WO2016086609A1 - 线栅偏光片及其制造方法、显示面板和显示装置 - Google Patents

线栅偏光片及其制造方法、显示面板和显示装置 Download PDF

Info

Publication number
WO2016086609A1
WO2016086609A1 PCT/CN2015/079013 CN2015079013W WO2016086609A1 WO 2016086609 A1 WO2016086609 A1 WO 2016086609A1 CN 2015079013 W CN2015079013 W CN 2015079013W WO 2016086609 A1 WO2016086609 A1 WO 2016086609A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire grid
substrate
support layer
display panel
polarizer
Prior art date
Application number
PCT/CN2015/079013
Other languages
English (en)
French (fr)
Inventor
刘恺然
武延兵
李文波
张翔燕
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/892,257 priority Critical patent/US9759947B2/en
Publication of WO2016086609A1 publication Critical patent/WO2016086609A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133548Wire-grid polarisers

Definitions

  • the present invention belongs to the field of display technologies, and in particular, to a wire grid polarizer, a method of manufacturing the same, a display panel, and a display device.
  • a liquid crystal display device is one of flat panel display devices, and a liquid crystal display panel and a backlight are important components thereof.
  • a liquid crystal display device is formed by providing a backlight on one side of the liquid crystal display panel. Implement image display.
  • the liquid crystal display panel comprises a color film substrate, an array substrate and a liquid crystal layer disposed therebetween, and the backlight is disposed on a side close to the array substrate.
  • a thin film transistor TFT
  • the control terminals of the thin film transistor respectively receive the control signal and the display signal, and control the opening and closing of the thin film transistor according to the control signal and the display signal.
  • the driving of the liquid crystal is realized, and finally the deflection of the liquid crystal is controlled to achieve the control of the light of the backlight; meanwhile, in order to realize the colorization of the display image, a color film layer is disposed in the color filter substrate.
  • the polarizing plate is disposed on both sides of the liquid crystal display panel, wherein the upper polarizer is attached to the color film substrate and disposed opposite to the color film layer; the lower polarizer is attached to the array substrate, opposite to the thin film transistor.
  • the upper polarizer and the lower polarizer By the arrangement of the upper polarizer and the lower polarizer, only light that vibrates in a specific direction in the backlight light can pass; while the light that controls vibration in a specific direction passes, the lower polarizer also absorbs light. Under normal circumstances, the lower polarizer can only transmit no more than 50% of the light, and the rest is absorbed, resulting in low light utilization of the liquid crystal display device.
  • embodiments of the present invention provide a wire grid polarizer, a manufacturing method thereof, a display panel, and a display device.
  • the wire grid polarizers are spaced apart from each other by a wire grid structure arranged in an array.
  • the display panel can effectively reduce the light absorption rate, and can also avoid leakage of light around the non-sub-pixel region and prevent the pixel from leaking light.
  • Embodiments of the present invention provide a wire grid polarizer including a substrate, wherein the substrate is formed with a plurality of spaced apart open regions arranged in an array, and the wire grid polarizers further include a plurality of wire grid structures in the plurality of open regions, each of the wire grid structures includes a plurality of spaced apart gate lines, and an interval between two adjacent ones of the gate lines is formed as the wire grid structure
  • the pitch of the wire grid structure allows light to pass through the pitch of the wire grid structure, and the area on the substrate other than the open area is a region that is continuously opaque.
  • the gate line width may range from 25 to 250 nm, and the pitch width may range from 25 to 250 nm.
  • the substrate may be made of a metal material.
  • the metal material may include silver or aluminum.
  • the wire grid structure may be formed integrally with the substrate, the thickness of the substrate may range from 20 to 250 nm, and the thickness of the gate line of the wire grid structure may range from 20 to 250 nm.
  • the embodiment of the present invention further provides a method for manufacturing a wire grid polarizer.
  • the wire grid polarizer is the wire grid polarizer provided by the embodiment of the present invention, and the method may include the following steps:
  • Step S1 forming a transparent support layer on the substrate
  • Step S2 heating the support layer such that the temperature of the support layer is higher than the glass transition point temperature of the support layer
  • step S3 the pressing template is pressed into the supporting layer at a set pressure, and the pressing template is prefabricated with a pressing pattern corresponding to the pattern of the wire grid structure;
  • Step S4 maintaining a set pressure, cooling the support layer to below the glass transition point temperature of the support layer, removing the pressed template, and forming a convex region and a concave region on the support layer.
  • the protruding area corresponds to the pitch, the The low recessed region includes a portion corresponding to the gate line and a portion corresponding to the continuous opaque region;
  • Step S5 removing a portion of the support layer corresponding to the low-pitched region to expose the substrate of the corresponding region, thereby forming a same pattern on the substrate with the wire grid structure using the support layer Mask pattern;
  • Step S6 forming an opaque material layer on the exposed substrate and the mask pattern
  • Step S7 removing the mask pattern and the opaque material attached to the mask pattern to form the wire grid polarizer.
  • the material forming the support layer may include any one of polymethyl methacrylate, polycarbonate, polystyrene, cycloolefin resin, and crosslinked polyethylene; the support layer may be spinned
  • the coating layer is formed, and the thickness of the support layer may range from 0.1 to 0.3 ⁇ m.
  • the support layer may be formed by polymethyl methacrylate, and the glass transition phase temperature of the polymethyl methacrylate is 105 ° C; in step S2, the heating temperature range of the support layer may be It is 180-220 °C.
  • the pressed template may be formed of a silicon dioxide material, and a portion of the pressed pattern in the pressed template corresponding to the gate line of the wire grid structure may have a width ranging from 25 to 250 nm, and the pressing A portion of the pressed pattern in the template corresponding to a pitch of the wire grid structure may have a width ranging from 25 to 250 nm, and a depth of a portion of the pressed pattern in the pressed template corresponding to a pitch of the wire grid structure
  • the range may be 20-250 nm; the set pressure range may be 12-14 MPa.
  • the support layer may be etched by oxygen reactive ion etching until a low concave region corresponding to the gate line and the continuous opaque region in the wire grid structure is exposed in the support layer The substrate of the corresponding area.
  • the opaque material may be a metal material, and the opaque material layer may be formed over the support layer by sputtering deposition.
  • the metal material may include aluminum or silver, and an aluminum layer or a silver layer may be formed over the support layer by sputtering deposition.
  • step S7 the mask pattern and the opaque material attached to the mask pattern may be removed by a stripping method to form the wire grid polarizer.
  • An embodiment of the present invention further provides a display panel including a display area and a non-display area surrounding the periphery of the display area, the display area including a plurality of spaced sub-pixel areas, wherein the display panel corresponds to
  • the area of the display area is provided with the above-mentioned wire grid polarizer provided by the present invention, and the area of the wire grid polarizer corresponding to the sub-pixel area is a wire grid structure.
  • the display panel may include a first substrate and a second substrate disposed opposite to each other, and a region of the first substrate or the second substrate corresponding to the sub-pixel region is provided with a plurality of color film patterns of different colors, the line The gate structure and the color film pattern are in one-to-one correspondence.
  • the color film layer may include a color resist layer, and the color resist layers of the plurality of different colors are periodically disposed on the first substrate or the second substrate, and the color resist layers of different colors respectively correspond to The pitch of the different wire grid structures is the same.
  • the second substrate may include a substrate and a thin film transistor array, the thin film transistor array may be disposed on a side of the substrate facing the first substrate, and the wire grid polarizer may be disposed on the substrate away from the first One side of a substrate;
  • the wire grid polarizer may be disposed between the thin film transistor array and the substrate, and an insulating layer may be disposed between the wire grid polarizer and the thin film transistor array.
  • a side of the first substrate facing away from the second substrate may further be provided with a matching polarizer, and a polarization axis of the matching polarizer and a polarization axis of the polarizer may be vertically disposed.
  • the embodiment of the invention further provides a display device comprising a display panel and a backlight, wherein the display panel adopts the above display panel.
  • the wire grid polarizers according to the embodiments of the present invention are spaced apart from each other in a wire grid structure arranged in an array, so that a partial light transmitting region can be formed, thereby more flexibly controlling the exit of light.
  • the display panel using the wire grid polarizer can effectively reduce the light absorption rate, avoid light leakage around the non-sub-pixel region, and prevent light leakage of the pixel itself, and the technical solution is simple and feasible, and is easy to implement;
  • the display device using the display panel improves the light utilization efficiency and has a better display effect.
  • Embodiment 1 is a schematic structural view of a wire grid polarizer in Embodiment 1 of the present invention.
  • Embodiment 2 is a schematic structural view of a display panel in Embodiment 2 of the present invention.
  • FIG. 3 is a schematic structural view of a polarizer of the display panel of FIG. 2.
  • Embodiment 4 is a schematic structural view of a display panel in Embodiment 3 of the present invention.
  • FIG. 5 is a schematic structural diagram of a display device according to Embodiment 4 of the present invention.
  • the present embodiment provides a wire grid polarizer having a wire grid structure (Wire Grid, WG for short), so that a partial light transmission region can be formed, thereby more flexibly controlling light emission. .
  • the wire grid polarizer comprises a substrate 1 on which a plurality of spaced apart open regions arranged in an array are formed, the wire grid polarizer further comprising a plurality of said A plurality of wire grid structures 2 in the open region, each of the wire grid structures 2 includes a plurality of spaced apart gate lines, and an interval between adjacent two of the gate lines is formed as a pitch of the wire grid structure 2.
  • the wire grid structure 2 can allow light to pass through the pitch of the wire grid structure 2.
  • the area on the substrate 1 other than the open area is a continuous opaque area.
  • the thickness of the substrate 1 ranges from 20 to 250 nm.
  • the gate line width ranges from 25 to 250 nm, and the pitch width ranges from 25 to 250 nm.
  • the substrate 1 is formed integrally with the wire grid structure 2, and at this time, the thickness of the gate line is the same as the thickness of the substrate 1.
  • the substrate 1 is formed of a metal material such as aluminum or silver.
  • the embodiment further provides a method for manufacturing the above-described wire grid polarizer, which comprises the following steps S1 to S7.
  • step S1 a transparent support layer is formed on the substrate.
  • a support layer is formed on the substrate by using a transparent glass material or a resin material as a substrate.
  • the material forming the support layer may include any one of polymethyl methacrylate, polycarbonate, polystyrene, cycloolefin resin or crosslinked polyethylene, and the support layer may be formed by spin coating, and the thickness range of the support layer It can be 0.1-0.3 ⁇ m.
  • step S2 the support layer is heated such that the temperature of the support layer is higher than the glass transition point temperature of the support layer.
  • the support layer is formed of polymethyl methacrylate, and the glass transition phase temperature of the polymethyl methacrylate is 105 ° C; in this step, the heating temperature range of the support layer may be 180-220 ° C, preferably a heating temperature of 200 ° C.
  • step S3 the pressing template is pressed into the supporting layer at a set pressure, and the pressing pattern corresponding to the pattern of the wire grid structure is prefabricated in the pressing template.
  • the so-called pressing pattern corresponds to the pattern of the wire grid structure, that is, the pressing pattern has a pattern corresponding to the gate line in the wire grid structure, and also corresponds to the wire grid structure.
  • the pattern of the pitch corresponds to the position of the pressed pattern on the press stencil. That is to say, the pressed patterns are also arranged in an array.
  • the pressed template is preformed.
  • the pressed template is formed using a silicon dioxide material, and a portion of the pressed pattern in the pressed template corresponding to the gate line of the wire grid structure has a width ranging from 25 to 250 nm, and the pressed pattern in the pressed template corresponds to
  • the portion of the pitch of the wire grid structure has a width ranging from 25 to 250 nm, and a portion of the pressed pattern in the pressed template corresponding to the pitch of the wire grid structure has a depth ranging from 20 to 250 nm.
  • the set pressure range is 12-14 MPa, and the set pressure is preferably 13.1 MPa.
  • the polymethyl methacrylate in the support layer exhibits a viscous liquid state at a temperature higher than the temperature at which it is vitrified, and can flow under pressure.
  • Step S4 maintaining the set pressure, cooling the support layer to below the glass transition point temperature of the support layer, removing the pressed template, and forming a convex region on the support layer And a depressed region corresponding to the pitch, the depressed region including a portion corresponding to the gate line and a portion corresponding to the continuous opaque region.
  • the temperature of the layer to be supported is lower than 105 ° C, so that the polymethyl methacrylate is condensed to a solid below the glass transition point temperature, and the pressed template is removed. Due to the hydrophilicity of the polymethyl methacrylate, it does not adhere to the silica template, and the pressed template can be lifted off the film.
  • Step S5 removing a portion of the support layer corresponding to the depressed region to expose the substrate of the corresponding region, thereby forming a mask pattern having the same pattern as the wire grid structure 2 on the substrate by the support layer.
  • the support layer is etched by Reactive Ion Etching (RIE) until the gate line in the wire grid structure 2 and the low opaque area corresponding to the continuous opaque area are in the support layer. It is removed to expose the substrate of the corresponding region, that is, a periodic pattern identical to the wire grid structure is obtained in the support layer.
  • RIE Reactive Ion Etching
  • step S6 a metal material for forming the substrate 1 is used to form an opaque material layer on the exposed substrate and mask pattern.
  • the opaque material may be a metal material including aluminum or silver, and an aluminum layer or a silver layer may be formed over the substrate by sputter deposition. It can be understood that the opaque material adheres to both the exposed corresponding regions on the substrate and also to the mask pattern.
  • Step S7 removing the mask pattern and the opaque material attached to the mask pattern to form the wire grid polarizer.
  • the mask pattern and the opaque material attached to the mask pattern are removed by a stripping method, for example, the polymethyl methacrylate in the mask pattern and the aluminum material above it are removed in an acetone solution. Thereby forming the wire grid polarizer.
  • the wire grid polarizer of this embodiment since the wire grid structure is arranged at intervals, a partial light transmitting region can be formed.
  • the layout of the wire grid structure can be flexibly designed according to the requirements, so that the light emission can be controlled more flexibly.
  • a display panel is provided in the embodiment, and the display panel includes the embodiment 1 In the wire grid polarizer, the display panel can effectively reduce the light absorption rate, and can avoid the light leakage around the non-sub-pixel region, and has a better display effect.
  • the display panel includes a display area 51 (Active Area, abbreviated as AA area) and a non-display area 52 surrounding the periphery of the display area, that is, the display area 51 is enclosed inside the non-display area 52; 2.
  • the polarizing plate 41 is disposed in a region of the display panel corresponding to the display area 51, and the polarizer 41 is a wire grid polarizer having a wire grid structure in the first embodiment.
  • the display area 51 includes a plurality of sub-pixel regions 53 arranged at intervals.
  • the region of the polarizer 41 corresponding to the sub-pixel region 53 is a wire grid structure, and the other regions are a metal thin film structure, that is, corresponding to the non-sub-pixel region 54.
  • the area is a continuous sheet structure.
  • the non-sub-pixel region 54 refers to other regions in the display region 51 than the sub-pixel region 53.
  • the wire grid polarizer of Embodiment 1 is used as the polarizer 41, and a local wire grid structure is formed in the display panel, that is, a wire grid structure is formed in a region corresponding to the sub-pixel region 53 for display, and the sub-pixel region is formed.
  • the area of the non-sub-pixel region 54 that is not used for display between 53 still retains the entire metal film.
  • the display panel includes a first substrate 10 and a second substrate 30 disposed opposite to each other.
  • the first substrate 10 or the second substrate 30 is provided with a plurality of color film patterns of different colors corresponding to the sub-pixel region 53.
  • the gate structure and the color film pattern are in one-to-one correspondence, so that light transmitted from the grating pitch of the wire grid structure can pass through the color film pattern.
  • the local wire grid structure that is, the polarizer 41 is disposed to form the wire grid structure only in the region corresponding to the sub-pixel region 53, and the non-sub-pixel region 54 corresponding to the region retains the entire metal film, which can solve the light utilization efficiency. Low problem and ensure the normal display of the image.
  • the one-to-one correspondence between the wire grid structure and the color film pattern means that one wire grid structure corresponds to one color film pattern.
  • the display panel may include a color film pattern having three different colors, and three sub-pixel regions arranged in sequence form one pixel unit, and the three sub-pixel regions respectively correspond to different colors.
  • the display panel may further include a color film pattern having four different colors, and the four sub-pixel regions arranged in sequence form one pixel unit, and the four sub-pixel regions respectively correspond to color film patterns of different colors.
  • the display panel provided by the embodiment of the present invention uses a local wire grid structure polarizer to reduce the light absorption rate and reduce the non- The periphery of the sub-pixel region leaks light, effectively preventing the pixel from leaking light.
  • the specific structure of the color film pattern is not limited.
  • the color film pattern includes the color resist layer 12 (ie, the structure of the color film pattern is a color resist layer), and accordingly, the display panel includes many A color resist layer 12 having different colors.
  • the display panel may include a plurality of red color resist layers, a plurality of green color resist layers, and a plurality of blue color resist layers. Each color resist layer corresponds to one sub-pixel region. A plurality of color resist layers of different colors are periodically arranged on the first substrate or the second substrate.
  • a plurality of different color resist layers may be composed of a red color resist layer, a green color resist layer, and a blue color resist layer to form a color resist unit (one color resist unit corresponds to one pixel unit), and each display panel A plurality of the color resist units are disposed on the upper surface.
  • the pitches of the different wire grid structures corresponding to the color resist layers of different colors may be different.
  • the pitch of the wire grid structure corresponding to the red color resist layer may be different from the pitch of the wire grid structure corresponding to the green color resist layer.
  • the color gate layers 12 of different colors respectively have the same pitch of different wire grid structures. That is, in the present embodiment, the wire grid periods of the respective wire grid structures corresponding to the plurality of different color color resist layers 12 (that is, the sum of the widths of the gate lines and the pitches formed) are the same, so that the wire grid structure in the polarizer 41 can be simplified. Manufacturing process.
  • the pitch of the wire grid structure corresponding to the red color resist layer is equal to the pitch of the wire grid structure corresponding to the green color resist layer, and is also equal to the pitch of the wire grid structure corresponding to the blue color resist layer.
  • the polarizer 41 is formed of an opaque material, preferably formed of a metal material such as aluminum or silver.
  • Aluminum or silver has good reflectivity and good strength, and aluminum or silver is used to form the polarizer 41 having a wire grid structure, which not only further ensures that the periphery of the sub-pixel region does not leak light, but also ensures the strength of the polarizer 41; further a polarizer for the local wire grid structure disposed in the above display panel, which can reflect part of the unabsorbed light back Therefore, the light absorbed by the polarizer is only about 10%, which greatly reduces the light absorption rate.
  • the wire grid structure in the polarizer 41 can be formed by combining a photolithography process and a nano imprint process which form the wire grid polarizer of Embodiment 1, and then the polarizer 41 is formed integrally with the display substrate; or The patterning process can be directly formed on one side of the second substrate.
  • the combination of the above lithography process and the nanoimprint process is relatively mature, and has a high level of technology at present, so that the yield of the polarizer 41 can be ensured.
  • the wire grid structure has a wire grid period ranging from 50 to 500 nm
  • the gate line has a width ranging from 25 to 250 nm
  • the pitch has a width ranging from 25 to 250 nm.
  • the side of the first substrate 10 facing away from the second substrate 30 is further provided with a matching polarizer 42.
  • the polarization axis of the matching polarizer 42 is perpendicular to the polarization axis of the polarizer 41 so that only the light vibrating in a specific direction is provided. Can be passed, to achieve image display.
  • the first substrate 10 includes a first substrate 11, and a black matrix 13 is disposed on a region of the first substrate 11 corresponding to the non-sub-pixel region 54, and the sub-pixel regions 53 are arranged in a matrix shape at intervals.
  • the black matrix 13 of the present embodiment is formed in a mesh shape, and the color resist layers 12 of different colors in the color film pattern are sequentially cyclically disposed in the grid; correspondingly, the second substrate 30 is disposed corresponding to the area of the black matrix 13
  • the scan lines and the data lines are vertically and horizontally crossed, and the sheet-like structure of the sub-pixel region 53 in the polarizer 41 in the present embodiment can be used to match the black matrix 13 and the scan line.
  • the data line prevents light leakage in the periphery of the non-sub-pixel region, and further prevents light leakage of the display panel.
  • the liquid crystal layer 20 is disposed between the first substrate 10 and the second substrate 30, and the inner surfaces of the first substrate 10 and the second substrate 30 are respectively formed with an alignment layer (not shown in FIG. 2). Shown so that the first substrate 10 and the second substrate 30 can be paired with the case with the liquid crystal layer 20 interposed therebetween.
  • the periphery of the liquid crystal layer 20 is sealed with a sealant, and the spacer between the first substrate 10 and the second substrate 30 is controlled by providing a spacer.
  • the second substrate 30 includes a second substrate 31 and a thin film transistor array 32, and the thin film transistor array 32 is disposed in the second On the side of the substrate 31 facing the liquid crystal layer 20, the polarizer 41 is disposed on a side of the second substrate 31 away from the liquid crystal layer 20. That is, the polarizer 41 having the wire grid structure is disposed away from the first substrate 10 and located on the side of the second substrate 30 remote from the liquid crystal layer 20. The polarizer 41 forms only the metal layer corresponding to the region of the sub-pixel region 53 as a line.
  • the gate structure is such that the area of the wire grid structure is the same as the area of the sub-pixel region 53; the area corresponding to the non-sub-pixel region 54 retains the entire metal film.
  • the thin film transistor in the thin film transistor array 32 herein may be a top gate type or a bottom gate type.
  • the manufacturing process of the remaining layer structures and the corresponding layer structures in the display panel of this embodiment is the same as the manufacturing process of the corresponding layer structure and the corresponding layer structure in the prior art display panel, and details are not described herein again.
  • light may be emitted from the wire grid structure and reach a plurality of color resist layers 12 of the first substrate 10 corresponding to the sub-pixel regions 53; Since the region corresponding to the sub-pixel region 54 retains the sheet-like metal film, the light cannot be emitted because it is blocked by the sheet metal film, and the incident light can be emitted only after multiple reflections to reach the sub-pixel region 53 and reach the first.
  • the polarizer adjacent to the backlight side utilizes a local wire grid structure, which can effectively reduce the light absorption rate, while avoiding leakage of the periphery of the non-sub-pixel region and light leakage of the pixel itself, and the technical solution is simple and feasible. ,Easy to implement.
  • a display panel is provided. Compared with the second embodiment, the position of the polarizer in the display panel is different from the position of the polarizer in the display panel of the second embodiment.
  • the display panel can effectively reduce the light absorption rate, and can avoid light leakage around the non-sub-pixel region, and has a better display effect.
  • the polarizer is located above the array substrate. As shown in FIG. 4, the polarizer 41 is disposed on the thin film transistor array 32 and the second substrate 31. An insulating layer 33 is disposed between the polarizer 41 and the thin film transistor array 32. An insulating layer 33 is formed on the polarizer 41, and the polarizer 41 is separated from the thin film transistor array 32 by the insulating layer 33 to prevent the metal forming the polarizer 41 from affecting the control function of the thin film transistor array 32.
  • the thin film transistor in the thin film transistor array 32 may be of a top gate type or a bottom gate type.
  • the manufacturing process of the remaining layer structures and the corresponding layer structures in the display panel of this embodiment is the same as the manufacturing process of the corresponding layer structure and the corresponding layer structure in the display panel of Embodiment 2, and details are not described herein again.
  • the working principle of the display panel in this embodiment is the same as that of the display panel in the second embodiment.
  • the display panel can effectively reduce the light absorption rate, and avoid the leakage of the periphery of the non-sub-pixel region and the light leakage of the pixel itself, and the technical solution is simple and feasible. The solution is easy to implement.
  • the embodiment provides a display device including a display panel and a backlight, and the display panel adopts the display panel in Embodiment 2 or Embodiment 3.
  • the backlight 60 can be either a direct type or a side entry type, and the side entry type backlight 60 is exemplified in FIG.
  • the backlight 60 includes a plurality of components such as a reflector, a light guide, and an LED lamp. Since the backlight in the prior art can be directly used, no further details are provided herein.
  • the backlight includes a reflective plate or a reflective sheet.
  • the reflector or the reflective sheet can be used to reuse part of the light reflected by the polarizer 41 in the display panel, thereby reducing light loss and improving light utilization efficiency.
  • the display device can be any product or component having a display function such as a liquid crystal panel, an electronic paper, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • a display function such as a liquid crystal panel, an electronic paper, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the display device adopts the above display panel having low light absorption rate and good light leakage prevention effect, the light utilization efficiency is improved, and the display effect is improved, and the cost is low and the thickness is small.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种线栅偏光片及其制造方法、显示面板和显示装置。该线栅偏光片包括衬底(1),其中,所述衬底(1)中间隔设置有呈阵列排布的线栅结构(2),所述线栅结构(2)使得光能够从栅距透过,所述衬底(1)除所述线栅结构(2)以外的其他区域为连续不透光区域。该线栅偏光片间隔设置有呈阵列排布的线栅结构,因此可以形成局部透光区,从而更灵活地控制光线的出射;采用该线栅偏光片的显示面板能有效降低光吸收率,还能避免非亚像素区的周边漏光,防止像素自身漏光;相应的,采用该显示面板的显示装置提高了光利用率,具有较好的显示效果。

Description

线栅偏光片及其制造方法、显示面板和显示装置 技术领域
本发明属于显示技术领域,具体涉及一种线栅偏光片及其制造方法、显示面板和显示装置。
背景技术
液晶显示装置(Liquid Crystal Display:简称LCD)是平板显示装置中的一种,液晶显示面板和背光源是其中的重要部件,通过在液晶显示面板的一侧设置背光源,形成液晶显示装置,从而实现图像显示。
液晶显示面板包括彩膜基板、阵列基板以及设置于二者之间的液晶层,背光源设置于靠近阵列基板的一侧。为了实现图像的显示,阵列基板中设置有薄膜晶体管(Thin Film Transistor,简称TFT),薄膜晶体管的控制端分别接收控制信号和显示信号,并根据控制信号和显示信号实现对薄膜晶体管开闭的控制,从而实现对液晶的驱动,最终控制液晶的偏转以达到对背光源的光线的控制;同时,为了实现显示图像的彩色化,彩膜基板中设置有彩膜层。
通常,液晶显示面板的两侧分别设置有偏光片,其中,上偏光片贴附在彩膜基板上,与彩膜层相背设置;下偏光片贴附在阵列基板上,与薄膜晶体管相背设置。通过上偏光片和下偏光片的设置,使得只有背光源光线中按特定方向振动的光线能够通过;在控制特定方向振动的光线通过的同时,下偏光片还对光存在吸收作用。通常情况下,下偏光片只能透过不超过50%的光,其余部分均被吸收,造成液晶显示装置光利用率低下。
因此,设计一种能提高光利用率的显示面板成为目前亟待解决的技术问题。
发明内容
针对现有技术中存在的上述不足,本发明实施例提供了一种线栅偏光片及其制造方法、显示面板和显示装置,该线栅偏光片间隔设置有呈阵列排布的线栅结构,该显示面板能有效降低光吸收率,还能避免非亚像素区的周边漏光,防止像素自身漏光。
本发明实施例提供了一种线栅偏光片,包括衬底,其中,所述衬底上形成有多个间隔设置的呈阵列排布的开口区,所述线栅偏光片还包括分别设置在多个所述开口区中的多个线栅结构,每个所述线栅结构都包括多条间隔设置的栅线,相邻两条所述栅线之间的间隔形成为所述线栅结构的栅距,所述线栅结构使得光能够从该线栅结构的栅距透过,所述衬底上除所述开口区之外的区域为连续不透光的区域。
所述线栅结构中,所述栅线宽度范围可以为25-250nm,所述栅距宽度范围可以为25-250nm。
所述衬底可以采用金属材料制成。
所述金属材料可以包括银或铝。
所述线栅结构与所述衬底可以形成为一体,所述衬底的厚度范围可以为20-250nm,所述线栅结构的栅线的厚度范围可以为20-250nm。
本发明实施例还提供一种线栅偏光片的制造方法,所述线栅偏光片为本发明实施例所提供的上述线栅偏光片,所述方法可以包括如下步骤:
步骤S1,在基底上形成透明的支撑层;
步骤S2,对所述支撑层加热,使得所述支撑层的温度高于所述支撑层的玻璃化相变点温度;
步骤S3,将压制模板以设定压力压入所述支撑层,所述压制模板中预制有间隔设置的与所述线栅结构的图案相对应的压制图案;
步骤S4,保持设定压力,将所述支撑层冷却至所述支撑层的玻璃化相变点温度以下,去除所述压制模板,并在所述支撑层上形成凸出区域和低凹区域,所述凸出区域对应于所述栅距,所述 低凹区域包括对应于所述栅线的部分和对应于所述连续不透光区的部分;
步骤S5,去除所述支撑层的与所述低凹区域相对应的部分以暴露出对应区域的所述基底,从而利用所述支撑层在所述基底上形成与所述线栅结构具有相同图案的掩膜图案;
步骤S6,在暴露出的基底以及掩膜图案上形成不透光材料层;
步骤S7,去除所述掩膜图案以及附着在所述掩膜图案上的不透光材料,从而形成所述线栅偏光片。
在步骤S1中,形成所述支撑层的材料可以包括聚甲基丙烯酸甲酯、聚碳酸酯、聚苯乙烯、环烯烃树脂和交联聚乙烯中的任一种;所述支撑层可以采用旋涂方式形成,所述支撑层的厚度范围可以为0.1-0.3μm。
在步骤S1中,所述支撑层可以采用聚甲基丙烯酸甲酯形成,聚甲基丙烯酸甲酯的玻璃化相变点温度为105℃;在步骤S2中,所述支撑层的加热温度范围可以为180-220℃。
在步骤S3中,所述压制模板可以采用二氧化硅材料形成,所述压制模板中的压制图案中对应于所述线栅结构的栅线的部分的宽度范围可以为25-250nm,所述压制模板中的压制图案中对应于所述线栅结构的栅距的部分的宽度范围可以为25-250nm,所述压制模板中的压制图案中对应于所述线栅结构的栅距的部分的深度范围可以为20-250nm;所述设定压力范围可以为12-14MPa。
在步骤S5中,可以采用氧气反应离子刻蚀来刻蚀所述支撑层,直至所述支撑层中与所述线栅结构中的栅线和连续不透光区相对应的低凹区域暴露出对应区域的所述基底。
在步骤S6中,所述不透光材料可以为金属材料,可以采用溅射沉积方式在所述支撑层上方形成所述不透光材料层。
所述金属材料可以包括铝或银,可以采用溅射沉积方式在所述支撑层上方形成铝层或银层。
在步骤S7中,可以通过溶脱方式去除所述掩模图案以及附着在所述掩膜图案上的不透光材料,从而形成所述线栅偏光片。
本发明实施例还提供了一种显示面板,包括显示区和围绕在所述显示区周边的非显示区,所述显示区包括多个间隔排列的亚像素区,其中,所述显示面板对应所述显示区的区域设置有本发明所提供的上述线栅偏光片,所述线栅偏光片对应所述亚像素区的区域为线栅结构。
所述显示面板可以包括相对设置的第一基板和第二基板,所述第一基板或所述第二基板对应所述亚像素区的区域设置有多个不同颜色的彩膜图案,所述线栅结构和所述彩膜图案一一对应。
所述彩膜图案可以包括色阻层,多个不同颜色的所述色阻层周期性地设置在所述第一基板或所述第二基板上,且不同颜色的所述色阻层分别对应的不同的所述线栅结构的栅距相同。
所述第二基板可以包括基底和薄膜晶体管阵列,所述薄膜晶体管阵列可以设置于所述基底朝向所述第一基板的一侧,所述线栅偏光片可以设置于所述基底背离所述第一基板的一侧;
或者,所述线栅偏光片可以设置于所述薄膜晶体管阵列与所述基底之间,且所述线栅偏光片与所述薄膜晶体管阵列之间可以设置有绝缘层。
所述第一基板背离所述第二基板的一侧还可以设置有匹配偏光片,所述匹配偏光片的偏光轴与所述偏光片的偏光轴可以垂直设置。
本发明实施例还提供一种显示装置,包括显示面板和背光源,其中,所述显示面板采用上述的显示面板。
根据本发明实施例的线栅偏光片间隔设置有呈阵列排布的线栅结构,因此可以形成局部透光区,从而更灵活地控制光线的出射。
根据本发明实施例的采用所述线栅偏光片的显示面板能有效降低光吸收率,还能避免非亚像素区的周边漏光,防止像素自身漏光,且该技术方案简单可行方案,易于实现;
相应的,采用该显示面板的显示装置提高了光利用率,具有较好的显示效果。
附图说明
图1为本发明实施例1中线栅偏光片的结构示意图。
图2为本发明实施例2中显示面板的结构示意图。
图3为图2中显示面板的偏光片的结构示意图。
图4为本发明实施例3中显示面板的结构示意图。
图5为本发明实施例4中显示装置的结构示意图。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明线栅偏光片及其制造方法、显示面板和显示装置作进一步详细描述。
[实施例1]
本实施例提供了一种线栅偏光片,所述线栅偏光片具有间隔排布的线栅结构(Wire Grid,简称WG),因此能形成局部透光区,从而更灵活地控制光线的出射。
如图1所示,该线栅偏光片包括衬底1,衬底1上形成有多个间隔设置的呈阵列排布的开口区,所述线栅偏光片还包括分别设置在多个所述开口区中的多个线栅结构2,每个线栅结构2都包括多条间隔设置的栅线,相邻两条所述栅线之间的间隔形成为线栅结构2的栅距。线栅结构2可以使得光能够从该线栅结构2的栅距透过。衬底1上除所述开口区之外的区域为连续不透光的区域。
衬底1的厚度范围为20-250nm。优选的是,线栅结构2中,栅线宽度范围为25-250nm,栅距宽度范围为25-250nm。作为本发明的一种优选实施方式,衬底1与线栅结构2形成为一体,此时,栅线的厚度与衬底1的厚度相同。
为了保证线栅偏光片的强度以及不透光区的光反射回收利用,衬底1采用金属材料形成,例如铝或银。
相应的,本实施例还提供上述线栅偏光片的制造方法,该制造方法包括如下步骤S1至S7。
步骤S1,在基底上形成透明的支撑层。
在该步骤中,采用透明的玻璃材料或树脂材料作为基底,在基底上形成支撑层。形成支撑层的材料可以包括聚甲基丙烯酸甲酯、聚碳酸酯、聚苯乙烯、环烯烃树脂或交联聚乙烯中的任一种,支撑层可以采用旋涂方式形成,支撑层的厚度范围可以为0.1-0.3μm。
步骤S2,对支撑层加热,使得支撑层的温度高于该支撑层的玻璃化相变点温度。
优选的是,在步骤S1中,支撑层采用聚甲基丙烯酸甲酯形成,聚甲基丙烯酸甲酯的玻璃化相变点温度为105℃;在该步骤中,支撑层的加热温度范围可以为180-220℃,优选加热温度为200℃。
步骤S3,将压制模板以设定压力压入支撑层,压制模板中预制有间隔设置的与所述线栅结构的图案相对应的压制图案。
容易理解的是,此处,所谓的压制图案与所述线栅结构的图案相对应的意思是,压制图案中有对应于线栅结构中的栅线的图形,也有对应于线栅结构中的栅距的图形。并且,压制图案在压制模板上的位置与线栅结构在线栅偏光片上的位置是一致的。也就是说,压制图案也呈阵列排布。
压制模板预先形成。在该步骤中,压制模板采用二氧化硅材料形成,压制模板中的压制图案中对应于所述线栅结构的栅线的部分的宽度范围为25-250nm,压制模板中的压制图案中对应于所述线栅结构的栅距的部分的宽度范围为25-250nm,压制模板中的压制图案中对应于所述线栅结构的栅距的部分的深度范围为20-250nm。设定压力范围为12-14MPa,优选设定压力为13.1MPa。此时支撑层中聚甲基丙烯酸甲酯在高于其玻璃化相变点的温度之下,呈现为黏性液体状态,并能在压力作用下流动。
步骤S4,保持设定压力,将支撑层冷却至该支撑层的玻璃化相变点温度以下,去除压制模板,并在所述支撑层上形成凸出区 域和低凹区域,所述凸出区域对应于所述栅距,所述低凹区域包括对应于所述栅线的部分和对应于所述连续不透光区的部分。
在该步骤中,待支撑层的温度低于105℃,使得聚甲基丙烯酸甲酯低于玻璃化相变点温度而凝为固体后,去除压制模板。由于聚甲基丙烯酸甲酯的亲水性,不会与二氧化硅模板发生黏附,可以将压制模板抬起脱膜。
步骤S5,去除支撑层的与低凹区域相对应的部分以暴露出对应区域的基底,从而利用所述支撑层在所述基底上形成与线栅结构2具有相同图案的掩膜图案。
在该步骤中,采用氧气反应离子刻蚀(Reactive Ion Etching,简称RIE)来刻蚀支撑层,直至支撑层中与线栅结构2中的栅线以及连续不透光区相对应的低凹区域被去除,从而暴露出对应区域的基底,即在支撑层中得到了周期性的与线栅结构相同的图案。
步骤S6,采用用于形成衬底1的金属材料,在暴露出的基底和掩膜图案上形成不透光材料层。
在该步骤中,不透光材料可以为金属材料,金属材料包括铝或银,可以采用溅射沉积方式在基底上方形成铝层或银层。可以理解的是,此时不透光材料既附着在基底上的暴露出的对应区域上,也附着在掩模图案上。
步骤S7,去除所述掩膜图案以及附着在所述掩膜图案上的不透光材料,从而形成所述线栅偏光片。
在该步骤中,通过溶脱方式,去除掩模图案以及附着在掩模图案上的不透光材料,例如在丙酮溶液内将掩模图案中的聚甲基丙烯酸甲酯及其上方的铝材料去掉,从而形成所述线栅偏光片。
本实施例中的线栅偏光片,由于具有间隔排布的线栅结构,因此可以形成局部透光区。可以根据需求灵活设计线栅结构的排布,以便更灵活地控制光线的出射。
[实施例2]
本实施例中提供一种显示面板,该显示面板中包括实施例1 中的线栅偏光片,该显示面板能有效降低光吸收率,还能避免非亚像素区的周边漏光,具有较好的显示效果。
如图3所示,该显示面板包括显示区51(Active Area,简称AA区)和围绕在显示区周边的非显示区52,即显示区51被包围于非显示区52的内部;同时参考图2,显示面板对应着显示区51的区域设置有偏光片41,偏光片41为实施例1中的具有线栅结构的线栅偏光片。
其中,显示区51包括多个间隔排列的亚像素区53,偏光片41对应着亚像素区53的区域为线栅结构,而其他区域为金属薄膜结构,即在对应着非亚像素区54的区域为连续片状结构。其中,非亚像素区54即指显示区51内除亚像素区53以外的其他区域。采用实施例1中的线栅偏光片作为偏光片41,在该显示面板中形成了局部线栅结构,即在用于显示的亚像素区53对应的区域内形成线栅结构,而亚像素区53之间不用于显示的非亚像素区54的区域仍然保留整片金属薄膜。
如图2所示,显示面板包括相对设置的第一基板10、第二基板30,第一基板10或第二基板30对应亚像素区53的区域设置有多个不同颜色的彩膜图案,线栅结构和彩膜图案一一对应,使得从线栅结构的栅距透过的光线能透过彩膜图案。通过局部线栅结构,即,将偏光片41设置为仅在对应着亚像素区53的区域才形成线栅结构,而非亚像素区54对应的区域保留整片金属薄膜,能够解决光利用率低下的问题,且保证图像的正常显示。
在本发明中,线栅结构与彩膜图案一一对应的意思是,一个线栅结构对应一个彩膜图案。
本领域技术人员应当理解的是,所述显示面板可以包括具有三种不同颜色的彩膜图案,顺次排列的三个亚像素区形成一个像素单元,该三个亚像素区分别对应于不同颜色的彩膜图案。所述显示面板还可以包括具有四种不同颜色的彩膜图案,顺次排列的四个亚像素区形成一个像素单元,该四个亚像素区分别对应于不同颜色的彩膜图案。
由于现有技术中的普通线栅偏光片采用整体线栅结构,因此在对应着亚像素区53和非亚像素区54的区域均为明暗交替的条状结构,这将导致非亚像素区54出现周边漏光(light leak),从而影响显示效果;与现有技术相比,本发明实施例提供的该显示面板采用局部线栅结构的偏光片,在降低光吸收率的同时,还能降低非亚像素区的周边漏光,有效防止像素自身漏光。
在本发明中,对彩膜图案的具体结构不做限定,例如,彩膜图案包括色阻层12(即,彩膜图案的结构为色阻层),相应地,所述显示面板中包括多个具有不同颜色的色阻层12。例如,显示面板可以包括多个红色的色阻层、多个绿色的色阻层和多个蓝色的色阻层。每个色阻层对应一个亚像素区域。多个不同颜色的色阻层周期性地排列在第一基板或第二基板上。例如,多个不同的色阻层可以以红色的色阻层、绿色的色阻层和蓝色的色阻层组成一个色阻单元(一个色阻单元对应于一个像素单元),每个显示面板上设置多个所述色阻单元。
在本发明中,不同颜色的色阻层分别对应的不同的线栅结构的栅距可以不同。例如,红色的色阻层对应的线栅结构的栅距可以不同于绿色的色阻层对应的线栅结构的栅距。
为了便于制造,不同颜色的色阻层12分别对应的不同的线栅结构的栅距相同。即,本实施例中多个不同颜色的色阻层12对应的各线栅结构的线栅周期(即形成一道栅线和栅距的宽度之和)相同,从而能简化偏光片41中线栅结构的制造工艺。
例如,红色的色阻层对应的线栅结构的栅距等于绿色的色阻层对应的线栅结构的栅距,也等于蓝色的色阻层对应的线栅结构的栅距。
偏光片41采用不透光材料形成,优选采用金属材料形成,例如铝或银。铝或银具有良好的反射率和良好的强度,采用铝或银形成具有线栅结构的偏光片41,不仅能进一步保证亚像素区的周边不漏光,还能保证偏光片41的强度;进一步的,上述显示面板中设置的局部线栅结构的偏光片,可以将部分未吸收的光反射回 来,使得该偏光片吸收的光仅为10%左右,大大降低了光吸收率。
相应的,偏光片41中的线栅结构可以采用形成实施例1中线栅偏光片的光刻工艺和纳米压印工艺结合的方式形成,然后将偏光片41与显示基板形成为一体;或者,也可以直接采用构图工艺在第二基板的一侧形成。上述光刻工艺和纳米压印工艺结合的方式或构图工艺的方式比较成熟,在目前均具有较高的工艺水平,因此能保证偏光片41的良率。
优选的是,线栅结构的线栅周期范围为50-500nm,栅线的宽度范围为25-250nm,栅距的宽度范围为25-250nm。
优选的是,第一基板10背离第二基板30的一侧还设置有匹配偏光片42,匹配偏光片42的偏光轴与偏光片41的偏光轴垂直设置,以使得只有按特定方向振动的光线能够通过,实现图像显示。
在本实施例的显示面板中,第一基板10包括第一基底11,在第一基底11上对应着非亚像素区54的区域设置有黑矩阵13,由于亚像素区53间隔排列成矩阵形状,因此本实施例的黑矩阵13形成为网格形状,彩膜图案中不同颜色的色阻层12依次循环设置在网格内;相应的,第二基板30对应着黑矩阵13的区域设置有纵横交叉设置的扫描线和数据线(本实施例的附图中均未示出),利用本实施例中的偏光片41中亚像素区53的片状结构,能配合黑矩阵13、扫描线和数据线,防止非亚像素区的周边漏光,进一步防止显示面板的漏光。
在本实施例的显示面板中,第一基板10和第二基板30之间设置有液晶层20,且第一基板10和第二基板30的内表面均分别制作有取向层(图2中未示出),从而可将第一基板10和第二基板30对盒(其间夹有液晶层20)。液晶层20的周边用封框胶密封,且通过设置隔垫物以控制第一基板10和第二基板30之间的间距。
在本实施例的显示面板中,如图2所示,第二基板30包括第二基底31和薄膜晶体管阵列32,薄膜晶体管阵列32设置于第二 基底31的朝向液晶层20的一侧,偏光片41设置于第二基底31远离液晶层20的一侧。即设有线栅结构的偏光片41背离第一基板10设置,位于第二基板30的远离液晶层20的一侧,该偏光片41仅将对应着亚像素区53的区域的金属层形成为线栅结构,并使得线栅结构涉及到的面积大小与亚像素区53的面积大小相同;非亚像素区54对应的区域保留整片金属薄膜。其中,这里的薄膜晶体管阵列32中的薄膜晶体管可以为顶栅型或底栅型。
本实施例显示面板中的其余各层结构以及相应层结构的制造工艺与现有技术显示面板中的相应层结构以及相应层结构的制造工艺相同,这里不再赘述。
在显示面板的工作过程中,在亚像素区53对应的区域,光线可以从线栅结构射出,并到达第一基板10中对应着亚像素区53的多个不同颜色的色阻层12;非亚像素区54对应的区域由于保留片状金属薄膜,光线因被片状金属薄膜挡住而无法射出,因而射入的光线只有通过多次反射才能到达亚像素区53后得以射出,并到达第一基板10中对应着亚像素区53的多个不同颜色的色阻层12。由此,可以有效解决了光利用率低的技术问题,同时还避免了非亚像素区54的周边漏光,降低了像素自身的漏光,从根本上防止了漏光。
本实施例中的显示面板,其中靠近背光源侧的偏光片利用局部线栅结构,能有效降低光吸收率,同时避免非亚像素区的周边漏光以及像素自身漏光,且该技术方案简单可行方案,易于实现。
[实施例3]
本实施例中提供一种显示面板,与实施例2相比,该显示面板中偏光片的设置位置与实施例2该显示面板中偏光片的设置位置不同。该显示面板能有效降低光吸收率,还能避免非亚像素区的周边漏光,具有较好的显示效果。
本实施例的显示面板中,偏光片位于阵列基板的相对上方。如图4所示,偏光片41设置于薄膜晶体管阵列32与第二基底31 之间,且偏光片41与薄膜晶体管阵列32之间设置有绝缘层33。在偏光片41的上方形成一层绝缘层33,利用绝缘层33将偏光片41与薄膜晶体管阵列32隔开,以避免形成偏光片41的金属对薄膜晶体管阵列32的控制功能造成影响,这里的薄膜晶体管阵列32中的薄膜晶体管可以为顶栅型或底栅型。
本实施例显示面板中的其余各层结构以及相应层结构的制造工艺与实施例2显示面板中的相应层结构以及相应层结构的制造工艺相同,这里不再赘述。
本实施例显示面板的工作原理与实施例2中显示面板的工作原理相同,该显示面板能有效降低光吸收率,同时避免非亚像素区的周边漏光以及像素自身漏光,且该技术方案简单可行方案,易于实现。
[实施例4]
本实施例提供一种显示装置,该显示装置包括显示面板和背光源,显示面板采用实施例2或实施例3中的显示面板。
在本实施例的显示装置中,背光源60采用直下式和侧入式均可,图5中以侧入式背光源60作为示例。其中的背光源60包括反射板、导光板、LED灯等多个部件,由于可直接采用现有技术中的背光源,因此这里不再赘述。
通常情况下,背光源中包括反射板或反射片,配合该反射板或反射片可将上述显示面板中偏光片41反射回来的部分光再次利用,减少了光的损失,提高了光利用率。
该显示装置可以为液晶面板、电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
该显示装置由于采用了上述具有低光吸收率、良好防漏光效果的显示面板,因此提高了光利用率,具有较好的显示效果;同时还具有成本低、厚度小的优点。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (19)

  1. 一种线栅偏光片,包括衬底,其中,所述衬底上形成有多个间隔设置的呈阵列排布的开口区,所述线栅偏光片还包括分别设置在多个所述开口区中的多个线栅结构,每个所述线栅结构都包括多条间隔设置的栅线,相邻两条所述栅线之间的间隔形成为所述线栅结构的栅距,所述线栅结构使得光能够从该线栅结构的栅距透过,所述衬底上除所述开口区之外的区域为连续不透光的区域。
  2. 根据权利要求1所述的线栅偏光片,其中,所述线栅结构中,所述栅线宽度范围为25-250nm,所述栅距宽度范围为25-250nm。
  3. 根据权利要求1所述的线栅偏光片,其中,所述衬底采用金属材料制成。
  4. 根据权利要求3所述的线偏光片,其中,所述金属材料包括银或铝。
  5. 根据权利要求1至4中任意一项所述的线栅偏光片,其中,所述线栅结构与所述衬底形成为一体,所述衬底的厚度范围为20-250nm,所述线栅结构的栅线的厚度范围为20-250nm。
  6. 一种线栅偏光片的制造方法,所述线栅偏光片为权利要求1所述的线栅偏光片,所述制造方法包括:
    步骤S1,在基底上形成透明的支撑层;
    步骤S2,对所述支撑层加热,使得所述支撑层的温度高于所述支撑层的玻璃化相变点温度;
    步骤S3,将压制模板以设定压力压入所述支撑层,所述压制 模板中预制有间隔设置的与所述线栅结构的图案相对应的压制图案;
    步骤S4,保持设定压力,将所述支撑层冷却至所述支撑层的玻璃化相变点温度以下,去除所述压制模板,并在所述支撑层上形成凸出区域和低凹区域,所述凸出区域对应于所述栅距,所述低凹区域包括对应于所述栅线的部分和对应于所述连续不透光区的部分;
    步骤S5,去除所述支撑层中的与所述低凹区域相对应的部分以暴露出对应区域的所述基底,从而利用所述支撑层在所述基底上形成与所述线栅结构具有相同图案的掩膜图案;
    步骤S6,在所述暴露出的基底和掩膜图案上形成不透光材料层;以及
    步骤S7,去除所述掩膜图案以及附着在所述掩膜图案上的不透光材料,从而形成所述线栅偏光片。
  7. 根据权利要求6所述的制造方法,其中,在步骤S1中,形成所述支撑层的材料包括聚甲基丙烯酸甲酯、聚碳酸酯、聚苯乙烯、环烯烃树脂和交联聚乙烯中的任一种,所述支撑层采用旋涂方式形成,所述支撑层的厚度范围为0.1-0.3μm。
  8. 根据权利要求7所述的制造方法,其中,在步骤S1中,所述支撑层采用聚甲基丙烯酸甲酯形成,聚甲基丙烯酸甲酯的玻璃化相变点温度为105℃;在步骤S2中,所述支撑层的加热温度范围为180-220℃。
  9. 根据权利要求7所述的制造方法,其中,在步骤S3中,所述压制模板采用二氧化硅材料形成,所述压制模板中的压制图案中对应于所述线栅结构的栅线的部分的宽度范围为25-250nm,所述压制模板中的压制图案中对应于所述线栅结构的栅距的部分的宽度范围为25-250nm,所述压制模板中的压制图案中对应于所 述线栅结构的栅距的部分的深度范围为20-250nm;所述设定压力范围为12-14 MPa。
  10. 根据权利要求6所述的制造方法,其中,在步骤S5中,采用氧气反应离子刻蚀来刻蚀所述支撑层,直至所述支撑层中与所述线栅结构中的栅线和连续不透光区相对应的低凹区域暴露出对应区域的所述基底。
  11. 根据权利要求6所述的制造方法,其中,在步骤S6中,所述不透光材料为金属材料,采用溅射沉积方式在所述支撑层上方形成所述不透光材料层。
  12. 根据权利要求11所述的制造方法,其中,所述金属材料包括铝或银,采用溅射沉积方式在所述支撑层上方形成铝层或银层。
  13. 根据权利要求6所述的制造方法,其中,在步骤S7中,通过溶脱方式去除所述掩膜图案以及附着在所述掩膜图案上的不透光材料,从而形成所述线栅偏光片。
  14. 一种显示面板,包括显示区和围绕在所述显示区周边的非显示区,所述显示区包括多个间隔排列的亚像素区,其中,所述显示面板对应所述显示区的区域设置有权利要求1-5任一项所述的线栅偏光片,所述线栅偏光片对应所述亚像素区的区域为所述线栅结构。
  15. 根据权利要求14所述的显示面板,其中,所述显示面板包括相对设置的第一基板和第二基板,所述第一基板或所述第二基板对应所述亚像素区的区域设置有多个不同颜色的彩膜图案,所述线栅结构和所述彩膜图案一一对应。
  16. 根据权利要求15所述的显示面板,其中,所述彩膜图案包括色阻层,多个不同颜色的所述色阻层周期性地设置在所述第一基板或所述第二基板上,且不同颜色的所述色阻层分别对应的不同的所述线栅结构的栅距相同。
  17. 根据权利要求16所述的显示面板,其中,所述第二基板包括基底和薄膜晶体管阵列,所述薄膜晶体管阵列设置于所述基底朝向所述第一基板的一侧,所述线栅偏光片设置于所述基底背离所述第一基板的一侧;
    或者,所述线栅偏光片设置于所述薄膜晶体管阵列与所述基底之间,且所述线栅偏光片与所述薄膜晶体管阵列之间设置有绝缘层。
  18. 根据权利要求17所述的显示面板,其中,所述第一基板背离所述第二基板的一侧还设置有匹配偏光片,所述匹配偏光片的偏光轴与所述偏光片的偏光轴垂直设置。
  19. 一种显示装置,包括显示面板和背光源,其中,所述显示面板采用权利要求14-18任一项所述的显示面板。
PCT/CN2015/079013 2014-12-04 2015-05-15 线栅偏光片及其制造方法、显示面板和显示装置 WO2016086609A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/892,257 US9759947B2 (en) 2014-12-04 2015-05-15 Wire grid polarizer and manufacturing method thereof, display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410734451.8 2014-12-04
CN201410734451.8A CN104459863A (zh) 2014-12-04 2014-12-04 线栅偏光片及其制备方法、显示面板和显示装置

Publications (1)

Publication Number Publication Date
WO2016086609A1 true WO2016086609A1 (zh) 2016-06-09

Family

ID=52906200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/079013 WO2016086609A1 (zh) 2014-12-04 2015-05-15 线栅偏光片及其制造方法、显示面板和显示装置

Country Status (3)

Country Link
US (1) US9759947B2 (zh)
CN (1) CN104459863A (zh)
WO (1) WO2016086609A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104459863A (zh) 2014-12-04 2015-03-25 京东方科技集团股份有限公司 线栅偏光片及其制备方法、显示面板和显示装置
KR102413901B1 (ko) * 2015-04-24 2022-06-28 삼성디스플레이 주식회사 와이어 그리드 편광판 및 이를 포함하는 표시장치
KR102363666B1 (ko) * 2015-04-30 2022-02-17 삼성디스플레이 주식회사 표시 장치
KR20170031319A (ko) * 2015-09-10 2017-03-21 삼성디스플레이 주식회사 터치 스크린 일체형 표시장치 및 그의 제조방법
CN105137649B (zh) * 2015-10-23 2018-01-12 深圳市华星光电技术有限公司 一种液晶显示面板
CN105242342B (zh) * 2015-11-09 2017-10-24 武汉华星光电技术有限公司 透明显示器
CN105759492A (zh) * 2016-05-09 2016-07-13 深圳市华星光电技术有限公司 显示面板及其制作方法
CN105866875A (zh) * 2016-06-08 2016-08-17 武汉华星光电技术有限公司 金属线栅偏光片与液晶显示装置
CN105929593A (zh) * 2016-07-11 2016-09-07 京东方科技集团股份有限公司 阵列基板、透明显示基板和透明显示装置
KR102636877B1 (ko) * 2016-07-19 2024-02-15 삼성디스플레이 주식회사 편광소자, 편광소자 제조방법 및 표시 장치
CN106249336A (zh) * 2016-08-04 2016-12-21 深圳市华星光电技术有限公司 圆偏光片与oled显示装置
CN106249337B (zh) * 2016-08-04 2019-01-22 深圳市华星光电技术有限公司 金属线栅偏光片与液晶显示装置
CN106405920A (zh) * 2016-09-09 2017-02-15 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置
CN106842404A (zh) * 2017-03-29 2017-06-13 深圳市华星光电技术有限公司 显示面板、线栅偏光片及其制造方法
US10509257B2 (en) 2017-03-29 2019-12-17 Shenzhen China Star Optoelectronics Technology Co., Ltd Display panels, wire grid polarizers, and the manufacturing methods thereof
CN106842691A (zh) 2017-03-31 2017-06-13 成都京东方光电科技有限公司 一种液晶显示面板及制作方法、显示装置
CN108666343B (zh) * 2017-03-31 2019-08-30 京东方科技集团股份有限公司 显示基板和显示面板
CN106802502B (zh) * 2017-04-10 2018-10-30 京东方科技集团股份有限公司 液晶衍射波带片、液晶显示面板、显示方法、显示装置
CN107807470A (zh) * 2017-10-19 2018-03-16 深圳市华星光电技术有限公司 金属栅偏光片及显示面板
US10564469B2 (en) * 2018-03-19 2020-02-18 A.U. Vista, Inc. Liquid crystal display device having wire grid polarizer and #two display structures and method of forming the same
CN109270727B (zh) * 2018-11-23 2021-08-31 天马微电子股份有限公司 显示面板以及电子设备
CN109683364B (zh) * 2019-02-18 2022-07-26 京东方科技集团股份有限公司 显示基板、显示装置、显示基板的制造方法
KR20210054085A (ko) 2019-11-04 2021-05-13 삼성전자주식회사 이미지 센서

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101963719A (zh) * 2010-01-26 2011-02-02 李冠军 液晶屏与液晶显示装置
CN102405436A (zh) * 2009-02-05 2012-04-04 旭硝子株式会社 带偏振片的层叠体、带支承体的显示装置用面板、显示装置用面板、显示装置及它们的制造方法
CN102914901A (zh) * 2011-08-03 2013-02-06 三星电子株式会社 显示面板和使用该显示面板的显示设备
US20130300986A1 (en) * 2012-05-11 2013-11-14 Industry-Academic Cooperation Foundation Yonsei University Wire grid polarizer and method for fabricating thereof, liquid crystal display panel and liquid crystal display device having the same
US20140055715A1 (en) * 2012-08-27 2014-02-27 Samsung Display Co., Ltd. Liquid crystal display and fabrication method of the same
CN204215062U (zh) * 2014-12-04 2015-03-18 京东方科技集团股份有限公司 线栅偏光片、显示面板和显示装置
CN104459863A (zh) * 2014-12-04 2015-03-25 京东方科技集团股份有限公司 线栅偏光片及其制备方法、显示面板和显示装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7466484B2 (en) * 2004-09-23 2008-12-16 Rohm And Haas Denmark Finance A/S Wire grid polarizers and optical elements containing them
KR20070037864A (ko) 2005-10-04 2007-04-09 엘지.필립스 엘시디 주식회사 액정 표시패널과 그의 제조방법
KR101270200B1 (ko) * 2006-10-30 2013-05-31 삼성디스플레이 주식회사 와이어 그리드 편광 패턴의 제조 방법 및 이에 의해 제조된액정 표시 장치
JP2008145573A (ja) * 2006-12-07 2008-06-26 Seiko Epson Corp 偏光素子とその製造方法、液晶装置、及び電子機器
US8027086B2 (en) * 2007-04-10 2011-09-27 The Regents Of The University Of Michigan Roll to roll nanoimprint lithography
US20100277660A1 (en) * 2007-08-02 2010-11-04 Little Michael J Wire grid polarizer with combined functionality for liquid crystal displays
EP2194075B1 (en) * 2007-09-28 2013-01-09 Asahi Glass Company, Limited Photocurable composition, method for producing fine patterned body, and optical device
CN101515045B (zh) 2009-04-02 2010-06-23 重庆文理学院 1550纳米波段的亚波长金属偏振分束光栅
US8248696B2 (en) * 2009-06-25 2012-08-21 Moxtek, Inc. Nano fractal diffuser
CN201654386U (zh) 2010-01-26 2010-11-24 李冠军 液晶屏与液晶显示装置
US8611007B2 (en) * 2010-09-21 2013-12-17 Moxtek, Inc. Fine pitch wire grid polarizer
US8913320B2 (en) * 2011-05-17 2014-12-16 Moxtek, Inc. Wire grid polarizer with bordered sections
KR101841619B1 (ko) 2011-11-14 2018-03-26 삼성디스플레이 주식회사 금속선 격자 편광소자를 포함하는 액정 표시 장치 및 그 제조 방법
WO2013102182A1 (en) * 2011-12-30 2013-07-04 Lightwave Power, Inc. Nanowire enhanced optically transmissive electrical conductors and polarizer
KR101942363B1 (ko) 2012-07-26 2019-04-12 삼성디스플레이 주식회사 편광 소자, 이의 제조 방법, 이를 포함하는 표시 패널 및 이를 포함하는 표시 장치
US20140110040A1 (en) * 2012-10-23 2014-04-24 Ronald Steven Cok Imprinted micro-louver structure method
KR20140060058A (ko) 2012-11-09 2014-05-19 삼성디스플레이 주식회사 편광판, 편광판의 제조방법 및 이를 포함하는 표시장치
KR102082783B1 (ko) * 2013-07-23 2020-03-02 삼성디스플레이 주식회사 와이어 그리드 편광판 및 이를 구비하는 유기 발광 디스플레이 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102405436A (zh) * 2009-02-05 2012-04-04 旭硝子株式会社 带偏振片的层叠体、带支承体的显示装置用面板、显示装置用面板、显示装置及它们的制造方法
CN101963719A (zh) * 2010-01-26 2011-02-02 李冠军 液晶屏与液晶显示装置
CN102914901A (zh) * 2011-08-03 2013-02-06 三星电子株式会社 显示面板和使用该显示面板的显示设备
US20130300986A1 (en) * 2012-05-11 2013-11-14 Industry-Academic Cooperation Foundation Yonsei University Wire grid polarizer and method for fabricating thereof, liquid crystal display panel and liquid crystal display device having the same
US20140055715A1 (en) * 2012-08-27 2014-02-27 Samsung Display Co., Ltd. Liquid crystal display and fabrication method of the same
CN204215062U (zh) * 2014-12-04 2015-03-18 京东方科技集团股份有限公司 线栅偏光片、显示面板和显示装置
CN104459863A (zh) * 2014-12-04 2015-03-25 京东方科技集团股份有限公司 线栅偏光片及其制备方法、显示面板和显示装置

Also Published As

Publication number Publication date
US20160357063A1 (en) 2016-12-08
US9759947B2 (en) 2017-09-12
CN104459863A (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
WO2016086609A1 (zh) 线栅偏光片及其制造方法、显示面板和显示装置
WO2019179047A1 (zh) 柔性液晶显示面板的制作方法
WO2019184769A1 (zh) 液晶显示面板、其制作方法及显示装置
TWI485494B (zh) 液晶面板及使用該液晶面板的液晶顯示裝置
KR101288835B1 (ko) 액정표시소자 및 그 제조방법
US7440048B2 (en) Method of forming a color filter having various thicknesses and a transflective LCD with the color filter
WO2019061724A1 (zh) Bps型阵列基板及其制作方法
WO2018171079A1 (zh) 主动开关阵列基板及其制造方法与显示面板
WO2018086316A1 (zh) 一种应用于显示面板制程的光罩
WO2018195893A1 (zh) 液晶显示面板及其制造方法与应用的显示装置
EP2722709B1 (en) Color filter substrate, liquid crystal panel, and liquid crystal display device
JP2006098525A (ja) 光学部品及びその製造方法並びに当該方法で製造された光学部品を有する液晶表示装置
JP4220231B2 (ja) 表示パネル用基板製造方法
KR100577797B1 (ko) 반투과형 액정 표시 장치 및 그의 제조 방법
WO2021031396A1 (zh) 显示面板和显示装置
WO2020107537A1 (zh) 显示面板及其制造方法和显示装置
KR20070065065A (ko) 반투과형 액정 표시 장치의 제조 방법
WO2011080968A1 (ja) 液晶パネルの製造方法
WO2007077644A1 (ja) 液晶表示装置
US8277593B2 (en) Printing plate and method of fabricating liquid crystal display device using the same
KR101030536B1 (ko) 액정표시장치용 마스크 및 이를 이용한 패턴스 스페이서 제조방법
KR101182299B1 (ko) 백라이트 유닛 및 그의 제조방법과 상기 백라이트 유닛을구비한 액정표시장치
KR101307964B1 (ko) 액정표시장치 및 그 제조방법
KR100909415B1 (ko) 반투과형 액정표시장치 및 이의 제조 방법
JP2012078744A (ja) 液晶表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14892257

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25.10.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15865385

Country of ref document: EP

Kind code of ref document: A1