WO2014131364A1 - 一种发光装置及投影系统 - Google Patents

一种发光装置及投影系统 Download PDF

Info

Publication number
WO2014131364A1
WO2014131364A1 PCT/CN2014/072665 CN2014072665W WO2014131364A1 WO 2014131364 A1 WO2014131364 A1 WO 2014131364A1 CN 2014072665 W CN2014072665 W CN 2014072665W WO 2014131364 A1 WO2014131364 A1 WO 2014131364A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
combining device
combined
laser
spot
Prior art date
Application number
PCT/CN2014/072665
Other languages
English (en)
French (fr)
Inventor
胡飞
侯海雄
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Publication of WO2014131364A1 publication Critical patent/WO2014131364A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/102Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3138Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using arrays of modulated light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping

Definitions

  • the utility model relates to the technical field of illumination and display, in particular to a light-emitting device and a projection system.
  • the brightness requirements of the light sources are getting higher and higher, especially in special applications such as theater projections, and the brightness requirements of the light sources tend to reach more than 10,000 lumens.
  • FIG. 1 is a light-emitting device in the prior art, as shown in FIG.
  • the light emitting device includes a first laser array 110, a second laser array 120, a first collimating lens array 130, a second collimating lens array 140, a light combining device 150, and a mirror. 160 light fitting device 150.
  • the first laser array 110 and the second laser array 120 are both arrays of laser elements.
  • the exiting light of the second laser array 120 is incident on the second collimating lens array After 140 is collimated, the collimated light is directly incident on the light combining device 150.
  • the emitted light of the first laser array 110 is incident on the first collimating lens array 130, and is collimated, and the collimated light passes through the mirror. 160 is reflected to the light combining device 150.
  • the light combining device 150 is placed at 45 degrees with the first laser array 110, and FIG. 2 is FIG. A plan view of the incident spot of the light combining device shown in Fig. 2, the light combining device 150 is specifically a transparent glass piece 151 provided with a plurality of strip mirrors 152. Multiple strip mirrors 152 Parallelly disposed, the area between each two strip mirrors 152 can transmit incident light.
  • FIG. 3 is a bottom view of the light emitting device of the embodiment shown in FIG. 1, as shown in FIG. As shown, each row of laser elements of the first laser array 110 and each row of laser elements of the second laser array 120 are staggered in parallel, respectively, with the light combining device 150.
  • the area of the uncovered mirror corresponds to the area covering the mirror.
  • the mirror corresponds to the first laser array 110
  • the outgoing light of one row of laser elements can reflect the outgoing light of the row of laser elements, and the area of the transparent glass sheet not covered by the mirror corresponds to the outgoing light of the second laser array 120, and the second laser array 120 can be The outgoing light is transmitted, and the first light beam and the second light beam are combined by the light combining device 150 to emit the same light beam.
  • FIG. 4 is a schematic view of a light spot formed by the light emitted by the light-emitting device shown in FIG. 1, as shown in FIG. After the light is combined, the spots in the first beam and the second beam are filled with each other in the short-axis direction, so that the light emitted from the light-emitting device has a higher optical power density.
  • the technical problem mainly solved by the utility model is to provide a light-emitting device and a projection system with high optical power density.
  • the embodiment of the present invention provides a light emitting device, including:
  • first laser array a first laser array, a second laser array, and a first light combining device
  • first light beam emitted by the first laser array and the second light beam emitted by the second laser array are respectively transmitted and reflected by the first light combining device to form a bundle And forming a first combined light
  • the long axis direction of the laser spot in the first beam is parallel to the long axis direction of the laser spot in the second beam
  • the laser spot of the first beam and the second beam incident on the surface of the first light combining device is along The short-axis directions of the laser spots of the first beam are alternately distributed
  • a third laser array and a second light combining device wherein the third laser array is configured to emit a third light beam, and the third light beam and the first combined light are respectively transmitted and reflected by the second light combining device to form an outgoing light, or a third The light beam and the first combined light are respectively reflected and transmitted by the second light combining device to form the outgoing light;
  • the long-axis direction of the laser spot in the third beam is perpendicular to the long-axis direction of the laser spot in the first combined light
  • the laser spot of the third beam and the first combined light incident on the surface of the second light combining device is along the first
  • the long-axis directions of the combined laser spots are alternately distributed.
  • the light emitting device further includes a fourth laser array and a third light combining device, wherein the fourth laser array is configured to emit a fourth light beam, and the fourth light beam and the first combined light are respectively transmitted and reflected by the third light combining device. Forming a second combined light, or the fourth light beam and the first combined light are respectively reflected and transmitted by the third light combining device to form a second combined light;
  • the long-axis direction of the laser spot in the fourth beam is parallel to the long-axis direction of the laser spot in the first combined light, and the spot of the fourth beam and the first combined light incident on the surface of the third light combining device is along the first
  • the short-axis directions of the laser spot of light are alternately distributed;
  • the second combined light and the third light beam are respectively transmitted and reflected by the second light combining device to form the outgoing light, or the second combined light and the third light beam are respectively reflected and transmitted by the second light combining device to form the outgoing light.
  • the first beam and the second beam are in a first polarization state
  • the third beam is in a second polarization state perpendicular to the first polarization state
  • the second light combining device has light transmitting the first polarization state and reflecting the second polarization The light of the state or the optical property of the light of the first polarization state and the light of the second polarization state.
  • the wavelength of the first light beam is a first wavelength
  • the wavelength of the second light beam is a second wavelength
  • the wavelength of the third light beam is a third wavelength different from the first wavelength and the second wavelength
  • the second light combining device has The light of the first wavelength and the second wavelength is reflected to transmit the light of the third wavelength or the light of the first wavelength and the second wavelength to reflect the optical properties of the light of the third wavelength.
  • the second light combining device includes a plurality of transmissive regions and a reflective region, the transmissive regions and the reflective regions are alternately distributed along a long axis direction of the spot formed by the first light beam incident on the surface of the second light combining device;
  • the transmissive area covers the incident area of the first combined light on the surface of the second light combining device and the reflective area covers the incident area of the third light beam on the surface of the second light combining device, or the transmitting area covers the third light beam on the surface of the second light combining device
  • the incident region covers the incident region of the first combined light on the surface of the second light combining device.
  • the second light combining device is a transparent material
  • the reflective area of the second light combining device is provided with a mirror or a reflective film, between adjacent mirrors or reflective films, and between the mirror or the reflective film and the edge of the transparent material.
  • the transparent area is the transmissive area.
  • the reflective area of the second light combining device is provided with a mirror or a reflective film, and the transmissive area of the second light combining device is a light transmitting hole.
  • the first light combining device comprises a plurality of transmissive regions and a reflective region, the transmissive regions and the reflective regions being alternately distributed along a short axis direction of the spot formed by the first light beam on the surface of the first light combining device;
  • the first beam is transmitted from the first side of the first light combining device to the transmissive region and the second beam is reflected from the second side of the first light combining device to the reflective region.
  • the present invention also provides a projection device comprising any of the above illumination devices.
  • the embodiment of the present invention has the following beneficial effects:
  • the spots in the first beam and the second beam are filled with each other outside the gap in the short-axis direction of the spot, and the first combined light and the third light beam are incident on the surface of the second light combining device.
  • the long-axis direction of the laser spot of one beam is alternately distributed, and the long-axis directions of the first beam and the third beam are perpendicular to each other, so that the laser spot in the third beam fills the long-axis direction of the adjacent laser spot in the first combined light.
  • the gap so in this embodiment, the two dimensions of the major axis and the minor axis of the elliptical spot of the first laser are filled, so that the gap inside the entire beam emitted by the illuminating device is reduced, and the illuminating device is improved.
  • Optical power density
  • Figure 1 is a lighting device in the prior art
  • Figure 2 is a plan view of the incident spot of the light combining device shown in Figure 1;
  • Figure 3 is a bottom plan view of the light-emitting device of the embodiment shown in Figure 1;
  • Figure 4 is a schematic view showing the formation of light emitted by the light-emitting device shown in Figure 1;
  • Figure 5 is a front elevational view showing the structure of an embodiment of the light-emitting device of the present invention.
  • Figure 6a is a bottom plan view showing the structure of the light-emitting device shown in Figure 5;
  • Figure 6b is a schematic diagram of the distribution of the spot corresponding to the laser array arrangement shown in Figure 6a;
  • Figure 7 is a plan view of an incident spot on the surface of the second light combining device shown in Figure 5;
  • Figure 8 is a front view showing the structure of still another embodiment of the present invention.
  • Figure 9 is a plan view of an incident spot on the surface of the second light combining device shown in Figure 8.
  • FIG. 10 is a schematic structural view of a light emitting device according to still another embodiment of the present invention.
  • Figure 11 is a plan view of the incident spot on the surface of the fourth light combining device 415 shown in Figure 10.
  • FIG. 5 is a front view showing the structure of an embodiment of a light-emitting device of the present invention.
  • the light-emitting device includes a first laser array. 210, the second laser array 220, the third laser array 230, the first collimating lens array 240, the second collimating lens array 250, the third collimating lens array 260, and the first light combining device 270, second light combining device 280, reflecting device 290.
  • the first laser array 210 is for emitting a first beam
  • the second laser array 220 is for emitting a second beam
  • the third laser array 230 Used to emit a third beam.
  • the first laser array 210, the second laser array 220, and the third laser array 230 Each includes a plurality of laser elements, each of which can emit a small beam of light, each of which forms a laser spot on the plane.
  • the laser element here is specifically a laser diode.
  • the emitted light of the laser diode has a high energy density and a small divergence angle, which is approximately collimated light, and thus can provide high-brightness outgoing light, and is a preferred light source of a high-power light-emitting device.
  • the collimation of the laser is good, there is a certain divergence angle, and the light-emitting surface is enlarged during the propagation process to lower the brightness of the light-emitting device, so that the light emitted from the first laser array 210 passes through the first collimating lens array 240.
  • the emitted light of the second laser array 220 is collimated through the second collimating lens array 250, and the emitted light of the third laser array 230 passes through the third collimating lens array 260.
  • the shot is taken.
  • the light-emitting device may not be provided with the first collimating lens array 240.
  • the second collimating lens array 250 and the third collimating lens array 260 may not be provided with the first collimating lens array 240.
  • the first light beam is reflected by the reflecting device 290 to the first light combining device 270.
  • the second light beam is directly incident on the first light combining device 270.
  • the light combining device 270 transmits the first light beam and reflects the second light beam to combine the two into the first combined light.
  • the spatial position distribution of 220 and the structure of the first light combining device 270 adjust the first light beam and the second light beam to be incident on the first light combining device 270
  • the laser light of the surface is alternately distributed along the short-axis direction of the laser spot of the first beam, and the long-axis direction of the laser spot in the first beam is parallel to the long-axis direction of the laser spot in the second beam, thereby obtaining the first beam and the second beam Spot distribution and graph after beam combining 4 is the same, that is, the laser spot in the first beam and the laser spot in the second beam fill each other with a gap in the short-axis direction of the adjacent spot.
  • the long-axis direction of the spot also has a large gap and is not filled.
  • the gap between the long axes of the spots is smaller than the length of the long axis of the spot, so it is difficult to insert a line of spots in the same manner.
  • the laser has polarization characteristics
  • the spot of the emitted light is elliptical, and the length of the short axis of the elliptical spot is relatively small. Therefore, the present invention uses the short axis of the elliptical spot to fill the long axis of the array of another elliptical spot. The clearance in the direction.
  • the light-emitting device adds a third laser array 230. a third collimating lens array 260 and a second light combining device 280, wherein the third laser array 230 is configured to emit a third light beam, and the third light beam is collimated by the third collimating lens array 260 and then incident on the second light combining light.
  • Device 280 the third laser array 230 is configured to emit a third light beam, and the third light beam is collimated by the third collimating lens array 260 and then incident on the second light combining light.
  • the second light combining device 280 is placed at a 45 degree angle with the third laser array 230.
  • Figure 6a is Figure 5 The bottom view of the structure of the illustrated illuminating device, as shown in Fig. 6a, the laser elements of each of the second laser array 220 and the third laser array 230 are on the same line in the plane of the paper, and the first laser array 210 The lines of the laser elements of each row of the second laser array 220 are staggered in parallel in the plane of the paper.
  • Figure 6b is a schematic diagram of the distribution of the spot corresponding to the laser array arrangement shown in Figure 6a, as shown in Figure 7.
  • the long-axis direction of the laser spot in the first beam and the long-axis direction of the laser spot in the second beam are parallel to each other, and the long-axis direction of the laser spot in the first beam and the third beam
  • the long-axis direction of the laser spot is perpendicular.
  • FIG. 7 is a plan view of the incident spot on the surface of the second light combining device shown in Figure 5, as shown in Figure 7. As shown, a is the spot in the first beam and b is the spot in the second beam, c Is the spot in the third beam.
  • the long-axis direction of the laser spot in the third beam is perpendicular to the long-axis direction of the laser spot in the first combined light, and the laser spot in the third beam fills the gap in the long-axis direction of the adjacent laser spot in the first combined light.
  • the first combined light and the third light beam are incident on the second light combining device.
  • the spot of the first combined light and the spot of the third beam are alternately distributed along the long axis direction of the spot of the first laser.
  • the polarization states of the two combined light beams may be perpendicular, and the first light beam and the second light beam in the first combined light are both in the first polarization state, and the third The beam is a second polarization state that is perpendicular to the first polarization state.
  • the light combining device 280 can realize the splitting by using the polarization characteristic, that is, the light combining device 280 Light of the first polarization state may be reflected while light of the second polarization state or light of the second polarization state may be reflected to transmit light of the first polarization state.
  • the light combining device is a wire grid polarizer or a filter.
  • the wire grid polarizer is one kind of reflective polarizer, which has the advantages of mature process and no change in performance with incident angle; it can be understood that the wire grid polarizer is a preferred embodiment in this embodiment, but does not limit other reflective polarization. The use of the film.
  • the filter pair p-polarized light and s The stop band of the polarized light is the same, wherein the p-polarized light is the polarized light in the plane of the polarization direction in the incident direction and the reflection direction, s
  • the polarized light is a polarized light whose plane of polarization is perpendicular to a plane formed by the incident direction and the reflected direction.
  • the stop band of the filter shifts to the short-wave direction due to the action of the filter layer of the filter, and the stop band of the s-polarized light becomes Than the p-polarized light's resistance bandwidth, making p
  • the transmittance curve of the polarized light corresponding to the s-polarized light is staggered by a certain distance.
  • the stop band width of the s-polarized light and the stop band width of the p-polarized light become larger, p-polarized light and s
  • the distance of the passband of the transmittance curve corresponding to the polarized light is larger.
  • the wavelength corresponding to the position at which the passband edge of the transmittance curve corresponding to the polarized light is shifted can be changed by the film layer design.
  • the light at this wavelength position is different depending on the polarization state (s polarized light or p Polarized light) has different transmission characteristics.
  • the light can be combined by the filter by setting the polarization states of the first beam, the second beam, and the third beam, and designing the film layer of the filter, for example, the first beam and the second beam are both s
  • the light, while the third beam is p-light, is designed such that the s-polarized light and the p-polarized light correspond to the wavelength of the transmission band of the p-polarized light to cover the wavelength of the illumination of all the laser arrays.
  • the laser spots in the first beam and the second beam are filled with each other outside the gap in the short-axis direction of the laser spot, and the first combined light and the third beam formed by the first beam and the second beam are incident on the second combined light.
  • Device 280 The laser spot of the surface is alternately distributed along the long axis direction of the spot of the first beam, and the long axis directions of the first beam and the third beam are perpendicular to each other, so that the laser spot in the third beam fills the adjacent laser in the first combined light a gap in the long-axis direction of the spot, so in the present embodiment, both the major axis and the short-axis direction of the elliptical spot of the first beam are filled, so that the gap of the entire beam emitted by the light-emitting device is reduced.
  • the optical power density of the illuminating device is increased.
  • the second light combining device may also be implemented in a wavelength splitting form: the second light combining device reflects the light of the first wavelength and the second wavelength to transmit the light of the third wavelength or the light of the first wavelength and the second wavelength. And reflecting the light of the third wavelength.
  • the first beam and the second beam are The 445 nm blue laser
  • the third beam is a 462 nm blue laser
  • the second light combining device 280 can reflect 445 nm blue light and transmit 462 nm. Blue light filter.
  • the light-emitting device shown is similar.
  • the first light beam formed by the first light beam and the second light beam are not incident on the second light combining device, and thus the second light combining device 280 is A plurality of transmissive regions and a reflective region may be included, the transmissive region and the reflective region being along the first light beam at the second light combining device 280
  • the long-axis directions of the laser spots formed on the surface are alternately distributed.
  • the transmissive area covers the incident area of the first combined light on the surface of the second light combining device and the reflective area covers the incident area of the surface of the second light combining device of the third light beam.
  • the second light combining device 280 A transparent glass sheet may be included, the surface of the glass sheet being provided with a plurality of mirrors, which are reflective regions located at the spot positions of the second beam and the first beam to be reflected, and adjacent mirrors The area between the mirror or the edge of the glass sheet is a transmissive area, and the third light beam is incident on a different transmissive area.
  • the glass piece here may be replaced with a transparent material such as a resin.
  • an anti-reflection coating can be applied to the glass sheet to reduce the Fresnel loss.
  • Another method of increasing the transmittance of the transmissive region is to provide the transmissive region as a plurality of transmissive apertures that can completely transmit light incident on the transmissive aperture.
  • the second light combining device 280 The material may not be transparent, such as metal.
  • the light transmission hole may be a unit close to the beam cross section of the first light beam, and the arrangement of the light transmission holes may be consistent with the arrangement of the spot positions of the first light beam and the second light beam.
  • the light transmission hole may be It is elliptical to match the cross-sectional shape of a laser beam.
  • the light transmission holes may also be elongated, each elongated shape and the first laser array A row of laser elements of 210 corresponds to each other, and the processing of the light-transmissive holes is convenient at this time.
  • the mirror of the reflective area of the second light combining device 280 can also be replaced by a reflective film.
  • the second light combining device 280 It can be realized by partition coating, and the structure is relatively simple, but the cost is relatively high relative to the mirror.
  • the first light combining device 250 may include a first laser array 210 and a second laser array 220
  • the total number of laser elements corresponds to a small mirror or a reflective film area, but this structure is complicated, and the strip-shaped mirror in this embodiment can reduce the second light combining device 280
  • the first light combining device 270 can also select the second combining device 280.
  • the second light combining means 280 may be a wavelength splitting means. If the polarization states of the first beam and the second beam are different, the second light combining device 280 It may be a polarization splitting device.
  • the second light combining device 280 can also combine light by using different positions of the first light beam and the second light beam incident on the second light combining device 280, for example, the first light combining device 270
  • the first light combining device 270 A plurality of transmissive regions and a reflective region are included, the transmissive region and the reflective region being along the first light beam at the first light combining device 270
  • the short-axis directions of the spots formed on the surface are alternately distributed.
  • the first beam is transmitted from the first side of the first light combining device to the transmissive region and the second beam is reflected from the second side of the first light combining device to the reflective region.
  • the second light combining device 280 The light combining is performed by transmitting the third light beam to reflect the combined light. It is easily understood that the second light combining device 280 can also be realized by reflecting the third light beam and transmitting the first combined light.
  • Figure 7 is a front view showing a structure of still another embodiment of the present invention. As shown in FIG. 8, the light emitting device includes a first laser array 301, a second laser array 302, a third laser array 303, and a fourth laser array.
  • first collimating lens array 305 a first collimating lens array 305, a second collimating lens array 306, a third collimating lens array 307, a fourth collimating lens array 308, a first light combining device 309, and a second light combining device 310, mirror 311, third light combining device 312.
  • the light-emitting device of the present embodiment adds the fourth laser array 304. a fourth collimating lens array 308 and a third light combining device 312.
  • the fourth laser array 304 is configured to emit a fourth beam that is incident to the third light combining device after being collimated by the fourth collimating lens array 308 312.
  • the first light beam and the second laser array 302 emitted by the first laser array 301 in this embodiment are the same as the embodiment shown in FIG.
  • the emitted second light beam constitutes a first combined light through the first light combining means 309.
  • the light distribution of the first combined light is the same as the light distribution of the first light beam and the second light beam shown in FIG.
  • the first combined light and the fourth light beam are incident on the third light combining device 312.
  • the laser spot of the surface should be alternately distributed along the short-axis direction of the spot of the first beam, at which time the spot of the first combined beam and the spot of the fourth beam fill each other with a gap in the short-axis direction of the spot of the first beam.
  • the gap in the short-axis direction of the first light-collecting spot can only accommodate the length of the minor axis of the elliptical spot, and therefore it is necessary to set the long axis of the spot in the fourth beam to be parallel to the long axis of the spot in the first beam. In this way, the laser spot in the fourth beam fills the gap in the short-axis direction of the adjacent laser spot in the first combined light, and the fourth beam and the first combined light pass through the third light combining device After 312, it constitutes the second combined light.
  • FIG. 9 is Figure 8.
  • a is the spot in the first beam
  • b is the spot in the second beam
  • c is the spot in the third beam
  • d is the spot in the fourth beam
  • the first laser array 301 or the second laser array 302 may be artificially enlarged.
  • the width between the laser elements is such that the gap is filled with the spot of the fourth beam.
  • FIG. 10 A schematic structural view of a light emitting device according to still another embodiment of the present invention. As shown in FIG. 10, the light emitting device includes a first laser array 401, a second laser array 402, and a third laser array 403.
  • a fourth laser array 404 a fifth laser array 405, a first collimating lens array 406, a second collimating lens array 407, a third collimating lens array 408, and a fourth collimating lens array 409
  • the fifth collimating lens array 410, the first light combining device 411, the second light combining device 412, the mirror 413, the third light combining device 414, and the fourth light combining device 415 Relative to Figure 10
  • the illuminating device of the present embodiment adds a fifth laser array 405 that emits a fifth light beam, and sets a fourth light combining device 415 corresponding to the fifth laser array.
  • the combined light of the first light beam, the second light beam, and the third light beam and the five light beams are incident on the fourth light combining device 415
  • the laser spot of the surface is alternately arranged in the direction of the short axis of the laser along the first beam, and the laser spot of the fifth beam and the third beam incident on the surface of the fourth light combining device alternates in the long axis direction of the third beam spot Arrange.
  • Figure 11 is a plan view of the incident spot on the surface of the fourth light combining device 415 shown in Figure 10, as shown in Figure 11, a Is the spot in the first beam, b is the spot in the second beam, c is the spot in the third beam, d is the spot in the fourth beam, and e is the spot in the fifth beam.
  • Fifth laser array 405 The long axis of the laser spot of the outgoing light is perpendicular to the long axis of the laser spot in the first beam, and fills the gap of the long-axis direction of the laser spot of the first beam, and also fills the long-axis direction of the laser spot in the third beam. The gap is such that the gap is minimized.
  • the principle of filling the light emitted by the fifth laser array is the same as that of the above embodiment, and will not be described herein.
  • the embodiment of the present invention further provides a projection system including a light emitting device, which can have the structure and function in the above embodiments.
  • the projection system can employ various projection technologies, such as a liquid crystal display (LCD, Liquid Crystal Display) Projection technology, DLP (Digital Light Processor) projection technology.
  • LCD liquid crystal display
  • DLP Digital Light Processor

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Projection Apparatus (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种发光装置和投影系统。发光装置包括:第一激光阵列(210)、第二激光阵列(220)、第三激光阵列(230)、第一合光装置(270)和第二合光装置(280)。第一激光阵列(210)发出的第一光束和第二激光阵列(220)发出的第二光束分别被第一合光装置(270)透射和反射而合为第一合光。第一光束与第二光束的光斑的长轴方向平行,第一光束与第二光束入射到第一合光装置(270)的光斑沿第一光束的光斑的短轴方向交替分布。第三激光阵列(230)发出的第三光束与第一合光经第二合光装置(280)形成出射光。第三光束中光斑的长轴方向与第一合光中光斑的长轴方向相垂直。第三光束与第一合光入射到第二合光装置(280)表面的光斑沿第一合光的激光光斑的长轴方向交替分布。本发光装置具有高功率密度。

Description

一种发光装置及投影系统 技术领域
本实用新型涉及照明及显示技术领域,特别是涉及一种发光装置及投影系统。
背景技术
随着电视等显示设备的高清化、大型化,其对光源的亮度要求越来越高,特别是影院放映等特殊应用场合,对光源的亮度要求往往会达到一万流明以上。
为了实现光源的高亮度,一种现有的技术方案是采用将激光元件组成阵列光源,并采用多个阵列光源进行合光,以提高亮度。例如,图 1 为现有技术中的一种发光装置,如图 1 所示,发光装置包括第一激光阵列 110 、第二激光阵列 120 、第一准直透镜阵列 130 、第二准直透镜阵列 140 、合光装置 150 、反射镜 160 合光装置 150 。第一激光阵列 110 和第二激光阵列 120 都是由激光元件组成的阵列。第二激光阵列 120 的出射光入射到第二准直透镜阵列 140 后被准直出射,该准直后的光直接入射至合光装置 150 。第一激光阵列 110 的出射光入射到第一准直透镜阵列 130 后准直出射,该准直后的光经反射镜 160 被反射至合光装置 150 。
合光装置 150 与第一激光阵列 110 呈 45 度放置,图 2 为图 1 所示合光装置的入射光斑的俯视图,如图 2 所示,合光装置 150 具体为设置有多个条形反射镜 152 的透明玻璃片 151 。多个条形反射镜 152 平行设置,每两个条形反射镜 152 之间的区域可以透射入射光。与合光装置 150 的结构相对应,图 3 为图 1 所示实施例的发光装置的仰视图,如图 3 所示,第一激光阵列 110 的每一行激光元件和第二激光阵列 120 的每一行激光元件平行交错,分别与合光装置 150 的未覆盖反射镜的区域和覆盖反射镜的区域对应。反射镜对应着第一激光阵列 110 的一行激光元件的出射光,可以将该行激光元件的出射光反射,而透明玻璃片没有反射镜覆盖的区域对应着第二激光阵列 120 的出射光,可以将第二激光阵列 120 的出射光透射,该第一光束和第二光束被合光装置 150 合成同一光束出射。
图 4 为图 1 所示发光装置出射光的形成的光斑示意图,如图 4 所示,经合光装置 150 的合光后,第一光束和第二光束中的光斑在短轴方向互相填充间隙,可以使得发光装置的出射光具有更高的光功率密度。
技术问题
本实用新型主要解决的技术问题是提供一种高光功率密度的发光装置及投影系统。
本实用新型实施例提供了一种发光装置 ,包括:
第一激光阵列、第二激光阵列和第一合光装置,第一激光阵列发出的第一光束和第二激光阵列发出的第二光束分别被第一合光装置透射和反射而合为一束并构成第一合光,第一光束中激光光斑的长轴方向与第二光束中激光光斑的长轴方向平行,第一光束与第二光束入射到第一合光装置表面的激光光斑沿该第一光束的激光光斑的短轴方向交替分布;
第三激光阵列和第二合光装置,第三激光阵列用于发出第三光束,该第三光束与第一合光分别被第二合光装置透射和反射而共同形成出射光,或第三光束与第一合光分别被第二合光装置反射和透射而共同形成出射光;
其中,第三光束中激光光斑的长轴方向与第一合光中激光光斑的长轴方向相垂直,第三光束与第一合光入射到第二合光装置表面的激光光斑沿该第一合光的激光光斑的长轴方向交替分布。
优选地,发光装置还包括第四激光阵列与第三合光装置,第四激光阵列用于发出第四光束,该第四光束与第一合光分别被第三合光装置透射和反射而共同形成第二合光,或第四光束与第一合光分别被第三合光装置反射和透射而共同形成第二合光;
其中,第四光束中激光光斑的长轴方向与第一合光中激光光斑的长轴方向相平行,第四光束与第一合光入射到第三合光装置表面的光斑沿该第一合光的激光光斑的短轴方向交替分布;
第二合光与第三光束分别被第二合光装置透射和反射而共同形成出射光,或者第二合光与第三光束分别被第二合光装置反射和透射而共同形成出射光。
优选地,第一光束、第二光束为第一偏振态,第三光束为垂直于第一偏振态的第二偏振态,第二合光装置具有透射第一偏振态的光而反射第二偏振态的光或者反射第一偏振态的光而透射第二偏振态的光的光学性质。
优选地,第一光束的波长为第一波长,第二光束的波长为第二波长,第三光束的波长为与第一波长、第二波长都不同的第三波长,第二合光装置具有反射第一波长和第二波长的光而透射第三波长的光或者透射第一波长和第二波长的光而反射第三波长的光的光学性质。
优选地,第二合光装置包括多个透射区域和反射区域,该透射区域和反射区域沿第一光束入射在第二合光装置表面形成的光斑的长轴方向交替分布;
透射区域覆盖第一合光在第二合光装置表面的入射区域而反射区域覆盖第三光束在第二合光装置表面的入射区域,或者透射区域覆盖第三光束在第二合光装置表面的入射区域而反射区域覆盖第一合光在第二合光装置表面的入射区域。
优选地,第二合光装置为透明材质,第二合光装置的反射区域设置有反射镜或者反射膜,相邻反射镜或者反射膜之间以及反射镜或者反射膜与透明材质边缘之间的透明区域为透射区域。
优选地,第二合光装置的反射区域设置有反射镜或者反射膜,第二合光装置的透射区域为透光孔。
优选地,第一合光装置包括多个透射区域和反射区域,该透射区域和反射区域沿第一光束在第一合光装置表面形成的光斑的短轴方向交替分布 ;
第一光束从第一合光装置的第一侧透射透射区域而第二光束从第一合光装置的第二侧入射至反射区域被反射。
本实用新型还提供了一种投影装置,包括上述任一项发光装置。
与现有技术相比,本实用新型实施例具有如下有益效果:
本实用新型实施例中, 第一光束和第二光束中的光斑互相填充了光斑短轴方向空隙外,第一光束和第二光束构成的第一合光与第三光束入射第二合光装置表面的激光光斑在该第一光束的激光光斑的长轴方向交替分布,而第一光束和第三光束的光斑长轴方向互相垂直,因而使得第三光束中激光光斑填充第一合光中相邻激光光斑的长轴方向的间隙,因此本实施例中,第一激光的椭圆形光斑的长轴和短轴方向的两个维度都得到了填充,使得发光装置出射的整个光束内部的空隙减小了,提高了发光装置的光功率密度。
附图说明
图 1 为现有技术中的一种发光装置;
图 2 为图 1 所示合光装置的入射光斑的俯视图;
图 3 为图 1 所示实施例的发光装置的仰视图;
图 4 为图 1 所示发光装置出射光的形成的光斑示意图;
图 5 为本实用新型的发光装置的一个实施例的结构主视图;
图 6a 为图 5 所示发光装置的结构仰视图;
图 6b 为图 6a 所示的激光阵列排布对应的光斑分布示意图;
图 7 为图 5 所示的第二合光装置表面的入射光斑的俯视图;
图 8 为本实用新型的又一个实施例的结构主视图;
图 9 为图 8 所示的第二合光装置表面的入射光斑的俯视图;
图 10 为本实用新型的又一个实施例的发光装置的结构示意图;
图 11 为图 10 所示的第四合光装置 415 表面的入射光斑俯视图。
本发明的实施方式
下面结合附图及实施方式来对本实用新型的实施例进行详细分析。
实施例一
图 5 为本实用新型的发光装置的一个实施例的结构主视图,如图 5 所示,发光装置包括第一激光阵列 210 、第二激光阵列 220 、第三激光阵列 230 、第一准直透镜阵列 240 、第二准直透镜阵列 250 ,第三准直透镜阵列 260 、第一合光装置 270 、第二合光装置 280 、反射装置 290 。
第一激光阵列 210 用于出射第一光束,第二激光阵列 220 用于出射第二光束,第三激光阵列 230 用于出射第三光束。第一激光阵列 210 、第二激光阵列 220 、第三激光阵列 230 都包括多个激光元件,每个激光元件可以出射一个小光束,每个小光束会在平面形成一个激光光斑。这里的激光元件具体为激光二极管,激光二极管的出射光具有很高能量密度,且发散角度很小,为近似准直光,因而可以提供高亮度的出射光,是大功率发光装置的优选光源。
尽管激光的准直性较好,但还是有一定发散角度,在传播过程会扩大发光面而降低发光装置的亮度,因此第一激光阵列 210 的出射光会经过第一准直透镜阵列 240 准直后出射,第二激光阵列 220 的出射光会经过第二准直透镜阵列 250 准直后出射,第三激光阵列 230 的出射光会经过第三准直透镜阵列 260 准直后出射。但是当激光阵列出射光的发散角度小到足以被忽略或者发光装置对光斑的亮度要求不是特别高的时候,发光装置可以不设置第一准直透镜阵列 240 、第二准直透镜阵列 250 、第三准直透镜阵列 260 。
与图 1 所示的现有技术的方案类似,本实施例中,第一光束经反射装置 290 反射至第一合光装置 270 ,第二光束直接入射到第一合光装置 270 。合光装置 270 透射第一光束而反射第二光束而将二者合并为第一合光。利用第一激光阵列 210 和第二激光阵列 220 的空间位置分布和第一合光装置 270 的结构,调整第一光束和第二光束入射到第一合光装置 270 表面的激光沿第一光束的激光光斑的短轴方向交替分布,并且第一光束中的激光光斑的长轴方向与第二光束中激光光斑的长轴方向平行,从而得到第一光束和第二光束合光后的光斑分布与图 4 相同,即第一光束中激光光斑与第二光束中激光光斑相互填充对方相邻光斑短轴方向的间隙。
在图 4 所示的光斑中,尽管光斑短轴方向的空隙得到填充,但是光斑长轴方向同样存在着较大间隙而没有得到填充。而光斑长轴之间的间隙的间距小于光斑长轴的长度,因此难以用同样的方式插入一列光斑。而由于激光具有偏振特性,其出射光的光斑是椭圆形,椭圆形光斑的短轴的长度相对较小,因此本实用新型利用椭圆形光斑的短轴去填充另一椭圆形光斑阵列的长轴方向的间隙。
为此,相对于图 1 所示的实施例中的发光装置,本实施例中,发光装置增加了第三激光阵列 230 、第三准直透镜阵列 260 和第二合光装置 280 ,第三激光阵列 230 用于出射第三光束,该第三光束经第三准直透镜阵列 260 而准直后入射至第二合光装置 280 。
第二合光装置 280 与第三激光阵列 230 呈 45 度放置。图 6a 为图 5 所示发光装置的结构仰视图,如图 6a 所示,第二激光阵列 220 和第三激光阵列 230 的每行激光元件在纸面内是在同一条直线上的,而第一激光阵列 210 与第二激光阵列 220 的每行激光元件所在的直线在纸面内是交错平行的。图 6b 为图 6a 所示的激光阵列排布对应的光斑分布示意图,如图 7 所示,此时,第一光束中的激光光斑的长轴方向和第二光束中的激光光斑的长轴方向互相平行,而第一光束中的激光光斑的长轴方向和第三光束中的激光光斑的长轴方向相垂直。
为了实现对第一合光与第三光束的合光,第一光束和第三光束要分别入射到第二合光装置 280 的不同位置,以实现第三光束与第一合光分别被第二合光装置透射和反射而共同形成出射光。。图 7 为图 5 所示的第二合光装置表面的入射光斑的俯视图,如图 7 所示, a 为第一光束中的光斑, b 为第二光束中的光斑, c 为第三光束中的光斑。第三光束中激光光斑的长轴方向与第一合光中激光光斑的长轴方向相垂直,第三光束中激光光斑填充第一合光中相邻激光光斑的长轴方向的间隙。此时,需要在第一合光和第三光束入射在第二合光装置 280 表面上时,第一合光的光斑和第三光束的光斑沿第一激光的光斑的长轴方向交替分布。
由于第一合光和第三光束中的光斑的长轴互相垂直,二者的偏振态可能垂直,设第一合光中的第一光束和第二光束都为第一偏振态,而第三光束为垂直于第一偏振态的第二偏振态。为了使得第一合光和第三激光能够分别被第二合光装置 280 分别反射和透射,合光装置 280 可以利用偏振特性来实现分光,即合光装置 280 可以反射第一偏态的光而反射第二偏振态的光或者反射第二偏振态的光而透射第一偏振态的光。例如,合光装置为线栅偏振片或者滤光片。
线栅偏振片是反射型偏振片的一种,具有工艺成熟、性能不随入射角变化的优点;可以理解,线栅偏振片是本实施例中优选的实施例,但并不限制其它反射型偏振片的使用。
当包含偏振方向垂直的 p 偏振光和 s 偏振光的光垂直入射到滤光片时,该滤光片对 p 偏振光和 s 偏振光的阻带是相同的,其中 p 偏振光为偏振方向在入射方向和反射方向所构成的平面内的偏振光, s 偏振光为偏振方向垂直于入射方向和反射方向所构成的平面的偏振光。但是当包含 p 偏振光和 s 偏振光的光入射于滤光片的入射角增大时,由于滤光片的膜层的作用,滤光片对光的阻带会向短波方向漂移,并且 s 偏振光的阻带会变得比 p 偏振光的阻带宽,使得 p 偏振光与 s 偏振光对应的透过率曲线通带边缘错开一定距离。随着入射于滤光片的入射角度越大, s 偏振光的阻带与 p 偏振光的阻带宽度相差变大, p 偏振光与 s 偏振光对应的透过率曲线通带边缘的距离越大。 s 偏振光与 p 偏振光所对应的透过率曲线通带边缘错开的位置所对应的波长,是可以由膜层设计来改变的。在这个波长位置的光根据偏振态不同( s 偏振光或 p 偏振光)而具有不同的透射特性。因此可以通过设置第一光束、第二光束、第三光束的偏振态以及设计滤光片的膜层来利用滤光片进行合光,例如使第一光束和第二光束都为 s 光,而第三光束为 p 光,同时设计膜层使得 s 偏振光与 p 偏振光所对应的透过率曲线通带边缘错开的位置覆盖所有激光阵列的发光波长。
本实施例中,第一光束和第二光束中的激光光斑互相填充了激光光斑短轴方向空隙外,第一光束和第二光束构成的第一合光与第三光束入射在第二合光装置 280 表面的激光光斑沿第一光束的光斑的长轴方向交替分布,而第一光束和第三光束的光斑长轴方向互相垂直,因而使得第三光束中激光光斑填充第一合光中相邻激光光斑的长轴方向的间隙,因此本实施例中,第一光束的椭圆形光斑的长轴和短轴方向的两个维度都得到了填充,使得发光装置出射的整个光束的空隙减小了,提高了发光装置的光功率密度。
当第一光束的波长为第一波长,第二光束的波长为第二波长(第二波长可以与第一波长相同),而第三光束的波长为与第一波长、第二波长不同的第三波长时,第二合光装置还可以用波长分光形式实现:第二合光装置反射第一波长和第二波长的光而透射第三波长的光或者透射第一波长和第二波长的光而反射第三波长的光。例如第一光束和第二光束为 445 nm 的蓝光激光,而第三光束为 462 nm 的蓝光激光,第二合光装置 280 就可以采用反射 445nm 蓝光而透射 462nm 蓝光的滤光片。
与图 1 所示的发光装置类似,本实施例中的第一光束与第二光束形成的第一合光、第三光束入射第二合光装置上的位置并不相同,因此第二合光装置 280 可以包括多个透射区域和反射区域,该透射区域和反射区域沿第一光束在第二合光装置 280 表面形成的激光光斑的长轴方向交替分布。透射区域覆盖第一合光在第二合光装置表面的入射区域而反射区域覆盖第三光束所述第二合光装置表面的入射区域。
具体地,第二合光装置 280 可以包括一透明的玻璃片,该玻璃片的表面设置有多个反射镜,该反射镜为反射区域,其位于需要被反射的第二光束和第一光束的光斑位置,而相邻反射镜之间或者反射镜与玻璃片边缘之间的区域为透射区域,第三光束入射至不同的透射区域。另外,这里的玻璃片也可以用树脂等透明材质代替。
尽管玻璃片的透过率很高,但是光入射到玻璃片产生的菲涅尔损失还是造成了透过率的下降。为了进一步提高第二合光装置 280 对第三光束的光透过率,可以在玻璃片上进行镀增透膜,以减少菲涅尔损失。
另一种提高透射区域的透过率的方法是,设置透射区域为多个透光孔,该透光孔可以完全透射入射至该透光孔的光。此时,第二合光装置 280 的材质可以不是透明的,例如金属。透光孔可以为与第一光束的光束截面相接近的单元,透光孔的排布可以与第一光束和第二光束的光斑位置的排布一致,此时,优选地,透光孔可以是椭圆形以与一束激光光束的截面形状相匹配。透光孔还可以是长条形,每个长条形与第一激光阵列 210 的一列激光元件相对应,此时透光孔的加工比较方便。
同时,第二合光装置 280 的反射区域的反射镜还可以用反射膜代替。此时,第二合光装置 280 可以用分区镀膜实现,结构比较简单,但是相对于反射镜,其成本比较高。无论是反射镜还是反射膜,其能够对第二光束和第三光束中的每个小光束进行反射即可,因此第一合光装置 250 可以包括与第一激光阵列 210 与第二激光阵列 220 的激光元件总数量对应的小反射镜或反射膜区域,但是这种结构比较复杂,而本实施例中的条形的反射镜能够减少第二合光装置 280 的制作时间,而整块的条形的反射膜相对多块反射膜的制备成本更低,是一种优选的方案。
当然,根据第一光束和第二光束的性质,第一合光装置 270 也可以选择与上述第二合光装置 280 类似的结构。若第一光束和第二光束的波长不同,第二合光装置 280 可以是波长分光装置。若第一光束和第二光束的偏振态不同,第二合光装置 280 可以是偏振分光装置。当然,第二合光装置 280 还可以利用入射在第二合光装置 280 的第一光束和第二光束的位置不同来合光,例如,第一合光装置 270 包括多个透射区域和反射区域,该透射区域和反射区域沿第一光束在第一合光装置 270 表面形成的光斑的短轴方向交替分布。第一光束从第一合光装置的第一侧透射透射区域而第二光束从第一合光装置的第二侧入射至反射区域被反射。
另外,本实施例中,第二合光装置 280 通过透射第三光束而反射第合光来实现合光,容易理解的是,第二合光装置 280 也可以通过反射第三光束而透射第一合光来实现。
实施例二
在图 5 所示的实施例中,如图 7 所示,尽管第一光束中的光斑长轴和短轴方向的空隙都得到了填充,但是第二合光装置表面的光斑之间依然可能存在较大间隙。这里的间隙可以通过增加更多的激光阵列进行填充。图 8 为本实用新型的又一个实施例的结构主视图,如图 8 所示,发光装置包括第一激光阵列 301 、第二激光阵列 302 、第三激光阵列 303 、第四激光阵列 304 、第一准直透镜阵列 305 、第二准直透镜阵列 306 、第三准直透镜阵列 307 、第四准直透镜阵列 308 、第一合光装置 309 、第二合光装置 310 、反射镜 311 、第三合光装置 312 。
与图 5 所示实施例的发光装置不同的是,本实施例的发光装置增加了第四激光阵列 304 、第四准直透镜阵列 308 和第三合光装置 312 。第四激光阵列 304 用于出射第四光束,该第四光束经第四准直透镜阵列 308 的准直后入射至第三合光装置 312 。
与图 5 所示实施例相同,本实施例中的第一激光阵列 301 出射的第一光束和第二激光阵列 302 出射的第二光束经第一合光装置 309 构成第一合光。该第一合光的光分布与图 7 所示的第一光束、第二光束的光分布相同。
为了能让第四光束的光斑填充第一光束的光斑的短轴方向的间隙,第一合光和第四光束入射在第三合光装置 312 表面的激光光斑应该沿第一光束的光斑的短轴方向交替分布,此时第一合光的光斑与第四光束的光斑在第一光束的光斑的短轴方向互相填充间隙。但是,第一合光光斑的短轴方向的间隙只能容纳椭圆形光斑的短轴的长度,因此需要设置第四光束中的光斑的长轴与第一光束中的光斑的长轴互相平行。这样,第四光束中激光光斑填充第一合光中相邻激光光斑的短轴方向的间隙,并且第四光束和第一合光经第三合光装置 312 后构成第二合光。
第二合光与第三激光阵列 303 出射的第三光束的合光过程与图 5 所示实施例中第一合光和第三光束的合光过程相似,使得第三光束中激光光斑填充第二合光中相邻激光光斑的短轴方向的间隙。图 9 为图 8 所示的第二合光装置表面的入射光斑的示意图,如图 9 所示, a 为第一光束中的光斑, b 为第二光束中的光斑、 c 为第三光束中的光斑, d 为第四光束中的光斑,从图 9 可以看出,相对于图 7 ,第一光束的光斑的短轴方向的间隙得到更大程度的填充。
值得说明的是,当第一合光的光斑短轴方向的间隙较大,但其宽度小于第四光束的光斑短轴的宽度时,可以人为的扩大第一激光阵列 301 或者第二激光阵列 302 的激光元件之间宽度,以利用第四光束的光斑填充间隙。
本实施例是通过在第一合光的光斑短轴方向进行进一步的填充,容易理解的是,在第一合光的光斑的长轴方向的维度上也可以进一步填充。图 10 为本实用新型的又一个实施例的发光装置的结构示意图,如图 10 所示,发光装置包括第一激光阵列 401 、第二激光阵列 402 、第三激光阵列 403 、第四激光阵列 404 、第五激光阵列 405 、第一准直透镜阵列 406 、第二准直透镜阵列 407 、第三准直透镜阵列 408 、第四准直透镜阵列 409 、第五准直透镜阵列 410 、第一合光装置 411 、第二合光装置 412 、反射镜 413 、第三合光装置 414 、第四合光装置 415 。相对于图 10 所示实施例的发光装置,本实施例发光装置增加了发出第五光束的第五激光阵列 405 ,并设置与该第五激光阵列相对应的第四合光装置 415 ,使得第第一光束、第二光束、第三光束的合光与五光束入射在第四合光装置 415 的表面的激光光斑在沿第一光束的激光短轴方向上交替排布,并且第五光束和第三光束入射在第四合光装置表面的激光光斑在第三光束光斑的长轴方向上交替排布。
图 11 为图 10 所示的第四合光装置 415 表面的入射光斑俯视图,如图 11 所示, a 为第一光束中的光斑, b 为第二光束中的光斑, c 为第三光束中的光斑, d 为第四光束中的光斑, e 为第五光束中的光斑。第五激光阵列 405 的出射光的激光光斑长轴与第一光束中的激光光斑的长轴垂直,并填充第一光束的激光光斑长轴方向的间隙,同时也填充了第三光束中的激光光斑长轴方向的间隙,使得间隙得到最大程度的减小。第五激光阵列出射光的填充原理与上述实施例的原理相同,在此就不再赘述。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本实用新型实施例还提供一种投影系统,包括发光装置,该发光装置可以具有上述各实施例中的结构与功能。该投影系统可以采用各种投影技术,例如液晶显示器( LCD , Liquid Crystal Display )投影技术、数码光路处理器( DLP , Digital Light Processor )投影技术。
以上所述仅为本实用新型的实施方式,并非因此限制本实用新型的专利范围,凡是利用本实用新型说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本实用新型的专利保护范围内。

Claims (9)

  1. 一种发光装置,其特征在于,包括:
    第一激光阵列、第二激光阵列和第一合光装置,所述第一激光阵列发出的第一光束和第二激光阵列发出的第二光束分别被第一合光装置透射和反射而合为一束并构成第一合光,第一光束中激光光斑的长轴方向与第二光束中激光光斑的长轴方向平行,第一光束与第二光束入射到所述第一合光装置表面的激光光斑沿该第一光束的激光光斑的短轴方向交替分布;
    第三激光阵列和第二合光装置,所述第三激光阵列用于发出第三光束,该第三光束与所述第一合光分别被第二合光装置透射和反射而共同形成出射光,或第三光束与所述第一合光分别被第二合光装置反射和透射而共同形成出射光;
    其中,第三光束中激光光斑的长轴方向与第一合光中激光光斑的长轴方向相垂直,第三光束与第一合光入射到所述第二合光装置表面的激光光斑沿该第一合光的激光光斑的长轴方向交替分布。
  2. 根据权利要求 1 所述的发光装置,其特征在于,所述发光装置还包括第四激光阵列与第三合光装置,所述第四激光阵列用于发出第四光束,该第四光束与所述第一合光分别被第三合光装置透射和反射而共同形成第二合光,或第四光束与所述第一合光分别被第三合光装置反射和透射而共同形成第二合光;
    其中,所述第四光束中激光光斑的长轴方向与第一合光中激光光斑的长轴方向相平行,第四光束与第一合光入射到所述第三合光装置表面的光斑沿该第一合光的激光光斑的短轴方向交替分布;
    所述第二合光与第三光束分别被第二合光装置透射和反射而共同形成出射光,或者所述第二合光与第三光束分别被第二合光装置反射和透射而共同形成出射光。
  3. 根据权利要求 1 所述的发光装置,其特征在于,所述第一光束、第二光束为第一偏振态,第三光束为垂直于第一偏振态的第二偏振态,所述第二合光装置具有透射第一偏振态的光而反射第二偏振态的光或者反射第一偏振态的光而透射第二偏振态的光的光学性质。
  4. 根据权利要求 1 所述的发光装置,其特征在于,所述第一光束的波长为第一波长,所述第二光束的波长为第二波长,所述第三光束的波长为与第一波长、第二波长都不同的第三波长,所述第二合光装置具有反射第一波长和第二波长的光而透射第三波长的光或者透射第一波长和第二波长的光而反射第三波长的光的光学性质。
  5. 根据权利要求 1 所述的发光装置,其特征在于,所述第二合光装置包括多个透射区域和反射区域,该透射区域和反射区域沿所述第一光束入射在所述第二合光装置表面形成的光斑的长轴方向交替分布;
    所述透射区域覆盖所述第一合光在所述第二合光装置表面的入射区域而所述反射区域覆盖所述第三光束在所述第二合光装置表面的入射区域,或者所述透射区域覆盖所述第三光束在所述第二合光装置表面的入射区域而所述反射区域覆盖所述第一合光在所述第二合光装置表面的入射区域。
  6. 根据权利要求 5 所述的发光装置,其特征在于,所述第二合光装置为透明材质,所述第二合光装置的反射区域设置有反射镜或者反射膜,所述相邻反射镜或者反射膜之间以及反射镜或者反射膜与透明材质边缘之间的透明区域为透射区域。
  7. 根据权利要求 5 所述的发光装置,其特征在于,所述第二合光装置的反射区域设置有反射镜或者反射膜,所述第二合光装置的透射区域为透光孔。
  8. 根据权利要求 1 所述的发光装置,其特征在于:所述第一合光装置包括多个透射区域和反射区域,该透射区域和反射区域沿所述第一光束在所述第一合光装置表面形成的光斑的短轴方向交替分布 ;
    所述第一光束从第一合光装置的第一侧透射所述透射区域而所述第二光束从第一合光装置的第二侧入射至所述反射区域被反射。
  9. 一种投影装置,其特征在于,包括如权利要求 1 至 8 所述的任一项发光装置。
PCT/CN2014/072665 2013-03-01 2014-02-28 一种发光装置及投影系统 WO2014131364A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2013200958384U CN203217229U (zh) 2013-03-01 2013-03-01 一种发光装置及投影系统
CN201320095838.4 2013-03-01

Publications (1)

Publication Number Publication Date
WO2014131364A1 true WO2014131364A1 (zh) 2014-09-04

Family

ID=49206751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072665 WO2014131364A1 (zh) 2013-03-01 2014-02-28 一种发光装置及投影系统

Country Status (3)

Country Link
CN (1) CN203217229U (zh)
TW (1) TWM487442U (zh)
WO (1) WO2014131364A1 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203217229U (zh) * 2013-03-01 2013-09-25 深圳市绎立锐光科技开发有限公司 一种发光装置及投影系统
SK7096Y2 (sk) * 2013-12-13 2015-05-05 Spôsob zvyšovania intenzity žiarenia laserového zväzku modrej oblasti spektra pomocou spájania laserových zväzkov
CN103676436B (zh) * 2013-12-20 2016-04-06 海信集团有限公司 一种用于投影的光源整形方法及结构
CN103676186A (zh) * 2013-12-25 2014-03-26 中国华录集团有限公司 激光二极管布局系统和方法
CN106165412B (zh) * 2014-04-04 2023-07-07 巴科股份有限公司 投影照明系统
CN103944069A (zh) * 2014-05-09 2014-07-23 西安炬光科技有限公司 一种高功率半导体激光器合束装置
CN203930191U (zh) * 2014-05-19 2014-11-05 深圳市绎立锐光科技开发有限公司 光源模组及投影设备
JP6402906B2 (ja) * 2014-09-17 2018-10-10 カシオ計算機株式会社 光源装置及び投影装置
CN104297927A (zh) * 2014-09-29 2015-01-21 四川长虹电器股份有限公司 一种激光二极管阵列光源模组
CN106911065B (zh) * 2015-12-23 2019-03-05 无锡视美乐激光显示科技有限公司 一种激光光源模组组合结构
CN106873297A (zh) * 2017-04-11 2017-06-20 中视迪威激光显示技术有限公司 用于激光显示的激光光源系统及应用该系统的投影设备
CN110275373A (zh) * 2018-03-16 2019-09-24 青岛海信激光显示股份有限公司 一种三色激光光源及激光投影装置
CN111103744B (zh) * 2018-10-26 2022-09-23 深圳光峰科技股份有限公司 显示设备与显示系统
CN115356887A (zh) * 2018-11-09 2022-11-18 扬明光学股份有限公司 照明系统
CN111522189B (zh) * 2019-02-01 2022-07-01 青岛海信激光显示股份有限公司 激光光源装置及激光投影设备
CN111522188B (zh) * 2019-02-01 2022-07-01 青岛海信激光显示股份有限公司 激光光源装置及激光投影设备
US11079665B2 (en) 2019-03-20 2021-08-03 Hisense Laser Display Co., Ltd. Laser projection apparatus
WO2020186843A1 (zh) * 2019-03-20 2020-09-24 青岛海信激光显示股份有限公司 激光光源和激光投影设备
CN114791688A (zh) * 2019-04-01 2022-07-26 青岛海信激光显示股份有限公司 一种激光光源及激光投影设备
US11237468B2 (en) 2019-06-20 2022-02-01 Hisense Laser Display Co., Ltd. Laser projection apparatus
CN110488505A (zh) * 2019-08-30 2019-11-22 成都城艺光照明工程有限公司 一种空气成像的激光投影设备
TWI803882B (zh) * 2021-06-08 2023-06-01 揚明光學股份有限公司 照明系統
WO2023005546A1 (zh) * 2021-07-30 2023-02-02 青岛海信激光显示股份有限公司 激光投影设备
CN114721159A (zh) * 2022-03-31 2022-07-08 青岛海信激光显示股份有限公司 投影光源
TWI808722B (zh) * 2022-04-13 2023-07-11 明基電通股份有限公司 合光模組及具有其之雷射投影機

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01172743A (ja) * 1987-12-14 1989-07-07 Gas Tec Inc 定電位電解型ガス測定装置におけるセンサ接続判定回路
CN1675578A (zh) * 2002-08-30 2005-09-28 浜松光子学株式会社 聚光装置
CN102297389A (zh) * 2011-05-16 2011-12-28 深圳市光峰光电技术有限公司 激光阵列合光模组
TW201205184A (en) * 2010-07-06 2012-02-01 Seiko Epson Corp Light source device and projector
CN203217229U (zh) * 2013-03-01 2013-09-25 深圳市绎立锐光科技开发有限公司 一种发光装置及投影系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01172743A (ja) * 1987-12-14 1989-07-07 Gas Tec Inc 定電位電解型ガス測定装置におけるセンサ接続判定回路
CN1675578A (zh) * 2002-08-30 2005-09-28 浜松光子学株式会社 聚光装置
TW201205184A (en) * 2010-07-06 2012-02-01 Seiko Epson Corp Light source device and projector
CN102297389A (zh) * 2011-05-16 2011-12-28 深圳市光峰光电技术有限公司 激光阵列合光模组
CN203217229U (zh) * 2013-03-01 2013-09-25 深圳市绎立锐光科技开发有限公司 一种发光装置及投影系统

Also Published As

Publication number Publication date
CN203217229U (zh) 2013-09-25
TWM487442U (zh) 2014-10-01

Similar Documents

Publication Publication Date Title
WO2014131364A1 (zh) 一种发光装置及投影系统
WO2014135039A1 (zh) 发光装置及投影系统
US20110216396A1 (en) High durability color combiner
TW200907550A (en) Illumination device and projection system using the same
US9229308B2 (en) Projection apparatus and light condensing module
WO2019071951A1 (zh) 复眼透镜组及投影装置
WO2015010418A1 (zh) 背光模组及显示装置
WO2009143754A1 (zh) Led红、绿、蓝三色光的双通道合色系统
JP5919622B2 (ja) 偏光変換素子、偏光変換ユニット及び投写型映像装置
WO2010099709A1 (zh) 微型投影机用光学引擎
TW201833653A (zh) 投影系統
WO2021134789A1 (zh) 一种投影仪及投影系统
TWI489855B (zh) 立體投影光源系統
TW201716852A (zh) 光學固定裝置與光源裝置
WO2022037196A1 (zh) 一种三色光源设备和投影显示设备
JP2010225307A (ja) 偏光機能付光源とホモジェナイザーとこれらを用いた光源装置とこれを用いたローカルディミングバックライトシステム
WO2021078103A1 (zh) 一种激光投影光源和激光投影设备
JP7131580B2 (ja) 光源装置、照明装置およびプロジェクター
JP2019061110A (ja) 照明装置およびプロジェクター
WO2018086349A1 (zh) 一种3d投影镜头及投影设备
CN114460799B (zh) 一种激光显示光源系统及激光显示设备
WO2012129785A1 (zh) 激光投影光源模块及其光束整形方法、激光显示设备
WO2013097478A1 (zh) 半导体光源和发光装置
US20160085142A1 (en) Projection image display device
TW201947314A (zh) 投影機及光源模組

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14756780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/01/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14756780

Country of ref document: EP

Kind code of ref document: A1