WO2016026166A1 - 一种偏振光调制装置及其制作方法 - Google Patents

一种偏振光调制装置及其制作方法 Download PDF

Info

Publication number
WO2016026166A1
WO2016026166A1 PCT/CN2014/085773 CN2014085773W WO2016026166A1 WO 2016026166 A1 WO2016026166 A1 WO 2016026166A1 CN 2014085773 W CN2014085773 W CN 2014085773W WO 2016026166 A1 WO2016026166 A1 WO 2016026166A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent electrode
electrode plate
pitch
liquid crystal
cholesteric liquid
Prior art date
Application number
PCT/CN2014/085773
Other languages
English (en)
French (fr)
Inventor
熊源
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/385,999 priority Critical patent/US9547111B2/en
Publication of WO2016026166A1 publication Critical patent/WO2016026166A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13718Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on a change of the texture state of a cholesteric liquid crystal
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • G02F1/133757Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle with different alignment orientations
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13775Polymer-stabilized liquid crystal layers

Definitions

  • the present invention relates to the field of liquid crystal display technologies, and in particular, to a polarized light modulation device and a method of fabricating the same.
  • the photoalignment technique uses a linearly polarized ultraviolet light to perform photoalignment (ie, exposure) treatment on the alignment material on the surface of the alignment layer, so that the polymer side chain of the alignment material on the surface of the alignment layer undergoes polymerization, decomposition, and isomerization under polarized light. Achieve alignment of liquid crystal molecules.
  • one pixel is generally divided into a plurality of liquid crystal alignment domains, so that liquid crystal molecules in the respective liquid crystal alignment domains have different pretilt angles; in the prior art, liquid crystals in the respective liquid crystal alignment domains are used.
  • the molecules have different pretilt angles, and different polarized lights need to be exposed for different liquid crystal alignment domains, that is, multiple exposures are required to complete the optical alignment of the plurality of liquid crystal alignment domains.
  • the process is complicated, the process time is long, the control is not easy, and the production efficiency is not high.
  • the technical problem to be solved by the present invention is to provide a polarized light modulation device and a method for fabricating the same, which can reduce the number of exposures in the photo-alignment process and shorten the process time, thereby simplifying the process.
  • a technical solution adopted by the present invention is to provide a method for fabricating a polarized light modulation device, which includes:
  • the first transparent electrode plate or the second transparent electrode plate is configured to illuminate the polymer monomers in different regions to cure the pitch of the cholesteric liquid crystal and to make the regions in the different regions
  • the curing pitch of the cholesteric liquid crystal is different;
  • the first transparent electrode plate or the second transparent electrode plate is used to illuminate the polymer monomer in different regions, and the light treatment is not required. Other areas are shaded.
  • a different operating voltage is applied at least twice between the first transparent electrode plate and the second transparent electrode plate to change the pitch of the cholesteric liquid crystal, and after each application of the operating voltage Light-treating the polymer monomer in different regions to cure the pitch of the cholesteric liquid crystal through the first transparent electrode plate or the second transparent electrode plate, and to make the different regions
  • the steps of different curing pitches of the cholesteric liquid crystal further include:
  • the solidification pitch of the phase liquid crystal is the first pitch
  • the solidification pitch of the phase liquid crystal is a second pitch, wherein the second region is different from the first region, the second operating voltage is different from the first operating voltage, and the second pitch is different from the The first pitch.
  • the first transparent electrode plate and the second transparent electrode plate respectively comprise a glass substrate and a transparent electrode disposed on the glass substrate.
  • the operating voltage is a direct current voltage
  • the recovery voltage is an alternating current voltage
  • the operating voltage is an alternating voltage
  • the recovery voltage is an alternating voltage
  • the frequency of the restored voltage is higher than a frequency of the operating voltage
  • the light source of the illumination treatment is ultraviolet light.
  • another technical solution adopted by the present invention is to provide a polarized light modulation device, the device comprising a first transparent electrode plate, a second transparent electrode plate, and a first transparent electrode plate and The polymer dispersed cholesteric liquid crystal layer between the second transparent electrode plates is divided into at least two regions through the first transparent electrode plate or the second transparent electrode plate, and the at least two regions are The curing pitch of the cholesteric liquid crystal is different;
  • the polymer dispersed cholesteric liquid crystal layer filled between the first transparent electrode plate and the second transparent electrode plate passes through the first transparent electrode plate and the second transparent electrode plate
  • the pitch of the liquid crystal is formed;
  • a photoinitiator or a photosensitizer is further added between the first transparent electrode plate and the second transparent electrode plate.
  • the first transparent electrode plate and the second transparent electrode plate respectively comprise a glass substrate and a transparent electrode disposed on the glass substrate.
  • another technical solution adopted by the present invention is to provide a method for fabricating a polarized light modulation device, which includes:
  • the first transparent electrode plate or the second transparent electrode plate is configured to illuminate the polymer monomers in different regions to cure the pitch of the cholesteric liquid crystal and to make the regions in the different regions
  • the curing pitch of the cholesteric liquid crystal is different;
  • a recovery voltage is applied between the first transparent electrode plate and the second transparent electrode plate to restore the optical rotation characteristics of the cholesteric liquid crystal to a state at the time of curing.
  • a different operating voltage is applied at least twice between the first transparent electrode plate and the second transparent electrode plate to change the pitch of the cholesteric liquid crystal, and after each application of the operating voltage Light-treating the polymer monomer in different regions to cure the pitch of the cholesteric liquid crystal through the first transparent electrode plate or the second transparent electrode plate, and to make the different regions
  • the steps of different curing pitches of the cholesteric liquid crystal further include:
  • the solidification pitch of the phase liquid crystal is the first pitch
  • the solidification pitch of the phase liquid crystal is a second pitch, wherein the second region is different from the first region, the second operating voltage is different from the first operating voltage, and the second pitch is different from the The first pitch.
  • the first transparent electrode plate or the second transparent electrode plate is used to illuminate the polymer monomer in different regions, and the light treatment is not required. Other areas are shaded.
  • the method before applying the different operating voltage at least twice between the first transparent electrode plate and the second transparent electrode plate, the method further comprises the steps of: the first transparent electrode plate and the second transparent electrode A photoinitiator or photosensitizer is added between the plates.
  • the first transparent electrode plate and the second transparent electrode plate respectively comprise a glass substrate and a transparent electrode disposed on the glass substrate.
  • the operating voltage is a direct current voltage
  • the recovery voltage is an alternating current voltage
  • the operating voltage is an alternating voltage
  • the recovery voltage is an alternating voltage
  • the frequency of the restored voltage is higher than a frequency of the operating voltage
  • the light source of the illumination treatment is ultraviolet light.
  • the present invention fills a polymer monomer and a cholesteric liquid crystal between the first transparent electrode plate and the second transparent electrode plate, through the first transparent electrode plate and Applying at least two different operating voltages between the second transparent electrode plates to change the pitch of the cholesteric liquid crystal, and transmitting the first transparent electrode plate or the first after each application of the operating voltage a transparent electrode plate for illuminating the polymer monomer in different regions to cure the pitch of the cholesteric liquid crystal, and the curing pitch of the cholesteric liquid crystal in the different regions is different due to The director of the cholesteric liquid crystal periodically rotates according to a certain curing pitch, so that the polarization states of the emitted light corresponding to different curing pitches are also different, since the polarized light modulation device of the present invention has at least two different regions of different curing pitches.
  • the corresponding outgoing light of different regions has different polarization states, so that the polarized light of these different polarization states
  • the alignment treatment of the liquid crystal molecules can be completed by entering the surface of the alignment layer of the liquid crystal panel.
  • the polarizing light modulation device of the present invention is used, only one exposure process is required to complete the alignment of the liquid crystal molecules, so that the process is simplified, and the process is simplified. Time is shortened and production efficiency is improved.
  • FIG. 1 is a flow chart of an embodiment of a method for fabricating a polarized light modulation device according to the present invention
  • FIG. 2 is a schematic structural view of an embodiment of a polarized light modulation device according to the present invention.
  • an embodiment of the present invention provides a method for fabricating a polarized light modulation device, which includes:
  • Step 101 providing a first transparent electrode plate and a second transparent electrode plate disposed opposite to each other;
  • the relative arrangement means that the first transparent electrode plate and the second transparent electrode plate are arranged in parallel, and the first transparent electrode plate and the second transparent electrode plate are allowed to transmit light, and the opposite inner sides are respectively provided with electrodes.
  • Step 102 filling a polymer monomer and a cholesteric liquid crystal between the first transparent electrode plate and the second transparent electrode plate;
  • the polymer monomer may be polymerized to form a polymer having a network structure upon irradiation with light
  • the reactive functional group of the polymer monomer of the embodiment of the present invention may be an acryloyl group, a methacryloyl group, a vinyl group, a styryl group, or the like.
  • the epoxy group and the like; the liquid crystal molecules of the cholesteric liquid crystal are arranged in parallel in a plane, the orientation of the liquid crystal molecules in the adjacent planes slightly changes, the spiral direction changes along the normal direction of the plane, and the orientation direction undergoes a 360 degree change.
  • an embodiment of the present invention may provide a ring of plastic frame between the first transparent electrode plate and the second transparent electrode plate to form a liquid crystal cell.
  • Step 103 Apply different operating voltages at least twice between the first transparent electrode plate and the second transparent electrode plate to change the pitch of the cholesteric liquid crystal, and pass through the first transparent electrode plate after each application of the operating voltage. Or a second transparent electrode plate to irradiate the polymer monomers in different regions to cure the pitch of the cholesteric liquid crystal, and to make the curing pitch of the cholesteric liquid crystal in different regions different;
  • the cholesteric liquid crystal has a memory effect: when a low frequency voltage is applied to some cholesteric liquid crystals in a planar texture, the liquid crystal will dynamically scatter and become a focal conic texture, which is milky white like milk, after the voltage is turned off.
  • the focal conic texture will continue for a period of time, which is several days or even years; when a high frequency voltage is applied to the liquid crystal in the focal conic texture, the liquid crystal will immediately become transparent and return to the plane texture. When the high frequency voltage is removed, the transparent state will continue to be maintained, which is also called bistable.
  • the electrodes of the first transparent electrode plate and the second transparent electrode plate are respectively connected to the power source, and a voltage is applied between the first transparent electrode plate and the second transparent electrode plate through the power source; the pitch of the cholesteric liquid crystal will vary with the operating voltage. And change, each time the operating voltage is applied, a pitch will be obtained, and then the polymer monomers in different regions will be light-treated to cause polymerization to form a polymer network, and the cholesteric liquid crystal in the region will no longer be When the rotation occurs, the solidification pitch is obtained. Since the operating voltages applied before the illumination treatment in different regions are different, the solidification pitch of the cholesteric liquid crystal in different regions is also different.
  • Step 104 applying a recovery voltage between the first transparent electrode plate and the second transparent electrode plate to restore the optical rotation characteristic of the cholesteric liquid crystal to a state at the time of curing;
  • the cholesteric liquid crystal After the curing pitch of the cholesteric liquid crystal in different regions reaches a desired value, since the overvoltage is applied thereto, the cholesteric liquid crystal is in the focal conic texture, and the light is transmitted through the focal conic texture of the liquid crystal. Scattering, and at this time, applying a recovery voltage between the first transparent electrode plate and the second transparent electrode plate, the optical rotation characteristics of the cholesteric liquid crystal can be restored to the state at the time of curing, even if the cholesteric liquid crystal returns to the plane Texture, incident polarized light deflects according to the deflection of liquid crystal molecules on different planes.
  • the polarized light modulation device manufactured by the method for fabricating the polarized light modulation device according to the embodiment of the present invention has Different regions of at least two different curing pitches, after the same polarized light is incident on the polarized light modulation device of the present invention, the corresponding outgoing light of different regions have different polarization states, so that the polarized light of the different polarization states is incident on the alignment of the liquid crystal panel.
  • the alignment treatment of the liquid crystal molecules can be completed on the surface of the layer, that is, after the polarizing light modulation device of the present invention is used, only one exposure treatment is required, and the alignment of the liquid crystal molecules can be completed, the process is simplified, and the production efficiency is improved.
  • step 103 further includes:
  • the curing pitch of the cholesteric liquid crystal in the second region is the first a second pitch, wherein the second region is different from the first region, the second operating voltage is different from the first operating voltage, and the second pitch is different from the first pitch;
  • the first region and the second region together constitute all regions between the first transparent electrode plate and the second transparent electrode plate, and the first region or the second region is not necessarily an integral region, and each of them It may be a combination of a plurality of dispersed regions, that is, regions having a first pitch collectively constitute a first region, and regions having a second pitch collectively constitute a second region.
  • different operating voltages and illumination treatments may be applied to three or more different regions between the first transparent electrode plate and the second transparent electrode plate, so that different regions have different curing pitches, specifically Designed according to production needs, we do not limit them here.
  • the first transparent electrode plate or the second transparent electrode plate is passed through to illuminate the polymer monomers in different regions, and other regions that do not require illumination treatment are shielded from light.
  • the visor is shaded to prevent light from illuminating other areas that do not require exposure, and to precisely control the area of the area where the pitch needs to be adjusted.
  • the method before applying a different operating voltage at least twice between the first transparent electrode plate and the second transparent electrode plate, the method further comprises the steps of: adding a photoinitiator between the first transparent electrode plate and the second transparent electrode plate or a photosensitizer; a photoinitiator capable of absorbing energy of a certain wavelength in an ultraviolet region or a visible region to generate radicals, cations, etc., thereby initiating cross-linking curing of the polymer monomer.
  • the photoinitiator in the embodiment may be diphenyl. Ethyl ketone, aroyl phosphine oxide, benzophenone, etc.; photosensitizer can transfer light energy to some light-insensitive reactants to enhance or expand its photographic performance.
  • the photosensitizer in this embodiment can adopt benzene. Ketone, benzoin dimethyl ether, etc.; in the present embodiment, the addition of a photosensitizer or a photoinitiator can increase the reaction efficiency of the polymer monomer.
  • the first transparent electrode plate and the second transparent electrode plate respectively comprise a glass substrate and a transparent electrode disposed on the glass substrate, and the transparent electrode may be a film deposited on the glass substrate by a sputtering process, the first transparent electrode plate and The side of the second transparent electrode plate provided with the transparent electrode is oppositely disposed.
  • the operating voltage is a direct current voltage
  • the recovery voltage is an alternating current voltage, which can convert the focal conic texture of the cholesteric liquid crystal caused by the direct current voltage into a planar texture.
  • the operating voltage is an alternating voltage
  • the recovery voltage is an alternating voltage
  • the frequency of the restored voltage is higher than the operating voltage, the higher frequency alternating current capable of causing the cholesteric liquid crystal focus caused by the lower frequency alternating current voltage
  • the cone texture becomes a planar texture.
  • the light source of the light treatment is ultraviolet light.
  • the light source may also be a high pressure or medium pressure mercury light source or a xenon light source.
  • FIG. 2 another embodiment of the present invention provides a polarized light modulating device.
  • the dotted line with double arrows in FIG. 2 indicates the polarization direction of polarized light emitted in respective regions, and the device includes a first transparent electrode plate 1 and a second
  • the transparent electrode plate 2 and the polymer dispersed cholesteric liquid crystal layer filled between the first transparent electrode plate 1 and the second transparent electrode plate 2 are separated into at least the first transparent electrode plate 1 or the second transparent electrode plate 2
  • the solidification pitch of the cholesteric liquid crystal in at least two regions is different in the two regions;
  • the polymer dispersed cholesteric liquid crystal layer filled between the first transparent electrode plate 1 and the second transparent electrode plate 2 is filled with a polymer sheet between the first transparent electrode plate 1 and the second transparent electrode plate 2 Body and cholesteric liquid crystal, and applying different operating voltages at least twice between the first transparent electrode plate 1 and the second transparent electrode plate 2 to change the pitch of the cholesteric liquid crystal, and after each application of the operating voltage
  • the first transparent electrode plate 1 or the second transparent electrode plate 2 is formed by irradiating the polymer monomers in different regions to cure the pitch of the cholesteric liquid crystal.
  • the polarized light modulation device of the embodiment of the present invention has different regions of at least two different curing pitches. After the same polarized light is incident on the polarized light modulation device of the present invention, the emitted light corresponding to different regions has different polarization states, so that the difference The polarized light is incident on the surface of the alignment layer of the liquid crystal panel to complete the alignment treatment of the liquid crystal molecules. That is, after the polarized light modulation device of the present invention is used, only one exposure process is required to complete the alignment of the liquid crystal molecules. The process is simplified and the production efficiency is improved.
  • the first transparent electrode plate 1 and the second transparent electrode plate 2 respectively comprise a glass substrate and a transparent electrode (not shown) disposed on the glass substrate, and the transparent electrode may be deposited on the glass substrate by a sputtering process.
  • the film of the first transparent electrode plate 1 and the second transparent electrode plate 2 are disposed opposite to each other; the embodiment of the present invention can provide a circle between the first transparent electrode plate 1 and the second transparent electrode plate 2
  • a plastic frame (not shown) forms a liquid crystal cell.
  • a photoinitiator or a photosensitizer is further added between the first transparent electrode plate 1 and the second transparent electrode plate 2.
  • the light source of the light treatment is ultraviolet light.
  • the light source may also be a high pressure or medium pressure mercury light source or a xenon light source.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Dispersion Chemistry (AREA)

Abstract

一种偏振光调制装置及其制作方法,该方法包括提供相对设置的第一透明电极板(1)和第二透明电极板(2)(S101);在第一透明电极板(1)和第二透明电极板(2)之间填充聚合物单体和胆甾相液晶(S102);在第一透明电极板(1)和第二透明电极板(2)之间至少两次施加不同的操作电压,以改变胆甾相液晶的螺距,且在每次施加操作电压后透过第一透明电极板(1)或者第二透明电极板(2)从而对不同区域内的聚合物单体进行光照处理以固化胆甾相液晶的螺距,并使不同区域内的胆甾相液晶的固化螺距不同(S103);在第一透明电极板(1)和第二透明电极板(2)之间施加恢复电压,使胆甾相液晶的旋光特性恢复到固化时的状态(S104)。通过上述方式,能够减少光配向制程中的曝光次数,简化工艺。

Description

一种偏振光调制装置及其制作方法
【技术领域】
本发明涉及液晶显示器技术领域,特别是涉及一种偏振光调制装置及其制作方法。
【背景技术】
光配向技术是使用线性偏振紫外光对配向层表面的配向材料进行光配向(即曝光)处理,使得配向层表面配向材料的聚合物侧链在偏振光下发生聚合、分解、异构等反应,实现对液晶分子的配向。
为了增大液晶面板的可视角度,一般将一个像素分成多个液晶配向域,使各个液晶配向域中的液晶分子具有不同的预倾角;现有技术中,为了使各个液晶配向域中的液晶分子具有不同的预倾角,需要对各个不同的液晶配向域分别采用不同的偏振光进行曝光,即需要多次曝光才能完成多个液晶配向域的光配向。这样工艺复杂、制程时间长、不易管控、生产效率也不高。
【发明内容】
本发明主要解决的技术问题是提供一种偏振光调制装置及其制作方法,能够减少光配向制程中的曝光次数,缩短制程时间,从而能够简化工艺。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种偏振光调制装置的制作方法,所述制作方法包括:
提供相对设置的第一透明电极板和第二透明电极板;
在所述第一透明电极板和所述第二透明电极板之间填充聚合物单体和胆甾相液晶;
在所述第一透明电极板和所述第二透明电极板之间添加光引发剂或光敏剂
在所述第一透明电极板和所述第二透明电极板之间至少两次施加不同的操作电压,以改变所述胆甾相液晶的螺距,且在每次施加所述操作电压后透过所述第一透明电极板或者所述第二透明电极板从而对不同区域内的所述聚合物单体进行光照处理以固化所述胆甾相液晶的螺距,并使所述不同区域内的所述胆甾相液晶的固化螺距不同;
在所述第一透明电极板和所述第二透明电极板之间施加恢复电压,使所述胆甾相液晶的旋光特性恢复到固化时的状态;
其中,每次施加所述操作电压后透过所述第一透明电极板或者所述第二透明电极板从而对不同区域内的所述聚合物单体进行光照处理时,将不需要光照处理的其它区域进行遮光处理。
其中,在所述第一透明电极板和所述第二透明电极板之间至少两次施加不同的操作电压,以改变所述胆甾相液晶的螺距,且在每次施加所述操作电压后透过所述第一透明电极板或者所述第二透明电极板从而对不同区域内的所述聚合物单体进行光照处理以固化所述胆甾相液晶的螺距,并使所述不同区域内的所述胆甾相液晶的固化螺距不同的步骤进一步包括:
在所述第一透明电极板和第二透明电极板之间施加第一操作电压,以使所述胆甾相液晶的螺距变为第一螺距;
透过所述第一透明电极板或者所述第二透明电极板从而对第一区域内的所述聚合物单体进行第一次光照处理,以使所述第一区域内的所述胆甾相液晶的固化螺距为所述第一螺距;
在所述第一透明电极板和第二透明电极板之间施加第二操作电压,以使所述胆甾相液晶的螺距变为第二螺距,所述第二螺距与所述第一螺距不相等;
透过所述第一透明电极板或者所述第二透明电极板从而对第二区域内的所述聚合物单体进行第二次光照处理,以使所述第二区域内的所述胆甾相液晶的固化螺距为第二螺距,其中,所述第二区域不同于所述第一区域,所述第二操作电压不同于所述第一操作电压,且所述第二螺距不同于所述第一螺距。
其中,所述第一透明电极板和所述第二透明电极板分别包括玻璃基板以及设置在所述玻璃基板上的透明电极。
其中,所述操作电压为直流电压,而所述恢复电压为交流电压。
其中,所述操作电压为交流电压,而所述恢复电压为交流电压,且所述恢复电压的频率高于所述操作电压的频率。
其中,所述光照处理的光源为紫外光。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种偏振光调制装置,所述装置包括第一透明电极板、第二透明电极板以及填充在所述第一透明电极板和所述第二透明电极板之间的聚合物分散胆甾相液晶层,透过所述第一透明电极板或者所述第二透明电极板分为至少两个区域,所述至少两个区域内的所述胆甾相液晶的固化螺距不同;
其中,所述填充在所述第一透明电极板和所述第二透明电极板之间的聚合物分散胆甾相液晶层是通过在所述第一透明电极板和所述第二透明电极板之间填充聚合物单体和胆甾相液晶,并在所述第一透明电极板和所述第二透明电极板之间至少两次施加不同的操作电压,以改变所述胆甾相液晶的螺距,且在每次施加所述操作电压后透过所述第一透明电极板或者所述第二透明电极板从而对不同区域内的所述聚合物单体进行光照处理以固化所述胆甾相液晶的螺距所形成的;
其中,所述在所述第一透明电极板和所述第二透明电极板之间还添加有光引发剂或光敏剂。
其中,所述第一透明电极板和所述第二透明电极板分别包括玻璃基板以及设置在所述玻璃基板上的透明电极。
为解决上述技术问题,本发明采用的又一个技术方案是:提供一种偏振光调制装置的制作方法,所述制作方法包括:
提供相对设置的第一透明电极板和第二透明电极板;
在所述第一透明电极板和所述第二透明电极板之间填充聚合物单体和胆甾相液晶;
在所述第一透明电极板和所述第二透明电极板之间至少两次施加不同的操作电压,以改变所述胆甾相液晶的螺距,且在每次施加所述操作电压后透过所述第一透明电极板或者所述第二透明电极板从而对不同区域内的所述聚合物单体进行光照处理以固化所述胆甾相液晶的螺距,并使所述不同区域内的所述胆甾相液晶的固化螺距不同;
在所述第一透明电极板和所述第二透明电极板之间施加恢复电压,使所述胆甾相液晶的旋光特性恢复到固化时的状态。
其中,在所述第一透明电极板和所述第二透明电极板之间至少两次施加不同的操作电压,以改变所述胆甾相液晶的螺距,且在每次施加所述操作电压后透过所述第一透明电极板或者所述第二透明电极板从而对不同区域内的所述聚合物单体进行光照处理以固化所述胆甾相液晶的螺距,并使所述不同区域内的所述胆甾相液晶的固化螺距不同的步骤进一步包括:
在所述第一透明电极板和第二透明电极板之间施加第一操作电压,以使所述胆甾相液晶的螺距变为第一螺距;
透过所述第一透明电极板或者所述第二透明电极板从而对第一区域内的所述聚合物单体进行第一次光照处理,以使所述第一区域内的所述胆甾相液晶的固化螺距为所述第一螺距;
在所述第一透明电极板和第二透明电极板之间施加第二操作电压,以使所述胆甾相液晶的螺距变为第二螺距,所述第二螺距与所述第一螺距不相等;
透过所述第一透明电极板或者所述第二透明电极板从而对第二区域内的所述聚合物单体进行第二次光照处理,以使所述第二区域内的所述胆甾相液晶的固化螺距为第二螺距,其中,所述第二区域不同于所述第一区域,所述第二操作电压不同于所述第一操作电压,且所述第二螺距不同于所述第一螺距。
其中,每次施加所述操作电压后透过所述第一透明电极板或者所述第二透明电极板从而对不同区域内的所述聚合物单体进行光照处理时,将不需要光照处理的其它区域进行遮光处理。
其中,在所述第一透明电极板和所述第二透明电极板之间至少两次施加不同的操作电压之前,还进一步包括步骤:在所述第一透明电极板和所述第二透明电极板之间添加光引发剂或光敏剂。
其中,所述第一透明电极板和所述第二透明电极板分别包括玻璃基板以及设置在所述玻璃基板上的透明电极。
其中,所述操作电压为直流电压,而所述恢复电压为交流电压。
其中,所述操作电压为交流电压,而所述恢复电压为交流电压,且所述恢复电压的频率高于所述操作电压的频率。
其中,所述光照处理的光源为紫外光。
本发明的有益效果是:区别于现有技术的情况,本发明在第一透明电极板和第二透明电极板之间填充聚合物单体和胆甾相液晶,通过在第一透明电极板和第二透明电极板之间施加至少两次不同的操作电压,以改变所述胆甾相液晶的螺距,并且在每次施加所述操作电压后透过所述第一透明电极板或者所述第二透明电极板从而对不同区域内的所述聚合物单体进行光照处理以固化所述胆甾相液晶的螺距,并使所述不同区域内的所述胆甾相液晶的固化螺距不同,由于胆甾相液晶的指向矢会依照一定的固化螺距而周期旋转,使得不同固化螺距所对应的出射光的偏振态也不同,由于本发明的偏振光调制装置具有至少两个不同固化螺距的不同区域,同一偏振光射入本发明的偏振光调制装置后,不同区域对应的出射光具有不同的偏振态,使这些不同偏振态的偏振光射入液晶面板的配向层表面即可完成对液晶分子的配向处理,即使用本发明的偏振光调制装置后,只需要进行一次曝光处理,即可完成对液晶分子的配向,使工艺得到简化,制程时间缩短,生产效率得到提高。
【附图说明】
图1是本发明一种偏振光调制装置的制作方法一实施方式的流程图;
图2是本发明一种偏振光调制装置一实施方式的结构示意图。
【具体实施方式】
参阅图1,本发明一实施方式提供一种偏振光调制装置的制作方法,制作方法包括:
步骤101:提供相对设置的第一透明电极板和第二透明电极板;
相对设置是指将第一透明电极板和第二透明电极板平行设置,第一透明电极板和第二透明电极板可供光线透过,其相对的内侧分别设有电极。
步骤102:在第一透明电极板和第二透明电极板之间填充聚合物单体和胆甾相液晶;
聚合物单体在受到光照射时可以发生聚合反应形成具有网络结构的聚合物,本发明实施方式的聚合物单体的活性官能团可为丙烯酰基、甲基丙烯酰基、乙烯基、苯乙烯基、环氧基等;胆甾相液晶的液晶分子平行排列在平面内,相邻平面中液晶分子的取向稍有变化,沿平面的法线方向作螺旋状变动,取向方向经历360度变化的距离称为螺距;聚合物单体聚合成聚合物时,聚合物的网络结构固定位于其中的液晶分子,使液晶分子不再发生旋转;聚合物单体和胆甾相液晶相互分散均匀在第一透明电极板和第二透明电极板之间,本发明实施方式可在第一透明电极板和第二透明电极板之间设置一圈胶框以形成液晶盒。
步骤103:在第一透明电极板和第二透明电极板之间至少两次施加不同的操作电压,以改变胆甾相液晶的螺距,且在每次施加操作电压后透过第一透明电极板或者第二透明电极板从而对不同区域内的聚合物单体进行光照处理以固化胆甾相液晶的螺距,并使不同区域内的胆甾相液晶的固化螺距不同;
胆甾相液晶具有记忆效应:当对某些处于平面织构的胆甾相液晶施加一个低频电压时,液晶会发生动态散射,变成焦锥织构,呈现牛奶一样的乳白色,关掉电压后焦锥织构将继续保持一段时间,这段时间为几天甚至几年;对处于焦锥织构的液晶再施加一个高频电压时,液晶会立刻变成透明,回到平面织构,关掉高频电压,透明状态也将继续保持,这也称为双稳态。
第一透明电极板和第二透明电极板的电极分别与电源连接,通过电源向第一透明电极板和第二透明电极板之间施加电压;胆甾相液晶的螺距会随着操作电压的不同而改变,每次施加操作电压后都会得到一个螺距,然后对不同区域内的聚合物单体进行光照处理,使其发生聚合反应形成聚合物网络,则该区域内的胆甾相液晶将不再发生转动,得到固化螺距,由于不同区域进行光照处理前施加的操作电压不同,所以不同区域内的胆甾相液晶的固化螺距也不同。
步骤104:在第一透明电极板和第二透明电极板之间施加恢复电压,使胆甾相液晶的旋光特性恢复到固化时的状态;
在使不同区域内的胆甾相液晶的固化螺距达到期望值后,由于对其施加过电压,此时胆甾相液晶处于焦锥织构,光透过焦锥织构的液晶时会发生强烈的散射,而此时再向第一透明电极板和第二透明电极板之间施加一恢复电压,则可使胆甾相液晶的旋光特性恢复到固化时的状态,即使胆甾相液晶恢复到平面织构,入射的偏振光会依照不同平面上液晶分子的偏转而发生偏转。
由于胆甾相液晶的指向矢依照一定的固化螺距而周期旋转,使得不同固化螺距所对应的出射光的偏振态也不同,本发明实施方式的偏振光调制装置制作方法制作的偏振光调制装置具有至少两个不同固化螺距的不同区域,同一偏振光射入本发明的偏振光调制装置后,不同区域对应的出射光具有不同的偏振态,使这些不同偏振态的偏振光射入液晶面板的配向层表面即可完成对液晶分子的配向处理,即,使用本发明的偏振光调制装置后,只需要进行一次曝光处理,即可完成对液晶分子的配向,使工艺得到简化,生产效率得到提高。
其中,步骤103进一步包括:
(1)在第一透明电极板和第二透明电极板之间施加第一操作电压,以使胆甾相液晶的螺距变为第一螺距;
(2)透过第一透明电极板或者第二透明电极板从而对第一区域内的聚合物单体进行第一次光照处理,以使第一区域内的胆甾相液晶的固化螺距为第一螺距;
(3)在第一透明电极板和第二透明电极板之间施加第二操作电压,以使胆甾相液晶的螺距变为第二螺距,第二螺距与第一螺距不相等;
(4)透过第一透明电极板或者第二透明电极板从而对第二区域内的聚合物单体进行第二次光照处理,以使第二区域内的胆甾相液晶的固化螺距为第二螺距,其中,第二区域不同于第一区域,第二操作电压不同于第一操作电压,且第二螺距不同于第一螺距;
在本实施方式中,第一区域和第二区域共同组成了第一透明电极板和第二透明电极板之间的所有区域,第一区域或第二区域不一定为一个整体的区域,它们各自可以是多个分散区域的组合,即具有第一螺距的区域共同组成第一区域,具有第二螺距的区域共同组成第二区域。在其它实施方式中,也可对第一透明电极板和第二透明电极板之间的三个或更多的不同区域分别施加不同操作电压和光照处理,以使不同区域具有不同固化螺距,具体根据生产需要设计,在此不做一一限定。
其中,每次施加操作电压后透过第一透明电极板或者第二透明电极板从而对不同区域内的聚合物单体进行光照处理时,将不需要光照处理的其它区域进行遮光处理,可通过遮光板遮光,这样可防止光线照射到其它不需要曝光的区域,精确控制需要调整螺距的区域范围。
其中,在第一透明电极板和第二透明电极板之间至少两次施加不同的操作电压之前,还进一步包括步骤:在第一透明电极板和第二透明电极板之间添加光引发剂或光敏剂;光引发剂能够在紫外光区或可见光区吸收一定波长的能量,产生自由基、阳离子等,从而引发聚合物单体交联固化,本实施方式中的光引发剂可采用二苯基乙酮、芳酰基膦氧化物和二苯甲酮等;光敏剂能把光能转移到一些对可见光不敏感的反应物上以提高或扩大其感光性能,本实施方式中的光敏剂可采用苯甲酮、安息香二甲醚等;本实施方式中添加光敏剂或光引发剂能够提高聚合物单体的反应效率。
其中,第一透明电极板和第二透明电极板分别包括玻璃基板以及设置在玻璃基板上的透明电极,透明电极可为通过溅射的工艺沉积在玻璃基板上的薄膜,第一透明电极板和第二透明电极板的设有透明电极的一面相对设置。
其中,操作电压为直流电压,而恢复电压为交流电压,该交流电压能够将直流电压导致的胆甾相液晶的焦锥织构变成平面织构。
其中,操作电压为交流电压,而恢复电压为交流电压,且恢复电压的频率高于操作电压的频率,该较高频率的交流电压能够将较低频率的交流电压导致的胆甾相液晶的焦锥织构变成平面织构。
其中,光照处理的光源为紫外光,在其它实施方式中,该光源也可为高压或中压汞灯光源或氙灯光源。
参阅图2,本发明另一个实施方式提供一种偏振光调制装置,图2中带双箭头的虚线表示各自区域内射出的偏振光的偏振方向,该装置包括第一透明电极板1、第二透明电极板2以及填充在第一透明电极板1和第二透明电极板2之间的聚合物分散胆甾相液晶层,透过第一透明电极板1或者第二透明电极板2分为至少两个区域,至少两个区域内的胆甾相液晶的固化螺距不同;
其中,填充在第一透明电极板1和第二透明电极板2之间的聚合物分散胆甾相液晶层是通过在第一透明电极板1和第二透明电极板2之间填充聚合物单体和胆甾相液晶,并在第一透明电极板1和第二透明电极板2之间至少两次施加不同的操作电压,以改变胆甾相液晶的螺距,且在每次施加操作电压后透过第一透明电极板1或者第二透明电极板2从而对不同区域内的聚合物单体进行光照处理以固化胆甾相液晶的螺距所形成的。
本发明实施方式的偏振光调制装置制具有至少两个不同固化螺距的不同区域,同一偏振光射入本发明的偏振光调制装置后,不同区域对应的出射光具有不同的偏振态,使这些不同偏振态的偏振光射入液晶面板的配向层表面即可完成对液晶分子的配向处理,即,使用本发明的偏振光调制装置后,只需要进行一次曝光处理,即可完成对液晶分子的配向,使工艺得到简化,生产效率得到提高。
其中,第一透明电极板1和第二透明电极板2分别包括玻璃基板以及设置在玻璃基板上的透明电极(图中未示出),透明电极可为通过溅射的工艺沉积在玻璃基板上的薄膜,第一透明电极板1和第二透明电极板2的设有透明电极的一面相对设置;本发明实施方式可在第一透明电极板1和第二透明电极板2之间设置一圈胶框(图中未示出)以形成液晶盒。
其中,在第一透明电极板1和第二透明电极板2之间还添加有光引发剂或光敏剂。
其中,光照处理的光源为紫外光,在其它实施方式中,该光源也可为高压或中压汞灯光源或氙灯光源。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (16)

  1. 一种偏振光调制装置的制作方法,其中,所述制作方法包括:
    提供相对设置的第一透明电极板和第二透明电极板;
    在所述第一透明电极板和所述第二透明电极板之间填充聚合物单体和胆甾相液晶;
    在所述第一透明电极板和所述第二透明电极板之间添加光引发剂或光敏剂;
    在所述第一透明电极板和所述第二透明电极板之间至少两次施加不同的操作电压,以改变所述胆甾相液晶的螺距,且在每次施加所述操作电压后透过所述第一透明电极板或者所述第二透明电极板从而对不同区域内的所述聚合物单体进行光照处理以固化所述胆甾相液晶的螺距,并使所述不同区域内的所述胆甾相液晶的固化螺距不同;
    在所述第一透明电极板和所述第二透明电极板之间施加恢复电压,使所述胆甾相液晶的旋光特性恢复到固化时的状态;
    其中,每次施加所述操作电压后透过所述第一透明电极板或者所述第二透明电极板从而对不同区域内的所述聚合物单体进行光照处理时,将不需要光照处理的其它区域进行遮光处理。
  2. 根据权利要求1所述的方法,其中,在所述第一透明电极板和所述第二透明电极板之间至少两次施加不同的操作电压,以改变所述胆甾相液晶的螺距,且在每次施加所述操作电压后透过所述第一透明电极板或者所述第二透明电极板从而对不同区域内的所述聚合物单体进行光照处理以固化所述胆甾相液晶的螺距,并使所述不同区域内的所述胆甾相液晶的固化螺距不同的步骤进一步包括:
    在所述第一透明电极板和第二透明电极板之间施加第一操作电压,以使所述胆甾相液晶的螺距变为第一螺距;
    透过所述第一透明电极板或者所述第二透明电极板从而对第一区域内的所述聚合物单体进行第一次光照处理,以使所述第一区域内的所述胆甾相液晶的固化螺距为所述第一螺距;
    在所述第一透明电极板和第二透明电极板之间施加第二操作电压,以使所述胆甾相液晶的螺距变为第二螺距,所述第二螺距与所述第一螺距不相等;
    透过所述第一透明电极板或者所述第二透明电极板从而对第二区域内的所述聚合物单体进行第二次光照处理,以使所述第二区域内的所述胆甾相液晶的固化螺距为第二螺距,其中,所述第二区域不同于所述第一区域,所述第二操作电压不同于所述第一操作电压,且所述第二螺距不同于所述第一螺距。
  3. 根据权利要求1所述的方法,其中,所述第一透明电极板和所述第二透明电极板分别包括玻璃基板以及设置在所述玻璃基板上的透明电极。
  4. 根据权利要求1所述的方法,其中,所述操作电压为直流电压,而所述恢复电压为交流电压。
  5. 根据权利要求1所述的方法,其中,所述操作电压为交流电压,而所述恢复电压为交流电压,且所述恢复电压的频率高于所述操作电压的频率。
  6. 根据权利要求1所述的方法,其中,所述光照处理的光源为紫外光。
  7. 一种偏振光调制装置,其中,
    所述装置包括第一透明电极板、第二透明电极板以及填充在所述第一透明电极板和所述第二透明电极板之间的聚合物分散胆甾相液晶层,透过所述第一透明电极板或者所述第二透明电极板分为至少两个区域,所述至少两个区域内的所述胆甾相液晶的固化螺距不同;
    其中,所述填充在所述第一透明电极板和所述第二透明电极板之间的聚合物分散胆甾相液晶层是通过在所述第一透明电极板和所述第二透明电极板之间填充聚合物单体和胆甾相液晶,并在所述第一透明电极板和所述第二透明电极板之间至少两次施加不同的操作电压,以改变所述胆甾相液晶的螺距,且在每次施加所述操作电压后透过所述第一透明电极板或者所述第二透明电极板从而对不同区域内的所述聚合物单体进行光照处理以固化所述胆甾相液晶的螺距所形成的;
    其中,所述第一透明电极板和所述第二透明电极板之间还添加有光引发剂或光敏剂。
  8. 根据权利要求7所述的偏振光调制装置,其中,所述第一透明电极板和所述第二透明电极板分别包括玻璃基板以及设置在所述玻璃基板上的透明电极。
  9. 一种偏振光调制装置的制作方法,其中,所述制作方法包括:
    提供相对设置的第一透明电极板和第二透明电极板;
    在所述第一透明电极板和所述第二透明电极板之间填充聚合物单体和胆甾相液晶;
    在所述第一透明电极板和所述第二透明电极板之间至少两次施加不同的操作电压,以改变所述胆甾相液晶的螺距,且在每次施加所述操作电压后透过所述第一透明电极板或者所述第二透明电极板从而对不同区域内的所述聚合物单体进行光照处理以固化所述胆甾相液晶的螺距,并使所述不同区域内的所述胆甾相液晶的固化螺距不同;
    在所述第一透明电极板和所述第二透明电极板之间施加恢复电压,使所述胆甾相液晶的旋光特性恢复到固化时的状态。
  10. 根据权利要求9所述的方法,其中,在所述第一透明电极板和所述第二透明电极板之间至少两次施加不同的操作电压,以改变所述胆甾相液晶的螺距,且在每次施加所述操作电压后透过所述第一透明电极板或者所述第二透明电极板从而对不同区域内的所述聚合物单体进行光照处理以固化所述胆甾相液晶的螺距,并使所述不同区域内的所述胆甾相液晶的固化螺距不同的步骤进一步包括:
    在所述第一透明电极板和第二透明电极板之间施加第一操作电压,以使所述胆甾相液晶的螺距变为第一螺距;
    透过所述第一透明电极板或者所述第二透明电极板从而对第一区域内的所述聚合物单体进行第一次光照处理,以使所述第一区域内的所述胆甾相液晶的固化螺距为所述第一螺距;
    在所述第一透明电极板和第二透明电极板之间施加第二操作电压,以使所述胆甾相液晶的螺距变为第二螺距,所述第二螺距与所述第一螺距不相等;
    透过所述第一透明电极板或者所述第二透明电极板从而对第二区域内的所述聚合物单体进行第二次光照处理,以使所述第二区域内的所述胆甾相液晶的固化螺距为第二螺距,其中,所述第二区域不同于所述第一区域,所述第二操作电压不同于所述第一操作电压,且所述第二螺距不同于所述第一螺距。
  11. 根据权利要求9或10所述的方法,其中,每次施加所述操作电压后透过所述第一透明电极板或者所述第二透明电极板从而对不同区域内的所述聚合物单体进行光照处理时,将不需要光照处理的其它区域进行遮光处理。
  12. 根据权利要求9所述的方法,其中,在所述第一透明电极板和所述第二透明电极板之间至少两次施加不同的操作电压之前,还进一步包括步骤:在所述第一透明电极板和所述第二透明电极板之间添加光引发剂或光敏剂。
  13. 根据权利要求9所述的方法,其中,所述第一透明电极板和所述第二透明电极板分别包括玻璃基板以及设置在所述玻璃基板上的透明电极。
  14. 根据权利要求9所述的方法,其中,所述操作电压为直流电压,而所述恢复电压为交流电压。
  15. 根据权利要求9所述的方法,其中,所述操作电压为交流电压,而所述恢复电压为交流电压,且所述恢复电压的频率高于所述操作电压的频率。
  16. 根据权利要求9所述的方法,其中,所述光照处理的光源为紫外光。
PCT/CN2014/085773 2014-08-21 2014-09-02 一种偏振光调制装置及其制作方法 WO2016026166A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/385,999 US9547111B2 (en) 2014-08-21 2014-09-02 Manufacturing method of polarized light modulation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410416412.3 2014-08-21
CN201410416412.3A CN104199215B (zh) 2014-08-21 2014-08-21 一种偏振光调制装置及其制作方法

Publications (1)

Publication Number Publication Date
WO2016026166A1 true WO2016026166A1 (zh) 2016-02-25

Family

ID=52084522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085773 WO2016026166A1 (zh) 2014-08-21 2014-09-02 一种偏振光调制装置及其制作方法

Country Status (3)

Country Link
US (1) US9547111B2 (zh)
CN (1) CN104199215B (zh)
WO (1) WO2016026166A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103995396B (zh) * 2014-05-19 2016-06-29 京东方科技集团股份有限公司 一种具有多畴显示的液晶面板及其制备方法
CN105158984A (zh) * 2015-10-15 2015-12-16 深圳市华星光电技术有限公司 Va型液晶显示面板的制作方法
CN105459764A (zh) * 2015-12-11 2016-04-06 贾西平 一种液晶遮阳板及其制备方法、应用
CN107195764A (zh) * 2017-06-27 2017-09-22 常州瑞丰特科技有限公司 匀光装置及其制备方法
CN111323975A (zh) * 2020-04-09 2020-06-23 Tcl华星光电技术有限公司 具调光特性的光学薄膜及其制作方法
CN111679354A (zh) * 2020-06-05 2020-09-18 Tcl华星光电技术有限公司 反射式滤光片及其制备方法、反射式显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6924870B1 (en) * 2002-04-30 2005-08-02 Kent State University Liquid crystal on silicon diffractive light valve
CN101281269A (zh) * 2008-03-24 2008-10-08 北京科技大学 一种具有宽波反射特性的液晶偏振片的制备方法
CN101373233A (zh) * 2008-10-21 2009-02-25 北京科技大学 一种选择反射波宽电场可控的圆偏振片的制备方法
US20090322970A1 (en) * 2006-07-05 2009-12-31 Nikon Corporation Optical Low-Pass Filter, Camera, Imaging Apparatus, and Method for Producing Optical Low-Pass Filter
CN101713503A (zh) * 2008-10-07 2010-05-26 索尼株式会社 照明设备、显示设备以及光调制元件的制造方法
CN103399444A (zh) * 2013-07-31 2013-11-20 京东方科技集团股份有限公司 一种聚合物稳定液晶透镜及其制备方法、显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7072013B2 (en) * 2002-07-10 2006-07-04 Lg.Philips Lcd Co., Ltd. Liquid crystal display device having cholesteric liquid crystal polarizing film and internal retardation film and internal polarizing film
CN1776483A (zh) * 2005-11-25 2006-05-24 北京科技大学 一种能实现宽波反射的液晶偏振片制造方法
TWI467293B (zh) * 2011-12-09 2015-01-01 Chimei Innolux Corp 液晶顯示器與其製法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6924870B1 (en) * 2002-04-30 2005-08-02 Kent State University Liquid crystal on silicon diffractive light valve
US20090322970A1 (en) * 2006-07-05 2009-12-31 Nikon Corporation Optical Low-Pass Filter, Camera, Imaging Apparatus, and Method for Producing Optical Low-Pass Filter
CN101281269A (zh) * 2008-03-24 2008-10-08 北京科技大学 一种具有宽波反射特性的液晶偏振片的制备方法
CN101713503A (zh) * 2008-10-07 2010-05-26 索尼株式会社 照明设备、显示设备以及光调制元件的制造方法
CN101373233A (zh) * 2008-10-21 2009-02-25 北京科技大学 一种选择反射波宽电场可控的圆偏振片的制备方法
CN103399444A (zh) * 2013-07-31 2013-11-20 京东方科技集团股份有限公司 一种聚合物稳定液晶透镜及其制备方法、显示装置

Also Published As

Publication number Publication date
US20160238763A1 (en) 2016-08-18
CN104199215B (zh) 2017-03-15
CN104199215A (zh) 2014-12-10
US9547111B2 (en) 2017-01-17

Similar Documents

Publication Publication Date Title
WO2016026166A1 (zh) 一种偏振光调制装置及其制作方法
JP2005266744A (ja) 高分子ネットワーク液晶配列方法
WO2013067718A1 (zh) 液晶显示面板的配向膜制作方法
WO2017067011A1 (zh) 蓝相液晶显示器、蓝相液晶显示模组及其制作方法
WO2017181525A1 (zh) 用于液晶显示面板的光配向装置
US20150301349A1 (en) Phase difference plate and manufacturing method thereof, display device
US20180292707A1 (en) Display panel and manufacturing method thereof
WO2016015273A1 (zh) 液晶显示面板及其制造方法、阵列基板
WO2013010466A1 (zh) 带光栅的印刷型柔性显示屏
WO2013004053A1 (zh) 液晶面板预倾角的制作装置和方法、样品台、光源装置
WO2017124595A1 (zh) 显示面板制作方法及液晶显示器
WO2017020341A1 (zh) 蓝相液晶显示模组、蓝相液晶显示器及其制作方法
WO2016082260A1 (zh) 显示面板及其制作方法
WO2013185375A1 (zh) 液晶显示装置、液晶显示面板的制造方法及制造设备
KR20090054746A (ko) 광위상 지연 필름, 그 제조 방법 및 이를 구비한 표시 장치
WO2016095266A1 (zh) 一种透反式液晶显示器及其制造方法
CN102321205B (zh) 光聚合液晶混合物及光聚合液晶的制作方法
US10754201B2 (en) Liquid crystal photoelectric apparatus and manufacturing method of liquid crystal photoelectric apparatus
WO2018192020A1 (zh) 阵列基板、显示基板的制作方法及显示面板
TW201631373A (zh) 液晶顯示裝置及其製造方法
CN108957864A (zh) 一种掩膜版及柔性液晶显示面板的制备方法
WO2017121015A1 (zh) 液晶显示面板构造及其制作方法
WO2013181855A1 (zh) Psva型液晶显示面板、液晶显示面板及液晶显示装置
WO2022188525A1 (zh) 液晶面板、显示装置及液晶面板制造方法
WO2017173675A1 (zh) 液晶显示面板的制作方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14385999

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14900082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14900082

Country of ref document: EP

Kind code of ref document: A1