by performing gas chromatography analysis under the following conditions ( Unit:% by weight) was measured respectively.
  • Analyzer Gas chromatograph (model “GC-15A”, manufactured by Shimadzu Corporation) Column: Capillary column URBON HR-SS-10, FS-bonded, 0.25mm ⁇ 50m Liquid phase: Cyanopropyl silicon Detector: FID Measurement conditions: oven temperature 195 ° C., injection temperature 250 ° C., detection temperature 250 ° C. Carrier gas: He
  • Dip molded body tear strength Based on ASTM D624-00, the dip molded body was allowed to stand in a constant temperature and humidity chamber at 23 ° C. and 50% relative humidity for at least 24 hours, and then a dumbbell (trade name “Die C”, dumbbell company) And a test piece for tear strength measurement was produced. The test piece was pulled with a Tensilon universal testing machine (trade name “RTG-1210”, manufactured by A & D) at a tensile speed of 500 mm / min, and the tear strength (unit: N / mm) was measured.
  • RTG-1210 manufactured by A & D
  • Production Example 1 Production of disproportionated rosin acid resin (A-1) 350 parts of tall rosin melted at 170 ° C. in a four-necked flask with a capacity of 500 ml equipped with a cooling pipe, a nitrogen introducing pipe, a stopcock and a stirrer (content ratio of abietic acid is 43% by weight, content ratio of neoabietic acid is 22% by weight, the content of parastrinic acid is 16% by weight, the content of dehydroabietic acid is 10% by weight, the content of other components is 9% by weight, and the acid value is 169.0 mgKOH / g).
  • Production Example 2 (Production of disproportionated rosin acid resin (A-2)) A disproportionated rosin acid resin (A-2) was obtained in the same manner as in Production Example 1, except that the reaction time of the disproportionation reaction was changed from 4 hours to 3 hours. With respect to the obtained disproportionated rosin acid resin (A-2), the content ratio of each resin acid in the disproportionated rosin acid resin was measured according to the above method. The content ratio of abietic acid was 1% by weight, the content ratio of dehydroabietic acid was 89% by weight, and the content ratios of other components were 10% by weight. The results are shown in Table 1.
  • Production Example 3 (Production of disproportionated rosin acid resin (A-3)) A disproportionated rosin acid resin (A-3) was obtained in the same manner as in Production Example 1, except that the reaction time of the disproportionation reaction was changed from 4 hours to 2 hours. With respect to the obtained disproportionated rosin acid resin (A-3), the content ratio of each resin acid in the disproportionated rosin acid resin was measured according to the above method.
  • the content ratio of abietic acid was 2% by weight
  • the content ratio of neoabietic acid was 1% by weight
  • the content ratio of parastrinic acid was 1% by weight
  • the content ratio of dehydroabietic acid was 85% by weight
  • the content ratios of other components were 11% by weight. The results are shown in Table 1.
  • Production Example 4 (Production of disproportionated rosin acid resin (A'-4)) A disproportionated rosin acid resin (A′-4) was obtained in the same manner as in Production Example 1, except that the reaction time of the disproportionation reaction was changed from 4 hours to 30 minutes.
  • the content ratio of each resin acid in the disproportionated rosin acid resin was measured according to the above method, and the content ratio of abietic acid was 10% by weight.
  • the content ratio of neoabietic acid was 5% by weight
  • the content ratio of parastrinic acid was 5% by weight
  • the content ratio of dehydroabietic acid was 67% by weight
  • the content ratios of other components were 13% by weight. The results are shown in Table 1.
  • Production Example 5 (Production of disproportionated rosin acid resin (A′-5)) A disproportionated rosin acid resin was produced in the same manner as in Production Example 1, except that the reaction temperature of the disproportionation reaction was changed from 270 ° C. to 200 ° C., and the reaction time of the disproportionation reaction was changed from 4 hours to 1 minute. (A'-5) was obtained. With respect to the obtained disproportionated rosin acid resin (A′-5), the content ratio of each resin acid in the disproportionated rosin acid resin was measured in accordance with the above method, and the content ratio of abietic acid was 40% by weight.
  • the content ratio of neoabietic acid was 20% by weight, the content ratio of parastrinic acid was 15% by weight, the content ratio of dehydroabietic acid was 13% by weight, and the content ratios of other components were 12% by weight.
  • the results are shown in Table 1.
  • Example 1 (Production of synthetic polyisoprene latex) A synthetic polyisoprene having a weight average molecular weight of 1,300,000 (trade name “NIPOL IR2200L”, manufactured by Nippon Zeon Co., Ltd., isoprene homopolymer, cis bond unit amount 98%) is mixed with cyclohexane, and the temperature is stirred. Was heated to 60 ° C. and dissolved to obtain a cyclohexane solution (a) of synthetic polyisoprene having a viscosity of 12,000 mPa ⁇ s measured by a B-type viscometer and a solid content concentration of 8% by weight.
  • a synthetic polyisoprene having a viscosity of 12,000 mPa ⁇ s measured by a B-type viscometer and a solid content concentration of 8% by weight.
  • the disproportionated rosin acid resin (A-1) obtained in Production Example 1 was neutralized with an aqueous potassium hydroxide solution, and used as a rosin surfactant, rosin acid having a concentration of 30% by weight and pH 10.5.
  • a potassium aqueous solution (b) was obtained.
  • the cyclohexane solution (a) and the potassium rosin acid aqueous solution (b) are mixed at a weight ratio of 1: 1.5 (2 parts of rosin potassium salt with respect to 100 parts of synthetic polyisoprene).
  • the product name “Multiline Mixer MS26-MMR-5.5L” (Satake Chemical Machinery Co., Ltd.) is used for mixing, followed by the product name “Milder MDN310” (manufactured by Taiheiyo Kiko Co., Ltd.).
  • emulsified at a rotational speed of 4100 rpm to obtain an emulsified liquid (c).
  • the total feed flow rate of the cyclohexane solution (a) and the potassium rosinate aqueous solution (b) was 2,000 kg / hr, the temperature was 60 ° C., and the back pressure (gauge pressure) was 0.5 MPa.
  • the emulsion (c) was heated to 80 ° C. under a reduced pressure of ⁇ 0.01 to ⁇ 0.09 MPa (gauge pressure) to distill off the cyclohexane, and an aqueous dispersion (d) of synthetic polyisoprene was obtained. Obtained.
  • an antifoaming agent (trade name “SM5515”, manufactured by Toray Dow Corning Co., Ltd.) was continuously added while spraying so that the amount was 300 ppm by weight with respect to the synthetic polyisoprene in the emulsion (c).
  • an aqueous dispersion (d) was obtained.
  • the emulsified liquid (c) is adjusted to 70% by volume or less of the tank volume, and a three-stage inclined paddle blade is used as a stirring blade at a rotational speed of 60 rpm. Slow stirring was performed.
  • the obtained aqueous dispersion (d) is centrifuged at 4,000 to 5,000 G using a continuous centrifuge (trade name “SRG510”, manufactured by Alfa Laval) to obtain a solid as a light liquid.
  • a synthetic polyisoprene latex (e) having a partial concentration of 56% by weight was obtained.
  • the conditions for the centrifugation are as follows: the solid content concentration of the aqueous dispersion (d) before centrifugation is 10% by weight, the flow rate during continuous centrifugation is 1300 kg / hr, and the back pressure of the centrifuge (gauge pressure). Was set to 1.5 MPa.
  • the obtained synthetic polyisoprene latex (e) has a solid content concentration of 56% by weight, a volume average particle size of 1.0 ⁇ m, a pH of 10, a viscosity measured by a B-type viscometer of 120 mPa ⁇ s, and the above potassium rosinate
  • the content ratio of the disproportionated rosin acid resin (A-1) derived from the aqueous solution (b) was 3.0 parts per 100 parts of the synthetic polyisoprene. Aggregates in the synthetic polyisoprene latex (e) were not observed, and the amount of residual metals (total content of aluminum atoms and titanium atoms) in the synthetic polyisoprene latex (e) was 250 ppm by weight.
  • the latex composition (f) is dip-molded in a ceramic mold pre-applied with calcium nitrate, washed with distilled water at 60 ⁇ 1.0 ° C for 5 minutes, and heated in an oven at 120 ° C for 25 minutes. By sulphating, a ceramic mold coated with a film was obtained. Then, talc was apply
  • Example 2 Latex composition in the same manner as in Example 1 except that the disproportionated rosin acid resin (A-2) obtained in Production Example 2 was used in place of the disproportionated rosin acid resin (A-1). And a dip-molded body were prepared and evaluated in the same manner. The results are shown in Table 1.
  • Example 3 Latex composition in the same manner as in Example 1 except that the disproportionated rosin acid resin (A-3) obtained in Production Example 3 was used instead of the disproportionated rosin acid resin (A-1). And a dip-molded body were prepared and evaluated in the same manner. The results are shown in Table 1.
  • Comparative Example 1 Latex composition in the same manner as in Example 1 except that the disproportionated rosin acid resin (A′-4) obtained in Production Example 4 was used instead of the disproportionated rosin acid resin (A-1). The product was prepared and the dip-molded body was produced, and evaluated in the same manner. The results are shown in Table 1.
  • Comparative Example 2 Latex composition in the same manner as in Example 1 except that the disproportionated rosin acid resin (A′-5) obtained in Production Example 5 was used in place of the disproportionated rosin acid resin (A-1). The product was prepared and the dip-molded body was produced, and evaluated in the same manner. The results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

合成ポリイソプレンおよび/またはスチレン-イソプレン-スチレンブロック共重合体の重合体溶液を、ロジンおよび/またはロジンの金属塩の存在下に、水中で乳化させることで、乳化液を得る工程を備え、前記ロジンおよび/または前記ロジンの金属塩として、アビエチン酸、ネオアビエチン酸およびパラストリン酸、ならびにこれらの塩の合計の含有割合が5重量%以下であるものを用いる重合体ラテックスの製造方法を提供する。

Description

重合体ラテックスの製造方法
 本発明は、引張強度および引裂強度に優れたディップ成形体を与えることのできる重合体ラテックスの製造方法に関する。
 従来、天然ゴムのラテックスを含有するラテックス組成物をディップ成形して、乳首、風船、手袋、バルーン、サック等の人体と接触して使用されるディップ成形体が得られることが知られている。しかしながら、天然ゴムのラテックスは、人体にアレルギー症状を引き起こすような蛋白質を含有するため、生体粘膜又は臓器と直接接触するディップ成形体としては問題がある場合があった。そのため、天然ゴムのラテックスではなく、合成ゴムのラテックスを用いる検討がされてきている。
 たとえば、特許文献1には、ディップ成形に用いるラテックスとして、ロジンの金属塩を乳化剤として用いて製造された合成ポリイソプレンラテックスが開示されている。一方で、このようなロジンの金属塩を乳化剤として用いた場合には、得られる合成ポリイソプレンラテックスは、引張強度および引裂強度にある程度優れたディップ成形体を得ることができるものの、引張強度および引裂強度のさらなる改善が望まれていた。
特表2015-193685号公報
 本発明は、このような実状に鑑みてなされたものであり、引張強度および引裂強度に優れたディップ成形体を与えることのできる重合体ラテックスの製造方法を提供することを目的とする。
 本発明者等は、上記目的を達成するために鋭意検討を行った結果、乳化剤として所定のロジンおよび/またはロジンの金属塩を用いて、合成ポリイソプレンおよび/またはスチレン-イソプレン-スチレンブロック共重合体の重合体溶液を、水中で乳化させることで乳化液として、重合体ラテックスを得ることにより、このような重合体ラテックスを用いて得られるディップ成形体を、引張強度および引裂強度に優れるものとすることができることを見出し、本発明を完成させるに至った。
 すなわち、本発明によれば、合成ポリイソプレンおよび/またはスチレン-イソプレン-スチレンブロック共重合体の重合体溶液を、ロジンおよび/またはロジンの金属塩の存在下に、水中で乳化させることで、乳化液を得る工程を備え、前記ロジンおよび/または前記ロジンの金属塩として、アビエチン酸、ネオアビエチン酸およびパラストリン酸、ならびにこれらの塩の合計の含有割合が5重量%以下であるものを用いる重合体ラテックスの製造方法が提供される。
 本発明の重合体ラテックスの製造方法では、前記合成ポリイソプレンおよび/または前記スチレン-イソプレン-スチレンブロック共重合体として、アニオン重合により重合して得られたものを用いることが好ましい。
 本発明の重合体ラテックスの製造方法では、アニオン重合により重合することにより前記合成ポリイソプレンおよび/または前記スチレン-イソプレン-スチレンブロック共重合体の重合体溶液を得て、前記重合体溶液を、凝固を経ずに、前記ロジンおよび/またはロジンの金属塩の水溶液を用いて直接乳化して前記乳化液を得ることが好ましい。
 本発明の重合体ラテックスの製造方法では、前記重合体ラテックス中における前記ロジンおよび/またはロジンの金属塩の合計の含有割合が、前記重合体ラテックス中に含まれる前記合成ポリイソプレンおよび/または前記スチレン-イソプレン-スチレンブロック共重合体の合計100重量部に対して、1.5重量部超であることが好ましい。
 本発明の重合体ラテックスの製造方法では、前記ロジンおよび/または前記ロジンの金属塩として、デヒドロアビエチン酸の含有割合が70~100重量%であるものを用いることが好ましい。
 本発明によれば、上記の製造方法により得られた重合体ラテックスに、加硫剤を添加する工程を備えるラテックス組成物の製造方法が提供される。
 また、本発明によれば、上記の製造方法により得られたラテックス組成物をディップ成形する工程を備えるディップ成形体の製造方法が提供される。
 さらに、本発明によれば、上記の製造方法により得られた重合体ラテックスを第1のシート基材および/または第2のシート基材上に塗布して塗膜を形成し、前記塗膜により第1のシート基材の少なくとも一部と第2のシート基材の少なくとも一部とを接着積層する、前記第1のシート基材と前記第2のシート基材との間に被包装物を収容可能な包装構造体の製造方法が提供される。
 本発明によれば、引張強度および引裂強度に優れたディップ成形体を与えることのできる重合体ラテックスの製造方法を提供することができる。
 本発明の重合体ラテックスの製造方法は、合成ポリイソプレンおよび/またはスチレン-イソプレン-スチレンブロック共重合体の重合体溶液を、ロジンおよび/またはロジンの金属塩の存在下に、水中で乳化させることで、乳化液を得る工程を備え、前記ロジンおよび/または前記ロジンの金属塩として、アビエチン酸、ネオアビエチン酸およびパラストリン酸、ならびにこれらの塩の合計の含有割合が5重量%以下であるものを用いることを特徴とする。なお、合成ポリイソプレンおよび/またはスチレン-イソプレン-スチレンブロック共重合体の重合体溶液としては、合成ポリイソプレンの重合体溶液、スチレン-イソプレン-スチレンブロック共重合体の重合体溶液、または合成ポリイソプレンおよびスチレン-イソプレン-スチレンブロック共重合体を含有する重合体溶液を用いることができる。
 合成ポリイソプレンの重合体溶液
 合成ポリイソプレンの重合体溶液に含まれる合成ポリイソプレンは、イソプレンの単独重合体であってもよいし、イソプレンと共重合可能な他のエチレン性不飽和単量体とを共重合したものであってもよい。合成ポリイソプレン中のイソプレン単位の含有量は、柔軟で、引張強度に優れるディップ成形体などの膜成形体が得られやすいことから、全単量体単位に対して、好ましくは70重量%以上、より好ましくは90重量%以上、さらに好ましくは95重量%以上、特に好ましくは100重量%(イソプレンの単独重合体)である。
 イソプレンと共重合可能な他のエチレン性不飽和単量体としては、たとえば、ブタジエン、クロロプレン、1,3-ペンタジエン等のイソプレン以外の共役ジエン単量体;アクリロニトリル、メタクリロニトリル、フマロニトリル、α-クロロアクリロニトリル等のエチレン性不飽和ニトリル単量体;スチレン、アルキルスチレン等のビニル芳香族単量体;(メタ)アクリル酸メチル(「アクリル酸メチルおよび/またはメタクリル酸メチル」の意味であり、以下、(メタ)アクリル酸エチルなども同様。)、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸-2-エチルヘキシル等のエチレン性不飽和カルボン酸エステル単量体;などが挙げられる。これらのイソプレンと共重合可能な他のエチレン性不飽和単量体は、1種単独でも、複数種を併用してもよい。
 合成ポリイソプレンは、従来公知の方法、配位重合やアニオン重合などいずれの様式で重合したものであってもよいが、たとえば、配位重合により重合する場合には、チーグラー系重合触媒を用い、不活性重合溶媒中で、イソプレンと、必要に応じて用いられる共重合可能な他のエチレン性不飽和単量体とを溶液重合することで、合成ポリイソプレンの重合体溶液を得る方法が好適である。チーグラー系重合触媒としては、特に限定されず、公知のものを用いることができるが、たとえば、四塩化チタンを有機アルミニウム化合物で還元し、さらに各種電子供与体および電子受容体で処理して得られた三塩化チタン組成物と有機アルミニウム化合物を組み合わせた触媒系、ハロゲン化マグネシウムに四塩化チタンと各種電子供与体とを接触させる担持型触媒系などが挙げられ、これらのなかでも、四塩化チタンおよび有機アルミニウム化合物を用いた触媒系が好ましく、四塩化チタンおよびトリアルキルアルミニウムを用いた触媒系が特に好ましい。
 また、アニオン重合により重合する場合には、有機アルカリ金属触媒を用いて、不活性重合溶媒中で、イソプレンと、必要に応じて用いられる共重合可能な他のエチレン性不飽和単量体とを溶液重合することで、合成ポリイソプレンの重合体溶液を得る方法が好適である。アニオン重合の重合触媒として、有機アルカリ金属触媒を用いることで、高いリビング性を持ってアニオン重合を進行させることができるため、重量平均分子量の高い合成ポリイソプレンを高い収率にて得ることができるため、好ましい。有機アルカリ金属触媒としては、特に限定されず、公知のものを用いることができるが、たとえば、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、ヘキシルリチウム、フェニルリチウム、スチルベンリチウムなどの有機モノリチウム化合物;ジリチオメタン、1,4-ジリチオブタン、1,4-ジリチオ-2-エチルシクロヘキサン、1,3,5-トリリチオベンゼン、1,3,5-トリス(リチオメチル)ベンゼンなどの有機多価リチウム化合物;ナトリウムナフタレンなどの有機ナトリウム化合物;カリウムナフタレンなどの有機力リウム化合物;などが挙げられる。これらのなかでも、有機モノリチウム化合物を用いることが好ましく、n-ブチルリチウムを用いることがより好ましい。これらの有機アルカリ金属触媒は、それぞれ単独で、または2種以上を組み合わせて用いることができる。
 なお、重合に用いる重合溶媒としては、有機溶媒を挙げることができ、たとえば、ベンゼン、トルエン、キシレン等の芳香族炭化水素溶媒;シクロペンタン、シクロペンテン、シクロヘキサン、シクロヘキセン等の脂環族炭化水素溶媒;ブタン、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素溶媒;塩化メチレン、クロロホルム、二塩化エチレン等のハロゲン化炭化水素溶媒;等を挙げることができる。これらのうち、脂肪族炭化水素溶媒が好ましく、ブタン、ヘキサン、ペンタンがより好ましく、ヘキサンがさらに好ましく、ノルマルヘキサンが特に好ましい。
 合成ポリイソプレン中のイソプレン単位としては、イソプレンの結合状態により、シス結合単位、トランス結合単位、1,2-ビニル結合単位、3,4-ビニル結合単位の4種類が存在する。得られるディップ成形体の引張強度向上の観点から、合成ポリイソプレンに含まれるイソプレン単位中のシス結合単位の含有割合は、全イソプレン単位に対して、好ましくは70重量%以上、より好ましくは90重量%以上、さらに好ましくは95重量%以上である。
 合成ポリイソプレンの重量平均分子量は、ゲル・パーミーエーション・クロマトグラフィー分析による標準ポリスチレン換算で、好ましくは10,000~5,000,000、より好ましくは500,000~5,000,000、さらに好ましくは800,000~3,000,000である。合成ポリイソプレンの重量平均分子量を上記範囲とすることにより、ディップ成形体とした場合における、得られる膜成形体の引張強度が向上するとともに、重合体ラテックスが製造しやすくなる傾向がある。
 合成ポリイソプレンのポリマー・ムーニー粘度(ML1+4、100℃)は、好ましくは50~80、より好ましくは60~80、さらに好ましくは70~80である。
 スチレン-イソプレン-スチレンブロック共重合体の重合体溶液
 スチレン-イソプレン-スチレンブロック共重合体の重合体溶液に含まれる、スチレン-イソプレン-スチレンブロック共重合体(SIS)は、スチレンとイソプレンとのブロック共重合体である(「S」はスチレンブロック、「I」はイソプレンブロックをそれぞれ表す。)。SIS中のスチレン単位とイソプレン単位の含有割合は、「スチレン単位:イソプレン単位」の重量比で、通常1:99~90:10、好ましくは3:97~70:30、より好ましくは5:95~50:50、さらに好ましくは10:90~30:70の範囲である。
 SISは、従来公知の方法、配位重合やアニオン重合などいずれの様式で重合したものであってもよいが、たとえば、配位重合により重合する場合には、チーグラー系重合触媒を用い、不活性重合溶媒中で、スチレンを含有する単量体、およびイソプレンを含有する単量体を溶液重合することで、SISの重合体溶液を得る方法が好適である。チーグラー系重合触媒としては、特に限定されず、上述したチーグラー系重合触媒を用いることができる。
 また、アニオン重合により重合する場合には、有機アルカリ金属触媒を用いて、不活性重合溶媒中で、スチレンを含有する単量体、およびイソプレンを含有する単量体を溶液重合することで、SISの重合体溶液を得る方法が好適である。アニオン重合の重合触媒として、有機アルカリ金属触媒を用いることで、高いリビング性を持ってアニオン重合を進行させることができるため、重量平均分子量の高い合成ポリイソプレンを高い収率にて得ることができるため、好ましい。有機アルカリ金属触媒としては、特に限定されず、上述した有機アルカリ金属触媒を用いることができる。
 不活性重合溶媒としては、重合反応に対して不活性なものであればよいが、たとえば、上述した有機溶媒を用いることができる。
 また、スチレンを含有する単量体、およびイソプレンを含有する単量体を溶液重合する際の重合温度は、高い生産性で重合体ラテックスを製造することができるという観点より、好ましくは35~80℃、より好ましくは40~75℃である。
 SISの重量平均分子量は、ゲル・パーミーエーション・クロマトグラフィー分析による標準ポリスチレン換算で、好ましくは50,000~500,000、より好ましくは70,000~400,000、さらに好ましくは100,000~350,000である。SISの重量平均分子量を上記範囲とすることにより、ディップ成形体の引張強度が向上するとともに、重合体ラテックスが製造しやすくなる傾向がある。
 また、SISは、分子量分布(Mw/Mn)が、好ましくは1.0~2.6であり、より好ましくは1.0~2.4、さらに好ましくは1.0~2.2である。分子量分布(Mw/Mn)を上記範囲とすることにより、SISを有機溶媒に溶解することで得られる重合体溶液の粘度の上昇を抑えながら、得られるディップ成形体の引張強度をより向上させることができる。
 なお、本発明の重合体ラテックスの製造方法においては、上述した合成ポリイソプレンおよびSISのうち、いずれか一方を用いてもよいし、両方を用いてもよいが、合成ポリイソプレンを用いて、重合体ラテックスとして合成ポリイソプレンのラテックスを製造することが好ましい。
 重合体ラテックス
 本発明の重合体ラテックスの製造方法においては、上記した配位重合あるいはアニオン重合により得られた合成ポリイソプレンおよび/またはSISの重合体溶液を用いて、たとえば、以下の方法により重合体ラテックスを製造することができる。すなわち、(1)配位重合あるいはアニオン重合により得られた合成ポリイソプレンおよび/またはSISの重合体溶液から、一度凝固させた合成ポリイソプレンおよび/またはSISを得て、これを有機溶媒に溶解または微分散させることで、合成ポリイソプレンおよび/またはSISの重合体溶液(溶液または微細懸濁液)を得て、得られた合成ポリイソプレンおよび/またはSISの重合体溶液を、乳化剤としてのロジンおよび/またはロジンの金属塩の存在下で、水中で乳化させることで重合体ラテックスを製造する方法、(2)配位重合あるいはアニオン重合により得られた合成ポリイソプレンの重合体溶液を、凝固を経ずに、乳化剤としてのロジンおよび/またはロジンの金属塩の存在下で、水中で直接乳化させることで重合体ラテックスを製造する方法が挙げられる。上記(1)、(2)の方法いずれを採用してもよいが、アニオン重合により得られた合成ポリイソプレンおよび/またはSISを用いる場合には、凝固等による熱履歴を低減でき、これにより、得られるディップ成形体を、引張強度および伸びにより優れるものとすることができるという観点より、上記(2)の方法が好ましい。
 上記(1)の製造方法で用いる有機溶媒としては、たとえば、ベンゼン、トルエン、キシレン等の芳香族炭化水素溶媒;シクロペンタン、シクロペンテン、シクロヘキサン、シクロヘキセン等の脂環族炭化水素溶媒;ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素溶媒;塩化メチレン、クロロホルム、二塩化エチレン等のハロゲン化炭化水素溶媒;等を挙げることができる。これらのうち、脂肪族炭化水素溶媒が好ましく、ヘキサンがより好ましく、ノルマルヘキサンが特に好ましい。
 なお、有機溶媒の使用量は、合成ポリイソプレンおよびSISの合計100重量部に対して、好ましくは2,000重量部以下、より好ましくは20~1,500重量部、さらに好ましくは500~1,500重量部である。
 また、本発明においては、上記(1)、(2)のいずれの方法においても、合成ポリイソプレンおよび/またはSISを乳化させるための乳化剤として、ロジンおよび/またはロジンの金属塩(以下、「ロジン系界面活性剤」と称することがある。)を使用するものであり、特に、このようなロジン系界面活性剤として、アビエチン酸、ネオアビエチン酸およびパラストリン酸、ならびにこれらの塩の合計の含有割合が5重量%以下であるものを使用する。本発明によれば、乳化剤として上記特定のロジン系界面活性剤を使用することにより、得られる重合体ラテックスをディップ成形体とした場合における引張強度および引裂強度を向上させることが可能となる。
 すなわち、まず、重合体溶液を、乳化剤の存在下に水中で乳化し、重合体ラテックスを得る場合には、得られる重合体ラテックス中にはわずかに乳化剤が残留することとなる。ここで、本発明者等は、乳化剤としてロジン系界面活性剤を用いた場合には、得られる重合体ラテックス中にわずかにロジン系界面活性剤が残留することとなり、このような重合体ラテックスを用いて、硫黄等の加硫剤を添加してなるラテックス組成物を得て、これをディップ成形体に成形しようとすると、重合体ラテックス中に含まれるロジン系界面活性剤に由来する樹脂酸(特に、共役二重結合を有するアビエチン酸、ネオアビエチン酸およびパラストリン酸)が、硫黄等の加硫剤と反応してしまい、これにより、ディップ成形体の架橋効率が低下し、ディップ成形体の引張強度および引裂強度が低下してしまうという知見を得た。
 これに対し、本発明によれば、乳化剤として、アビエチン酸、ネオアビエチン酸およびパラストリン酸、ならびにこれらの塩の合計の含有割合が5重量%以下であるロジン系界面活性剤を用いることにより、得られるディップ成形体について、このようなロジン系界面活性剤の作用による引張強度および引裂強度の低下を抑制することができ、その結果、引張強度および引裂強度に優れたディップ成形体を与えることが可能となるものである。
 本発明で用いるロジンは、アビエチン酸、ネオアビエチン酸、パラストリン酸、ピマール酸、イソピマール酸、デヒドロアビエチン酸等の樹脂酸を含有する天然樹脂類を原料とするものを使用することができ、たとえば、パルプの製造工程で副生する粗トール油から得られるトールロジン;生松ヤニから得られるガムロジン;伐採した松から抽出されるウッドロジン;などが挙げられ、これらのなかでも、トールロジンが好ましい。また、ロジンの金属塩としては、これらのロジンに含まれる樹脂酸を金属塩化したものを用いればよく、たとえば、ロジンのカリウム塩(ロジンに含まれる各樹脂酸のカリウム塩の混合物)や、ロジンのナトリウム塩(ロジンに含まれる各樹脂酸のナトリウム塩の混合物)が好ましく、トールロジンのカリウム塩や、トールロジンのナトリウム塩がより好ましい。
 本発明で用いるロジンおよび/またはロジンの金属塩(ロジン系界面活性剤)は、上述したように、アビエチン酸、ネオアビエチン酸およびパラストリン酸、ならびにこれらの塩の合計の含有割合が、5重量%以下であればよいが、好ましくは3重量%以下、より好ましくは1重量%以下である。アビエチン酸、ネオアビエチン酸およびパラストリン酸、ならびにこれらの塩の合計の含有割合が大きすぎる場合には、得られるディップ成形体の引張強度および引裂強度の低下を抑制する効果が不十分となってしまう。なお、アビエチン酸、ネオアビエチン酸およびパラストリン酸、ならびにこれらの塩の合計の含有割合の下限は、特に限定されない。
 また、本発明で用いるロジン系界面活性剤は、上述したようにアビエチン酸、ネオアビエチン酸およびパラストリン酸、ならびにこれらの塩の合計の含有割合が5重量%以下であればよいが、特に、アビエチン酸およびその塩の含有割合が、5重量%以下、好ましくは3重量%以下、より好ましくは1重量%以下である。アビエチン酸およびその塩の含有割合を上記範囲とすることにより、得られるディップ成形体の引張強度および引裂強度をより向上させることができる。すなわち、ロジン系界面活性剤に含まれる樹脂酸のうち、アビエチン酸およびその塩は、硫黄等の加硫剤との反応性が比較的高く、得られるディップ成形体の架橋効率を低下させる作用が大きいため、このようなアビエチン酸およびその塩の含有割合を上記範囲に制御することにより、得られるディップ成形体の引張強度および引裂強度をより向上させることができる。
 ロジン系界面活性剤について、アビエチン酸、ネオアビエチン酸およびパラストリン酸、ならびにこれらの塩の合計の含有割合を上記範囲に制御する方法としては、特に限定されないが、ロジン系界面活性剤を、不均化触媒を用いて不均化する方法が好ましい。
 不均化触媒としては、特に限定されないが、たとえば、パラジウム-カーボン、ロジウム-カーボン、白金-カーボン等の担持触媒;ニッケル、白金等の金属粉末;ヨウ素、ヨウ化鉄、ヨウ化ニッケル、ヨウ化スズ、ヨウ化亜鉛、ヨウ化コバルト、ヨウ化銅等のヨウ素系触媒;などの公知のものを使用することができ、これらのなかでも、担持触媒が好ましく、パラジウム-カーボンがより好ましい。
 ロジン系界面活性剤を不均化する際の反応条件としては、特に限定されないが、窒素ガス等の不活性ガス雰囲気下で、不均化触媒の存在下に反応を行うことが好ましい。この際における反応温度は、特に限定されないが、好ましくは100~300℃、より好ましくは200~250℃である。また、反応時間は、特に限定されないが、好ましくは1~10時間、より好ましくは2~5時間である。
 ロジン系界面活性剤を不均化した場合には、ロジン系界面活性剤に含まれる樹脂酸のうち、アビエチン酸、ネオアビエチン酸、およびパラストリン酸のうち少なくとも一部が、不均化反応により、デヒドロアビエチン酸等となる。
 不均化したロジン系界面活性剤における、デヒドロアビエチン酸の含有割合は、特に限定されないが、好ましくは70~100重量%、より好ましくは80重量%以上、さらに好ましくは90重量%以上、より好ましくは96重量%以下、さらに好ましくは93重量%以下である。デヒドロアビエチン酸の含有割合を上記範囲とすることにより(すなわち、ロジン系界面活性剤を不均化することにより、ロジン系界面活性剤中にデヒドロアビエチン酸を生成させ、デヒドロアビエチン酸の含有割合を上記範囲に制御することにより)、結果として、ロジン系界面活性剤中における、アビエチン酸、ネオアビエチン酸およびパラストリン酸、ならびにこれらの塩の含有割合を低減させることができ、これにより、得られるディップ成形体の引張強度および引裂強度をより向上させることができる。
 合成ポリイソプレンおよび/またはSISを乳化させる際における、乳化剤としてのロジン系界面活性剤の使用量は、合成ポリイソプレンおよびSISの合計100重量部に対して、好ましくは1~15重量部であり、より好ましく3~12重量部、さらに好ましくは5~10重量部である。ロジン系界面活性剤の使用量を上記範囲とすることにより、乳化をより良好に行うことができるとともに、得られるディップ成形体の引張強度および引裂強度をより向上させることができる。
 合成ポリイソプレンおよび/またはSISを乳化させる際に使用する水の量は、合成ポリイソプレンおよび/またはSISの重合体溶液100重量部に対して、好ましくは10~200重量部、より好ましくは30~100重量部、最も好ましくは50~70重量部である。使用する水の種類としては、硬水、軟水、イオン交換水、蒸留水、ゼオライトウォーターなどが挙げられ、軟水、イオン交換水および蒸留水が好ましい。水の使用量が少なすぎると、乳化が不十分となってしまい、一方、多すぎると、生産性が低下してしまう。
 合成ポリイソプレンおよび/またはSISの重合体溶液を、乳化剤としてのロジン系界面活性剤の存在下、水中で乳化する際には、一般に乳化機または分散機として市販されている乳化装置を特に限定されず使用できる。合成ポリイソプレンおよび/またはSISの重合体溶液に、ロジン系界面活性剤を添加する方法としては、特に限定されず、予め、水もしくは合成ポリイソプレンおよび/またはSISの重合体溶液のいずれか、あるいは両方に添加してもよいし、乳化操作を行っている最中に、乳化液に添加してもよく、一括添加しても、分割添加してもよい。
 乳化装置としては、たとえば、商品名「ホモジナイザー」(IKA社製)、商品名「ポリトロン」(キネマティカ社製)、商品名「TKオートホモミキサー」(特殊機化工業社製)等のバッチ式乳化機;商品名「TKパイプラインホモミキサー」(特殊機化工業社製)、商品名「コロイドミル」(神鋼パンテック社製)、商品名「スラッシャー」(日本コークス工業社製)、商品名「トリゴナル湿式微粉砕機」(三井三池化工機社製)、商品名「キャビトロン」(ユーロテック社製)、商品名「マイルダー」(太平洋機工社製)、商品名「ファインフローミル」(太平洋機工社製)等の連続式乳化機;商品名「マイクロフルイダイザー」(みずほ工業社製)、商品名「ナノマイザー」(ナノマイザー社製)、商品名「APVガウリン」(ガウリン社製)等の高圧乳化機;商品名「膜乳化機」(冷化工業社製)等の膜乳化機;商品名「バイブロミキサー」(冷化工業社製)等の振動式乳化機;商品名「超音波ホモジナイザー」(ブランソン社製)等の超音波乳化機;等を用いることができる。なお、乳化装置による乳化操作の条件は、特に限定されず、所望の分散状態になるように、処理温度、処理時間などを適宜選定すればよい。
 また、合成ポリイソプレンおよび/またはSISの重合体溶液を、乳化剤としてのロジン系界面活性剤の存在下、水中で乳化することにより得られた乳化液から、有機溶媒を除去することが望ましい。乳化液から有機溶媒を除去する方法としては、乳化液中における、有機溶媒(好ましくは脂肪族炭化水素溶媒)の含有量を500重量ppm以下とすることのできる方法が好ましく、たとえば、減圧蒸留、常圧蒸留、水蒸気蒸留、遠心分離等の方法を採用することができるが、これらの中でも、有機溶媒を適切かつ効率的に除去できるという観点より、減圧蒸留が好ましい。
 有機溶媒を除去した乳化液には、ラテックスの分野で通常配合される、pH調整剤、消泡剤、防腐剤、キレート化剤、酸素捕捉剤、分散剤、老化防止剤等の添加剤を配合してもよい。pH調整剤としては、たとえば、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属の水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属の炭酸塩;炭酸水素ナトリウムなどのアルカリ金属の炭酸水素塩;アンモニア;トリメチルアミン、トリエタノールアミンなどの有機アミン化合物;等が挙げられるが、アルカリ金属の水酸化物またはアンモニアが好ましい。
 また、有機溶媒を除去した後、必要に応じ、重合体ラテックス中の固形分濃度を上げるために、減圧蒸留、常圧蒸留、遠心分離、膜濃縮等の方法で濃縮操作を行うことが望ましく、特に、重合体ラテックス中の固形分濃度を上げるとともに、重合体ラテックス中のロジン系界面活性剤の含有量を調整することができるという点より、遠心分離を行うことが好ましい。
 遠心分離は、たとえば、連続遠心分離機や回分式遠心分離機を用いて行うことができるが、重合体ラテックスの生産性に優れるという観点より、連続遠心分離機を用いて行うことが好ましい。遠心分離により乳化液を濃縮する場合には、遠心分離後の分散液から、その一部である軽液として、重合体ラテックスを得ることができる。そのため、遠心分離によれば、軽液としての重合体ラテックスを取り除いた後の残液中に、除去したい所望量のロジン系界面活性剤が含まれるようにすることにより、最終的に得られる重合体ラテックス中におけるロジン系界面活性剤の含有量を適切に調整できるものである。
 なお、最終的に得られる重合体ラテックス中におけるロジン系界面活性剤の含有割合は、ラテックス中に含まれる合成ポリイソプレンおよび/またはSISの合計100重量部に対して、好ましくは1.5重量部超、より好ましくは1.7重量部超、さらに好ましくは1.8重量部以上、好ましくは10重量部以下、より好ましくは5重量部以下、さらに好ましくは3重量部以下である。
 遠心分離に用いる乳化液(遠心分離前の乳化液)の固形分濃度は、好ましくは5~11重量%、より好ましくは7~10.7重量%、さらに好ましくは9~10.5重量%である。遠心分離前の乳化液の固形分濃度を上記範囲とすることにより、遠心分離中に、合成ポリイソプレンやSIS等の凝集を防止することができ、これにより、乳化液の機械的安定性が向上するとともに、最終的に得られる重合体ラテックス中のロジン系界面活性剤の量を適切に所望の量に調整することができるため、好ましい。なお、遠心分離を行う際には、有機溶媒を除去した乳化液をそのまま用いてもよいし、あるいは、固形分濃度を調整した後に用いてもよい。
 また、遠心分離を行う際の条件としては、連続遠心分離機を使用する場合には、遠心加速度は、好ましくは5,000~11,000G、より好ましくは6,000~10,000G、さらに好ましくは7,000~9,500Gであり、連続遠心分離機への乳化液のフィード量は、好ましくは0.5~1.5m/時間、より好ましくは0.7~1.45m/時間、さらに好ましくは0.9~1.4m/時間であり、連続遠心分離機内での滞留時間が、好ましくは2.0~4.0分、より好ましくは2.5~3.0分、また、遠心分離機の背圧(ゲージ圧)は、好ましくは0.03~1.6MPaである。遠心分離の条件を上記の通りとすることにより、遠心分離中における、合成ポリイソプレンやSIS等の凝集を防止することができ、これにより、乳化液の機械的安定性が向上するとともに、最終的に得られる重合体ラテックス中のロジン系界面活性剤の量を適切に所望の量に調整することができるため、好ましい。
 重合体ラテックス中における、ロジン系界面活性剤の量は、主として、合成ポリイソプレンおよび/またはSISの重合体溶液を水中で乳化させる際に用いる、ロジン系界面活性剤の使用量、遠心分離前の乳化液の固形分濃度、および遠心分離を行う際の条件などを適宜組み合わせることにより調整することができる。たとえば、合成ポリイソプレンおよび/またはSISの重合体溶液を水中で乳化させる際に用いる、ロジン系界面活性剤の使用量が比較的少ない場合には、遠心分離により除去するロジン系界面活性剤の量が相対的に少なくなるため、連続遠心分離機における遠心加速度を上記した範囲よりも大きくしたり、連続遠心分離機への乳化液のフィード量を多くすることも可能となる場合があると考えられる。
 ラテックス組成物
 本発明のラテックス組成物の製造方法は、上述した本発明の重合体ラテックスに、加硫剤を添加する工程を備えるものである。
 加硫剤としては、たとえば、粉末硫黄、硫黄華、沈降硫黄、コロイド硫黄、表面処理硫黄、不溶性硫黄等の硫黄;塩化硫黄、二塩化硫黄、モルホリン・ジスルフィド、アルキルフェノール・ジスルフィド、N,N’-ジチオ-ビス(ヘキサヒドロ-2H-アゼピノン-2)、含りんポリスルフィド、高分子多硫化物、2-(4’-モルホリノジチオ)ベンゾチアゾール等の硫黄含有化合物が挙げられる。これらのなかでも、硫黄が好ましく使用できる。加硫剤は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 加硫剤の含有量は、特に限定されないが、ラテックス中に含まれる合成ポリイソプレンおよびSISの合計100重量部に対して、好ましくは0.1~10重量部、より好ましくは0.2~3重量部である。加硫剤の含有量を上記範囲とすることにより、得られるディップ成形体の引張強度をより高めることができる。
 また、ラテックス組成物は、さらに加硫促進剤を含有することが好ましい。
 加硫促進剤としては、ディップ成形を得る方法において通常用いられるものが使用でき、たとえば、ジエチルジチオカルバミン酸、ジブチルジチオカルバミン酸、ジ-2-エチルヘキシルジチオカルバミン酸、ジシクロヘキシルジチオカルバミン酸、ジフェニルジチオカルバミン酸、ジベンジルジチオカルバミン酸などのジチオカルバミン酸類およびそれらの亜鉛塩;2-メルカプトベンゾチアゾール、2-メルカプトベンゾチアゾール亜鉛、2-メルカプトチアゾリン、ジベンゾチアジル・ジスルフィド、2-(2,4-ジニトロフェニルチオ)ベンゾチアゾール、2-(N,N-ジエチルチオ・カルバイルチオ)ベンゾチアゾール、2-(2,6-ジメチル-4-モルホリノチオ)ベンゾチアゾール、2-(4′-モルホリノ・ジチオ)ベンゾチアゾール、4-モルホニリル-2-ベンゾチアジル・ジスルフィド、1,3-ビス(2-ベンゾチアジル・メルカプトメチル)ユリアなどが挙げられるが、ジエチルジチオカルバミン酸亜鉛、2ジブチルジチオカルバミン酸亜鉛、2-メルカプトベンゾチアゾール亜鉛が好ましい。加硫促進剤は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 加硫促進剤の含有量は、ラテックス中に含まれる合成ポリイソプレンおよびSISの合計100重量部に対して、好ましくは0.05~5重量部であり、より好ましくは0.1~2重量部である。加硫促進剤の含有量を上記範囲とすることにより、得られるディップ成形体の引張強度をより高めることができる。
 また、ラテックス組成物は、さらに老化防止剤を含有していることが好ましい。老化防止剤としては、2,6-ジ-4-メチルフェノール、2,6-ジ-t-ブチルフェノール、ブチルヒドロキシアニソール、2,6-ジ-t-ブチル-α-ジメチルアミノ-p-クレゾール、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、スチレン化フェノール、2,2’-メチレン-ビス(6-α-メチル-ベンジル-p-クレゾール)、4,4’-メチレンビス(2,6-ジ-t-ブチルフェノール)、2,2’-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、アルキル化ビスフェノール、p-クレゾールとジシクロペンタジエンのブチル化反応生成物、などの硫黄原子を含有しないフェノール系老化防止剤;2,2’-チオビス-(4-メチル-6-t-ブチルフェノール)、4,4’-チオビス-(6-t-ブチル-o-クレゾール)、2,6-ジ-t-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノールなどのチオビスフェノール系老化防止剤;トリス(ノニルフェニル)ホスファイト、ジフェニルイソデシルホスファイト、テトラフェニルジプロピレングリコール・ジホスファイトなどの亜燐酸エステル系老化防止剤;チオジプロピオン酸ジラウリルなどの硫黄エステル系老化防止剤;フェニル-α-ナフチルアミン、フェニル-β-ナフチルアミン、p-(p-トルエンスルホニルアミド)-ジフェニルアミン、4,4’―(α,α-ジメチルベンジル)ジフェニルアミン、N,N-ジフェニル-p-フェニレンジアミン、N-イソプロピル-N’-フェニル-p-フェニレンジアミン、ブチルアルデヒド-アニリン縮合物などのアミン系老化防止剤;6-エトキシ-2,2,4-トリメチル-1,2-ジヒドロキノリンなどのキノリン系老化防止剤;2,5-ジ-(t-アミル)ハイドロキノンなどのハイドロキノン系老化防止剤;などが挙げられる。これらの老化防止剤は、1種単独で、または2種以上を併用することができる。これらのなかでも、加硫反応を阻害する作用が小さく、酸化防止効果が大きいいため、フェノール系老化防止剤が好ましく、硫黄原子を含有しないフェノール系老化防止剤がより好ましい。
 老化防止剤の含有量は、ラテックス中に含まれる合成ポリイソプレンおよびSISの合計100重量部に対して、好ましくは0.1~10重量部、より好ましくは1~7重量部、さらに好ましくは3~6重量部である。老化防止剤の含有量をこの範囲とすることにより、加硫時における加硫反応を阻害することなく、十分な酸化防止効果を得ることができるため、好ましい。
 また、ラテックス組成物は、さらに酸化亜鉛を含有することが好ましい。
 酸化亜鉛の含有量は、特に限定されないが、ラテックス中に含まれる合成ポリイソプレンおよびSISの合計100重量部に対して、好ましくは0.1~5重量部、より好ましくは0.2~2重量部である。酸化亜鉛の含有量を上記範囲とすることにより、乳化安定性を良好なものとしながら、得られるディップ成形体の引張強度をより高めることができる。
 ラテックス組成物には、さらに、分散剤;カーボンブラック、シリカ、タルク等の補強剤;炭酸カルシウム、クレー等の充填剤;紫外線吸収剤;可塑剤;等の配合剤を必要に応じて配合することができる。
 本発明のラテックス組成物の調製方法は、特に限定されないが、たとえば、ボールミル、ニーダー、ディスパー等の分散機を用いて、重合体ラテックスに、加硫剤および/または加硫促進剤、ならびに、必要に応じて配合される老化防止剤などの各種配合剤を混合する方法や、このような分散機を用いて、重合体ラテックス以外の配合成分の水性分散液を調製した後、該水性分散液を重合体ラテックスに混合する方法などが挙げられる。
 ラテックス組成物は、pHが7以上であることが好ましく、pHが7~13の範囲であることがより好ましく、pHが8~12の範囲であることがさらに好ましい。また、ラテックス組成物の固形分濃度は、15~65重量%の範囲にあることが好ましい。
 ラテックス組成物は、得られるディップ成形体の機械的特性をより高めるという観点より、ディップ成形に供する前に、熟成(前架橋)させることが好ましい。前架橋する時間は、特に限定されず、前架橋の温度にも依存するが、好ましくは1~14日間であり、より好ましくは1~7日間である。なお、前架橋の温度は、好ましくは20~40℃である。
 そして、前架橋した後、ディップ成形に供されるまで、好ましくは10~30℃の温度で貯蔵することが好ましい。高温のまま貯蔵すると、得られるディップ成形体の引張強度が低下する場合がある。
 ディップ成形体
 本発明のディップ成形体の製造方法は、上記のラテックス組成物をディップ成形する工程を備える。ディップ成形は、ラテックス組成物に型を浸漬し、型の表面に当該組成物を沈着させ、次に型を当該組成物から引き上げ、その後、型の表面に沈着した当該組成物を乾燥させる方法である。なお、ラテックス組成物に浸漬される前の型は予熱しておいてもよい。また、型をラテックス組成物に浸漬する前、または、型をラテックス組成物から引き上げた後、必要に応じて凝固剤を使用できる。
 凝固剤の使用方法の具体例としては、ラテックス組成物に浸漬する前の型を凝固剤の溶液に浸漬して型に凝固剤を付着させる方法(アノード凝着浸漬法)、ラテックス組成物を沈着させた型を凝固剤溶液に浸漬する方法(ティーグ凝着浸漬法)などがあるが、厚みムラの少ないディップ成形体が得られる点で、アノード凝着浸漬法が好ましい。
 凝固剤の具体例としては、塩化バリウム、塩化カルシウム、塩化マグネシウム、塩化亜鉛、塩化アルミニウムなどのハロゲン化金属;硝酸バリウム、硝酸カルシウム、硝酸亜鉛などの硝酸塩;酢酸バリウム、酢酸カルシウム、酢酸亜鉛など酢酸塩;硫酸カルシウム、硫酸マグネシウム、硫酸アルミニウムなどの硫酸塩;などの水溶性多価金属塩である。なかでも、カルシウム塩が好ましく、硝酸カルシウムがより好ましい。これらの水溶性多価金属塩は、1種単独で、または2種以上を併用することができる。
 凝固剤は、好ましくは水溶液の状態で使用する。この水溶液は、さらにメタノール、エタノールなどの水溶性有機溶媒やノニオン性界面活性剤を含有していてもよい。凝固剤の濃度は、水溶性多価金属塩の種類によっても異なるが、好ましくは5~50重量%、より好ましくは10~30重量%である。
 型をラテックス組成物から引き上げた後、通常、加熱して型上に形成された沈着物を乾燥させる。乾燥条件は適宜選択すればよい。
 次いで、加熱して、型上に形成された沈着物を架橋させる。
 架橋時の加熱条件は、特に限定されないが、好ましくは60~150℃、より好ましくは100~130℃の加熱温度で、好ましくは10~120分の加熱時間である。
 加熱の方法は、特に限定されないが、オーブンの中で温風で加熱する方法、赤外線を照射して加熱する方法などがある。 
 また、ラテックス組成物を沈着させた型を加熱する前あるいは加熱した後に、水溶性不純物(たとえば、余剰の界面活性剤や凝固剤)を除去するために、型を水または温水で洗浄することが好ましい。用いる温水としては好ましくは40℃~80℃であり、より好ましくは50℃~70℃である。
 架橋後のディップ成形体は、型から脱着される。脱着方法の具体例は、手で型から剥がす方法、水圧または圧縮空気圧力により剥がす方法等が挙げられる。架橋途中のディップ成形体が脱着に対する十分な強度を有していれば、架橋途中で脱着し、引き続き、その後の架橋を継続してもよい。
 ディップ成形体は、上記本発明の製造方法により得られるラテックス組成物を用いて得られるものであるため、引張強度に優れるものであり、手袋として特に好適に用いることができる。ディップ成形体が手袋である場合、ディップ成形体同士の接触面における密着を防止し、着脱の際の滑りをよくするために、タルク、炭酸カルシウムなどの無機微粒子または澱粉粒子などの有機微粒子を手袋表面に散布したり、微粒子を含有するエラストマー層を手袋表面に形成したり、手袋の表面層を塩素化したりしてもよい。
 また、ディップ成形体は、上記手袋の他にも、哺乳瓶用乳首、スポイト、チューブ、水枕、バルーンサック、カテーテル、コンドームなどの医療用品;風船、人形、ボールなどの玩具;加圧成形用バック、ガス貯蔵用バックなどの工業用品;指サックなどにも用いることができる。
 包装構造体
 本発明の包装構造体の製造方法は、上記の重合体ラテックスを第1のシート基材および/または第2のシート基材上に塗布して塗膜を形成し、該塗膜により第1のシート基材の少なくとも一部と第2のシート基材の少なくとも一部とを接着積層する工程を備える。本発明の製造方法により得られる包装構造体は、重合体ラテックスを塗布した第1のシート基材および第2のシート基材を接着積層してなり、被包装物を収容可能な構造を示す。具体的には、包装構造体においては、第1のシート基材および第2のシート基材は、重合体ラテックスが塗布された面(ラテックス塗布面)が対向するようにして、必要に応じて被包装物を挟み、第1のシート基材および第2のシート基材のラテックス塗布面同士が互いに接触した状態で、押圧することにより、第1のシート基材と第2のシート基材とが互いに接着し、これにより、被包装物を包装可能な構造となっている。被包装物としては、特に限定されないが、たとえば、絆創膏等の医療品のように、滅菌をすることが望まれる各種被包装物が挙げられる。第1のシート基材および第2のシート基材としては、特に限定されないが、たとえば、グラシン紙等の紙材、高密度ポリエチレン不織布、ポリオレフィンフィルム、ポリエステルフィルム等が挙げられ、これらのなかでも、取り扱い性が優れている点(適度な折れ曲がり易さを有している点)および安価であるという点から、紙材が好ましく、グラシン紙が特に好ましい。
 以下に、実施例および比較例を挙げて、本発明についてより具体的に説明するが、本発明はこの実施例に限られるものではない。以下において、特記しない限り、「部」は重量基準である。物性および特性の試験または評価方法は以下のとおりである。
 重量平均分子量(Mw)
 重合体溶液に含まれる、合成ポリイソプレンの固形分濃度が0.1重量%となるように、テトラヒドロフランで希釈し、この溶液について、ゲル・パーミーエーション・クロマトグラフィー分析を行い、標準ポリスチレン換算の重量平均分子量(Mw)を算出した。
 固形分濃度
 アルミ皿(重量:X1)に試料2gを精秤し(重量:X2)、これを105℃の熱風乾燥器内で2時間乾燥させた。次いで、デシケーター内で冷却した後、アルミ皿ごと重量を測定し(重量:X3)、下記の計算式にしたがって、固形分濃度を算出した。
 固形分濃度(重量%)=(X3-X1)×100/X2
 不均化ロジン酸樹脂中の各樹脂酸の含有割合
 不均化ロジン酸樹脂を、ジアゾメタン法によりメチルエステル体の誘導体とした後、誘導体について、ASTM D803に記載されている「Rosin acids,%」の分析方法にしたがい、下記条件にてガスクロマトグラフィー分析を行うことにより、不均化ロジン酸樹脂中における、アビエチン酸、ネオアビエチン酸、パラストリン酸、デヒドロアビエチン酸、およびその他の成分の含有割合(単位:重量%)を、それぞれ測定した。
 分析装置:ガスクロマトグラフ(型式「GC-15A」、島津製作所社製)
 カラム :キャピラリーカラム URBON HR-SS-10、
      FS-bonded、 0.25mm×50m
      液相:シアノプロピルシリコン
 検出器 :FID
 測定条件:オーブン温度195℃、インジェクション温度250℃、検出温度250℃
 キャリアーガス:He
 合成ポリイソプレンラテックス中のロジン系界面活性剤の含有割合
 合成ポリイソプレンラテックス0.1gに水2mlを加え、アセトニトリルで10mlに希釈した。得られた液体をよく振とうさせ、ゴム分を凝固させた。その後水層を0.2μmのディスクフィルタで濾過した。この液体を高速液体クロマトグラフィーで分析し、合成ポリイソプレン100部に対する、ロジン系界面活性剤の含有割合(単位:重量部)を算出した。
 ディップ成形体の引張強度
 ASTM D412に基づいて、ディップ成形体を、ダンベル(商品名「スーパーダンベル(型式:SDMK-100C)」、ダンベル社製)で打ち抜き、引張強度測定用試験片を作製した。当該試験片をテンシロン万能試験機(商品名「RTG-1210」、オリエンテック社製)で引張速度500mm/minで引っ張り、破断直前の引張強度(単位:MPa)を測定した。
 ディップ成形体の引裂強度
 ASTM D624-00に基づいて、ディップ成形体を、23℃、相対湿度50%の恒温恒湿室で24時間以上放置した後、ダンベル(商品名「Die C」、ダンベル社製)で打ち抜き、引裂強度測定用の試験片を作製した。当該試験片をテンシロン万能試験機(商品名「RTG-1210」、A&D社製)で引張速度500mm/minで引っ張り、引裂強度(単位:N/mm)を測定した。
 製造例1(不均化ロジン酸樹脂(A-1)の製造)
 冷却管、窒素導入管、活栓および撹拌装置を備えた容量500mlの四つ口フラスコに、170℃として溶融させたトールロジン350部(アビエチン酸の含有割合が43重量%、ネオアビエチン酸の含有割合が22重量%、パラストリン酸の含有割合が16重量%、デヒドロアビエチン酸の含有割合が10重量%、その他の成分の含有割合が9重量%、酸価169.0mgKOH/g)を仕込み、窒素ガスで置換後、不均化触媒として、パラジウム-カーボン(パラジウム5重量%)0.25部を加え、温度270℃まで加熱し、反応温度270℃、反応時間4時間の条件で、不均化反応を行った。次いで、不均化反応によって得られた反応液を、200℃まで冷却し、濾過器にて不均化触媒を除去することで、不均化ロジン酸樹脂(A-1)を得た。得られた不均化ロジン酸樹脂(A-1)について、上記方法にしたがって、不均化ロジン酸樹脂中の各樹脂酸の含有割合を測定したところ、アビエチン酸、ネオアビエチン酸およびパラストリン酸は検出されず、デヒドロアビエチン酸の含有割合が90重量%、その他の成分の含有割合が10重量%であった。結果を表1に示す。
 製造例2(不均化ロジン酸樹脂(A-2)の製造)
 不均化反応の反応時間を、4時間から3時間に変更した以外は、製造例1と同様にして、不均化ロジン酸樹脂(A-2)を得た。得られた不均化ロジン酸樹脂(A-2)について、上記方法にしたがって、不均化ロジン酸樹脂中の各樹脂酸の含有割合を測定したところ、ネオアビエチン酸およびパラストリン酸は検出されず、アビエチン酸の含有割合が1重量%、デヒドロアビエチン酸の含有割合が89重量%、その他の成分の含有割合が10重量%であった。結果を表1に示す。
 製造例3(不均化ロジン酸樹脂(A-3)の製造)
 不均化反応の反応時間を、4時間から2時間に変更した以外は、製造例1と同様にして、不均化ロジン酸樹脂(A-3)を得た。得られた不均化ロジン酸樹脂(A-3)について、上記方法にしたがって、不均化ロジン酸樹脂中の各樹脂酸の含有割合を測定したところ、アビエチン酸の含有割合が2重量%、ネオアビエチン酸の含有割合が1重量%、パラストリン酸の含有割合が1重量%、デヒドロアビエチン酸の含有割合が85重量%、その他の成分の含有割合が11重量%であった。結果を表1に示す。
 製造例4(不均化ロジン酸樹脂(A’-4)の製造)
 不均化反応の反応時間を、4時間から30分間に変更した以外は、製造例1と同様にして、不均化ロジン酸樹脂(A’-4)を得た。得られた不均化ロジン酸樹脂(A’-4)について、上記方法にしたがって、不均化ロジン酸樹脂中の各樹脂酸の含有割合を測定したところ、アビエチン酸の含有割合が10重量%、ネオアビエチン酸の含有割合が5重量%、パラストリン酸の含有割合が5重量%、デヒドロアビエチン酸の含有割合が67重量%、その他の成分の含有割合が13重量%であった。結果を表1に示す。
 製造例5(不均化ロジン酸樹脂(A’-5)の製造)
 不均化反応の反応温度を270℃から200℃に、不均化反応の反応時間を4時間から1分間に、それぞれ変更した以外は、製造例1と同様にして、不均化ロジン酸樹脂(A’-5)を得た。得られた不均化ロジン酸樹脂(A’-5)について、上記方法にしたがって、不均化ロジン酸樹脂中の各樹脂酸の含有割合を測定したところ、アビエチン酸の含有割合が40重量%、ネオアビエチン酸の含有割合が20重量%、パラストリン酸の含有割合が15重量%、デヒドロアビエチン酸の含有割合が13重量%、その他の成分の含有割合が12重量%であった。結果を表1に示す。
 実施例1
(合成ポリイソプレンラテックスの製造)
 重量平均分子量が1,300,000である合成ポリイソプレン(商品名「NIPOL IR2200L」、日本ゼオン社製、イソプレンの単独重合体、シス結合単位量98%)をシクロヘキサンと混合し、攪拌しながら温度を60℃に昇温して溶解させることで、B形粘度計で測定した粘度が12,000mPa・s、固形分濃度が8重量%である合成ポリイソプレンのシクロヘキサン溶液(a)を得た。
 一方、製造例1で得られた不均化ロジン酸樹脂(A-1)を、水酸化カリウム水溶液で中和して、ロジン系界面活性剤として、濃度30重量%、pH10.5のロジン酸カリウム水溶液(b)を得た。
 次いで、上記シクロヘキサン溶液(a)と、上記ロジン酸カリウム水溶液(b)とを、重量比で1:1.5となるように(合成ポリイソプレン100部に対して、ロジンのカリウム塩が2部となるように)、商品名「マルチラインミキサーMS26-MMR-5.5L」(佐竹化学機械工業株式会社製)を用いて混合し、続いて、商品名「マイルダーMDN310」(太平洋機工株式会社製)を用いて回転速度4100rpmで混合および乳化して、乳化液(c)を得た。なお、その際、シクロヘキサン溶液(a)とロジン酸カリウム水溶液(b)の合計のフィード流速は2,000kg/hr、温度は60℃、背圧(ゲージ圧)は0.5MPaとした。
 次いで、乳化液(c)を、-0.01~-0.09MPa(ゲージ圧)の減圧下で80℃に加温してシクロヘキサンを留去し、合成ポリイソプレンの水分散液(d)を得た。その際、消泡剤(商品名「SM5515」、東レ・ダウコーニング社製)を、乳化液(c)中の合成ポリイソプレンに対して300重量ppmの量になるよう、噴霧しながら連続添加して、水分散液(d)を得た。なお、シクロヘキサンを留去する際には、乳化液(c)がタンクの容積の70体積%以下になるように調整し、かつ、攪拌翼として3段の傾斜パドル翼を用い、回転速度60rpmでゆっくり攪拌を実施した。
 そして、得られた水分散液(d)を、連続遠心分離機(商品名「SRG510」、アルファラバル社製)を用いて、4,000~5,000Gで遠心分離し、軽液としての固形分濃度56重量%の合成ポリイソプレンラテックス(e)を得た。なお、遠心分離の際の条件は、遠心分離前の水分散液(d)の固形分濃度を10重量%、連続遠心分離時の流速を1300kg/hr、遠心分離機の背圧(ゲージ圧)を1.5MPaとした。得られた合成ポリイソプレンラテックス(e)は、固形分濃度が56重量%、体積平均粒子径が1.0μm、pHが10、B形粘度計で測定した粘度が120mPa・s、上記ロジン酸カリウム水溶液(b)に由来する不均化ロジン酸樹脂(A-1)の含有割合が合成ポリイソプレン100部あたり3.0部であった。また、合成ポリイソプレンラテックス(e)中の凝集物は観察されず、合成ポリイソプレンラテックス(e)中の残留金属量(アルミニウム原子とチタン原子の合計含有量)は、250重量ppmであった。
(ラテックス組成物の調製)
 次いで、合成ポリイソプレンラテックス(e)中の合成ポリイソプレン100部に対して、1.0部のドデシルベンゼンスルホン酸ナトリウム添加した後、蒸留水にて固形分濃度40重量%に希釈した。さらに、合成ポリイソプレンラテックス(e)中の合成ポリイソプレン100部に対して、それぞれ固形分換算で、有効成分50%の蒸留水分散体としてコロイド硫黄1.5部、酸化亜鉛1.5部、ジエチルジチオカルバミン酸亜鉛0.3部、ジブチルジチオカルバミン酸亜鉛0.5部、2-メルカプトベンゾチアゾール亜鉛0.7部となるように、各配合剤の水分散液を添加した。その後、合成ポリイソプレンラテックス(e)中の合成ポリイソプレン100部に対して、老化防止剤(商品名「Wingstay L」、グッドイヤー社製)の水分散体を有効成分で2部添加して、ラテックス組成物(f)を得た。その後、得られたラテックス組成物(f)を、攪拌機で撹拌しながら設定温度30±0.5℃の恒温水槽にて48時間熟成した。
(ディップ成形体の製造)
 ラテックス組成物(f)を、あらかじめ硝酸カルシウムを塗布したセラミック製モールドにてディップ成形した後、60±1.0℃の蒸留水で5分間洗浄し、120℃のオーブンで25分間加熱して加硫することで、フィルムで被覆されたセラミック製モールドを得た。その後、得られたフィルムにタルクを塗布し、フィルム同士の融着を防いだ状態で、フィルムをセラミック製モールドから離型することで、ディップ成形体を得た。そして、得られたディップ成形体を用いて、上記方法にしたがって、引張強度および引裂強度の各測定を行った。結果を表1に示す。
 実施例2
 不均化ロジン酸樹脂(A-1)に代えて、製造例2で得られた不均化ロジン酸樹脂(A-2)を使用した以外は、実施例1と同様にして、ラテックス組成物の調製およびディップ成形体の製造を行い、同様にして評価を行った。結果を表1に示す。
 実施例3
 不均化ロジン酸樹脂(A-1)に代えて、製造例3で得られた不均化ロジン酸樹脂(A-3)を使用した以外は、実施例1と同様にして、ラテックス組成物の調製およびディップ成形体の製造を行い、同様にして評価を行った。結果を表1に示す。
 比較例1
 不均化ロジン酸樹脂(A-1)に代えて、製造例4で得られた不均化ロジン酸樹脂(A’-4)を使用した以外は、実施例1と同様にして、ラテックス組成物の調製およびディップ成形体の製造を行い、同様にして評価を行った。結果を表1に示す。
 比較例2
 不均化ロジン酸樹脂(A-1)に代えて、製造例5で得られた不均化ロジン酸樹脂(A’-5)を使用した以外は、実施例1と同様にして、ラテックス組成物の調製およびディップ成形体の製造を行い、同様にして評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、合成ポリイソプレンの重合体溶液を、アビエチン酸、ネオアビエチン酸およびパラストリン酸、ならびにこれらの塩の合計の含有割合が5重量%以下であるロジン系界面活性剤の存在下に、水中で乳化させることで、乳化液を得て、重合体ラテックスを製造した場合には、この重合体ラテックスを用いて得られるディップ成形体は、引張強度および引裂強度に優れるものであった(実施例1~3)。
 一方、ロジン系界面活性剤として、アビエチン酸、ネオアビエチン酸およびパラストリン酸、ならびにこれらの塩の合計の含有割合が5重量%超えるものを用いた場合には、得られるディップ成形体は、引張強度および引裂強度に劣るものであった(比較例1,2)。

Claims (8)

  1.  合成ポリイソプレンおよび/またはスチレン-イソプレン-スチレンブロック共重合体の重合体溶液を、ロジンおよび/またはロジンの金属塩の存在下に、水中で乳化させることで、乳化液を得る工程を備え、
     前記ロジンおよび/または前記ロジンの金属塩として、アビエチン酸、ネオアビエチン酸およびパラストリン酸、ならびにこれらの塩の合計の含有割合が5重量%以下であるものを用いる重合体ラテックスの製造方法。
  2.  前記合成ポリイソプレンおよび/または前記スチレン-イソプレン-スチレンブロック共重合体として、アニオン重合により重合して得られたものを用いる請求項1に記載の重合体ラテックスの製造方法。
  3.  アニオン重合により重合することにより前記合成ポリイソプレンおよび/または前記スチレン-イソプレン-スチレンブロック共重合体の重合体溶液を得て、前記重合体溶液を、凝固を経ずに、前記ロジンおよび/またはロジンの金属塩の水溶液を用いて直接乳化して前記乳化液を得る請求項2に記載の重合体ラテックスの製造方法。
  4.  前記重合体ラテックス中における前記ロジンおよび/またはロジンの金属塩の合計の含有割合が、前記重合体ラテックス中に含まれる前記合成ポリイソプレンおよび/または前記スチレン-イソプレン-スチレンブロック共重合体の合計100重量部に対して、1.5重量部超である請求項1~3のいずれかに記載の重合体ラテックスの製造方法。
  5.  前記ロジンおよび/または前記ロジンの金属塩として、デヒドロアビエチン酸の含有割合が70~100重量%であるものを用いる請求項1~4のいずれかに記載の重合体ラテックスの製造方法。
  6.  請求項1~5のいずれかに記載の製造方法により得られた重合体ラテックスに、加硫剤を添加する工程を備えるラテックス組成物の製造方法。
  7.  請求項6に記載の製造方法により得られたラテックス組成物をディップ成形する工程を備えるディップ成形体の製造方法。
  8.  請求項1~5のいずれかに記載の製造方法により得られた重合体ラテックスを第1のシート基材および/または第2のシート基材上に塗布して塗膜を形成し、前記塗膜により第1のシート基材の少なくとも一部と第2のシート基材の少なくとも一部とを接着積層する、前記第1のシート基材と前記第2のシート基材との間に被包装物を収容可能な包装構造体の製造方法。
PCT/JP2017/039741 2016-11-30 2017-11-02 重合体ラテックスの製造方法 WO2018100969A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17876637.4A EP3549973A4 (en) 2016-11-30 2017-11-02 POLYMER LATEX PRODUCTION PROCESS
CN201780067804.5A CN109890875A (zh) 2016-11-30 2017-11-02 聚合物胶乳的制备方法
JP2018553733A JP7036028B2 (ja) 2016-11-30 2017-11-02 重合体ラテックスの製造方法
BR112019011002-0A BR112019011002B1 (pt) 2016-11-30 2017-11-02 Métodos para produzir um látex de polímero, uma composição de látex, um artigo moldado por imersão e uma estrutura de embalagem
US16/465,226 US11174376B2 (en) 2016-11-30 2017-11-02 Method for producing polymer latex

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-232388 2016-11-30
JP2016232388 2016-11-30

Publications (1)

Publication Number Publication Date
WO2018100969A1 true WO2018100969A1 (ja) 2018-06-07

Family

ID=62242045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039741 WO2018100969A1 (ja) 2016-11-30 2017-11-02 重合体ラテックスの製造方法

Country Status (6)

Country Link
US (1) US11174376B2 (ja)
EP (1) EP3549973A4 (ja)
JP (1) JP7036028B2 (ja)
CN (1) CN109890875A (ja)
BR (1) BR112019011002B1 (ja)
WO (1) WO2018100969A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026782A1 (ja) * 2021-08-26 2023-03-02 日本ゼオン株式会社 ラテックス組成物およびディップ成形体

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495360B1 (ja) * 1969-05-23 1974-02-06
JP2001270992A (ja) * 2000-03-27 2001-10-02 Harima Chem Inc 不均化ロジン組成物および乳化剤
JP2003026742A (ja) * 2001-07-16 2003-01-29 Nippon A & L Kk グラフト共重合体ラテックスの製造方法
JP2006143826A (ja) * 2004-11-18 2006-06-08 Tosoh Corp クロロプレンゴム及びその製造方法、並びにクロロプレンゴム組成物
JP2006219609A (ja) * 2005-02-10 2006-08-24 Jsr Corp ブチルゴムの水系乳化分散液及びその製造方法
WO2010110130A1 (ja) * 2009-03-24 2010-09-30 リンテック株式会社 絆創膏用包装材および絆創膏包装体
WO2014181714A1 (ja) * 2013-05-10 2014-11-13 Jsr株式会社 医療用品成形用ポリイソプレンラテックス、ディップ成形用組成物、医療用品およびその成形方法
JP2015193685A (ja) 2014-03-31 2015-11-05 日本ゼオン株式会社 合成イソプレン重合体ラテックスの製造方法、合成イソプレン重合体ラテックス、ディップ成形用組成物およびディップ成形体
JP2016138212A (ja) * 2015-01-29 2016-08-04 日本ゼオン株式会社 ディップ成形用合成イソプレン重合体ラテックス、ディップ成形用組成物およびディップ成形体

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495360B1 (ja) * 1969-05-23 1974-02-06
JP2001270992A (ja) * 2000-03-27 2001-10-02 Harima Chem Inc 不均化ロジン組成物および乳化剤
JP2003026742A (ja) * 2001-07-16 2003-01-29 Nippon A & L Kk グラフト共重合体ラテックスの製造方法
JP2006143826A (ja) * 2004-11-18 2006-06-08 Tosoh Corp クロロプレンゴム及びその製造方法、並びにクロロプレンゴム組成物
JP2006219609A (ja) * 2005-02-10 2006-08-24 Jsr Corp ブチルゴムの水系乳化分散液及びその製造方法
WO2010110130A1 (ja) * 2009-03-24 2010-09-30 リンテック株式会社 絆創膏用包装材および絆創膏包装体
WO2014181714A1 (ja) * 2013-05-10 2014-11-13 Jsr株式会社 医療用品成形用ポリイソプレンラテックス、ディップ成形用組成物、医療用品およびその成形方法
JP2015193685A (ja) 2014-03-31 2015-11-05 日本ゼオン株式会社 合成イソプレン重合体ラテックスの製造方法、合成イソプレン重合体ラテックス、ディップ成形用組成物およびディップ成形体
JP2016138212A (ja) * 2015-01-29 2016-08-04 日本ゼオン株式会社 ディップ成形用合成イソプレン重合体ラテックス、ディップ成形用組成物およびディップ成形体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3549973A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026782A1 (ja) * 2021-08-26 2023-03-02 日本ゼオン株式会社 ラテックス組成物およびディップ成形体

Also Published As

Publication number Publication date
US20200010651A1 (en) 2020-01-09
EP3549973A1 (en) 2019-10-09
JPWO2018100969A1 (ja) 2019-10-17
BR112019011002B1 (pt) 2023-03-07
EP3549973A4 (en) 2020-08-05
JP7036028B2 (ja) 2022-03-15
BR112019011002A2 (pt) 2019-10-08
US11174376B2 (en) 2021-11-16
CN109890875A (zh) 2019-06-14

Similar Documents

Publication Publication Date Title
EP2799483B1 (en) Latex, composition for dip molding and dip molded body
JP6816728B2 (ja) 重合体ラテックスの製造方法
JP5488137B2 (ja) ディップ成形用組成物及びディップ成形体
JP6879218B2 (ja) 重合体ラテックスの製造方法
WO2010098008A1 (ja) ディップ成形用組成物及びディップ成形体
JPWO2019003744A1 (ja) 膜成形体
EP3424984A1 (en) Method for manufacturing polymer latex
JP6729549B2 (ja) ディップ成形用合成イソプレン重合体ラテックスの製造方法、ディップ成形用組成物の製造方法およびディップ成形体の製造方法
JP7036028B2 (ja) 重合体ラテックスの製造方法
JP2016160365A (ja) 合成イソプレン重合体ラテックスの製造方法、合成イソプレン重合体ラテックス、ディップ成形用組成物、およびディップ成形体
JP2016150946A (ja) ディップ成形用合成イソプレン重合体ラテックス、ディップ成形用組成物およびディップ成形体
WO2021171994A1 (ja) ディップ成形体の製造方法
JP6984610B2 (ja) 合成ポリイソプレンラテックス
JP7156030B2 (ja) 合成ポリイソプレンラテックス
JP2018053173A (ja) ラテックス組成物
WO2019171981A1 (ja) 酸変性共役ジエン系重合体のラテックス、およびその製造方法
JP6984609B2 (ja) 合成ポリイソプレンラテックスの製造方法
WO2021166724A1 (ja) ラテックス組成物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876637

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018553733

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019011002

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017876637

Country of ref document: EP

Effective date: 20190701

ENP Entry into the national phase

Ref document number: 112019011002

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190529