WO2017020341A1 - 蓝相液晶显示模组、蓝相液晶显示器及其制作方法 - Google Patents

蓝相液晶显示模组、蓝相液晶显示器及其制作方法 Download PDF

Info

Publication number
WO2017020341A1
WO2017020341A1 PCT/CN2015/086880 CN2015086880W WO2017020341A1 WO 2017020341 A1 WO2017020341 A1 WO 2017020341A1 CN 2015086880 W CN2015086880 W CN 2015086880W WO 2017020341 A1 WO2017020341 A1 WO 2017020341A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
phase liquid
blue phase
crystal display
pixel electrode
Prior art date
Application number
PCT/CN2015/086880
Other languages
English (en)
French (fr)
Inventor
唐岳军
崔宏青
李得俊
孙海雁
刘丹丹
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US14/888,983 priority Critical patent/US9964813B2/en
Publication of WO2017020341A1 publication Critical patent/WO2017020341A1/zh
Priority to US15/944,763 priority patent/US10416503B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13396Spacers having different sizes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134318Electrodes characterised by their geometrical arrangement having a patterned common electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134381Hybrid switching mode, i.e. for applying an electric field with components parallel and orthogonal to the substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13793Blue phases
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/122Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode having a particular pattern
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/128Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode field shaping

Definitions

  • the invention relates to the technical field of liquid crystal displays, in particular to a blue phase liquid crystal display module, a blue phase liquid crystal display and a manufacturing method thereof.
  • blue phase liquid crystals Compared with the currently widely used liquid crystal materials for liquid crystal display, blue phase liquid crystals have the following four outstanding advantages: (1) The response time of blue phase liquid crystals is in the sub-millisecond range, and it does not require overdrive technology (Over Drive) can achieve high-speed driving above 240Hz, which can effectively reduce the motion blur of moving images.
  • Over Drive overdrive technology
  • red, green and blue three primary color light-emitting diodes When (RGB-LED) is used as a backlight, no color filter film is needed, and blue-phase liquid crystal can realize field sequential color timing display; (2) blue phase liquid crystal does not need other orientation layers necessary for various display modes, which is not only simplified The manufacturing process also reduces the cost; (3) Macroscopically, the blue phase liquid crystal is optically isotropic, so that the blue phase liquid crystal display device has the characteristics of wide viewing angle and dark state; (4) as long as the blue phase liquid crystal cell The thickness of the cell exceeds the penetration depth of the electric field, and the influence of the change in the thickness of the cell case on the transmittance is negligible. This characteristic is particularly suitable for manufacturing a large-screen or single-panel liquid crystal display device.
  • the blue phase liquid crystal faces the problem of excessive driving voltage.
  • the industry generally adopts a method of improving the performance of the blue phase liquid crystal material or optimizing the electrode structure.
  • the way to improve the performance of the blue phase liquid crystal material is, for example, a blue phase liquid crystal material for preparing a large Kerr constant, which involves a complicated process of synthesizing a blue phase liquid crystal material, for example, a monomer, a photoinitiator, and a monomer, a photoinitiator.
  • the development cost is very expensive because of a series of factors such as synthesis conditions.
  • the lateral electric field generated by the parallel electrode has a limited penetration depth and requires a high driving voltage. Therefore, the blue phase using the IPS driving method is used. Liquid crystal display technology has yet to be improved.
  • the liquid crystal display panel using the blue phase liquid crystal cannot adopt the vertical electric field because the vertical electric field formed between the pixel electrode on the array substrate of the liquid crystal display panel and the common electrode on the opposite substrate after the voltage is applied by the liquid crystal display panel Under the action of the blue phase liquid crystal, it will be "stretched" in the vertical direction, and after the polarized light passes through the blue phase liquid crystal stretched in the vertical direction, there is no phase change, and the polarization state of the polarized light after passing through the blue phase liquid crystal The same as the case where no voltage is applied to the blue phase liquid crystal display panel, and since the absorption axes of the upper and lower polarizers of the liquid crystal display panel are perpendicular to each other, the light emitted from the backlight cannot pass through the liquid crystal display panel, thereby failing to obtain the bright state of the liquid crystal display panel.
  • the display of each gray scale of the blue phase liquid crystal display panel cannot be realized only by such a vertical electric field.
  • the embodiment of the invention provides a blue phase liquid crystal display module, a blue phase liquid crystal display and a manufacturing method thereof, so as to solve the technical problem that the driving voltage is too large and the liquid crystal display panel is not bright when the vertical electric field is used in the prior art.
  • an embodiment of the present invention provides a blue phase liquid crystal display module, including: an upper substrate, a lower substrate, a blue phase liquid crystal, an upper common electrode, a lower common electrode, and a pixel electrode; a lower substrate and the upper substrate a blue phase liquid crystal is disposed between the upper substrate and the lower substrate; the upper common electrode is disposed in parallel on the upper substrate; the lower common electrode is disposed on the lower substrate in parallel, and is The upper common electrode is staggered; the pixel electrode is disposed on the lower substrate, the pixel electrode has a hollow concave-convex structure, the blue phase liquid crystal is filled on both sides of the pixel electrode, and the pixel electrode has alternating undulations And a recess such that an oblique electric field is generated between the pixel electrode and the upper common electrode and the lower common electrode to drive the blue phase liquid crystal.
  • the pixel electrode is in a zigzag shape, and an angle between each of the sawtooth sides of the pixel electrode and the upper substrate or the lower substrate is 25 degrees to 75 degrees.
  • the blue phase liquid crystal display module further includes an auxiliary spacer disposed in the upper and lower substrates, and a distance between the pixel electrode and the upper substrate is D1, The distance between the auxiliary spacer and the upper substrate or the lower substrate is D2, wherein D1 is greater than or equal to D2.
  • the protrusion or recess of the pixel electrode is wedge-shaped, trapezoidal or arc-shaped.
  • the blue phase liquid crystal display module further includes an insulating layer disposed on an upper surface and/or a lower surface of the pixel electrode.
  • the present invention further provides a blue phase liquid crystal display comprising the blue phase liquid crystal display module according to any one of the above embodiments.
  • the embodiment of the present invention further provides a method for manufacturing a blue phase liquid crystal display module, the method comprising the steps of:
  • the blue phase liquid crystal is filled and covers the upper substrate, wherein the upper substrate is formed with an upper common electrode.
  • the step of forming the pixel electrode layer on the surface of the wavy photoresist further comprises the step of forming an insulating layer on the surface of the wavy photoresist.
  • the step of forming a pixel electrode layer on the surface of the wavy photoresist further comprises the step of forming an insulating layer on the pixel electrode layer.
  • each lower common electrode is located respectively.
  • the wavy photoresist is directly below the top of the crest.
  • the present invention provides a blue phase liquid crystal display module, a blue phase liquid crystal display and a manufacturing method thereof, and the hollow electrode is formed on the lower substrate of the blue phase liquid crystal display module, and the hollow protrusion is utilized.
  • the oblique electric field between the pixel electrode of the structure and the common electrode on the upper and lower substrates drives the blue phase liquid crystal to achieve the purpose of reducing the driving voltage of the blue phase liquid crystal display module.
  • the problem that the vertical state of the liquid crystal display panel cannot be obtained in the vertical electric field structure is avoided.
  • the blue phase liquid crystal can be made to reach the inside of the pixel electrode through the gap between the raised hollow structure pixel electrodes.
  • FIG. 1 is a schematic structural view of a preferred embodiment of a blue phase liquid crystal display module of the present invention
  • Figure 2 is a cross-sectional view taken along line A-B of the blue phase liquid crystal display module of the embodiment of Figure 1;
  • FIG. 3 is a cross-sectional view of the blue phase liquid crystal display module of the embodiment of FIG. 1 at A-B when the electrodes are energized;
  • FIG. 4 is a schematic flow chart of a preferred embodiment of a method for fabricating a blue phase liquid crystal display module of the present invention
  • FIG. 5 is a schematic view showing the formation of a common electrode of the method for fabricating a blue phase liquid crystal display module according to the embodiment of FIG. 4;
  • FIG. 6 is a schematic view showing the formation of a photoresist layer in the method of fabricating a blue phase liquid crystal display module in the embodiment of FIG. 4;
  • FIG. 7 is a schematic view showing the formation of a wavy surface photoresist layer in the method of fabricating a blue phase liquid crystal display module of the embodiment of FIG. 4;
  • FIG. 8 is a schematic view showing the formation of a sawtooth electrode layer and an insulating layer in the method for fabricating a blue phase liquid crystal display module according to the embodiment of FIG. 4.
  • FIG. 8 is a schematic view showing the formation of a sawtooth electrode layer and an insulating layer in the method for fabricating a blue phase liquid crystal display module according to the embodiment of FIG. 4.
  • FIG. 1 is a schematic structural view of a preferred embodiment of a blue phase liquid crystal display module of the present invention
  • FIG. 2 is a cross-sectional view of the blue phase liquid crystal display module of FIG.
  • the blue phase liquid crystal display module includes, but is not limited to, the following components: an upper substrate 100, a lower substrate 200, a blue phase liquid crystal 300, and a plurality of common electrodes 400 and pixel electrodes 500 interposed between the upper substrate 100 and the lower substrate 200.
  • the lower substrate 200 is disposed opposite to the upper substrate 100, and the blue phase liquid crystal 300 is disposed between the upper substrate 100 and the lower substrate 200.
  • the common electrode 400 further includes an upper common electrode 410 and a lower common electrode 420, and the upper common electrode 410 is parallel.
  • the upper common electrodes 420 are spaced apart from each other on the lower substrate 420 and are disposed offset from the upper common electrode 410.
  • the pixel electrode 500 is disposed on the lower substrate 200, and the pixel electrode 500 has a hollow concave-convex structure, the blue phase liquid crystal 300 is filled on both sides of the pixel electrode 500, and the pixel electrode 500 has alternating undulations and depressions, of course, here
  • the protrusions and depressions having alternating undulations may include similar structures in which the convex portions and the concave portions are arranged in a zigzag shape, a wedge shape, a trapezoidal shape or a circular arc shape, and are not enumerated here.
  • a plurality of oblique electric fields are respectively generated between the pixel electrode 500 and the upper common electrode 410 and the lower common electrode 420.
  • the oblique electric fields are distributed on both sides of the pixel electrode 500 to drive the blue phase liquid crystal 300 to form optical anisotropy of different sizes. To lower the driving voltage of the blue phase liquid crystal 300.
  • each of the pixel electrodes 500 has a continuous zigzag shape
  • the common electrodes 400 are disposed on the upper substrate 100 and the lower substrate 200 at intervals, and are in one-to-one correspondence with the saw teeth of the pixel electrode 500.
  • the auxiliary spacer 600 is disposed between the upper and lower substrates for separating the upper substrate 100 and the lower substrate 200.
  • the blue phase liquid crystal display module further includes an insulating layer 700 disposed on the upper surface and/or the lower surface of the pixel electrode 500. That is, the structure of the blue phase liquid crystal display module may also be only one layer of insulation 700.
  • the insulating layer 700 may be located on the lower surface of the pixel electrode 500 for fixing the pixel electrode 500.
  • the angle a between each of the sawtooth sides of the pixel electrode 500 and the upper substrate 100 or the lower substrate 200 is 25 to 75 degrees, preferably 45 degrees.
  • the pixel electrode 500 in the embodiment of the present invention adopts a structure (specifically zigzag) of a hollow convex electrode as shown in FIG. 1 , and has a spacing D0 between the electrodes, and a common electrode 400 on the upper and lower substrates, and a pixel electrode 500 is a hollow convex structure (zigzag shape), and the pixel electrode 500 is wrapped in the middle of the plastic insulating layer 700.
  • the blue phase liquid crystal 300 fills the inside and the outside of the hollow convex pixel electrode 500, and the blue phase liquid crystal 300 reaches the hollow portion of the convex pixel electrode 500 through the gap D0 of the pixel electrode 500.
  • FIG. 3 is a cross-sectional view of the blue phase liquid crystal display module in the embodiment of FIG. 1 when the electrode is energized.
  • the blue phase liquid crystal 300 between the upper and lower substrates.
  • the oblique optical anisotropy, the linearly polarized light propagating vertically upwards can undergo a phase retardation to pass the upper polarizer perpendicular to the lower bias.
  • the distance between the hollow convex pixel electrode 500 and the upper substrate 100 is D1
  • the auxiliary spacer (sub) The spacing between the PS and the lower substrate 200 is D2, wherein D1 is greater than or equal to D2, so that the blue phase liquid crystal display module protects the raised pixels by the auxiliary spacers 600 on the substrate 100 even when subjected to external pressing.
  • the electrode 500 and the pixel electrode 500 are thus not destroyed.
  • the gap D0 of the strip-shaped convex pixel electrode 500, the distance D1 between the pixel electrode 500 and the opposite substrate, and the pixel electrode can be optimized.
  • the pixel electrode 500 may not be strip-shaped, but other shapes, as long as the gap D0 is left, the structural shape of the pixel electrode 500 is not listed here.
  • the function of D0 is as follows: 1) the blue phase liquid crystal 300 enters the inside of the hollow convex structure pixel electrode 500 when the panel is assembled; 2) when the hollow photoresist (serrated) pixel electrode 500 internal photoresist material is peeled off, as light Block the passage of material.
  • the arrangement of the pixel electrodes 500 is not necessarily parallel to the long side of the pixel as in this embodiment, and other arrangements may be matched with the electrodes according to actual display requirements, for example, the strip-shaped pixel electrode 500 and the long side of the pixel are at 45 degrees.
  • the angle, or the pixel electrode 500 is parallel to the short side of the pixel, and is not limited herein.
  • the blue phase liquid crystal display module Compared with the prior art, the blue phase liquid crystal display module provided by the present invention fabricates a pixel electrode of a hollow convex structure on a lower substrate of a blue phase liquid crystal display module, and utilizes a pixel electrode of the hollow convex structure and upper and lower substrates.
  • the oblique electric field between the common electrodes drives the blue phase liquid crystal to achieve the purpose of lowering the driving voltage of the blue phase liquid crystal display module.
  • the problem that the vertical state of the liquid crystal display panel cannot be obtained in the vertical electric field structure is avoided.
  • the blue phase liquid crystal can be made to reach the inside of the pixel electrode through the gap between the raised hollow structure pixel electrodes.
  • an embodiment of the present invention further provides a blue phase liquid crystal display, which comprises the blue phase liquid crystal display module in the above embodiment.
  • the blue phase liquid crystal display also includes related structural units such as a casing and a control circuit, which are within the scope of those skilled in the art, and are not described herein again.
  • FIG. 4 is a schematic flow chart of a preferred embodiment of a method for fabricating a blue phase liquid crystal display module according to the present invention; Limited to the following steps.
  • the pixel electrode has a sawtooth structure, which does not constitute a limitation on the method for fabricating the blue phase liquid crystal display module of the present invention.
  • the pixel electrode may also be a wave, a wedge, a trapezoid or an arc. Shape and so on.
  • Step S410 forming a lower common electrode on the lower substrate.
  • FIG. 5 is a schematic diagram of forming a common electrode of the method for fabricating a blue phase liquid crystal display module according to the embodiment of FIG. 4.
  • reference numeral 200 denotes a lower substrate
  • reference numeral 400 denotes a common electrode.
  • Step S420 coating a photoresist layer on the lower substrate.
  • FIG. 6 is a schematic view showing the formation of a photoresist layer in the method for fabricating a blue phase liquid crystal display module according to the embodiment of FIG. 4, wherein reference numeral 800 denotes a photoresist layer, and reference numeral 900 denotes a mask.
  • step S430 a mask having a plurality of parallel slots is placed on the photoresist layer.
  • Step S440 using a plurality of unidirectional ultraviolet light to obliquely illuminate and soften a portion of the photoresist layer through the slot on the mask to further peel off the softened photoresist after removing the mask, thereby forming a wave shape.
  • Photoresist surface using a plurality of unidirectional ultraviolet light to obliquely illuminate and soften a portion of the photoresist layer through the slot on the mask to further peel off the softened photoresist after removing the mask, thereby forming a wave shape.
  • FIG. 7 is a schematic diagram showing the formation of a wavy surface photoresist layer in the method for fabricating a blue phase liquid crystal display module according to the embodiment of FIG. 4.
  • the unidirectional ultraviolet lamp can be illuminated by the changing angle of rotation, or by using the mask structure in FIG. 6 as an auxiliary and unidirectional light at an angle (in this embodiment, the unidirectional ultraviolet light irradiation angle is preferred above the wavy shape). Irradiated with a vertical shape of -55 degrees to 55 degrees, and matched with the size of the mask hole, the irradiated photoresist is partially softened and separated to form a wavy (serrated) photoresist surface in FIG.
  • the method of separating the softened photoresist is to form a developer on a photoresist layer irradiated with an ultraviolet lamp, and then rinse the photoresist dissolved in the developer with deionized water. At the same time, the unsoftened portion separated from the bottom of the photoresist layer is also washed away by deionized water to form a wavy (zig) photoresist surface as shown in FIG.
  • Step S450 forming an insulating layer on the surface of the sawtooth photoresist.
  • Step S460 forming a pixel electrode layer on the insulating layer.
  • step S470 an insulating layer is further formed on the pixel electrode layer.
  • FIG. 8 is a schematic diagram showing the formation of a sawtooth electrode layer and an insulating layer in the method for fabricating a blue phase liquid crystal display module according to the embodiment of FIG. 4.
  • reference numeral 500 denotes a pixel electrode layer
  • reference numeral 700 denotes an insulating layer.
  • each common electrode 400 (here, the lower common electrode) is located directly below the top of the sawtooth of the sawtooth photoresist (or when the pixel electrode is wavy, directly below the top of the peak of the wavy photoresist) ).
  • step S480 a gap between the pixel electrodes is etched. This gap is D0 in FIG.
  • step S490 the photoresist under the pixel electrode layer is stripped.
  • step S490 the photoresist under the pixel electrode layer is stripped by first irradiating the pixel electrode with ultraviolet light to soften the photoresist located on the lower surface of the pixel electrode, and is located on the lower surface of the pixel electrode after being irradiated by the ultraviolet lamp.
  • a developer is formed on the photoresist, and then the photoresist dissolved in the developer is rinsed off with deionized water.
  • D0 serves as a passage for the developer and deionized water to enter and exit the lower surface of the pixel electrode.
  • step S500 the blue phase liquid crystal is filled and the upper substrate is covered.
  • step S500 the step of fabricating the upper common electrode on the upper substrate is also included before the upper substrate is closed.
  • a blue phase liquid crystal display module as shown in FIG. 2 is formed. So far, the method of fabricating the blue phase liquid crystal display module has ended.
  • the method for fabricating the blue phase liquid crystal display module comprises: forming a pixel electrode of a hollow convex structure on a lower substrate of the blue phase liquid crystal display module, using the pixel electrode of the hollow convex structure and the upper and lower substrates
  • the oblique electric field between the common electrodes drives the blue phase liquid crystal to achieve the purpose of lowering the driving voltage of the blue phase liquid crystal display module.
  • the problem that the vertical state of the liquid crystal display panel cannot be obtained in the vertical electric field structure is avoided.
  • the blue phase liquid crystal can be made to reach the inside of the pixel electrode through the gap between the raised hollow structure pixel electrodes.

Abstract

一种蓝相液晶显示模组、蓝相液晶显示器及其制作方法,蓝相液晶显示模组,包括:上基板(100)、下基板(200)、蓝相液晶(300)、上公共电极(410)、下公共电极(420)以及像素电极(500);下基板(200)与上基板(100)相对设置;蓝相液晶(300)设于上基板(100)与下基板(200)之间;上公共电极(410)平行间隔设于上基板(100)上;下公共电极(420)平行间隔设于下基板(200)上,并与上公共电极(410)错开;像素电极(500)设于下基板(200)上,像素电极(500)呈空心凹凸结构,蓝相液晶(300)填充于像素电极(500)的两侧,并且像素电极(500)具有交替起伏的凸起和凹陷,使得像素电极(500)与上公共电极(410)和下公共电极(420)之间分别产生斜向电场驱动蓝相液晶(300)。

Description

蓝相液晶显示模组、蓝相液晶显示器及其制作方法
【技术领域】
本发明涉及液晶显示器的技术领域,具体是涉及一种蓝相液晶显示模组、蓝相液晶显示器及其制作方法。
【背景技术】
与目前广泛使用的液晶显示用液晶材料相比,蓝相液晶具有以下四个突出优点:(1)蓝相液晶的响应时间在亚毫秒范围内,并且其无需采用过驱动技术(Over Drive)即可以实现240Hz以上的高速驱动,从而能够有效减少运动图像的动态模糊。在采用红绿蓝三基色发光二极管 (RGB-LED)做背光源时,无需彩色滤光膜,利用蓝相液晶即可以实现场序彩色时序显示;(2)蓝相液晶不需要其它各种显示模式所必需的取向层,不但简化了制造工艺,也降低了成本;(3)宏观上,蓝相液晶是光学各向同性的,从而使蓝相液晶显示装置具有视角宽、暗态好的特点;(4)只要蓝相液晶盒盒厚超过电场的穿透深度,液晶盒盒厚的变化对透射率的影响就可以忽略,这种特性尤其适合于制造大屏幕或单板液晶显示装置。
然而现有技术中,蓝相液晶面临着驱动电压过大的问题,目前业界通常采用改进蓝相液晶材料性能或者优化电极结构的方式。但是改进蓝相液晶材料性能的方式例如是制备大克尔常数的蓝相液晶材料,其涉及合成蓝相液晶材料的复杂过程例如制备聚合物稳定蓝相液晶时需要考虑单体、光引发剂、合成条件等一系列因素,因此研发成本十分昂贵。而至于优化电极结构的方式方面则由于其所使用的IPS结构的驱动方式,平行电极所产生的侧向电场的穿透深度有限,需要较高的驱动电压,因此,使用IPS驱动方式的蓝相液晶显示技术还有待改进。
目前采用蓝相液晶的液晶显示面板无法采用垂直电场的原因是:液晶显示面板施加电压后,在液晶显示面板的阵列基板上的像素电极和对置基板上的公共电极之间所形成的垂直电场的作用下,蓝相液晶将在垂直方向上被“拉伸”,而偏振光通过该垂直方向拉伸的蓝相液晶后,其并没有相位的改变,偏振光通过蓝相液晶后的偏振状态与蓝相液晶显示面板未施加电压的情况相同,又由于液晶显示面板的上、下偏光片的吸收轴相互垂直,背光源发出的光线无法通过液晶显示面板,从而无法得到液晶显示面板的亮态,不能仅通过这样的垂直电场来实现蓝相液晶显示面板的各灰阶的显示。
【发明内容】
本发明实施例提供一种蓝相液晶显示模组、蓝相液晶显示器及其制作方法,以解决现有技术中驱动电压过大以及采用垂直电场时无法得到液晶显示面板亮态的技术问题。
为解决上述问题,本发明实施例提供了一种蓝相液晶显示模组,包括:上基板、下基板、蓝相液晶、上公共电极、下公共电极以及像素电极;下基板与所述上基板相对设置;蓝相液晶设于所述上基板与所述下基板之间;上公共电极平行间隔设于所述上基板上;下公共电极平行间隔设于所述下基板上,并与所述上公共电极错开;像素电极设于所述下基板上,所述像素电极呈空心凹凸结构,所述蓝相液晶填充于所述像素电极的两侧,并且所述像素电极具有交替起伏的凸起和凹陷,使得所述像素电极与所述上公共电极和所述下公共电极之间分别产生斜向电场驱动所述蓝相液晶。
根据本发明一优选实施例,所述像素电极呈锯齿状,且所述像素电极的每一锯齿边分别与所述上基板或所述下基板之间的夹角为25度-75度。
根据本发明一优选实施例,所述蓝相液晶显示模组还包括夹设于所述上、下基板内的辅助隔垫物,所述像素电极与所述上基板的间距为D1,所述辅助隔垫物与所述上基板或所述下基板之间间距为D2,其中,D1大于等于D2。
根据本发明一优选实施例,所述像素电极的凸起或凹陷为楔形、梯形或者圆弧形。
根据本发明一优选实施例,所述蓝相液晶显示模组进一步包括设于所述像素电极上表面和/或下表面的绝缘层。
为解决上述技术问题,本发明还提供一种蓝相液晶显示器,所述蓝相液晶显示器包括上述实施例中任一项所述的蓝相液晶显示模组。
为解决上述技术问题,本发明实施例进一步提供一种制作蓝相液晶显示模组的方法,所述方法包括步骤:
在下基板上形成下公共电极;
在所述下基板上涂覆光刻胶层;
在所述光刻胶层上放置带多个平行槽孔的掩膜板;
利用多个单向紫外光经所述掩膜板上的槽孔斜向照射并软化部分所述光刻胶层,以在去除所述掩膜板后进一步剥离掉被软化的光刻胶,从而形成波浪状光刻胶表面;
在所述波浪状光刻胶表面上形成像素电极层,使所述像素电极层具有交替起伏的凸起和凹陷;
蚀刻出所述像素电极之间的间隙;
剥离所述像素电极层下方的光刻胶;
填充蓝相液晶并盖合上基板,其中,所述上基板上形成有上公共电极。
根据本发明一优选实施例,在所述波浪状光刻胶表面上形成像素电极层的步骤之前还包括步骤:在所述波浪状光刻胶表面上形成绝缘层。
根据本发明一优选实施例,在所述波浪状光刻胶表面上形成像素电极层的步骤之后还包括步骤:在所述像素电极层上形成绝缘层。
根据本发明一优选实施例,在所述利用单向光灯通过所述掩膜上的孔照射所述光刻胶层,以形成波浪状光刻胶表面的步骤中,每一下公共电极分别位于所述波浪状光刻胶的波峰顶部的正下方。
相对于现有技术,本发明提供的蓝相液晶显示模组、蓝相液晶显示器及其制作方法,通过在蓝相液晶显示模组的下基板制作空心凸起结构的像素电极,利用空心凸起结构的像素电极与上、下基板上的公共电极之间的斜向电场驱动蓝相液晶,以达到降低蓝相液晶显示模组驱动电压的目的。同时避免了使用垂直电场结构中的无法得到液晶显示面板亮态的问题。另外,通过设置像素电极之间的间隙,可以使蓝相液晶通过凸起的空心结构像素电极之间的空隙到达像素电极内部。
【附图说明】
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明蓝相液晶显示模组一优选实施例的结构示意图;
图2是图1实施例中蓝相液晶显示模组的A-B处的截面剖视图;
图3是图1实施例中蓝相液晶显示模组在电极通电时A-B处的截面剖视图;
图4是本发明制作蓝相液晶显示模组的方法一优选实施例的流程示意图;
图5是图4实施例制作蓝相液晶显示模组方法的公共电极的形成示意图;
图6是图4实施例制作蓝相液晶显示模组方法的光刻胶层的形成示意图;
图7是图4实施例制作蓝相液晶显示模组方法的波浪状表面光刻胶层的形成示意图;以及
图8是图4实施例制作蓝相液晶显示模组方法的锯齿状电极层和绝缘层的形成示意图。
【具体实施方式】
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请一并参阅图1和图2,图1是本发明蓝相液晶显示模组一优选实施例的结构示意图;图2是图1实施例中蓝相液晶显示模组的A-B处的截面剖视图;该蓝相液晶显示模组包括但不限于以下元件:上基板100、下基板200、蓝相液晶300以及夹设于上基板100和下基板200之间的多条公共电极400和像素电极500。
具体而言,下基板200与上基板100相对设置,蓝相液晶300设于上基板100与下基板200之间,公共电极400进一步包括上公共电极410和下公共电极420,上公共电极410平行间隔设于上基板100上,下公共电极420平行间隔设于下基板420上,并与上公共电极410错开设置。
像素电极500设于下基板200上,且像素电极500呈空心凹凸结构,蓝相液晶300填充于像素电极500的两侧,并且像素电极500具有交替起伏的凸起和凹陷,当然,此处所指的具有交替起伏的凸起和凹陷可以包括锯齿形、楔形、梯形或者圆弧形等凸部和凹部间隔设置的类似结构,此处不再一一列举。
像素电极500与上公共电极410和下公共电极420之间分别产生多个斜向电场,这些倾斜电场分布在像素电极500的两侧,驱动蓝相液晶300,形成不同大小的光学异向性,以降低蓝相液晶300的驱动电压。
在该实施例中,每条像素电极500均呈连续的锯齿状,公共电极400间隔的设置在上基板100和下基板200上,并与像素电极500的锯齿一一对应。辅助隔垫物600设于上、下基板之间,用于隔垫开该上基板100和下基板200。进一步地,该蓝相液晶显示模组进一步包括设于像素电极500上表面和/或下表面的绝缘层700。即蓝相液晶显示模组的结构也可以为只有一层绝缘700,该绝缘层700可以位于像素电极500的下表面,用于固定该像素电极500。优选地,像素电极500的每一锯齿边分别与上基板100或下基板200之间的夹角a为25度至75度,优选为45度。
本发明实施例中的像素电极500采用如图1所示空心凸起电极的结构(具体为锯齿状),电极之间有间距D0,上、下基板上有公共(common)电极400,像素电极500为空心凸起结构(锯齿状),像素电极500包裹在塑性绝缘层700中间。蓝相液晶300充满空心凸起像素电极500的内部和外部,其中蓝相液晶300通过像素电极500间隙D0到达凸起状的像素电极500的空心部位。
请参阅图3,图3是图1实施例中蓝相液晶显示模组在电极通电时A-B处的截面剖视图;当像素电极500和公共电极400通电时,上、下基板之间蓝相液晶300形成如图3中所示的排列形式,具体请参阅图3中虚线部分,即:像素电极500与上公共电极410和下公共电极420之间分别产生多个斜向电场,蓝相液晶300形成倾斜的光学各向异性,竖直向上传播的线偏振光能够发生相位延迟从而通过与下偏垂直的上偏光片。
请继续参阅图2,其中空心凸起像素电极500与上基板100的间距为D1,辅助隔垫物(sub PS)与下基板200的间距为D2,其中,D1大于等于D2,这样蓝相液晶显示模组即便受到外界按压时,由于有辅助隔垫物600顶上基板100,从而保护了凸起的像素电极500,像素电极500从而不被破坏。需要注意的是为了最大程度降低蓝相液晶的驱动电压,同时让电极结构匹配像素尺寸,可以优化设置条状凸起像素电极500的间隙D0、像素电极500与对侧基板的距离D1、像素电极500与上基板100或者下基板200之间的的角度a。
同时像素电极500也可以不是条状,而是其他形状,只要留出间隙D0即可,像素电极500的结构形状此处不再一一列举。其中,D0的作用如下:1)面板装配时让蓝相液晶300进入空心凸起结构像素电极500的内部;2)当剥离空心凸起(锯齿状)像素电极500内部光阻材料时,作为光阻去除材料的通道。
另外,像素电极500的排布也并非像本实施例中一定要平行于像素长边,可以根据实际显示需要和电极进行搭配的其他排布,例如条状像素电极500与像素长边成45度夹角,或者像素电极500与像素短边平行等,此处不做限定。
相对于现有技术,本发明提供的蓝相液晶显示模组通过在蓝相液晶显示模组的下基板制作空心凸起结构的像素电极,利用空心凸起结构的像素电极与上、下基板上的公共电极之间的斜向电场驱动蓝相液晶,以达到降低蓝相液晶显示模组驱动电压的目的。同时避免了使用垂直电场结构中的无法得到液晶显示面板亮态的问题。另外,通过设置像素电极之间的间隙,可以使蓝相液晶通过凸起的空心结构像素电极之间的空隙到达像素电极内部。
另外,本发明实施例还提供一种蓝相液晶显示器,该蓝相液晶显示器包括上述实施例中的蓝相液晶显示模组。而蓝相液晶显示器当然还包括壳体、控制电路等相关结构单元,在本领域技术人员能够理解的范围之内,此处不再赘述。
本发明实施例还提供一种制作蓝相液晶显示模组的方法,请参阅图4,图4是本发明制作蓝相液晶显示模组的方法一优选实施例的流程示意图;该方法包括但不限于以下步骤。需要说明的是,本实施例中像素电极呈锯齿状结构不构成对本发明蓝相液晶显示模组制作方法的限定,在其他实施例中,像素电极还可以为波浪形、楔形、梯形或者圆弧形等。
步骤S410,在下基板上形成下公共电极。请参阅图5,图5是图4实施例制作蓝相液晶显示模组方法的公共电极的形成示意图。其中,标号200表示下基板,标号400表示公共电极。
步骤S420,在下基板上涂覆光刻胶层。请参阅图6,图6是图4实施例制作蓝相液晶显示模组方法的光刻胶层的形成示意图,其中,标号800表示光刻胶层,标号900表示掩膜板。
步骤S430,在光刻胶层上放置带多个平行槽孔的掩膜板。
步骤S440,利用多个单向紫外光经掩膜板上的槽孔斜向照射并软化部分光刻胶层,以在去除掩膜板后进一步剥离掉被软化的光刻胶,从而形成波浪状光刻胶表面。
请参阅图7,图7是图4实施例制作蓝相液晶显示模组方法的波浪状表面光刻胶层的形成示意图。单一方向的紫外光灯可以通过旋转的变化角度来照射,或者在利用图6中掩膜板结构作为辅助并使单向光呈一定角度(本实施例中波浪形上方优选单向紫外光照射角度与竖直方向形-55度~55度)来照射,并搭配掩模孔洞大小,进而被照射的光刻胶部分软化、分离,形成图7中波浪状(锯齿状)光刻胶表面。而分离被软化的光刻胶的方法为:在经过紫外光灯照射的光刻胶层上形成显影液,然后用去离子水冲洗走溶解于显影液中的光刻胶。同时与光刻胶层底部分离的未软化部分也被去离子水冲走,从而形成图7中所示的波浪状(锯齿状)光刻胶表面。
步骤S450,在锯齿状光刻胶表面上形成绝缘层。
步骤S460,在绝缘层上形成像素电极层。
步骤S470,在像素电极层上再形成绝缘层。
请参阅图8,图8是图4实施例制作蓝相液晶显示模组方法的锯齿状电极层和绝缘层的形成示意图。其中,标号500表示像素电极层,标号700表示绝缘层。其中,每一公共电极400(此处是指下公共电极)分别位于锯齿状光刻胶的锯齿顶部正下方(或者当像素电极为波浪形时,位于波浪状光刻胶的波峰顶部的正下方)。
步骤S480,蚀刻出像素电极之间的间隙。该间隙即为图1中的D0。
步骤S490,剥离像素电极层下方的光刻胶。
在步骤S490中,剥离像素电极层下方的光刻胶的方法为:首先利用紫外光照射像素电极,使位于像素电极下表面的光刻胶软化,在经过紫外光灯照射的位于像素电极下表面的光刻胶上形成显影液,然后用去离子水冲洗走溶解于显影液中的光刻胶。其中,D0作为显影液和去离子水的进入和流出像素电极下表面的通道。
步骤S500,填充蓝相液晶并盖合上基板。当然,在盖合上基板之前还包括在上基板制作上公共电极的步骤。形成图2中所示的蓝相液晶显示模组。至此,制作蓝相液晶显示模组的方法结束。
本发明实施例提供的蓝相液晶显示模组的制作方法,通过在蓝相液晶显示模组的下基板制作空心凸起结构的像素电极,利用空心凸起结构的像素电极与上、下基板上的公共电极之间的斜向电场驱动蓝相液晶,以达到降低蓝相液晶显示模组驱动电压的目的。同时避免了使用垂直电场结构中的无法得到液晶显示面板亮态的问题。另外,通过设置像素电极之间的间隙,可以使蓝相液晶通过凸起的空心结构像素电极之间的空隙到达像素电极内部。
以上所述仅为本发明的一种实施例,并非因此限制本发明的保护范围,凡是利用本发明说明书及附图内容所作的等效装置或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (18)

  1. 一种蓝相液晶显示模组,其中,包括:
    上基板;
    下基板,与所述上基板相对设置;
    蓝相液晶,设于所述上基板与所述下基板之间;
    上公共电极,平行间隔设于所述上基板上;
    下公共电极,平行间隔设于所述下基板上,并与所述上公共电极错开;以及
    像素电极,设于所述下基板上,所述像素电极呈空心凹凸结构,所述蓝相液晶填充于所述像素电极的两侧,并且所述像素电极具有交替起伏的凸起和凹陷,使得所述像素电极与所述上公共电极和所述下公共电极之间分别产生斜向电场驱动所述蓝相液晶。
  2. 根据权利要求1所述的蓝相液晶显示模组,其中,所述像素电极呈锯齿状。
  3. 根据权利要求2所述的蓝相液晶显示模组,其中,所述像素电极的每一锯齿边分别与所述上基板或所述下基板之间的夹角为25度至75度。
  4. 根据权利要求1所述的蓝相液晶显示模组,其中,所述蓝相液晶显示模组还包括夹设于所述上、下基板内的辅助隔垫物。
  5. 根据权利要求4所述的蓝相液晶显示模组,其中,所述像素电极与所述上基板的间距为D1,所述辅助隔垫物与所述上基板或所述下基板之间间距为D2,其中,D1大于等于D2。
  6. 根据权利要求1所述的蓝相液晶显示模组,其中,所述像素电极的凸起或凹陷为楔形、梯形或者圆弧形。
  7. 根据权利要求1所述的蓝相液晶显示模组,其中,所述蓝相液晶显示模组进一步包括设于所述像素电极上表面和/或下表面的绝缘层。
  8. 一种蓝相液晶显示器,其中,所述蓝相液晶显示器包括蓝相液晶显示模组,所述蓝相液晶显示模组包括:
    上基板;
    下基板,与所述上基板相对设置;
    蓝相液晶,设于所述上基板与所述下基板之间;
    上公共电极,平行间隔设于所述上基板上;
    下公共电极,平行间隔设于所述下基板上,并与所述上公共电极错开;以及
    像素电极,设于所述下基板上,所述像素电极呈空心凹凸结构,所述蓝相液晶填充于所述像素电极的两侧,并且所述像素电极具有交替起伏的凸起和凹陷,使得所述像素电极与所述上公共电极和所述下公共电极之间分别产生斜向电场驱动所述蓝相液晶。
  9. 根据权利要求8所述的蓝相液晶显示器,其中,所述像素电极呈锯齿状。
  10. 根据权利要求9所述的蓝相液晶显示器,其中,所述像素电极的每一锯齿边分别与所述上基板或所述下基板之间的夹角为25度至75度。
  11. 根据权利要求8所述的蓝相液晶显示器,其中,所述蓝相液晶显示模组还包括夹设于所述上、下基板内的辅助隔垫物。
  12. 根据权利要求11所述的蓝相液晶显示器,其中,所述像素电极与所述上基板的间距为D1,所述辅助隔垫物与所述上基板或所述下基板之间间距为D2,其中,D1大于等于D2。
  13. 根据权利要求8所述的蓝相液晶显示器,其中,所述像素电极的凸起或凹陷为楔形、梯形或者圆弧形。
  14. 根据权利要求8所述的蓝相液晶显示器,其中,所述蓝相液晶显示模组进一步包括设于所述像素电极上表面和/或下表面的绝缘层。
  15. 一种制作蓝相液晶显示模组的方法,其中,所述方法包括步骤:
    在下基板上形成下公共电极;
    在所述下基板上涂覆光刻胶层;
    在所述光刻胶层上放置带多个平行槽孔的掩膜板;
    利用多个单向紫外光经所述掩膜板上的槽孔斜向照射并软化部分所述光刻胶层,以在去除所述掩膜板后进一步剥离掉被软化的光刻胶,使得形成交替起伏的凸起和凹陷结构的光刻胶表面;
    在所述波浪状光刻胶表面上形成像素电极层,使所述像素电极层具有交替起伏的凸起和凹陷;
    蚀刻出所述像素电极之间的间隙;
    剥离所述像素电极层下方的光刻胶;
    填充蓝相液晶并盖合上基板,其中,所述上基板上形成有上公共电极。
  16. 根据权利要求15所述的方法,其中,在所述波浪状光刻胶表面上形成像素电极层的步骤之前还包括步骤:在所述波浪状光刻胶表面上形成绝缘层。
  17. 根据权利要求15所述的方法,其中,在所述波浪状光刻胶表面上形成像素电极层的步骤之后还包括步骤:在所述像素电极层上形成绝缘层。
  18. 根据权利要求15所述的方法,其中,在所述利用单向光灯通过所述掩膜上的孔照射所述光刻胶层,以形成波浪状光刻胶表面的步骤中,每一下公共电极分别位于所述波浪状光刻胶的波峰顶部的正下方。
PCT/CN2015/086880 2015-08-03 2015-08-13 蓝相液晶显示模组、蓝相液晶显示器及其制作方法 WO2017020341A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/888,983 US9964813B2 (en) 2015-08-03 2015-08-13 Blue phase liquid crystal display module, blue phase liquid crystal display device and manufacturing method for the same
US15/944,763 US10416503B2 (en) 2015-08-03 2018-04-03 Blue phase liquid crystal display module, blue phase liquid crystal display device and manufacturing method for the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510482306.X 2015-08-03
CN201510482306.XA CN105093720B (zh) 2015-08-03 2015-08-03 蓝相液晶显示模组、蓝相液晶显示器及其制作方法

Publications (1)

Publication Number Publication Date
WO2017020341A1 true WO2017020341A1 (zh) 2017-02-09

Family

ID=54574486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/086880 WO2017020341A1 (zh) 2015-08-03 2015-08-13 蓝相液晶显示模组、蓝相液晶显示器及其制作方法

Country Status (3)

Country Link
US (2) US9964813B2 (zh)
CN (1) CN105093720B (zh)
WO (1) WO2017020341A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104965357B (zh) * 2015-06-30 2019-08-30 武汉华星光电技术有限公司 蓝相液晶面板
CN105242465B (zh) * 2015-11-23 2018-03-13 武汉华星光电技术有限公司 一种蓝相液晶显示面板及蓝相液晶显示面板的制作方法
CN105487299A (zh) * 2016-01-26 2016-04-13 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示装置
CN105891938B (zh) 2016-06-03 2018-09-11 武汉华星光电技术有限公司 一种背光模组以及液晶显示器
CN108205227B (zh) * 2017-12-29 2021-03-23 Tcl华星光电技术有限公司 立体电极的制作方法和蓝相液晶显示面板的制作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101943829A (zh) * 2010-08-11 2011-01-12 昆山龙腾光电有限公司 面内切换型液晶显示面板及液晶显示器
CN102231027A (zh) * 2011-06-29 2011-11-02 四川大学 一种采用波纹形电极的透反蓝相液晶显示器
CN102890357A (zh) * 2004-09-03 2013-01-23 精工爱普生株式会社 液晶显示装置和电子设备
CN202939387U (zh) * 2012-12-12 2013-05-15 河北工业大学 多畴扭曲向列相液晶显示器
CN103576469A (zh) * 2013-11-19 2014-02-12 四川虹视显示技术有限公司 光刻胶曝光装置
US20140043567A1 (en) * 2012-08-10 2014-02-13 Innolux Corporation Blue phase liquid crystal display panel and electrode manufacturing method thereof
CN104714344A (zh) * 2015-03-31 2015-06-17 合肥京东方光电科技有限公司 蓝相液晶显示装置及其制作方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8654292B2 (en) * 2009-05-29 2014-02-18 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for manufacturing the same
CN102640041A (zh) * 2009-11-27 2012-08-15 株式会社半导体能源研究所 液晶显示装置
WO2012111581A1 (en) * 2011-02-18 2012-08-23 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
CN202563217U (zh) * 2012-04-28 2012-11-28 京东方科技集团股份有限公司 一种液晶面板以及显示装置
CN102778778B (zh) * 2012-07-05 2014-08-06 京东方科技集团股份有限公司 一种透反式液晶显示面板及透反式液晶显示器
CN103018976B (zh) * 2012-12-12 2015-06-10 河北工业大学 一种蓝相液晶显示器装置
CN104714329B (zh) * 2015-03-18 2017-08-25 深圳市华星光电技术有限公司 显示面板及显示装置
CN105068351B (zh) * 2015-08-28 2018-01-09 武汉华星光电技术有限公司 蓝相液晶显示模组、蓝相液晶显示器及其制作方法
CN105204242A (zh) * 2015-10-13 2015-12-30 武汉华星光电技术有限公司 蓝相液晶显示器及其显示模组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102890357A (zh) * 2004-09-03 2013-01-23 精工爱普生株式会社 液晶显示装置和电子设备
CN101943829A (zh) * 2010-08-11 2011-01-12 昆山龙腾光电有限公司 面内切换型液晶显示面板及液晶显示器
CN102231027A (zh) * 2011-06-29 2011-11-02 四川大学 一种采用波纹形电极的透反蓝相液晶显示器
US20140043567A1 (en) * 2012-08-10 2014-02-13 Innolux Corporation Blue phase liquid crystal display panel and electrode manufacturing method thereof
CN202939387U (zh) * 2012-12-12 2013-05-15 河北工业大学 多畴扭曲向列相液晶显示器
CN103576469A (zh) * 2013-11-19 2014-02-12 四川虹视显示技术有限公司 光刻胶曝光装置
CN104714344A (zh) * 2015-03-31 2015-06-17 合肥京东方光电科技有限公司 蓝相液晶显示装置及其制作方法

Also Published As

Publication number Publication date
CN105093720A (zh) 2015-11-25
US20180224703A1 (en) 2018-08-09
US9964813B2 (en) 2018-05-08
CN105093720B (zh) 2017-12-08
US20170160598A1 (en) 2017-06-08
US10416503B2 (en) 2019-09-17

Similar Documents

Publication Publication Date Title
WO2017020341A1 (zh) 蓝相液晶显示模组、蓝相液晶显示器及其制作方法
WO2017067011A1 (zh) 蓝相液晶显示器、蓝相液晶显示模组及其制作方法
US8687150B2 (en) Liquid crystal display module
WO2013168849A1 (ko) 와이어 그리드 편광자 및 그 제조방법, 와이어 그리드 편광자를 구비하는 액정 디스플레이 패널 및 액정 디스플레이 장치
WO2016086609A1 (zh) 线栅偏光片及其制造方法、显示面板和显示装置
TW200413810A (en) Light interference display panel and its manufacturing method
WO2016015273A1 (zh) 液晶显示面板及其制造方法、阵列基板
JP2003279952A (ja) ホログラフィック拡散子を利用した液晶表示装置
WO2019090919A1 (zh) 一种像素单元、阵列基板及显示面板
WO2022052687A1 (zh) 防窥面板、制备方法、驱动方法及显示装置
CN105116639A (zh) 蓝相液晶显示器、蓝相液晶显示模组及其制作方法
WO2016026166A1 (zh) 一种偏振光调制装置及其制作方法
WO2017181463A1 (zh) 阵列基板及其制造方法、液晶显示器
WO2019148661A1 (zh) 一种液晶显示面板及其制作方法、液晶显示装置
WO2016082260A1 (zh) 显示面板及其制作方法
CN1328616C (zh) 制造各种尺寸的液晶显示板的方法
CN105182651B (zh) 蓝相液晶显示模组、蓝相液晶显示器及其制作方法
WO2017024547A1 (zh) 半透反式蓝相液晶显示器及其液晶显示模组
JP4147208B2 (ja) 液晶表示装置の液晶セル製造工程および液晶表示装置
WO2013166741A1 (zh) 液晶显示装置及其制造方法
WO2018205365A1 (zh) 彩膜基板和液晶显示器
WO2013181855A1 (zh) Psva型液晶显示面板、液晶显示面板及液晶显示装置
CN1506724A (zh) 结合触控面板的平面显示器
KR101757241B1 (ko) 나노 와이어 그리드 편광판 및 그 제조방법과 이를 포함하는 액정표시장치
WO2023206627A1 (zh) 显示面板和电子装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14888983

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15900115

Country of ref document: EP

Kind code of ref document: A1