WO2018097184A1 - 電解ニッケル(合金)めっき液 - Google Patents

電解ニッケル(合金)めっき液 Download PDF

Info

Publication number
WO2018097184A1
WO2018097184A1 PCT/JP2017/042024 JP2017042024W WO2018097184A1 WO 2018097184 A1 WO2018097184 A1 WO 2018097184A1 JP 2017042024 W JP2017042024 W JP 2017042024W WO 2018097184 A1 WO2018097184 A1 WO 2018097184A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
pyridinium
plating solution
electrolytic
base material
Prior art date
Application number
PCT/JP2017/042024
Other languages
English (en)
French (fr)
Inventor
和也 柴田
祐樹 大平原
Original Assignee
日本高純度化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本高純度化学株式会社 filed Critical 日本高純度化学株式会社
Priority to CN202111570321.1A priority Critical patent/CN114262917A/zh
Priority to JP2018552620A priority patent/JP7021781B2/ja
Priority to US16/349,740 priority patent/US20190330753A1/en
Priority to KR1020197014321A priority patent/KR102442997B1/ko
Priority to CN201780070617.2A priority patent/CN109996907B/zh
Publication of WO2018097184A1 publication Critical patent/WO2018097184A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • C25D3/14Electroplating: Baths therefor from solutions of nickel or cobalt from baths containing acetylenic or heterocyclic compounds
    • C25D3/18Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • C25D7/123Semiconductors first coated with a seed layer or a conductive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • H01L21/2885Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition using an external electrical current, i.e. electro-deposition
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/423Plated through-holes or plated via connections characterised by electroplating method

Definitions

  • the present invention may be referred to as electrolytic nickel plating solution or electrolytic nickel alloy plating solution (hereinafter collectively referred to as “electrolytic nickel (alloy) plating solution”.
  • electrolytic nickel (alloy) plating solution More specifically, the deposited “nickel or nickel alloy” is sometimes referred to as “nickel (alloy)”.
  • nickel (alloy) More specifically, for plating filling of minute holes and minute recesses in electronic components, two or more electronic components are overlapped with each other.
  • the present invention relates to an electrolytic nickel (alloy) plating solution that is particularly suitable for filling a gap in a minute gap generated at the time.
  • the present invention also relates to a method for plating and filling micropores and microrecesses using such electrolytic nickel (alloy) plating solution, a method for manufacturing a micro three-dimensional structure, an electronic component assembly, a method for manufacturing the same, and the like.
  • Electronic circuit components typified by semiconductors and printed circuit boards (hereinafter sometimes simply referred to as “electronic components”) have minute holes such as vias, through holes, trenches, and minute recesses for wiring formation.
  • electronic components Conventionally, in the manufacture of multilayer printed circuit boards in which a plurality of circuit boards are laminated, a staggered via structure in which via walls are conformally copper-plated (follow-up plating) and then connected to other layers in a staggered arrangement has been the mainstream.
  • TSV through silicon via
  • Electrolytic copper plating solution for filling micropores and microrecesses contains multiple additives and fills vias by optimally controlling their concentration balance, but there are no macrovoids of several ⁇ m. Even if it could be filled, there was a problem that micro-voids on the order of nm remained as a side effect of the additive. Copper is a metal whose melting point is not so high (1083 ° C.), and it is well known that recrystallization occurs even when left at room temperature after electrolytic copper plating. As a result of the aggregation of nano-order microvoids in this recrystallization process, there is a problem that macrovoids are formed.
  • Non-Patent Document 1 polyethylene glycol (PEG), which is an additive, is partly incorporated into a copper film, resulting in nano-order microvoids in the copper film. The formation of large voids reaching a diameter of 70 nm is described.
  • PEG polyethylene glycol
  • the copper filling method using an electrolytic copper plating solution has a potential for such problems, and when further miniaturization of the wiring advances, void growth and void movement accompanying microvoid aggregation occur. As a result, a decrease in wiring reliability may become apparent.
  • Non-Patent Document 2 the filling properties in the trenches when various additives are added to the electrolytic nickel plating solution are examined, and the addition of thiourea fills the fine recesses (trench).
  • the filling property with the electrolytic nickel plating solution described in Non-Patent Document 2 is still insufficient, and generation of voids cannot be suppressed. It was found that the structure was defective as a crack.
  • the present invention has been made in view of the above-mentioned background art, and its problem is that, when a minute hole or minute recess in an electronic circuit component is filled with nickel or a nickel alloy, a defect such as a void or a seam is not generated.
  • an electrolytic nickel (alloy) plating solution that can be filled, and to provide a nickel or nickel alloy plating filling method using such an electrolytic nickel (alloy) plating solution and a method of manufacturing a micro three-dimensional structure. It is to provide.
  • the problem of the present invention is that an electrolytic nickel (alloy) plating solution capable of filling a minute gap generated when two or more electronic components are stacked and firmly bonding the electronic components, Another object of the present invention is to provide a method for manufacturing an electronic component assembly using the same.
  • the present inventor has electroplated using an electrolytic nickel plating solution containing a specific N-substituted pyridinium compound, so that the micropores and the microrecesses are formed in the micropores and microrecesses.
  • the present inventors have found that nickel can be filled without generating defects such as voids, and the present invention has been completed.
  • the present invention provides an electrolytic nickel plating solution or an electrolytic nickel alloy plating solution comprising a nickel salt, a pH buffer, and an N-substituted pyridinium compound represented by the following general formula (A). Is.
  • —R 1 is an alkyl group having 1 to 6 carbon atoms, an alkylamino group or a cyanoalkyl group, an amino group (—NH 2 ), or a cyano group.
  • —R 2 is a hydrogen atom, an alkyl or hydroxyalkyl group having 1 to 6 carbon atoms, a vinyl group, a methoxycarbonyl group (—CO—O—CH 3 ), a carbamoyl group (—CO—NH 2 ), dimethylcarbamoyloxy.
  • X ⁇ is any anion.
  • the present invention also provides an electrolytic nickel plating solution or an electrolytic nickel alloy plating solution containing a nickel salt, a pH buffer, and an N-substituted pyridinium compound represented by the following general formula (B). Is.
  • —R 3 represents a hydrogen atom or a hydroxyl group (—OH).
  • —R 4 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a vinyl group or a carbamoyl group (—CO—NH 2 ).
  • m is 0, 1 or 2.
  • the present invention also provides a method for producing a nickel precipitate or nickel alloy precipitate, characterized in that electrolytic plating is performed using the above electrolytic nickel plating solution or electrolytic nickel alloy plating solution.
  • the present invention is characterized in that electrolytic plating is performed using the above electrolytic nickel plating solution or electrolytic nickel alloy plating solution, and the micropores or microrecesses are filled with nickel precipitates or nickel alloy precipitates.
  • the present invention provides a method for manufacturing electronic components.
  • the present invention provides an electrolytic plating seed layer in advance on the surface of a minute hole or minute recess formed in an electronic component, and then immerses the electronic component in the electrolytic nickel plating solution or the electrolytic nickel alloy plating solution.
  • the present invention also provides a method for manufacturing an electronic component in which nickel deposits or nickel alloy deposits are filled in micropores or microrecesses, which are electroplated using an external power source.
  • the present invention provides a method for manufacturing a micro three-dimensional structure, which includes a step of plating and filling micro holes or micro recesses by the above manufacturing method.
  • the present invention provides a method in which two or more electronic components are stacked and the two or more electronic components are placed in the above-described electrolytic nickel plating solution or electrolytic nickel alloy in a state where a minute gap is formed between the electronic components.
  • the present invention provides a method for producing an electronic component assembly, wherein the minute gap is filled by dipping in a plating solution and electrolytic plating using an external power source.
  • the present invention is an electronic component joined body in which two or more electronic components are joined by nickel or a nickel alloy, in the vicinity of a minute gap formed between the electronic components, from other parts. Further, the present invention provides an electronic component joined body in which a large amount of nickel or a nickel alloy is deposited.
  • the present invention is an electronic component joining terminal composed of nickel or a nickel alloy, and the base material having a thickness of 1 mm or less is substantially perpendicular to the base material surface of the base material.
  • a plug portion embedded so as not to penetrate the base material; and a cap portion having an outer diameter larger than the outer diameter of the plug portion and in contact with the plug portion, the outer diameter of the cap portion being 200 ⁇ m or less
  • the cap portion has a shape protruding from the base material surface of the base material, and provides a single-sided electronic component joining terminal.
  • the present invention is an electronic component joining terminal composed of nickel or a nickel alloy, and the base material having a thickness of 1 mm or less is substantially perpendicular to the base material surface of the base material.
  • the outer diameter of each is 200 ⁇ m or less, and the two cap portions are provided so as to protrude from the respective base material surfaces of the base material. is there.
  • the present invention is an electronic component joining terminal composed of nickel or a nickel alloy, and the base material having a thickness of 1 mm or less is substantially perpendicular to the base material surface of the base material.
  • the present invention provides a single-sided electronic component joining terminal comprising a plug portion embedded so as not to penetrate a base material, and having an outer diameter of 100 ⁇ m or less.
  • the present invention is an electronic component joining terminal composed of nickel or a nickel alloy, and the base material having a thickness of 1 mm or less is substantially perpendicular to the base material surface of the base material.
  • the present invention provides a double-sided electronic component bonding terminal characterized by comprising a plug portion embedded so as to penetrate through a base material, and having an outer diameter of 100 ⁇ m or less.
  • the present invention by using nickel plating or nickel alloy plating, it is possible to fill the minute holes or minute recesses in the electronic circuit component without generating defects such as voids and seams.
  • the micropores and the microrecesses can be filled. Therefore, even if the wiring is further miniaturized, defects associated with void aggregation hardly occur and the miniaturization progresses. It can be widely applied to 3D wiring formation and 3D MEMS (Micro Electro Mechanical Systems) parts.
  • nickel can be deposited in minute parts, so that the amount of nickel deposited in the minute gaps generated when electronic parts are stacked can be increased, and the electronic parts can be firmly joined together. Can do.
  • the electrolytic nickel (alloy) plating solution of the present invention (hereinafter sometimes simply referred to as “the plating solution of the present invention”) is a nickel salt, a pH buffer, the following general formula (A) or the following general formula.
  • An N-substituted pyridinium compound represented by (B) is contained.
  • —R 1 is an alkyl group having 1 to 6 carbon atoms, an alkylamino group or a cyanoalkyl group, an amino group (—NH 2 ), or a cyano group.
  • —R 2 is a hydrogen atom, an alkyl or hydroxyalkyl group having 1 to 6 carbon atoms, a vinyl group, a methoxycarbonyl group (—CO—O—CH 3 ), a carbamoyl group (—CO—NH 2 ), dimethylcarbamoyloxy.
  • X ⁇ is any anion.
  • —R 3 represents a hydrogen atom or a hydroxyl group (—OH).
  • —R 4 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a vinyl group or a carbamoyl group (—CO—NH 2 ).
  • m is 0, 1 or 2.
  • nickel salt to be contained in the plating solution of the present invention from the viewpoint of water solubility and filling properties, nickel sulfate, nickel sulfamate, nickel chloride, nickel bromide, nickel carbonate, nickel nitrate, nickel formate, nickel acetate, citric acid Although nickel, nickel borofluoride, etc. are mentioned, it is not limited to these. These may be used alone or in combination of two or more.
  • the total content of the nickel salt is preferably 10 g / L or more and 180 g / L or less, and particularly preferably 50 g / L or more and 130 g / L or less as nickel ions. Within the above range, the nickel deposition rate can be made sufficient, and the micropores and microrecesses can be filled without generating voids.
  • pH buffering agent examples include, but are not limited to, boric acid, metaboric acid, acetic acid, tartaric acid, citric acid, and salts thereof. These may be used alone or in combination of two or more.
  • the total content of the pH buffering agent is preferably 1 g / L or more and 100 g / L or less, particularly preferably 5 g / L or more and 50 g / L or less.
  • the action of the N-substituted pyridinium compound represented by the general formula (A) or the general formula (B) (hereinafter sometimes referred to as “specific N-substituted pyridinium compound”) is difficult to inhibit, The effect of the present invention is maintained.
  • the plating solution of the present invention contains a specific N-substituted pyridinium compound. Due to the action of the specific N-substituted pyridinium compound, the plating solution of the present invention can fill micropores and microrecesses without generating voids.
  • R 1 , R 2 and R 4 in the general formula (A) and the general formula (B) are an alkyl group having 1 to 6 carbon atoms, an alkylamino group, a cyanoalkyl group or a hydroxyalkyl group, R 1 , R 2 and R 4 may be different from each other. Further, the carbon number of R 1 , R 2 and R 4 is preferably 1 to 4, more preferably 1 to 3, and particularly preferably 1 or 2.
  • —R 1 examples include —CH 3 , —CH 2 CH 3 , —CH 2 CN, and the like.
  • —R 2 examples include —H, —CH 3 , —C 2 H 5 , —CH 2 OH, —CH ⁇ CH 2 , —CONH 2 , —CH ⁇ NOH, and the like.
  • X ⁇ include halide ions (chloride ions, bromide ions, iodide ions) and the like.
  • Specific examples of the specific N-substituted pyridinium compound represented by the general formula (A) include 1-methylpyridinium, 1-ethylpyridinium, 1-propylpyridinium, 1-butylpyridinium, 1-pentylpyridinium, 1-hexylpyridinium.
  • Specific examples of the specific N-substituted pyridinium compound represented by the general formula (B) include 1- (3-sulfonatopropyl) pyridinium, 1- (2-sulfonatoethyl) pyridinium, 1- (4-sulfonatobutyl) Pyridinium, 2-vinyl-1- (3-sulfonatopropyl) pyridinium, 3-vinyl-1- (3-sulfonatopropyl) pyridinium, 4-vinyl-1- (3-sulfonatopropyl) pyridinium, 2-methyl -1- (3-sulfonatopropyl) pyridinium, 3-methyl-1- (3-sulfonatopropyl) pyridinium, 4-methyl-1- (3-sulfonatopropyl) pyridinium, 2-ethyl-1- (3 -Sulfonatopropyl) pyridinium, 3-ethyl
  • “1- (3-sulfonatopropyl) pyridinium” is a compound of the general formula (B) in which —R 3 is a hydrogen atom, —R 4 is a hydrogen atom, and m is 1, There are other names such as “propyl) pyridinium hydroxide inner salt”, “1- (3-sulfopropyl) pyridinium”, “PPS” and the like.
  • “2-Vinyl-1- (3-sulfonatopropyl) pyridinium” is a compound of the general formula (B) in which —R 3 is a hydrogen atom, —R 4 is a vinyl group bonded to the ortho position, and m is 1.
  • “1- (2-hydroxy-3-sulfonatopropyl) pyridinium” is a compound of the general formula (B) in which —R 3 is a hydroxyl group, —R 4 is a hydrogen atom, and m is 1.
  • the specific N-substituted pyridinium compound may be used alone or in combination of two or more. Further, the total content of the specific N-substituted pyridinium compound in the plating solution of the present invention is preferably 0.01 g / L or more and 100 g / L or less, and particularly preferably 0.1 g / L or more and 10 g / L or less. Within the above range, the amount of nickel deposited outside the micropores and microrecesses can be increased, and the microholes and microrecesses can be filled without generating voids.
  • the plating solution of the present invention is an electrolytic nickel alloy plating solution
  • the metal ions for alloying with nickel for example, tungsten, molybdenum, cobalt, manganese, iron, zinc, tin, copper, palladium, gold, etc.
  • nickel or nickel alloy film may contain carbon, sulfur, nitrogen, phosphorus, boron, chlorine, bromine or the like.
  • a pit inhibitor, a primary brightener, a secondary brightener, a surfactant, and the like can be added as necessary within a range that does not impair the effects of the present invention.
  • the plating solution of the present invention is particularly suitable for use in filling micropores or microrecesses formed in electronic circuit components, but it should also be used for the production of ordinary nickel (alloy) precipitates. Can do. That is, this invention relates also to the manufacturing method of the nickel deposit or nickel alloy deposit characterized by performing electrolytic plating using said electrolytic nickel plating solution or electrolytic nickel alloy plating solution.
  • the amount of precipitation inside the micropores or microrecesses is larger than the amount of precipitation outside the micropores or microrecesses.
  • nickel or a nickel alloy
  • voids (holes) and seams (grooves) are less likely to be generated inside the minute holes and the minute recesses. For this reason, in combination with the high melting point of nickel, it is expected that an electronic circuit component filled with micropores or microrecesses with the plating solution of the present invention has high reliability.
  • the present invention is characterized in that electroplating is performed using the electrolytic nickel plating solution or the electrolytic nickel alloy plating solution, and the electron in which the micropores or the microrecesses are filled with the nickel deposit or the nickel alloy deposit It also relates to a method for manufacturing the part (ie, a method for filling nickel deposits or nickel alloy deposits).
  • the present invention provides a method in which an electroplating seed layer is preliminarily applied to the surface of the minute holes or minute recesses formed in the electronic component, and then the electronic component is immersed in the electrolytic nickel (alloy) plating solution.
  • the present invention is also a method of manufacturing an electronic component in which nickel deposits or nickel alloy deposits are filled in micropores or microrecesses, which are electroplated using a power source. Furthermore, the present invention is also a method for manufacturing a micro three-dimensional structure including a step of plating and filling micro holes or micro recesses by the above manufacturing method.
  • Microholes or microrecesses are microscopic recesses such as vias, through-holes, and trenches formed in electronic circuit components such as semiconductors and printed boards, and are filled with metal by electrolytic plating or the like. Therefore, the portion functioning as the wiring portion is referred to, and the shape seen from above is not limited. In addition, “micropores” may or may not penetrate.
  • the substrate to be plated there are no particular restrictions on the substrate to be plated. Specifically, glass epoxy materials, BT (Bismaleimide-Triazine) resin materials, polypropylene materials, polyimide materials, ceramic materials, silicon materials, metal materials, glass, which are frequently used as electronic circuit components. Materials and the like.
  • a well-known method can be used suitably.
  • a method by laser processing or ion etching can be used, and minute recesses can be formed with a depth of 100 ⁇ m or less and an aspect ratio of 0.5 or more.
  • a pattern is formed on the surface of the substrate to be plated with a photoresist or the like.
  • the seed layer for electrolytic plating is formed in the base material surface and the inner surface of a micro recessed part.
  • the metal deposition by sputtering, an electroless-plating method, etc. are mentioned.
  • a metal which comprises a seed layer Copper, nickel, palladium etc. can be illustrated.
  • the substrate to be plated is immersed in the electrolytic nickel (alloy) plating solution of the present invention, and electrolytic nickel (alloy) plating is performed using an external power source. Fill with nickel or nickel alloy.
  • electrolytic plating may be performed using the plating solution of the present invention after degreasing and acid cleaning according to a conventional method.
  • filling of micropores or microrecesses means embedding micropores or microrecesses without generating large voids (holes), but when microholes or microrecesses are not completely filled (For example, as shown in FIG. 16 (b), FIG. 19 (c), etc., nickel (alloy) is deposited in the micropores or microrecesses, but there are concave portions)
  • nickel or a nickel alloy is deposited on the outer peripheral edge of the minute recess (in the case of FIG. 16A and the like) is also included in the “filling”.
  • the minimum plating cross-sectional film thickness (X 2 in FIG. 16) inside the micropores or microrecesses 30 is outside the microholes or microrecesses 30. It is possible to make it larger than the maximum plating film thickness (X 1 in FIG. 16) of the peripheral edge portion 31. That is, in the filling method of the present invention, it is possible to increase the amount of nickel (alloy) deposited in the micropores or microrecesses 30.
  • the microholes or microrecesses 30 are completely nickel (alloy) as shown in FIG. It may be buried, or as shown in FIG. 16 (b), it may not be partially buried (it may be a reverse convex shape).
  • a structure can be manufactured.
  • the plating temperature is preferably 30 ° C. or higher, and particularly preferably 40 ° C. or higher. Moreover, 70 degrees C or less is preferable and 60 degrees C or less is especially preferable. Within the above range, the filling properties of the micropores and microrecesses are excellent, and the cost is advantageous.
  • the current density during plating is preferably 0.1 A / dm 2 or more, particularly preferably 1 A / dm 2 or more. Moreover, 10 A / dm 2 or less is preferable and 5 A / dm 2 or less is particularly preferable. Within the above range, the filling properties of the micropores and microrecesses are excellent, and the cost is advantageous.
  • the current density may or may not always be constant during plating filling (for example, the initial current density is lowered and the current density is gradually increased; the pulse current is used; etc.) ). It is preferable that the current density is always constant during plating filling (or constant for most of the time during plating filling) because filling is easy without generating voids.
  • the plating time is preferably 5 minutes or longer, particularly preferably 10 minutes or longer. Moreover, 360 minutes or less are preferable and 60 minutes or less are especially preferable. Within the above range, the filling properties of the micropores and microrecesses are excellent, and the cost is advantageous.
  • the present invention is a method for manufacturing an electronic component assembly, wherein the minute gap is filled by electrolytic plating using an external power source.
  • Electrode means a component that is surface-mounted on an electronic circuit.
  • Electric component assembly refers to an assembly of two or more electronic components joined together.
  • the amount of nickel or nickel alloy deposited increases in the vicinity of such a minute gap. That is, according to the present invention, an electronic component joined body in which two or more electronic components are joined by nickel or a nickel alloy, in the vicinity of a minute gap formed between the electronic components, It is possible to obtain an electronic component joined body in which more nickel or nickel alloy is deposited than the portion.
  • the amount of nickel or nickel alloy deposited is large in the vicinity of the minute gap, so that the joined portion between the electronic components has sufficient strength and high reliability.
  • the plating temperature when producing an electronic component assembly is preferably 30 ° C. or higher, and particularly preferably 40 ° C. or higher. Moreover, 70 degrees C or less is preferable and 60 degrees C or less is especially preferable. Within the above range, the amount of nickel or nickel alloy deposited in the vicinity of the minute gap becomes sufficient, and the joining strength is likely to be improved.
  • the current density when producing an electronic component assembly is preferably 0.1 A / dm 2 or more, and particularly preferably 1 A / dm 2 or more. Moreover, 10 A / dm 2 or less is preferable and 5 A / dm 2 or less is particularly preferable. Within the above range, the amount of nickel or nickel alloy deposited in the vicinity of the minute gap becomes sufficient, and the joining strength is likely to be improved.
  • the current density may or may not always be constant during plating filling (for example, the initial current density is lowered and the current density is gradually increased; the pulse current is used; etc.) ). It is preferable from the viewpoint of bonding strength that the current density is always constant during plating filling (or constant for most of the time during plating filling).
  • the plating time is preferably 5 minutes or longer, particularly preferably 10 minutes or longer. Moreover, 360 minutes or less are preferable and 60 minutes or less are especially preferable. Within the above range, the bonding strength is excellent and the cost is advantageous.
  • the present invention relates to an electron with a small number of voids (holes) embedded in a base material having micropores or microrecesses in a direction substantially perpendicular (60 ° to 90 ° direction) with respect to the base material surface of the base material 11. It also relates to parts joining terminals.
  • the electronic component joining terminal 40 of the present invention is made of nickel or a nickel alloy. By using the electrolytic nickel (alloy) plating solution of the present invention described above, the electronic component joining terminal of the present invention can be easily formed.
  • the electronic component joining terminal 40 of the present invention is embedded in the substrate 11 having a thickness of 1 mm or less.
  • the electronic component joining terminal 40 may be a single-sided electronic component joining terminal (not penetrating the base material 11) as shown in FIG. 17 or FIG. 19, or a double-sided one as shown in FIG. 18 or FIG. It may be an electronic component joining terminal (through the substrate 11).
  • FIG. 17 shows a plug part 41 embedded so as not to penetrate the base material 11 in a direction substantially perpendicular to the base material surface of the base material 11 and a cap part 42 in contact with the plug part 41.
  • This is a single-sided electronic component joining terminal 40 provided.
  • the cap part 42 has a shape protruding from the base material surface of the base material 11, and the outer diameter thereof is larger than the outer diameter of the plug part 41 and is 200 ⁇ m or less.
  • outer diameter means the outer diameter of a circle of equal area (hereinafter referred to as “the outer diameter”). The same applies to the electronic component joining terminal 40 shown in FIGS.
  • FIG. 18 shows a plug part 41 embedded so as to penetrate the base material 11 in a direction substantially perpendicular to the base material surface of the base material 11, and two plugs 41 in contact with both ends of the plug part 41.
  • This is a double-sided electronic component joining terminal 40 having a cap portion 42.
  • Each of the two cap portions 42 has a shape protruding from each base material surface of the base material 11.
  • the outer diameters of the two cap parts 42 are both larger than the outer diameter of the plug part 41 and 200 ⁇ m or less.
  • FIG. 19 shows a single-side electronic component joining terminal 40 including a plug portion 41 embedded so as not to penetrate the base material 11 in a direction substantially perpendicular to the base material surface of the base material 11.
  • the outer diameter of the plug part 41 is 100 ⁇ m or less.
  • the end of the plug part 41 may protrude from the base material surface of the base material 11 as shown in FIG. 19A, or the same as the base material surface of the base material 11 as shown in FIG. 19B. It may be higher, or may be buried more than the base material surface of the base material 11 as shown in FIG.
  • FIG. 20 shows a double-sided electronic component joining terminal 40 comprising a plug portion 41 embedded so as to penetrate the base material 11 in a direction substantially perpendicular to the base material surface of the base material 11.
  • the outer diameter of the plug part 41 is 100 ⁇ m or less.
  • the end of the plug part 41 may protrude from the base material surface of the base material 11 as shown in FIG. 20A, or the same as the base material surface of the base material 11 as shown in FIG. It may be higher or may be buried more than the base material surface of the base material 11 as shown in FIG.
  • the electronic component bonding terminal is also applied to a thinner substrate of 0.8 mm or less or a thinner substrate of 0.5 mm or less. Easy to embed. Also, an electronic component joining terminal having a plug portion with a smaller outer diameter of 70 ⁇ m or less and a smaller outer diameter of 50 ⁇ m or less, or an electronic device having a cap portion with a smaller outer diameter of 150 ⁇ m or less and a smaller outer diameter of 100 ⁇ m or less. Easy to manufacture parts joining terminals.
  • Preferred conditions (plating temperature, current density, etc.) for manufacturing the above-mentioned electronic component joining terminal by performing plating using the electrolytic nickel (alloy) plating solution of the present invention are as described above ⁇ Nickel (alloy) filling
  • the conditions are substantially the same as those described in the section “Method for Manufacturing Electronic Component and Method for Manufacturing Micro Three-Dimensional Structure>.
  • Examples 1-6, Comparative Examples 1-3 A 12 mm square printed circuit board for evaluation (manufactured by Nippon Circuit Co., Ltd.) having a laser via with an aspect ratio of 0.88 ( ⁇ 45 ⁇ m ⁇ 40 ⁇ mD) was used as a model of the minute recess.
  • FIG. 10 A cross-sectional view around the portion to be plated 10 is shown in FIG.
  • a prepreg type buildup resin 12 having a thickness of 60 ⁇ m is laminated
  • a blind via hole (hereinafter sometimes simply referred to as “via hole” or “via”) 14 having a diameter of 45 ⁇ m and a depth of 40 ⁇ m is created by a laser, and the substrate outer surface (the surface of the buildup resin 12) and the inside of the via 14 About 1 ⁇ m of seed layer 15 was formed on the wall surface by electroless copper plating.
  • the evaluation printed circuit board 1 is formed by forming the wiring pattern shown in FIG. 2 with a dry film resist (DFR) 16 having a thickness of 25 ⁇ m and opening a pad (opening) 17 ( ⁇ 190 ⁇ m) having a via 14. It was.
  • DFR dry film resist
  • the white part is the copper plating part and the black part is the dry film resist part.
  • the largest circular portion to which the wiring is connected corresponds to the circular pad 17 ( ⁇ 190 ⁇ m) in FIG.
  • a via hole 14 that is a minute recess shown in FIG. 1 is formed in all of the circular pads 17.
  • An electrolytic nickel plating solution was prepared by dissolving in deionized water so that nickel sulfamate was 600 g / L, nickel chloride was 10 g / L, and boric acid was 30 g / L.
  • the additives shown in Table 1 were added to the electrolytic nickel plating solution so as to have the addition amount shown in Table 1 and dissolved.
  • an appropriate amount of 100 g / L sulfamic acid aqueous solution was added to adjust the pH to 3.6 to prepare the electrolytic nickel plating solution of the present invention.
  • Electrolytic nickel plating was performed on the evaluation printed circuit board 1 in the steps shown in Table 2.
  • the electroless nickel plating step was made to be a current density of 1.0A / dm 2 using an external power source.
  • the plating area was calculated as the surface area including the side surface of the via 14.
  • ⁇ Plating fillability evaluation test> The substrate after plating was buried and fixed in a polishing resin, and the cross-section was polished. The via filling state was observed with a metal microscope.
  • filling properties “ ⁇ ” indicates that no voids (holes) or seams (grooves) are observed inside the via hole when the amount of precipitation inside the via hole is greater than the amount deposited outside the via hole, and “ ⁇ ” otherwise. It was. In addition, the occurrence of cracks (cracks) outside the via hole was observed. The case where the filling property was “ ⁇ ” and no crack was generated was evaluated as “good”, and the other cases were evaluated as “bad”.
  • the amount of precipitated nickel 18 was greater in the inside of the via hole, which is a minute recess than in the outside of the via hole, and was well filled without voids or seams. Further, no cracks were observed outside the via hole.
  • Comparative Example 1 was conformal plating (follow-up plating) in which the amount of deposited nickel 18 was the same inside and outside the via hole, and the filling property was poor.
  • Comparative Example 2 there was a void V having a maximum width of 14 ⁇ m inside the via, and the filling property was poor.
  • Comparative Example 3 there was no void inside the via and the filling property was good, but the deposited part was very brittle and cracks occurred, and after the polishing, the deposited nickel 18 was remarkably peeled at the upper part of the via. . Therefore, it was a poor micro three-dimensional structure.
  • Examples 7-8, Comparative Example 4 As a model of the electronic component to be joined, a copper wire ( ⁇ 0.9 mm) and a copper plate (20 mm ⁇ 20 mm ⁇ 0.3 mmt) with the back surface masked were used.
  • An electrolytic nickel plating solution was prepared by dissolving in deionized water so that nickel sulfamate was 600 g / L, nickel chloride was 10 g / L, and boric acid was 30 g / L.
  • Additives shown in Table 4 were added to the electrolytic nickel plating solution so as to have the addition amounts shown in Table 4 and dissolved.
  • an appropriate amount of 100 g / L sulfamic acid aqueous solution was added to adjust the pH to 3.6 to prepare the electrolytic nickel plating solution of the present invention.
  • FIGS. 13 to 15 show micrographs of cross sections of the electronic component sample (joined body) after plating filling. The evaluation results are shown in Table 6.
  • the electrolytic nickel (alloy) plating solution containing the specific N-substituted pyridinium compound of the present invention can reliably fill micropores or microrecesses in electronic circuit components, and firmly bonds electronic components to each other. Therefore, since it can respond to further miniaturization of wiring, it can be widely applied to three-dimensional wiring formation, three-dimensional MEMS parts, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Chemically Coating (AREA)

Abstract

電子回路部品内の微小孔や微小凹部14をニッケル又はニッケル合金18で充填するに際し、ボイドやシーム等の欠陥を発生させることなく充填することができ、また、2個以上の電子部品を接合する際に、微小間隙部を充填することで、電子部品同士を強固に接合することができる電解ニッケル(合金)めっき液を提供することを課題とする。また、かかる電解ニッケル(合金)めっき液を用いたニッケル又はニッケル合金めっき充填方法、微小三次元構造体の製造方法、電子部品接合体やその製造方法を提供することを課題とする。特定のN置換ピリジニウム化合物を含有する電解ニッケル(合金)めっき液を使用して微小孔や微小凹部14を充填することで、上記課題を解決した。

Description

電解ニッケル(合金)めっき液
 本発明は、電解ニッケルめっき液や電解ニッケル合金めっき液(以下、これらを総称して「電解ニッケル(合金)めっき液」という場合がある。また、電解ニッケル(合金)めっき液を使用することで析出する「ニッケル又はニッケル合金」を「ニッケル(合金)」という場合がある。)に関し、更に詳しくは、電子部品内の微小孔や微小凹部のめっき充填用、2個以上の電子部品同士を重ねた際に生じる微小間隙部のめっき充填用に特に適した電解ニッケル(合金)めっき液に関する。
 また、本発明は、かかる電解ニッケル(合金)めっき液を使用した微小孔や微小凹部のめっき充填方法や、微小三次元構造体の製造方法、電子部品接合体やその製造方法等に関する。
 半導体やプリント基板に代表される電子回路部品(以下、単に「電子部品」という場合がある。)は、配線形成のためのビア、スルーホール、トレンチ等の微小孔や微小凹部を有している。従来複数の回路基板を積層させた多層プリント基板の製造においては、ビアの壁面をコンフォーマル銅めっき(追従めっき)した後に、食い違い配列で他層と接続させるスタガードビア構造が主流であった。しかし、近年の電子機器の小型化、高機能化に伴い、ビアを銅めっきで充填し、そのまま他層を重ねて層間接続させるスタックビア構造による省スペース化が必要不可欠なものとなっている。
 電解銅めっきによる充填技術は半導体製造技術にも適用され、ダマシンプロセスやシリコン貫通電極(TSV:Through Silicon Via)と呼ばれる技術が登場し、ビアを電解銅めっきで充填させて三次元的に配線構造を形成することが可能となってきている。
 微小孔や微小凹部の充填用の電解銅めっき液は、複数の添加剤を含有させ、それらの濃度バランスを最適にコントロールすることでビアを充填しているが、数μm程度のマクロボイドがなく充填できたとしても、添加剤の副作用としてnmオーダーのマイクロボイドが残留するという問題があった。銅は融点がそれほど高くない金属であり(1083℃)、電解銅めっき後の室温放置においても再結晶が起こることは良く知られている。この再結晶過程においてnmオーダーのマイクロボイドが凝集した結果、マクロなボイドを形成してしまうという問題があった。
 例えば、非特許文献1には、添加剤であるポリエチレングリコール(PEG)が銅皮膜中に一部取り込まれ、銅皮膜中にnmオーダーのマイクロボイドが生じ、銅の再結晶過程において、室温放置により、直径70nmに達する大きなボイドを形成することが記載されている。
 従って、電解銅めっき液を使用した銅充填方法はこのような課題を潜在的に抱えていることになり、配線の更なる微細化が進んだ際にはマイクロボイド凝集に伴うボイド成長やボイド移動により、配線信頼性の低下が顕在化するおそれがある。
 そこで、めっき添加剤起因のマイクロボイドが残留したとしても、室温再結晶が起こりにくい高融点金属、特に電子部品の下地めっきとして一般的なニッケル(融点:1455℃)で微小孔や微小凹部を充填することができれば、ボイドの凝集が起きず信頼性の高い配線になり得ると本発明者は推測した。
 電解ニッケルめっきで凹部を充填する試みも検討はされている。
 非特許文献2では、電解ニッケルめっき液に、様々な添加剤を加えた場合のトレンチ内の充填性を検討し、チオ尿素を添加することで微小凹部(トレンチ)が充填されるとしている。
 しかしながら、本発明者らの追試(後述の実施例)によると、非特許文献2に記載の電解ニッケルめっき液での充填性は未だ不十分でありボイドの発生を抑制できず、また、析出物にクラックが入り、構造体として不良であることが判明した。
 電子回路の微細化は、益々進行しており、かかる公知技術では、微小孔・微小凹部の充填性が不十分であり、ボイド等の欠陥やクラック等が発生しないニッケル充填方法の開発が望まれていた。
表面技術 Vol.52, No.1, pp.34-38(2001) エレクトロニクス実装学会誌, Vol.17, No.2, pp.143-148(2014)
 本発明は上記背景技術に鑑みてなされたものであり、その課題は、電子回路部品内の微小孔や微小凹部をニッケル又はニッケル合金で充填するに際し、ボイドやシーム等の欠陥を発生させることなく充填することのできる電解ニッケル(合金)めっき液を提供することにあり、また、かかる電解ニッケル(合金)めっき液を用いたニッケル又はニッケル合金めっき充填方法や、微小三次元構造体の製造方法を提供することにある。
 また、本発明の課題は、2個以上の電子部品同士を重ねた際に生じる微小間隙部を充填することができ、電子部品同士を強固に接合することのできる電解ニッケル(合金)めっき液や、それを使用した電子部品接合体の製造方法を提供することにある。
 本発明者は、上記の課題を解決すべく鋭意検討を重ねた結果、特定のN置換ピリジニウム化合物を含有させた電解ニッケルめっき液を使用して電解めっきすることによって、微小孔や微小凹部内に、ボイド等の欠陥を発生させることなくニッケルを充填することができることを見出し、本発明を完成するに至った。
 すなわち、本発明は、ニッケル塩と、pH緩衝剤と、下記一般式(A)で表されるN置換ピリジニウム化合物を含有することを特徴とする電解ニッケルめっき液又は電解ニッケル合金めっき液を提供するものである。
Figure JPOXMLDOC01-appb-C000003
[一般式(A)において、-Rは、炭素数1~6のアルキル基、アルキルアミノ基若しくはシアノアルキル基、アミノ基(-NH)又はシアノ基である。-Rは、水素原子、炭素数1~6のアルキル基若しくはヒドロキシアルキル基、ビニル基、メトキシカルボニル基(-CO-O-CH)、カルバモイル基(-CO-NH)、ジメチルカルバモイルオキシ基(-O-CO-N(CH)又はアルドキシム基(-CH=NOH)である。Xは任意の陰イオンである。]
 また、本発明は、ニッケル塩と、pH緩衝剤と、下記一般式(B)で表されるN置換ピリジニウム化合物を含有することを特徴とする電解ニッケルめっき液又は電解ニッケル合金めっき液を提供するものである。
Figure JPOXMLDOC01-appb-C000004
[一般式(B)において、-Rは、水素原子又はヒドロキシル基(-OH)である。-Rは、水素原子、炭素数1~6のアルキル基、ビニル基又はカルバモイル基(-CO-NH)である。mは0、1又は2である。]
 また、本発明は、上記の電解ニッケルめっき液又は電解ニッケル合金めっき液を使用して電解めっきを行うことを特徴とするニッケル析出物又はニッケル合金析出物の製造方法を提供するものである。
 また、本発明は、上記の電解ニッケルめっき液又は電解ニッケル合金めっき液を使用して電解めっきを行うことを特徴とする、微小孔又は微小凹部にニッケル析出物又はニッケル合金析出物が充填されている電子部品の製造方法を提供するものである。
 また、本発明は、電子部品内に形成された微小孔又は微小凹部の表面に予め電解めっき用シード層を施した後、該電子部品を上記の電解ニッケルめっき液又は電解ニッケル合金めっき液に浸漬し、外部電源を使用して電解めっきをすることを特徴とする、微小孔又は微小凹部にニッケル析出物又はニッケル合金析出物が充填されている電子部品の製造方法を提供するものである。
 また、本発明は、上記の製造方法により、微小孔又は微小凹部にめっき充填する工程を含むことを特徴とする微小三次元構造体の製造方法を提供するものである。
 また、本発明は、2個以上の電子部品を重ねて、電子部品同士の間に微小間隙部が形成された状態で、該2個以上の電子部品を上記の電解ニッケルめっき液又は電解ニッケル合金めっき液に浸漬し、外部電源を使用して電解めっきすることで該微小間隙部を充填することを特徴とする電子部品接合体の製造方法を提供するものである。
 また、本発明は、2個以上の電子部品がニッケル又はニッケル合金により接合されている電子部品接合体であって、電子部品同士の間に形成された微小間隙部付近には、他の部位よりも多くのニッケル又はニッケル合金が析出していることを特徴とする電子部品接合体を提供するものである。
 また、本発明は、ニッケル又はニッケル合金で構成されている電子部品接合用端子であって、厚さ1mm以下の基材の中に、該基材の基材面に対して略垂直方向に該基材を貫通しないように埋め込まれたプラグ部と、該プラグ部の外径よりも大きい外径を持ち該プラグ部と当接しているキャップ部とを備え、該キャップ部の外径は200μm以下であり、該キャップ部は該基材の基材面より突出した形状となっていることを特徴とする片面の電子部品接合用端子を提供するものである。
 また、本発明は、ニッケル又はニッケル合金で構成されている電子部品接合用端子であって、厚さ1mm以下の基材の中に、該基材の基材面に対して略垂直方向に該基材を貫通するように埋め込まれたプラグ部と、該プラグ部の外径よりも大きい外径を持ち該プラグ部の両端とそれぞれ当接している2つのキャップ部とを備え、2つのキャップ部の外径は何れも200μm以下であり、2つのキャップ部は該基材のそれぞれの基材面より突出した形状となっていることを特徴とする両面の電子部品接合用端子を提供するものである。
 また、本発明は、ニッケル又はニッケル合金で構成されている電子部品接合用端子であって、厚さ1mm以下の基材の中に、該基材の基材面に対して略垂直方向に該基材を貫通しないように埋め込まれたプラグ部からなり、該プラグ部の外径は100μm以下であることを特徴とする片面の電子部品接合用端子を提供するものである。
 また、本発明は、ニッケル又はニッケル合金で構成されている電子部品接合用端子であって、厚さ1mm以下の基材の中に、該基材の基材面に対して略垂直方向に該基材を貫通するように埋め込まれたプラグ部からなり、該プラグ部の外径は100μm以下であることを特徴とする両面の電子部品接合用端子を提供するものである。
 本発明によれば、ニッケルめっき又はニッケル合金めっきを使用することにより、電子回路部品内の微小孔又は微小凹部を、ボイドやシーム等の欠陥を発生させることなく充填することができる。
 本発明では、融点が高く、室温再結晶が起こりにくいニッケルで微小孔や微小凹部を充填できるので、配線の更なる微細化が進んでも、ボイドの凝集に伴う不具合が起こりにくく、微細化が進んでいる三次元配線形成や三次元MEMS(Micro Electro Mechanical Systems)部品等に広く応用することができる。
 また、本発明では、微小部分にニッケルを析出させることができるので、電子部品同士を重ねた際に生じる微小間隙部のニッケル析出量を多くすることができ、電子部品同士を強固に接合することができる。
実施例で使用した評価用プリント基板の被めっき部周辺の断面を示す模式図である。 実施例で使用した評価用プリント基板の表面の配線パターンの写真である。 実施例で使用した評価用電子部品(銅線と銅板)の接合前の断面を示す模式図である。 めっき充填後の基板断面の顕微鏡写真である(実施例1)。 めっき充填後の基板断面の顕微鏡写真である(実施例2)。 めっき充填後の基板断面の顕微鏡写真である(実施例3)。 めっき充填後の基板断面の顕微鏡写真である(実施例4)。 めっき充填後の基板断面の顕微鏡写真である(実施例5)。 めっき充填後の基板断面の顕微鏡写真である(実施例6)。 めっき充填後の基板断面の顕微鏡写真である(比較例1)。 めっき充填後の基板断面の顕微鏡写真である(比較例2)。 めっき充填後の基板断面の顕微鏡写真である(比較例3)。 めっき充填後の銅線と銅板の断面の顕微鏡写真である(実施例7)。 めっき充填後の銅線と銅板の断面の顕微鏡写真である(実施例8)。 めっき充填後の銅線と銅板の断面の顕微鏡写真である(比較例4)。 本発明の方法で微小孔又は微小凹部にニッケル(合金)析出物を充填する際の基材断面の模式図である。 本発明の片面の電子部品接合用端子の一例を示す模式図である。 本発明の両面の電子部品接合用端子の一例を示す模式図である。 本発明の片面の電子部品接合用端子の一例を示す模式図である。 本発明の両面の電子部品接合用端子の一例を示す模式図である。
 以下、本発明について説明するが、本発明は以下の実施の形態に限定されるものではなく、任意に変形して実施することができる。
<電解ニッケル(合金)めっき液>
 本発明の電解ニッケル(合金)めっき液(以下、単に「本発明のめっき液」と略記する場合がある。)は、ニッケル塩と、pH緩衝剤と、下記一般式(A)又は下記一般式(B)で表されるN置換ピリジニウム化合物を含有する。
Figure JPOXMLDOC01-appb-C000005
[一般式(A)において、-Rは、炭素数1~6のアルキル基、アルキルアミノ基若しくはシアノアルキル基、アミノ基(-NH)又はシアノ基である。-Rは、水素原子、炭素数1~6のアルキル基若しくはヒドロキシアルキル基、ビニル基、メトキシカルボニル基(-CO-O-CH)、カルバモイル基(-CO-NH)、ジメチルカルバモイルオキシ基(-O-CO-N(CH)又はアルドキシム基(-CH=NOH)である。Xは任意の陰イオンである。]
Figure JPOXMLDOC01-appb-C000006
[一般式(B)において、-Rは、水素原子又はヒドロキシル基(-OH)である。-Rは、水素原子、炭素数1~6のアルキル基、ビニル基又はカルバモイル基(-CO-NH)である。mは0、1又は2である。]
 本発明のめっき液に含有させるニッケル塩としては、水溶性や充填性の観点から、硫酸ニッケル、スルファミン酸ニッケル、塩化ニッケル、臭化ニッケル、炭酸ニッケル、硝酸ニッケル、ギ酸ニッケル、酢酸ニッケル、クエン酸ニッケル、ホウフッ化ニッケル等が挙げられるが、これらに限定されるものではない。
 これらは、1種単独で用いてもよいし、2種以上を混合して用いてもよい。
 上記ニッケル塩の合計含有量は、ニッケルイオンとして、10g/L以上180g/L以下が好ましく、50g/L以上130g/L以下が特に好ましい。
 上記範囲内であると、ニッケルの析出速度を十分にすることができ、また、ボイドを発生することなく微小孔や微小凹部を充填することができる。
 本発明のめっき液に含有させるpH緩衝剤としては、ホウ酸、メタホウ酸、酢酸、酒石酸、クエン酸や、それらの塩等が挙げられるが、これらに限定されるものではない。
 これらは、1種単独で用いてもよいし、2種以上を混合して用いてもよい。
 pH緩衝剤の合計含有量は、1g/L以上100g/L以下が好ましく、5g/L以上50g/L以下が特に好ましい。
 上記範囲内であると、上記一般式(A)又は一般式(B)で表されるN置換ピリジニウム化合物(以下、「特定N置換ピリジニウム化合物」という場合がある。)の作用を阻害しにくく、本発明の効果が保たれる。
 本発明のめっき液は、特定N置換ピリジニウム化合物を含有する。
 特定N置換ピリジニウム化合物の作用により、本発明のめっき液は、微小孔や微小凹部をボイドの発生なく充填することができる。
 上記一般式(A)及び上記一般式(B)のR、R、Rが、炭素数1~6のアルキル基、アルキルアミノ基、シアノアルキル基又はヒドロキシアルキル基である場合は、該R、R、Rは互いに異なっていてもよい。また、R、R、Rの炭素数は、1~4が好ましく、1~3がより好ましく、1又は2が特に好ましい。
 上記一般式(A)において、-Rの具体例としては、-CH、-CHCH、-CHCN等が挙げられる。
 -Rの具体例としては、-H、-CH、-C、-CHOH、-CH=CH、-CONH、-CH=NOH等が挙げられる。
 Xの具体例としては、ハロゲン化物イオン(塩化物イオン、臭化物イオン、ヨウ化物イオン)等が挙げられる。
 上記一般式(A)で表される特定N置換ピリジニウム化合物の具体例としては、1-メチルピリジニウム、1-エチルピリジニウム、1-プロピルピリジニウム、1-ブチルピリジニウム、1-ペンチルピリジニウム、1-ヘキシルピリジニウム、1-エチル-3-(ヒドロキシメチル)ピリジニウム、1-エチル-4-(メトキシカルボニル)ピリジニウム、1-ブチル-4-メチルピリジニウム、1-ブチル-3-メチルピリジニウム、1-メチルピリジニウム-2-アルドキシム、3-カルバモイル-1-メチルピリジニウム、3-(ジメチルカルバモイルオキシ)-1-メチルピリジニウム(ピリドスチグミン)、1-(シアノメチル)ピリジニウム等のハロゲン化物(塩化物、臭化物、ヨウ化物)等が挙げられる。
 上記一般式(B)において、-Rの具体例としては、-Rと同様のものが挙げられる。
 上記一般式(B)で表される特定N置換ピリジニウム化合物の具体例としては、1-(3-スルホナトプロピル)ピリジニウム、1-(2-スルホナトエチル)ピリジニウム、1-(4-スルホナトブチル)ピリジニウム、2-ビニル-1-(3-スルホナトプロピル)ピリジニウム、3-ビニル-1-(3-スルホナトプロピル)ピリジニウム、4-ビニル-1-(3-スルホナトプロピル)ピリジニウム、2-メチル-1-(3-スルホナトプロピル)ピリジニウム、3-メチル-1-(3-スルホナトプロピル)ピリジニウム、4-メチル-1-(3-スルホナトプロピル)ピリジニウム、2-エチル-1-(3-スルホナトプロピル)ピリジニウム、3-エチル-1-(3-スルホナトプロピル)ピリジニウム、4-エチル-1-(3-スルホナトプロピル)ピリジニウム、2-ビニル-1-(4-スルホナトブチル)ピリジニウム、3-ビニル-1-(4-スルホナトブチル)ピリジニウム、4-ビニル-1-(4-スルホナトブチル)ピリジニウム、2-メチル-1-(4-スルホナトブチル)ピリジニウム、3-メチル-1-(4-スルホナトブチル)ピリジニウム、4-メチル-1-(4-スルホナトブチル)ピリジニウム、2-エチル-1-(4-スルホナトブチル)ピリジニウム、3-エチル-1-(4-スルホナトブチル)ピリジニウム、4-エチル-1-(4-スルホナトブチル)ピリジニウム、4-tert-ブチル-1-(3-スルホナトプロピル)ピリジニウム、2,6-ジメチル-1-(3-スルホナトプロピル)ピリジニウム、3-(アミノカルボニル)-1-(3-スルホナトプロピル)ピリジニウム、1-(2-ヒドロキシ-3-スルホナトプロピル)ピリジニウム、2-ビニル-1-(2-ヒドロキシ-3-スルホナトプロピル)ピリジニウム、3-ビニル-1-(2-ヒドロキシ-3-スルホナトプロピル)ピリジニウム、4-ビニル-1-(2-ヒドロキシ-3-スルホナトプロピル)ピリジニウム、2-メチル-1-(2-ヒドロキシ-3-スルホナトプロピル)ピリジニウム、3-メチル-1-(2-ヒドロキシ-3-スルホナトプロピル)ピリジニウム、4-メチル-1-(2-ヒドロキシ-3-スルホナトプロピル)ピリジニウム、2-エチル-1-(2-ヒドロキシ-3-スルホナトプロピル)ピリジニウム、3-エチル-1-(2-ヒドロキシ-3-スルホナトプロピル)ピリジニウム、4-エチル-1-(2-ヒドロキシ-3-スルホナトプロピル)ピリジニウム等が挙げられる。
 「1-(3-スルホナトプロピル)ピリジニウム」は、一般式(B)において、-Rが水素原子、-Rが水素原子、mが1の化合物であり、「1-(3-スルホプロピル)ピリジニウムヒドロキシド分子内塩」、「1-(3-スルホプロピル)ピリジニウム」、「PPS」等の別名がある。
 「2-ビニル-1-(3-スルホナトプロピル)ピリジニウム」は、一般式(B)において、-Rが水素原子、-Rがオルト位に結合したビニル基、mが1の化合物であり、「1-(3-スルホプロピル)-2-ビニルピリジニウムヒドロキシド分子内塩」、「1-(3-スルホプロピル)-2-ビニルピリジニウムベタイン」、「PPV」等の別名がある。
 「1-(2-ヒドロキシ-3-スルホナトプロピル)ピリジニウム」は、一般式(B)において、-Rがヒドロキシル基、-Rが水素原子、mが1の化合物であり、「1-(2-ヒドロキシ-3-スルホナトプロピル)ピリジニウムヒドロキシド分子内塩」、「1-(2-ヒドロキシ-3-スルホプロピル)ピリジニウムベタイン」、「PPSOH」等の別名がある。
 特定N置換ピリジニウム化合物は、1種単独で用いてもよいし、2種以上を混合して用いてもよい。
 また、本発明のめっき液における特定N置換ピリジニウム化合物の合計含有量は、0.01g/L以上100g/L以下が好ましく、0.1g/L以上10g/L以下が特に好ましい。
 上記範囲内であると、微小孔や微小凹部の外部のニッケル析出量を多くすることができ、微小孔や微小凹部にボイドを発生させることなく充填することができる。
 本発明のめっき液が、電解ニッケル合金めっき液である場合、ニッケルとの合金用の金属イオンについては、例えば、タングステン、モリブデン、コバルト、マンガン、鉄、亜鉛、錫、銅、パラジウム、金等が挙げられる。これらの金属源としては、公知の化合物を使用できる。
 また、金属ではないものの、ニッケル又はニッケル合金皮膜に、炭素、硫黄、窒素、リン、ホウ素、塩素、臭素等を含有してもよい。
 本発明のめっき液には、本発明の効果を阻害しない範囲内で、ピット防止剤、1次光沢剤、2次光沢剤、界面活性剤等を必要に応じて添加することができる。
 本発明のめっき液は、電子回路部品内に形成された微小孔又は微小凹部の充填用として使用するのに特に適しているが、通常のニッケル(合金)析出物の製造用にも使用することができる。
 すなわち、本発明は、上記の電解ニッケルめっき液又は電解ニッケル合金めっき液を使用して電解めっきを行うことを特徴とするニッケル析出物又はニッケル合金析出物の製造方法にも関する。
 後述の実施例のように、本発明のめっき液により、微小孔や微小凹部を充填した場合、微小孔や微小凹部の内部の析出量が、微小孔や微小凹部の外部の析出量よりも多くなり、微小孔や微小凹部にニッケル(又はニッケル合金)を十分に埋め込むことができる。また、微小孔や微小凹部の内部にボイド(穴)やシーム(溝)が発生しにくい。
 このため、ニッケルの融点の高さも相俟って、本発明のめっき液により微小孔や微小凹部を充填した電子回路部品は、高い信頼性を持つことが期待される。
<ニッケル(合金)充填電子部品の製造方法・微小三次元構造体の製造方法>
 本発明は、前記の電解ニッケルめっき液又は電解ニッケル合金めっき液を使用して電解めっきを行うことを特徴とする、微小孔又は微小凹部にニッケル析出物又はニッケル合金析出物が充填されている電子部品の製造方法(すなわち、ニッケル析出物又はニッケル合金析出物の充填方法)にも関する。
 また、本発明は、電子部品内に形成された微小孔又は微小凹部の表面に予め電解めっき用シード層を施した後、該電子部品を前記の電解ニッケル(合金)めっき液に浸漬し、外部電源を使用して電解めっきをすることを特徴とする、微小孔又は微小凹部にニッケル析出物又はニッケル合金析出物が充填されている電子部品の製造方法でもある。
 更に、本発明は、上記製造方法により微小孔又は微小凹部にめっき充填する工程を含むことを特徴とする微小三次元構造体の製造方法でもある。
 「微小孔又は微小凹部」とは、半導体やプリント基板等の電子回路部品内に形成されたビア、スルーホール、トレンチ等の微小な窪んだ部分であり、電解めっき等により、金属を充填されることにより、配線部として機能する部分をいい、上から見た形状は限定されない。また、「微小孔」に関しては、貫通していてもいなくてもよい。
 本発明を実施するには、電子回路部品内の被めっき基板上に、微小孔や微小凹部を形成することが必要である。
 被めっき基材に特に制限はなく、具体的には電子回路部品として多用されるガラスエポキシ材、BT(Bismaleimide-Triazine)レジン材、ポリプロピレン材、ポリイミド材、セラミック材、シリコン材、金属材、ガラス材等が挙げられる。
 被めっき基材に微小孔や微小凹部を形成する方法に制限はなく、公知の方法が適宜使用できる。例えば、レーザー加工やイオンエッチングによる方法が挙げられ、開口部が100μm以下、アスペクト比が0.5以上の深さで微小凹部を形成させることができる。
 その後必要に応じてフォトレジスト等で被めっき基材表面にパターンを形成させる。
 微小凹部を形成した被めっき基材が絶縁基材の場合には、基材表面と微小凹部の内表面に電解めっき用シード層を形成させる。シード層の形成方法に制限はないが、具体的にはスパッタリングによる金属堆積や無電解めっき法等が挙げられる。
 シード層を構成する金属としては特に制限はなく、銅、ニッケル、パラジウム等が例示できる。
 電解めっき用シード層を形成した後に、本発明の電解ニッケル(合金)めっき液に被めっき基材を浸漬し、外部電源を用いて電解ニッケル(合金)めっきを実施し、微小孔や微小凹部に、ニッケル又はニッケル合金を充填する。
 なお、シード層形成後に一度乾燥した被めっき基材にめっきする場合は、常法に従って脱脂、酸洗浄を行った後に、本発明のめっき液を用いて電解めっきすればよい。
 ここで、微小孔や微小凹部の「充填」とは、大きなボイド(穴)を生じることなく微小孔や微小凹部を埋め込むことを意味するが、微小孔や微小凹部が完全には埋まっていない場合(例えば、図16(b)や図19(c)等に示すように、微小孔や微小凹部にニッケル(合金)が析出しているものの、窪んでいる部分が存在する場合)や、微小孔や微小凹部の外側の周縁部にまでニッケル又はニッケル合金が析出する場合(図16(a)等の場合)も「充填」に含まれる。
 本発明の充填方法では、外部電源を使用して電解めっきする際に、微小孔又は微小凹部30内部の最小めっき断面膜厚(図16におけるX)が、微小孔又は微小凹部30の外側の周縁部31のめっき最大断面膜厚(図16におけるX)よりも大きくなるようにすることが可能である。
 すなわち、本発明の充填方法では、微小孔又は微小凹部30内部において、ニッケル(合金)の析出量を多くすることが可能である。
 本発明の充填方法で、微小孔又は微小凹部30内部にニッケル(合金)を充填する際には、図16(a)に示すように、微小孔又は微小凹部30が完全にニッケル(合金)で埋まっていてもよいし、図16(b)に示すように、一部埋まっていなくても(逆凸型の形状となっていても)よい。
 本発明のニッケル又はニッケル合金めっき充填方法により、微小孔又は微小凹部にめっき充填する工程を含む方法により、微小孔や微小凹部がニッケル又はニッケル合金で充填された微小三次元回路配線又は微小三次元構造体を製造することができる。
 めっき温度は、30℃以上が好ましく、40℃以上が特に好ましい。また、70℃以下が好ましく、60℃以下が特に好ましい。
 上記範囲内であると、微小孔や微小凹部の充填性に優れ、コスト的にも有利である。
 めっきの際の電流密度は、0.1A/dm以上が好ましく、1A/dm以上が特に好ましい。また、10A/dm以下が好ましく、5A/dm以下が特に好ましい。
 上記範囲内であると、微小孔や微小凹部の充填性に優れ、コスト的にも有利である。
 また、電流密度は、めっき充填中に常に一定にしてもよいし、一定でなくてもよい(例えば、初期の電流密度を低くし、徐々に電流密度を上げていく;パルス電流とする;等)。
 電流密度は、めっき充填中に常に一定(又は、めっき充填中の大半の時間において一定)とした方が、ボイドを生ずることなく充填しやすく、好ましい。
 めっき時間は、5分以上が好ましく、10分以上が特に好ましい。また、360分以下が好ましく、60分以下が特に好ましい。
 上記範囲内であると、微小孔や微小凹部の充填性に優れ、コスト的にも有利である。
<電子部品接合体及びその製造方法>
 本発明は、2個以上の電子部品を重ねて、電子部品同士の間に微小間隙部が形成された状態で、該2個以上の電子部品を前記の電解ニッケル(合金)めっき液に浸漬し、外部電源を使用して電解めっきすることで該微小間隙部を充填することを特徴とする電子部品接合体の製造方法でもある。
 「電子部品」とは、電子回路上に表面実装される部品をいう。「電子部品接合体」とは、2個以上の電子部品が接合して一体となったものをいう。
 電子部品表面をめっきし、複数の電子部品を接合する(電子部品接合体を作製する)場合、均一にめっき成長してしまうと、電子部品同士の間の微小間隙部付近において、強度が不十分となり、不具合を生じる場合がある。
 本発明の電解ニッケル(合金)めっき液によってめっきした場合、このような微小間隙部付近において、ニッケル又はニッケル合金の析出量が多くなる。
 すなわち、本発明によれば、2個以上の電子部品がニッケル又はニッケル合金により接合されている電子部品接合体であって、電子部品同士の間に形成された微小間隙部付近には、他の部位よりも多くのニッケル又はニッケル合金が析出していることを特徴とする電子部品接合体を得ることができる。
 本発明の電子部品接合体は、微小間隙部付近において、ニッケル又はニッケル合金の析出量が多いので、電子部品同士の接合部分において、十分な強度を有し、信頼性が高い。
 本発明により、電子部品接合体を製造する際のめっき温度は、30℃以上が好ましく、40℃以上が特に好ましい。また、70℃以下が好ましく、60℃以下が特に好ましい。
 上記範囲内であると、微小間隙部付近のニッケル又はニッケル合金の析出量が十分になり、接合強度が向上しやすい。
 本発明により、電子部品接合体を製造する際の電流密度は、0.1A/dm以上が好ましく、1A/dm以上が特に好ましい。また、10A/dm以下が好ましく、5A/dm以下が特に好ましい。
 上記範囲内であると、微小間隙部付近のニッケル又はニッケル合金の析出量が十分になり、接合強度が向上しやすい。
 また、電流密度は、めっき充填中に常に一定にしてもよいし、一定でなくてもよい(例えば、初期の電流密度を低くし、徐々に電流密度を上げていく;パルス電流とする;等)。
 電流密度は、めっき充填中に常に一定(又は、めっき充填中の大半の時間において一定)とした方が、接合強度の点から好ましい。
 めっき時間は、5分以上が好ましく、10分以上が特に好ましい。また、360分以下が好ましく、60分以下が特に好ましい。
 上記範囲内であると、接合強度に優れ、コスト的にも有利である。
<電子部品接合用端子>
 本発明は、微小孔や微小凹部を有する基材の中に、基材11の基材面に対して略垂直方向(60°~90°方向)に埋め込まれた、ボイド(穴)の少ない電子部品接合用端子にも関する。
 本発明の電子部品接合用端子40は、ニッケル又はニッケル合金で構成されている。前記した本発明の電解ニッケル(合金)めっき液を用いることにより、本発明の電子部品接合用端子を形成しやすい。
 本発明の電子部品接合用端子40は、厚さ1mm以下の基材11の中に埋め込まれている。
 電子部品接合用端子40は、図17や図19に示すような片面の(基材11を貫通しない)電子部品接合用端子であってもよいし、図18や図20に示すような両面の(基材11を貫通する)電子部品接合用端子であってもよい。
 図17に示すのは、基材11の基材面に対して略垂直方向に基材11を貫通しないように埋め込まれたプラグ部41と、プラグ部41と当接しているキャップ部42とを備えた片面の電子部品接合用端子40である。
 キャップ部42は、基材11の基材面より突出した形状となっており、その外径はプラグ部41の外径よりも大きく、かつ、200μm以下である。
 なお、プラグ部41やキャップ部42の基材面に平行な断面は、通常は円形状であるが、円形状でない場合、「外径」とは等面積の円の外径を意味する(以下、図18~20に示す電子部品接合用端子40においても同様)。
 図18に示すのは、基材11の基材面に対して略垂直方向に基材11を貫通するように埋め込まれたプラグ部41と、プラグ部41の両端とそれぞれ当接している2つのキャップ部42とを備えた両面の電子部品接合用端子40である。
 2つのキャップ部42はそれぞれ、基材11のそれぞれの基材面より突出した形状となっている。2つのキャップ部42の外径は何れも、プラグ部41の外径よりも大きく、かつ、200μm以下である。
 図19に示すのは、基材11の基材面に対して略垂直方向に基材11を貫通しないように埋め込まれたプラグ部41からなる片面の電子部品接合用端子40である。プラグ部41の外径は100μm以下である。
 プラグ部41の端部は、図19(a)に示すように基材11の基材面から突き出ていてもよいし、図19(b)に示すように基材11の基材面と同じ高さになっていてもよいし、図19(c)に示すように基材11の基材面よりも埋まっていてもよい。
 図20に示すのは、基材11の基材面に対して略垂直方向に基材11を貫通するように埋め込まれたプラグ部41からなる両面の電子部品接合用端子40である。プラグ部41の外径は100μm以下である。
 プラグ部41の端部は、図20(a)に示すように基材11の基材面から突き出ていてもよいし、図20(b)に示すように基材11の基材面と同じ高さになっていてもよいし、図20(c)に示すように基材11の基材面よりも埋まっていてもよい。
 1mm以下というという厚さの基材の中に埋め込まれた、プラグ部41の外径100μm以下、又は、キャップ部42の外径200μm以下というサイズのニッケル(合金)製の電子部品接合用端子を製造するのは、従来の技術では不可能であった。前記した本発明の電解ニッケル(合金)めっき液を使用してめっきを行うことにより、ニッケル(合金)析出物中におけるボイドの発生が抑制され、このようなサイズの電子部品接合用端子を歩留まり良く製造することができる。
 本発明の電解ニッケル(合金)めっき液を使用して電子部品接合用端子の製造を行う場合、0.8mm以下というより薄い基板や、0.5mm以下という更に薄い基板にも電子部品接合用端子を埋め込みやすい。
 また、より外径の小さい70μm以下、更に外径の小さい50μm以下というプラグ部を有する電子部品接合用端子や、より外径の小さい150μm以下、更に外径の小さい100μm以下というキャップ部を有する電子部品接合用端子を製造しやすい。
 電子部品接合用端子40のプラグ部41の中には、最大幅が10μmよりも大きいボイドが存在しないことが好ましい。
 前記した本発明の電解ニッケル(合金)めっき液を用いることにより、このような大きいボイドの無いプラグ部を形成しやすい。
 本発明の電解ニッケル(合金)めっき液を使用してめっきを行うことにより上記の電子部品接合用端子を製造する際の好ましい条件(めっき温度、電流密度等)は前記した<ニッケル(合金)充填電子部品の製造方法・微小三次元構造体の製造方法>の項で述べた条件とほぼ同じである。
 以下に、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明は、その要旨を超えない限りこれらの実施例及び比較例に限定されるものではない。
[微小凹部の充填]
実施例1~6、比較例1~3
 微小凹部のモデルとして、アスペクト比0.88(φ45μm×40μmD)のレーザービアを有した12mm角の評価用プリント基板(日本サーキット株式会社製)を使用した。
 被めっき部周辺10の断面図を図1に示す。厚さ0.4mmのBT(Bismaleimide-Triazine)製の基材11のビアホール形成部分に厚さ12μmの銅箔13を張り付けた上で、厚さ60μmのプリプレグタイプのビルドアップ樹脂12を積層後、レーザーにてφ45μm、深さ40μmのブラインドビアホール(以下、単に「ビアホール」又は「ビア」と略記する場合がある。)14を作成し、基板外表面(ビルドアップ樹脂12の表面)及びビア14内壁面に、無電解銅めっきで、シード層15を約1μm形成した。
 更に、厚さ25μmのドライフィルムレジスト(DFR)16にて、図2に示す配線パターンを形成し、ビア14を有するパッド(開口部)17(φ190μm)を開口させたものを評価用プリント基板1とした。
 図2において、白色部が銅めっき部で、黒色部がドライフィルムレジスト部である。白色部のうち、配線が接続されている最もサイズの大きい円形部分が図1の円形パッド17(φ190μm)に相当する。円形パッド17の全てに、図1に示した微小凹部であるビアホール14が形成されている。
<電解ニッケルめっき液の調製>
 スルファミン酸ニッケルを600g/L、塩化ニッケルを10g/L、ホウ酸を30g/Lとなるように脱イオン水に溶解し、電解ニッケルめっき液を調製した。
 上記電解ニッケルめっき液に対し、表1に示す添加剤を、表1に示す添加量となるように添加し、溶解した。
 次いで100g/Lのスルファミン酸水溶液を適量加えてpHを3.6に調整し、本発明の電解ニッケルめっき液を調製した。
Figure JPOXMLDOC01-appb-T000007
<電解ニッケルめっきによるビアの充填>
 上記評価用プリント基板1に対して、表2に示す工程で、電解ニッケルめっきを行なった。電解ニッケルめっき工程では、外部電源を使用して電流密度1.0A/dmとなるようにした。
 なお、めっき面積は、ビア14の側面を含んだ表面積として計算した。
Figure JPOXMLDOC01-appb-T000008
<めっき充填性評価試験>
 めっき後の基板を研磨用の樹脂に埋没固定後に断面研磨し、金属顕微鏡にてビアの充填具合を観察した。
 充填性について、ビアホール内部の析出量がビアホール外部の析出量よりも多い状態で、ビアホール内部にボイド(穴)やシーム(溝)が観測されない場合を「○」、それ以外の場合を「×」とした。
 また、ビアホール外部におけるクラック(亀裂)の発生の有無を観測した。
 充填性が「○」で、クラックの発生が無い場合を「良好」、それ以外の場合を「不良」と評価した。
 めっき充填後の基板断面の顕微鏡写真を、図4~12に示す。また、評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000009
 実施例1~6では、析出ニッケル18の量は、ビアホール外部よりも微小凹部であるビアホールの内部の方が多く、ボイドやシームがなく良好に充填されていた。また、ビアホールの外部にクラックは観察されなかった。
 比較例1では、ビアホールの内部と外部で、析出ニッケル18の量が同程度なコンフォーマルめっき(追従めっき)であり、充填性は不良であった。
 比較例2では、ビアの内部に最大幅14μmのボイドVが有り、充填性は不良であった。
 比較例3では、ビアの内部にボイドはなく、充填性は良好であるが、析出部が非常に脆く、クラックが発生しており、研磨後にビア上部で析出ニッケル18の著しい剥離が見られた。従って、微小三次元構造体としては不良であった。
 実施例1~6、比較例1~3の結果が示すように、一般式(A)又は一般式(B)で表されるN置換ピリジニウム化合物を含有する電解ニッケルめっき液で電解めっきすることにより、電子部品内に形成された微小孔をニッケルで良好に充填することができ、微小三次元構造体を作成することが可能となった。
[電子部品の接合]
実施例7~8、比較例4
 接合される電子部品のモデルとして、銅線(φ0.9mm)と裏面をマスキングした銅板(20mm×20mm×0.3mmt)を使用した。
 図3に示すように、裏面側をマスキング材22aによりマスキングした銅板22を2枚用意し、2枚の銅板22のマスキングしていない方の面で銅線21を挟み、治具23で固定し、銅線21と銅板22の間に微小間隙部24が形成された電子部品サンプル20を作製した。
<電解ニッケルめっき液の調製>
 スルファミン酸ニッケルを600g/L、塩化ニッケルを10g/L、ホウ酸を30g/Lとなるように脱イオン水に溶解し、電解ニッケルめっき液を調製した。
 上記電解ニッケルめっき液に対し、表4に示す添加剤を、表4に示す添加量となるように添加し、溶解した。
 次いで100g/Lのスルファミン酸水溶液を適量加えてpHを3.6に調整し、本発明の電解ニッケルめっき液を調製した。
Figure JPOXMLDOC01-appb-T000010
<電解ニッケルめっきによる銅線と銅板の接合>
 上記電子部品サンプルを銅線21の線方向とめっき液面が垂直になるよう上記電解ニッケルめっき液に浸漬し、表5に示す工程で、電解ニッケルめっきを行なった。ニッケル陽極は、マスキング材22aの外側に各1枚ずつ対向させた。電解ニッケルめっき工程では、外部電源を使用して電流密度1.0A/dmとなるようにした。
 なお、めっき面積は、銅板22の表面積のみとした。
Figure JPOXMLDOC01-appb-T000011
 <接合性評価試験>
 めっき後の電子部品サンプル(接合体)を研磨用の樹脂に埋没固定後に断面研磨し、金属顕微鏡にて銅線21と銅板22の接合状態を観察した。
 接合性について、銅線21と銅板22が接する微小間隙部24のニッケルめっき厚が他の部分より厚い場合を「○」、それ以外の場合を「×」とした。
 めっき充填後の電子部品サンプル(接合体)の断面の顕微鏡写真を、図13~15に示す。また、評価結果を表6に示す。
Figure JPOXMLDOC01-appb-T000012
 実施例7~8では、析出ニッケル18の量は、銅線21と銅板22が接する微小間隙部24が他の部位より多く、より強固に接合されていた。
 比較例4では、全ての部位でほぼ均一の厚さのめっきであり、接合性は不良であった。
 実施例7~8、比較例4の結果が示すように、一般式(A)又は一般式(B)で表されるN置換ピリジニウム化合物を含有する電解ニッケルめっき液で電解めっきすることにより、微小部品の接合部位がより厚いニッケルでめっきされ、より強固に接合を行うことが可能となった。
 本発明の特定N置換ピリジニウム化合物を含有する電解ニッケル(合金)めっき液は、電子回路部品内の微小孔又は微小凹部を信頼性高く充填することができ、また、電子部品同士を強固に接合することができることから、配線の更なる微細化に対応できるため、三次元配線形成や三次元MEMS部品等に広く応用することができる。
  1  評価用プリント基板
 10  被めっき部周辺
 11  基材
 12  ビルドアップ樹脂
 13  銅箔
 14  ブラインドビアホール
 15  シード層
 16  ドライフィルムレジスト
 17  パッド
 18  析出ニッケル(合金)
  V  ボイド
 20  電子部品サンプル
 21  銅線
 22  銅板
 22a マスキング材
 23  治具
 24  微小間隙部
 30  微小孔・微小凹部
 31  周縁部
 40  電子部品接合用端子
 41  プラグ部
 42  キャップ部

Claims (21)

  1.  ニッケル塩と、pH緩衝剤と、下記一般式(A)で表されるN置換ピリジニウム化合物を含有することを特徴とする電解ニッケルめっき液又は電解ニッケル合金めっき液。
    Figure JPOXMLDOC01-appb-C000001
    [一般式(A)において、-Rは、炭素数1~6のアルキル基、アルキルアミノ基若しくはシアノアルキル基、アミノ基(-NH)又はシアノ基である。-Rは、水素原子、炭素数1~6のアルキル基若しくはヒドロキシアルキル基、ビニル基、メトキシカルボニル基(-CO-O-CH)、カルバモイル基(-CO-NH)、ジメチルカルバモイルオキシ基(-O-CO-N(CH)又はアルドキシム基(-CH=NOH)である。Xは任意の陰イオンである。]
  2.  Xがハロゲン化物イオンである請求項1に記載の電解ニッケルめっき液又は電解ニッケル合金めっき液。
  3.  ニッケル塩と、pH緩衝剤と、下記一般式(B)で表されるN置換ピリジニウム化合物を含有することを特徴とする電解ニッケルめっき液又は電解ニッケル合金めっき液。
    Figure JPOXMLDOC01-appb-C000002
    [一般式(B)において、-Rは、水素原子又はヒドロキシル基(-OH)である。-Rは、水素原子、炭素数1~6のアルキル基、ビニル基又はカルバモイル基(-CO-NH)である。mは0、1又は2である。]
  4.  上記ニッケル塩が、硫酸ニッケル、スルファミン酸ニッケル、塩化ニッケル、臭化ニッケル、炭酸ニッケル、硝酸ニッケル、ギ酸ニッケル、酢酸ニッケル、クエン酸ニッケル及びホウフッ化ニッケルからなる群より選ばれた1種以上である請求項1ないし請求項3の何れかの請求項に記載の電解ニッケルめっき液又は電解ニッケル合金めっき液。
  5.  上記pH緩衝剤が、ホウ酸、メタホウ酸、酢酸、酒石酸及びクエン酸、並びにそれらの塩からなる群より選ばれた1種以上である請求項1ないし請求項4の何れかの請求項に記載の電解ニッケルめっき液又は電解ニッケル合金めっき液。
  6.  一般式(A)で表されるN置換ピリジニウム化合物が、1-メチルピリジニウムのハロゲン化物、1-エチルピリジニウムのハロゲン化物、1-プロピルピリジニウムのハロゲン化物、1-ブチルピリジニウムのハロゲン化物、1-ペンチルピリジニウムのハロゲン化物、1-ヘキシルピリジニウムのハロゲン化物、1-エチル-3-(ヒドロキシメチル)ピリジニウムのハロゲン化物、1-エチル-4-(メトキシカルボニル)ピリジニウムのハロゲン化物、1-ブチル-4-メチルピリジニウムのハロゲン化物、1-ブチル-3-メチルピリジニウムのハロゲン化物、1-メチルピリジニウム-2-アルドキシムのハロゲン化物、3-カルバモイル-1-メチルピリジニウムのハロゲン化物、3-(ジメチルカルバモイルオキシ)-1-メチルピリジニウムのハロゲン化物及び1-(シアノメチル)ピリジニウムのハロゲン化物からなる群より選ばれた1種以上の化合物である請求項2、請求項4又は請求項5に記載の電解ニッケルめっき液又は電解ニッケル合金めっき液。
  7.  一般式(B)で表されるN置換ピリジニウム化合物が、1-(3-スルホナトプロピル)ピリジニウム、1-(2-スルホナトエチル)ピリジニウム、1-(4-スルホナトブチル)ピリジニウム、2-ビニル-1-(3-スルホナトプロピル)ピリジニウム、3-ビニル-1-(3-スルホナトプロピル)ピリジニウム、4-ビニル-1-(3-スルホナトプロピル)ピリジニウム、2-メチル-1-(3-スルホナトプロピル)ピリジニウム、3-メチル-1-(3-スルホナトプロピル)ピリジニウム、4-メチル-1-(3-スルホナトプロピル)ピリジニウム、2-エチル-1-(3-スルホナトプロピル)ピリジニウム、3-エチル-1-(3-スルホナトプロピル)ピリジニウム、4-エチル-1-(3-スルホナトプロピル)ピリジニウム、2-ビニル-1-(4-スルホナトブチル)ピリジニウム、3-ビニル-1-(4-スルホナトブチル)ピリジニウム、4-ビニル-1-(4-スルホナトブチル)ピリジニウム、2-メチル-1-(4-スルホナトブチル)ピリジニウム、3-メチル-1-(4-スルホナトブチル)ピリジニウム、4-メチル-1-(4-スルホナトブチル)ピリジニウム、2-エチル-1-(4-スルホナトブチル)ピリジニウム、3-エチル-1-(4-スルホナトブチル)ピリジニウム、4-エチル-1-(4-スルホナトブチル)ピリジニウム、4-tert-ブチル-1-(3-スルホナトプロピル)ピリジニウム、2,6-ジメチル-1-(3-スルホナトプロピル)ピリジニウム、3-(アミノカルボニル)-1-(3-スルホナトプロピル)ピリジニウム、1-(2-ヒドロキシ-3-スルホナトプロピル)ピリジニウム、2-ビニル-1-(2-ヒドロキシ-3-スルホナトプロピル)ピリジニウム、3-ビニル-1-(2-ヒドロキシ-3-スルホナトプロピル)ピリジニウム、4-ビニル-1-(2-ヒドロキシ-3-スルホナトプロピル)ピリジニウム、2-メチル-1-(2-ヒドロキシ-3-スルホナトプロピル)ピリジニウム、3-メチル-1-(2-ヒドロキシ-3-スルホナトプロピル)ピリジニウム、4-メチル-1-(2-ヒドロキシ-3-スルホナトプロピル)ピリジニウム、2-エチル-1-(2-ヒドロキシ-3-スルホナトプロピル)ピリジニウム、3-エチル-1-(2-ヒドロキシ-3-スルホナトプロピル)ピリジニウム及び4-エチル-1-(2-ヒドロキシ-3-スルホナトプロピル)ピリジニウムからなる群より選ばれた1種以上の化合物である請求項3ないし請求項5の何れかの請求項に記載の電解ニッケルめっき液又は電解ニッケル合金めっき液。
  8.  電子部品内に形成された微小孔若しくは微小凹部、又は電子部品同士を重ねた際に生じる微小間隙部の充填用である請求項1ないし請求項7の何れかの請求項に記載の電解ニッケルめっき液又は電解ニッケル合金めっき液。
  9.  請求項1ないし請求項8の何れかの請求項に記載の電解ニッケルめっき液又は電解ニッケル合金めっき液を使用して電解めっきを行うことを特徴とするニッケル析出物又はニッケル合金析出物の製造方法。
  10.  請求項1ないし請求項8の何れかの請求項に記載の電解ニッケルめっき液又は電解ニッケル合金めっき液を使用して電解めっきを行うことを特徴とする、微小孔又は微小凹部にニッケル析出物又はニッケル合金析出物が充填されている電子部品の製造方法。
  11.  電子部品内に形成された微小孔又は微小凹部の表面に予め電解めっき用シード層を施した後、該電子部品を請求項1ないし請求項8の何れかの請求項に記載の電解ニッケルめっき液又は電解ニッケル合金めっき液に浸漬し、外部電源を使用して電解めっきをすることを特徴とする、微小孔又は微小凹部にニッケル析出物又はニッケル合金析出物が充填されている電子部品の製造方法。
  12.  外部電源を使用して電解めっきする際に、微小孔又は微小凹部内部の最小めっき断面膜厚Xが、微小孔又は微小凹部の外側の周縁部のめっき最大断面膜厚Xよりも大きくなるようにする請求項11に記載の微小孔又は微小凹部にニッケル析出物又はニッケル合金析出物が充填されている電子部品の製造方法。
  13.  請求項10ないし請求項12の何れかの請求項に記載の製造方法により、微小孔又は微小凹部にめっき充填する工程を含むことを特徴とする微小三次元構造体の製造方法。
  14.  2個以上の電子部品を重ねて、電子部品同士の間に微小間隙部が形成された状態で、該2個以上の電子部品を請求項1ないし請求項8の何れかの請求項に記載の電解ニッケルめっき液又は電解ニッケル合金めっき液に浸漬し、外部電源を使用して電解めっきすることで該微小間隙部を充填することを特徴とする電子部品接合体の製造方法。
  15.  2個以上の電子部品がニッケル又はニッケル合金により接合されている電子部品接合体であって、電子部品同士の間に形成された微小間隙部付近には、他の部位よりも多くのニッケル又はニッケル合金が析出していることを特徴とする電子部品接合体。
  16.  ニッケル又はニッケル合金で構成されている電子部品接合用端子であって、厚さ1mm以下の基材の中に、該基材の基材面に対して略垂直方向に該基材を貫通しないように埋め込まれたプラグ部と、該プラグ部の外径よりも大きい外径を持ち該プラグ部と当接しているキャップ部とを備え、該キャップ部の外径は200μm以下であり、該キャップ部は該基材の基材面より突出した形状となっていることを特徴とする片面の電子部品接合用端子。
  17.  ニッケル又はニッケル合金で構成されている電子部品接合用端子であって、厚さ1mm以下の基材の中に、該基材の基材面に対して略垂直方向に該基材を貫通するように埋め込まれたプラグ部と、該プラグ部の外径よりも大きい外径を持ち該プラグ部の両端とそれぞれ当接している2つのキャップ部とを備え、2つのキャップ部の外径は何れも200μm以下であり、2つのキャップ部は該基材のそれぞれの基材面より突出した形状となっていることを特徴とする両面の電子部品接合用端子。
  18.  ニッケル又はニッケル合金で構成されている電子部品接合用端子であって、厚さ1mm以下の基材の中に、該基材の基材面に対して略垂直方向に該基材を貫通しないように埋め込まれたプラグ部からなり、該プラグ部の外径は100μm以下であることを特徴とする片面の電子部品接合用端子。
  19.  ニッケル又はニッケル合金で構成されている電子部品接合用端子であって、厚さ1mm以下の基材の中に、該基材の基材面に対して略垂直方向に該基材を貫通するように埋め込まれたプラグ部からなり、該プラグ部の外径は100μm以下であることを特徴とする両面の電子部品接合用端子。
  20.  上記プラグ部の中に最大幅が10μmよりも大きいボイドが存在しない請求項16ないし請求項19の何れかの請求項に記載の電子部品接合用端子。
  21.  請求項1ないし請求項8の何れかの請求項に記載の電解ニッケルめっき液又は電解ニッケル合金めっき液を用いて形成したものである請求項16ないし請求項20の何れかの請求項に記載の電子部品接合用端子。
PCT/JP2017/042024 2016-11-25 2017-11-22 電解ニッケル(合金)めっき液 WO2018097184A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202111570321.1A CN114262917A (zh) 2016-11-25 2017-11-22 电解镍(合金)镀覆液
JP2018552620A JP7021781B2 (ja) 2016-11-25 2017-11-22 電解ニッケル(合金)めっき液
US16/349,740 US20190330753A1 (en) 2016-11-25 2017-11-22 Nickel (alloy) electroplating solution
KR1020197014321A KR102442997B1 (ko) 2016-11-25 2017-11-22 전해 니켈 (합금) 도금액
CN201780070617.2A CN109996907B (zh) 2016-11-25 2017-11-22 电解镍(合金)镀覆液

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016228876 2016-11-25
JP2016-228876 2016-11-25

Publications (1)

Publication Number Publication Date
WO2018097184A1 true WO2018097184A1 (ja) 2018-05-31

Family

ID=62196029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042024 WO2018097184A1 (ja) 2016-11-25 2017-11-22 電解ニッケル(合金)めっき液

Country Status (6)

Country Link
US (1) US20190330753A1 (ja)
JP (1) JP7021781B2 (ja)
KR (2) KR102442997B1 (ja)
CN (2) CN109996907B (ja)
TW (1) TWI753971B (ja)
WO (1) WO2018097184A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111041533B (zh) * 2019-12-31 2021-06-29 苏州清飙科技有限公司 电镀纯钴用电镀液及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61221394A (ja) * 1985-03-27 1986-10-01 C Uyemura & Co Ltd 電気めつき方法
JPH10245693A (ja) * 1997-03-03 1998-09-14 Murata Mfg Co Ltd ニッケル又はニッケル合金電気メッキ浴、および電気メッキ方法
JP2005187887A (ja) * 2003-12-25 2005-07-14 Ebara Corp めっき方法及びめっき装置
US20050173254A1 (en) * 2004-02-05 2005-08-11 George Bokisa Nickel cobalt boron ternary alloys
JP2008308708A (ja) * 2007-06-12 2008-12-25 Fujikura Ltd めっき形成方法およびめっき処理装置
JP2012195465A (ja) * 2011-03-17 2012-10-11 Canon Inc 貫通電極基板及びその製造方法
JP2013039616A (ja) * 2011-08-15 2013-02-28 Kazumasa Onishi 管の接合方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61221394A (ja) * 1985-03-27 1986-10-01 C Uyemura & Co Ltd 電気めつき方法
JPH10245693A (ja) * 1997-03-03 1998-09-14 Murata Mfg Co Ltd ニッケル又はニッケル合金電気メッキ浴、および電気メッキ方法
JP2005187887A (ja) * 2003-12-25 2005-07-14 Ebara Corp めっき方法及びめっき装置
US20050173254A1 (en) * 2004-02-05 2005-08-11 George Bokisa Nickel cobalt boron ternary alloys
JP2008308708A (ja) * 2007-06-12 2008-12-25 Fujikura Ltd めっき形成方法およびめっき処理装置
JP2012195465A (ja) * 2011-03-17 2012-10-11 Canon Inc 貫通電極基板及びその製造方法
JP2013039616A (ja) * 2011-08-15 2013-02-28 Kazumasa Onishi 管の接合方法

Also Published As

Publication number Publication date
TWI753971B (zh) 2022-02-01
JP7021781B2 (ja) 2022-02-17
CN109996907B (zh) 2022-01-11
KR20180059365A (ko) 2018-06-04
TW201825461A (zh) 2018-07-16
US20190330753A1 (en) 2019-10-31
KR102442997B1 (ko) 2022-09-13
CN109996907A (zh) 2019-07-09
JPWO2018097184A1 (ja) 2019-10-17
CN114262917A (zh) 2022-04-01
KR20190082232A (ko) 2019-07-09

Similar Documents

Publication Publication Date Title
TWI455663B (zh) 具有雙晶銅線路層之電路板及其製作方法
JP2015029027A (ja) プリント配線板
TWI594387B (zh) 於層狀半導體結構形成垂直電氣連接的方法
JP5578697B2 (ja) 銅充填方法
JP2009239188A (ja) プリント配線板の製造方法
JP2014225521A (ja) プリント配線板
TWI521104B (zh) 奈米雙晶鎳金屬層、其製備方法、及包含其之電性連接結構、基板及封裝結構
JPWO2006018872A1 (ja) 銅めっき用添加剤およびこれを用いる電子回路基板の製造方法
US8524512B2 (en) Method for repairing copper diffusion barrier layers on a semiconductor solid substrate and repair kit for implementing this method
WO2018097184A1 (ja) 電解ニッケル(合金)めっき液
JP2004250791A (ja) 電気めっき組成物
WO2017199835A1 (ja) 電解ニッケル(合金)めっき液
JP4354139B2 (ja) 配線基板の製造方法
KR101754913B1 (ko) 요오드 이온을 포함한 구리 전해도금용 전해질 용액 및 이를 이용한 구리 전해도금 방법
JP2014224304A (ja) プリント基板用銅メッキ液組成物およびこれを用いたビアホール充填方法
TWI720679B (zh) 包含溴離子的銅電沉積用電解質溶液及利用該溶液的銅電沉積方法
JP2006339483A (ja) 配線基板の製造方法及び配線基板
JP4472673B2 (ja) 銅配線の製造方法及び銅めっき用電解液
TWI607121B (zh) 銅電鍍液之組成及其電鍍銅塡孔結構
WO2017204019A1 (ja) 電気銅めっき液評価システム、電気銅めっき液評価方法および電気銅めっき液評価用チップ
KR20220063535A (ko) 구리 도금 조성물, 이를 이용한 구리 도금 방법 및 이에 의해 제조된 기판
JP2009239187A (ja) プリント配線板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873342

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018552620

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197014321

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17873342

Country of ref document: EP

Kind code of ref document: A1