WO2013127101A1 - 光学自补偿弯曲型液晶显示面板及其制造方法 - Google Patents
光学自补偿弯曲型液晶显示面板及其制造方法 Download PDFInfo
- Publication number
- WO2013127101A1 WO2013127101A1 PCT/CN2012/072292 CN2012072292W WO2013127101A1 WO 2013127101 A1 WO2013127101 A1 WO 2013127101A1 CN 2012072292 W CN2012072292 W CN 2012072292W WO 2013127101 A1 WO2013127101 A1 WO 2013127101A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alignment film
- liquid crystal
- polymer
- polymer alignment
- crystal cell
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/133711—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
- G02F1/133723—Polyimide, polyamide-imide
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/13378—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
- G02F1/133788—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/137—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
- G02F1/139—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
- G02F1/1393—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
- G02F1/1395—Optically compensated birefringence [OCB]- cells or PI- cells
Definitions
- the present invention relates to the field of liquid crystal display technology, and in particular to an optical self-compensating bending type (Optical Compensated) Bending, OCB) liquid crystal display panel and its manufacturing method.
- Optical Compensated Optical Compensated
- Liquid crystal display (Liquid Crystal Display, LCD) has been widely used in a variety of electronic products, liquid crystal displays mainly by liquid crystal display panels and backlight modules (backlight Module).
- the liquid crystal display panel is composed of two transparent substrates and a liquid crystal sealed between the substrates.
- the optical self-compensating bending (OCB) type liquid crystal display Since the optical self-compensating bending (OCB) type liquid crystal display has a fast reaction speed and a wide viewing angle, it is suitable for a liquid crystal display.
- OCB type liquid crystal display when a high voltage difference is applied to an OCB type liquid crystal display, the liquid crystal molecules thereof are in a state of being splayed (splay State) is switched to a bend state, and therefore, it takes a long time for the liquid crystal molecules in the OCB type liquid crystal display to switch from the splay state to the curved state before use.
- the invention provides an optical self-compensating curved type (OCB) liquid crystal display panel and a manufacturing method thereof to solve the problems existing in the prior art of the OCB type liquid crystal display.
- OCB optical self-compensating curved type
- a main object of the present invention is to provide a method for fabricating an optical self-compensating curved display panel, comprising the steps of: forming a first alignment film on a first substrate, and forming a second alignment film on the second substrate; forming a liquid crystal layer Between the first alignment film and the second alignment film to form a liquid crystal cell, wherein the liquid crystal layer includes a reactive monomer and liquid crystal molecules, the liquid crystal molecules are arranged in a curved state; The liquid crystal cell applies an electrical signal such that the reactive monomer and the liquid crystal molecules are aligned in a bent state; and the liquid crystal cell is irradiated with light or heated such that the reactive monomers are respectively bonded to the first alignment film And the second alignment film to form a first polymer alignment film and a second polymer alignment film, respectively.
- Another object of the present invention is to provide a method for fabricating an optical self-compensating curved display panel, comprising the steps of: forming a first alignment film on a first substrate, and forming a second alignment film on the second substrate; forming a liquid crystal Layered between the first alignment film and the second alignment film to form a liquid crystal cell, wherein the liquid crystal layer includes a reactive monomer and liquid crystal molecules, and the liquid crystal molecules are arranged in a curved state;
- the liquid crystal cell applies an electrical signal such that the reactive monomer and the liquid crystal molecules are arranged in a bent state; the liquid crystal cell is irradiated with light or heated, so that the reactive monomer is respectively bonded to the first alignment film And the second alignment film to form a first polymer alignment film and a second polymer alignment film, respectively, wherein the first polymer alignment film and the second polymer alignment film have a pretilt angle, The pretilt angle is 0 to 10 degrees; and the residual reaction monomer which is not completely reacted in the liquid
- Still another object of the present invention is to provide an optical self-compensating curved display panel, the optical self-compensating curved display panel comprising: a first substrate, including a first electrode, a first alignment film, and a first polymer alignment film, The first alignment film and the first polymer alignment film are sequentially formed on the first electrode; the second substrate includes a second electrode, a second alignment film, and a second polymer alignment film, the second An alignment film and the second polymer alignment film are sequentially formed on the second electrode; and a liquid crystal layer is formed between the first polymer alignment film and the second polymer alignment film to form A liquid crystal cell in which liquid crystal molecules of the liquid crystal layer are arranged in a curved state.
- the method further comprises the step of removing the illumination of the light and the application of the voltage after the liquid crystal cell is illuminated.
- the polymer chain of the first polymer alignment film is connected to the second polymerization The polymer chain of the alignment film.
- the applied electricity is increased after applying the electrical signal to the liquid crystal cell and before forming the first polymer alignment film and the second polymer alignment film. signal.
- the first polymer alignment film and the second polymer alignment film have a pretilt angle, and the pretilt angle is 0 to 10 degrees.
- the method further comprises the step of performing a light treatment or a heat treatment on the residual reaction monomer that is not completely reacted in the liquid crystal cell.
- the method further includes the steps of: controlling a time during which the liquid crystal cell is irradiated with light to control a polymer chain of the second alignment film and the second polymer alignment film length.
- the polymer chain of the first polymer alignment film and the polymer chain of the second polymer alignment film are inclined toward the same side of the liquid crystal cell.
- the OCB type liquid crystal display panel of the invention and the manufacturing method thereof can form a polymer alignment film in the liquid crystal cell, so that the liquid crystal molecules in the liquid crystal cell can be pre-bent, thereby eliminating or reducing the liquid crystal molecules from being converted to a curved state. Phase transition time to improve the quality of the OCB type liquid crystal display panel.
- FIG. 1 is a cross-sectional view showing an OCB type liquid crystal display panel and a backlight module according to an embodiment of the invention
- FIG. 2 is a partial cross-sectional view showing an OCB type liquid crystal display panel in accordance with an embodiment of the present invention
- FIG. 3 is a flow chart showing a method of fabricating an OCB type liquid crystal display panel in accordance with an embodiment of the present invention
- FIG. 4 is a partial cross-sectional view showing an OCB type liquid crystal display panel before an electrical signal is applied, in accordance with an embodiment of the present invention
- FIG. 5 is a partial cross-sectional view showing an OCB type liquid crystal display panel in accordance with another embodiment of the present invention.
- FIG. 6 is a partial cross-sectional view showing an OCB type liquid crystal display panel in accordance with still another embodiment of the present invention when an electrical signal is increased.
- FIG. 1 shows a cross-sectional view of an OCB type liquid crystal display panel and a backlight module according to an embodiment of the invention.
- the liquid crystal display device of the present embodiment may include an OCB type liquid crystal display panel 100 and a backlight module 200.
- the OCB type liquid crystal display panel 100 is disposed relative to the backlight module 200, and the backlight module 200 can be edge-lit (Edge) Lighting) A backlight module or a Bottom Lighting backlight module to provide backlight to the OCB type liquid crystal display panel 100.
- Edge-lit (Edge) Lighting) A backlight module or a Bottom Lighting backlight module to provide backlight to the OCB type liquid crystal display panel 100.
- the OCB type liquid crystal display panel 100 of the present embodiment may include a first substrate 110 , a second substrate 120 , a liquid crystal layer 130 , a first polarizer 140 , and a second polarizer 150 .
- the substrate material of the first substrate 110 and the second substrate 120 may be a glass substrate or a flexible plastic substrate.
- the first substrate 110 may be, for example, a color filter (Color).
- the second substrate 120 may be, for example, a Thin Film Transistor (TFT).
- TFT Thin Film Transistor
- the first substrate 110 may include a plurality of gate lines, a plurality of data lines, and a plurality of pixel structures (not shown).
- the gate line and the data line are vertically interlaced and arranged in a matrix, thereby forming a plurality of pixel regions. Pixel structures are respectively disposed in these pixel regions. It should be noted that in some embodiments, the color filter and the TFT matrix may also be disposed on the same substrate.
- the liquid crystal layer 130 is formed between the first substrate 110 and the second substrate 120 and includes a reactive monomer 101 and liquid crystal molecules 102.
- the reactive monomer 101 is preferably a photosensitive monomer mixed in the liquid crystal molecules 102, and the liquid crystal molecules 102 is, for example, a positive liquid crystal molecule.
- the first polarizer 140 is a side on which the first substrate 110 is disposed, and is opposite to the liquid crystal layer 130 (that is, the light exiting side of the first substrate 110), and the second polarizer 150 is a side on which the second substrate 120 is disposed, and With respect to the liquid crystal layer 130 (that is, the light incident side of the second substrate 120).
- the first substrate 110 may include a first electrode 111, a first alignment film 112, and a first polymer alignment film 113, a first alignment film 112 and a first polymer alignment film 113. It is sequentially formed on the first electrode 111.
- the second substrate 120 may include a second electrode 121, a second alignment film 122, and a second polymer alignment film 123. The second alignment film 122 and the second polymer alignment film 123 are sequentially formed on the second electrode 121.
- the first electrode 111 and the second electrode 121 are preferably made of a light-transmitting conductive material such as ITO, IZO, AZO, GZO, TCO or ZnO, and the first electrode 111 and the second electrode 121 may apply a voltage to the liquid crystal layer 130. Liquid crystal molecules 102.
- the first electrode 111 is, for example, a common electrode
- the second electrode 121 is, for example, a pixel electrode.
- the second electrode 121 may have a plurality of regions (not shown), and the voltage applied to each region may be the same or different.
- the alignment films 112, 122 and the polymer alignment films 113, 123 may have an alignment direction for determining the alignment of the liquid crystal molecules of the liquid crystal layer 130, and the alignment films 112, 122 and the polymer alignment films 113, 123 may have a pretilt angle. ⁇ , the pretilt angle ⁇ is less than 90 degrees, preferably 0 to 10 degrees.
- the material of the alignment films 112, 122 may be polyimide (PI) or silicon dioxide (SiO2).
- the polymer alignment films 113 and 123 are polymerized by the reaction monomer 101 and bonded to the alignment films 112 and 122. Among them, the liquid crystal molecules 102 between the polymer alignment films 113 and 123 are arranged in a curved state.
- FIG. 3 shows a flowchart of a method for fabricating an OCB type liquid crystal display panel according to an embodiment of the invention.
- the first alignment film 112 is formed on the first substrate 110
- the second alignment film 122 is formed on the second substrate 120 (step S301).
- the first electrode 111 is formed on the first substrate 110
- the second electrode 121 is formed on the second substrate 120.
- the substrates 110, 120 having the electrodes 111, 121 may be pre-cleaned and pre-baked to clean the surfaces of the substrates 110, 120 (i.e., the surfaces of the electrodes 111, 121).
- the alignment films 112 and 122 may be formed on the electrodes 111, 121 of the substrates 110, 120 by coating, printing, inkjet or sputtering (for a silicon dioxide material), and then aligned by a rubbing device.
- the films 112 and 122 are frictionally aligned such that the alignment films 112 and 122 have a predetermined alignment direction.
- a pretilt angle of 0 to 10 degrees can be formed on the alignment films 112 and 122.
- FIG. 4 is a partial cross-sectional view showing the OCB type liquid crystal display panel before applying an electrical signal according to an embodiment of the invention.
- a liquid crystal layer 130 is formed between the first alignment film 112 of the first substrate 110 and the second alignment film 122 of the second substrate 120 (step S302) to form a liquid crystal cell, wherein the liquid crystal layer 130 may include liquid crystal molecules 102 and A small amount of reactive monomer 101.
- the liquid crystal of the liquid crystal layer 130 may be dropped into the sealant (not shown) on the first substrate 110 by using a liquid crystal dropping method (ODF), and then the second substrate 120 may be assembled by a pair of bits.
- ODF liquid crystal dropping method
- a device (not shown) is aligned and assembled on the first substrate 110, and the sealant is cured, thereby forming a liquid crystal layer 130 between the first substrate 110 and the second substrate 120.
- the step S302 is completed, at this time, as shown in FIG. 4, the liquid crystal molecules 102 between the first alignment film 112 and the second alignment film 122 are arranged in a curved state.
- an electrical signal is then applied to the liquid crystal cell (step S303), so that at least a portion of the reactive monomer 101 and at least a portion of the liquid crystal molecules 102 can be aligned along the alignment direction and curved.
- the liquid crystal molecules 102 can be rotated by an electrical signal (e.g., voltage) applied by the electrodes 111, 121.
- the liquid crystal molecules 102 close to the alignment films 112, 122 may be arranged along a predetermined alignment direction and may have a pretilt angle. Therefore, the reactive monomers 101 mixed in the liquid crystal molecules 102 can also be arranged along a predetermined alignment direction and have a pretilt angle.
- the applied electrical signal can be a direct current signal, an alternating current signal, or a mixed signal of direct current and alternating current.
- the liquid crystal cell is then irradiated with light so that the reactive monomer 101 is bonded to the first alignment film 112 and the second alignment film 122, respectively, to form the first polymer alignment film 113 and the second, respectively.
- the polymer alignment film 123 (step S304).
- the light that is irradiated may be ultraviolet (UV) light.
- the reaction monomer 101 can be phase-separated from the liquid crystal molecules 102 by the application of an electric signal and the irradiation of the light, and respectively generate a polymerization reaction with the alignment films 112 and 122 of the substrates 110 and 120, thereby forming the polymer alignment film 113, 123 is formed on the alignment films 112 and 122 to complete the OCB type liquid crystal display panel.
- the alignment films 112, 122 and the polymer alignment films 113, 123 may have a predetermined alignment direction and a pretilt angle. Therefore, the liquid crystal molecules 102 of the liquid crystal layer 130 can be aligned along the alignment directions and pretilt angles provided by the alignment films 112, 122 and the polymer alignment films 113, 123.
- the polymer chain of the first polymer alignment film 113 and the polymer chain of the second polymer alignment film 123 may both be inclined toward the same side of the liquid crystal cell, that is, the first polymer alignment film 113 and The pretilt angle ⁇ of the second polymer alignment film 123 is formed on the same side of the liquid crystal cell, so that the liquid crystal molecules 102 assume a curved state.
- the polymer chains of the polymer alignment films 113, 123 are all inclined toward the left side of the liquid crystal cell.
- step S304 the length of the polymer chain of the polymer alignment films 113, 123 can be controlled by controlling the irradiation time of the light.
- the polymer chain of the first polymer alignment film 113 may be attached to the polymer chain of the second polymer alignment film 123 to ensure the bending state of the liquid crystal molecules 102.
- the irradiation of light and the application of electrical signals can be removed. It is worth noting that when the illumination of the light and the application of the electrical signal are removed, the application of the electrical signal can be removed first, and then the illumination of the light can be removed; the illumination of the light and the application of the electrical signal can also be removed at the same time.
- the residual reaction monomer 101 which is not completely reacted in the liquid crystal cell may be subjected to light treatment or heat treatment so that the residual reaction monomer 101 can be completely reacted.
- the display panel 100 of the present embodiment When the OCB type liquid crystal display panel 100 of the present embodiment is applied to manufacture a display device, the display panel 100 can be disposed on the backlight module 200, thereby forming an OCB type liquid crystal display device.
- the liquid crystal cell when the polymer alignment films 113, 123 are formed, the liquid crystal cell can be heated to replace the line of light.
- the reactive monomer 101 can be polymerized with the alignment films 112, 122 of the substrates 110, 120, respectively, thereby forming the polymer alignment films 113, 123 on the alignment films 112, 122. .
- FIG. 6 is a partial cross-sectional view showing an OCB type liquid crystal display panel according to still another embodiment of the present invention when an electrical signal is increased.
- the applied electrical signal eg, voltage
- the liquid crystal molecules 102 located at the center of the liquid crystal cell may be approximately perpendicular to the alignment films 112, 122.
- the OCB type liquid crystal display panel of the present invention and the manufacturing method thereof can be provided with a preformed polymer alignment film, so that the liquid crystal molecules in the liquid crystal cell can be pre-bent, thereby eliminating or reducing the liquid crystal molecules from being in a curved state.
- the phase transition transition time to the bent state is improved to improve the quality of the OCB type liquid crystal display panel.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mathematical Physics (AREA)
- Liquid Crystal (AREA)
Abstract
一种光学自补偿弯曲型液晶显示面板(100)及其制造方法,该方法包括如下步骤:形成配向膜(112,122)于基板(110,120)上;形成液晶层(130)于配向膜(112,122)之间,以形成液晶盒;对液晶盒施加电信号;以及对液晶盒照射光线或进行加热,以分别形成第一聚合物配向膜(113)及第二聚合物配向膜(123)。因此可消除或减少液晶分子(102)由展曲状态转换至弯曲状态的相变过渡时间。
Description
本发明涉及液晶显示技术领域,特别是涉及一种光学自补偿弯曲型(Optical Compensated
Bending,OCB)液晶显示面板及其制造方法。
液晶显示器(Liquid Crystal
Display,LCD)已被广泛应用于各种电子产品中,液晶显示器主要是由液晶显示面板及背光模块(backlight
module)所组成。液晶显示面板是由两片透明基板以及被封于基板之间的液晶所构成。
由于光学自补偿弯曲(OCB)型液晶显示器具有快速的反应速度及广视角的特性,而适用于液晶显示器。然而,在OCB型液晶显示器中,当高电压差施加于OCB型液晶显示器时,其液晶分子会由展曲状态(splay
state)转换至弯曲状态(bend state),因此,在使用之前,OCB型液晶显示器中的液晶分子需花费较长的时间由展曲状态转换至弯曲状态。
故,有必要提供一种光学自补偿弯曲型(OCB)液晶显示面板及其制造方法,以解决现有技术所存在的问题。
本发明提供一种光学自补偿弯曲型(OCB)液晶显示面板及其制造方法,以解决OCB型液晶显示器在现有技术中所存在的问题。
本发明的主要目的在于提供一种光学自补偿弯曲型显示面板的制造方法,包括如下步骤:形成第一配向膜于第一基板上,且形成第二配向膜于第二基板上;形成液晶层于所述第一配向膜与所述第二配向膜之间,以形成液晶盒,其中所述液晶层包括反应单体和液晶分子,所述液晶分子是呈展曲状态来排列;对所述液晶盒施加电信号,使得所述反应单体及所述液晶分子呈弯曲状态来排列;以及对所述液晶盒照射光线或进行加热,使得所述反应单体分别结合于所述第一配向膜及所述第二配向膜,以分别形成第一聚合物配向膜及第二聚合物配向膜。
本发明的另一目的在于提供一种光学自补偿弯曲型显示面板的制造方法,包括如下步骤:形成第一配向膜于第一基板上,且形成第二配向膜于第二基板上;形成液晶层于所述第一配向膜与所述第二配向膜之间,以形成液晶盒,其中所述液晶层包括反应单体和液晶分子,所述液晶分子是呈展曲状态来排列;对所述液晶盒施加电信号,使得所述反应单体及所述液晶分子呈弯曲状态来排列;对所述液晶盒照射光线或进行加热,使得所述反应单体分别结合于所述第一配向膜及所述第二配向膜,以分别形成第一聚合物配向膜及第二聚合物配向膜,其中所述第一聚合物配向膜及所述第二聚合物配向膜具有一预倾角,所述预倾角为0~10度;以及对所述液晶盒内未完全反应的残留反应单体进光处理或热处理。
本发明的又一目的在于提供一种光学自补偿弯曲型显示面板,光学自补偿弯曲型显示面板包括:第一基板,包括第一电极、第一配向膜及第一聚合物配向膜,所述第一配向膜及所述第一聚合物配向膜是依序形成于所述第一电极上;第二基板,包括第二电极、第二配向膜及第二聚合物配向膜,所述第二配向膜及所述第二聚合物配向膜是依序形成于所述第二电极上;以及液晶层,形成所述第一聚合物配向膜及所述第二聚合物配向膜之间,以形成液晶盒,其中所述液晶层的液晶分子呈弯曲状态来排列。
在本发明的一实施例中,所述方法还包括如下步骤:在对所述液晶盒照射光线之后,移除所述光线的照射以及所述电压的施加。
在本发明的一实施例中,在形成所述第一聚合物配向膜及所述第二聚合物配向膜之后,所述第一聚合物配向膜的高分子链是连接于所述第二聚合物配向膜的高分子链。
在本发明的一实施例中,在施加所述电信号于所述液晶盒之后且在形成所述第一聚合物配向膜及所述第二聚合物配向膜之前,提高所施加的所述电信号。
在本发明的一实施例中,所述第一聚合物配向膜及所述第二聚合物配向膜具有一预倾角,所述预倾角为0~10度。
在本发明的一实施例中,所述方法还包括如下步骤:对所述液晶盒内未完全反应的残留反应单体进光处理或热处理。
在本发明的一实施例中,所述方法还包括如下步骤:控制对所述液晶盒照射光线的时间,以控制所述第二配向膜及所述第二聚合物配向膜的高分子链的长度。
在本发明的一实施例中,所述第一聚合物配向膜的高分子链与所述第二聚合物配向膜的高分子链皆向所述液晶盒的同一侧来倾斜。
本发明的OCB型液晶显示面板及其制造方法可形成聚合物配向膜于液晶盒中,使得液晶盒中的液晶分子可预先呈弯曲状态,因而消除或减少液晶分子由展曲状态转换至弯曲状态的相变过渡时间,以改善OCB型液晶显示面板的质量。
图1显示依照本发明的一实施例的OCB型液晶显示面板与背光模块的剖面示意图;
图2显示依照本发明的一实施例的OCB型液晶显示面板的部分剖面示意图;
图3显示依照本发明的一实施例的OCB型液晶显示面板的制造方法的方法流程图;
图4显示依照本发明的一实施例的OCB型液晶显示面板在施加电信号前的部分剖面示意图;
图5显示依照本发明的另一实施例的OCB型液晶显示面板的部分剖面示意图;以及
图6显示依照本发明的又一实施例的OCB型液晶显示面板在提高电信号时的部分剖面示意图。
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
在图中,结构相似的单元是以相同标号表示。
请参照图1,其显示依照本发明的一实施例的OCB型液晶显示面板与背光模块的剖面示意图。本实施例的液晶显示装置可包括OCB型液晶显示面板100和背光模块200。OCB型液晶显示面板100相对于背光模块200来设置,背光模块200可为侧光式(Edge
Lighting)背光模块或直下式入光(Bottom Lighting)背光模块,以提供背光至OCB型液晶显示面板100。
如图1所示,本实施的OCB型液晶显示面板100可包括第一基板110、第二基板120、液晶层130、第一偏光片140及第二偏光片150。第一基板110和第二基板120的基板材料可为玻璃基板或可挠性塑料基板,在本实施例中,第一基板110可例如为具有彩色滤光片(Color
Filter,CF)的玻璃基板或其它材质的基板,而第二基板120可例如为具有薄膜晶体管(Thin Film Transistor,TFT)
矩阵的玻璃基板或其它材质的基板。第一基板110可包括多条闸极线、多条数据线及多个像素结构(未显示)。闸极线和数据线是相互垂直交错,而呈矩阵式排列,因而形成多个像素区域。像素结构是分别设置于这些像素区域中。值得注意的是,在一些实施例中,彩色滤光片和TFT矩阵亦可配置在同一基板上。
请参照图2,其显示依照本发明的一实施例的OCB型液晶显示面板的部分剖面示意图。液晶层130是形成于第一基板110与第二基板120之间,并包括反应单体101和液晶分子102,反应单体101优选是感光性单体,其混合于液晶分子102中,液晶分子102例如为正性液晶分子。第一偏光片140是设置第一基板110的一侧,并相对于液晶层130(亦即为第一基板110的出光侧),第二偏光片150是设置第二基板120的一侧,并相对于液晶层130(亦即为第二基板120的入光侧)。
如图2所示,在本实施例中,第一基板110可包括第一电极111、第一配向膜112及第一聚合物配向膜113,第一配向膜112及第一聚合物配向膜113是依序形成于第一电极111上。第二基板120可包括第二电极121、第二配向膜122、第二聚合物配向膜123,第二配向膜122及第二聚合物配向膜123是依序形成于第二电极121上。第一电极111和第二电极121优选是以透光导电材料所制成,例如:ITO、IZO、AZO、GZO、TCO或ZnO,第一电极111和第二电极121可施加电压于液晶层130的液晶分子102。在本实施例中,第一电极111例如为共同电极,第二电极121例如为像素电极。且第二电极121可具有多个区域(未绘示),而每一区域所被施加的电压可为相同或不相同。配向膜112、122及聚合物配向膜113、123可具有一配向方向,用来决定液晶层130的液晶分子的配向,且配向膜112、122及聚合物配向膜113、123可具有一预倾角θ,此预倾角θ是小于90度,优选为0~10度。配向膜112、122的材料可为聚酰亚胺(polyimide,PI)或二氧化硅(SiO2)。聚合物配向膜113、123是由反应单体101所聚合而成,其结合于配向膜112、122上。其中,聚合物配向膜113及123之间的液晶分子102是呈弯曲状态来排列。
请参照图3,其显示依照本发明的一实施例的OCB型液晶显示面板的制造方法的方法流程图。当制造本实施例的OCB型液晶显示面板时,首先,形成第一配向膜112于第一基板110上,且形成第二配向膜122于第二基板120上(步骤S301)。在步骤S301之前,第一电极111是形成于第一基板110上,第二电极121是形成于第二基板120上。且在步骤S301之前,具有电极111、121的基板110、120可被预清洗以及预烘烤,以清洁基板110、120的表面(亦即电极111、121的表面)。在步骤S301中,配向膜112及122可通过涂布、印刷、喷墨或溅射(用于二氧化硅材料)来形成于基板110、120的电极111、121上,然后通过摩擦设备对配向膜112及122进行摩擦配向,使得配向膜112及122具有预设的配向方向。通过摩擦,可以形成0~10度的预倾角于配向膜112及122上。
请参照图3及图4,图4显示依照本发明的一实施例的OCB型液晶显示面板在施加电信号前的部分剖面示意图。接着,形成液晶层130于第一基板110的第一配向膜112与第二基板120的第二配向膜122之间(步骤S302),以形成液晶盒,其中液晶层130可包括液晶分子102以及少量的反应单体101。在步骤S302中,液晶层130的液晶可先例如利用液晶滴下方式(ODF)来滴在第一基板110上的框胶(未绘示)内,接着,第二基板120可通过一对位组装设备(未绘示)来对位及组装于第一基板110上,并固化此框胶,因而形成液晶层130于第一基板110与第二基板120之间。在完成步骤S302之后,此时,如图4所示,第一配向膜112与第二配向膜122之间的液晶分子102是呈展曲状态来排列。
如图2及图3所示,接着,对此液晶盒施加电信号(步骤S303),使得至少部分的反应单体101及至少部分的液晶分子102可沿着此配向方向来排列,而呈弯曲状态来排列。通过电极111、121所施加电信号(例如电压),液晶分子102可进行转动。此时,靠近于配向膜112、122的液晶分子102可沿着预设的配向方向来排列,并可具有预倾角。因此,混合于液晶分子102的反应单体101亦可沿着预设的配向方向来排列,并具有预倾角。其中,所施加的电信号可为直流信号、交流信号、或直流和交流的混合信号。
如图2及图3所示,接着,对液晶盒照射光线,使得反应单体101分别结合于第一配向膜112及第二配向膜122,以分别形成第一聚合物配向膜113及第二聚合物配向膜123(步骤S304)。其中,所照射的光线可为紫外(UV)光。通过电信号的施加以及光线的照射,反应单体101可与液晶分子102发生相分离现象,并分别与基板110、120的配向膜112、122上产生聚合反应,因而形成聚合物配向膜113、123于配向膜112、122上,而完成OCB型液晶显示面板。此时,配向膜112、122及聚合物配向膜113、123可具有预设的配向方向以及预倾角。因此,液晶层130的液晶分子102可沿着配向膜112、122及聚合物配向膜113、123所提供的配向方向以及预倾角来进行排列。
在本实施例中,第一聚合物配向膜113的高分子链与第二聚合物配向膜123的高分子链可皆向液晶盒的同一侧来倾斜,亦即第一聚合物配向膜113与第二聚合物配向膜123的预倾角θ是形成于液晶盒的同一侧,使得液晶分子102呈现弯曲状态。例如,如图2所示,聚合物配向膜113、123的高分子链是皆朝液晶盒的左侧来倾斜。
请参照图5,其显示依照本发明的另一实施例的OCB型液晶显示面板的部分剖面示意图。在步骤S304中,通过控制光线的照射时间,可控制聚合物配向膜113、123的高分子链的长度。如图5所示,在另一实施例中,第一聚合物配向膜113的高分子链可连接于第二聚合物配向膜123的高分子链,以确保液晶分子102的弯曲状态。
在形成聚合物配向膜113、123后,可移除光线的照射以及电信号的施加。值得注意的是,当移除光线的照射以及电信号的施加时,可先移除电信号的施加,再移除光线的照射;光线的照射以及电信号的施加亦可同时被移除。在一实施例中,可对液晶盒内未完全反应的残留反应单体101进光处理或热处理,使得残留反应单体101可反应完全。
当应用本实施例的OCB型液晶显示面板100来制造显示装置时,可设置显示面板100于背光模块200上,因而形成OCB型液晶显示装置。
在一实施例中,当形成聚合物配向膜113、123时,可加热液晶盒,以取代光线的照线。当液晶盒被加热并到达预设温度时,反应单体101可分别与基板110、120的配向膜112、122上产生聚合反应,因而形成聚合物配向膜113、123于配向膜112、122上。
请参照图6,其显示依照本发明的又一实施例的OCB型液晶显示面板在提高电信号时的部分剖面示意图。在又一实施例中,在施加电信号于液晶盒之后且在形成聚合物配向膜113、123之前,可进一步提高所施加的电信号(如电压),以确保液晶分子102的弯曲状态。此时,位于液晶盒中间处的液晶分子102可约垂直于配向膜112、122。
由上述可知,本发明的OCB型液晶显示面板及其制造方法可设有预先形成的聚合物配向膜,使得液晶盒中的液晶分子可预先呈弯曲状态,因而消除或减少液晶分子由展曲状态转换至弯曲状态的相变过渡时间,以改善OCB型液晶显示面板的质量。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。
Claims (15)
- 一种光学自补偿弯曲型显示面板的制造方法,包括如下步骤:形成第一配向膜于第一基板上,且形成第二配向膜于第二基板上;形成液晶层于所述第一配向膜与所述第二配向膜之间,以形成液晶盒,其中所述液晶层包括反应单体和液晶分子,所述液晶分子是呈展曲状态来排列;对所述液晶盒施加电信号,使得所述反应单体及所述液晶分子呈弯曲状态来排列;对所述液晶盒照射光线或进行加热,使得所述反应单体分别结合于所述第一配向膜及所述第二配向膜,以分别形成第一聚合物配向膜及第二聚合物配向膜,其中所述第一聚合物配向膜及所述第二聚合物配向膜具有一预倾角,所述预倾角为0~10度;以及对所述液晶盒内未完全反应的残留反应单体进光处理或热处理。
- 根据权利要求1所述的方法,还包括如下步骤:在对所述液晶盒照射光线之后,移除所述光线的照射以及所述电压的施加。
- 根据权利要求1所述的方法,其中在形成所述第一聚合物配向膜及所述第二聚合物配向膜之后,所述第一聚合物配向膜的高分子链是连接于所述第二聚合物配向膜的高分子链。
- 根据权利要求1所述的方法,其中在施加所述电信号于所述液晶盒之后且在形成所述第一聚合物配向膜及所述第二聚合物配向膜之前,提高所施加的所述电信号。
- 一种光学自补偿弯曲型显示面板的制造方法,包括如下步骤:形成第一配向膜于第一基板上,且形成第二配向膜于第二基板上;形成液晶层于所述第一配向膜与所述第二配向膜之间,以形成液晶盒,其中所述液晶层包括反应单体和液晶分子,所述液晶分子是呈展曲状态来排列;对所述液晶盒施加电信号,使得所述反应单体及所述液晶分子呈弯曲状态来排列;以及对所述液晶盒照射光线或进行加热,使得所述反应单体分别结合于所述第一配向膜及所述第二配向膜,以分别形成第一聚合物配向膜及第二聚合物配向膜。
- 根据权利要求5所述的方法,还包括如下步骤:在对所述液晶盒照射光线之后,移除所述光线的照射以及所述电压的施加。
- 根据权利要求5所述的方法,其中在形成所述第一聚合物配向膜及所述第二聚合物配向膜之后,所述第一聚合物配向膜的高分子链是连接于所述第二聚合物配向膜的高分子链。
- 根据权利要求5所述的方法,其中在施加所述电信号于所述液晶盒之后且在形成所述第一聚合物配向膜及所述第二聚合物配向膜之前,提高所施加的所述电信号。
- 根据权利要求5所述的方法,其中所述第一聚合物配向膜及所述第二聚合物配向膜具有一预倾角,所述预倾角为0~10度。
- 根据权利要求5所述的方法,还包括如下步骤:对所述液晶盒内未完全反应的残留反应单体进光处理或热处理。
- 根据权利要求5所述的方法,还包括如下步骤:控制对所述液晶盒照射光线的时间,以控制所述第一聚合物配向膜及所述第二聚合物配向膜的高分子链的长度。
- 一种光学自补偿弯曲型显示面板,包括:第一基板,包括第一电极、第一配向膜及第一聚合物配向膜,所述第一配向膜及所述第一聚合物配向膜是依序形成于所述第一电极上;第二基板,包括第二电极、第二配向膜及第二聚合物配向膜,所述第二配向膜及所述第二聚合物配向膜是依序形成于所述第二电极上;以及液晶层,形成所述第一聚合物配向膜及所述第二聚合物配向膜之间,以形成液晶盒,其中所述液晶层的液晶分子呈弯曲状态来排列。
- 根据权利要求12所述的光学自补偿弯曲型显示面板,其中所述第一聚合物配向膜的高分子链是连接于所述第二聚合物配向膜的高分子链。
- 根据权利要求12所述的光学自补偿弯曲型显示面板,其中所述第一聚合物配向膜及所述第二聚合物配向膜具有一预倾角,所述预倾角为0~10度。
- 根据权利要求12所述的光学自补偿弯曲型显示面板,其中所述第一聚合物配向膜的高分子链与所述第二聚合物配向膜的高分子链皆向所述液晶盒的同一侧来倾斜。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/501,638 US9041880B2 (en) | 2012-02-29 | 2012-03-14 | Optical compensated bending mode liquid crystal display panel and method for manufacturing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210050102.5 | 2012-02-29 | ||
CN201210050102.5A CN102566129B (zh) | 2012-02-29 | 2012-02-29 | 光学自补偿弯曲型液晶显示面板及其制造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013127101A1 true WO2013127101A1 (zh) | 2013-09-06 |
Family
ID=46411918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/072292 WO2013127101A1 (zh) | 2012-02-29 | 2012-03-14 | 光学自补偿弯曲型液晶显示面板及其制造方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102566129B (zh) |
WO (1) | WO2013127101A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103353696B (zh) * | 2013-06-18 | 2016-06-29 | 江苏和成显示科技股份有限公司 | 宽视角波片及其应用 |
TWI533063B (zh) * | 2014-04-23 | 2016-05-11 | 友達光電股份有限公司 | 液晶顯示面板與其之製造方法 |
CN105116621A (zh) * | 2015-09-01 | 2015-12-02 | 深圳市华星光电技术有限公司 | 液晶面板的制造方法 |
CN105700237A (zh) * | 2016-04-13 | 2016-06-22 | 深圳市华星光电技术有限公司 | 快速响应液晶显示装置及其制作方法 |
JP6845304B2 (ja) * | 2016-10-28 | 2021-03-17 | エルジー・ケム・リミテッド | 透過度可変フィルム |
CN114924442B (zh) * | 2022-05-17 | 2023-12-05 | Tcl华星光电技术有限公司 | 显示面板的配向方法及显示面板 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1693970A (zh) * | 2005-03-24 | 2005-11-09 | 友达光电股份有限公司 | 液晶配向添加剂、包含其的液晶显示装置及制造方法 |
TW200804901A (en) * | 2006-07-12 | 2008-01-16 | Au Optronics Corp | Transflective liquid crystal panel and method of making the same |
TW200817798A (en) * | 2006-07-14 | 2008-04-16 | Toshiba Kk | Liquid crystal display apparatus |
US20090174851A1 (en) * | 2008-01-04 | 2009-07-09 | Chunghwa Picture Tubes, Ltd. | Liquid crystal display panel and manufacturing method thereof |
CN101738780A (zh) * | 2008-11-10 | 2010-06-16 | 深圳富泰宏精密工业有限公司 | 液晶显示器及其制造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6266121B1 (en) * | 1996-11-28 | 2001-07-24 | Sharp Kabushiki Kaisha | Liquid crystal display element and method of manufacturing same |
TWI291986B (en) * | 2005-03-10 | 2008-01-01 | Au Optronics Corp | Optically compensated birefringence alignment agent, liquid crystal device employing the same and fabrication method thereof |
-
2012
- 2012-02-29 CN CN201210050102.5A patent/CN102566129B/zh not_active Expired - Fee Related
- 2012-03-14 WO PCT/CN2012/072292 patent/WO2013127101A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1693970A (zh) * | 2005-03-24 | 2005-11-09 | 友达光电股份有限公司 | 液晶配向添加剂、包含其的液晶显示装置及制造方法 |
TW200804901A (en) * | 2006-07-12 | 2008-01-16 | Au Optronics Corp | Transflective liquid crystal panel and method of making the same |
TW200817798A (en) * | 2006-07-14 | 2008-04-16 | Toshiba Kk | Liquid crystal display apparatus |
US20090174851A1 (en) * | 2008-01-04 | 2009-07-09 | Chunghwa Picture Tubes, Ltd. | Liquid crystal display panel and manufacturing method thereof |
CN101738780A (zh) * | 2008-11-10 | 2010-06-16 | 深圳富泰宏精密工业有限公司 | 液晶显示器及其制造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102566129A (zh) | 2012-07-11 |
CN102566129B (zh) | 2015-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013127101A1 (zh) | 光学自补偿弯曲型液晶显示面板及其制造方法 | |
WO2013029259A1 (zh) | 液晶显示面板及其应用的显示装置 | |
WO2014067197A1 (zh) | 液晶显示面板及其应用的显示装置 | |
WO2013174019A1 (zh) | 液晶显示面板及其应用的显示装置 | |
WO2017152448A1 (zh) | 一种像素电极结构及液晶显示面板 | |
WO2013067718A1 (zh) | 液晶显示面板的配向膜制作方法 | |
WO2013159321A1 (zh) | 液晶显示面板及其像素电极 | |
WO2012068759A1 (zh) | 液晶盒及显示装置的制造方法 | |
WO2013174020A1 (zh) | 液晶显示面板及其应用的显示装置 | |
WO2015085641A1 (zh) | 阵列基板及其制作方法及应用该阵列基板的液晶显示面板 | |
CN109407390B (zh) | 液晶显示面板的制作方法及液晶显示面板 | |
WO2014032344A1 (zh) | 液晶显示面板 | |
WO2013174023A1 (zh) | 液晶显示面板及其应用的显示装置 | |
WO2014012292A1 (zh) | 液晶显示面板及其应用的显示装置 | |
WO2013174011A1 (zh) | 液晶显示面板及其应用的显示装置 | |
WO2016015273A1 (zh) | 液晶显示面板及其制造方法、阵列基板 | |
WO2013174029A1 (zh) | 液晶面板及其液晶配向方法 | |
WO2013181869A1 (zh) | 一种液晶显示面板及其制备工艺和显示器 | |
US9110335B2 (en) | Liquid crystal display panel and display apparatus using the same | |
CN106188540B (zh) | 配向膜材料及配向膜的制作方法、液晶显示面板及其制作方法 | |
US9904117B2 (en) | Display panel manufacturing method and liquid crystal display device | |
US20130050629A1 (en) | Liquid crystal display panel and display apparatus using the same | |
WO2013185390A1 (zh) | 液晶显示装置及其制造方法 | |
KR102073957B1 (ko) | 액정표시패널 및 그 제조방법 | |
CN105372879A (zh) | 液晶面板及其配向膜的制作方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 13501638 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12870038 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12870038 Country of ref document: EP Kind code of ref document: A1 |