WO2018100840A1 - 弾性波装置及びその製造方法、高周波フロントエンド回路、並びに通信装置 - Google Patents

弾性波装置及びその製造方法、高周波フロントエンド回路、並びに通信装置 Download PDF

Info

Publication number
WO2018100840A1
WO2018100840A1 PCT/JP2017/033053 JP2017033053W WO2018100840A1 WO 2018100840 A1 WO2018100840 A1 WO 2018100840A1 JP 2017033053 W JP2017033053 W JP 2017033053W WO 2018100840 A1 WO2018100840 A1 WO 2018100840A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric body
wiring electrode
electrode
wave device
wiring
Prior art date
Application number
PCT/JP2017/033053
Other languages
English (en)
French (fr)
Inventor
坂井 亮介
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018100840A1 publication Critical patent/WO2018100840A1/ja
Priority to US16/400,110 priority Critical patent/US11631799B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/875Further connection or lead arrangements, e.g. flexible wiring boards, terminal pins
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02992Details of bus bars, contact pads or other electrical connections for finger electrodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02228Guided bulk acoustic wave devices or Lamb wave devices having interdigital transducers situated in parallel planes on either side of a piezoelectric layer
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6406Filters characterised by a particular frequency characteristic
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters

Definitions

  • the present invention relates to an acoustic wave device used for a resonator, a high-frequency filter, and the like, a method for manufacturing the acoustic wave device, a high-frequency front-end circuit using the acoustic wave device, and a communication device.
  • Patent Document 1 discloses a method of obtaining an elastic wave device by dividing a mother piezoelectric substrate having a plurality of elastic wave chips formed along a dividing line.
  • laser light is irradiated along the dividing line.
  • scanning is performed so that at least a part of the metal layer that is stretched in the extending direction of the dividing line is not irradiated with laser light.
  • An object of the present invention is to provide an acoustic wave device, a method of manufacturing the acoustic wave device, a high-frequency front-end circuit using the acoustic wave device, and a communication device that are less likely to cause burrs due to metal layers such as wiring electrodes. There is.
  • the elastic wave device includes a piezoelectric body having a main surface, an IDT electrode provided on the main surface of the piezoelectric body, and the main surface of the piezoelectric body, A wiring electrode electrically connected to the IDT electrode, the wiring electrode having a portion reaching the edge of the main surface of the piezoelectric body, and the width of the wiring electrode at the edge However, it is narrower than the width of the wiring electrode in the portion that is not the edge.
  • the radius of curvature of the wiring electrode at the edge is 3 ⁇ m or less. In this case, generation
  • a high sound speed member in which a sound speed of a propagating bulk wave is higher than a sound speed of an elastic wave propagating through the piezoelectric body, and a laminate on the high sound speed member And a low sound velocity film in which the acoustic velocity of the propagating bulk wave is lower than the acoustic velocity of the elastic wave propagating through the piezoelectric body, and the piezoelectric body is provided on the low acoustic velocity film.
  • the thickness of the piezoelectric body is 3.5 ⁇ or less. In this case, the energy of the elastic wave can be confined more efficiently.
  • the method of manufacturing an acoustic wave device includes a step of forming a plurality of IDT electrodes and wiring electrodes electrically connected to the IDT electrodes on a first main surface of a mother piezoelectric body. And dividing the mother piezoelectric body provided with the plurality of IDT electrodes and the wiring electrodes into a plurality of pieces according to a dividing line to obtain an acoustic wave device having the IDT electrodes and the wiring electrodes. And when forming the wiring electrode, the wiring electrode is formed such that the wiring electrode has a portion crossing the dividing line, and the width of the wiring electrode on the dividing line is set to the dividing line. The wiring electrode is formed so as to be narrower than the width of the wiring electrode not on the line.
  • the first piezoelectric body first body is divided before dividing the mother piezoelectric body provided with the plurality of IDT electrodes and the wiring electrodes.
  • a laser beam is irradiated on the dividing line on the second main surface opposite to the main surface.
  • the high-frequency front-end circuit according to the present invention includes an elastic wave device configured according to the present invention and a power amplifier.
  • the communication device includes a high-frequency front-end circuit configured according to the present invention and an RF signal processing circuit.
  • an elastic wave device and a method for manufacturing the same, a high-frequency front-end circuit, and a communication device that are less likely to cause burrs due to metal layers such as wiring electrodes.
  • FIG. 1 is a schematic plan view showing an acoustic wave device according to a first embodiment of the present invention.
  • FIG. 2A is a schematic front sectional view showing an acoustic wave device according to the first embodiment of the present invention
  • FIG. 2B is an acoustic wave device according to the first embodiment of the present invention. It is a typical top view which shows the electrode structure of this.
  • FIG. 3 is a schematic plan view for explaining the method of manufacturing the acoustic wave device according to the first embodiment of the present invention.
  • FIG. 4 is a schematic plan view for explaining the method for manufacturing the acoustic wave device according to the first embodiment of the present invention.
  • FIG. 1 is a schematic plan view showing an acoustic wave device according to a first embodiment of the present invention.
  • FIG. 2A is a schematic front sectional view showing an acoustic wave device according to the first embodiment of the present invention
  • FIG. 2B is an acoustic wave device according to the first embodiment
  • FIG. 5 is a schematic front view for explaining a laser beam irradiation method in the method of manufacturing an acoustic wave device according to the first embodiment of the present invention.
  • FIG. 6 is a schematic front view for explaining a laser beam irradiation method in the method of manufacturing an acoustic wave device according to the first embodiment of the present invention.
  • FIG. 7A and FIG. 7B are schematic front views for explaining a breaking method in the method for manufacturing an acoustic wave device according to the first embodiment of the present invention.
  • FIG. 8 is a diagram showing the relationship between the radius of curvature and the stress at the tip of the wiring electrode.
  • FIG. 9 is a schematic front sectional view showing an acoustic wave device according to a second embodiment of the present invention.
  • FIG. 10 is a schematic front sectional view showing an acoustic wave device according to a third embodiment of the present invention.
  • FIG. 11 is a configuration diagram of a communication device and a high-frequency front-end
  • FIG. 1 is a schematic plan view showing an acoustic wave device according to a first embodiment of the present invention.
  • Fig.2 (a) is typical front sectional drawing which shows the elastic wave apparatus which concerns on the 1st Embodiment of this invention.
  • FIG. 2B is a schematic plan view showing the electrode structure of the acoustic wave device according to the first embodiment of the present invention.
  • the acoustic wave device 1 has a piezoelectric body 2.
  • the piezoelectric body 2 is a rectangular plate-shaped piezoelectric substrate.
  • the material of the piezoelectric substrate is not particularly limited, and for example, a piezoelectric single crystal such as LiNbO 3 or LiTaO 3 or an appropriate piezoelectric ceramic can be used.
  • the piezoelectric body 2 has first and second main surfaces 2a and 2b facing each other.
  • a first functional electrode 3 including an IDT electrode 5 is formed on the first main surface 2 a of the piezoelectric body 2.
  • the first functional electrode 3 is not particularly limited, but constitutes a band pass filter or the like. However, in FIG. 1, the first functional electrode 3 is schematically shown in a block diagram.
  • a wiring electrode 4 is provided on the first main surface 2 a of the piezoelectric body 2.
  • the wiring electrode 4 is, for example, a power supply wiring for forming a via electrode by an electrolytic plating method.
  • the via electrode is electrically connected to the IDT electrode 5. Therefore, the wiring electrode 4 is electrically connected to the IDT electrode 5.
  • the wiring electrode 4 has a tip portion 4a.
  • the tip portion 4 a is a portion of the wiring electrode 4 at the edge 2 c of the first main surface 2 a of the piezoelectric body 2.
  • an edge is the outer periphery of the elastic wave apparatus 1 when the elastic wave apparatus 1 is planarly viewed.
  • the tip portion 4 a is thinner than the other portion 4 b other than the tip portion 4 a of the wiring electrode 4. That is, the width of the wiring electrode 4 at the edge 2c is narrower than the width of the wiring electrode 4 at the portion that is not the edge 2c.
  • a part of the wiring electrode 4 including the distal end portion 4a becomes thinner toward the distal end portion 4a.
  • the planar shape of the tip portion 4a may be sharp or rounded.
  • the acoustic wave device 1 has an IDT electrode 5 provided on the first main surface 2a of the piezoelectric body 2.
  • the first functional electrode 3 shown in FIG. 1 is composed of a plurality of IDT electrodes such as the IDT electrode 5.
  • the electrode structure shown in FIG. 2B is formed on the piezoelectric body 2 more specifically. That is, the IDT electrode 5 and the reflectors 6 and 7 disposed on both sides of the IDT electrode 5 in the propagation direction of the surface acoustic wave of the IDT electrode 5 are formed. Thus, a 1-port surface acoustic wave resonator is configured. The reflectors 6 and 7 may not be used.
  • the IDT electrode 5 has first and second bus bars and a plurality of first and second electrode fingers.
  • the plurality of first electrode fingers and the plurality of second electrode fingers are interleaved with each other.
  • the plurality of first electrode fingers are connected to the first bus bar, and the plurality of second electrode fingers are connected to the second bus bar.
  • an SiO 2 film as a frequency temperature characteristic adjusting film may be provided so as to cover the IDT electrode 5.
  • the material constituting the wiring electrode 4 and each IDT electrode is not particularly limited, and examples thereof include Cu, Ag, Au, Mo, W, Ta, Pt, Al, Ti, Ni, Cr, and alloys of these metals. Is mentioned.
  • the wiring electrode 4 and each IDT electrode may be a single-layer metal film or a laminated metal film in which two or more kinds of metal films are laminated.
  • the material of the wiring electrode 4 is preferably a material having a high Young's modulus such as W, Mo, or Ta from the viewpoint of further suppressing the generation of burrs described later.
  • the width of the wiring electrode 4 at the edge 2c is narrower than the width of the wiring electrode 4 at the portion other than the edge 2c. Therefore, in the acoustic wave device 1, burrs caused by the wiring electrodes 4 are difficult to occur. That is, the generation of burrs caused by the wiring electrode 4 can be suppressed or the burrs can be reduced. This point will be described in detail in the column of the manufacturing method described later.
  • burrs caused by the wiring electrode 4 are difficult to occur, it is possible to make it difficult to cause a short circuit with the electrode. Therefore, in the acoustic wave device 1, it is possible to make it difficult for characteristic deterioration to occur.
  • FIG. 3 is a schematic plan view for explaining the method of manufacturing the acoustic wave device according to the first embodiment of the present invention.
  • a mother piezoelectric body 20 shown in FIG. 3 is prepared.
  • the mother piezoelectric body 20 has a first main surface 20a.
  • the mother piezoelectric body 20 is a rectangular plate-shaped piezoelectric substrate.
  • the material of the piezoelectric substrate is not particularly limited.
  • a piezoelectric single crystal such as LiNbO 3 or LiTaO 3 or an appropriate piezoelectric ceramic can be used.
  • the first and second functional electrodes 3, 8 constituted by a plurality of IDT electrodes and the wiring electrode 4 are formed on the first main surface 20a of the mother piezoelectric body 20, the first and second functional electrodes 3, 8 constituted by a plurality of IDT electrodes and the wiring electrode 4 are formed.
  • the wiring electrode 4 when forming the wiring electrode 4, it forms so that the wiring electrode 4 may have the part which crosses on the dividing line L shown with a broken line.
  • the wiring electrode 4 is formed such that the width of the wiring electrode 4 on the dividing line L is narrower than the width of the wiring electrode 4 not on the dividing line L.
  • the wiring electrode 4 is formed so that a part of the wiring electrode 4 including a portion provided on the dividing line L in the wiring electrode 4 becomes thinner toward the dividing line L.
  • the dividing line L is a dividing line when dividing the mother piezoelectric body 20.
  • the plurality of IDT electrodes constituting the first and second functional electrodes 3 and 8 can be formed, for example, by vapor deposition lift-off.
  • the wiring electrode 4 can be formed by, for example, vapor deposition lift-off, sputter lift-off, vapor deposition etching, plating, or the like.
  • the resist is processed into a shape in which the shape of the tip portion 4a of the wiring electrode 4 is narrowed by a process called photolithography. Then, after an electrode film is formed on the entire surface by vapor deposition, the resist is peeled off, and the wiring electrode 4 in which the shape of the tip portion 4a is thin is produced.
  • photolithography a resist shape is produced by applying light to a photosensitive resin such as a resist through a photomask having a hole in the wiring shape.
  • a resist is processed into a shape in which the shape of the tip portion 4a of the wiring electrode 4 is thinned by photolithography, and then an electrode film is formed by sputtering. Thereafter, the resist is peeled off, and the wiring electrode 4 in which the shape of the tip portion 4a is thin is produced.
  • a resist is processed into a shape in which the shape of the wiring electrode 4 is thinned by photolithography, and then an electrode film is formed by plating. Thereafter, the resist is peeled off, and the wiring electrode 4 in which the shape of the tip portion 4a is thin is produced.
  • the acoustic wave device 1 includes a first functional electrode 3 composed of a plurality of IDT electrodes and a wiring electrode 4.
  • the mother piezoelectric body 20 from which two elastic wave devices can be obtained by division is used.
  • a mother piezoelectric body from which three or more elastic wave devices can be obtained by division may be used.
  • the width of the wiring electrode 4 on the dividing line L is formed to be narrower than the width of the wiring electrode 4 not on the dividing line L. Therefore, when the mother piezoelectric body 20 is divided, the thinned portion of the wiring electrode 4 is divided. At this time, stress tends to concentrate on the thinned portion of the wiring electrode 4. Therefore, the wiring electrode 4 can be divided neatly, and burrs caused by the wiring electrode 4 are difficult to occur. Therefore, according to the manufacturing method of the present embodiment, the burr caused by the wiring electrode 4 is hardly generated, and the elastic wave device 1 having a good split surface can be obtained.
  • the present invention it is preferable to irradiate the dividing line L with laser light before dividing the mother piezoelectric body 20.
  • the second main surface 20b is a main surface facing the first main surface 20a.
  • the modified layer 10 may be formed by modifying the inside of the mother piezoelectric body 20 on the dividing line L by shifting the focal position of the laser light 9.
  • the modified layer 10 is formed by melting a part of the mother piezoelectric body 20 by irradiation of the laser light 9 and impairing crystallinity. Therefore, the formation of the modified layer 10 makes it easier to divide the mother piezoelectric substrate 20 in the later-described break.
  • the mother piezoelectric body 20 and the wiring electrode 4 are broken along the dividing line L as shown in FIGS. 7 (a) and 7 (b).
  • the mother piezoelectric body 20 provided with the plurality of IDT electrodes and the wiring electrodes 4 is separated into pieces, and the acoustic wave device 1 can be obtained.
  • the acoustic wave device 1 can be obtained without irradiating the wiring electrode 4 with the laser beam 9. Therefore, conductive debris (laser processing waste) that scatters when the wiring electrode 4 is irradiated with the laser light 9 is difficult to scatter. In addition, since conductive debris is not easily scattered, a short circuit between the electrodes is difficult to occur. Therefore, it is possible to make it difficult for the characteristics of the acoustic wave device 1 to deteriorate.
  • the radius of curvature of the tip portion 4a of the wiring electrode 4 shown in FIG. 1, that is, the radius of curvature of the wiring electrode 4 at the edge 2c is 3 ⁇ m or less.
  • the stress can be more easily concentrated on the tip portion 4a provided on the dividing line L in the wiring electrode 4. Therefore, when the mother piezoelectric body 20 is divided, the wiring electrode 4 can be divided neatly, and burrs caused by the wiring electrode 4 can be made more difficult to occur.
  • FIG. 8 is a diagram showing the relationship between the radius of curvature and the stress at the tip of the wiring electrode.
  • the alternate long and short dash line in FIG. 8 shows the stress of the tip portion 4a when the tip portion 4a of the wiring electrode 4 has the same thickness as the other portion 4b.
  • the stress was 0.685 GPa.
  • Wiring electrode 4 material Al Dimensions: width 24 ⁇ m, thickness 1 ⁇ m of the other part 4 b of the wiring electrode 4 Pull amount: 1 ⁇ m
  • the stress of the tip portion 4a was calculated under the above conditions.
  • the wiring electrode 4 when the radius of curvature of the tip portion 4a is 3 ⁇ m or less, the stress is more concentrated on the tip portion 4a.
  • the wiring electrode 4 when the wiring electrode 4 is divided, stress concentrates on the tip portion 4 a of the wiring electrode 4. Therefore, in the manufacturing method of this embodiment, the wiring electrode 4 can be divided
  • FIG. 9 is a schematic front sectional view showing an acoustic wave device according to a second embodiment of the present invention.
  • the acoustic wave device 21 further includes a low acoustic velocity film 23 and a high acoustic velocity member 24.
  • the sound velocity of the bulk wave propagating through the low acoustic velocity film 23 is lower than that of the elastic wave propagating through the piezoelectric body 22.
  • the high acoustic velocity member 24 has a higher acoustic velocity of the bulk wave propagating than the acoustic velocity of the acoustic wave propagating through the piezoelectric body 22.
  • a low sound velocity film 23 is provided on the high sound velocity member 24.
  • a piezoelectric body 22 is provided on the low sound velocity film 23.
  • the piezoelectric body 22 is a piezoelectric thin film.
  • the piezoelectric thin film is not particularly limited, and can be composed of, for example, a piezoelectric single crystal such as LiNbO 3 or LiTaO 3 or an appropriate piezoelectric ceramic.
  • the thickness of the piezoelectric body 22 is desirably 3.5 ⁇ or less, where ⁇ is a wavelength determined by the electrode finger pitch of the IDT electrode 5.
  • the low acoustic velocity film 23 may be made of an appropriate material whose acoustic velocity of the bulk wave is lower than that of the elastic wave propagating through the piezoelectric body 22.
  • a medium whose main component is a material such as silicon oxide, glass, silicon oxynitride, tantalum oxide, or a compound obtained by adding fluorine, carbon, or boron to silicon oxide can be used.
  • the high acoustic velocity member 24 functions to prevent surface acoustic waves from leaking to the structure below the high acoustic velocity member 24 by confining the surface acoustic waves in the portion where the piezoelectric body 22 and the low acoustic velocity film 23 are laminated.
  • the high acoustic velocity member 24 is made of aluminum nitride.
  • aluminum nitride, aluminum oxide, silicon carbide, silicon nitride, silicon oxynitride, DLC film or diamond a medium mainly composed of these materials, or a mixture of these materials is mainly used.
  • Various high sound speed materials such as a medium as a component can be used.
  • a plurality of IDT electrodes 5 and wiring electrodes 4 are formed on the first main surface side of the mother piezoelectric body. Further, the low sound velocity film 23 and the high sound velocity member 24 are formed in this order on the second main surface side of the mother piezoelectric body. Furthermore, when irradiating a laser beam, a laser beam is irradiated to the mother piezoelectric body from the high sound speed member 24 side. Other points are the same as in the first embodiment.
  • the width of the wiring electrode 4 at the edge of the main surface of the piezoelectric body 22 is narrower than the width of the wiring electrode 4 at the portion other than the edge, so Can be made difficult to occur.
  • FIG. 10 is a schematic front sectional view showing an acoustic wave device according to a third embodiment of the present invention.
  • a hollow portion 35 is provided in the acoustic wave device 31 .
  • a support layer 34 and a piezoelectric body 32 are laminated on the support substrate 33 so as to cover the hollow portion 35.
  • the IDT electrode 5 and the wiring electrode 4 are provided as in the case of the first embodiment.
  • the IDT electrode 5 is provided on the piezoelectric body 32 immediately above the region where the hollow portion 35 is provided.
  • the piezoelectric body 32 may have a membrane structure in which a portion excited by the IDT electrode 5 faces the hollow portion 35.
  • the hollow portion 35 may be provided in the support substrate 33, or a membrane structure in which a structure penetrating the support substrate 33 is provided instead of the hollow portion 35 may be adopted.
  • the elastic wave device 31 is an elastic wave device using plate waves as propagating elastic waves.
  • the plate wave here refers to a wave in which a piezoelectric body 32 having a thickness equal to or smaller than the wavelength of the elastic wave is used, and most of the elastic wave energy is concentrated on the piezoelectric body 32. Therefore, the thin film is not limited to the so-called hollow structure only when the piezoelectric body 32 is a thin plate or thin film, and various thin films for concentrating most of the elastic wave energy on the piezoelectric body 32 are formed below the thin piezoelectric body 32.
  • the thickness of the piezoelectric body 32 is preferably 1 ⁇ or less when the wavelength determined by the electrode finger pitch of the IDT electrode 5 is ⁇ . In that case, the plate wave can be further excited.
  • a plurality of IDT electrodes 5 and wiring electrodes 4 are formed on the first main surface side of the mother piezoelectric body. Further, the support layer 34 and the support substrate 33 are formed in this order on the second main surface side of the mother piezoelectric body. In the case of irradiating with laser light, the mother piezoelectric body is irradiated with laser light from the support substrate 33 side. Other points are the same as in the first embodiment.
  • the width of the wiring electrode 4 at the edge of the first main surface 32 a is narrower than the width of the wiring electrode 4 at the portion other than the edge, so that the variability caused by the wiring electrode 4 is reduced. Can be made difficult to occur.
  • the elastic wave device of the above embodiment can be used as a duplexer for a high-frequency front end circuit. This example is described below.
  • FIG. 11 is a configuration diagram of the communication device and the high-frequency front-end circuit.
  • components connected to the high-frequency front-end circuit 230 for example, the antenna element 202 and the RF signal processing circuit (RFIC) 203 are also shown.
  • the high-frequency front end circuit 230 and the RF signal processing circuit 203 constitute a communication device 240.
  • the communication device 240 may include a power supply, a CPU, and a display.
  • the high-frequency front-end circuit 230 includes a switch 225, duplexers 201A and 201B, filters 231, 232, low-noise amplifier circuits 214, 224, and power amplifier circuits 234a, 234b, 244a, 244b. Note that the high-frequency front-end circuit 230 and the communication device 240 in FIG. 11 are examples of the high-frequency front-end circuit and the communication device, and are not limited to this configuration.
  • the duplexer 201A includes filters 211 and 212.
  • the duplexer 201B includes filters 221 and 222.
  • the duplexers 201 ⁇ / b> A and 201 ⁇ / b> B are connected to the antenna element 202 via the switch 225.
  • the said elastic wave apparatus may be duplexers 201A and 201B, and may be filters 211, 212, 221 and 222.
  • the elastic wave device is also applicable to a multiplexer having three or more filters, such as a triplexer in which the antenna terminals of three filters are shared, and a hexaplexer in which the antenna terminals of six filters are shared. Can do.
  • the acoustic wave device includes an acoustic wave resonator, a filter, a duplexer, and a multiplexer including three or more filters.
  • the multiplexer is not limited to the configuration including both the transmission filter and the reception filter, and may be configured to include only the transmission filter or only the reception filter.
  • the switch 225 connects the antenna element 202 and a signal path corresponding to a predetermined band in accordance with a control signal from a control unit (not shown), and is configured by, for example, a SPDT (Single Pole Double Throw) type switch. .
  • a SPDT Single Pole Double Throw
  • the number of signal paths connected to the antenna element 202 is not limited to one and may be plural. That is, the high frequency front end circuit 230 may support carrier aggregation.
  • the low noise amplifier circuit 214 is a reception amplification circuit that amplifies a high frequency signal (here, a high frequency reception signal) via the antenna element 202, the switch 225, and the duplexer 201A and outputs the amplified signal to the RF signal processing circuit 203.
  • the low noise amplifier circuit 224 is a reception amplification circuit that amplifies a high-frequency signal (here, a high-frequency reception signal) that has passed through the antenna element 202, the switch 225, and the duplexer 201B, and outputs the amplified signal to the RF signal processing circuit 203.
  • the power amplifier circuits 234a and 234b are transmission amplifier circuits that amplify the high frequency signal (here, the high frequency transmission signal) output from the RF signal processing circuit 203 and output the amplified signal to the antenna element 202 via the duplexer 201A and the switch 225.
  • the power amplifier circuits 244a and 244b are transmission amplifier circuits that amplify the high-frequency signal (here, the high-frequency transmission signal) output from the RF signal processing circuit 203 and output the amplified signal to the antenna element 202 via the duplexer 201B and the switch 225. .
  • the RF signal processing circuit 203 performs signal processing on the high-frequency reception signal input from the antenna element 202 via the reception signal path by down-conversion or the like, and outputs a reception signal generated by the signal processing.
  • the RF signal processing circuit 203 performs signal processing on the input transmission signal by up-conversion or the like, and outputs a high-frequency transmission signal generated by the signal processing to the low noise amplifier circuit 224.
  • the RF signal processing circuit 203 is, for example, an RFIC.
  • the communication apparatus may include a BB (baseband) IC. In this case, the BBIC processes the received signal processed by the RFIC.
  • the BBIC processes the transmission signal and outputs it to the RFIC.
  • the reception signal processed by the BBIC and the transmission signal before the signal processing by the BBIC are, for example, an image signal or an audio signal.
  • the high-frequency front end circuit 230 may include a duplexer according to a modification of the duplexers 201A and 201B instead of the duplexers 201A and 201B.
  • the filters 231 and 232 in the communication device 240 are connected between the RF signal processing circuit 203 and the switch 225 without passing through the low noise amplifier circuits 214 and 224 and the power amplifier circuits 234a, 234b, 244a and 244b.
  • the filters 231 and 232 are also connected to the antenna element 202 via the switch 225, similarly to the duplexers 201A and 201B.
  • the high-frequency front-end circuit 230 and the communication device 240 configured as described above, by including the elastic wave device of the present invention, an acoustic wave resonator, a filter, a duplexer, a multiplexer including three or more filters, and the like. In addition, burrs caused by metal layers such as wiring electrodes hardly occur.
  • the elastic wave device, the high-frequency front-end circuit, and the communication device according to the embodiment of the present invention have been described with reference to the embodiment and the modified examples thereof.
  • a high-frequency front-end circuit according to the present invention a modification obtained by making various modifications conceived by those skilled in the art without departing from the gist of the present invention, and a high-frequency front-end circuit according to the present invention.
  • Various devices incorporating the communication device are also included in the present invention.
  • the present invention can be widely used in communication devices such as mobile phones as an elastic wave resonator, a filter, a multiplexer applicable to a multiband system, a front-end circuit, and a communication device.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

配線電極などの金属層に起因したバリが生じ難い、弾性波装置を提供する。 主面2aを有する、圧電体2と、圧電体2の主面2a上に設けられた、IDT電極と、圧電体2の主面2a上に設けられており、IDT電極と電気的に接続されている、配線電極4と、を備え、配線電極4が、圧電体2における主面2aの端縁2cに至っている部分4aを有し、端縁2cにおける配線電極4の幅が、端縁2cではない部分における配線電極4の幅より狭くなっている、弾性波装置1。

Description

弾性波装置及びその製造方法、高周波フロントエンド回路、並びに通信装置
 本発明は、共振子や高周波フィルタなどに用いられる弾性波装置及び該弾性波装置の製造方法、該弾性波装置を用いた高周波フロントエンド回路、並びに通信装置に関する。
 従来、共振子や高周波フィルタとして弾性波装置が広く用いられている。
 下記の特許文献1には、複数の弾性波チップが形成されたマザーの圧電基板を、分割線に沿って個片化することにより弾性波装置を得る方法が開示されている。上記マザーの圧電基板の個片化に際しては、分割線に沿ってレーザー光が照射されている。特許文献1では、レーザー光が、分割線の延伸方向に延伸されている金属層の少なくとも一部の領域に照射されないように、走査されている。
特開2013-138362号公報
 しかしながら、特許文献1の弾性波装置の製造方法では、分割線上にある配線金属の形状が厚いため、マザーの圧電基板を個片化する際に、配線金属の金属屑が分割線上に配置される場合があった。そのため、マザーの圧電基板の個片化の際には、分割線上の配線金属に起因したバリ(不要な突起)が生じることがあった。
 本発明の目的は、配線電極などの金属層に起因したバリが生じ難い、弾性波装置及び該弾性波装置の製造方法、該弾性波装置を用いた高周波フロントエンド回路、並びに通信装置を提供することにある。
 本発明に係る弾性波装置は、主面を有する、圧電体と、前記圧電体の前記主面上に設けられた、IDT電極と、前記圧電体の前記主面上に設けられており、前記IDT電極と電気的に接続されている、配線電極と、を備え、前記配線電極が、前記圧電体における前記主面の端縁に至っている部分を有し、前記端縁における前記配線電極の幅が、前記端縁ではない部分における前記配線電極の幅より狭くなっている。
 本発明に係る弾性波装置のある特定の局面では、前記端縁における前記配線電極の曲率半径が、3μm以下である。この場合、金属層に起因するバリの発生をより一層抑制することができる。
 本発明に係る弾性波装置の別の特定の局面では、前記圧電体を伝搬する弾性波の音速よりも、伝搬するバルク波の音速が高速である高音速部材と、前記高音速部材上に積層されており、前記圧電体を伝搬する弾性波の音速よりも、伝搬するバルク波の音速が低速である低音速膜と、をさらに備え、前記低音速膜上に、前記圧電体が設けられている。この場合には、弾性波のエネルギーをより一層効率的に閉じ込めることができる。
 本発明に係る弾性波装置の他の特定の局面では、前記IDT電極の電極指ピッチで定まる波長をλとしたときに、前記圧電体の厚みが、3.5λ以下である。この場合には、弾性波のエネルギーをより一層効率的に閉じ込めることができる。
 本発明に係る弾性波装置の製造方法は、マザーの圧電体の第1の主面上に、複数のIDT電極と、前記IDT電極と電気的に接続されている、配線電極とを形成する工程と、前記複数のIDT電極及び前記配線電極が設けられた前記マザーの圧電体を、分割線に従って複数に分割することにより個片化し、前記IDT電極及び前記配線電極を有する弾性波装置を得る工程と、を備え、前記配線電極を形成するに際し、前記配線電極が前記分割線上を横断する部分を有するように、前記配線電極を形成し、前記分割線上にある前記配線電極の幅が、前記分割線上にない前記配線電極の幅より狭くなるように、前記配線電極を形成する。
 本発明に係る弾性波装置の製造方法のある特定の局面では、前記複数のIDT電極及び前記配線電極が設けられた前記マザーの圧電体を分割する前に、前記マザーの圧電体の前記第1の主面とは反対側の第2の主面における前記分割線上にレーザー光を照射する。
 本発明に係る高周波フロントエンド回路は、本発明に従って構成される弾性波装置と、パワーアンプとを備える。
 本発明に係る通信装置は、本発明に従って構成される高周波フロントエンド回路と、RF信号処理回路とを備える。
 本発明によれば、配線電極などの金属層に起因したバリが生じ難い、弾性波装置及びその製造方法、高周波フロントエンド回路、並びに通信装置を提供することができる。
図1は、本発明の第1の実施形態に係る弾性波装置を示す模式的平面図である。 図2(a)は、本発明の第1の実施形態に係る弾性波装置を示す模式的正面断面図であり、図2(b)は、本発明の第1の実施形態に係る弾性波装置の電極構造を示す模式的平面図である。 図3は、本発明の第1の実施形態に係る弾性波装置の製造方法を説明するための模式的平面図である。 図4は、本発明の第1の実施形態に係る弾性波装置の製造方法を説明するための模式的平面図である。 図5は、本発明の第1の実施形態に係る弾性波装置の製造方法において、レーザー光の照射方法を説明するための模式的正面図である。 図6は、本発明の第1の実施形態に係る弾性波装置の製造方法において、レーザー光の照射方法を説明するための模式的正面図である。 図7(a)及び図7(b)は、本発明の第1の実施形態に係る弾性波装置の製造方法において、ブレイクの方法を説明するための模式的正面図である。 図8は、配線電極の先端部分における曲率半径と応力の関係を示す図である。 図9は、本発明の第2の実施形態に係る弾性波装置を示す模式的正面断面図である。 図10は、本発明の第3の実施形態に係る弾性波装置を示す模式的正面断面図である。 図11は、本発明に係る通信装置及び高周波フロントエンド回路の構成図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。
 [弾性波装置]
 (第1の実施形態)
 図1は、本発明の第1の実施形態に係る弾性波装置を示す模式的平面図である。図2(a)は、本発明の第1の実施形態に係る弾性波装置を示す模式的正面断面図である。また、図2(b)は、本発明の第1の実施形態に係る弾性波装置の電極構造を示す模式的平面図である。
 図1に示すように、弾性波装置1は、圧電体2を有する。本実施形態において、圧電体2は、矩形板状の圧電基板である。圧電基板の材料としては、特に限定されず、例えば、LiNbOやLiTaOなどの圧電単結晶や適宜の圧電セラミックスを用いることができる。
 図2(a)に示すように、圧電体2は、対向している第1及び第2の主面2a,2bを有する。圧電体2の第1の主面2a上には、IDT電極5を含む第1の機能電極3が構成されている。第1の機能電極3は、特に限定されないが、帯域通過型フィルタなどを構成している。もっとも、図1において、第1の機能電極3は、ブロック図により略図的に示している。
 圧電体2の第1の主面2a上には、配線電極4が設けられている。本実施形態において、配線電極4は、例えば、ビア電極を電解めっき法により形成するための給電用の配線である。上記ビア電極は、IDT電極5に電気的に接続されている。そのため、配線電極4は、IDT電極5に電気的に接続されている。
 配線電極4は、先端部分4aを有している。先端部分4aは、配線電極4のうち、圧電体2の第1の主面2aの端縁2cにおける部分である。なお、端縁とは、弾性波装置1を平面視した場合における、弾性波装置1の外周である。また、先端部分4aは、配線電極4の先端部分4a以外の他の部分4bより細くなっている。すなわち、端縁2cにおける配線電極4の幅が、端縁2cではない部分における配線電極4の幅より狭くなっている。本実施形態においては、先端部分4aを含む配線電極4の一部が、先端部分4aに向かうにつれて細くなっている。先端部分4aの平面形状は、尖っていてもよく、丸みを帯びていてもよい。
 図2(a)に示すように、弾性波装置1は、圧電体2の第1の主面2a上に設けられたIDT電極5を有する。なお、図1に示す第1の機能電極3は、IDT電極5などの複数のIDT電極により構成されている。
 図2(a)では略図的に示しているが、より具体的には、圧電体2上に、図2(b)に示す電極構造が形成されている。すなわち、IDT電極5と、IDT電極5の弾性表面波の伝搬方向におけるIDT電極5の両側に配置された反射器6,7が形成されている。それによって、1ポート型弾性表面波共振子が構成されている。なお、反射器6,7は用いられなくてもよい。
 図2(b)に示すように、IDT電極5は、第1,第2のバスバーと、複数本の第1,第2の電極指とを有する。複数本の第1の電極指と、複数本の第2の電極指とは、互いに間挿し合っている。また、複数本の第1の電極指は、第1のバスバーに接続されており、複数本の第2の電極指は、第2のバスバーに接続されている。
 本実施形態においては、図示を省略しているが、IDT電極5を覆うように、周波数温度特性調整膜としてのSiO膜を設けてもよい。
 配線電極4及び各IDT電極を構成する材料としては、特に限定されず、例えば、Cu、Ag、Au、Mo、W、Ta、Pt、Al、Ti、Ni、Cr、又はこれらの金属の合金などが挙げられる。配線電極4及び各IDT電極は、単層の金属膜であってもよいし、2種以上の金属膜が積層された積層金属膜であってもよい。なお、後述するバリの発生をより一層抑制する観点から、配線電極4の材料は、W、Mo、Taなどのヤング率の高い材料であることが好ましい。
 上述したように、弾性波装置1においては、端縁2cにおける配線電極4の幅が、端縁2cではない部分における配線電極4の幅より狭くなっている。そのため、弾性波装置1では、配線電極4に起因したバリが生じ難い。すなわち、配線電極4に起因したバリの発生を抑制するか、あるいはバリを小さくすることができる。この点については、後述する製造方法の欄で詳細に説明するものとする。弾性波装置1では、配線電極4に起因したバリが生じ難いので、電極との間で短絡を生じ難くすることができる。従って、弾性波装置1では、特性の劣化を生じ難くすることができる。
 以下、弾性波装置1の製造方法の一例について説明する。
 弾性波装置1の製造方法;
 図3は、本発明の第1の実施形態に係る弾性波装置の製造方法を説明するための模式的平面図である。
 まず、図3に示すマザーの圧電体20を用意する。マザーの圧電体20は、第1の主面20aを有している。また、本実施形態において、マザーの圧電体20は、矩形板状の圧電基板である。圧電基板の材料は、特に限定されないが、例えば、LiNbOやLiTaOなどの圧電単結晶や適宜の圧電セラミックスを用いることができる。
 続いて、マザーの圧電体20の第1の主面20a上に、複数のIDT電極により構成されている第1及び第2の機能電極3,8と、配線電極4とを形成する。なお、図3に示すように、配線電極4を形成するに際しては、配線電極4が破線で示す分割線L上を横断する部分を有するように形成する。また、分割線L上にある配線電極4の幅が、分割線L上にない配線電極4の幅より狭くなるように、配線電極4を形成する。特に、本実施形態においては、配線電極4のうち分割線L上に設けられている部分を含む配線電極4の一部が、分割線Lに向かうにつれて細くなるように配線電極4を形成する。なお、分割線Lは、マザーの圧電体20を分割するときの分割線である。
 第1及び第2の機能電極3,8を構成している複数のIDT電極は、例えば、蒸着リフトオフにより形成することができる。また、配線電極4は、例えば、蒸着リフトオフや、スパッタリフトオフ、蒸着エッチング、めっきなどにより形成することができる。
 蒸着リフトオフでは、フォトリソグラフィーという加工で、配線電極4の先端部分4aの形状を細くした形状にレジストを加工する。そして、蒸着で全面に電極膜を形成した後、レジストを剥離して、先端部分4aの形状が細くなっている配線電極4を作製する。なお、フォトリソグラフィーでは、レジスト等の感光性樹脂に、配線形状に穴の開いたフォトマスクを通して、光を当ててレジスト形状を作製する。
 スパッタリフトオフでは、フォトリソグラフィーにより、配線電極4の先端部分4aの形状を細くした形状にレジストを加工した後、スパッタにより電極膜を形成する。その後、レジストを剥離して、先端部分4aの形状が細くなっている配線電極4を作製する。
 めっきでは、フォトリソグラフィーにより、配線電極4の形状を細くした形状にレジストを加工した後、めっきにより電極膜を形成する。その後、レジストを剥離して、先端部分4aの形状が細くなっている配線電極4を作製する。
 次に、配線電極4及び複数のIDT電極が設けられたマザーの圧電体20を分割線Lに沿って複数に分割し、図4に示すように、個片化する。それによって、弾性波装置1を得る。なお、弾性波装置1は、複数のIDT電極により構成されている第1の機能電極3と、配線電極4とを有している。また、本実施形態においては、分割により2つの弾性波装置が得られるマザーの圧電体20を用いている。もっとも、本発明においては、分割により3以上の弾性波装置が得られるマザーの圧電体を用いてもよい。
 上述したように、本実施形態においては、分割線L上にある配線電極4の幅が、分割線L上にない配線電極4の幅より狭くなるように形成されている。従って、マザーの圧電体20の分割の際には、配線電極4のうち細くなっている部分が分割されることとなる。この際、配線電極4のうち細くなっている部分には、応力が集中しやすい。そのため、配線電極4をきれいに分割することができ、配線電極4に起因したバリが生じ難くなる。従って、本実施形態の製造方法によれば、配線電極4に起因したバリが生じ難く、分割面の良好な弾性波装置1を得ることができる。
 また、本発明においては、マザーの圧電体20を分割する前に、分割線L上にレーザー光を照射することが好ましい。この場合、図5及び図6に示すように、マザーの圧電体20の第2の主面20b側から、レーザー光9を照射することが望ましい。第2の主面20bは、第1の主面20aと対向している主面である。
 また、レーザー光9の照射に際しては、図5に示すように、第2の主面20b側から、マザーの圧電体20の一部を分割線Lに沿ってカットするように、レーザー光9を走査する。あるいは、図6に示すように、レーザー光9の焦点位置をずらすことにより、分割線L上において、マザーの圧電体20の内部を改質し、改質層10を形成してもよい。なお、改質層10は、レーザー光9の照射によりマザーの圧電体20の一部が溶融し、結晶性が損なわれることにより形成される。従って、改質層10を形成することにより、後述のブレイクの際にマザーの圧電基板20をより一層分割しやすくすることができる。
 レーザー光9の照射後、図7(a)及び図7(b)に示すように、マザーの圧電体20及び配線電極4を分割線Lに沿ってブレイクする。それによって、複数のIDT電極及び配線電極4が設けられたマザーの圧電体20を個片化し、弾性波装置1を得ることができる。
 このように、第2の主面20b側からレーザー光9を照射する場合、配線電極4にレーザー光9を照射することなく、弾性波装置1を得ることができる。そのため、配線電極4にレーザー光9を照射するときに飛散する導電性のデブリ(レーザー加工屑)が飛散し難い。また、導電性のデブリが飛散し難いので、電極間の短絡が生じ難い。従って、弾性波装置1の特性の劣化を生じ難くすることができる。
 また、本発明においては、図1に示す配線電極4の先端部分4aの曲率半径、すなわち端縁2cにおける配線電極4の曲率半径が、3μm以下であることが好ましい。この場合、配線電極4のうち分割線L上に設けられている先端部分4aに、より一層応力を集中しやすくすることができる。そのため、マザーの圧電体20の分割の際に、配線電極4をきれいに分割することができ、配線電極4に起因したバリをより一層生じ難くすることができる。
 なお、先端部分4aの曲率半径を3μm以下にすることにより、先端部分4aに応力を集中しやすくできることについては、以下の応力シミュレーションにより裏付けることができる。
 図8は、配線電極の先端部分における曲率半径と応力の関係を示す図である。なお、比較のため、図8中の一点鎖線では、配線電極4の先端部分4aが他の部分4bと同じ太さである場合の先端部分4aの応力を示している。具体的に、配線電極4の先端部分4aが他の部分4bと同じ太さである場合、応力は0.685GPaであった。
 なお、図8における先端部分4aの応力は、以下のようにして算出した。
 配線電極4の材質:Al
 寸法:配線電極4の他の部分4bの幅24μm、厚み1μm
 引っ張り量:1μm
 上記の条件で、先端部分4aの応力を算出した。
 図8に示すように、先端部分4aの曲率半径が、3μm以下である場合、先端部分4aに応力がより一層集中していることがわかる。このように、本実施形態の製造方法では、配線電極4の分割の際、配線電極4の先端部分4aに応力が集中する。そのため、本実施形態の製造方法では、配線電極4をきれいに分割することができ、配線電極4に起因したバリを生じ難くすることができる。
 (第2の実施形態)
 図9は、本発明の第2の実施形態に係る弾性波装置を示す模式的正面断面図である。
 図9に示すように、弾性波装置21は、低音速膜23及び高音速部材24をさらに備える。低音速膜23は、圧電体22を伝搬する弾性波の音速よりも、伝搬するバルク波の音速が低速である。一方、高音速部材24は、圧電体22を伝搬する弾性波の音速よりも、伝搬するバルク波の音速が高速である。
 図9に示すように、高音速部材24上には、低音速膜23が設けられている。弾性波装置21では、この低音速膜23上に、圧電体22が設けられている。
 本実施形態において、圧電体22は、圧電薄膜である。圧電薄膜としては、特に限定されず、例えば、LiNbOやLiTaOなどの圧電単結晶や適宜の圧電セラミックスにより構成することができる。なお、圧電体22の厚みは、IDT電極5の電極指ピッチで定まる波長をλとしたときに、3.5λ以下とすることが望ましい。
 本実施形態では、低音速膜23として、酸化ケイ素が用いられている。もっとも、低音速膜23は、圧電体22を伝搬する弾性波よりもバルク波の音速が低速である適宜の材料を用いることができる。このような材料としては、酸化ケイ素、ガラス、酸窒化ケイ素、酸化タンタル、又は酸化ケイ素にフッ素や炭素やホウ素を加えた化合物などの材料を主成分とした媒質を用いることができる。
 また、高音速部材24は、圧電体22及び低音速膜23が積層されている部分に弾性表面波を閉じ込め、高音速部材24より下の構造に弾性表面波が漏れないように機能する。本実施形態において、高音速部材24は、窒化アルミニウムからなる。もっとも、上記弾性表面波を閉じ込め得る限り、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、窒化ケイ素、酸窒化ケイ素、DLC膜若しくはダイヤモンド、これらの材料を主成分とする媒質、又はこれらの材料の混合物を主成分とする媒質等のさまざまな高音速材料を用いることができる。
 製造方法;
 弾性波装置21の製造方法においては、マザーの圧電体の第1の主面側に複数のIDT電極5及び配線電極4を形成する。また、マザーの圧電体の第2の主面側に低音速膜23及び高音速部材24をこの順に形成する。さらに、レーザー光を照射する場合は、高音速部材24側からマザーの圧電体にレーザー光を照射する。その他の点は、第1の実施形態と同様である。
 弾性波装置21においても、圧電体22の主面の端縁における配線電極4の幅が、上記端縁ではない部分における配線電極4の幅より狭くなっているので、配線電極4に起因したバリを生じ難くすることができる。
 (第3の実施形態)
 図10は、本発明の第3の実施形態に係る弾性波装置を示す模式的正面断面図である。
 図10に示すように、弾性波装置31では、中空部35が設けられている。この中空部35を覆うように、支持基板33上に支持層34及び圧電体32が積層されている。圧電体32の第1の主面32a上には、第1の実施形態の場合と同様に、IDT電極5及び配線電極4が設けられている。中空部35が設けられている領域の直上において、圧電体32上にIDT電極5が設けられている。あるいは、圧電体32のうち、IDT電極5により励振される部分が、中空部35に臨む、メンブレン構造を有していてもよい。この場合、支持基板33内に中空部35が設けられていてもよいし、中空部35に代わり、支持基板33を貫通した構造を設けたメンブレン構造をとっていてもよい。
 弾性波装置31は、伝搬する弾性波として板波を利用した弾性波装置である。なお、ここでいう板波とは、弾性波の波長以下の厚みの圧電体32を用い、その圧電体32に弾性波エネルギーの大半が集中している波をいうものとする。よって、圧電体32が薄板や薄膜の場合だけのいわゆる中空構造だけに限定されず、薄い圧電体32の下部に、弾性波エネルギーの大半を圧電体32に集中させるためのさまざまな薄膜が形成されていてもよいし、さらにこれらの圧電体32や薄膜を支持する支持基板33があってもよい。
 また、本実施形態のように板波を利用する場合、圧電体32の厚みは、IDT電極5の電極指ピッチで定まる波長をλとしたときに、1λ以下であることが好ましい。その場合、板波をより一層励振させることができる。
 製造方法;
 弾性波装置31の製造方法においては、マザーの圧電体の第1の主面側に複数のIDT電極5及び配線電極4を形成する。また、マザーの圧電体の第2の主面側に支持層34及び支持基板33をこの順に形成する。レーザー光を照射する場合は、支持基板33側からマザーの圧電体にレーザー光を照射する。その他の点は、第1の実施形態と同様である。
 弾性波装置31においても、第1の主面32aの端縁における配線電極4の幅が、上記端縁ではない部分における配線電極4の幅より狭くなっているので、配線電極4に起因したバリを生じ難くすることができる。
 [高周波フロントエンド回路、通信装置]
 上記実施形態の弾性波装置は、高周波フロントエンド回路のデュプレクサなどとして用いることができる。この例を下記において説明する。
 図11は、通信装置及び高周波フロントエンド回路の構成図である。なお、同図には、高周波フロントエンド回路230と接続される各構成要素、例えば、アンテナ素子202やRF信号処理回路(RFIC)203も併せて図示されている。高周波フロントエンド回路230及びRF信号処理回路203は、通信装置240を構成している。なお、通信装置240は、電源、CPUやディスプレイを含んでいてもよい。
 高周波フロントエンド回路230は、スイッチ225と、デュプレクサ201A,201Bと、フィルタ231,232と、ローノイズアンプ回路214,224と、パワーアンプ回路234a,234b,244a,244bとを備える。なお、図11の高周波フロントエンド回路230及び通信装置240は、高周波フロントエンド回路及び通信装置の一例であって、この構成に限定されるものではない。
 デュプレクサ201Aは、フィルタ211,212を有する。デュプレクサ201Bは、フィルタ221,222を有する。デュプレクサ201A,201Bは、スイッチ225を介してアンテナ素子202に接続される。なお、上記弾性波装置は、デュプレクサ201A,201Bであってもよいし、フィルタ211,212,221,222であってもよい。
 さらに、上記弾性波装置は、例えば、3つのフィルタのアンテナ端子が共通化されたトリプレクサや、6つのフィルタのアンテナ端子が共通化されたヘキサプレクサなど、3以上のフィルタを備えるマルチプレクサについても適用することができる。
 すなわち、上記弾性波装置は、弾性波共振子、フィルタ、デュプレクサ、3以上のフィルタを備えるマルチプレクサを含む。そして、該マルチプレクサは、送信フィルタ及び受信フィルタの双方を備える構成に限らず、送信フィルタのみ、または、受信フィルタのみを備える構成であってもかまわない。
 スイッチ225は、制御部(図示せず)からの制御信号に従って、アンテナ素子202と所定のバンドに対応する信号経路とを接続し、例えば、SPDT(Single Pole Double Throw)型のスイッチによって構成される。なお、アンテナ素子202と接続される信号経路は1つに限らず、複数であってもよい。つまり、高周波フロントエンド回路230は、キャリアアグリゲーションに対応していてもよい。
 ローノイズアンプ回路214は、アンテナ素子202、スイッチ225及びデュプレクサ201Aを経由した高周波信号(ここでは高周波受信信号)を増幅し、RF信号処理回路203へ出力する受信増幅回路である。ローノイズアンプ回路224は、アンテナ素子202、スイッチ225及びデュプレクサ201Bを経由した高周波信号(ここでは高周波受信信号)を増幅し、RF信号処理回路203へ出力する受信増幅回路である。
 パワーアンプ回路234a,234bは、RF信号処理回路203から出力された高周波信号(ここでは高周波送信信号)を増幅し、デュプレクサ201A及びスイッチ225を経由してアンテナ素子202に出力する送信増幅回路である。パワーアンプ回路244a,244bは、RF信号処理回路203から出力された高周波信号(ここでは高周波送信信号)を増幅し、デュプレクサ201B及びスイッチ225を経由してアンテナ素子202に出力する送信増幅回路である。
 RF信号処理回路203は、アンテナ素子202から受信信号経路を介して入力された高周波受信信号を、ダウンコンバートなどにより信号処理し、当該信号処理して生成された受信信号を出力する。また、RF信号処理回路203は、入力された送信信号をアップコンバートなどにより信号処理し、当該信号処理して生成された高周波送信信号をローノイズアンプ回路224へ出力する。RF信号処理回路203は、例えば、RFICである。なお、通信装置は、BB(ベースバンド)ICを含んでいてもよい。この場合、BBICは、RFICで処理された受信信号を信号処理する。また、BBICは、送信信号を信号処理し、RFICに出力する。BBICで処理された受信信号や、BBICが信号処理する前の送信信号は、例えば、画像信号や音声信号等である。
 なお、高周波フロントエンド回路230は、上記デュプレクサ201A,201Bに代わり、デュプレクサ201A,201Bの変形例に係るデュプレクサを備えていてもよい。
 他方、通信装置240におけるフィルタ231,232は、ローノイズアンプ回路214,224及びパワーアンプ回路234a,234b,244a,244bを介さず、RF信号処理回路203とスイッチ225との間に接続されている。フィルタ231,232も、デュプレクサ201A,201Bと同様に、スイッチ225を介してアンテナ素子202に接続される。
 以上のように構成された高周波フロントエンド回路230及び通信装置240によれば、本発明の弾性波装置である、弾性波共振子、フィルタ、デュプレクサ、3以上のフィルタを備えるマルチプレクサ等を備えることにより、配線電極などの金属層に起因したバリが生じ難い。
 以上、本発明の実施形態に係る弾性波装置、高周波フロントエンド回路及び通信装置について、実施形態及びその変形例を挙げて説明したが、本発明は、上記実施形態及び変形例における任意の構成要素を組み合わせて実現される別の実施形態や、上記実施形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本発明に係る高周波フロントエンド回路及び通信装置を内蔵した各種機器も本発明に含まれる。
 本発明は、弾性波共振子、フィルタ、マルチバンドシステムに適用できるマルチプレクサ、フロントエンド回路及び通信装置として、携帯電話などの通信機器に広く利用できる。
1,21,31…弾性波装置
2,22,32…圧電体
2a,20a,32a…第1の主面
2b,20b…第2の主面
2c…端縁
3,8…第1,第2の機能電極
4…配線電極
4a…先端部分
4b…他の部分
5…IDT電極
6,7…反射器
9…レーザー光
10…改質層
20…マザーの圧電体
23…低音速膜
24…高音速部材
33…支持基板
34…支持層
35…中空部
201A,201B…デュプレクサ
202…アンテナ素子
203…RF信号処理回路
211,212…フィルタ
214…ローノイズアンプ回路
221,222…フィルタ
224…ローノイズアンプ回路
225…スイッチ
230…高周波フロントエンド回路
231,232…フィルタ
234a,234b…パワーアンプ回路
240…通信装置
244a,244b…パワーアンプ回路

Claims (8)

  1.  主面を有する、圧電体と、
     前記圧電体の前記主面上に設けられた、IDT電極と、
     前記圧電体の前記主面上に設けられており、前記IDT電極と電気的に接続されている、配線電極と、
    を備え、
     前記配線電極が、前記圧電体における前記主面の端縁に至っている部分を有し、
     前記端縁における前記配線電極の幅が、前記端縁ではない部分における前記配線電極の幅より狭くなっている、弾性波装置。
  2.  前記端縁における前記配線電極の曲率半径が、3μm以下である、請求項1に記載の弾性波装置。
  3.  前記圧電体を伝搬する弾性波の音速よりも、伝搬するバルク波の音速が高速である高音速部材と、
     前記高音速部材上に積層されており、前記圧電体を伝搬する弾性波の音速よりも、伝搬するバルク波の音速が低速である低音速膜と、
    をさらに備え、
     前記低音速膜上に、前記圧電体が設けられている、請求項1又は2に記載の弾性波装置。
  4.  前記IDT電極の電極指ピッチで定まる波長をλとしたときに、前記圧電体の厚みが、3.5λ以下である、請求項3に記載の弾性波装置。
  5.  マザーの圧電体の第1の主面上に、複数のIDT電極と、前記IDT電極と電気的に接続されている、配線電極とを形成する工程と、
     前記複数のIDT電極及び前記配線電極が設けられた前記マザーの圧電体を、分割線に従って複数に分割することにより個片化し、前記IDT電極及び前記配線電極を有する弾性波装置を得る工程と、
    を備え、
     前記配線電極を形成するに際し、前記配線電極が前記分割線上を横断する部分を有するように、前記配線電極を形成し、
     前記分割線上にある前記配線電極の幅が、前記分割線上にない前記配線電極の幅より狭くなるように、前記配線電極を形成する、弾性波装置の製造方法。
  6.  前記複数のIDT電極及び前記配線電極が設けられた前記マザーの圧電体を分割する前に、前記マザーの圧電体の前記第1の主面とは反対側の第2の主面における前記分割線上にレーザー光を照射する、請求項5に記載の弾性波装置の製造方法。
  7.  請求項1~4のいずれか1項に記載の弾性波装置と、
     パワーアンプと、
    を備える、高周波フロントエンド回路。
  8.  請求項7に記載の高周波フロントエンド回路と、
     RF信号処理回路と、
    を備える、通信装置。
PCT/JP2017/033053 2016-11-29 2017-09-13 弾性波装置及びその製造方法、高周波フロントエンド回路、並びに通信装置 WO2018100840A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/400,110 US11631799B2 (en) 2016-11-29 2019-05-01 Elastic wave device and manufacturing method therefor, radio-frequency front-end circuit, and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016230916 2016-11-29
JP2016-230916 2016-11-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/400,110 Continuation US11631799B2 (en) 2016-11-29 2019-05-01 Elastic wave device and manufacturing method therefor, radio-frequency front-end circuit, and communication device

Publications (1)

Publication Number Publication Date
WO2018100840A1 true WO2018100840A1 (ja) 2018-06-07

Family

ID=62242658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033053 WO2018100840A1 (ja) 2016-11-29 2017-09-13 弾性波装置及びその製造方法、高周波フロントエンド回路、並びに通信装置

Country Status (2)

Country Link
US (1) US11631799B2 (ja)
WO (1) WO2018100840A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021184863A1 (zh) * 2020-03-17 2021-09-23 中芯集成电路(宁波)有限公司 一种薄膜体声波谐振器及其制造方法及滤波器、电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011003674A (ja) * 2009-06-17 2011-01-06 Renesas Electronics Corp 半導体装置の製造方法、半導体チップ及び半導体ウェハ
JP2011114332A (ja) * 2009-11-30 2011-06-09 Hitachi Cable Film Device Ltd 半導体装置用配線基板及びそれを用いた半導体装置
JP2014060806A (ja) * 2011-01-31 2014-04-03 Kyocera Corp 分波器、分波器モジュールおよび通信装置
WO2015025618A1 (ja) * 2013-08-20 2015-02-26 株式会社 村田製作所 弾性表面波デバイス及びその製造方法
JP2015138828A (ja) * 2014-01-21 2015-07-30 京セラ株式会社 多数個取り配線基板、配線基板および多数個取り配線基板の製造方法
WO2016084526A1 (ja) * 2014-11-28 2016-06-02 株式会社村田製作所 弾性波装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5051483B2 (ja) * 2008-10-24 2012-10-17 株式会社村田製作所 電子部品、およびその製造方法
JP5882053B2 (ja) 2011-12-28 2016-03-09 太陽誘電株式会社 弾性波デバイスの製造方法
JP6092535B2 (ja) * 2012-07-04 2017-03-08 太陽誘電株式会社 ラム波デバイスおよびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011003674A (ja) * 2009-06-17 2011-01-06 Renesas Electronics Corp 半導体装置の製造方法、半導体チップ及び半導体ウェハ
JP2011114332A (ja) * 2009-11-30 2011-06-09 Hitachi Cable Film Device Ltd 半導体装置用配線基板及びそれを用いた半導体装置
JP2014060806A (ja) * 2011-01-31 2014-04-03 Kyocera Corp 分波器、分波器モジュールおよび通信装置
WO2015025618A1 (ja) * 2013-08-20 2015-02-26 株式会社 村田製作所 弾性表面波デバイス及びその製造方法
JP2015138828A (ja) * 2014-01-21 2015-07-30 京セラ株式会社 多数個取り配線基板、配線基板および多数個取り配線基板の製造方法
WO2016084526A1 (ja) * 2014-11-28 2016-06-02 株式会社村田製作所 弾性波装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021184863A1 (zh) * 2020-03-17 2021-09-23 中芯集成电路(宁波)有限公司 一种薄膜体声波谐振器及其制造方法及滤波器、电子设备

Also Published As

Publication number Publication date
US20190259933A1 (en) 2019-08-22
US11631799B2 (en) 2023-04-18

Similar Documents

Publication Publication Date Title
US11616191B2 (en) Elastic wave device
JP6779216B2 (ja) 弾性波装置、高周波フロントエンド回路及び通信装置
WO2018163860A1 (ja) 弾性波装置、高周波フロントエンド回路、通信装置及び弾性波装置の製造方法
JP6809595B2 (ja) 弾性波装置、高周波フロントエンド回路及び通信装置
US11177790B2 (en) Acoustic wave device, filter, and multiplexer
KR102142866B1 (ko) 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치
KR102140089B1 (ko) 탄성파 공진기, 필터 및 멀티플렉서
US10938372B2 (en) Acoustic wave resonator, acoustic wave device, and filter
JP6835038B2 (ja) 弾性波装置及び高周波フロントエンド回路
KR102142868B1 (ko) 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치
KR102270389B1 (ko) 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치
WO2018123208A1 (ja) マルチプレクサ、高周波フロントエンド回路及び通信装置
JPWO2020095586A1 (ja) 弾性波装置、分波器および通信装置
JPWO2019138811A1 (ja) 弾性波装置、マルチプレクサ、高周波フロントエンド回路、及び通信装置
JP6547914B2 (ja) 弾性波装置、高周波フロントエンド回路及び通信装置
KR102229772B1 (ko) 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치
WO2018100840A1 (ja) 弾性波装置及びその製造方法、高周波フロントエンド回路、並びに通信装置
JP2018078419A (ja) 弾性波装置、高周波フロントエンド回路及び通信装置
KR102132777B1 (ko) 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치
US11108375B2 (en) Acoustic wave device, method of fabricating the same, filter, and multiplexer
JP2018101849A (ja) 弾性波装置、高周波フロントエンド回路及び通信装置
JP6607323B2 (ja) 弾性波装置、高周波フロントエンド回路及び通信装置
JP6950654B2 (ja) 弾性波装置、高周波フロントエンド回路及び通信装置
CN111566933B (zh) 弹性波装置、高频前端电路以及通信装置和弹性波装置的制造方法
JP7068974B2 (ja) ラダー型フィルタ及びマルチプレクサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17876246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP