WO2018100609A1 - Système de reprise à distance après des pannes d'ascenseur - Google Patents

Système de reprise à distance après des pannes d'ascenseur Download PDF

Info

Publication number
WO2018100609A1
WO2018100609A1 PCT/JP2016/085316 JP2016085316W WO2018100609A1 WO 2018100609 A1 WO2018100609 A1 WO 2018100609A1 JP 2016085316 W JP2016085316 W JP 2016085316W WO 2018100609 A1 WO2018100609 A1 WO 2018100609A1
Authority
WO
WIPO (PCT)
Prior art keywords
elevator
failure
recovery
remote
command
Prior art date
Application number
PCT/JP2016/085316
Other languages
English (en)
Japanese (ja)
Inventor
西山 秀樹
Original Assignee
三菱電機ビルテクノサービス株式会社
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機ビルテクノサービス株式会社, 三菱電機株式会社 filed Critical 三菱電機ビルテクノサービス株式会社
Priority to CN201680091010.8A priority Critical patent/CN110023224B/zh
Priority to KR1020197014636A priority patent/KR102138357B1/ko
Priority to JP2018545507A priority patent/JP6437176B2/ja
Priority to PCT/JP2016/085316 priority patent/WO2018100609A1/fr
Publication of WO2018100609A1 publication Critical patent/WO2018100609A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0087Devices facilitating maintenance, repair or inspection tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B3/00Applications of devices for indicating or signalling operating conditions of elevators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators

Definitions

  • the present invention relates to a system for performing remote recovery when a failure occurs in an elevator.
  • Patent Document 1 Conventionally connected to the control panel that controls the drive of the elevator, and when the elevator breaks down, a communication terminal that transmits a failure signal including an error code, and a failure signal transmitted from the communication terminal is received and corresponds to the error code
  • a monitoring center that searches for failure history data to be transmitted and sends it to the mobile terminal held by maintenance personnel, analyzes the error code received by the mobile terminal owned by the maintenance personnel from the monitoring center, and displays it as recovery contents for each cause of failure
  • An elevator failure recovery support system is known (see, for example, Patent Document 1).
  • the failure recovery support system described in Patent Document 1 allows the maintenance staff to know the details of the elevator failure before arriving at the failed elevator, and can proceed with the recovery work immediately after arrival at the building. It enables recovery work to be performed efficiently.
  • the server searches the database that associates the trouble type information with the recovery information in advance, determines whether the trouble based on the trouble type information received from the image forming apparatus can be automatically recovered, and determines that the trouble can be automatically recovered.
  • the image forming apparatus performs an automatic restoration process, the image forming apparatus determines whether the automatic restoration process is appropriate after the automatic restoration process, sends it to the server, and proposes a management system in which the server updates the database. (For example, refer to Patent Document 2).
  • an object of the present invention is to improve an elevator service.
  • An elevator failure remote recovery system includes an elevator control device that performs elevator drive control, and a remote recovery device that communicates with the elevator control device and causes the elevator to perform a failure recovery operation.
  • the restoration apparatus includes a maintenance database storing at least the specifications of the elevator, the characteristics of the building in which the elevator is installed, the maintenance inspection history of the elevator, the repair history of the elevator, and the failure history of the elevator,
  • the control device transmits a failure signal when the failure of the elevator is detected, and the remote recovery device refers to the maintenance database when the failure signal is received, and the elevator or the building is predetermined. If the specific requirements apply, the elevator Characterized in that it prohibits the recovery operation.
  • the specific requirements are that the elevator is not of a specification that can be remotely recovered, that the elevator is performing maintenance inspection or repair most recently, and that the elevator control device is closest. At least one or any one of transmitting another failure signal including a similar failure code, and having a characteristic that the building is frequently erroneously transmitting a failure signal from the elevator installed in the building. A combination of these may be used.
  • the remote recovery device includes a remote monitoring center including a display for displaying the elevator failure status, and the remote recovery device prohibits the elevator recovery operation. May display a dispatch instruction of a technician who performs inspection or repair of the elevator on the display.
  • the failure signal includes a failure code of the elevator
  • the remote recovery device refers to the maintenance database when the failure signal is received, and the elevator or the
  • a restoration command and a restoration diagnosis command corresponding to the failure code included in the failure signal are transmitted to the elevator control device, and the elevator control device is notified of the elevator.
  • a recovery operation and a recovery diagnosis operation may be executed.
  • the recovery command is a command corresponding to a failure factor having a large number of failures among a plurality of failure factors corresponding to the failure code, or a plurality of recovery commands corresponding to the failure code. It is good also as a command with a high restoration rate which is a rate which the elevator restored by the restoration command among the commands.
  • the elevator control device determines whether the elevator has been recovered by the recovery diagnosis operation after the recovery operation executed in response to the recovery command, and the determination result is
  • the remote recovery device associates the failure code, the number of the failure factors corresponding to the failure code, the recovery command, the recovery diagnostic command, and the recovery rate.
  • a recovery diagnosis database may be provided, and the number of failure factors corresponding to the failure code and the recovery rate may be updated based on the determination result of whether or not the elevator transmitted from the elevator control device has been recovered.
  • the present invention can improve the operation service of the elevator.
  • the remote recovery system 100 communicates with the elevator control device 200 that performs drive control of the elevator 20 disposed in the hoistway 11 of the building 10, and the elevator control device 200, and the elevator 20 fails.
  • a remote recovery device 300 for performing the recovery operation There may be one elevator 20 or a plurality of elevators 20 that cause the remote recovery device 300 to perform the recovery operation.
  • each elevator 20 may be installed in the same building 10 or may be installed in different buildings 10.
  • the elevator control device 200 includes a control panel 210 that performs drive control of the elevator 20 and a communication device 250.
  • the control panel 210 is a computer including a CPU and a memory inside.
  • the remote recovery device 300 includes a remote monitoring center 310 including a communication device 320 and a monitoring panel 330, an information processing device 360, a maintenance database 370, and a recovery diagnosis database 380.
  • the remote monitoring center 310, the information processing apparatus 360, the maintenance database 370, and the recovery diagnosis database 380 may be installed in the same place, or may be installed in different places and connected to each other via an Internet line or the like. Good.
  • the communication device 250 is connected to the control panel 210 and transmits an output from the control panel 210 to the communication network 30. Further, the communication device 250 receives a command for the control panel 210 selected by the information processing device 360 with reference to the recovery diagnosis database 380 via the communication device 320 and the communication network 30 and outputs the command to the control panel 210.
  • the communication device 320 receives a signal from the control panel 210 via the communication device 250 and the communication network 30 and outputs the signal to the information processing device 360. In addition, the communication device 320 transmits a command for the control panel 210 selected by the information processing device 360 to the communication network 30.
  • the communication devices 250 and 320 may be devices that perform wireless communication or devices that perform wired communication.
  • the communication network 30 may be an Internet communication network or a telephone line network.
  • the remote monitoring center 310 is provided with a monitoring panel 330 that exchanges data with the information processing device 360 and monitors the operation status and failure status of the elevator 20.
  • the monitoring panel 330 is provided with a display 331 for displaying an operation status of the elevator 20, a failure status, a notification from the information processing device 360, and the like, and a switch 332 for operating the display of the display 331.
  • the monitoring panel 330 is provided with a telephone 333 that communicates with the service center 340 via the communication network 35.
  • the maintenance database 370 stores history data such as specifications, inspections, maintenance, and repairs of the elevator 20.
  • the restoration diagnosis database 380 stores a plurality of failure factors corresponding to the failure code output from the control panel 210 of the elevator 20, the number of cases, and data such as a restoration rate.
  • the information processing apparatus 360 is a computer that includes a CPU and a memory therein.
  • the information processing device 360 refers to the data of the recovery diagnosis database 380 when a failure signal output from the control panel 210 when a failure occurs in the elevator 20 is input via the communication devices 250 and 320 and the communication network 30. Then, the restoration command and the restoration diagnosis command corresponding to the failure code included in the failure signal are selected. The selected restoration command and restoration diagnosis command are input to the control panel 210 via the communication devices 250 and 320 and the communication network 30, and cause the elevator 20 to execute a restoration operation and a restoration diagnosis operation.
  • the maintenance database 370 includes elevator specification data 371, inspection history data 372, maintenance work history data 373, remote inspection history data 374, modulation history data 375, repair work history data 376, failure history data 377.
  • the failure factor-specific data 378 is stored.
  • elevator specification data 371, inspection history data 372, maintenance work history data 373, remote inspection history data 374, modulation history data 375, repair work history data 376, failure history data 377, by failure factor The data structure of the data 378 will be described.
  • the elevator specification data 371 has a data structure for storing the management number, model, date of manufacture, manufacturing number, name of the installed building, and usage data of the installed building of the elevator 20.
  • the use of the installed building is, for example, an office, a general residence, a restaurant, a school, and the like.
  • the inspection history data 372 has a data structure for storing the control number of the elevator 20, the date and time of inspection conducted by the engineer 350 on the site, inspection items, and inspection result data.
  • the inspection includes, for example, inspection of the open / closed state of the doors 13 and 26 of the elevator 20 shown in FIG. 23 inspection, traveling speed inspection, and the like.
  • whether or not an abnormality has been found as a result of the inspection whether an abnormality has not been found but maintenance work such as cleaning is necessary, or parts need to be replaced soon are input as the inspection result.
  • reference numeral 25 denotes a weight.
  • the maintenance work history data 373 has a database structure for storing the control number of the elevator 20, the maintenance work date and time of the elevator 20 performed by the engineer 350 in the field, maintenance work items, and maintenance work results.
  • the maintenance work items include, for example, inspection of the operation state of the elevator 20, cleaning of the door rail of the elevator 20, refueling to the driving device 24 shown in FIG. 1, adjustment of the brake of the elevator 20, and the like. The results of maintenance, cleaning, refueling, adjustment, etc. are entered in the maintenance work results.
  • the remote inspection history data 374 has a data structure for storing the control number of the elevator 20, the remote inspection date and time, the remote inspection item, and the remote inspection result.
  • the remote inspection of the elevator 20 is performed by the control panel 210 of the elevator 20 according to a preset schedule such as once a month, for example.
  • the control panel 210 of the elevator 20 moves the cage 22 of the elevator 20 shown in FIG. 1 to a predetermined floor. During this movement, various sensors attached to the elevator 20 are checked for abnormalities in driving performance (acceleration, presence or absence of abnormal noise), door opening / closing, brakes, emergency batteries, external communication devices, and the like.
  • the inspection result is stored in the remote inspection history data 374 from the information processing device 360 via the communication devices 250 and 320 and the communication network 30.
  • the remote inspection may be performed according to an instruction from the remote monitoring center 310.
  • the modulation history data 375 has a data structure for storing the management number of the elevator 20, the modulation occurrence date and time, the modulation item, and the modulation correspondence result.
  • the modulation of the elevator 20 refers to a case where the result of the inspection, inspection, maintenance work or remote inspection by the engineer 350 does not reach the abnormal value but changes from the normal value of the elevator 20. . For example, as a result of checking the traveling speed, the value is within the allowable value, but when the previous check or when the deviation of the elevator 20 from the value of the previous check result is large, the modulation item Recorded as “traveling speed”.
  • the repair work history data 376 has a data structure for storing the control number of the elevator 20, the repair work date, the repair work item, and the repair work result.
  • the repair work is a restoration work by replacement of parts such as replacement of the wire 23, replacement of the hanger roller, replacement of the brake pad, replacement of the control board, and replacement of the relay. Therefore, the name of the replacement part such as “wire replacement”, “hanger roller replacement”, “brake pad replacement”, etc. is entered in the repair work item, and “repair work completed”, “re-repair” are entered in the repair work result column. Items such as “Necessary” are entered.
  • the failure history data 377 has a data structure for storing a management number of the elevator 20, a failure occurrence date and time, a failure code, a recovery method, and a recovery determination result.
  • the failure code is a code output from the control panel 210 when a failure occurs in the elevator 20 or a combination of numbers and English letters.
  • the types of failure codes are, for example, about 1000 types.
  • the restoration method item is input as “engineer dispatch”.
  • the item of the recovery method for example, when the remote recovery system 100 recovers, “Remote recovery” is input.
  • “Recovery” is input.
  • “failure” is input.
  • the failure factor-specific data 378 includes the number of failure factors corresponding to the failure code as a result of inspection and inspection by the engineer 350 when a certain failure code is output from the control panel 210, and remote Stored is the total number of failure factors corresponding to the failure code when the recovery system 100 recovers. For example, when the failure code is 0001 indicating a failure related to the doors 13 and 26, the engineer 350 inspected the site, and as a result, the cause of the output of the failure code “0001” is the clogging of the door sill (failure factor 1). Or a contact failure of the switch of the door opening / closing device (failure factor 2), or other failure factor 3.
  • the failure factor-specific data includes 100 cases of a door clogging factor (failure factor 1) when a failure code “0001” is output, and a contact failure of the door opening / closing device switch (failure factor 2). ) In the data structure such that 50 cases and other failure factor 3 cases are 10 cases, and the data is arranged in descending order of the number of cases. In the case of recovery by the remote recovery system 100, when the elevator 20 is successfully recovered by the recovery command, the number of failure factors corresponding to the failure code that is the basis of the recovery command is added to the total number of failure factors.
  • the restoration diagnosis database 380 includes a restoration diagnosis instruction set that is a set of restoration instructions and restoration diagnosis instructions in descending order of the number of failure causes in the failure cause-specific data 378, and elevators by executing the restoration instructions. Stored is a recovery rate (%), which is the rate at which 20 failures have been recovered.
  • the restoration diagnosis database 380 is a database in which the restoration diagnosis command set and the restoration rate are linked to the failure factor-specific data 378 described above.
  • the data configuration of the recovery diagnosis database 380 when the failure code is “0001” indicating a failure related to the doors 13 and 26 will be described. If the door sill is clogged (Failure factor 1), the restoration diagnosis data will be “Failure factor 1”, “Door circuit reset + door high torque open / close” as the restoration command, and “Door open / close diagnostic” as the restoration diagnostic command.
  • the data structure is such that a recovery diagnosis command set A, which is a set of two commands, and a recovery rate x% by a recovery operation by this recovery command are linked.
  • the restoration diagnosis data is “door circuit reset + door opening / retry retry” as the restoration command and the “door opening / closing retry” command as the restoration diagnosis command.
  • This is a data structure in which a recovery diagnosis command set B, which is a set of two “diagnosis” commands, and a recovery rate y% of a recovery operation by this recovery command are linked.
  • the recovery diagnosis data has a data configuration in which the recovery diagnosis command set C and the recovery rate z% are linked to the number data of the failure factor 3.
  • the recovery diagnosis database 380 includes the failure code, the failure factor corresponding to the failure code, the number of the failure factors, the recovery diagnosis command set that is a set of the recovery command and the recovery diagnosis, and the recovery rate. It is stored in the database in association.
  • the recovery rate y% is a larger value than the recovery rates x% and z%
  • the recovery diagnosis command set B has a higher recovery rate than the recovery diagnosis command set A and the recovery diagnosis command set C. ing.
  • the operation of the remote recovery system 100 when a failure signal is transmitted from the elevator 20 will be described with reference to FIGS. 2 and 5 to 7.
  • the remote recovery operation when the failure code signal “0001” related to the doors 13 and 26 is transmitted will be described.
  • the remote recovery system 100 also supports the case where a failure code regarding other parts is transmitted. Is possible.
  • the control panel 210 of the elevator 20 determines whether or not a failure has occurred in the elevator 20.
  • a failure relating to the doors 13 and 26 of the elevator 20 for example, a failure such as a door opening / closing failure
  • the control panel 210 displays a failure code “0001” indicating the failure occurrence date and time and the failure is a failure relating to the door. Output to 250. If no failure occurs in the elevator 20, the control panel 210 returns to the beginning of step S ⁇ b> 101 and continues monitoring the elevator 20.
  • the communication device 250 When the failure code “0001” is input from the control panel 210, the communication device 250, as shown in step S102 of FIGS. 2 and 5, includes the failure code “0001”, the management number of the elevator 20, and the failure occurrence date and time.
  • a signal is transmitted to the communication network 30. 2 and 5, the communication device 320 of the remote monitoring center 310 receives the failure signal transmitted from the communication device 250 via the communication network 30.
  • the communication device 320 When receiving the failure signal, the communication device 320 outputs the failure code “0001” included in the failure signal, the management number of the elevator 20, and the failure occurrence date and time to the information processing device 360.
  • the information processing apparatus 360 stores the input failure code “0001”, the management number of the elevator 20, and the failure occurrence date / time in the failure history data 377 of the maintenance database 370.
  • the information processing apparatus 360 determines whether the elevator 20 or the building 10 meets a specific requirement, as shown in step S104 of FIG. As shown in FIG. 7, this determination is made based on whether the elevator 20 or the building 10 corresponds to at least one or any combination of the following (a) to (d). In such a case, it is often better to prohibit the remote recovery operation and dispatch the engineer 350 to the site.
  • the elevator 20 is not a specification that can be remotely restored.
  • the elevator 20 is performing maintenance inspection or repairs most recently.
  • the elevator 20 has recently transmitted a failure signal including a similar failure code.
  • the building 10 is a building where there are many erroneous transmissions of failure signals from the elevator 20.
  • the information processing apparatus 360 determines whether or not the failed elevator 20 can be recovered remotely (requirements (a) to (d)) as follows. As shown in FIG. 2 and FIG. 3, the information processing device 360 acquires the model, manufacturing date, and manufacturing number of the elevator 20 from the elevator specification data 371 using the management number of the elevator 20, and the elevator 20 is a remote recovery device. It is confirmed whether the specification is such that the recovery operation and the recovery diagnosis operation can be performed by the recovery command and the recovery diagnosis command from 300. And when the elevator 20 is not a specification which can be remote-recovered, it judges that it corresponds to requirement (a).
  • the information processing apparatus 360 refers to the inspection history data 372, maintenance work history data 373, remote inspection history data 374, modulation history data 375, and repair work history data 376 shown in FIG. If repair is being performed, it is determined that the condition (b) is met.
  • the information processing apparatus 360 refers to the inspection history data 372 shown in FIG. 2 in more detail, confirms whether there is an instruction for adjustment or the like in the latest inspection of the elevator 20, and confirms whether the processing has been completed. It may be determined that the elevator 20 corresponds to the requirement (b) when is not completed.
  • the information processing device 360 refers to the maintenance work history data 373 shown in FIG. 2 in more detail, and if the information processing device 360 corresponds to at least one or any combination of the following (e) to (h): It may be determined that 20 corresponds to requirement (b).
  • E When maintenance work is planned on the day and the elevator 20 may be under maintenance.
  • F When there is a maintenance plan for the elevator 20 immediately or on the day, and the possibility of an adjustment error in the maintenance work is predicted from the contents of the maintenance work result.
  • G The maintenance work plan for the elevator 20 is significantly delayed.
  • H A request for replacement of parts of the elevator 20 has been issued and replacement has not been completed.
  • the information processing device 360 refers to the remote inspection history data 374 shown in FIG. 2 in more detail, and if there is an abnormality diagnosis result such as a brake failure in the latest remote inspection, the elevator 20 satisfies the requirement (b). You may judge it to be true.
  • the information processing device 360 refers to the modulation history data 375 shown in FIG. 2 in more detail, and the modulation has recently occurred in the height difference between the floor 27 of the elevator 20 and the floor 12 of the building 10. Or when the sound is modulated, it may be determined that the elevator 20 meets the requirement (b).
  • the information processing apparatus 360 may refer to the repair work history data 376 in more detail, and may determine that the elevator 20 meets the requirement (b) when parts replacement is performed in the latest repair work. This is because there is a possibility of construction failure due to repair work.
  • the information processing device 360 refers to the failure history data 377 shown in FIG. 2, and when the failure signal including the same failure code is transmitted from the elevator 20 recently, the elevator 20 satisfies the requirement (c). Judge as applicable.
  • the information processing apparatus 360 uses the management number of the elevator 20 to determine that the building 10 is a requirement (d) if the building 10 is a building with many false signal transmissions from the elevator specification data 371 and the failure history data 377. ). This is because the possibility of erroneous transmission of a failure signal due to mischief or the like is great.
  • the information processing device 360 If the elevator 20 or the building 10 corresponds to any one of the requirements (a) to (d) or a combination of the requirements in step S104 in FIG. 5, the information processing device 360 is in step S104 in FIG. It is judged as YES. 2 and 5, the information processing apparatus 360 outputs a signal notifying the remote monitoring center 310 that remote recovery is not possible. As shown in FIG. 2, this output is displayed on the display 331 of the remote monitoring center 310. After confirming this display, the supervisor 334 causes the elevator 20 to stop operating and announce as shown in step S125 of FIGS. 2 and 6. In addition, the supervisor 334 instructs the service center 340 near the building 10 to dispatch the engineer 350 to the building 10 by the telephone 333 as shown in Step S126 of FIGS.
  • the information processing apparatus 360 determines NO in step S104 of FIG. 2 and 5, the information processing apparatus 360 outputs a signal for notifying the remote monitoring center 310 of the start of remote recovery. This signal is displayed on the display 331 of the remote monitoring center 310. As a result, the supervisor 334 of the remote monitoring center 310 is notified that the remote recovery of the elevator 20 is started.
  • the maintenance database 370 displays the input failure code “0001”, the management number of the elevator 20, and the failure occurrence date and time in step S103 of FIG. Stored in the failure history data 377. Then, the information processing apparatus 360 ends the remote recovery operation without updating other data in the maintenance database 370 and updating the recovery diagnosis database 380.
  • step S ⁇ b> 106 of FIG. 5 the information processing apparatus 360 selects a restoration command and a restoration diagnosis command corresponding to the failure code “0001”.
  • the recovery diagnosis database 380 is a database in which the recovery factor instruction data and the recovery rate are linked to the failure factor-specific data 378.
  • the data configuration of the recovery diagnosis database 380 when the failure code is “0001” indicating a failure relating to the doors 13 and 26 will be briefly described again.
  • the restoration diagnosis data is “door circuit reset + door high-torque opening / closing” as the restoration command, and “door opening / closing” as the restoration diagnosis command.
  • This is a data structure in which a recovery diagnosis command set A, which is a set of two commands “diagnosis”, and a recovery rate x% by a recovery operation by this recovery command are linked.
  • the restoration diagnosis data is “door circuit reset + door opening / retry retry” as the restoration command, and the restoration diagnosis command is “”
  • the restoration diagnosis data is “door circuit reset + door opening / retry retry” as the restoration command
  • the restoration diagnosis command is “ This is a data structure in which a recovery diagnosis command set B, which is a set of two commands for “door opening / closing diagnosis”, and a recovery rate y% of a recovery operation by this recovery command are linked.
  • the recovery diagnosis data is a database in which the recovery diagnosis command set C and the recovery rate z% are linked to the number of failures factor 3 data.
  • the recovery rate y% is larger than the recovery rates x% and z%
  • the recovery diagnosis command set B has a recovery rate higher than that of the recovery diagnosis command set A and the recovery diagnosis command set C. It is high.
  • the information processing apparatus 360 may select, as a recovery command, a command corresponding to the failure factor having the largest number of cases among the plurality of failure factors corresponding to the failure code “0001”. Further, the information processing apparatus 360 may select a command having the highest recovery rate among a plurality of commands corresponding to the failure code “0001” as a recovery command. Then, the information processing device 360 selects a restoration diagnosis command set that is set together with the restoration command selected by the restoration diagnosis command corresponding to the selected restoration command.
  • the information processing apparatus 360 selects a command corresponding to a failure factor having the largest number of cases among a plurality of failure factors corresponding to the failure code “0001” as a recovery command.
  • the information processing device 360 refers to the recovery diagnosis database 380 and performs a recovery operation corresponding to the door sill clogging (failure factor 1) that is the most frequent failure factor when the failure code is “0001” as the recovery command.
  • a restoration diagnosis command set consisting of “door door reset + door opening / retry retry” that is a restoration command to be executed and “door opening / closing diagnosis” that is a restoration diagnosis command that executes a restoration diagnosis operation corresponding to the result of the restoration operation Select A.
  • the information processing apparatus 360 selects a command having the highest recovery rate among a plurality of commands corresponding to the failure code “0001” as a recovery command.
  • the information processing apparatus 360 refers to the recovery diagnosis database 380 and confirms the recovery rate with the highest recovery rate corresponding to the failure code “0001” as the recovery command.
  • the information processing apparatus 360 performs a restoration command for executing a restoration operation corresponding to the factor (failure factor 2) caused by the contact failure of the switch having the highest restoration rate y%, “door circuit reset + door opening / closing retry”,
  • a restoration diagnosis command set B including two “door opening / closing diagnosis” which is a restoration diagnosis command for executing a restoration diagnosis operation corresponding to the result of the restoration operation is selected.
  • the selection of whether to be based on the most frequent failure factor corresponding to the failure code “0001” or based on the recovery rate of the recovery diagnosis command set corresponding to the failure code “0001” is as follows: You may do as follows. For example, of the ratio of the maximum number of cases to the next number of cases (number of cases ratio) and the ratio of the maximum recovery rate and the next recovery rate (recovery rate ratio), You may select the one where the maximum value protrudes. Further, for example, if the previous remote recovery has failed, a different selection method may be used. Further, the selection of the restoration diagnosis command set may be determined by, for example, the model and specification of the elevator 20.
  • the information processing apparatus 360 selects the restoration diagnosis instruction set A based on the failure factor 1 having the largest number corresponding to the failure code “0001”.
  • the information processing apparatus 360 transmits the selected restoration diagnosis command set A from the communication device 320 as shown in step S107 of FIGS. 2 and 5, when receiving the recovery diagnosis command set A from the communication device 320, the communication device 250 outputs the recovery command and the recovery diagnosis command to the control panel 210.
  • the control panel 210 determines that the elevator 20 is stopped, the weight sensor of the cage 22, the camera in the cage 22, the output of the person sensor in the cage 22, etc. Make sure there are no passengers inside.
  • the control panel 210 confirms that the elevator 20 is stopped and that there are no passengers in the basket 22, the control panel 210 "starts remote recovery from now on” from the speaker of the communication device installed in the basket 22. The elevator door will open and close. "
  • the control panel 210 proceeds to step S110 in FIG. 5 and executes a recovery operation according to the recovery command. Since the received restoration command is “door circuit reset + door high torque opening / closing” which is a restoration command for executing a restoration operation corresponding to the garbage clogging of the door sill (fault factor 1), the control panel 210 First, the door circuit of the control panel 210 is reset. This operation resets the state in which the door circuit cannot open or close the door 13 or the door 26 and detects the open (or closed) state or the half-open (or half-closed) state, and opens or closes the door 13 or the door 26. This is a possible operation.
  • the control panel 210 increases the torque of the drive motor of the door 13 and the door 26 by 20 to 30% than usual, and opens and closes the door 13 and the door 26 with a force larger than usual.
  • This operation is an operation in which the garbage stuck in the door sill is moved from the sill and the opening / closing operation of the doors 13 and 26 is restored to the normal state.
  • the control panel 210 restores the garbage stuck in the thresholds of the doors 13 and 26 to check whether the doors 13 and 26 have been opened and closed. “Door open / close diagnosis” which is a diagnosis command is executed.
  • the control panel 210 opens and closes the door 13 and the door 26 with a normal torque, and can the opening and closing operation be performed within a predetermined opening / closing time, or whether the current of the drive motor for the door 13 and the door 26 is larger than usual. Confirm. Next, the control panel 210 opens and closes the doors 13 and 26 by lowering the torque of the drive motor by about 20% than usual, and checks whether there is any abnormality in the opening and closing time.
  • step S113 the control panel 210 outputs a determination result signal that the elevator 20 has been restored.
  • This signal is transmitted from the communication device 250 to the communication network 30.
  • the transmitted determination result signal is received by the communication device 320 as shown in step S ⁇ b> 114 of FIG. 6, and the determination result is input to the information processing device 360.
  • the determination result is notified from the information processing apparatus 360 to the remote monitoring center 310 as shown in step S115 of FIG. 6, and the result is displayed on the display 331 of the remote monitoring center 310.
  • the monitor 334 of the remote monitoring center 310 confirms this display, as shown in step S116 of FIG. 6, the operation of the elevator 20 is resumed and an announcement operation is performed. Further, the information processing apparatus 360 updates the maintenance database 370 and the recovery diagnosis database 380 as shown in steps S117 and S118 of FIG.
  • step S119 the control panel 210 outputs a determination result signal indicating that the restoration of the elevator 20 has failed.
  • This signal is transmitted from the communication device 250 to the communication network 30.
  • the transmitted determination result signal is received by the communication device 320 as shown in step S120 of FIG. 6, and the determination result is input to the information processing device 360. Further, the determination result is notified from the information processing apparatus 360 to the remote monitoring center 310 as shown in step S121 of FIG. 6, and the result is displayed on the display 331 of the remote monitoring center 310.
  • the supervisor 334 After confirming this display, the supervisor 334 performs an instruction to stop the operation of the elevator 20 and an announcement operation as shown in step S122 of FIG. In addition, the supervisor 334 instructs the service center 340 near the building 10 to dispatch the engineer 350 to the building 10 by the telephone 333 as shown in step S123 of FIGS. Further, the information processing apparatus 360 updates the maintenance database 370 and the recovery diagnosis database 380 as shown in steps S117 and S118 of FIG.
  • the information processing apparatus 360 updates the maintenance database 370 as follows, when the determination signal that the elevator 20 has been restored as shown in step S113 of FIG. 5 is input.
  • the information processing apparatus 360 displays “remote recovery” in the recovery method item of the failure history data 377, and the recovery determination result. Store “Recovery” in the item.
  • the communication device 320 receives the failure signal
  • the information processing device 360 maintains the failure code “0001” input from the communication device 320, the management number of the elevator 20, and the failure occurrence date and time.
  • the failure history data 377 of the database 370 is stored. Accordingly, all items of the failure history data 377 are updated by storing the current recovery method and the recovery determination result.
  • the information processing apparatus 360 refers to the recovery diagnosis database 380 and clogs the door sill that is the most frequent failure factor (failure factor 1) when the failure code is “0001” as the recovery command. 2) of “door circuit reset + door open / retry retry” that is a recovery command for executing a recovery operation corresponding to (2)) and “door open / close diagnosis” that is a recovery diagnostic command for executing a recovery diagnostic operation corresponding to the result of this recovery operation.
  • a recovery diagnosis command set A consisting of two is selected and a recovery operation and a recovery diagnosis operation are executed.
  • the number of failure codes “0001” and failure factor 1 (garbage clogs on the door sill) in the restoration diagnosis database 380 is increased by one, and the restoration rate corresponding to the number of successful restorations.
  • the information processing device 360 increases the number of failure factors 1 of the failure code “0001” in the failure factor-specific data 378 by one.
  • the information processing device 360 updates the maintenance database 370 and the restoration diagnosis database 380 as follows when the determination signal indicating that the restoration of the elevator 20 has failed as shown in step S119 of FIG. 5 is input.
  • the information processing apparatus 360 displays “remote recovery” in the recovery method item of the failure history data 377, and a recovery determination. Store “failure” in the result item. Further, the number of cases of failure code “0001” and failure factor 1 (garbage on the door sill) in the restoration diagnosis database 380 is left as it is, and the restoration rate is lowered by the amount of restoration failure. Note that if the recovery fails, the number of failure factors 1 of the failure code “0001” in the failure factor-specific data 378 is not changed.
  • the information processing apparatus 360 selects the restoration diagnosis instruction set A based on the most frequent failure factor corresponding to the failure code “0001”.
  • the information processing device 360 selects the recovery diagnosis command set B based on the recovery rate of the recovery diagnosis command set corresponding to the failure code “0001”
  • the normal operation is performed instead of the recovery operation of “door high torque opening / closing”.
  • a difference is that a recovery operation of “door opening / closing retry” in which the opening / closing operation of the doors 13 and 26 is performed again by torque is performed.
  • Other operations are the same as when the restoration diagnosis command set A is selected.
  • the failure diagnosis command set A is selected.
  • the recovery rate of the recovery diagnosis command set A is higher than the recovery rate of the recovery diagnosis command set B, the information processing apparatus 360 has a recovery rate of a plurality of commands corresponding to the failure code “0001”. Even when the highest command is selected as the recovery command, the recovery diagnosis command set A is selected.
  • the recovery rate of the recovery diagnosis command set A becomes relatively high. That is, the recovery rate ratio of the recovery diagnosis command set B to the recovery diagnosis command set A is increased.
  • the restoration rate ratio becomes larger than the number ratio calculated as the ratio of the number of failure factors 1 to the number of failures 2
  • the information processing apparatus 360 recovers among the plurality of commands corresponding to the failure code “0001”. The command with the highest rate is selected as the return command.
  • the information processing apparatus 360 selects the restoration diagnosis command set B having the highest restoration rate when the failure code “0001” is input at the time of the next remote restoration. Further, when the information processing device 360 does not select the restoration diagnosis command set A that has failed to be restored in the previous remote restoration, the failure factor 1 is linked to the failure factor 2 having the largest number corresponding to the failure code “0001”. Restored diagnosis command set B is selected.
  • the information processing apparatus 360 selects the restoration diagnosis command set B having the highest restoration rate among the plurality of instructions corresponding to the failure code “0001” and succeeds in the restoration of the elevator 20, the restoration diagnosis instruction set The recovery rate of B increases. Therefore, in the next remote recovery, the information processing apparatus 360 selects the recovery diagnosis command set B as in the previous time. On the other hand, if the restoration diagnosis command set B fails to restore the elevator 20, the restoration rate of the restoration diagnosis command set B is lowered. When the recovery rate of the recovery diagnosis command set B is lower than the recovery rate of the recovery diagnosis command set A, the information processing device 360 selects the recovery diagnosis command set A. If the information processing device 360 does not select the recovery diagnosis command set B that has failed to recover in the previous remote recovery, the recovery diagnosis with the high recovery rate corresponding to the failure code “0001” next to the recovery diagnosis command set B Select command set A.
  • the remote recovery system 100 increases the number of failure factors and the recovery rate of the selected recovery diagnosis command set when the remote recovery is successful. In addition, if the remote recovery system 100 fails, the remote recovery system 100 reduces the recovery rate of the selected recovery diagnosis command set without changing the number of failure factors. For this reason, if the remote recovery is successful, there is a high possibility that the recovery diagnosis command set selected in the remote recovery is selected in the next remote recovery. Further, if the remote recovery fails, the possibility that the recovery diagnosis command set selected by the remote recovery is selected at the next remote recovery is reduced. For this reason, as the number of remote restorations increases, the information processing apparatus 360 can select a restoration diagnosis command set having a high possibility of restoration corresponding to the failure code from the restoration diagnosis database 380, and the restoration of the elevator 20 is ensured. Can be improved.
  • the remote recovery system 100 is one or any of the specific requirements (a) to (d) shown in FIG.
  • the remote recovery operation is prohibited and the engineer 350 is dispatched to the site to restore the elevator 20.
  • the remote recovery operation is performed, and on the contrary, it can be suppressed that it takes time until the recovery, so that the operation service of the elevator 20 can be improved.
  • the elevator 20 or the building 10 does not correspond to the specific requirements (a) to (d) shown in FIG. 7, the elevator 20 is restored to the elevator 20 by a command from the remote restoration device 300 arranged at a location away from the elevator 20.
  • the elevator 20 is restored by executing the operation and restoration diagnosis operation. Thereby, the recovery rate in the remote recovery operation can be improved, and the operation service of the elevator 20 can be improved.
  • the remote recovery system 100 can select a failure history data 377, failure factor-specific data 378, so that a recovery diagnosis command set having a high possibility of recovery can be selected in the next remote recovery based on the recovery determination result.
  • the recovery diagnosis database 380 is updated.
  • the information processing apparatus 360 can select a more appropriate restoration diagnosis command set corresponding to the failure code from the restoration diagnosis database 380. Thereby, the restoration of the elevator 20 can be reliably performed, and the time required for the restoration can be shortened to improve the operation service of the elevator 20.

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Indicating And Signalling Devices For Elevators (AREA)

Abstract

L'invention comprend : un dispositif de commande d'ascenseur (200) destiné à entraîner et commander un ascenseur (20) ; et un dispositif de reprise à distance (300) destiné à communiquer avec le dispositif de commande d'ascenseur (200) et à entraîner ce dernier (200) à effectuer une opération de reprise après panne pour l'ascenseur (20). Le dispositif de reprise à distance (300) comprend une base de données de maintenance (370) dans laquelle sont stockés au moins les spécifications pour l'ascenseur (20), les caractéristiques du bâtiment (10) dans lequel est installé l'ascenseur (20), un historique d'inspection de maintenance pour l'ascenseur (20), un historique de réparation pour l'ascenseur (20), ainsi qu'un historique de pannes pour l'ascenseur (20). Lors de la réception d'un signal de panne provenant du dispositif de commande d'ascenseur (200), le dispositif de reprise à distance (300) se réfère à la base de données de maintenance (370) et interdit une opération de reprise pour l'ascenseur (20) si une condition spécifique prédéterminée s'applique à l'ascenseur (20) ou au bâtiment (10). La présente invention permet ainsi d'obtenir un service d'ascenseur amélioré.
PCT/JP2016/085316 2016-11-29 2016-11-29 Système de reprise à distance après des pannes d'ascenseur WO2018100609A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680091010.8A CN110023224B (zh) 2016-11-29 2016-11-29 电梯故障的远程恢复系统
KR1020197014636A KR102138357B1 (ko) 2016-11-29 2016-11-29 엘리베이터 고장의 원격 복구 시스템
JP2018545507A JP6437176B2 (ja) 2016-11-29 2016-11-29 エレベーター故障の遠隔復旧システム
PCT/JP2016/085316 WO2018100609A1 (fr) 2016-11-29 2016-11-29 Système de reprise à distance après des pannes d'ascenseur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/085316 WO2018100609A1 (fr) 2016-11-29 2016-11-29 Système de reprise à distance après des pannes d'ascenseur

Publications (1)

Publication Number Publication Date
WO2018100609A1 true WO2018100609A1 (fr) 2018-06-07

Family

ID=62242483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085316 WO2018100609A1 (fr) 2016-11-29 2016-11-29 Système de reprise à distance après des pannes d'ascenseur

Country Status (4)

Country Link
JP (1) JP6437176B2 (fr)
KR (1) KR102138357B1 (fr)
CN (1) CN110023224B (fr)
WO (1) WO2018100609A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3718943A1 (fr) * 2019-03-26 2020-10-07 KONE Elevators Co., Ltd. Système de surveillance en temps réel, ascenseur ou escalateur le comprenant et procédé associé
CN112249826A (zh) * 2020-10-16 2021-01-22 怀化新大地电脑有限公司 电梯监控系统
CN114476888A (zh) * 2022-01-13 2022-05-13 永大电梯设备(中国)有限公司 电梯参数备份及应用方法与系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003020174A (ja) * 2001-07-10 2003-01-21 Mitsubishi Electric Corp 昇降機の運行保証システム
JP2003256367A (ja) * 2002-03-06 2003-09-12 Seiko Epson Corp 電子機器のエラーに関する情報提供システムおよび電気機器のエラー実績を管理するサーバ
JP2005275631A (ja) * 2004-03-23 2005-10-06 Mitsubishi Electric Information Systems Corp 監視センターサーバ及び監視装置
US20090218178A1 (en) * 2005-07-18 2009-09-03 Lence-Barreiro Juan A Remotely Performed and/or Assisted Restoration of Elevator Service

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3494501B2 (ja) * 1995-05-10 2004-02-09 株式会社日立ビルシステム 保守用携帯端末装置
JP2002230195A (ja) 2001-01-30 2002-08-16 Konica Corp 管理システム、管理装置、中継サーバー、被管理装置及び管理方法
JP2002316780A (ja) * 2001-04-24 2002-10-31 Hitachi Building Systems Co Ltd 地震発生時の作業報告システム
JP2003104644A (ja) 2001-10-01 2003-04-09 Toshiba Elevator Co Ltd エレベーター故障復旧支援システム及び監視センター
JP2008019040A (ja) * 2006-07-12 2008-01-31 Hitachi Building Systems Co Ltd エレベーターの地震管制運転装置
JP2009107814A (ja) * 2007-10-31 2009-05-21 Toshiba Elevator Co Ltd 昇降機の遠隔監視システム
JP5224933B2 (ja) * 2008-06-25 2013-07-03 株式会社日立製作所 エレベーターの復旧運転方法および装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003020174A (ja) * 2001-07-10 2003-01-21 Mitsubishi Electric Corp 昇降機の運行保証システム
JP2003256367A (ja) * 2002-03-06 2003-09-12 Seiko Epson Corp 電子機器のエラーに関する情報提供システムおよび電気機器のエラー実績を管理するサーバ
JP2005275631A (ja) * 2004-03-23 2005-10-06 Mitsubishi Electric Information Systems Corp 監視センターサーバ及び監視装置
US20090218178A1 (en) * 2005-07-18 2009-09-03 Lence-Barreiro Juan A Remotely Performed and/or Assisted Restoration of Elevator Service

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3718943A1 (fr) * 2019-03-26 2020-10-07 KONE Elevators Co., Ltd. Système de surveillance en temps réel, ascenseur ou escalateur le comprenant et procédé associé
CN112249826A (zh) * 2020-10-16 2021-01-22 怀化新大地电脑有限公司 电梯监控系统
CN114476888A (zh) * 2022-01-13 2022-05-13 永大电梯设备(中国)有限公司 电梯参数备份及应用方法与系统

Also Published As

Publication number Publication date
CN110023224A (zh) 2019-07-16
CN110023224B (zh) 2020-09-01
JP6437176B2 (ja) 2018-12-12
JPWO2018100609A1 (ja) 2018-12-06
KR20190062597A (ko) 2019-06-05
KR102138357B1 (ko) 2020-07-28

Similar Documents

Publication Publication Date Title
JP6615386B2 (ja) エレベーターの遠隔監視装置
JP6437176B2 (ja) エレベーター故障の遠隔復旧システム
WO2018100606A1 (fr) Système de reprise à distance pour défaillances d'ascenseur
JP6678771B2 (ja) エレベーターの遠隔運行再開システム
JP6479284B2 (ja) エレベーター故障の遠隔復旧システム
JP6605758B2 (ja) エレベーター故障の遠隔復旧システム
WO2018100604A1 (fr) Système de rétablissement à distance pour pannes d'ascenseur
JP6479285B2 (ja) エレベーター故障の遠隔復旧システム
JP6419360B1 (ja) エレベーターシステム
JP6580276B2 (ja) エレベーター故障の遠隔復旧システム
JP6537745B2 (ja) エレベーターの遠隔監視システム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018545507

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922893

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197014636

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16922893

Country of ref document: EP

Kind code of ref document: A1