WO2017173675A1 - 液晶显示面板的制作方法 - Google Patents

液晶显示面板的制作方法 Download PDF

Info

Publication number
WO2017173675A1
WO2017173675A1 PCT/CN2016/080033 CN2016080033W WO2017173675A1 WO 2017173675 A1 WO2017173675 A1 WO 2017173675A1 CN 2016080033 W CN2016080033 W CN 2016080033W WO 2017173675 A1 WO2017173675 A1 WO 2017173675A1
Authority
WO
WIPO (PCT)
Prior art keywords
alignment film
liquid crystal
display panel
crystal display
fabricating
Prior art date
Application number
PCT/CN2016/080033
Other languages
English (en)
French (fr)
Inventor
李祥
谢忠憬
赵永超
赵仁堂
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/120,750 priority Critical patent/US9971204B2/en
Publication of WO2017173675A1 publication Critical patent/WO2017173675A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133703Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by introducing organic surfactant additives into the liquid crystal material

Definitions

  • the present invention relates to the field of panel manufacturing, and in particular to a method of fabricating a liquid crystal display panel.
  • the array substrate and the color filter substrate of the liquid crystal display panel are provided for the liquid crystal layer.
  • the liquid crystal molecules provide a pre-tilt alignment film.
  • the existing alignment films are all formed by photo-alignment, that is, an isotropic alignment film is coated on the surface of the array substrate and the color filter substrate, and then the alignment film is irradiated with ultraviolet polarized light to make each direction
  • the isotropic alignment film undergoes a chemical reaction and becomes anisotropic, thereby aligning the liquid crystal molecules.
  • the optical alignment can be used to align the entire surface area of the alignment film in a certain direction, and the local alignment failure in the rubbing alignment can be better avoided.
  • the anchoring force of the alignment film in the photoalignment to the liquid crystal molecules is only composed of the chemical interaction between the polymer chain and the liquid crystal molecules on the surface of the alignment film, and the anchoring force is poor, which may result in the reliability of the alignment film. difference.
  • An object of the present invention is to provide a method for fabricating a liquid crystal display panel having high reliability of an alignment film, and to solve the technical problem of poor reliability of an alignment film in a conventional liquid crystal display panel.
  • Embodiments of the present invention provide a method for fabricating a liquid crystal display panel, including:
  • the temperature of the heat curing operation is from 50 degrees to 80 degrees; the time of the heat curing operation is from 10 minutes to 20 minutes.
  • the step of irradiating the alignment film using linearly polarized ultraviolet light further comprises:
  • the alignment film is subjected to a pre-baking operation to make the alignment film uniform in thickness and volatilize the organic solvent in the alignment film.
  • the pre-baking operation has a temperature of 80 to 90 degrees.
  • the pre-baking operation takes 5 minutes to 10 minutes.
  • the step of irradiating the alignment film using the linearly polarized ultraviolet light further comprises:
  • the alignment film is baked at a high temperature to harden the alignment film.
  • the liquid crystal molecule is dripped in the color filter substrate having a frame.
  • the alignment film is baked at a high temperature to harden the alignment film.
  • the high temperature baking temperature is 180 degrees to 220 degrees; and the high temperature baking time is 40 minutes to 60 minutes.
  • the step of performing a thermal curing operation on the plastic frame further includes:
  • the frame is UV cured.
  • Embodiments of the present invention provide a method for fabricating a liquid crystal display panel, including:
  • the temperature of the heat curing operation is from 50 degrees to 80 degrees.
  • the heat curing operation takes 10 minutes to 20 minutes.
  • the step of irradiating the alignment film using linearly polarized ultraviolet light further comprises:
  • the alignment film is subjected to a pre-baking operation to make the alignment film uniform in thickness and volatilize the organic solvent in the alignment film.
  • the pre-baking operation has a temperature of 80 to 90 degrees.
  • the pre-baking operation takes 5 minutes to 10 minutes.
  • the step of irradiating the alignment film using the linearly polarized ultraviolet light further comprises:
  • the alignment film is baked at a high temperature to harden the alignment film.
  • the liquid crystal molecule is dripped in the color filter substrate having a frame.
  • the alignment film is baked at a high temperature to harden the alignment film.
  • the high temperature baking temperature is 180 degrees to 220 degrees.
  • the high temperature baking time is 40 minutes to 60 minutes.
  • the step of performing a thermal curing operation on the plastic frame further includes:
  • the frame is UV cured.
  • the method for fabricating a liquid crystal display panel of the present invention is doped with a heat-reactive monomer in a liquid crystal molecule, and a polymer is formed on the surface of the alignment film by a heat-curing frame, thereby improving The reliability of the alignment film is solved, and the technical problem of poor reliability of the alignment film in the conventional liquid crystal display panel is solved.
  • FIG. 1 is a flow chart of a preferred embodiment of a method of fabricating a liquid crystal display panel of the present invention
  • FIG. 2 is a flow chart of a second preferred embodiment of a method of fabricating a liquid crystal display panel of the present invention.
  • FIG. 1 is a flow chart of a preferred embodiment of a method for fabricating a liquid crystal display panel of the present invention.
  • the manufacturing method of the liquid crystal display panel of the preferred embodiment includes:
  • Step S101 coating an isotropic alignment film on the color filter substrate and the array substrate;
  • Step S102 performing a pre-baking operation on the alignment film to make the thickness of the alignment film uniform and volatilize the organic solvent in the alignment film;
  • Step S103 baking the alignment film at a high temperature to harden the alignment film
  • Step S104 irradiating the alignment film with linearly polarized ultraviolet light, so that the isotropic alignment film is converted into an anisotropic alignment film to form a pretilt angle of the alignment film;
  • Step S105 performing a dropping operation of liquid crystal molecules in the color filter substrate having a frame, wherein the liquid crystal molecules are doped with a heat-reactive monomer;
  • Step S106 performing a matching operation on the color filter substrate and the corresponding array substrate
  • Step S107 setting a plastic frame on the periphery of the liquid crystal display panel
  • Step S108 performing ultraviolet curing on the plastic frame
  • step S109 the frame is subjected to a heat curing operation, so that the heat-reactive monomer in the liquid crystal molecules forms a polymer on the surface of the alignment film to increase the anchoring force of the alignment film to the liquid crystal molecules.
  • step S101 a color film substrate and a corresponding array substrate are provided, and then an isotropic alignment film is coated on the color filter substrate and the array substrate. Then it proceeds to step S102.
  • step S102 the alignment film is pre-baked to make the alignment film thickness uniform and volatilize the organic solvent in the alignment film, wherein the pre-baking operation temperature is preferably 80 degrees to 90 degrees, and the pre-baking operation time is 5 minutes to 10 minutes. Then it proceeds to step S103.
  • step S103 the alignment film is baked at a high temperature to harden the alignment film; wherein the temperature of the high temperature baking is preferably 180 degrees to 220 degrees, and the time of high temperature baking is preferably 40 minutes to 60 minutes. Then it proceeds to step S104.
  • step S104 the alignment film is irradiated with linearly polarized ultraviolet light to convert the isotropic alignment film into an anisotropic alignment film to form a pretilt angle of the alignment film. Then it proceeds to step S105.
  • step S105 a dropping operation of liquid crystal molecules is performed in a color filter substrate having a frame, wherein the liquid crystal molecules are doped with a heat-reactive monomer; the heat-reactive monomer is in an environment higher than 50 degrees. An aggregation reaction occurs to form a polymer. Then it proceeds to step S106.
  • step S106 the color film substrate and the corresponding array substrate are subjected to an alignment bonding operation to form a liquid crystal cell of the liquid crystal display panel; then, the process proceeds to step S107.
  • step S107 a plastic frame is disposed on the periphery of the liquid crystal display panel after the alignment. Then it proceeds to step S108.
  • step S108 the plastic frame is pre-cured using ultraviolet rays; then, the process proceeds to step S109.
  • step S109 the pre-cured frame is subjected to a heat curing operation
  • the temperature of the heat curing operation is preferably 50 to 80 degrees
  • the time of the heat curing operation is preferably 10 minutes to 20 minutes. Therefore, during the heat curing operation, the heat-reactive monomer in the liquid crystal molecule forms a polymer on the surface of the alignment film, and the polymer can improve the anchoring force of the alignment film to the liquid crystal molecules, thereby improving the alignment of the liquid crystal display panel.
  • Membrane reliability the temperature of the heat curing operation
  • the liquid crystal molecules are doped with a heat-reactive monomer, and a polymer is formed on the surface of the alignment film by a thermosetting plastic frame, thereby improving the reliability of the alignment film.
  • FIG. 2 is a flow chart of a second preferred embodiment of the method for fabricating a liquid crystal display panel of the present invention.
  • the manufacturing method of the liquid crystal display panel of the preferred embodiment includes:
  • Step S201 coating an isotropic alignment film on the color filter substrate and the array substrate;
  • Step S202 performing a pre-baking operation on the alignment film to make the alignment film thickness uniform and volatilize the organic solvent in the alignment film;
  • Step S203 irradiating the alignment film with linearly polarized ultraviolet light, so that the isotropic alignment film is converted into an anisotropic alignment film to form a pretilt angle of the alignment film;
  • Step S204 baking the alignment film at a high temperature to harden the alignment film
  • Step S205 performing a dropping operation of liquid crystal molecules in the color filter substrate having a frame, wherein the liquid crystal molecules are doped with a heat-reactive monomer;
  • Step S206 performing a matching operation on the color filter substrate and the corresponding array substrate
  • Step S207 setting a plastic frame on the periphery of the liquid crystal display panel
  • Step S208 performing ultraviolet curing on the plastic frame
  • Step S209 performing a thermal curing operation on the plastic frame while causing the heat-reactive monomer in the liquid crystal molecules to form a polymer on the surface of the alignment film to increase the anchoring force of the alignment film to the liquid crystal molecules.
  • the manufacturing method of the liquid crystal display panel of the preferred embodiment is performed after the pretilt angle of the alignment film is formed, and then the alignment film is baked at a high temperature, so that the hardening operation of the alignment film is more effective, and the avoidance is avoided.
  • the method for fabricating a liquid crystal display panel of the present invention is doped with a heat-reactive monomer in a liquid crystal molecule, and forms a polymer on the surface of the alignment film by a thermosetting plastic frame, thereby improving the reliability of the alignment film; and solving the existing liquid crystal A technical problem of poor reliability of the alignment film in the display panel.

Abstract

一种液晶显示面板的制作方法,包括:在彩膜基板和阵列基板上涂布各向同性的配向膜(S101);使用线偏振紫外光对所述配向膜进行照射,使得所述各向同性的配向膜转换为各向异性的配向膜,以形成所述配向膜的预倾角(S104);在具有封框的所述彩膜基板中进行液晶分子的滴入操作,其中所述液晶分子中掺杂有热反应型单体(S105);对所述彩膜基板以及相应的阵列基板进行对位贴合操作(S106);在所述液晶显示面板的外围设置胶框(S107);以及对所述胶框进行热固化操作,同时使得所述液晶分子中的所述热反应型单体在所述配向膜的表面形成聚合物,以提高配向膜对液晶分子的锚定力(S109)。

Description

液晶显示面板的制作方法 技术领域
本发明涉及面板制作领域,特别是涉及一种液晶显示面板的制作方法。
背景技术
随着科技的发展,人们对液晶显示面板的显示效果要求越来越高,为了提高液晶显示面板的显示相应速度,在液晶显示面板的阵列基板和彩膜基板上均设置有用于给液晶层中的液晶分子提供预倾角的配向膜。
现有的配向膜均通过光配向的方式进行制作,即在阵列基板和彩膜基板的表面涂布一层各向同性的配向膜,随后使用紫外线性偏振光对配向膜进行照射,使得各向同性的配向膜发生化学反应,变成各向异性,从而对液晶分子起到配向作用。采用光配向可以对配向膜的整个表面区域进行一定方向的配向处理,可以较好的避免摩擦配向中的局部配向不良。
但是光配向中的配向膜对液晶分子的锚定力仅仅由配向膜表面的高分子链与液晶分子之间的化学作用力构成,该锚定力较差,可能会导致配向膜的信赖性较差。
故,有必要提供一种液晶显示面板的制作方法,以解决现有技术所存在的问题。
技术问题
本发明的目的在于提供一种配向膜信赖性较高的液晶显示面板的制作方法,以解决现有的液晶显示面板中的配向膜的信赖性较差的技术问题。
技术解决方案
本发明实施例提供一种液晶显示面板的制作方法,其包括:
在彩膜基板和阵列基板上涂布各向同性的配向膜;
使用线偏振紫外光对所述配向膜进行照射,使得所述各向同性的配向膜转换为各向异性的配向膜,以形成所述配向膜的预倾角;
在具有封框的所述彩膜基板中进行液晶分子的滴入操作,其中所述液晶分子中掺杂有热反应型单体;
对所述彩膜基板以及相应的阵列基板进行对位贴合操作;
在所述液晶显示面板的外围设置胶框;以及
对所述胶框进行热固化操作,同时使得所述液晶分子中的所述热反应型单体在所述配向膜的表面形成聚合物,以提高所述配向膜对所述液晶分子的锚定力;
其中所述热固化操作的温度为50度至80度;所述热固化操作的时间为10分钟至20分钟。
在本发明所述的液晶显示面板的制作方法中,所述涂布各向同性的配向膜的步骤之后,所述使用线偏振紫外光对所述配向膜进行照射的步骤之前还包括:
对所述配向膜进行预烤操作,使所述配向膜厚度均匀并挥发所述配向膜中的有机溶剂。
在本发明所述的液晶显示面板的制作方法中,所述预烤操作的温度为80度至90度。
在本发明所述的液晶显示面板的制作方法中,所述预烤操作的时间为5分钟至10分钟。
在本发明所述的液晶显示面板的制作方法中,所述对所述配向膜进行预烤操作的步骤之后,所述使用线偏振紫外光对所述配向膜进行照射的步骤之前还包括:
对所述配向膜进行高温烘烤,使所述配向膜硬化。
在本发明所述的液晶显示面板的制作方法中,所述使用线偏振紫外光对所述配向膜进行照射的步骤之后,所述在具有封框的彩膜基板中进行液晶分子的滴入操作的步骤之前还包括:
对所述配向膜进行高温烘烤,使所述配向膜硬化。
在本发明所述的液晶显示面板的制作方法中,所述高温烘烤的温度为180度至220度;所述高温烘烤的时间为40分钟至60分钟。
在本发明所述的液晶显示面板的制作方法中,所述在所述液晶显示面板的外围设置胶框的步骤之后,所述对所述胶框进行热固化操作的步骤之前还包括:
对所述胶框进行紫外线固化。
本发明实施例提供一种液晶显示面板的制作方法,其包括:
在彩膜基板和阵列基板上涂布各向同性的配向膜;
使用线偏振紫外光对所述配向膜进行照射,使得所述各向同性的配向膜转换为各向异性的配向膜,以形成所述配向膜的预倾角;
在具有封框的所述彩膜基板中进行液晶分子的滴入操作,其中所述液晶分子中掺杂有热反应型单体;
对所述彩膜基板以及相应的阵列基板进行对位贴合操作;
在所述液晶显示面板的外围设置胶框;以及
对所述胶框进行热固化操作,同时使得所述液晶分子中的所述热反应型单体在所述配向膜的表面形成聚合物,以提高所述配向膜对所述液晶分子的锚定力。
在本发明所述的液晶显示面板的制作方法中,所述热固化操作的温度为50度至80度。
在本发明所述的液晶显示面板的制作方法中,所述热固化操作的时间为10分钟至20分钟。
在本发明所述的液晶显示面板的制作方法中,所述涂布各向同性的配向膜的步骤之后,所述使用线偏振紫外光对所述配向膜进行照射的步骤之前还包括:
对所述配向膜进行预烤操作,使所述配向膜厚度均匀并挥发所述配向膜中的有机溶剂。
在本发明所述的液晶显示面板的制作方法中,所述预烤操作的温度为80度至90度。
在本发明所述的液晶显示面板的制作方法中,所述预烤操作的时间为5分钟至10分钟。
在本发明所述的液晶显示面板的制作方法中,所述对所述配向膜进行预烤操作的步骤之后,所述使用线偏振紫外光对所述配向膜进行照射的步骤之前还包括:
对所述配向膜进行高温烘烤,使所述配向膜硬化。
在本发明所述的液晶显示面板的制作方法中,所述使用线偏振紫外光对所述配向膜进行照射的步骤之后,所述在具有封框的彩膜基板中进行液晶分子的滴入操作的步骤之前还包括:
对所述配向膜进行高温烘烤,使所述配向膜硬化。
在本发明所述的液晶显示面板的制作方法中,所述高温烘烤的温度为180度至220度。
在本发明所述的液晶显示面板的制作方法中,所述高温烘烤的时间为40分钟至60分钟。
在本发明所述的液晶显示面板的制作方法中,所述在所述液晶显示面板的外围设置胶框的步骤之后,所述对所述胶框进行热固化操作的步骤之前还包括:
对所述胶框进行紫外线固化。
有益效果
相较于现有液晶显示面板的制作方法,本发明的液晶显示面板的制作方法在液晶分子中掺杂热反应型单体,并通过热固化胶框在配向膜的表面形成聚合物,提高了配向膜的信赖性;解决了现有的液晶显示面板中的配向膜的信赖性较差的技术问题。
附图说明
图1为本发明的液晶显示面板的制作方法的优选实施例的流程图;
图2为本发明的液晶显示面板的制作方法的第二优选实施例的流程图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
在图中,结构相似的单元是以相同标号表示。
请参照图1,图1为本发明的液晶显示面板的制作方法的优选实施例的流程图。本优选实施例的液晶显示面板的制作方法包括:
步骤S101,在彩膜基板和阵列基板上涂布各向同性的配向膜;
步骤S102,对配向膜进行预烤操作,使配向膜厚度均匀并挥发配向膜中的有机溶剂;
步骤S103,对配向膜进行高温烘烤,使配向膜硬化;
步骤S104,使用线偏振紫外光对所述配向膜进行照射,使得各向同性的配向膜转换为各向异性的配向膜,以形成配向膜的预倾角;
步骤S105,在具有封框的所述彩膜基板中进行液晶分子的滴入操作,其中液晶分子中掺杂有热反应型单体;
步骤S106,对彩膜基板以及相应的阵列基板进行对位贴合操作;
步骤S107,在液晶显示面板的外围设置胶框;
步骤S108,对所述胶框进行紫外线固化;
步骤S109,对胶框进行热固化操作,同时使得液晶分子中的热反应型单体在配向膜的表面形成聚合物,以提高配向膜对液晶分子的锚定力。
下面详细说明本优选实施例的液晶显示面板的制作方法的各步骤的具体流程。
在步骤S101中,提供一彩膜基板以及相应的阵列基板,然后在彩膜基板以及阵列基板上涂布各向同性的配向膜。随后转到步骤S102。
在步骤S102中,对配向膜进行预烤操作,使配向膜厚度均匀并挥发配向膜中的有机溶剂,其中预烤操作的温度优选为80度至90度,预烤操作的时间为5分钟至10分钟。随后转到步骤S103。
在步骤S103中,对配向膜进行高温烘烤,使配向膜硬化;其中高温烘烤的温度优选为180度至220度,高温烘烤的时间优选为40分钟至60分钟。随后转到步骤S104。
在步骤S104中,使用线偏振紫外光对配向膜进行照射,使得各向同性的配向膜转换为各向异性的配向膜,以形成配向膜的预倾角。随后转到步骤S105。
在步骤S105中,在具有封框的彩膜基板中进行液晶分子的滴入操作,其中液晶分子中掺杂有热反应型单体;该热反应型单体在高于50度的环境下会发生聚集反应,生成聚合物。随后转到步骤S106。
在步骤S106中,对彩膜基板以及相应的阵列基板进行对位贴合操作,形成液晶显示面板的液晶盒;随后转到步骤S107。
在步骤S107中,在对位贴合后的液晶显示面板的外围设置胶框。随后转到步骤S108。
在步骤S108中,使用紫外线对胶框进行预固化;随后转到步骤S109。
在步骤S109中,对预固化后的胶框进行热固化操作,热固化操作的温度优选为50度至80度,热固化操作的时间优选为10分钟至20分钟。因此在热固化操作的过程中,液晶分子中的热反应型单体在配向膜的表面形成聚合物,该聚合物可以提高配向膜对液晶分子的锚定力,从而改善了液晶显示面板的配向膜的信赖性。
这样即完成了本优选实施例的液晶显示面板的制作过程。
本优选实施例的液晶显示面板的制作方法在液晶分子中掺杂热反应型单体,并通过热固化胶框在配向膜的表面形成聚合物,提高了配向膜的信赖性。
请参照图2,图2为本发明的液晶显示面板的制作方法的第二优选实施例的流程图。本优选实施例的液晶显示面板的制作方法包括:
步骤S201,在彩膜基板和阵列基板上涂布各向同性的配向膜;
步骤S202,对配向膜进行预烤操作,使配向膜厚度均匀并挥发配向膜中的有机溶剂;
步骤S203,使用线偏振紫外光对所述配向膜进行照射,使得各向同性的配向膜转换为各向异性的配向膜,以形成配向膜的预倾角;
步骤S204,对配向膜进行高温烘烤,使配向膜硬化;
步骤S205,在具有封框的所述彩膜基板中进行液晶分子的滴入操作,其中液晶分子中掺杂有热反应型单体;
步骤S206,对彩膜基板以及相应的阵列基板进行对位贴合操作;
步骤S207,在液晶显示面板的外围设置胶框;
步骤S208,对所述胶框进行紫外线固化;
步骤S209,对胶框进行热固化操作,同时使得液晶分子中的热反应型单体在配向膜的表面形成聚合物,以提高配向膜对液晶分子的锚定力。
在第一优选实施例的基础上,本优选实施例的液晶显示面板的制作方法在形成配向膜的预倾角之后,再对配向膜进行高温烘烤,使得配向膜的硬化操作更加有效,避免了配向膜的转换操作对硬化操作的影响。
本发明的液晶显示面板的制作方法在液晶分子中掺杂热反应型单体,并通过热固化胶框在配向膜的表面形成聚合物,提高了配向膜的信赖性;解决了现有的液晶显示面板中的配向膜的信赖性较差的技术问题。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种液晶显示面板的制作方法,其包括:
    在彩膜基板和阵列基板上涂布各向同性的配向膜;
    使用线偏振紫外光对所述配向膜进行照射,使得所述各向同性的配向膜转换为各向异性的配向膜,以形成所述配向膜的预倾角;
    在具有封框的所述彩膜基板中进行液晶分子的滴入操作,其中所述液晶分子中掺杂有热反应型单体;
    对所述彩膜基板以及相应的阵列基板进行对位贴合操作;
    在所述液晶显示面板的外围设置胶框;以及
    对所述胶框进行热固化操作,同时使得所述液晶分子中的所述热反应型单体在所述配向膜的表面形成聚合物,以提高所述配向膜对所述液晶分子的锚定力;
    其中所述热固化操作的温度为50度至80度;所述热固化操作的时间为10分钟至20分钟。
  2. 根据权利要求1所述的液晶显示面板的制作方法,其中所述涂布各向同性的配向膜的步骤之后,所述使用线偏振紫外光对所述配向膜进行照射的步骤之前还包括:
    对所述配向膜进行预烤操作,使所述配向膜厚度均匀并挥发所述配向膜中的有机溶剂。
  3. 根据权利要求2所述的液晶显示面板的制作方法,其中所述预烤操作的温度为80度至90度。
  4. 根据权利要求2所述的液晶显示面板的制作方法,其中所述预烤操作的时间为5分钟至10分钟。
  5. 根据权利要求1所述的液晶显示面板的制作方法,其中所述对所述配向膜进行预烤操作的步骤之后,所述使用线偏振紫外光对所述配向膜进行照射的步骤之前还包括:
    对所述配向膜进行高温烘烤,使所述配向膜硬化。
  6. 根据权利要求1所述的液晶显示面板的制作方法,其中所述使用线偏振紫外光对所述配向膜进行照射的步骤之后,所述在具有封框的彩膜基板中进行液晶分子的滴入操作的步骤之前还包括:
    对所述配向膜进行高温烘烤,使所述配向膜硬化。
  7. 根据权利要求5所述的液晶显示面板的制作方法,其中所述高温烘烤的温度为180度至220度;所述高温烘烤的时间为40分钟至60分钟。
  8. 根据权利要求6所述的液晶显示面板的制作方法,其中所述高温烘烤的温度为180度至220度;所述高温烘烤的时间为40分钟至60分钟。
  9. 根据权利要求1所述的液晶显示面板的制作方法,其中所述在所述液晶显示面板的外围设置胶框的步骤之后,所述对所述胶框进行热固化操作的步骤之前还包括:
    对所述胶框进行紫外线固化。
  10. 一种液晶显示面板的制作方法,其包括:
    在彩膜基板和阵列基板上涂布各向同性的配向膜;
    使用线偏振紫外光对所述配向膜进行照射,使得所述各向同性的配向膜转换为各向异性的配向膜,以形成所述配向膜的预倾角;
    在具有封框的所述彩膜基板中进行液晶分子的滴入操作,其中所述液晶分子中掺杂有热反应型单体;
    对所述彩膜基板以及相应的阵列基板进行对位贴合操作;
    在所述液晶显示面板的外围设置胶框;以及
    对所述胶框进行热固化操作,同时使得所述液晶分子中的所述热反应型单体在所述配向膜的表面形成聚合物,以提高所述配向膜对所述液晶分子的锚定力。
  11. 根据权利要求10所述的液晶显示面板的制作方法,其中所述热固化操作的温度为50度至80度。
  12. 根据权利要求10所述的液晶显示面板的制作方法,其中所述热固化操作的时间为10分钟至20分钟。
  13. 根据权利要求10所述的液晶显示面板的制作方法,其中所述涂布各向同性的配向膜的步骤之后,所述使用线偏振紫外光对所述配向膜进行照射的步骤之前还包括:
    对所述配向膜进行预烤操作,使所述配向膜厚度均匀并挥发所述配向膜中的有机溶剂。
  14. 根据权利要求13所述的液晶显示面板的制作方法,其中所述预烤操作的温度为80度至90度。
  15. 根据权利要求13所述的液晶显示面板的制作方法,其中所述预烤操作的时间为5分钟至10分钟。
  16. 根据权利要求10所述的液晶显示面板的制作方法,其中所述对所述配向膜进行预烤操作的步骤之后,所述使用线偏振紫外光对所述配向膜进行照射的步骤之前还包括:
    对所述配向膜进行高温烘烤,使所述配向膜硬化。
  17. 根据权利要求10所述的液晶显示面板的制作方法,其中述使用线偏振紫外光对所述配向膜进行照射的步骤之后,所述在具有封框的彩膜基板中进行液晶分子的滴入操作的步骤之前还包括:
    对所述配向膜进行高温烘烤,使所述配向膜硬化。
  18. 根据权利要求16所述的液晶显示面板的制作方法,其中所述高温烘烤的温度为180度至220度。
  19. 根据权利要求16所述的液晶显示面板的制作方法,其中所述高温烘烤的时间为40分钟至60分钟。
  20. 根据权利要求10所述的液晶显示面板的制作方法,其中所述在所述液晶显示面板的外围设置胶框的步骤之后,所述对所述胶框进行热固化操作的步骤之前还包括:
    对所述胶框进行紫外线固化。
PCT/CN2016/080033 2016-04-05 2016-04-22 液晶显示面板的制作方法 WO2017173675A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/120,750 US9971204B2 (en) 2016-04-05 2016-04-22 Method for manufacturing liquid crystal display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610205685.2A CN105676540B (zh) 2016-04-05 2016-04-05 液晶显示面板的制作方法
CN201610205685.2 2016-04-05

Publications (1)

Publication Number Publication Date
WO2017173675A1 true WO2017173675A1 (zh) 2017-10-12

Family

ID=56225218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/080033 WO2017173675A1 (zh) 2016-04-05 2016-04-22 液晶显示面板的制作方法

Country Status (2)

Country Link
CN (1) CN105676540B (zh)
WO (1) WO2017173675A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106200131B (zh) * 2016-08-31 2019-11-12 厦门天马微电子有限公司 一种显示面板及其制造方法、以及显示装置
CN108983504A (zh) * 2017-05-31 2018-12-11 京东方科技集团股份有限公司 液晶面板及其制造方法、液晶显示器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101158768A (zh) * 2007-11-13 2008-04-09 友达光电股份有限公司 制作液晶显示面板的方法
US20090079915A1 (en) * 2007-09-20 2009-03-26 Epson Imaging Devices Corporation Transflective liquid crystal display panel and electronic apparatus
CN104777672A (zh) * 2015-04-24 2015-07-15 深圳市华星光电技术有限公司 显示面板及其制造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6204906B1 (en) * 1999-03-22 2001-03-20 Lawrence E. Tannas, Jr. Methods of customizing the physical size and shape of commercial off-the-shelf (COTS) electronic displays
JP2008003216A (ja) * 2006-06-21 2008-01-10 Asahi Glass Co Ltd 液晶表示パネルの製造方法
CN101285967A (zh) * 2007-04-13 2008-10-15 奇美电子股份有限公司 液晶显示装置及其制作方法
CN101387792B (zh) * 2007-09-12 2012-01-04 奇美电子股份有限公司 光配向膜的制造方法以及配向液
CN101592828B (zh) * 2008-05-28 2012-03-07 比亚迪股份有限公司 液晶显示器制造方法
CN102062968B (zh) * 2009-11-16 2013-08-21 台湾薄膜电晶体液晶显示器产业协会 液晶显示面板的制造方法
CN102819143B (zh) * 2011-06-10 2014-12-10 京东方科技集团股份有限公司 液晶盒及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090079915A1 (en) * 2007-09-20 2009-03-26 Epson Imaging Devices Corporation Transflective liquid crystal display panel and electronic apparatus
CN101158768A (zh) * 2007-11-13 2008-04-09 友达光电股份有限公司 制作液晶显示面板的方法
CN104777672A (zh) * 2015-04-24 2015-07-15 深圳市华星光电技术有限公司 显示面板及其制造方法

Also Published As

Publication number Publication date
CN105676540A (zh) 2016-06-15
CN105676540B (zh) 2019-09-24

Similar Documents

Publication Publication Date Title
WO2013152533A1 (zh) 液晶面板及其制作方法
WO2013067718A1 (zh) 液晶显示面板的配向膜制作方法
WO2018023855A1 (zh) Oled薄膜封装结构及其制作方法
WO2014023065A1 (zh) 液晶显示面板及其制造方法
WO2016090672A1 (zh) 一种曲面液晶显示面板及其制作方法
WO2016161665A1 (zh) 一种液晶显示面板及液晶显示装置
WO2013174020A1 (zh) 液晶显示面板及其应用的显示装置
WO2019015020A1 (zh) 一种液晶显示面板的制作方法
WO2013091250A1 (zh) 液晶显示装置及其制作方法
WO2016179914A1 (zh) 偏光板及液晶显示面板
WO2017031757A1 (zh) 一种液晶显示面板及装置
WO2017008316A1 (zh) 一种阵列基板及液晶显示面板
WO2017173675A1 (zh) 液晶显示面板的制作方法
WO2014012292A1 (zh) 液晶显示面板及其应用的显示装置
WO2013174011A1 (zh) 液晶显示面板及其应用的显示装置
WO2013174029A1 (zh) 液晶面板及其液晶配向方法
WO2013127101A1 (zh) 光学自补偿弯曲型液晶显示面板及其制造方法
WO2016082260A1 (zh) 显示面板及其制作方法
WO2017015940A1 (zh) 一种阵列基板及其制作方法
WO2014000239A1 (zh) 液晶显示装置、液晶显示面板的制造方法及设备
WO2017124595A1 (zh) 显示面板制作方法及液晶显示器
WO2016061776A1 (zh) 一种柔性衬底基板的制作方法
WO2016123819A1 (zh) 触控显示面板的制作方法
WO2016054831A1 (zh) 一种液晶显示面板的制作方法
WO2013185371A1 (zh) 液晶面板及其制作方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15120750

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897609

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897609

Country of ref document: EP

Kind code of ref document: A1