WO2018097033A1 - 作業機 - Google Patents

作業機 Download PDF

Info

Publication number
WO2018097033A1
WO2018097033A1 PCT/JP2017/041321 JP2017041321W WO2018097033A1 WO 2018097033 A1 WO2018097033 A1 WO 2018097033A1 JP 2017041321 W JP2017041321 W JP 2017041321W WO 2018097033 A1 WO2018097033 A1 WO 2018097033A1
Authority
WO
WIPO (PCT)
Prior art keywords
control device
main body
tilt angle
determination value
load
Prior art date
Application number
PCT/JP2017/041321
Other languages
English (en)
French (fr)
Inventor
純 深野
敬介 村岡
Masato TAKEDA (竹田 真人)
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN201780072869.9A priority Critical patent/CN110022670B/zh
Priority to US16/342,487 priority patent/US11246261B2/en
Priority to AU2017365566A priority patent/AU2017365566A1/en
Priority to EP17874804.2A priority patent/EP3545744B1/en
Publication of WO2018097033A1 publication Critical patent/WO2018097033A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • A01D34/63Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis
    • A01D34/67Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis hand-guided by a walking operator
    • A01D34/68Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis hand-guided by a walking operator with motor driven cutters or wheels
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • A01D34/63Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis
    • A01D34/67Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis hand-guided by a walking operator
    • A01D34/68Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis hand-guided by a walking operator with motor driven cutters or wheels
    • A01D34/69Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis hand-guided by a walking operator with motor driven cutters or wheels with motor driven wheels
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • A01D34/63Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis
    • A01D34/82Other details
    • A01D34/824Handle arrangements
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • A01D34/63Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis
    • A01D34/82Other details
    • A01D34/826Noise reduction means
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D69/00Driving mechanisms or parts thereof for harvesters or mowers
    • A01D69/02Driving mechanisms or parts thereof for harvesters or mowers electric
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • A01D34/63Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis
    • A01D34/67Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis hand-guided by a walking operator
    • A01D34/68Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis hand-guided by a walking operator with motor driven cutters or wheels
    • A01D2034/6843Control levers on the handle of the mower

Definitions

  • the present invention relates to a walking type working machine, for example, a lawn mower, a mower, a snowplow, a tiller, and the like.
  • a walking type (walk) having a main body having a pair of left and right front wheels and a rear wheel, a blade provided at a lower portion of the main body, a drive source for driving the blade and the rear wheel, and a handle extending rearward and upward from the main body.
  • a (behind type) lawn mower is known (for example, Patent Document 1). Many of such walking type lawn mowers do not include a steering mechanism. Therefore, the operator tilts the main body backward by pushing down the handle to float the front wheel off the ground, and in this state, pushes the handle left and right to change the direction of the main body, and after turning the ground to turn the front wheel, Change the direction.
  • the operator moves the lawn mower straight to mow the lawn in a straight line with a predetermined mowing width, and makes a U-turn by performing the turning operation at the end of the field.
  • the direction and position of the lawn mower can be accurately operated so that the end of the next cutting width overlaps the end of the previous cutting width and the next traveling line is parallel to the previous traveling line.
  • the rear wheels are rotated by the power from the drive source even during the turning operation, a certain level of skill is required for the operator to operate the lawn mower appropriately.
  • the blade is exposed away from the ground during the turning operation, there is a problem that noise due to driving of the blade increases.
  • a working machine such as a walking lawn mower has problems relating to operability at the time of turning operation and merchandise such as noise.
  • an object of the present invention is to improve the merchantability during a turning operation in a walking work machine.
  • one embodiment of the present invention is a walking type work machine, in which a main body provided with a front wheel and a rear wheel, a working part provided on the main body, and the working part are driven.
  • a control device that drives and controls the work motor and the travel motor, and the control device controls the rotation speed of the travel motor when the main body is in the rearward tilt state.
  • the rotation speed of the work motor is set to be lower than that in the case where the front wheel is grounded, or the rotation speed of the work motor is set to be lower than that in the case where the front wheel is grounded.
  • the rotation speed of the rear wheel is reduced, so that the operator can easily turn the work implement.
  • the rotation speed of the blade is reduced, so that noise caused by the blade is reduced.
  • the posture detection unit includes an inclination angle detection unit that detects an inclination angle around the left-right axis of the main body, and the control device has the inclination angle equal to or greater than a predetermined inclination angle determination value.
  • the traveling motor may be set to be slower than the case where the inclination angle is less than the inclination angle determination value.
  • the back tilt state of the main body is detected based on the tilt angle detected by the tilt angle detecting means.
  • the posture detection unit includes an inclination angle detection unit that detects an inclination angle around the left-right axis of the main body, and the control device has the inclination angle equal to or greater than a predetermined inclination angle determination value. And when the inclination angle changes from a predetermined change speed determination value to a predetermined return determination value until the inclination angle is equal to or less than a predetermined return determination value. It is better to make it slower than the case of less than the value.
  • the history when the main body is in the inclination state Can be considered. For example, when the operator pushes down the handle downward and the main body tilts backward, the changing speed of the inclination angle of the main body is large, and the rotation speed of the traveling motor becomes low. On the other hand, when the ground on which the main body travels is inclined and the main body travels on the ground, the main body gradually inclines and the inclination angle becomes equal to or greater than the inclination angle judgment value, so that the rotation speed of the traveling motor is reduced. Don't be.
  • the tilt angle detection means is an acceleration sensor that outputs a signal corresponding to acceleration, and the control device performs a low-pass filter process on the signal from the acceleration sensor to thereby obtain a dynamic component of acceleration. It is preferable that at least a part of the signal corresponding to is removed, and the tilt angle is calculated based on the filtered signal.
  • the inclination angle detecting means can be reduced in size and simplified.
  • the apparatus further includes operation input means for inputting a signal corresponding to an operation of an operator to the control device, and the control device drives the traveling motor based on a signal from the operation input means.
  • operation input means for inputting a signal corresponding to an operation of an operator to the control device
  • the control device drives the traveling motor based on a signal from the operation input means.
  • a filter used for the low-pass filter processing may be changed based on a signal from the operation input means.
  • the filter is changed and the dynamic component detected by the acceleration sensor is detected. Is more reliably removed.
  • control device changes the filter when the acceleration or deceleration of the traveling motor is estimated based on the signal from the operation input means, thereby changing the signal from the acceleration sensor. It is preferable to increase the removal ratio of high frequency components.
  • the dynamic component detected by the acceleration sensor is more reliably removed.
  • the posture detection unit includes a load detection unit that detects a downward load applied to the handle, and the control device performs the traveling when the load is equal to or greater than a predetermined load determination value.
  • the motor may be set at a lower speed than when the load is less than the load determination value.
  • the backward tilt state of the main body can be detected based on the downward load applied to the handle.
  • the posture detection unit includes a load detection unit that detects a downward load applied to the handle, and an inclination angle detection unit that detects an inclination angle of the main body around a left-right axis, and the control
  • the apparatus causes the travel motor to have the load less than the load determination value or the inclination angle equal to the inclination. It is better to set the speed lower than the case of less than the angle judgment value.
  • the backward tilt state of the main body can be detected more reliably based on the downward load applied to the handle and the tilt angle of the main body.
  • the turning operation is facilitated in the walking lawn mower.
  • FIG. 1 The perspective view of the electric lawn mower which concerns on embodiment Cross section of an electric lawn mower according to an embodiment Block diagram showing the configuration of the control device Flow chart showing the procedure of drive control Flow chart showing the procedure of tilt angle calculation
  • the flowchart which shows the procedure of the rotational speed coefficient calculation which concerns on 1st Embodiment.
  • Flow chart showing the procedure for calculating the rotational speed coefficient according to the second embodiment.
  • Flow chart showing the procedure for calculating the rotational speed coefficient according to the third embodiment.
  • the electric lawn mower 1 includes a main body 2, a working unit 3 provided at a lower portion of the main body 2, and a pair of left and right supported rotatably on the main body 2. It has a front wheel 4 and a rear wheel 5 and a handle 6 extending rearward and upward from the main body 2.
  • the working unit 3 has a recess 7 that opens downward in the center of the main body 2, and a blade 3 ⁇ / b> A that is a lawn mowing blade that is rotatably disposed in the recess 7.
  • the main body 2 supports a work motor 8 having a blade 3A coupled to a rotating shaft, and left and right traveling motors 9L and 9R for driving the left and right rear wheels 5.
  • the work motor 8 and the traveling motors 9L and 9R are both electric motors, and the main body 2 is provided with a control device 10 for controlling the motors 8, 9L and 9R.
  • the handle 6 has a side part 12 extending rearward and upward from the left and right of the rear part of the main body 2 and a frame-shaped grip part 13 that connects the rear ends of the side parts 12 to each other.
  • the grip 13 of the handle 6 is provided with an operation input device 14 that receives an operator's input operation.
  • the operation input device 14 includes a travel lever 15 for operating the travel motors 9L and 9R and a work lever 16 for operating the work motor 8.
  • An upper cover 18 that covers the work motor 8, the left and right traveling motors 9 ⁇ / b> L and 9 ⁇ / b> R, and the control device 10 is provided on the top of the main body 2.
  • a battery tray 19 that is recessed in the upper surface of the upper cover 18 receives a detachable battery 20 that supplies electric power to the motors 8 and 9 and the control device 10.
  • a passage (not shown) extending from the recess 7 to the rear surface of the main body 2 is formed in the main body 2, and a glass bag 23 is provided so as to close the open end.
  • the grass cut by the blade 3 ⁇ / b> A is discharged backward from the recess 7 through the passage and is collected in the glass bag 23.
  • the control device 10 is an electronic control circuit (ECU) composed of a microcomputer, ROM, RAM, peripheral circuit, input / output interface, driver, and the like. As shown in FIG. 3, the control device 10 is connected to the battery 20 and receives power supply from the battery 20.
  • the control device 10 includes motor drivers 31, 32, and 33 corresponding to the work motor 8 and the left and right traveling motors 9L and 9R, respectively.
  • the control device 10 supplies the electric power from the battery 20 to the motors 8, 9L, 9R via the motor drivers 31 to 33, and controls the motors 8, 9L, 9R.
  • the control device 10 controls the motor drivers 31, 32, and 33 based on PWM control to change the voltages supplied to the motors 8, 9L, and 9R, and changes the rotation speeds of the motors 8, 9L, and 9R. To do.
  • Rotation angle sensors 34, 35, 36 for detecting the rotation angles of the motors 8, 9L, 9R are provided in the work motor 8 and the left and right traveling motors 9L, 9R, respectively.
  • the rotation angle sensors 34, 35, and 36 output signals corresponding to the rotation angles of the motors 8, 9L, and 9R to the control device 10, and the control device 10 based on the signals, the work motor 8 and the left and right traveling motors 9L. , 9R, respectively.
  • the main body 2 is provided with a load sensor 38 (load detection means) for detecting a downward load applied to the handle 6.
  • the load sensor 38 may be a known strain gauge.
  • the handle 6 is coupled to the main body 2 so as to be displaceable by a minute amount, and the load sensor 38 is interposed at a coupling portion between the main body 2 and the front end of the side portion 12 of the handle 6.
  • the load sensor 38 is arranged so that the load to be detected increases when the operator pushes down the grip 13 of the handle 6 downward.
  • the load sensor 38 outputs a signal corresponding to the downward load applied to the handle 6 to the control device 10, and the control device 10 acquires the downward load applied to the handle 6 based on the signal.
  • the control device 10 has an acceleration sensor 41 as an inclination angle detecting means.
  • the acceleration sensor 41 is, for example, a semiconductor element configured on the substrate of the control device 10 and may be configured by MEMS technology.
  • the acceleration sensor 41 may be a capacitance type or a piezoelectric type acceleration sensor.
  • the acceleration sensor 41 is a three-axis acceleration sensor that outputs signals corresponding to the longitudinal (X-axis) acceleration, the left-right (Y-axis) acceleration, and the vertical (Z-axis) acceleration of the main body 2.
  • the signal output from the acceleration sensor 41 includes a low-frequency static component (DC acceleration) caused by gravity acceleration and a high-frequency dynamic component (AC acceleration) caused by displacement of the main body 2.
  • DC acceleration low-frequency static component
  • AC acceleration high-frequency dynamic component
  • the control device 10 detects the posture of the main body 2 based on a signal from at least one of the acceleration sensor 41 and the load sensor 38.
  • Each of the acceleration sensor 41 and the load sensor 38 constitutes posture detection means.
  • the travel lever 15 and the work lever 16 are provided so as to be rotatable with respect to the handle 6, respectively.
  • the operation position close to the grip portion 13 can be taken.
  • the operation input device 14 outputs a travel command signal corresponding to the position of the travel lever 15 to the control device 10, and outputs a blade rotation command signal corresponding to the position of the work lever 16 to the control device 10.
  • the travel command signal is a value corresponding to 0% when the travel lever 15 is in the initial position, and a value corresponding to 100% when the travel lever 15 is in the operation position, so that the value gradually increases from the initial position to the travel position.
  • the blade rotation command signal is a value corresponding to 0% when the work lever 16 is in the initial position, and a value corresponding to 100% when the operation lever 16 is in the operation position, and is a value from the initial position to the travel position. Is set to increase gradually.
  • the operator grips the gripping portions of the travel lever 15 and the work lever 16 together with the gripping portion 13 of the handle 6 during the lawn mowing work, and positions the travel lever 15 and the work lever 16 at the operation position.
  • the operation input device 14 has a traveling speed input unit 42 for accepting an input operation by the operator regarding the traveling speed of the electric lawn mower 1.
  • the traveling speed input unit 42 is a lever or a dial that can be displaced with respect to the main body of the operation input device 14, and the operation input device 14 outputs a signal corresponding to the position of the traveling speed input unit 42 to the control device 10.
  • the control device 10 Based on the signal from the operation input device 14, the control device 10 acquires the requested rotational speeds of the travel motors 9 ⁇ / b> L and 9 ⁇ / b> R corresponding to the travel speed requested by the operator.
  • the operation input device 14 has a blade rotation speed input unit 43 for receiving an input operation by the operator regarding the rotation speed of the blade 3A.
  • the blade rotation speed input unit 43 is a lever, dial, push button, or the like that can be displaced with respect to the main body of the operation input device 14, and the operation input device 14 sends a signal corresponding to the position of the blade rotation speed input unit 43 to the control device. 10 is output. Based on the signal from the operation input device 14, the control device 10 acquires the requested rotation speed of the work motor 8 corresponding to the operator's requested blade rotation speed.
  • the control device 10 executes the drive control shown in FIG. 4, the tilt angle calculation control shown in FIG. 5, and the rotation speed coefficient calculation shown in FIG. 6 in parallel.
  • the control device 10 first determines whether or not the value of the blade rotation command signal Kb is greater than 0% in the drive control shown in FIG. 4 (step S1). When the value of the blade rotation command signal is greater than 0% (when the blade rotation command signal is ON), the control device 10 calculates the target rotation speed Rb_t of the work motor 8 in step S2.
  • the target rotational speed Rb_t of the work motor 8 is obtained by multiplying the required rotational speed Rb_r of the work motor 8 by a value Kb of the blade rotation command signal and a rotational speed coefficient K1 calculated by a rotational speed coefficient calculation (FIG. 6) described later.
  • Rb_t Rb_r ⁇ Kb ⁇ K1).
  • the rotational speed coefficient K1 is a value greater than 0 and less than or equal to 1.
  • the control device 10 drives the work motor 8 by controlling the work motor driver 31 based on the target rotational speed Rb_t of the work motor 8 in step S3 following step S2. At this time, the control device 10 performs feedback control based on the signal from the work motor rotation angle sensor 34 so that the rotation speed of the work motor 8 becomes the target rotation speed Rb_t.
  • step S4 When the value of the blade rotation command signal is 0% in the determination in step S1 (when the blade rotation command signal is OFF), the control device 10 proceeds to step S4 and stops the work motor 8.
  • control device 10 determines whether or not the value of the travel command signal is greater than 0% in step S5 following step S3 or S4. When the value of the travel command signal is greater than 0% (when the travel command signal is ON), control device 10 calculates target rotational speed Rs_t of travel motors 9L and 9R in step S6.
  • step S7 following step S6, the control device 10 controls the travel motor drivers 32 and 33 based on the target rotational speed Rs_t of the travel motors 9L and 9R to drive the travel motors 9L and 9R. At this time, the control device 10 performs feedback control based on the signals of the traveling motor rotation angle sensors 35 and 36 so that the rotational speeds of the traveling motors 9L and 9R become the target rotational speed Rs_t.
  • step S5 When the value of the travel command signal is 0% in the determination in step S5 (when the travel command signal is OFF), the control device 10 proceeds to step S8 and stops the travel motors 9L and 9R. After performing the processing of step S7 or S8, the control device 10 proceeds to return and repeats drive control.
  • the control device 10 first determines whether or not the traveling motors 9L and 9R are accelerating or decelerating in the tilt angle calculation shown in FIG. 5 (step S11). In the present embodiment, the control device 10 performs the determination in step S11 based on the value of the travel command signal. Specifically, the control device 10 determines whether or not it is within a predetermined period after detecting an increase or decrease in the value of the travel command signal.
  • the travel motors 9L and 9R have their rotational speed controlled based on the value of the travel command signal in step S5 described above. Therefore, the travel motors 9L and 9R run within a predetermined period after the increase or decrease in the value of the travel command signal occurs. It can be estimated that 9L and 9R are accelerating or decelerating.
  • step S11 When it is determined in step S11 that the main body 2 is accelerating or decelerating (Yes), the control device 10 uses the low-pass filter A in step S12 to detect the signal from the acceleration sensor 41. If it is determined that the vehicle is not accelerating or decelerating (No), the low-pass filter process is performed on the signal from the acceleration sensor 41 using the low-pass filter B in step S13. The control device 10 may perform a moving average process on the signal from the acceleration sensor 41 before or after the low-pass filter process in steps S12 and S13. Through the low-pass filter processing in steps S12 and S13, a part of the dynamic component of acceleration, which is a high-frequency component, is removed from the signal from the acceleration sensor 41, and a static component due to gravity is extracted.
  • the low-pass filter A used in step S12 has a cut-off frequency set lower than that of the low-pass filter B used in step S12, and a high frequency component removal ratio is large. That is, by using the low-pass filter A, the signal from the acceleration sensor 41 has a higher dynamic component removal ratio corresponding to the high-frequency component than when the low-pass filter B is used, and is caused by the travel of the main body 2. The dynamic component of acceleration is more reliably removed.
  • step S14 the control device 10 performs low-pass filter processing, and based on the signal from the acceleration sensor 41 from which the static acceleration component is extracted, the control device 10 rotates about the left and right axis (Y axis) of the main body 2.
  • An inclination angle (pitch angle) with respect to a horizontal plane is calculated.
  • the calculation of the tilt angle may be performed, for example, by multiplying the value of the signal of the acceleration sensor 41 by a predetermined coefficient based on the previously confirmed relationship between the value of the signal of the acceleration sensor 41 and the tilt angle.
  • the control device 10 proceeds to return and repeats the tilt angle calculation control.
  • control device 10 acquires the tilt angle calculated in the tilt angle calculation control in the first step S21 in the rotation speed coefficient calculation shown in FIG. In subsequent step S22, control device 10 determines whether or not the absolute value of the tilt angle is equal to or greater than a predetermined tilt angle determination value.
  • the inclination angle determination value may be set to a value that can determine the rearward inclination state of the main body 2 with the rear wheel 5 in contact with the ground and the front wheel 4 away from the ground, for example, 5 ° to 70 °.
  • step S23 the control device 10 determines in step S23 whether or not the absolute value of the change speed of the tilt angle is equal to or greater than a predetermined change speed determination value.
  • the absolute value of the change rate of the inclination angle is relatively large when the operator depresses the handle 6 and intentionally puts the main body 2 into the rearward inclination state, and the electric lawn mower 1 travels gradually on the inclined ground.
  • the change speed judgment value is set so that these can be distinguished.
  • the control device 10 sets a predetermined value greater than 0 and less than 1 in the rotation speed coefficient K1 in step S24.
  • step S25 the control device 10 acquires again the tilt angle calculated in the tilt angle calculation control, and updates the tilt angle.
  • step S26 following step S25 the control device determines whether or not the absolute value of the tilt angle is equal to or smaller than a predetermined return determination value.
  • the return determination value is set to a value equal to or smaller than the inclination angle determination value, and is preferably set to 1 ° to 10 °, for example.
  • the control device 10 returns to step S25 and repeats the processes in steps S25 and S26 until the determination in step S26 becomes Yes.
  • the control apparatus 10 sets 1 to the rotational speed coefficient K1 in step S27, when the determination of step S26 is Yes, the determination of step S22 is No, or the determination of step S23 is No. After performing the process of step S27, the control device 10 proceeds to return and repeats the rotation speed coefficient calculation.
  • the electric lawn mower 1 When the control device 10 executes the control flow shown in FIGS. 4 to 6, the electric lawn mower 1 operates as follows. In the electric lawn mower 1, when the operator displaces the work lever 16 toward the operation position, that is, when the operation lever 16 is turned on, the work motor 8 is driven to rotate the blade 3 ⁇ / b> A so that lawn mowing is possible. Further, the electric lawn mower 1 allows the traveling motors 9L and 9R to be driven and the rear wheels 5 to rotate when the traveling lever 15 is displaced toward the operation position, that is, when the traveling lever 15 is turned on, and the forward lawn can be moved forward. Become. In normal lawn mowing work, the operator holds the traveling lever 15 and the work lever 16 together with the gripping part 13 of the handle 6 to position the traveling lever 15 and the work lever 16 at the operation position.
  • the rotational speeds of the traveling motors 9L and 9R corresponding to the traveling speed of the electric lawn mower 1 correspond to the required rotational speed Rs_r of the traveling motors 9L and 9R determined by the operation of the traveling speed input unit 42 by the operator and the position of the traveling lever 15. Determined based on the travel command signal Ks and the rotation speed coefficient K1.
  • the rotation speed Rb_t of the work motor 8 corresponding to the rotation speed of the blade 3A corresponds to the required rotation speed Rb_r of the work motor 8 determined by the operation of the blade rotation speed input unit 43 by the operator and the position of the work lever 16. It is determined based on the blade rotation command signal Kb and the rotation speed coefficient K1.
  • the control device 10 When the absolute value of the inclination angle of the main body 2 of the electric lawn mower 1 calculated based on the detection signal of the acceleration sensor 41 is less than a predetermined inclination angle determination value, the control device 10 performs the front wheel 4 and the rear wheel 5. Is set to 1 for the rotation speed coefficient K1.
  • the control device 10 sets the rotational speed coefficient K1 to 0. A value larger than 1 is set (steps S22 to S24).
  • the absolute value of the tilt angle of the main body 2 is equal to or greater than the tilt angle determination value, it is estimated that the main body 2 is in the backward tilt state, and when the absolute value of the change speed of the tilt angle is equal to or greater than the change speed determination value, It is estimated that the tilted state is caused by the operator pushing down the handle 6.
  • a backward tilted state that is, a state where the operator intentionally separates the front wheel 4 from the ground to turn the main body 2, that is, the main body 2 is in a turning state.
  • the change speed of the inclination angle does not exceed the change speed judgment value, so that it is distinguished from the turning state.
  • the rotational speed coefficient is set to a value larger than 0 and smaller than 1 (step S25), so the target rotational speed of the work motor 8 is set.
  • Rb_t and the target rotational speed Rs_t of the traveling motors 9L and 9R are lower than the normal state when K1 is 1. Thereby, in the turning state, the rotational speeds of the traveling motors 9L and 9R are reduced, and the turning operation of the electric lawn mower 1 by the operator is facilitated. Further, since the rotational speed of the work motor 8 is reduced in the turning state, noise caused by the blade 3A is suppressed even if the blade 3A is exposed to the outside due to the rearward tilt of the main body 2.
  • step S25 to S27 The speed reduction of the work motor 8 and the traveling motors 9L and 9R in the turning state is maintained until the inclination angle of the main body 2 becomes smaller and the absolute value of the inclination angle becomes equal to or less than the return determination value (steps S25 to S27).
  • the control device 10 estimates the acceleration or deceleration of the main body 2 in the front-rear direction, and when it is accelerating or decelerating, the cutoff frequency of the filter used for the low-pass filter processing is higher than when stopping or driving at a constant speed. Is lowered (steps S11 to S13). Thereby, the dynamic component of the acceleration detected by the acceleration sensor 41 is surely removed, and the tilt angle can be calculated based on the static component. Since the control device 10 detects whether the main body 2 is accelerated or decelerated in the front-rear direction based on a change in the travel command signal, the response is quick and the calculation accuracy of the tilt angle is improved.
  • the electric lawn mower 1 according to the second to fourth embodiments differs from the electric lawn mower 1 according to the first embodiment only in the rotation speed coefficient calculation executed by the control device 10.
  • the control device 10 determines whether or not the absolute value of the tilt angle is equal to or greater than a predetermined tilt angle determination value in the first step S31 in the calculation of the rotational speed coefficient. If the determination in step S31 is Yes, the control device 10 sets a predetermined value greater than 0 and less than 1 in step S32, and if the determination is No, the control apparatus 10 sets 1 in the rotation speed coefficient K1. Set. After performing the process of step S32 or S33, the control device 10 proceeds to return and repeats the rotation speed coefficient calculation. As described above, the rotation speed coefficient calculation may set the rotation speed coefficient based only on the inclination angle. In this case, the rotation speed coefficient calculation is simplified.
  • the control device 10 has a downward load applied to the handle 6 detected by the load sensor 38 in the first step S ⁇ b> 41 in the rotation speed coefficient calculation equal to or greater than a predetermined load determination value. It is determined whether or not there is.
  • the load determination value is set to a value that is estimated to cause the main body 2 to be tilted backward when the load is equal to or greater than that value. If the determination in step S41 is Yes, the control device 10 sets a predetermined value larger than 0 and smaller than 1 in step S42. If the determination is No, the control device 10 sets 1 in the rotation speed coefficient K1. Set. After performing the processing of step S42 or S43, the control device 10 proceeds to return and repeats the rotation speed coefficient calculation. Thus, the rotation speed coefficient calculation may set the rotation speed coefficient based on the downward load applied to the handle 6.
  • the control device 10 has a downward load applied to the handle 6 detected by the load sensor 38 in the first step S ⁇ b> 51 in the rotation speed coefficient calculation equal to or greater than a predetermined load determination value. It is determined whether or not there is.
  • the control device 10 determines in step S52 whether or not the absolute value of the inclination angle is greater than or equal to a predetermined inclination angle determination value.
  • the control device 10 sets a predetermined value greater than 0 and less than 1 in the rotation speed coefficient K1 in step S53.
  • the control device 10 sets 1 to the rotation speed coefficient K1 in step S54.
  • the control device 10 After performing the process of step S53 or S54, the control device 10 proceeds to return and repeats the rotation speed coefficient calculation.
  • the rotation speed coefficient calculation may set the rotation speed coefficient based on the inclination angle and the downward load applied to the handle 6. In this case, the control device 10 can more reliably detect the backward tilt state of the main body 2.
  • the rotation speed coefficient K1 is a common value for the work motor 8 and the travel motors 9L, 9R. However, the rotation speed coefficient K1 is set to a different value for the work motor 8 and the travel motors 9L, 9R. May be.
  • control device 10 is configured to reduce the target rotation speed by multiplying the rotation speed coefficient K1 having a value smaller than 1 when the backward tilt state is detected. Then, the control device 10 may reduce the target rotation speed by setting the deceleration amount when the backward tilt state is detected and reducing the deceleration amount with respect to the base value of the target rotation speed. In another embodiment, the control device 10 may reduce the target rotation speed by setting an upper limit speed and setting the target rotation speed to the upper limit speed when detecting the backward tilt state.
  • the above embodiment is an example in which the present invention is applied to a lawn mower, but the present invention can be similarly applied to a mower, a snowplow, and a field cultivator.
  • the blade 3A is replaced with a blade suitable for mowing when applied to a mower, the blade 3A is replaced with an auger suitable for snow removal when applied to a snowplow, and the blade 3A is plowed when applied to a field cultivator. Replace with a suitable tillage nail.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Harvester Elements (AREA)

Abstract

【課題】 歩行型の芝刈機において、旋回操作時における商品性を向上させる。 【解決手段】 歩行型の作業機1であって、前輪4及び後輪5が設けられた本体2と、本体に設けられた作業部3と、ブレードを回転させる作業モータ8と、後輪を回転させる走行モータ9L、9Rと、本体に設けられ、後方かつ上方に延びたハンドルと、後輪が接地し、かつ前輪が地面から離れた本体の後傾状態を検出する姿勢検出手段41と、作業モータ及び走行モータを駆動制御する制御装置20とを有し、制御装置は、本体が後傾状態であるときに、走行モータの回転速度を前輪が接地した場合よりも低速にする、又は作業モータの回転速度を前輪が接地した場合よりも低速にする。

Description

作業機
 本発明は、歩行型の作業機に関し、例えば芝刈機や草刈機、除雪機、耕耘機等に関する。
 左右一対の前輪及び後輪を備えた本体と、本体の下部に設けられたブレードと、ブレード及び後輪を駆動する駆動源と、本体から後方かつ上方に延びたハンドルとを有する歩行型(ウォークビハインド式)の芝刈機が公知である(例えば、特許文献1)。このような歩行型の芝刈機の多くは、操舵機構を備えていない。そのため、作業者は、ハンドルを押し下げることによって本体を後傾させて前輪を地面から浮かし、その状態でハンドルを左右に押して本体の向きを変え、方向を定めた後に前輪を接地させる旋回操作によって本体の向きを変える。
特開2011-206018号公報
 上記の芝刈機による芝刈作業では、作業者は芝刈機を直進させて所定の刈り幅で直線状に芝を刈り、フィールドの端において上記の旋回操作によって芝刈機をUターンさせる。このとき、次の刈り幅の端部が前回の刈り幅の端部と重なり、かつ次の走行ラインが前回の走行ラインと平行になるように芝刈機の向き及び位置を精度良く操作することが好ましい。しかし、旋回操作時にも後輪は駆動源からの動力を受けて回転しているため、芝刈機を適切に操作するためには作業者にある程度の技量が求められる。また、旋回操作時にはブレードが地面から離れて露出するため、ブレードの駆動による騒音が大きくなるという問題がある。このように、歩行型の芝刈機等の作業機には旋回操作時における操作性や騒音等の商品性に関わる問題がある。
 本発明は、以上の背景を鑑み、歩行型の作業機において、旋回操作時における商品性を向上させることを課題とする。
 上記課題を解決するために本発明の一態様は、歩行型の作業機であって、前輪及び後輪が設けられた本体と、前記本体に設けられた作業部と、前記作業部を駆動する作業モータと、前記後輪を回転させる走行モータと、前記本体に設けられ、後方かつ上方に延びたハンドルと、前記後輪が接地し、かつ前記前輪が地面から離れた前記本体の後傾状態を検出する姿勢検出手段と、前記作業モータ及び前記走行モータを駆動制御する制御装置とを有し、前記制御装置は、前記本体が前記後傾状態であるときに、前記走行モータの回転速度を前記前輪が接地した場合よりも低速にする、又は前記作業モータの回転速度を前記前輪が接地した場合よりも低速にすることを特徴とする。
 この態様によれば、本体の後傾状態が検出されるときには、後輪の回転速度が低下することによって、作業者による作業機の旋回操作が容易になる。又は、本体の後傾状態が検出されるときには、ブレードの回転速度が低下するため、ブレードによる騒音が低減される。
 また、上記の態様において、前記姿勢検出手段は、前記本体の左右軸回りの傾斜角を検出する傾斜角検出手段を有し、前記制御装置は、前記傾斜角が所定の傾斜角判定値以上の場合に、前記走行モータを前記傾斜角が前記傾斜角判定値未満の場合よりも低速にするとよい。
 この態様によれば、本傾斜角検出手段が検出する傾斜角に基づいて本体の後傾状態が検出される。
 また、上記の態様において、前記姿勢検出手段は、前記本体の左右軸回りの傾斜角を検出する傾斜角検出手段を有し、前記制御装置は、前記傾斜角が所定の傾斜角判定値以上であり、かつ前記傾斜角の変化速度が所定の変化速度判定値以上になったときから前記傾斜角が所定の復帰判定値以下になるまでの間、前記走行モータを前記傾斜角が前記傾斜角判定値未満の場合よりも低速にするとよい。
 この態様によれば、走行モータの回転速度を低速にすべき状態を判定するときに、傾斜角だけではなく、傾斜角の変化速度も考慮するため、本体がその傾斜状態になったときの履歴を考慮することができる。例えば、作業者がハンドルを下方に押し下げて本体が後傾した場合には、本体の傾斜角の変化速度が大きく、走行モータの回転速度が低速になる。一方、本体が走行する地面が傾斜しており、本体が地面上を走行することによって本体が徐々に傾斜して傾斜角が傾斜角判定値以上になる場合には走行モータの回転速度は低速にならない。
 また、上記の態様において、前記傾斜角検出手段は、加速度に対応する信号を出力する加速度センサであり、前記制御装置は、前記加速度センサからの信号をローパスフィルタ処理することによって加速度の動的成分に対応した信号の少なくとも一部を除去し、フィルタ処理した信号に基づいて前記傾斜角を演算するとよい。
 この態様によれば、傾斜角検出手段の小型化及び簡素化が可能になる。
 また、上記の態様において、作業者の操作に対応した信号を前記制御装置に入力する操作入力手段を更に有し、前記制御装置は、前記操作入力手段からの信号に基づいて前記走行モータを駆動制御する共に、前記操作入力手段からの信号に基づいて前記ローパスフィルタ処理に使用するフィルタを変更するとよい。
 この態様によれば、操作入力手段からの操作信号に基づいて、走行モータが加速又は減速して本体に前後加速度が生じると推測されるときには、フィルタが変更され、加速度センサが検出する動的成分が一層確実に除去される。
 また、上記の態様において、前記制御装置は、前記操作入力手段からの信号に基づいて、前記走行モータの加速又は減速が推測されるときに、前記フィルタを変更することによって前記加速度センサからの信号の高周波数成分の除去割合を大きくするとよい。
 この態様によれば、走行モータが加速又は減速して本体に前後加速度が生じると推測されるときには、加速度センサが検出する動的成分が一層確実に除去される。
 また、上記の態様において、前記姿勢検出手段は、前記ハンドルに加わる下向きの荷重を検出する荷重検出手段を有し、前記制御装置は、前記荷重が所定の荷重判定値以上の場合に、前記走行モータを前記荷重が前記荷重判定値未満の場合よりも低速にするとよい。
 この態様によれば、ハンドルに加わる下向きの荷重に基づいて本体の後傾状態を検出することができる。
 また、上記の態様において、前記姿勢検出手段は、前記ハンドルに加わる下向きの荷重を検出する荷重検出手段と、前記本体の左右軸回りの傾斜角を検出する傾斜角検出手段と有し、前記制御装置は、前記荷重が所定の荷重判定値以上であり、かつ前記傾斜角が所定の傾斜角判定値以上の場合に、前記走行モータを前記荷重が前記荷重判定値未満又は前記傾斜角が前記傾斜角判定値未満の場合よりも低速にするとよい。
 この態様によれば、ハンドルに加わる下向きの荷重及び本体の傾斜角に基づいて本体の後傾状態を一層確実に検出することができる。
 以上の構成によれば、歩行型の芝刈機において、旋回操作が容易になる。
実施形態に係る電動芝刈機の斜視図 実施形態に係る電動芝刈機の断面図 制御装置の構成を示すブロック図 駆動制御の手順を示すフロー図 傾斜角演算の手順を示すフロー図 第1実施形態に係る回転速度係数演算の手順を示すフロー図 第2実施形態に係る回転速度係数演算の手順を示すフロー図 第3実施形態に係る回転速度係数演算の手順を示すフロー図 第4実施形態に係る回転速度係数演算の手順を示すフロー図
 以下に本発明の作業機を歩行型(ウォークビハインド式)の電動芝刈機に適用した実施形態を図1~図7を参照して説明する。
 (電動芝刈機の概略構成)
 図1及び図2に示すように、本実施形態に係る電動芝刈機1は、本体2と、本体2の下部に設けられた作業部3と、本体2に回転可能に支持された左右一対の前輪4及び後輪5と、本体2から後上方に延びるハンドル6とを有する。作業部3は、本体2の下部中央には下方に向けて開口した凹部7と、凹部7に回転可能に配置された芝刈り用の刈刃でブレード3Aとを有する。本体2にはブレード3Aが回転軸に結合された作業モータ8、及び左右の後輪5を駆動するための左右の走行モータ9L、9Rが支持されている。作業モータ8及び走行モータ9L、9Rは共に電気モータであり、本体2には各モータ8、9L、9Rを制御する制御装置10が設けられている。
 ハンドル6は、本体2の後部左右からそれぞれ後上方に延びる側辺部12と、各側辺部12の後端同士を互いに連結する枠形の把持部13とを有する。ハンドル6の把持部13には、作業者の入力操作を受け付ける操作入力装置14が設けられている。操作入力装置14は、走行モータ9L、9Rを操作するための走行レバー15と作業モータ8を操作するための作業レバー16とを有する。
 本体2の上部には、作業モータ8、左右の走行モータ9L、9R、及び制御装置10を覆う上部カバー18が設けられている。上部カバー18の上面に凹設されたバッテリトレイ19には、各モータ8、9、及び制御装置10に電力を供給するバッテリ20が着脱可能に受容されている。
 本体2には凹部7から本体2の後面に延びる通路(不図示)が形成され、その開口端を塞ぐようにグラスバッグ23が設けられている。ブレード3Aによって刈り取られた芝は凹部7から通路を通って後方へ排出され、グラスバッグ23に回収される。
 (制御装置)
 制御装置10は、マイクロコンピュータやROM、RAM、周辺回路、入出力インタフェース、ドライバ等から構成された電子制御回路(ECU)である。図3に示すように、制御装置10は、バッテリ20と接続され、バッテリ20から電力の供給を受ける。制御装置10は、作業モータ8及び左右の走行モータ9L、9Rのそれぞれに対応したモータドライバ31、32、33を有している。制御装置10は、各モータドライバ31~33を介してバッテリ20からの電力を各モータ8、9L、9Rに供給し、各モータ8、9L、9Rを制御する。制御装置10は、例えばPWM制御に基づいて各モータドライバ31、32、33を制御して各モータ8、9L、9Rに供給する電圧を変化させ、各モータ8、9L、9Rの回転速度を変更する。
 作業モータ8及び左右の走行モータ9L、9Rのそれぞれには、各モータ8、9L、9Rの回転角を検出する回転角センサ34、35、36が設けられている。回転角センサ34、35、36は、各モータ8、9L、9Rの回転角に応じた信号を制御装置10に出力し、制御装置10はその信号に基づいて作業モータ8及び左右の走行モータ9L、9Rのそれぞれの回転速度を取得する。
 本体2には、ハンドル6に加わる下向きの荷重を検出する荷重センサ38(荷重検出手段)が設けられている。荷重センサ38は、公知の歪ゲージであってよい。ハンドル6は本体2に対して微小量変位可能に結合されており、荷重センサ38は本体2とハンドル6の側辺部12の前端との結合部に介装されている。荷重センサ38は、作業者がハンドル6の把持部13を下方に押し下げると、検出する荷重が増加するように配置されている。荷重センサ38は、ハンドル6に加わる下向きの荷重に応じた信号を制御装置10に出力し、制御装置10はその信号に基づいてハンドル6に加わる下向きの荷重を取得する。
 制御装置10は、傾斜角検出手段としての加速度センサ41を有している。加速度センサ41は、例えば、制御装置10の基板上に構成された半導体素子であり、MEMS技術によって構成されているとよい。加速度センサ41は、静電容量型やピエゾ型等の加速度センサであってよい。加速度センサ41は、本体2の前後方向(X軸)の加速度、左右方向(Y軸)の加速度、及び鉛直方向(Z軸)の加速度に対応した信号を出力する3軸加速度センサである。加速度センサ41が出力する信号は、重力加速度に起因する低周波数の静的成分(DC加速度)と、本体2の変位に起因する高周波数の動的成分(AC加速度)とを含む。
 制御装置10は、加速度センサ41及び荷重センサ38の少なくとも一方からの信号に基づいて、本体2の姿勢を検出する。加速度センサ41及び荷重センサ38のそれぞれは、姿勢検出手段を構成する。
 走行レバー15及び作業レバー16はハンドル6に対してそれぞれ回動可能に設けられており、それぞれの把持部がハンドル6の把持部13に対して離れた初期位置と、それぞれの把持部がハンドル6の把持部13に近接した操作位置とを取り得る。操作入力装置14は、走行レバー15の位置に応じた走行指令信号を制御装置10に出力し、作業レバー16の位置に応じたブレード回転指令信号を制御装置10に出力する。走行指令信号は、走行レバー15が初期位置にあるときに0%に対応した値であり、操作位置にあるときに100%に対応した値であり、初期位置から走行位置にかけて値が漸増するように設定されている。同様に、ブレード回転指令信号は、作業レバー16が初期位置にあるときに0%に対応した値であり、操作位置にあるときに100%に対応した値であり、初期位置から走行位置にかけて値が漸増するように設定されている。作業者は、芝刈作業時に、走行レバー15及び作業レバー16の把持部をハンドル6の把持部13と共に握り込み、走行レバー15及び作業レバー16を操作位置に位置させる。
 操作入力装置14は、電動芝刈機1の走行速度について操作者による入力操作を受け付けるための走行速度入力部42を有している。走行速度入力部42は、操作入力装置14の本体に対して変位可能なレバーやダイヤル等であり、操作入力装置14は走行速度入力部42の位置に応じた信号を制御装置10に出力する。制御装置10は、操作入力装置14からの信号に基づいて操作者の要求走行速度に対応した走行モータ9L、9Rの要求回転速度を取得する。
 操作入力装置14は、ブレード3Aの回転速度について操作者による入力操作を受け付けるためのブレード回転速度入力部43を有している。ブレード回転速度入力部43は、操作入力装置14の本体に対して変位可能なレバーやダイヤル、押しボタン等であり、操作入力装置14はブレード回転速度入力部43の位置に応じた信号を制御装置10に出力する。制御装置10は、操作入力装置14からの信号に基づいて操作者の要求ブレード回転速度に対応した作業モータ8の要求回転速度を取得する。
 次に、図4~図6を参照して制御装置10が行う制御について説明する。制御装置10は、図4に示す駆動制御、図5に示す傾斜角演算制御、及び図6に示す回転速度係数演算を並列して実行する。
 制御装置10は、図4に示す駆動制御において、最初にブレード回転指令信号Kbの値が0%より大きいか否かを判定する(ステップS1)。制御装置10は、ブレード回転指令信号の値が0%より大きい場合(ブレード回転指令信号がONの場合)に、ステップS2において作業モータ8の目標回転速度Rb_tを演算する。作業モータ8の目標回転速度Rb_tは、作業モータ8の要求回転速度Rb_rに、ブレード回転指令信号の値Kbと、後述する回転速度係数演算(図6)によって演算される回転速度係数K1とを乗じることによって演算される(Rb_t=Rb_r×Kb×K1)。回転速度係数K1は、0より大きく1以下の値である。
 制御装置10は、ステップS2に続くステップS3において、作業モータ8の目標回転速度Rb_tに基づいて作業モータドライバ31を制御して作業モータ8を駆動する。このとき、制御装置10は、作業モータ回転角センサ34の信号に基づいて、作業モータ8の回転速度が目標回転速度Rb_tとなるようにフィードバック制御を行う。
 制御装置10は、ステップS1の判定において、ブレード回転指令信号の値が0%の場合(ブレード回転指令信号がOFFの場合)には、ステップS4に進み、作業モータ8を停止状態にする。
 制御装置10は、ステップS3又はS4に続くステップS5において、走行指令信号の値が0%より大きいか否かを判定する。制御装置10は、走行指令信号の値が0%より大きい場合(走行指令信号がONの場合)に、ステップS6において走行モータ9L、9Rの目標回転速度Rs_tを演算する。走行モータ9L、9Rの目標回転速度Rs_tは、走行モータ9L、9Rの要求回転速度Rs_rに、走行指令信号の値Ksと、回転速度係数K1とを乗じることによって演算される(Rs_t=Rs_r×Ks×K1)。
 制御装置10は、ステップS6に続くステップS7において、走行モータ9L、9Rの目標回転速度Rs_tに基づいて走行モータドライバ32、33を制御して走行モータ9L、9Rを駆動する。このとき、制御装置10は、走行モータ回転角センサ35、36の信号に基づいて、走行モータ9L、9Rの回転速度が目標回転速度Rs_tとなるようにフィードバック制御を行う。
 制御装置10は、ステップS5の判定において、走行指令信号の値が0%の場合(走行指令信号がOFFの場合)には、ステップS8に進み、走行モータ9L、9Rを停止状態にする。制御装置10は、ステップS7又はS8の処理を行った後は、リターンに進み、駆動制御を繰り返す。
 制御装置10は、図5に示す傾斜角演算において、最初に走行モータ9L、9Rが加速中又は減速中であるか否かを判定する(ステップS11)。本実施形態では、制御装置10は、ステップS11における判定を、走行指令信号の値に基づいて行う。具体的には、制御装置10は、走行指令信号の値の増加又は減少を検出してから所定の期間内であるか否かを判定する。走行モータ9L、9Rは、上述したステップS5において、走行指令信号の値に基づいて回転速度が制御されるため、走行指令信号の値の増加又は減少が発生してから所定の期間内は走行モータ9L、9Rが加速中又は減速中であると推測することができる。
 制御装置10は、ステップS11での判定において本体2が加速中又は減速中であると判定した場合(Yes)には、ステップS12においてローパスフィルタAを使用して加速度センサ41からの信号に対してローパスフィルタ処理を行い、加速中又は減速中でないと判定した場合(No)には、ステップS13においてローパスフィルタBを使用して加速度センサ41からの信号に対してローパスフィルタ処理を行う。制御装置10は、ステップS12及びS13におけるローパスフィルタ処理の前又は後に、加速度センサ41からの信号に対して移動平均化処理を行ってもよい。ステップS12及びS13でのローパスフィルタ処理によって、加速度センサ41からの信号は高周波数成分である加速度の動的成分の一部が除去され、重力に起因する静的成分が抽出される。ステップS12で使用するローパスフィルタAは、ステップS12で使用するローパスフィルタBに対して遮断周波数が低く設定されており、高周波数成分の除去割合が大きい。すなわち、ローパスフィルタAを使用することによって、加速度センサ41からの信号はローパスフィルタBを使用する場合よりも高周波数成分に対応した動的成分の除去割合が大きくなり、本体2の走行に起因する加速度の動的成分が一層確実に除去されることになる。
 制御装置10は、ステップS12及びS13に続くステップS14において、ローパスフィルタ処理され、加速度の静的成分が抽出された加速度センサ41からの信号に基づいて、本体2の左右軸(Y軸)回りの水平面を基準とした傾斜角(ピッチ角)を演算する。傾斜角の演算は、例えば、予め確認された加速度センサ41の信号の値と傾斜角との関係とに基づいて、加速度センサ41の信号の値に所定の係数を乗じることによって行われるとよい。制御装置10は、ステップS14の処理を行った後は、リターンに進み、傾斜角演算制御を繰り返す。
 制御装置10は、図6に示す回転速度係数演算において、最初のステップS21で傾斜角演算制御において演算された傾斜角を取得する。制御装置10は、続くステップS22において、傾斜角の絶対値が所定の傾斜角判定値以上であるか否かを判定する。傾斜角判定値は、後輪5が接地し、かつ前輪4が地面から離れた本体2の後傾状態を判定することができる値、例えば5°~70°に設定されているとよい。
 制御装置10は、ステップS22の判定がYesの場合、ステップS23において傾斜角の変化速度の絶対値が所定の変化速度判定値以上であるか否かを判定する。傾斜角の変化速度の絶対値は、作業者がハンドル6を押し下げ、本体2を意図的に後傾状態にした場合には比較的大きく、傾斜した地面を電動芝刈機1が走行することによって徐々に傾斜角が変化した場合には比較的小さくなるため、これらを区別し得るように変化速度判定値が設定されている。制御装置10は、ステップS23の判定がYesの場合はステップS24において回転速度係数K1に0より大きく1より小さい所定の値を設定する。
 制御装置10は、ステップS24に続くステップS25において、傾斜角演算制御において演算された傾斜角を再度取得し、傾斜角を更新する。制御装置は、ステップS25に続くステップS26において、傾斜角の絶対値が所定の復帰判定値以下であるか否かを判定する。復帰判定値は、傾斜角判定値以下の値に設定され、例えば1°~10°に設定されているとよい。制御装置10は、ステップS26の判定がNoの場合、ステップS25に戻り、ステップS26の判定がYesになるまで、ステップS25及びS26の処理を繰り返す。
 制御装置10は、ステップS26の判定がYesの場合、ステップS22の判定がNoの場合、又はステップS23の判定がNoの場合、ステップS27において回転速度係数K1に1を設定する。制御装置10は、ステップS27の処理を行った後はリターンに進み、回転速度係数演算を繰り返す。
 制御装置10が図4~図6に示す制御フローを実行することによって、電動芝刈機1は次のように作動する。電動芝刈機1は、作業者が作業レバー16を操作位置側に変位させているとき、すなわちON操作しているとき、作業モータ8が駆動してブレード3Aが回転し、芝刈が可能になる。また、電動芝刈機1は、走行レバー15を操作位置側に変位させているとき、すなわちON操作しているとき、走行モータ9L、9Rが駆動して後輪5が回転し、前進が可能になる。通常の芝刈作業では、作業者は走行レバー15及び作業レバー16の把持部をハンドル6の把持部13と共に握り込むことによって、走行レバー15及び作業レバー16を操作位置に位置させる。
 電動芝刈機1の走行速度に対応した走行モータ9L、9Rの回転速度は、作業者による走行速度入力部42の操作によって定まる走行モータ9L、9Rの要求回転速度Rs_r及び走行レバー15の位置に対応した走行指令信号Ksと、回転速度係数K1とに基づいて定まる。同様に、ブレード3Aの回転速度に対応した作業モータ8の回転速度Rb_tは、作業者によるブレード回転速度入力部43の操作によって定まる作業モータ8の要求回転速度Rb_r及び作業レバー16の位置に対応したブレード回転指令信号Kbと、回転速度係数K1とに基づいて定まる。
 制御装置10は、加速度センサ41の検出信号に基づいて演算される電動芝刈機1の本体2の傾斜角の絶対値が所定の傾斜角判定値未満である場合には、前輪4及び後輪5が接地した通常状態であるとして、回転速度係数K1に1を設定する。
 一方、制御装置10は、傾斜角の絶対値が傾斜角判定値以上であり、かつ傾斜角の変化速度の絶対値が所定の変化速度判定値以上である場合に、回転速度係数K1に0より大きく1より小さい値を設定する(ステップS22~S24)。本体2の傾斜角の絶対値が傾斜角判定値以上である場合、本体2が後傾状態であることが推定され、傾斜角の変化速度の絶対値が変化速度判定値以上である場合、後傾状態が作業者によるハンドル6の押し下げによって生じたことが推定される。そのため、傾斜角の絶対値が傾斜角判定値以上であり、かつ傾斜角の変化速度の絶対値が所定の変化速度判定値以上である場合には、作業者によるハンドル6の押し下げによって本体2が後傾状態になったこと、すなわち作業者が本体2を旋回させるべく前輪4を意図的に地面から離した状態、すなわち本体2が旋回状態にあることを推定することができる。斜面で作業を行うことによって本体2の傾斜角が徐々に増加するような場合には、傾斜角の変化速度は変化速度判定値以上にはならないため、旋回状態とは区別される。
 制御装置10が、ステップS22~S24の処理によって本体2の旋回状態を推定したときには、回転速度係数が0より大きく1より小さい値に設定されるため(ステップS25)、作業モータ8の目標回転速度Rb_t及び走行モータ9L、9Rの目標回転速度Rs_tが、K1が1の場合の通常状態よりも低下する。これにより、旋回状態では走行モータ9L、9Rの回転速度が低下して作業者による電動芝刈機1の旋回操作が容易になる。また、旋回状態では作業モータ8の回転速度が低下するため、本体2の後傾によってブレード3Aが外部に露出してもブレード3Aに起因する騒音が抑制される。
 旋回状態における作業モータ8及び走行モータ9L、9Rの低速化は、本体2の傾斜角が小さくなり、傾斜角の絶対値が復帰判定値以下になるまで維持される(ステップS25~S27)。
 制御装置10は、本体2の前後方向への加速又は減速を推測し、加速又は減速中である場合には停止又は一定速度で走行している場合よりもローパスフィルタ処理に使用するフィルタの遮断周波数を低くする(ステップS11~S13)。これにより、加速度センサ41が検出する加速度の動的成分が確実に除去され、静的成分に基づく傾斜角の演算が可能になる。制御装置10は、本体2の前後方向への加速又は減速の有無を、走行指令信号の変化に基づいて検出するため、応答が迅速であり、傾斜角の演算精度が向上する。
 次に、上記の実施形態の一部を変更した第2~第4実施形態に係る電動芝刈機1について説明する。第2~第4実施形態に係る電動芝刈機1は、第1実施形態に係る電動芝刈機1と比べて、制御装置10が実行する回転速度係数演算のみが異なる。
 第2実施形態に係る制御装置10は、図7に示すように、回転速度係数演算における最初のステップS31において傾斜角の絶対値が所定の傾斜角判定値以上であるか否かを判定する。制御装置10は、ステップS31の判定がYesの場合はステップS32において回転速度係数K1に0より大きく1より小さい所定の値を設定し、判定がNoの場合はステップS33において回転速度係数K1に1を設定する。制御装置10は、ステップS32又はS33の処理を行った後はリターンに進んで回転速度係数演算を繰り返す。このように、回転速度係数演算は、傾斜角のみに基づいて回転速度係数を設定してもよい。この場合、回転速度係数演算が簡素になる。
 第3実施形態に係る制御装置10は、図8に示すように、回転速度係数演算における最初のステップS41において荷重センサ38によって検出されたハンドル6に加わる下向きの荷重が所定の荷重判定値以上であるか否かを判定する。荷重判定値は、荷重がその値以上の場合に本体2が後傾状態になると推定される値に設定されている。制御装置10は、ステップS41の判定がYesの場合はステップS42において回転速度係数K1に0より大きく1より小さい所定の値を設定し、判定がNoの場合はステップS43において回転速度係数K1に1を設定する。制御装置10は、ステップS42又はS43の処理を行った後はリターンに進んで回転速度係数演算を繰り返す。このように、回転速度係数演算は、ハンドル6に加わる下向きの荷重に基づいて回転速度係数を設定してもよい。
 第4実施形態に係る制御装置10は、図9に示すように、回転速度係数演算における最初のステップS51において荷重センサ38によって検出されたハンドル6に加わる下向きの荷重が所定の荷重判定値以上であるか否かを判定する。制御装置10は、ステップS51の判定がYesの場合はステップS52において傾斜角の絶対値が所定の傾斜角判定値以上であるか否かを判定する。制御装置10は、ステップS52の判定がYesの場合はステップS53において回転速度係数K1に0より大きく1より小さい所定の値を設定する。制御装置10は、ステップS51又はS52の判定がNoの場合はステップS54において回転速度係数K1に1を設定する。制御装置10は、ステップS53又はS54の処理を行った後はリターンに進んで回転速度係数演算を繰り返す。このように、回転速度係数演算は、傾斜角及びハンドル6に加わる下向きの荷重に基づいて回転速度係数を設定してもよい。この場合、制御装置10は、本体2の後傾状態を一層確実に検出することができる。
 以上で具体的実施形態の説明を終えるが、本発明は上記実施形態に限定されることなく幅広く変形実施することができる。上記実施形態では、回転速度係数K1を作業モータ8及び走行モータ9L、9Rに対して共通の値としたが、回転速度係数K1は作業モータ8と走行モータ9L、9Rとに異なる値を設定してもよい。
 また、上記の実施形態では、制御装置10は、後傾状態を検出したときに、1より小さい値の回転速度係数K1を乗じることによって目標回転速度を低下させる構成としたが、他の実施形態では制御装置10は後傾状態を検出したときに、減速量を設定し、目標回転速度のベース値に対して減速量を減じることによって目標回転速度を低下させてもよい。また、他の実施形態では制御装置10は後傾状態を検出したときに、上限速度を設定し、目標回転速度を上限速度にすることによって目標回転速度を低下させてもよい。
 上記実施形態は、本発明を芝刈機に適用した例であるが、本発明は草刈機や、除雪機、耕耘機にも同様に適用することができる。草刈機に適用する場合はブレード3Aを草刈に適したブレードに置換し、除雪機に適用する場合はブレード3Aを除雪に適したオーガに置換し、耕耘機に適用する場合はブレード3Aを耕耘に適した耕耘爪に置換するとよい。
1     :電動芝刈機
2     :本体
3     :作業部
3A    :ブレード
4     :前輪
5     :後輪
8     :作業モータ
9L    :左走行モータ
9R    :右走行モータ
10    :制御装置
14    :操作入力装置
15    :走行レバー
16    :作業レバー
20    :バッテリ
31    :作業モータドライバ
32    :左走行モータモータドライバ
33    :右走行モータモータドライバ
34    :作業モータ回転角センサ
35    :左走行モータ回転角センサ
36    :右走行モータ回転角センサ
38    :荷重センサ
41    :加速度センサ
42    :走行速度入力部
43    :ブレード回転速度入力部

Claims (8)

  1.  歩行型の作業機であって、
     前輪及び後輪が設けられた本体と、
     前記本体に設けられた作業部と、
     前記作業部を駆動する作業モータと、
     前記後輪を回転させる走行モータと、
     前記本体に設けられ、後方かつ上方に延びたハンドルと、
     前記後輪が接地し、かつ前記前輪が地面から離れた前記本体の後傾状態を検出する姿勢検出手段と、
     前記作業モータ及び前記走行モータを駆動制御する制御装置とを有し、
     前記制御装置は、前記本体が前記後傾状態であるときに、前記走行モータの回転速度を前記前輪が接地した場合よりも低速にする、又は前記作業モータの回転速度を前記前輪が接地した場合よりも低速にすることを特徴とする作業機。
  2.  前記姿勢検出手段は、前記本体の左右軸回りの傾斜角を検出する傾斜角検出手段を有し、
     前記制御装置は、前記傾斜角が所定の傾斜角判定値以上の場合に、前記走行モータを前記傾斜角が前記傾斜角判定値未満の場合よりも低速にすることを特徴とする請求項1に記載の作業機。
  3.  前記姿勢検出手段は、前記本体の左右軸回りの傾斜角を検出する傾斜角検出手段を有し、
     前記制御装置は、前記傾斜角が所定の傾斜角判定値以上であり、かつ前記傾斜角の変化速度が所定の変化速度判定値以上になったときから前記傾斜角が所定の復帰判定値以下になるまでの間、前記走行モータを前記傾斜角が前記傾斜角判定値未満の場合よりも低速にすることを特徴とする請求項1に記載の作業機。
  4.  前記傾斜角検出手段は、加速度に対応する信号を出力する加速度センサであり、
     前記制御装置は、前記加速度センサからの信号をローパスフィルタ処理することによって加速度の動的成分に対応した信号の少なくとも一部を除去し、フィルタ処理した信号に基づいて前記傾斜角を演算することを特徴とする請求項2又は請求項3に記載の作業機。
  5.  作業者の操作に対応した信号を前記制御装置に入力する操作入力手段を更に有し、
     前記制御装置は、前記操作入力手段からの信号に基づいて前記走行モータを駆動制御する共に、前記操作入力手段からの信号に基づいて前記ローパスフィルタ処理に使用するフィルタを変更することを特徴とする請求項4に記載の作業機。
  6.  前記制御装置は、前記操作入力手段からの信号に基づいて、前記走行モータの加速又は減速が推測されるときに、前記フィルタを変更することによって前記加速度センサからの信号の高周波数成分の除去割合を大きくすることを特徴とする請求項5に記載の作業機。
  7.  前記姿勢検出手段は、前記ハンドルに加わる下向きの荷重を検出する荷重検出手段を有し、
     前記制御装置は、前記荷重が所定の荷重判定値以上の場合に、前記走行モータを前記荷重が前記荷重判定値未満の場合よりも低速にすることを特徴とする請求項1に記載の作業機。
  8.  前記姿勢検出手段は、前記ハンドルに加わる下向きの荷重を検出する荷重検出手段と、前記本体の左右軸回りの傾斜角を検出する傾斜角検出手段と有し、
     前記制御装置は、前記荷重が所定の荷重判定値以上であり、かつ前記傾斜角が所定の傾斜角判定値以上の場合に、前記走行モータを前記荷重が前記荷重判定値未満又は前記傾斜角が前記傾斜角判定値未満の場合よりも低速にすることを特徴とする請求項1に記載の作業機。
PCT/JP2017/041321 2016-11-25 2017-11-16 作業機 WO2018097033A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780072869.9A CN110022670B (zh) 2016-11-25 2017-11-16 作业机
US16/342,487 US11246261B2 (en) 2016-11-25 2017-11-16 Power equipment
AU2017365566A AU2017365566A1 (en) 2016-11-25 2017-11-16 Power Equipment
EP17874804.2A EP3545744B1 (en) 2016-11-25 2017-11-16 Work machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016229549A JP6734183B2 (ja) 2016-11-25 2016-11-25 作業機
JP2016-229549 2016-11-25

Publications (1)

Publication Number Publication Date
WO2018097033A1 true WO2018097033A1 (ja) 2018-05-31

Family

ID=62195044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041321 WO2018097033A1 (ja) 2016-11-25 2017-11-16 作業機

Country Status (6)

Country Link
US (1) US11246261B2 (ja)
EP (1) EP3545744B1 (ja)
JP (1) JP6734183B2 (ja)
CN (1) CN110022670B (ja)
AU (1) AU2017365566A1 (ja)
WO (1) WO2018097033A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11793109B2 (en) 2020-02-13 2023-10-24 Techtronic Cordless Gp Lawnmowers with safety features and methods associated therewith

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113453538B (zh) * 2019-05-10 2023-06-06 凯姿股份有限公司 带刀片的电动作业机
EP3970175A4 (en) 2019-05-13 2023-01-11 Milwaukee Electric Tool Corporation CONTACTLESS TRIGGER WITH MAGNETIC ROTATION SENSOR FOR POWER TOOL
EP3815509B1 (de) * 2019-10-29 2024-04-17 Andreas Stihl AG & Co. KG Handgeführtes garten-, forst- und/oder baubearbeitungsgerät und verfahren für ein handgeführtes garten-, forst- und/oder baubearbeitungsgerät
CN110915404B (zh) * 2019-11-27 2022-09-13 江苏沃得植保机械有限公司 割草机及其控制系统
CN114868513A (zh) * 2021-02-05 2022-08-09 米沃奇电动工具公司 用于割草机的非接触开关

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61257114A (ja) * 1985-05-09 1986-11-14 株式会社クボタ 歩行型芝刈り機
JPH078033A (ja) * 1993-06-29 1995-01-13 Iseki & Co Ltd 歩行型田植機における走行装置
JPH0943269A (ja) * 1995-07-28 1997-02-14 Omron Corp 加速度トランスデューサ
JPH0994023A (ja) * 1995-09-29 1997-04-08 Iseki & Co Ltd 歩行型芝刈機の刈草収納装置
JP2002017135A (ja) * 2000-07-11 2002-01-22 Atex Co Ltd 歩行型草刈機
JP2006220491A (ja) * 2005-02-09 2006-08-24 Kubota Corp 傾斜角度計測装置
JP2007116957A (ja) * 2005-10-26 2007-05-17 Matsushita Electric Works Ltd 芝刈機
JP2013238097A (ja) * 2012-05-17 2013-11-28 Sumitomo Heavy Ind Ltd 建設機械の転倒防止装置
JP2014025912A (ja) * 2012-07-30 2014-02-06 Hyundai Motor Company Co Ltd 車両の傾斜角測定装置及び方法
WO2016010418A1 (en) * 2014-07-15 2016-01-21 Lely Patent N.V. Dairy farming system
JP2016195546A (ja) * 2013-09-30 2016-11-24 日立工機株式会社 自走式草刈機

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4878339A (en) 1988-11-07 1989-11-07 Yamaha Hatsudoki Kabushiki Kaisha Power lawn mower with selectively deployable riding platform
US5507138A (en) * 1994-12-16 1996-04-16 Wright Manufacturing Inc. Power mower with riding platform for supporting standing-operator
DE19941104A1 (de) 1999-08-30 2001-03-01 Schnell Modell Gmbh Gartengerät mit motorisch angetriebenen Werkzeugen
JP4607382B2 (ja) 2000-12-28 2011-01-05 本田技研工業株式会社 歩行型作業機
US7146787B2 (en) * 2002-06-21 2006-12-12 Walker Manufacturing Company Walk behind mower
GB2423456B (en) * 2004-06-30 2007-03-07 Ariens Co Lawnmower tilt sensor apparatus and method
JP4578434B2 (ja) * 2006-05-24 2010-11-10 本田技研工業株式会社 自走式作業機の負荷制御機構
CN201260303Y (zh) * 2008-05-04 2009-06-24 上海创绘机器人科技有限公司 绿地护理机器人
US11198408B2 (en) * 2009-11-12 2021-12-14 Excel Industries, Inc. Control system for a terrain working vehicle having an operator protection apparatus
US9573548B2 (en) * 2015-02-13 2017-02-21 Excel Industries, Inc. Operator protection apparatus with an over-center linkage
US10493939B2 (en) * 2015-02-13 2019-12-03 Excel Industries, Inc. Lever-actuated operator protection apparatus
JP5530781B2 (ja) 2010-03-30 2014-06-25 本田技研工業株式会社 芝刈機
JP5530383B2 (ja) * 2011-03-14 2014-06-25 株式会社クボタ 作業車
US8740229B2 (en) * 2011-07-26 2014-06-03 William D. Ellsworth Slope traversing system for zero turning radius vehicles
DE202013100236U1 (de) 2013-01-17 2013-01-25 Einhell Germany Ag Gartenarbeitsgerät
US9731760B2 (en) * 2013-12-25 2017-08-15 Kubota Corporation Traveling vehicle
JP5873143B2 (ja) 2014-07-08 2016-03-01 ヤマハ発動機株式会社 鞍乗り型車両
JP2016114984A (ja) * 2014-12-11 2016-06-23 福田 敏男 作業車両
WO2016104187A1 (ja) * 2014-12-26 2016-06-30 日立工機株式会社 自走式芝刈機

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61257114A (ja) * 1985-05-09 1986-11-14 株式会社クボタ 歩行型芝刈り機
JPH078033A (ja) * 1993-06-29 1995-01-13 Iseki & Co Ltd 歩行型田植機における走行装置
JPH0943269A (ja) * 1995-07-28 1997-02-14 Omron Corp 加速度トランスデューサ
JPH0994023A (ja) * 1995-09-29 1997-04-08 Iseki & Co Ltd 歩行型芝刈機の刈草収納装置
JP2002017135A (ja) * 2000-07-11 2002-01-22 Atex Co Ltd 歩行型草刈機
JP2006220491A (ja) * 2005-02-09 2006-08-24 Kubota Corp 傾斜角度計測装置
JP2007116957A (ja) * 2005-10-26 2007-05-17 Matsushita Electric Works Ltd 芝刈機
JP2013238097A (ja) * 2012-05-17 2013-11-28 Sumitomo Heavy Ind Ltd 建設機械の転倒防止装置
JP2014025912A (ja) * 2012-07-30 2014-02-06 Hyundai Motor Company Co Ltd 車両の傾斜角測定装置及び方法
JP2016195546A (ja) * 2013-09-30 2016-11-24 日立工機株式会社 自走式草刈機
WO2016010418A1 (en) * 2014-07-15 2016-01-21 Lely Patent N.V. Dairy farming system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11793109B2 (en) 2020-02-13 2023-10-24 Techtronic Cordless Gp Lawnmowers with safety features and methods associated therewith

Also Published As

Publication number Publication date
US11246261B2 (en) 2022-02-15
CN110022670A (zh) 2019-07-16
AU2017365566A1 (en) 2019-05-23
EP3545744B1 (en) 2021-01-06
JP2018082684A (ja) 2018-05-31
JP6734183B2 (ja) 2020-08-05
US20210289699A1 (en) 2021-09-23
EP3545744A4 (en) 2019-12-11
EP3545744A1 (en) 2019-10-02
CN110022670B (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
WO2018097033A1 (ja) 作業機
WO2018097032A1 (ja) 作業機
JP6672128B2 (ja) 作業機
JP6935189B2 (ja) 作業機
US8838311B2 (en) Vehicle having independently driven and controlled right and left drive wheels
JP2018085949A (ja) 電動作業機
US9828735B2 (en) Snow removal machine
EP2757198B1 (en) Snow removal machine
JP6948936B2 (ja) 電動作業車
JP5839347B2 (ja) 作業車両
EP3498573B1 (en) Electric work vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874804

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017365566

Country of ref document: AU

Date of ref document: 20171116

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017874804

Country of ref document: EP

Effective date: 20190625