WO2018098868A1 - 一种立体显示装置 - Google Patents

一种立体显示装置 Download PDF

Info

Publication number
WO2018098868A1
WO2018098868A1 PCT/CN2016/111639 CN2016111639W WO2018098868A1 WO 2018098868 A1 WO2018098868 A1 WO 2018098868A1 CN 2016111639 W CN2016111639 W CN 2016111639W WO 2018098868 A1 WO2018098868 A1 WO 2018098868A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
display device
sub
microlens array
diffraction grating
Prior art date
Application number
PCT/CN2016/111639
Other languages
English (en)
French (fr)
Inventor
崔宏青
查国伟
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US15/327,544 priority Critical patent/US20180213209A1/en
Publication of WO2018098868A1 publication Critical patent/WO2018098868A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0944Diffractive optical elements, e.g. gratings, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/34Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers
    • G02B30/36Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers using refractive optical elements, e.g. prisms, in the optical path between the images and the observer
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes

Definitions

  • the present invention relates to a display device, and more particularly to a stereoscopic display device.
  • a stereoscopic display device there are mainly two methods for displaying a stereoscopic image by a stereoscopic display device.
  • One is that the viewer must wear the specially treated glasses to view the display device so that the left eye and the right eye receive the image differently, or the left eye and the right eye.
  • the eye images alternate to produce a stereoscopic image; the other is a naked-eye display device, which mainly uses lens technology and grating technology, so that the viewer can see the image seen by the left eye and the right eye without wearing any additional device. Different stereo images are produced.
  • An object of the present invention is to provide a stereoscopic display device for solving the conventional naked-eye display device, in which light rays having different color resists are projected to different viewpoints due to light wavelength dispersion characteristics after passing through different color resists. Therefore, a problem of uneven color mixing causes a visual problem of rainbow ripple phenomenon.
  • the invention provides a stereoscopic display device, comprising:
  • a display panel including a plurality of sub-pixel units
  • a collimating microlens array comprising a plurality of collimating microlenses for receiving the sub Light emitted by the pixel unit and converting the light into parallel rays;
  • a diffraction grating array comprising a plurality of diffraction gratings for receiving the parallel rays and projecting the parallel rays to a preset viewpoint;
  • the collimating microlens array is disposed above the display panel, the diffraction grating array is disposed above the collimating microlens array, the sub-pixel unit, the collimating microlens, and the diffraction grating are one by one correspond;
  • the display panel is an organic light emitting diode display panel, a quantum dot display panel or a quantum dot light emitting diode display panel;
  • the sub-pixel unit is a red sub-pixel unit, a green sub-pixel unit, or a blue sub-pixel unit.
  • a collimating microlens array is disposed above the display panel, and can be realized by providing an independent collimating microlens array film over the display panel.
  • a collimating microlens array is disposed above the display panel, which can be realized by directly forming the collimating microlens array above the display panel.
  • directly forming the collimating microlens array above the display panel comprises:
  • Heating is used to form a molten state and form a microlens topography
  • the photoresist is subjected to a curing process to form the collimating microlens array.
  • the photoresist may be cured by heating or ultraviolet irradiation.
  • the diffraction grating has a period of 200 to 1000 nm.
  • the duty ratio of the diffraction grating is 0.4 to 0.6.
  • the parallel rays can be projected to the preset viewpoint by adjusting the period and azimuth of the diffraction grating.
  • the invention also provides a stereoscopic display device, comprising:
  • a display panel including a plurality of sub-pixel units
  • a collimating microlens array comprising a plurality of collimating microlenses for receiving the sub Light emitted by the pixel unit and converting the light into parallel rays;
  • a diffraction grating array comprising a plurality of diffraction gratings for receiving the parallel rays and projecting the parallel rays to a preset viewpoint;
  • the collimating microlens array is disposed above the display panel, the diffraction grating array is disposed above the collimating microlens array, the sub-pixel unit, the collimating microlens, and the diffraction grating are one by one correspond.
  • a collimating microlens array is disposed above the display panel, and can be realized by providing an independent collimating microlens array film over the display panel.
  • a collimating microlens array is disposed above the display panel, which can be realized by directly forming the collimating microlens array above the display panel.
  • directly forming the collimating microlens array above the display panel comprises:
  • Heating is used to form a molten state and form a microlens topography
  • the photoresist is subjected to a curing process to form the collimating microlens array.
  • the photoresist may be cured by heating or ultraviolet irradiation.
  • the display panel is an organic light emitting diode display panel, a quantum dot display panel, or a quantum dot light emitting diode display panel.
  • the diffraction grating has a period of 200 to 1000 nm.
  • the duty ratio of the diffraction grating is 0.4 to 0.6.
  • the sub-pixel unit is a red sub-pixel unit, a green sub-pixel unit, or a blue sub-pixel unit.
  • the parallel rays can be projected to the preset viewpoint by adjusting the period and azimuth of the diffraction grating.
  • the collimating microlens array and the diffraction grating array are sequentially disposed on the display panel, so that the light passes through the collimating microlens array, and then converted into parallel light into the diffraction grating array, and the diffraction grating is adjusted.
  • the period and the azimuth angle cause the parallel rays to be projected to the preset viewpoint, thereby avoiding the rainbow pattern phenomenon caused by the uneven color mixture, and improving the visual effect of the stereoscopic display device; and solving the existing naked-eye display device, the light passes through different After the color resistance, light rays with different color resistances are projected to different viewpoints due to the dispersion characteristics of the light wavelength, so that uneven color mixing occurs to cause a visual problem of rainbow ripple phenomenon.
  • FIG. 1 is a schematic structural view of a preferred embodiment of a stereoscopic display device of the present invention
  • FIG. 2 is a schematic flow chart of forming a collimating microlens array according to a preferred embodiment of the stereoscopic display device of the present invention
  • FIG. 3 is a schematic diagram showing specific steps of forming a collimating microlens array according to a preferred embodiment of the stereoscopic display device of the present invention
  • FIG. 4 is a schematic diagram of a ray principle of a preferred embodiment of a stereoscopic display device of the present invention.
  • FIG. 1 is a schematic structural view of a preferred embodiment of a stereoscopic display device according to the present invention.
  • the stereoscopic display device 10 of the present preferred embodiment includes a display panel 101, a collimating microlens array 102, and a diffraction grating array.
  • the display panel 101 includes an upper glass substrate 1011, a lower glass substrate 1013, and a liquid crystal layer 1012 between the upper glass substrate 1011 and the lower glass substrate 1013, wherein the upper glass substrate 1011 has a plurality of sub-pixel units 10111.
  • the display panel includes five sub-pixel units 10111. It should be noted that, in order to avoid the complexity of the drawing, the number of the sub-pixel units 10111 of the preferred embodiment is represented by only five, but the embodiment is not intended to limit the present invention.
  • the collimating microlens array 102 includes a plurality of collimating microlenses 1021 for receiving light emitted by the sub-pixel unit 10111 and converting the light into parallel rays.
  • the collimating microlens array 102 includes five collimating microlenses 1021, which respectively correspond to the five sub-pixel units 10111 on the display panel 101, and the light emitted by each sub-pixel unit 10111 passes through the quasi-one. After the direct microlens 1021, the light is converted into parallel rays.
  • the diffraction grating array 103 includes a plurality of diffraction gratings 1031 for receiving parallel rays and projecting parallel rays to a preset viewpoint.
  • the diffraction grating array 103 includes five diffraction gratings 1031 respectively corresponding to the five collimating microlenses 1021.
  • the parallel rays corresponding to each sub-pixel 10111 are passed through the diffraction grating 1031, the parallel The line is projected to the preset viewpoint.
  • the collimating microlens array 102 is disposed above the display panel 101, and the diffracted light array 103 is disposed above the collimating microlens array 102, and the sub-pixel unit 10111 and the collimating microlens 1021 are in one-to-one correspondence with the diffraction grating 1031.
  • the microlens array 102 is disposed above the display panel 101 by providing an independent collimating microlens array film slap on the display panel 101; the preferred embodiment may also be on the display panel 101.
  • the method of directly forming the collimating microlens array on the upper side realizes that the collimating microlens array 102 is disposed above the display panel 101.
  • FIG. 2 is a schematic flow chart of forming a collimating microlens array according to a preferred embodiment of the stereoscopic display device of the present invention
  • a collimating microlens array is directly formed on the display panel, including:
  • Step S201 depositing a photoresist layer on the display panel
  • Step S202 using a photolithographic development method to form a photoresist pattern conforming to the sub-pixel unit;
  • Step S203 using a heating method to form a molten state of the photoresist and forming a microlens topography
  • step S204 the photoresist is cured to form a collimating microlens array.
  • FIG. 3 is a schematic diagram showing specific steps of forming a collimating microlens array according to a preferred embodiment of the stereoscopic display device of the present invention
  • a display panel 301 is preferably provided, and a photoresist layer 302 is deposited on the display panel 301.
  • the photoresist 302 is formed into a pattern conforming to the sub-pixel unit by photolithographic development.
  • Array 303 the photoresist is formed into a molten state by heating to form a microlens topography 304; finally, in step S204, the photoresist is cured to form a collimating microlens array.
  • the photoresist may be cured by heating or ultraviolet irradiation.
  • FIG. 4 is a schematic diagram of a light principle of a preferred embodiment of a stereoscopic display device of the present invention.
  • the stereoscopic display device 40 of the preferred embodiment includes a display panel 401, a collimating microlens array 402, and a diffraction grating array 403.
  • the display panel 401 of the preferred embodiment is an organic light emitting diode display panel, a quantum dot display panel or a quantum dot light emitting diode display panel.
  • the display panel 401 Since the output spectrum distribution of the display panel 401 has a narrow line width feature, the display panel 401 is guaranteed to have a high The color gamut, and the characteristics of the narrow line width, make the light passing through the diffraction grating have similar diffraction wavelengths due to the similar color spectrum, so that the same color sub-pixel unit is projected to a close position in the space, thereby ensuring color in space. Precise reproduction.
  • the display panel 401 includes an upper glass substrate 4011, a lower glass substrate 4013, and a liquid crystal layer 4012 between the upper glass substrate 4011 and the lower glass substrate 4013, wherein the upper glass substrate 4011 has a plurality of sub-pixel units.
  • the display panel includes five sub-pixel units, and the sub-pixel unit is a red sub-pixel unit 40111, a green sub-pixel unit 40112, or a blue sub-pixel unit 40113.
  • the collimating microlens array 402 includes a plurality of collimating microlenses 4021 for receiving light emitted by the sub-pixel units and converting the light into parallel rays.
  • the collimating microlens array includes five collimating microlenses 4021 respectively corresponding to five sub-pixel units on the display panel, and the light emitted by each sub-pixel unit passes through the collimating microlens. The light is converted into parallel rays.
  • the diffraction grating array 403 includes a plurality of diffraction gratings for receiving parallel rays and projecting parallel rays to a preset viewpoint.
  • the diffraction grating array includes five diffraction gratings 4031 corresponding to the five collimating microlenses 4021, respectively.
  • the diffraction grating 4031 of the preferred embodiment has a period of 200 to 1000 nm and a duty ratio of 0.4 to 0.6.
  • the wavelength of light is the following formula, and since the light is converted into parallel light after passing through the collimating microlens array, the polar coordinate of the incident light is (0, 0), and the polar coordinate of the outgoing light is represented by the following formula Ok: .
  • the preferred embodiment can project the parallel rays to the preset viewpoint by adjusting the period and azimuth of the diffraction grating.
  • the light emitted by the red sub-pixel unit 4011 of the display panel passes through the first collimating microlens 4021 of the collimating microlens array 402, and is converted into parallel rays 404.
  • the parallel rays 404 pass through the diffraction grating array 402.
  • a diffraction grating is converted into a ray 407 which is projected to the viewpoint M.
  • the light emitted by the green sub-pixel unit 4012 of the display panel passes through the second collimating microlens 4021 of the collimating microlens array 402, and is converted into parallel rays 405. Subsequently, the parallel rays 405 pass through the second diffraction of the diffraction grating array 402. The grating is converted into a ray 408 which is projected to the viewpoint M.
  • the light emitted by the blue sub-pixel unit 4013 of the display panel passes through the third collimating microlens 4021 of the collimating microlens array 402, and is converted into parallel rays 406, and then the parallel rays 406 pass through the third of the diffraction grating array 402.
  • the diffraction grating is converted into a ray 409 which is projected to the viewpoint M.
  • the period and azimuth of the first diffraction grating, the second diffraction grating, and the third diffraction grating can be controlled.
  • the collimating microlens array and the diffraction grating array are sequentially disposed on the display panel, so that the light passes through the collimating microlens array, and then converted into parallel light into the diffraction grating array, and the diffraction grating is adjusted.
  • the period and the azimuth angle cause the parallel rays to be projected to the preset viewpoint, thereby avoiding the rainbow pattern phenomenon caused by the uneven color mixture, and improving the visual effect of the stereoscopic display device; and solving the existing naked-eye display device, the light passes through different After the color resistance, light rays with different color resistances are projected to different viewpoints due to the dispersion characteristics of the light wavelength, so that uneven color mixing occurs to cause a visual problem of rainbow ripple phenomenon.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

一种立体显示装置(10),包括:显示面板(101),包括多个子像素单元(10111);准直微透镜阵列(102),包括多个准直微透镜(1021),其用于接收子像素单元(10111)发出的光线,并将光线转化为平行光线射出;以及,衍射光栅阵列(103),包括多个衍射光栅(1031),其用于接收平行光线,并将平行光线投射至预设视点;其中,子像素单元(10111)、准直微透镜(1021)以及衍射光栅(1031)一一对应。

Description

一种立体显示装置 技术领域
本发明涉及一种显示装置,特别涉及一种立体显示装置。
背景技术
目前,立体显示装置用以显示立体影像的方法主要为两种,一种为观看者须佩戴经过特殊处理的眼镜观看显示装置,使左眼与右眼所接收到影像不同、或左眼与右眼影像交替而产生立体影像;另一种为裸眼式的显示装置,其主要运用透镜技术和光栅技术,使观看者不需佩戴任何额外的装置即可让左眼与右眼所看到的影像不同而产生立体影像。
然而,目前的裸眼式的显示装置中,光线经过不同色阻后,由于光线波长色散特性导致经过不同色阻的光线被投射至不同的视点,从而发生混色不均使得视觉上出现彩虹纹现象。
故,有必要提供一种立体显示装置,以解决现有技术所存在的问题。
技术问题
本发明的目的在于提供一种立体显示装置,以解决现有的裸眼式的显示装置中,光线经过不同色阻后,由于光线波长色散特性导致经过不同色阻的光线被投射至不同的视点,从而发生混色不均使得视觉上出现彩虹纹现象的技术问题。
技术解决方案
为解决上述问题,本发明提供的技术方案如下:
本发明提供一种立体显示装置,其包括:
显示面板,包括多个子像素单元;
准直微透镜阵列,包括多个准直微透镜,其用于接收所述子 像素单元发出的光线,并将所述光线转化为平行光线射出;以及,
衍射光栅阵列,包括多个衍射光栅,其用于接收所述平行光线,并将所述平行光线投射至预设视点;其中,
所述准直微透镜阵列设置在所述显示面板上方,所述衍射光栅阵列设置在所述准直微透镜阵列上方,所述子像素单元、所述准直微透镜以及所述衍射光栅一一对应;
所述显示面板为有机发光二极管显示面板、量子点显示面板或量子点发光二极管显示面板;
所述子像素单元为红色子像素单元、绿色子像素单元或蓝色子像素单元。
在本发明的立体显示装置中,在所述显示面板上方设置准直微透镜阵列,可通过在所述显示面板的上方设置独立的准直微透镜阵列膜片偏贴的方式实现。
在本发明的立体显示装置中,在所述显示面板上方设置准直微透镜阵列,可通过在所述显示面板上方直接形成所述准直微透镜阵列的方式实现。
在本发明的立体显示装置中,在所述显示面板上方直接形成 所述准直微透镜阵列,包括:
在所述显示面板上沉积一光刻胶层;
采用光刻显影方式使得光刻胶形成与所述子像素单元一致的图形阵列;
采用加热方式使得光刻胶形成熔融状态并形成微透镜形貌;
对所述光刻胶进行固化处理,以形成所述准直微透镜阵列。
在本发明的立体显示装置中,可通过加热或者紫外线照射的方式对所述光刻胶进行固化处理。
在本发明的立体显示装置中,所述衍射光栅的周期为200-1000纳米。
在本发明的立体显示装置中,所述衍射光栅的占空比为0.4-0.6。
在本发明的立体显示装置中,可通过调节所述衍射光栅的周期和方位角,将所述平行光线投射至所述预设视点。
本发明还提供一种立体显示装置,包括:
显示面板,包括多个子像素单元;
准直微透镜阵列,包括多个准直微透镜,其用于接收所述子 像素单元发出的光线,并将所述光线转化为平行光线射出;以及,
衍射光栅阵列,包括多个衍射光栅,其用于接收所述平行光线,并将所述平行光线投射至预设视点;其中,
所述准直微透镜阵列设置在所述显示面板上方,所述衍射光栅阵列设置在所述准直微透镜阵列上方,所述子像素单元、所述准直微透镜以及所述衍射光栅一一对应。
在本发明的立体显示装置中,在所述显示面板上方设置准直微透镜阵列,可通过在所述显示面板的上方设置独立的准直微透镜阵列膜片偏贴的方式实现。
在本发明的立体显示装置中,在所述显示面板上方设置准直微透镜阵列,可通过在所述显示面板上方直接形成所述准直微透镜阵列的方式实现。
在本发明的立体显示装置中,在所述显示面板上方直接形成 所述准直微透镜阵列,包括:
在所述显示面板上沉积一光刻胶层;
采用光刻显影方式使得光刻胶形成与所述子像素单元一致的图形阵列;
采用加热方式使得光刻胶形成熔融状态并形成微透镜形貌;
对所述光刻胶进行固化处理,以形成所述准直微透镜阵列。
在本发明的立体显示装置中,可通过加热或者紫外线照射的方式对所述光刻胶进行固化处理。
在本发明的立体显示装置中,所述显示面板为有机发光二极管显示面板、量子点显示面板或量子点发光二极管显示面板。
在本发明的立体显示装置中,所述衍射光栅的周期为200-1000纳米。
在本发明的立体显示装置中,所述衍射光栅的占空比为0.4-0.6。
在本发明的立体显示装置中,所述子像素单元为红色子像素单元、绿色子像素单元或蓝色子像素单元。
在本发明的立体显示装置中,可通过调节所述衍射光栅的周期和方位角,将所述平行光线投射至所述预设视点。
有益效果
本发明的立体显示装置,通过在显示面板上依序设置准直微透镜阵列以及衍射光栅阵列,使得光线经过准直微透镜阵列后,转化为平行光射入衍射光栅阵列,通过调整衍射光栅的周期以及方位角,使得平行光线投射至预设视点,从而避免了混色不均产生的彩虹纹现象,提高了立体显示装置的视觉效果;解决了现有的裸眼式的显示装置中,光线经过不同色阻后,由于光线波长色散特性导致经过不同色阻的光线被投射至不同的视点,从而发生混色不均使得视觉上出现彩虹纹现象的技术问题。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
图1为本发明立体显示装置的优选实施例的结构示意图;
图2为本发明立体显示装置的优选实施例的准直微透镜阵列形成的流程示意图;
图3为本发明立体显示装置的优选实施例的准直微透镜阵列形成的具体步骤示意图;
图4为本发明立体显示装置的优选实施例的光线原理示意图。
本发明的最佳实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
参阅图1,图1为本发明立体显示装置的优选实施例的结构示意图;
如图1所示,本优选实施例的立体显示装置10包括显示面板101、准直微透镜阵列102以及衍射光栅阵列。显示面板101包括上玻璃基板1011、下玻璃基板1013以及位于上玻璃基板1011和下玻璃基板1013之间的液晶层1012,其中上玻璃基板1011上有多个子像素单元10111。在本优选实施例中,显示面板包括5个子像素单元10111。需要注意的是,为避免附图过于复杂,本优选实施例的子像素单元10111的数量仅以5个为代表,但本实施例并非用以限定本发明。
准直微透镜阵列102包括多个准直微透镜1021,其用于接收子像素单元10111发出的光线,并将光线转化为平行光线射出。在本优选实施例中,准直微透镜阵列102包括5个准直微透镜1021,其分别与显示面板101上的5个子像素单元10111一一对应,当每个子像素单元10111发出的光线经过准直微透镜1021后,光线转化为平行光线射出。
衍射光栅阵列103包括多个衍射光栅1031,其用于接收平行光线,并将平行光线投射至预设视点。在本优选实施例中,衍射光栅阵列103包括5个衍射光栅1031,其分别与5个准直微透镜1021一一对应,当每个子像素单10111元对应的平行光线经过衍射光栅1031后,平行线投射至预设视点。
准直微透镜阵列102设置在显示面板101上方,衍射光阵列103设置在准直微透镜阵列102上方,并且,子像素单元10111、准直微透镜1021与衍射光栅1031一一对应。
进一步的,本优选实施例可通过在显示面板101上方设置独立的准直微透镜阵列膜片骗贴的方式实现在显示面板101上方设置微透镜阵列102;本优选实施例还可以在显示面板101的上方直接形成准直微透镜阵列的方式实现在显示面板101上方设置准直微透镜阵列102。
具体地,参阅图2,图2为本发明立体显示装置的优选实施例的准直微透镜阵列形成的流程示意图;
如图2所示,在显示面板上方直接形成准直微透镜阵列,包括:
步骤S201,在显示面板上沉积一光刻胶层;
步骤S202,采用光刻显影方式使得光刻胶形成与子像素单元一致的图形阵列;
步骤S203,采用加热方式使得光刻胶形成熔融状态并形成微透镜形貌;
步骤S204,对光刻胶进行固化处理,以形成准直微透镜阵列。
参阅图3,图3为本发明立体显示装置的优选实施例的准直微透镜阵列形成的具体步骤示意图;
在步骤S201中,首选提供一显示面板301,在显示面板301上沉积一光刻胶层302;接着,在步骤S202中,采用光刻显影方式使得光刻胶302形成与子像素单元一致的图形阵列303;随后,在步骤S203中,采用加热方式使得光刻胶形成熔融状态并形成微透镜形貌304;最后,在步骤S204中,对光刻胶进行固化处理,以形成准直微透镜阵列,可通过加热或者紫外线照射的方式对所述光刻胶进行固化处理。
参阅图4,图4为本发明立体显示装置的优选实施例的光线原理示意图;
如图4所示,本优选实施例的立体显示装置40包括显示面板401、准直微透镜阵列402以及衍射光栅阵列403。本优选实施例的显示面板401为有机发光二极管显示面板、量子点显示面板或量子点发光二极管显示面板,由于显示面板401的输出频谱分布具有窄线宽的特征,保证显示面板401具有较高的色域,而窄线宽的特征使得光线经过衍射光栅时由于相同颜色的光谱具有相近的波长,因而具有相近的衍射脚,同一颜色子像素单元投射至空间中的相近位置,从而保证色彩在空间的精确再现。
显示面板401包括上玻璃基板4011、下玻璃基板4013以及位于上玻璃基板4011和下玻璃基板4013之间的液晶层4012,其中上玻璃基板4011上有多个子像素单元。在本优选实施例中,显示面板包括5个子像素单元,子像素单元为红色子像素单元40111、绿色子像素单元40112或蓝色子像素单元40113。
准直微透镜阵列402包括多个准直微透镜4021,其用于接收子像素单元发出的光线,并将光线转化为平行光线射出。在本优选实施例中,准直微透镜阵列包括5个准直微透镜4021,其分别与显示面板上的5个子像素单元一一对应,当每个子像素单元发出的光线经过准直微透镜后,光线转化为平行光线射出。
衍射光栅阵列403包括多个衍射光栅,其用于接收平行光线,并将平行光线投射至预设视点。在本优选实施例中,衍射光栅阵列包括5个衍射光栅4031,其分别与5个准直微透镜4021一一对应,当每个子像素单元对应的平行光线经过衍射光栅后,平行线投射至预设视点。
具体地,本优选实施例的衍射光栅4031的周期为200-1000纳米,其占空比为0.4-0.6。
如果衍射光栅4031的周期为 ,方位角为 ,入射光的极角坐标为(0, ),出射光的极角坐标为( ),光波长为 ,则有下列公式 ,而由于光线经过准直微透镜阵列后转化为平行光,所以入射光的极角坐标为(0,0),出射光的极角坐标由下列式子确定: 。
本优选实施例可通过调节所述衍射光栅的周期和方位角,将所述平行光线投射至所述预设视点。具体地,显示面板的红色子像素单元4011发出的光线经过准直微透镜阵列402的第一个准直微透镜4021后,转化为平行光线404,随后,平行光线404经过衍射光栅阵列402的第一个衍射光栅,转化为光线407投射至视点M,光线407的极角坐标为(A1,B1),其中,第一个衍射光栅的周期为C1,方位角为D1,平行光线404的波长为E1,则tan A1=tan D1,sin^2(B1)=(C1/E1)^2。
显示面板的绿色子像素单元4012发出的光线经过准直微透镜阵列402的第二个准直微透镜4021后,转化为平行光线405,随后,平行光线405经过衍射光栅阵列402的第二个衍射光栅,转化为光线408投射至视点M,光线408的极角坐标为(A2,B2),其中,第二个衍射光栅的周期为C2,方位角为D2,平行光线405的波长为E2,则tan A2=tan D2,sin^2(B2)=(C2/E2)^2。
显示面板的蓝色子像素单元4013发出的光线经过准直微透镜阵列402的第三个准直微透镜4021后,转化为平行光线406,随后,平行光线406经过衍射光栅阵列402的第三个衍射光栅,转化为光线409投射至视点M,光线409的极角坐标为(A3,B3),其中,第三个衍射光栅的周期为C3,方位角为D3,平行光线406的波长为E3,则tan A3=tan D3,sin^2(B3)=(C3/E3)^2。
要使得光线407、408和409投射至视点M,可通过控制第一个衍射光栅、第二个衍射光栅和第三个衍射光栅的周期和方位角。
本发明的立体显示装置,通过在显示面板上依序设置准直微透镜阵列以及衍射光栅阵列,使得光线经过准直微透镜阵列后,转化为平行光射入衍射光栅阵列,通过调整衍射光栅的周期以及方位角,使得平行光线投射至预设视点,从而避免了混色不均产生的彩虹纹现象,提高了立体显示装置的视觉效果;解决了现有的裸眼式的显示装置中,光线经过不同色阻后,由于光线波长色散特性导致经过不同色阻的光线被投射至不同的视点,从而发生混色不均使得视觉上出现彩虹纹现象的技术问题。
综上,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (18)

  1. 一种立体显示装置,其包括:
    显示面板,包括多个子像素单元;
    准直微透镜阵列,包括多个准直微透镜,其用于接收所述子像素单元发出的光线,并将所述光线转化为平行光线射出;以及,
    衍射光栅阵列,包括多个衍射光栅,其用于接收所述平行光线,并将所述平行光线投射至预设视点;其中,
    所述准直微透镜阵列设置在所述显示面板上方,所述衍射光栅阵列设置在所述准直微透镜阵列上方,所述子像素单元、所述准直微透镜以及所述衍射光栅一一对应;
    所述显示面板为有机发光二极管显示面板、量子点显示面板或量子点发光二极管显示面板;
    所述子像素单元为红色子像素单元、绿色子像素单元或蓝色子像素单元。
  2. 根据权利要求1所述的立体显示装置,其中在所述显示面板上方设置准直微透镜阵列,可通过在所述显示面板的上方设置独立的准直微透镜阵列膜片偏贴的方式实现。
  3. 根据权利要求1所述的立体显示装置,其中在所述显示面板上方设置准直微透镜阵列,可通过在所述显示面板上方直接形成所述准直微透镜阵列的方式实现。
  4. 根据权利要求3所述的立体显示装置,其中在所述显示面板上方直接形成所述准直微透镜阵列,包括:
    在所述显示面板上沉积一光刻胶层;
    采用光刻显影方式使得光刻胶形成与所述子像素单元一致的图形阵列;
    采用加热方式使得光刻胶形成熔融状态并形成微透镜形貌;
    对所述光刻胶进行固化处理,以形成所述准直微透镜阵列。
  5. 根据权利要求4所述的立体显示装置,其中可通过加热或者紫外线照射的方式对所述光刻胶进行固化处理。
  6. 根据权利要求1所述的立体显示装置,其中所述衍射光栅的周期为200-1000纳米。
  7. 根据权利要求6所述的立体显示装置,其中所述衍射光栅的占空比为0.4-0.6。
  8. 根据权利要求1所述的立体显示装置,其中可通过调节所述衍射光栅的周期和方位角,将所述平行光线投射至所述预设视点。
  9. 一种立体显示装置,其包括:
    显示面板,包括多个子像素单元;
    准直微透镜阵列,包括多个准直微透镜,其用于接收所述子像素单元发出的光线,并将所述光线转化为平行光线射出;以及,
    衍射光栅阵列,包括多个衍射光栅,其用于接收所述平行光线,并将所述平行光线投射至预设视点;其中,
    所述准直微透镜阵列设置在所述显示面板上方,所述衍射光栅阵列设置在所述准直微透镜阵列上方,所述子像素单元、所述准直微透镜以及所述衍射光栅一一对应。
  10. 根据权利要求9所述的立体显示装置,其中在所述显示面板上方设置准直微透镜阵列,可通过在所述显示面板的上方设置独立的准直微透镜阵列膜片偏贴的方式实现。
  11. 根据权利要求9所述的立体显示装置,其中在所述显示面板上方设置准直微透镜阵列,可通过在所述显示面板上方直接形成所述准直微透镜阵列的方式实现。
  12. 根据权利要求11所述的立体显示装置,其中在所述显示面板上方直接形成所述准直微透镜阵列,包括:
    在所述显示面板上沉积一光刻胶层;
    采用光刻显影方式使得光刻胶形成与所述子像素单元一致的图形阵列;
    采用加热方式使得光刻胶形成熔融状态并形成微透镜形貌;
    对所述光刻胶进行固化处理,以形成所述准直微透镜阵列。
  13. 根据权利要求12所述的立体显示装置,其中可通过加热或者紫外线照射的方式对所述光刻胶进行固化处理。
  14. 根据权利要求9所述的立体显示装置,其中所述显示面板为有机发光二极管显示面板、量子点显示面板或量子点发光二极管显示面板。
  15. 根据权利要求9所述的立体显示装置,其中所述衍射光栅的周期为200-1000纳米。
  16. 根据权利要求15所述的立体显示装置,其中所述衍射光栅的占空比为0.4-0.6。
  17. 根据权利要求9所述的立体显示装置,其中所述子像素单元为红色子像素单元、绿色子像素单元或蓝色子像素单元。
  18. 根据权利要求9所述的立体显示装置,其中可通过调节所述衍射光栅的周期和方位角,将所述平行光线投射至所述预设视点。
PCT/CN2016/111639 2016-11-29 2016-12-23 一种立体显示装置 WO2018098868A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/327,544 US20180213209A1 (en) 2016-11-29 2016-12-23 Stereoscopic display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611074012.4A CN106405853A (zh) 2016-11-29 2016-11-29 一种立体显示装置
CN201611074012.4 2016-11-29

Publications (1)

Publication Number Publication Date
WO2018098868A1 true WO2018098868A1 (zh) 2018-06-07

Family

ID=58084189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111639 WO2018098868A1 (zh) 2016-11-29 2016-12-23 一种立体显示装置

Country Status (3)

Country Link
US (1) US20180213209A1 (zh)
CN (1) CN106405853A (zh)
WO (1) WO2018098868A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11476446B2 (en) * 2019-02-07 2022-10-18 Samsung Display Co., Ltd. Display device and manufacturing method thereof

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106707610A (zh) * 2017-03-28 2017-05-24 青岛海信电器股份有限公司 量子点彩色滤光片及制备方法、液晶面板、液晶显示设备
CN108732772B (zh) * 2017-04-25 2020-06-30 京东方科技集团股份有限公司 一种显示设备及其驱动方法
US10859870B2 (en) * 2018-06-26 2020-12-08 Applied Materials, Inc. 3D displays
CN109633965B (zh) * 2019-01-03 2021-11-02 京东方科技集团股份有限公司 彩膜结构、显示基板及其制造方法、显示装置
CN111435195B (zh) * 2019-01-11 2022-11-08 雅得近显股份有限公司 近眼显示器结构
CN110021240B (zh) * 2019-05-05 2020-01-17 清华大学 基于光程匹配的oled的屏幕设计方法和装置
CN112835206A (zh) * 2019-11-25 2021-05-25 苏州苏大维格科技集团股份有限公司 三维显示装置
CN110824725B (zh) * 2019-11-26 2022-05-10 京东方科技集团股份有限公司 3d显示基板、3d显示装置及显示方法
CN111077678A (zh) * 2020-01-13 2020-04-28 京东方科技集团股份有限公司 一种显示面板及显示装置
CN111458922A (zh) * 2020-04-08 2020-07-28 深圳市华星光电半导体显示技术有限公司 阵列基板及其制作方法
CN111682122B (zh) * 2020-06-24 2023-06-06 京东方科技集团股份有限公司 一种显示面板及其制备方法、显示装置
CN114485934B (zh) * 2020-11-13 2024-01-30 北京小米移动软件有限公司 一种光线检测组件、屏幕组件及电子终端
CN113625465A (zh) * 2021-08-17 2021-11-09 南京工程学院 超大视场角的全光场调控系统
CN113745431B (zh) 2021-09-03 2022-08-23 武汉华星光电半导体显示技术有限公司 显示面板及显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1468384A (zh) * 2000-08-07 2004-01-14 �Ϻ���ͨ��ѧ 三维hlcd系统及其制造方法
CN1892292A (zh) * 2005-06-27 2007-01-10 索尼株式会社 三维图像显示装置
KR20090050914A (ko) * 2007-11-16 2009-05-20 강원대학교산학협력단 3차원 영상 구현 시스템 및 그 방법
US20140133023A1 (en) * 2012-11-12 2014-05-15 Byoung-Hee PARK 3d display device
CN104272170A (zh) * 2012-05-31 2015-01-07 镭亚股份有限公司 定向背光体
CN105093543A (zh) * 2015-07-06 2015-11-25 深圳市华星光电技术有限公司 3d显示装置
CN105445833A (zh) * 2014-08-21 2016-03-30 万维云视(上海)数码科技有限公司 一种3d成像光栅组件及3d显示装置
CN105959672A (zh) * 2016-05-03 2016-09-21 苏州苏大维格光电科技股份有限公司 基于主动发光型显示技术的裸眼三维显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2891177B2 (ja) * 1996-04-30 1999-05-17 日本電気株式会社 立体表示装置
US6879467B2 (en) * 2001-10-30 2005-04-12 Hitachi Global Storage Technologies Japan, Ltd. Carriage arm assembly for locating magnetic head, and magnetic disk apparatus using the same
JP2012208211A (ja) * 2011-03-29 2012-10-25 Hitachi Consumer Electronics Co Ltd 裸眼立体視ディスプレイ
CN105487239B (zh) * 2015-11-13 2018-03-02 苏州苏大维格光电科技股份有限公司 指向性彩色滤光片和裸眼3d显示装置
CN205281069U (zh) * 2016-01-08 2016-06-01 京东方科技集团股份有限公司 一种显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1468384A (zh) * 2000-08-07 2004-01-14 �Ϻ���ͨ��ѧ 三维hlcd系统及其制造方法
CN1892292A (zh) * 2005-06-27 2007-01-10 索尼株式会社 三维图像显示装置
KR20090050914A (ko) * 2007-11-16 2009-05-20 강원대학교산학협력단 3차원 영상 구현 시스템 및 그 방법
CN104272170A (zh) * 2012-05-31 2015-01-07 镭亚股份有限公司 定向背光体
US20140133023A1 (en) * 2012-11-12 2014-05-15 Byoung-Hee PARK 3d display device
CN105445833A (zh) * 2014-08-21 2016-03-30 万维云视(上海)数码科技有限公司 一种3d成像光栅组件及3d显示装置
CN105093543A (zh) * 2015-07-06 2015-11-25 深圳市华星光电技术有限公司 3d显示装置
CN105959672A (zh) * 2016-05-03 2016-09-21 苏州苏大维格光电科技股份有限公司 基于主动发光型显示技术的裸眼三维显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11476446B2 (en) * 2019-02-07 2022-10-18 Samsung Display Co., Ltd. Display device and manufacturing method thereof

Also Published As

Publication number Publication date
US20180213209A1 (en) 2018-07-26
CN106405853A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
WO2018098868A1 (zh) 一种立体显示装置
WO2012100444A1 (zh) 彩色滤光片构造及其制造方法
WO2013168849A1 (ko) 와이어 그리드 편광자 및 그 제조방법, 와이어 그리드 편광자를 구비하는 액정 디스플레이 패널 및 액정 디스플레이 장치
WO2014166417A1 (zh) Led 单元模组、发光装置以及光源系统
WO2014131364A1 (zh) 一种发光装置及投影系统
WO2018023855A1 (zh) Oled薄膜封装结构及其制作方法
WO2016054836A1 (zh) 一种集成成像三维立体显示装置及显示系统
WO2017016205A1 (zh) 显示面板及其制作方法、驱动方法、显示装置
WO2014075290A1 (zh) 裸眼3d显示装置及其液晶透镜
WO2016074263A1 (zh) 曲面液晶显示面板及曲面液晶显示装置
WO2017105099A2 (ko) 컬러 필터
WO2014166155A1 (zh) 一种用于封框胶固化遮挡的掩模板的制造方法
WO2019015191A1 (zh) 一种显示面板及其制程
WO2013159382A1 (zh) 采用半源极驱动结构的3d显示装置
WO2017024621A1 (zh) 一种液晶显示器及其控制方法
WO2016074262A1 (zh) 一种coa阵列基板及液晶显示面板
WO2019015146A1 (zh) 一种显示面板及其制程
WO2016145685A1 (zh) 一种彩膜基板的制作方法、彩膜基板以及液晶显示面板
WO2018176569A1 (zh) Coa阵列基板及液晶显示面板
WO2016037521A1 (zh) 立体图像投影装置和立体显示的眼镜
WO2016026166A1 (zh) 一种偏振光调制装置及其制作方法
WO2017049663A1 (zh) 一种彩膜阵列基板及其制造方法、显示装置
WO2016123819A1 (zh) 触控显示面板的制作方法
WO2018201627A1 (zh) 激发光源系统及投影设备
WO2015085618A1 (zh) 薄膜晶体管阵列基板、制造方法及液晶显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15327544

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16922964

Country of ref document: EP

Kind code of ref document: A1