WO2014135039A1 - 发光装置及投影系统 - Google Patents

发光装置及投影系统 Download PDF

Info

Publication number
WO2014135039A1
WO2014135039A1 PCT/CN2014/072777 CN2014072777W WO2014135039A1 WO 2014135039 A1 WO2014135039 A1 WO 2014135039A1 CN 2014072777 W CN2014072777 W CN 2014072777W WO 2014135039 A1 WO2014135039 A1 WO 2014135039A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
lens
light
laser light
optical path
Prior art date
Application number
PCT/CN2014/072777
Other languages
English (en)
French (fr)
Inventor
胡飞
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Publication of WO2014135039A1 publication Critical patent/WO2014135039A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources

Definitions

  • the utility model relates to the technical field of illumination and display, in particular to a light-emitting device and a projection system.
  • Laser phosphor technology is a new high-brightness light source solution that can be widely used in projection displays and other fields.
  • the laser phosphor technology uses a laser to excite a phosphor to generate a laser as a light source. Since the optical power density of the laser is high, the optical power density of the laser generated by the excitation phosphor is also high, so that the light source can generate a high-intensity laser or a mixed light of the laser and the excitation light.
  • the wavelength conversion device includes a first laser light source 110. a second laser source 120, a reflective color wheel 130, a scattering device 140, a first filter 150, a second filter 160, a lens 170, and a homogenizing rod 180.
  • First laser source 110 The 445 nm blue laser is emitted, and the 445 nm blue laser is purple in color. Although it is not suitable for direct projection display, it is more efficient in exciting the phosphor.
  • the 445 nm The blue laser light is reflected by the first filter 150 and is incident on the reflective color wheel 130 to generate a yellow laser light.
  • the yellow laser light emitted by the color wheel 130 transmits the first filter 150 to the second filter. 160.
  • the second laser source 120 emits a 462 nm blue laser, and the 462 nm laser color is suitable for direct display of blue light in a projection display. 462 nm
  • the blue laser light is transmitted through the scattering device 140 and then incident on the second filter 160.
  • Second filter 160 will be incident 462 nm
  • the blue laser and the yellow laser are combined into the same optical path and sequentially output to the lens 170 and the homogenizing rod 180 to obtain white light mixed light.
  • Figure 1 A problem with the illustrated light-emitting device is that the yellow light component and the blue light component in the white light mixed light emitted from the light-emitting device are not uniformly mixed, and a color cast phenomenon may occur.
  • the structure of the entire illuminating device is relatively complicated and not compact enough.
  • the technical problem mainly solved by the utility model is to provide a light-emitting device and a projection system which are relatively uniform and compact in structure.
  • the embodiment of the present invention provides a light emitting device, including:
  • a first laser source for emitting the first laser
  • a second laser source for emitting the second laser
  • An optical path adjusting device configured to receive the first laser and the second laser incident in the same direction, and cause the first laser and the second laser to exit along different optical paths;
  • a first lens for receiving the first laser light emitted by the optical path adjusting device and focusing the first laser light to the wavelength conversion device, and collimating the laser light emitted from the wavelength conversion device to the optical path adjusting device;
  • a second lens identical to the first lens configured to receive the second laser light emitted by the optical path adjusting device and focus the second laser light to the scattering device, and collimate the scattered light emitted by the scattering device to the optical path adjusting device;
  • a wavelength conversion device comprising a first surface for receiving a first laser light emitted by a first lens, the wavelength conversion device converting the first laser light into a laser light and emitting the laser light from the first surface to the first lens ;
  • a scattering device comprising a second surface for receiving a second laser light emitted by the second lens, the scattering device scattering the second laser light, and emitting the scattered second laser light from the second surface to the first lens ;
  • the optical path of the wavelength conversion device to the first lens is equal to the optical path of the scattering device to the second lens, and the optical paths of the first lens and the second lens to the optical path adjusting device are equal, and the wavelength conversion device is aligned by the first lens.
  • the second laser light that is emitted by the laser and the scattering device after being collimated by the second lens is merged into the same optical path by the optical path adjusting device, and the combined laser light and the optical path of the second laser light are superposed.
  • the first laser source and the second laser source are disposed in the same light source module, and the first laser and the second laser are emitted in the same direction.
  • the first laser source and the second laser source are disposed in the same light source module, and the first laser and the second laser are emitted in the same direction.
  • the optical path adjusting device is a filter having a second laser light transmitting the first polarization state and an optical characteristic of the second laser light received by the laser light and reflecting the first laser light and perpendicular to the first polarization state, or
  • the filter has a second laser that reflects the first polarization state and an optical characteristic that is received by the laser and transmits the first laser and the second laser that is perpendicular to the first polarization state, and the first laser light emitted by the first laser source is first The polarization state is incident on the filter.
  • the illumination device further comprises a quarter wave plate, the quarter wave plate being located between the optical path adjustment device and the scattering device.
  • the light emitting device further comprises a fly-eye lens or a fly-eye lens pair, wherein the fly-eye lens or the fly-eye lens pair is configured to receive the first laser and the second laser, and the first laser and the second laser are homogenized and then emitted to the optical path adjusting device. .
  • the spot of the fly-eye lens or the fly-eye lens that is emitted to the scattering device and the wavelength conversion device after being homogenized is 4:3 or 16 : 9 rectangles.
  • the light emitting device further comprises a scattering lens located on the optical path of the second laser light between the fly eye lens or the pair of fly eye lenses and the second lens for diverging the second laser light.
  • the embodiment of the present invention has the following beneficial effects:
  • the optical path of the long conversion device to the first lens is equal to the optical path of the scattering device to the second lens, the optical paths of the first lens and the second lens to the optical path adjusting device are equal, and the first lens and the second lens are the same,
  • the spot of the direct incident first laser focused by the first lens on the surface of the wavelength converting device and the spot of the collimated second laser are focused by the second lens on the surface of the diffusing device.
  • the reflective scattering device can scatter the incident light into a Lambertian distribution
  • the laser light emitted by the wavelength conversion device is also a Lambertian distribution, so that the laser beam emitted by the wavelength conversion device and the second laser light emitted by the scattering device respectively pass through the first
  • the lens and the second lens are collimated, light beams having the same shape, the same light intensity distribution, and the same cross-sectional area are formed.
  • the beams overlap, so that the two spots coincide, and after the optical paths are combined, the light distribution of the optical path adjusting device is more uniform.
  • the splitting of the first laser and the second laser before scattering and the combining of the laser and the scattered second laser are realized by only one optical path adjusting device, and the structural compactness of the light emitting device is improved.
  • FIG. 1 is a schematic structural view of a light-emitting device in the prior art
  • FIG. 2 is a schematic structural view of an embodiment of a light-emitting device of the present invention.
  • Figure 3 is a light transmittance curve of the filter of the light-emitting device shown in Figure 2;
  • Fig. 4 is a graph showing the light transmittance of the filter of the position conversion of the wavelength conversion device and the scattering device in the light-emitting device shown in Fig. 2.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the light emitting device includes a first laser light source 210. a second laser light source 220, a wavelength conversion device 230, a scattering device 240, an optical path adjusting device 250, a first lens 260, and a second lens 270.
  • the first laser light source 210 can emit the first laser light L1, and the second laser light source 220 can emit the second laser light L2 .
  • the first laser L1 is a 445 nm blue laser, which can be used to excite the wavelength conversion material to obtain a laser;
  • the second laser L2 is 462 nm.
  • the blue laser can be used as a blue component for projection display.
  • the first laser source 210 and the second laser source 220 They are located in the same light source module and are located on the same plane of the light source module, so that the first laser L1 and the second laser L2 are emitted in the same direction.
  • the wavelength conversion device 230 includes a wavelength conversion layer 231 and a reflection layer 232, and a wavelength conversion layer 231. Including the yellow light wavelength conversion material, the excitation light can be received and converted into a yellow laser light, and the light emitted directly from the wavelength conversion device 230 is a Lambertian distribution.
  • the wavelength converting material in this embodiment is a phosphor, for example YAG phosphor, which absorbs blue light and is stimulated to emit yellow laser light.
  • the wavelength converting material may also be a material having wavelength conversion ability such as a quantum dot or a fluorescent dye, and is not limited to a phosphor.
  • the first surface 231a of the wavelength conversion layer 231 receives the incident excitation light, and the reflective layer 232 is disposed on the wavelength conversion layer 231.
  • the surface opposite to the first surface 231a can reflect the excitation light incident on the surface thereof or be subjected to laser light, and thus the laser light generated by the wavelength conversion layer 231 is also emitted from the first surface 231a.
  • Reflective layer here 232 is specifically a high anti-aluminum sheet, and the high anti-aluminum sheet can also function as a substrate to support the wavelength conversion layer 231.
  • the wavelength conversion layer 231 does not need to be supported by the substrate, and the reflective layer 232 may be plated on the wavelength conversion layer.
  • the surface of 231 also has a reflective effect. In the case where the thickness of the wavelength converting material in the wavelength converting layer 231 is sufficient, the reflective layer 232 may not be provided.
  • the outgoing light of the wavelength conversion device 230 is a Lambertian distribution
  • the exiting light of 230 is uniform to obtain a relatively uniform mixed light, and the scattering device 240 must also be capable of passing the incident second laser L2.
  • the scattering becomes a Lambertian distribution.
  • a reflective scattering device can scatter the second laser L2 to a near Lambertian distribution. This is because the transmissive scattering device is generally used ( Figure 1 In the scattering device 140), since the emitted light propagates in the direction of the incident light, there is always a local region where the scattering is small in the scattering device, and even a pin hole exists.
  • the incident laser can be made to emit light with little or no scattering (directly through the pinhole), and this part of the light still has strong directivity and does not obey the Lambertian distribution.
  • the thickness or density of the scattering device is increased to completely prevent the occurrence of pinholes, the transmittance of incident light is greatly reduced to reduce the efficiency of the scattering device.
  • the reflected light of the reflective scattering device is opposite to the direction of the incident light, and the incident light must be deflected and reflected to change direction to form the outgoing light, and increasing the density or thickness of the reflecting device does not reduce the efficiency.
  • Reflective scattering devices are an essential choice for efficient, Lambertian scattering.
  • the reflective scattering device 240 includes a scattering layer 241 provided with a scattering material, and a second laser light L2 from the second surface 241a of the scattering device 240
  • the incident which can be scattered into a Lambertian distribution, also exits from the second surface 241a.
  • the scattering device 240 can also eliminate the second laser L2 Coherence.
  • the scattering material may be disposed on a reflective substrate such that light transmitting the scattering material is reflected by the reflective substrate and re-incident to the scattering material and scattered.
  • the light source module and the scattering device 240 are located on both sides of the light path adjusting device 250, and the second laser
  • the L2 transmitted light path adjusting device is incident on the scattering device 240; and the light source module and the wavelength converting device 230 are located on the same side of the optical path adjusting device 250, and the first laser L1 passes through the optical path adjusting device 250.
  • the reflection is incident on the wavelength conversion device 230.
  • the light source module, the scattering device 240, and the wavelength conversion device 230 are all surrounded by the optical path adjusting device 250.
  • the three sides, while the other side is used for the emission of light, so this structure is the most compact.
  • the optical path adjusting device 250 simultaneously realizes the first laser L1 and the second laser L2, the first laser.
  • the wavelengths are the same, and it is impossible to distinguish the optical paths by filters using the difference in wavelengths.
  • the optical path adjusting device 250 utilizes the second laser light L2 before scattering and the second laser light L2 after scattering.
  • the difference in polarization states distinguishes them.
  • the filter pair p-polarized light and s The stop band of the polarized light is the same, wherein the p-polarized light is the polarized light in the plane of the polarization direction in the incident direction and the reflection direction, s
  • the polarized light is a polarized light whose plane of polarization is perpendicular to a plane formed by the incident direction and the reflected direction.
  • the stop band of the filter shifts to the short-wave direction due to the action of the filter layer of the filter, and the stop band of the s-polarized light becomes Than the p-polarized light's resistance bandwidth, making p
  • the transmittance curve of the polarized light corresponding to the s-polarized light is staggered by a certain distance.
  • the stop band width of the s-polarized light and the stop band width of the p-polarized light become larger, p-polarized light and s
  • the distance of the passband of the transmittance curve corresponding to the polarized light is larger.
  • the optical path adjusting device 250 The optical path can be distinguished between the second laser light L2 before scattering and the second laser light L2 after scattering by using different reflectances of the filter for incident light of different polarization states.
  • the optical path adjusting device 250 is formed in the direction of incidence of the first laser light L1.
  • the filter placed in the filter, the light transmittance curve of the filter is shown in Figure 3, the filter can transmit the second laser of 462 nm in the first polarization state, and reflect the first laser of 445 nm and 462 Nm
  • the polarization state is perpendicular to the second laser of the first polarization state.
  • the first polarization state is a p-polarization state
  • the polarization state perpendicular to the first polarization state is an s-polarization state.
  • the second laser L2 is set to p The polarization state is emitted.
  • the second laser light L2 emitted from the second laser light source 220 transmits the filter 250 to the scattering device 240, is scattered, and is again emitted to the filter 250. Due to the scattered second laser L2 is a non-polarized state, and the s-polarized light of the second laser L2 in the non-polarized state is reflected and deflected by 90 degrees.
  • a quarter-wave plate 280 may be disposed on the optical path between the filter 250 and the wavelength conversion device 230. Used to convert more than half of p-polarized light into s-polarized light. At this time, the s-polarized light incident from the second lens 270 to the second laser light L2 of the filter 250 will be greater than 50%. And is reflected.
  • the quarter wave plate 280 can be disposed between the scattering material of the scattering device 240 and the reflective substrate, and can also function to convert the polarization state of the incident light.
  • the first laser light L1 incident on the filter 250 will be reflected and deflected by 90 degrees to the wavelength conversion device 230. And exciting the wavelength converting material to produce a yellow laser light L3.
  • the yellow laser light L3 is incident on the filter 250 and transmitted through the same optical path as the scattered second laser light L2 of the s-polarized state.
  • the falling edge of the actual transmittance curve of the filter tends to have a certain slope, while 445nm and 462nm
  • the spectral distance of the blue light is very close, so it is likely that the reflectance or transmittance of the filter 250 to the first laser L1 and the second laser L2 is not 100%, but in reality this does not affect the first laser.
  • the utilization of L1 and the second laser L2 has a large influence. For example, when the filter is not ideal, 445 nm blue light will partially transmit into the scattering device.
  • the first laser L1 passes through the filter 250
  • the reflection enters the wavelength conversion device 230, and the reflectance is only 80%, and the remaining 20% is transmitted to the scattering device 240, scattered and reflected by the scattering device 240, and then incident on the filter 250 again.
  • the loss of the p-polarized light transmission filter 250 is not considered, 80% of the remaining 20% - that is, 16% of the total energy will be reflected and incident on the subsequent optical system, only 4%
  • the light is transmitted by the filter 250 to cause an excessive loss. Therefore, in reality, most of the first laser light L1 is reflected to the wavelength conversion device 230 without causing a large loss, and most of the reference here is 60%. the above.
  • the case of the second laser light L2 is similar to that of the first laser light L1, and most of it is transmitted to the scattering device 240. It is possible to use it to improve the blue light component in the outgoing light, and since the proportion of the scattered light is reduced, the proportion of the lost p-polarized light to the second laser light emitted from the second laser light source 220 is reduced.
  • the first lens 260 can receive the first laser emitted from the optical path adjusting device 250 L1 focuses the first laser light L1 to the wavelength conversion device 230, and collimates the laser light L3 emitted from the wavelength conversion device 230 to be emitted to the optical path adjusting device 230.
  • Second lens 270 The second laser light L2 emitted from the optical path adjusting device 250 can be received and the second laser light L2 can be focused to the scattering device 240, and the scattered light emitted from the scattering device 240 can be collimated and then emitted to the optical path adjusting device. 250.
  • the first lens 260 is identical to second lens 270, and the optical paths of first lens 260 to wavelength conversion device 230 and second lens 270 to scattering device 240 are equal.
  • the laser light emitted by the 210 and the second laser light source 220 is collimated light, so that the first laser L1 is formed by the first lens 260 on the surface of the wavelength conversion device 230 and the second laser light L2.
  • the spot size formed on the surface of the scattering device 240 via the second lens 270 is the same, and the laser or scattered light emitted from the two spot regions passes through the first lens 260 or the second lens 270.
  • the light distribution of collimated light emerging after collection will also be the same.
  • the collimated light adjusted by the second lens 270 it is impossible for the collimated light adjusted by the second lens 270 to be parallel light having a divergence angle of zero.
  • the divergence angle of the light beam is less than or equal to 10 Degree, at this time the degree of diffusion of the beam is small.
  • the first lens 260 and the second lens 270 are the same as the optical path of the light adjusting device 250 to ensure the first lens 260 and the second lens 270.
  • the emitted collimated light has the same spot size on the surface of the light adjusting device 250.
  • the wavelength conversion device 230 passes through the first lens 260.
  • the collimated collimated laser and scattering device 240 is collimated by the second lens 270, the second laser light is emitted through the filter 250 and merged into the same optical path, and the combined yellow laser light L3 is combined. It coincides with the optical path of the second laser light L2.
  • the optical axes of the first lens 260 and the second lens 270 may be disposed to intersect at the same point on the surface of the filter 250.
  • the light-emitting device realizes a mixed light beam of yellow light and blue light which completely overlap, and the light intensity distribution of the two is the same, achieving better uniform mixing.
  • the light source module and the wavelength conversion device 230 The scattering device 240 surrounds the optical path adjusting device 250 to realize a compact structure of the light emitting device.
  • the arrangement structure of the first laser light source 210 and the second laser light source 220 in this embodiment does not affect the wavelength conversion device 230.
  • the size and position of the spot on the surface of the scattering device 240 as long as the first laser L1 and the second laser L2 can be collected by the first lens 260 or the second lens 270.
  • the first laser source The 210 and the second laser light source 220 may not be in the same light source module as long as they are incident on the light adjusting device 250 in the same direction, for example, the first laser L1 and the second laser L2. It is also possible to first merge the light into the optical path adjusting device 250 via a polarizing plate.
  • the wavelength conversion device 230 further includes a driving device 233 for driving the wavelength conversion layer.
  • 231 is moved such that a spot formed on the wavelength conversion layer 231 by the excitation light acts on the wavelength conversion layer 231 along a predetermined path to prevent the excitation light from acting on the wavelength conversion layer for a long time.
  • the same position causes a problem of temperature rise of the wavelength conversion layer 231.
  • the driving device 233 is configured to drive the wavelength conversion layer 231 to rotate so that the first laser L2 A spot formed on the wavelength conversion layer 231 acts on the wavelength conversion layer 231 along a predetermined circular path.
  • the wavelength conversion device 230 has a disk shape and a wavelength conversion layer 231
  • the driving device 233 is a motor having a cylindrical shape
  • the driving device 233 is coaxially fixed to the wavelength conversion layer 231.
  • the drive device 233 It is also possible to drive the wavelength conversion layer 231 to move in other ways, such as horizontal reciprocation or the like.
  • the wavelength converting device 230 It is also possible not to provide a drive unit.
  • the scattering device 240 can also include a driving device 242 for driving the scattering layer 241.
  • the movement is such that a spot formed by the second laser light L2 on the scattering device 240 acts on the scattering device 240 along a predetermined path to prevent heat from being concentrated in the same region.
  • due to the driving device 242 The existence of the scattering layer 241 is rotated, so that the position of the spot of the laser light incident on the scattering layer 241 changes with time, so the position of the bright spot of the area projected by the light-emitting device is constantly changing, and the speed of change is fast enough when The eye is not aware of the presence of bright spots and thus has a better effect of eliminating speckle relative to stationary scattering devices.
  • the positions of the wavelength conversion device 230 and the scattering device 240 can be reversed.
  • the filter 250 The light transmittance curve is shown in Figure 4.
  • the filter 250 can transmit a first laser at 445 nm and a second laser at 462 nm in p-polarization, reflecting 445 nm of s.
  • the second laser light in the polarization state is disposed, and the light emitted from the second laser light source is incident on the filter in the s-polarization state.
  • the filter 250 can also emit the mixed light of the yellow laser light and the second laser light in the p-polarized state.
  • the embodiment of the present invention further provides a projection system including a light emitting device, which can have the structure and function in the above embodiments.
  • the projection system can employ various projection technologies, such as a liquid crystal display (LCD, Liquid Crystal Display) Projection technology, DLP (Digital Light Processor) projection technology.
  • LCD liquid crystal display
  • DLP Digital Light Processor

Abstract

一种发光装置及投影系统,包括:第一激光光源(210);第二激光光源(220);光路调节装置(250)接收同方向入射的第一激光和第二激光并沿不同光路出射;第一透镜(260)接收光路调节装置(250)出射的第一激光聚焦至波长转换装置(230);与第一透镜(260)相同的第二透镜(270),接收光路调节装置(250)出射的第二激光聚焦至散射装置(240);波长转换装置(230)将第一激光转换为受激光出射至第一透镜(260);散射装置(240)对该第二激光进行散射后出射至第二透镜(270);波长转换装置(230)到第一透镜(260)的光程与散射装置(240)到第二透镜(270)的光程相等,且第一透镜(260)、第二透镜(270)到光路调节装置(250)的光程相等,第一透镜(260)出射的受激光与第二透镜(270)出射的第二激光经光路调节装置(250)后光路重合。采用该结构的发光装置及投影系统对光混合较均匀并且结构紧凑。

Description

发光装置及投影系统 技术领域
本实用新型涉及照明及显示技术领域,特别是涉及一种发光装置及投影系统。
背景技术
激光荧光粉技术是一种新型的高亮度光源解决方案,这种技术可以广泛应用于投影显示等领域。激光荧光粉技术是利用激光激发荧光粉产生受激光以作为光源。由于激光的光功率密度很高,其激发荧光粉产生的受激光的光功率密度也很高,从而光源可以产生高亮度的受激光或者受激光与激发光的混合光。
图 1 为现有技术中一种发光装置的结构示意图,如图 1 所示,波长转换装置包括第一激光光源 110 、第二激光光源 120 、反射式色轮 130 、散射装置 140 、第一滤光片 150 、第二滤光片 160 、透镜 170 、匀光棒 180 。第一激光光源 110 出射 445 nm 蓝色激光, 445 nm 的蓝色激光颜色偏紫,尽管不适合直接用于直接投影显示,但其激发荧光粉的效率较高,该 445 nm 的蓝光激光经第一滤光片 150 的反射后入射到反射式色轮 130 以产生黄色受激光。色轮 130 出射的黄色受激光会透射第一滤光片 150 至第二滤光片 160 。第二激光光源 120 出射 462 nm 蓝色激光, 462 nm 的激光颜色适合直接用于投影显示中蓝光的显示。 462 nm 的蓝色激光会透射散射装置 140 后,入射到第二滤光片 160 。第二滤光片 160 将入射的 462 nm 的蓝光激光和黄色受激光合并成同一光路依次出射至透镜 170 和匀光棒 180 ,得到白光混合光。
但是,图 1 所示的发光装置的问题在于,发光装置出射的白光混合光中的黄光成分和蓝光成分混合并不均匀,可能出现偏色现象。另外,整个发光装置的结构比较复杂,不够紧凑。
技术问题
本实用新型主要解决的技术问题是提供一种混合较均匀并且结构紧凑的发光装置及投影系统。
本实用新型实施例提供了一种发光装置,包括:
第一激光光源,用于出射第一激光;
第二激光光源,用于出射第二激光;
光路调节装置,用于接收同一方向入射的第一激光和第二激光,并使得第一激光和第二激光沿不同光路出射;
第一透镜,用于接收光路调节装置出射的第一激光并将该第一激光聚焦至波长转换装置,且将波长转换装置出射的受激光准直后出射至光路调节装置;
与第一透镜相同的第二透镜,用于接收光路调节装置出射的第二激光并将该第二激光聚焦至散射装置,且将散射装置出射的散射光准直后出射至光路调节装置;
波长转换装置,包括第一表面,该第一表面用于接收第一透镜出射的第一激光,波长转换装置将第一激光转换为受激光并将该受激光从第一表面出射至第一透镜;
散射装置,包括第二表面,第二表面用于接收第二透镜出射的第二激光,散射装置对该第二激光进行散射,并将散射后的第二激光从第二表面出射至第一透镜;
所波长转换装置到第一透镜的光程与散射装置到第二透镜的光程相等,且第一透镜、第二透镜到光路调节装置的光程相等,波长转换装置经第一透镜出射准直后的受激光与散射装置经第二透镜准直后出射的第二激光经光路调节装置后合并为同一光路出射,且使得合光后的受激光与第二激光的光路重合。
优选地,第一激光光源和第二激光光源设置于同一个光源模组,且第一激光与第二激光同一方向出射。
优选地,第一激光光源和第二激光光源设置于同一个光源模组,且第一激光与第二激光同一方向出射。
优选地,光路调节装置为滤光片,该滤光片具有透射第一偏振态的第二激光和受激光且反射第一激光且垂直于第一偏振态的第二激光的光学特性,或者,该滤光片具有反射第一偏振态的第二激光和受激光且透射第一激光和垂直于第一偏振态的第二激光的光学特性,且第一激光光源出射的第一激光以第一偏振态入射到滤光片。
优选地,发光装置还包括一四分之一波片,该四分之一波片位于光路调节装置与散射装置之间。
优选地,发光装置还包括复眼透镜或者复眼透镜对,复眼透镜或者复眼透镜对用于接收第一激光和第二激光,并将该第一激光和第二激光进行匀光后出射至光路调节装置。
优选地,复眼透镜或者复眼透镜对匀光后出射到散射装置和波长转换装置的光斑为 4 : 3 或者 16 : 9 的长方形。
优选地,发光装置还包括散射透镜,该散射透镜位于复眼透镜或者复眼透镜对与第二透镜之间的第二激光的光路上,用于将该第二激光进行发散。
与现有技术相比,本实用新型实施例具有如下有益效果:
本实用新型实施例中,由于波 长转换装置到第一透镜的光程与散射装置到第二透镜的光程相等,第一透镜、第二透镜到光路调节装置的光程相等,且第一透镜和第二透镜的相同,准直入射的第一激光被第一透镜聚焦在波长转换装置表面的光斑与准直入射的第二激光被第二透镜聚焦在散射装置表面的光斑大小相等。另外,反射式散射装置可以将入射光散射成朗伯分布,而波长转换装置的出射的受激光也是朗伯分布,因此波长转换装置出射的受激光和散射装置出射的第二激光分别经过第一透镜和第二透镜准直后,形成形状相同,光强分布相同,截面面积相同的光束。而且经光路调节装置后光束重合,因此二者光斑重合,二者合并光路后,光路调节装置的出射光分布更加均匀。同时,仅利用一个光路调节装置实现了对第一激光和散射前的第二激光的分光以及受激光和散射后的第二激光的合光,提高了发光装置的结构紧凑性。
附图说明
图 1 为 现有技术中一种发光装置的结构示意图;
图 2 为本实用新型发光装置的一个实施例的结构示意图;
图 3 为图 2 所示发光装置的滤光片的光透过率曲线;
图 4 为图 2 所示发光装置中波长转换装置和散射装置的位置对换时滤光片的光透过率曲线。
本发明的实施方式
下面结合附图及实施方式来对本发明的实施例进行详细分析。
实施例一:
图 2 为本发明发光装置的一个实施例的结构示意图,如图 2 所示,发光装置包括第一激光光源 210 、第二激光光源 220 、波长转换装置 230 、散射装置 240 、光路调节装置 250 、第一透镜 260 、第二透镜 270 。
第一激光光源 210 可以出射第一激光 L1 ,第二激光光源 220 可以出射第二激光 L2 。具体地,第一激光 L1 为 445 nm 的蓝光激光,可以用于激发波长转换材料以得到受激光;第二激光 L2 为 462 nm 的蓝光激光,可以作为投影显示的蓝光成分。为了组装方便,第一激光光源 210 和第二激光光源 220 位于同一个光源模组内,并且位于光源模组的同一平面上,以使得第一激光 L1 和第二激光 L2 向同一个方向出射。
波长转换装置 230 包括波长转换层 231 和反射层 232 ,波长转换层 231 包括黄光波长转换材料,可以接收激发光并将其转化为黄色受激光出射,并且直接从波长转换装置 230 的出射的光为朗伯分布。本实施例中的波长转换材料为荧光粉, 例如 YAG 荧光粉,它可以吸收蓝光并受激发射黄色受激光。波长转换材料还可能是量子点、荧光染料等具有波长转换能力的材料,并不限于荧光粉。
波长转换层 231 的第一表面 231a接收入射的激发光,而反射层 232 被设置于波长转换层 231 的与第一表面 231a相对的表面,可以反射入射到其表面的激发光或者受激光,因此波长转换层 231 产生的受激光同样从第一表面 231a 出射。这里的反射层 232 具体为高反铝片,高反铝片同时还可以起到基板的作用来对波长转换层 231 起到支撑的作用。但在波长转换层 231 本身刚性足够的情况下(例如波长转换层是通过将荧光粉掺杂在透明玻璃中形成的),波长转换层 231 不需要基板来进行支撑的,此时反射层 232 可以镀在波长转换层 231 的表面,同样具有反射效果。而在波长转换层 231 中的波长转换材料厚度足够的情况下,也可以不设置反射层 232 。
由于波长转换装置 230 的出射光为朗伯分布,为了使得散射装置 240 的出射光的分布与波长转换装置 230 的出射光一致以获得较均匀的混合光,散射装置 240 也必须可以将入射的第二激光 L2 散射成为朗伯分布。经过大量实验和测试我们发现,只有反射式的散射装置才可能将第二激光 L2 散射成接近朗伯分布。这是因为一般所使用的透射式散射装置(如图 1 中的散射装置 140 )由于出射光沿着入射光的方向传播,而散射装置中总是存在散射很小的局部区域甚至存在针孔 (pin hole) 使得入射的激光可以经过很少的散射甚至没有散射(直接穿过针孔)而形成出射光,这部分光仍然具有很强的方向性,不服从朗伯分布。而如果增大散射装置的厚度或密度来完全杜绝针孔的出现,则会大幅度的降低入射光的透射率从而降低散射装置的效率。与之相对应,反射式的散射装置的出射光与入射光方向相反,入射光必须要经过散射反射后改变方向才能够形成出射光,而且增大反射装置的密度或厚度并不降低效率,因此反射式的散射装置是高效的、朗伯散射的必须选择。在本实施例中,反射式散射装置 240 包括散射层 241 ,散射层 241 设置有散射材料,第二激光 L2 从散射装置 240 的第二表面 241a 入射,可以被散射成朗伯分布同样从第二表面 241a 出射。散射装置 240 同时还可以消除第二激光 L2 的相干性。散射材料可以设置在一个反射衬底上,这样可以使得透射散射材料的光被该反射衬底反射而重新入射于散射材料并被散射。
为了实现发光装置的结构紧凑,光源模组与散射装置 240 位于光路调节装置 250 的两侧,第二激光 L2 透射光路调节装置入射于散射装置 240 ;而光源模组与波长转换装置 230 位于光路调节装置 250 的同侧,第一激光 L1 经过光路调节装置 250 的反射入射于波长转换装置 230 。这样,光源模组、散射装置 240 和波长转换装置 230 这三者就围绕在光路调节装置 250 的三面,而另一面用于光的出射,因此这种结构最为紧凑。然而为了实现该结构正常工作,光路调节装置 250 要同时实现对第一激光 L1 和第二激光 L2 、第一激光 L1 和受激光 L3 、散射前的第二激光 L1 和散射后的第二激光 L2 三组光线的分光。由于波长的差异,第一激光 L1 和第二激光 L2 、第一激光 L1 和受激光 L3 可以利用滤光片来区分光路,而散射前的第二激光 L2 和散射后的第二激光 L2 的波长相同,是不能利用波长的差异而用滤光片进行区分光路的。
本实施例中,光路调节装置 250 是利用散射前的第二激光 L2 和散射后的第二激光 L2 的偏振态的差异对其进行区分的。根据相关光学知识可知,当包含偏振方向垂直的 p 偏振光和 s 偏振光的光垂直入射到滤光片时,该滤光片对 p 偏振光和 s 偏振光的阻带是相同的,其中 p 偏振光为偏振方向在入射方向和反射方向所构成的平面内的偏振光, s 偏振光为偏振方向垂直于入射方向和反射方向所构成的平面的偏振光。但是当包含 p 偏振光和 s 偏振光的光入射于滤光片的入射角增大时,由于滤光片的膜层的作用,滤光片对光的阻带会向短波方向漂移,并且 s 偏振光的阻带会变得比 p 偏振光的阻带宽,使得 p 偏振光与 s 偏振光对应的透过率曲线通带边缘错开一定距离。随着入射于滤光片的入射角度越大, s 偏振光的阻带与 p 偏振光的阻带宽度相差变大, p 偏振光与 s 偏振光对应的透过率曲线通带边缘的距离越大。 s 偏振光与 p 偏振光所对应的透过率曲线通带边缘错开的位置所对应的波长,是可以由膜层设计来改变的。因此光路调节装置 250 可以利用滤光片对不同偏振态的入射光的不同反射率来实现对散射前的第二激光 L2 和散射后的第二激光 L2 区分光路。
具体地,光路调节装置 250 为与第一激光 L1 入射方向成 45 度放置的滤光片,该滤光片的光透过率曲线如图 3 所示,滤光片可以透射 462 nm 的第一偏振态的第二激光,而反射 445 nm 的第一激光和 462 nm 偏振态垂直于第一偏振态的第二激光。这里的第一偏振态为 p 偏振态,垂直于第一偏振态的偏振态为 s 偏振态。
为保证第二激光 L2 完全透射滤光片 250 ,第二激光 L2 被设置为以 p 偏振态出射。从第二激光光源 220 出射的第二激光 L2 透射滤光片 250 至散射装置 240 ,并被散射后再次出射至滤光片 250 。由于散射后的第二激光 L2 为非偏振态,该无偏振态的第二激光 L2 中 s 偏振态的光将被反射而偏转 90 度出射。考虑到第二激光 L2 散射后偏振态并不一定完全被打乱,其中 p 偏振光可能占据超过一半的比例,因此为了增大 s 偏振光的比率,可以在滤光片 250 与波长转换装置 230 之间的光路上设置四分之一波片 280 ,用于将占超过一半比例的 p 偏振光转化为 s 偏振光。此时从第二透镜 270 入射到滤光片 250 的第二激光 L2 中的 s 偏振态的光将大于 50% ,并被反射。另外,四分之一波片 280 还可以设置在散射装置 240 的散射材料和反射衬底之间,同样可以起到对入射光的偏振态进行转换的作用。
入射到滤光片 250 的第一激光 L1 将被反射而偏转 90 度至波长转换装置 230 ,并激发波长转换材料而产生黄色受激光 L3 。黄色受激光 L3 将入射至滤光片 250 而透射并与散射后的 s 偏振态的第二激光 L2 同一光路出射。
值得说明的是,滤光片实际的透过率曲线的下降沿往往是具有一定的斜率,而 445nm 和 462nm 的蓝光的光谱距离很近,因此很可能滤光片 250 对第一激光 L1 和第二激光 L2 的反射率或者透射率不是 100% ,但是实际上这种情况也不会对第一激光 L1 和第二激光 L2 的利用率造成较大影响。例如,当滤光片不理想, 445nm 蓝光将部分透射进入散射装置。假定第一激光 L1 经由滤光片 250 反射进入波长转换装置 230 ,反射率只有 80% ,则其余 20% 则被透射入射于散射装置 240 ,经散射装置 240 散射反射后再次入射于滤光片 250 ,若不考虑 p 偏振态的光透射滤光片 250 损失的部分,其余 20% 中的 80% --也就是总能量的 16% 会反射并入射到后续的光学系统中,只有 4% 的光被滤光片 250 透射而形成多余的损失,因此,实际上只需大部分的第一激光 L1 被反射至波长转换装置 230 ,不会造成较大损失,这里的大部分指 60% 以上。对于第二激光 L2 的情况与第一激光 L1 类似,只需大部分被透射至散射装置 240 ,就可以利用其改善出射光中的蓝光成分,并且由于被散射的比例减小了,损失的 p 偏振态的光占第二激光光源 220 出射的第二激光的比例反而减小了。
由于朗伯分布的光学扩展量很大,波长转换装置 230 和散射装置 240 的出射光经传播后的光束截面积会变的很大,因此需要设置第一透镜 260 和第二透镜 270 。第一透镜 260 可以接收光路调节装置 250 出射的第一激光 L1 并将该第一激光 L1 聚焦至波长转换装置 230 ,且将波长转换装置 230 出射的受激光 L3 准直后出射至光路调节装置 230 。第二透镜 270 可以接收光路调节装置 250 出射的第二激光 L2 并将该第二激光 L2 聚焦至散射装置 240 ,且将散射装置 240 出射的散射光准直后出射至光路调节装置 250 。
另一方面,为了保证入射到波长转换装置 230 和散射装置 240 的表面的光斑的大小一致,第一透镜 260 和第二透镜 270 相同,并且第一透镜 260 到波长转换装置 230 和第二透镜 270 到散射装置 240 的光程相等。此时,由于第一激光光源 210 和第二激光光源 220 出射的激光都为准直光,因此第一激光 L1 经第一透镜 260 在波长转换装置 230 的表面形成的光斑和第二激光 L2 经第二透镜 270 在散射装置 240 的表面形成的光斑大小相同,该两个光斑区域出射的受激光或者散射光经第一透镜 260 或者第二透镜 270 收集后出射的准直光的光分布也将相同。
但是,无论是第一激光光源 210 和第二激光光源 220 出射的准直光,还是经第一透镜 260 和第二透镜 270 调整后的准直光,都不可能做到是发散角为零的平行光。这里,当入射光经第一透镜 260 或者第二透镜 270 后,光束的截面积缩小,并可以全部入射到光路调节装置 250 的表面,就可以认为光束是准直的,优选地,光束的发散角小于等于 10 度,此时光束的扩散程度很小。因此这里,第一透镜 260 、第二透镜 270 与光调节装置 250 的光程相同,以保证第一透镜 260 和第二透镜 270 出射的准直光在光调节装置 250 的表面上的光斑大小相同。
进一步地,为了使得在滤光片 250 表面上光斑重合,波长转换装置 230 经第一透镜 260 出射准直后的受激光与散射装置 240 经第二透镜 270 准直后出射的第二激光经滤光片 250 后合并为同一光路出射,且使得合光后的黄色受激光 L3 与第二激光 L2 的光路重合。例如,可以设置第一透镜 260 和第二透镜 270 的光轴在滤光片 250 表面相交于同一点。
因此,通过上述发光装置,发光装置实现了出射完全重合的黄光和蓝光的混合光束,并且二者的光强分布相同,实现较好的均匀混合。另一方面,光源模组、波长转换装置 230 、散射装置 240 环绕在光路调节装置 250 的周围,实现了发光装置的紧凑结构。
另外,本实施例中的第一激光光源 210 和第二激光光源 220 的排列结构并不影响波长转换装置 230 和散射装置 240 表面的光斑的大小与位置,只要第一激光 L1 和第二激光 L2 能够被第一透镜 260 或第二透镜 270 收集即可。另一方面,第一激光光源 210 和第二激光光源 220 也可以不在同一光源模组内,只要保证二者同一方向入射到光调节装置 250 即可,例如,第一激光 L1 和第二激光 L2 先经一偏振片合光再入射光路调节装置 250 也是可以的。
本实施例中,波长转换装置 230 还包括驱动装置 233 ,驱动装置 233 用于驱动波长转换层 231 运动,以使激发光在该波长转换层 231 上形成的光斑沿预定路径作用于该波长转换层 231 ,以避免激发光长时间作用于波长转换层 231 的同一位置导致的该波长转换层 231 温度升高的问题 。具体地,本实施例中, 驱动装置 233 用于驱动波长转换层 231 转动,以使第一激光 L2 在该波长转换层 231 上形成的光斑沿预定的圆形路径作用于该波长转换层 231 。优选地,波长转换装置 230 呈圆盘状,波长转换层 231 呈与该圆盘同心的环状,驱动装置 233 为呈圆柱形的马达,并且驱动装置 233 与波长转换层 231 同轴固定。在本发明其它实施方式中,驱动装置 233 也可以驱动波长转换层 231 以其它方式运动,例如水平往复运动等。在波长转换层 231 的波长转换材料可以耐受较高温度的情况下,波长转换装置 230 也可以不设置驱动装置。
类似地,散射装置 240 也可以包括驱动装置 242 ,驱动装置 242 用于驱动散射层 241 运动,以使第二激光 L2 在该散射装置 240 上形成的光斑沿预定路径作用于该散射装置 240 ,避免热量集中在同一区域。另外, 本实施例中,由于驱动装置 242 的存在,散射层241发生转动,因此激光入射到散射层241的光斑的位置是随时间变化的,因此发光装置所投影的区域的亮点的位置是不断变化,这个变化速度足够快的时候,人眼就不能察觉亮点的存在,从而相对于静止的散射装置具有更好的消除散斑的效果。
本实施例中,波长转换装置 230 和散射装置 240 的位置可以对换的,此时滤光片 250 的光透过率曲线如图 4 所示,滤光片 250 可以透射 445 nm 的第一激光和 462 nm 的 p 偏振态的第二激光,反射 445nm 的 s 偏振态的第二激光,设置第二激光光源的出射光以 s 偏振态入射到滤光片,此时滤光片 250 同样可以出射黄色受激光和 p 偏振态的第二激光的混合光。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本实用新型实施例还提供一种投影系统,包括发光装置,该发光装置可以具有上述各实施例中的结构与功能。该投影系统可以采用各种投影技术,例如液晶显示器( LCD , Liquid Crystal Display )投影技术、数码光路处理器( DLP , Digital Light Processor )投影技术。
以上所述仅为本实用新型的实施方式,并非因此限制本实用新型的专利范围,凡是利用本实用新型说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本实用新型的专利保护范围内。

Claims (8)

  1. 一种发光装置,其特征在于,包括:
    第一激光光源,用于出射第一激光;
    第二激光光源,用于出射第二激光;
    光路调节装置,用于接收同一方向入射的所述第一激光和第二激光,并使得所述第一激光和第二激光沿不同光路出射;
    第一透镜,用于接收所述光路调节装置出射的第一激光并将该第一激光聚焦至所述波长转换装置,且将所述波长转换装置出射的受激光准直后出射至所述光路调节装置;
    与所述第一透镜相同的第二透镜,用于接收所述光路调节装置出射的第二激光并将该第二激光聚焦至所述散射装置,且将所述散射装置出射的散射光准直后出射至所述光路调节装置;
    波长转换装置,包括第一表面,该第一表面用于接收所述第一透镜出射的第一激光,所述波长转换装置将所述第一激光转换为受激光并将该受激光从所述第一表面出射至所述第一透镜;
    散射装置,包括第二表面,所述第二表面用于接收所述第二透镜出射的第二激光,所述散射装置对该第二激光进行散射,并将散射后的第二激光从所述第二表面出射至所述第一透镜;
    所述波长转换装置到所述第一透镜的光程与所述散射装置到所述第二透镜的光程相等,且所述第一透镜、第二透镜到所述光路调节装置的光程相等,所述波长转换装置经所述第一透镜出射准直后的受激光与所述散射装置经所述第二透镜准直后出射的第二激光经所述光路调节装置后合并为同一光路出射,且使得合光后的所述受激光与第二激光的光路重合。
  2. 根据权利要求 1 所述的发光装置,其特征在于:所述第一激光光源和第二激光光源设置于同一个光源模组,且所述第一激光与第二激光同一方向出射。
  3. 根据权利要求 1 所述的发光装置,其特征在于:所述光路调节装置为滤光片,该滤光片具有透射第一偏振态的所述第二激光和受激光且反射所述第一激光且垂直于第一偏振态的所述第二激光的光学特性,或者,该滤光片具有反射第一偏振态的所述第二激光和受激光且透射所述第一激光且垂直于第一偏振态的所述第二激光的光学特性;
    且所述第一激光光源出射的第一激光以第一偏振态入射到所述滤光片。
  4. 根据权利要求 3 所述的发光装置,其特征在于:所述发光装置还包括一四分之一波片,该四分之一波片位于所述光路调节装置与所述散射装置之间。
  5. 根据权利要求 2 所述的发光装置,其特征在于:所述发光装置还包括复眼透镜或者复眼透镜对,所述复眼透镜或者复眼透镜对用于接收所述第一激光和第二激光,并将该第一激光和第二激光进行匀光后出射至所述光路调节装置。
  6. 根据权利要求 5 所述的发光装置,其特征在于:所述复眼透镜或者复眼透镜对匀光后出射到所述散射装置和波长转换装置的光斑为 4 : 3 或者 16 : 9 的长方形。
  7. 根据权利要求 5 所述的发光装置,其特征在于:所述发光装置还包括散射透镜,该散射透镜位于所述复眼透镜或者复眼透镜对与所述第二透镜之间的第二激光的光路上,用于将该第二激光进行发散。
  8. 一种投影系统,其特征在于,包括如权利要求 1 至 7 中任一项所述的发光装置。
PCT/CN2014/072777 2013-03-04 2014-03-03 发光装置及投影系统 WO2014135039A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201320097997 CN203217230U (zh) 2012-12-28 2013-03-04 发光装置及投影系统
CN2013200979978 2013-03-04

Publications (1)

Publication Number Publication Date
WO2014135039A1 true WO2014135039A1 (zh) 2014-09-12

Family

ID=51490680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072777 WO2014135039A1 (zh) 2013-03-04 2014-03-03 发光装置及投影系统

Country Status (3)

Country Link
CN (1) CN203217230U (zh)
TW (1) TWM482090U (zh)
WO (1) WO2014135039A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109491186A (zh) * 2017-09-13 2019-03-19 深圳光峰科技股份有限公司 光源系统及光源亮度调整方法以及投影设备
CN111381428A (zh) * 2018-12-29 2020-07-07 深圳光峰科技股份有限公司 光源系统及投影装置
CN112213909A (zh) * 2019-07-12 2021-01-12 深圳光峰科技股份有限公司 光源系统与显示设备
CN112255871A (zh) * 2019-07-02 2021-01-22 深圳光峰科技股份有限公司 光源装置,包括该光源装置的放映设备和3d设备
US11971649B2 (en) 2019-07-02 2024-04-30 Appotronics Corporation Limited Light source device, projection apparatus and 3D apparatus comprising same

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203217230U (zh) * 2012-12-28 2013-09-25 深圳市绎立锐光科技开发有限公司 发光装置及投影系统
TWI526769B (zh) * 2013-11-29 2016-03-21 台達電子工業股份有限公司 波長轉換裝置及其製造方法
US9500941B2 (en) 2014-04-16 2016-11-22 Seiko Epson Corporation Illumination device and projector
JP6557983B2 (ja) * 2015-02-04 2019-08-14 セイコーエプソン株式会社 プロジェクター
TWI504832B (zh) 2014-05-02 2015-10-21 Coretronic Corp 照明系統及投影裝置
CN109557750B (zh) 2017-09-26 2021-06-15 中强光电股份有限公司 照明系统及使用照明系统的投影装置
US10732495B2 (en) 2014-05-02 2020-08-04 Coretronic Corporation Illumination system, projection apparatus and method for driving illumination system
CN105204279B (zh) * 2014-06-23 2017-07-11 深圳市绎立锐光科技开发有限公司 光源系统及投影设备
CN105652572B (zh) * 2014-06-23 2017-07-28 深圳市绎立锐光科技开发有限公司 光源系统及投影设备
CN105319819B (zh) * 2014-07-28 2019-09-20 深圳光峰科技股份有限公司 发光装置及投影系统
TWI567330B (zh) * 2014-09-15 2017-01-21 錼創科技股份有限公司 光學模組
JP6690217B2 (ja) 2015-03-09 2020-04-28 セイコーエプソン株式会社 光源装置及びプロジェクター
TWI575300B (zh) 2015-08-31 2017-03-21 中強光電股份有限公司 投影裝置以及照明系統
CN107272311A (zh) * 2016-04-06 2017-10-20 上海蓝湖照明科技有限公司 发光装置及相关投影系统与照明系统
CN107272313A (zh) * 2016-04-06 2017-10-20 上海蓝湖照明科技有限公司 发光装置及相关投影系统与照明系统
CN107783360A (zh) * 2016-08-25 2018-03-09 深圳市光峰光电技术有限公司 光源装置及显示系统
US10684492B2 (en) 2016-12-08 2020-06-16 Futurus Technology Co., Ltd. System for imaging in the air
CN108663879B (zh) 2017-03-31 2021-04-06 中强光电股份有限公司 投影机及其照明系统
CN109681790A (zh) 2017-10-18 2019-04-26 深圳市绎立锐光科技开发有限公司 光源系统及照明设备
CN110389486B (zh) 2018-04-16 2022-03-04 深圳光峰科技股份有限公司 光源装置及显示设备
CN110703552B (zh) 2018-07-10 2021-10-15 中强光电股份有限公司 照明系统以及投影装置
CN111722461A (zh) * 2019-03-20 2020-09-29 青岛海信激光显示股份有限公司 激光投影装置
CN112147836B (zh) 2019-06-28 2023-08-04 深圳光峰科技股份有限公司 一种光源系统及显示设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090073552A1 (en) * 2007-09-14 2009-03-19 Olympus Corporation Laser scanning microscope
CN102789121A (zh) * 2012-04-10 2012-11-21 海信集团有限公司 一种投影显示光源
CN102854731A (zh) * 2012-07-24 2013-01-02 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
CN203217230U (zh) * 2012-12-28 2013-09-25 深圳市绎立锐光科技开发有限公司 发光装置及投影系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090073552A1 (en) * 2007-09-14 2009-03-19 Olympus Corporation Laser scanning microscope
CN102789121A (zh) * 2012-04-10 2012-11-21 海信集团有限公司 一种投影显示光源
CN102854731A (zh) * 2012-07-24 2013-01-02 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
CN203217230U (zh) * 2012-12-28 2013-09-25 深圳市绎立锐光科技开发有限公司 发光装置及投影系统

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109491186A (zh) * 2017-09-13 2019-03-19 深圳光峰科技股份有限公司 光源系统及光源亮度调整方法以及投影设备
CN109491186B (zh) * 2017-09-13 2021-04-27 深圳光峰科技股份有限公司 光源系统及光源亮度调整方法以及投影设备
CN111381428A (zh) * 2018-12-29 2020-07-07 深圳光峰科技股份有限公司 光源系统及投影装置
CN112255871A (zh) * 2019-07-02 2021-01-22 深圳光峰科技股份有限公司 光源装置,包括该光源装置的放映设备和3d设备
CN112255871B (zh) * 2019-07-02 2023-08-04 深圳光峰科技股份有限公司 光源装置,包括该光源装置的放映设备和3d设备
US11971649B2 (en) 2019-07-02 2024-04-30 Appotronics Corporation Limited Light source device, projection apparatus and 3D apparatus comprising same
CN112213909A (zh) * 2019-07-12 2021-01-12 深圳光峰科技股份有限公司 光源系统与显示设备
CN112213909B (zh) * 2019-07-12 2023-05-26 深圳光峰科技股份有限公司 光源系统与显示设备

Also Published As

Publication number Publication date
CN203217230U (zh) 2013-09-25
TWM482090U (zh) 2014-07-11

Similar Documents

Publication Publication Date Title
WO2014135039A1 (zh) 发光装置及投影系统
TWI471603B (zh) 光學元件、色彩結合器、結合光之方法及影像投影機
JP6096937B2 (ja) 発光装置及び関連する投影システム
CN111562713B (zh) 激光投影设备
TW200947102A (en) Optical element and color combiner
US20120092624A1 (en) Illumination device and display unit
US20140240676A1 (en) Light valve projector with laser-phosphor light converter
WO2013029422A1 (zh) 光源、合光装置及带该光源的投影装置
WO2019071951A1 (zh) 复眼透镜组及投影装置
KR20110084328A (ko) 고 내구성 색상 조합기
JP2005140847A (ja) Led光源プロジェクタ光学系及びled光源プロジェクタ
US10564531B2 (en) Light source device and projector
CN113495413B (zh) 照明系统与投影装置
CN107272312A (zh) 发光装置及相关投影系统与照明系统
US11327392B2 (en) Light source device and projector in which wave plates are downsized
CN110389486B (zh) 光源装置及显示设备
TW201833653A (zh) 投影系統
TWI720144B (zh) 光源裝置
JP2020024318A (ja) 光源装置およびプロジェクター
WO2022037196A1 (zh) 一种三色光源设备和投影显示设备
TWI726073B (zh) 光學系統
TWI418918B (zh) 照明模組及投影裝置
WO2017118300A1 (zh) 一种光源装置及照明装置
US11762268B2 (en) Light source apparatus and projector
WO2022048324A1 (zh) 一种混合光源系统及投影设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14761058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26.01.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14761058

Country of ref document: EP

Kind code of ref document: A1