WO2018096615A1 - チェーン伸び検出装置、チェーン伸び検出方法および乗客コンベヤ - Google Patents

チェーン伸び検出装置、チェーン伸び検出方法および乗客コンベヤ Download PDF

Info

Publication number
WO2018096615A1
WO2018096615A1 PCT/JP2016/084804 JP2016084804W WO2018096615A1 WO 2018096615 A1 WO2018096615 A1 WO 2018096615A1 JP 2016084804 W JP2016084804 W JP 2016084804W WO 2018096615 A1 WO2018096615 A1 WO 2018096615A1
Authority
WO
WIPO (PCT)
Prior art keywords
chain
elongation
height
driven sprocket
sprocket
Prior art date
Application number
PCT/JP2016/084804
Other languages
English (en)
French (fr)
Inventor
豊 橋丘
礼司 山佐
和利 赤澤
Original Assignee
三菱電機株式会社
三菱電機ビルテクノサービス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 三菱電機ビルテクノサービス株式会社 filed Critical 三菱電機株式会社
Priority to US16/346,754 priority Critical patent/US10710844B2/en
Priority to PCT/JP2016/084804 priority patent/WO2018096615A1/ja
Priority to CN201680090873.3A priority patent/CN109983252B/zh
Priority to DE112016007470.0T priority patent/DE112016007470T5/de
Priority to JP2018552320A priority patent/JP6604615B2/ja
Publication of WO2018096615A1 publication Critical patent/WO2018096615A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B25/00Control of escalators or moving walkways
    • B66B25/006Monitoring for maintenance or repair
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B29/00Safety devices of escalators or moving walkways
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B31/00Accessories for escalators, or moving walkways, e.g. for sterilising or cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G17/00Conveyors having an endless traction element, e.g. a chain, transmitting movement to a continuous or substantially-continuous load-carrying surface or to a series of individual load-carriers; Endless-chain conveyors in which the chains form the load-carrying surface
    • B65G17/30Details; Auxiliary devices
    • B65G17/38Chains or like traction elements; Connections between traction elements and load-carriers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G13/00Chains
    • F16G13/02Driving-chains
    • F16G13/06Driving-chains with links connected by parallel driving-pins with or without rollers so called open links
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H2007/0863Finally actuated members, e.g. constructional details thereof
    • F16H2007/087Sprockets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/06Gearings for conveying rotary motion by endless flexible members with chains
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B50/00Energy efficient technologies in elevators, escalators and moving walkways, e.g. energy saving or recuperation technologies

Definitions

  • the present invention relates to a chain stretch detection device and a chain stretch detection method for detecting chain stretch and a passenger conveyor equipped with the chain stretch detection device.
  • the meshing height is uniformly increased at the portion of the chain that meshes with the sprocket. Assumed. Further, in the conventional chain elongation detecting device, when local elongation occurs in the chain, it is assumed that the meshing height is constant in the portion where the chain is elongated.
  • the chain elongation detecting device is a drive sprocket that rotates when a driving force is transmitted, a driven sprocket supported by a rotatable rotating shaft, a drive sprocket and a driven sprocket wound around the drive sprocket.
  • a chain elongation detecting device for detecting chain elongation in a transmission device including a chain for transmitting power to a driven sprocket, wherein the chain engagement height in a range where the drive sprocket or driven sprocket is engaged with the chain is determined.
  • the mesh height measurement device to be measured and the signal acquired by the mesh height measurement device, obtain the difference in height between adjacent rollers in the chain, and calculate the amount of chain elongation from the obtained height difference.
  • a signal processing device for estimation is a signal processing device for estimation.
  • the engagement height measuring device for measuring the engagement height of the chain in the range where the drive sprocket or driven sprocket and the chain are engaged, and the engagement height measuring device
  • a signal processing device is used to determine the difference in height between adjacent rollers in the chain using the acquired signal, and to estimate the extension of the chain from the calculated difference in height. It can be measured with high accuracy.
  • FIG. 4 is a cross-sectional view showing a state in which tension is applied to the chain of FIG. 3. It is sectional drawing which shows the state which increased the number of links of the chain of FIG. It is a figure which shows meshing
  • FIG. It is a figure which shows the meshing height of a chain
  • FIG. It is a figure which shows the chain elongation detection apparatus which concerns on Embodiment 2 of this invention. It is a figure which shows the passenger conveyor which concerns on Embodiment 3 of this invention. It is a figure which shows the passenger conveyor which concerns on Embodiment 4 of this invention.
  • Each pin 12 is fixed to each outer plate 11 by caulking.
  • Each bush 14 is fixed to each inner plate 13.
  • a pin 12 is inserted into the bush 14.
  • a pair of outer plates 11 and a pair of inner plates 13 that are adjacent to each other in the longitudinal direction are connected by inserting pins 12 into bushes 14.
  • a portion of the chain 1 where the pin 12 is inserted into the bush 14 is a joint of the chain 1. In other words, the chain 1 can be bent at a portion of the chain 1 where the pin 12 is inserted into the bush 14.
  • a roller 15 is mounted around the bush 14 fixed to the inner plate 13, and the roller 15 is rotatable with respect to the bush 14. Therefore, the roller 15 meshes with the teeth of the sprocket while being rotatable with respect to the bush 14.
  • the reference length of the chain 1 when evaluating the elongation of the chain 1 is defined by the dimension between the adjacent rollers 15.
  • the reference length of the chain is called the reference pitch p of the chain 1.
  • FIG. 2 is a view showing a transmission device provided with the chain 1 of FIG.
  • the transmission device includes a drive sprocket 2 that rotates when the driving force is transmitted, a driven sprocket 3 that is provided apart from the drive sprocket 2 and supported by a rotatable rotating shaft, and the drive sprocket 2 and the driven sprocket 3. And a chain 1 wound around.
  • the drive sprocket 2 rotates counterclockwise as shown by an arrow A in FIG. 2
  • the upper portion of the chain 1 between the drive sprocket 2 and the driven sprocket 3 becomes the tension side portion.
  • the portion between the driving sprocket 2 and the driven sprocket 3 and the lower portion is the slack side portion.
  • the angle of the joint is determined by the angle of each tooth determined by the number of sprocket teeth.
  • the rotation and bending operation of the joint is performed as the chain 1 travels from the part of the chain 1 that starts to hook onto the sprocket to the part of the chain 1 that comes off the sprocket.
  • FIG. 3 is a cross-sectional view showing the chain 1 in which a gap is formed on the sliding contact surface between the pin 12 and the bush 14 in FIG. 1
  • FIG. 4 is a cross-sectional view showing a state in which tension is applied to the chain 1 in FIG.
  • FIG. 5 is a cross-sectional view showing a state where the number of links of the chain 1 of FIG. 4 is increased.
  • FIG. 3 shows a state in which no tension is applied to the chain 1.
  • a gap B is uniformly formed between the pin 12 and the bush 14 due to aged sliding wear.
  • the pin 12 moves relative to the bush 14 by the dimension of the gap B between the pin 12 and the bush 14, and the pin 12 and the bush 14 come into contact with each other.
  • the evaluation of the elongation of the chain 1 is defined by the dimension between adjacent rollers 15 and is measured by how much it has changed with respect to the reference pitch p.
  • Both ends of the bush 14 are fixed to the inner plate 13, and the distance between the centers of the pair of bushes 14 fixed to the same inner plate 13 is set to the reference pitch p of the chain 1.
  • the distance between the pair of bushes 14 fixed to the same inner plate 13 does not change unless the inner plate 13 extends. From the allowable tension of the chain 1 and the material and shape of the inner plate 13, the tension between the pair of bushes 14 fixed to the same inner plate 13 does not change with the tension acting by normal torque transmission.
  • FIG. 6 is a diagram showing meshing between the chain 1 and the driven sprocket 3 in an initial state where no elongation occurs
  • FIG. 7 is an enlarged view showing the chain 1 and the driven sprocket 3 in FIG.
  • a minute gap is provided between each member so that smooth operation is performed, and the gap 1 appears as an extension in the chain 1 from the initial state, but in this embodiment 1, This gap is an error.
  • the pitch length p of the chain 1 is determined by the standard for the model number corresponding to the tensile strength of the chain 1. Using the pitch length p of the chain 1 and the number of teeth z of the driven sprocket 3, the chain 1 meshes with the teeth of the driven sprocket 3 at the position of the pitch diameter D obtained from the following equation (1).
  • the pitch diameter D is uniquely determined when the model number of the chain 1 and the number of teeth z of the driven sprocket 3 are determined, the position of the roller 15 in the driven sprocket 3 can be obtained in advance by geometric drawing.
  • This tooth is on an extension of the line connecting the rotation axes of the drive sprocket 2 and the driven sprocket 3 based on experience.
  • the exact position moves in accordance with changing conditions such as the load applied to the chain 1, the dead weight of the bending side portion of the chain 1, and the friction coefficient of the tooth surface of the driven sprocket 3.
  • the teeth on the extension lines of the lines connecting the respective rotation shafts of the drive sprocket 2 and the driven sprocket 3 are wound around the chain 1 that does not extend regardless of the extension state of the chain 1. Teeth that are in the same meshing state as if they were present.
  • the distance between a pair of rollers 15 provided on the same outer plate 11, and the distance between a pair of rollers 15 provided on the same inner plate 13 does not change.
  • the distance increase occurs every other roller among the plurality of rollers 15 arranged.
  • the broken line is represented as the inner plate 13 and the solid line is represented as the outer plate 11 in order from the teeth meshing at the same position as the meshing position when the chain 1 is not stretched.
  • the first roller 15a disposed on the rear side of the inner plate 13 in the rotational direction of the driven sprocket 3 is in a position where the first roller 15a meshes with the driven sprocket 3 on a pitch circle in a state where the driven sprocket 3 does not stretch
  • the first roller 15a Since the second roller 15b on the front side in the rotational direction is arranged coaxially with the bush 14 fixed to the same inner plate 13 as the first roller 15a, the distance between the axes is equal to the chain pitch. . Therefore, the second roller 15b is also on the pitch circle.
  • the third roller 15c one on the front side in the rotational direction with respect to the second roller 15b, is disposed coaxially with the bush 14 through which the pin 12 fixed to the same outer plate 11 as the pin 12 that passes through the second roller 15b passes.
  • the distance between the pair of bushes 14 provided on the outer plate 11 is increased by the gap B between the pins 12 and the bushes 14, the distance between the axes of the second roller 15b and the third roller 15c is increased.
  • the third roller 15c rotates as a radius having a length longer than the chain pitch around the axis of the second roller 15b, the next tooth in the driven sprocket 3 is less than the pitch circle of the driven sprocket 3. Even mesh on a circle with a large radius. This means that the teeth of the driven sprocket 3 mesh with each other at a position shifted from the tooth bottom to the tooth tip in the radial direction of the driven sprocket 3.
  • the roller 15 that is forward in the rotational direction of the outer plate 11 starts from the roller 15 that meshes with the teeth of the driven sprocket 3 on the pitch circle as in the chain that does not stretch, and the driven sprocket within the teeth of the driven sprocket 3.
  • the roller 15 positioned next to the center of the driven sprocket 3 is engaged with the inside of the tooth at a position farther from the center of the driven sprocket 3.
  • FIG. 10 is a diagram showing the amount of movement of each roller 15 from the pitch circle when uniform elongation occurs over the entire chain 1.
  • the respective moving amounts are shown in the order of the second roller 15b and the third roller 15c arranged forward in the rotational direction from the first roller 15a to the first roller 15a.
  • the roller 15 that is located somewhat forward in the rotational direction with respect to the first roller 15 a located on the pitch circle of the driven sprocket 3 With respect to the roller 15 that is located somewhat forward in the rotational direction with respect to the first roller 15 a located on the pitch circle of the driven sprocket 3, the position of the roller 15 that is far from the center of the driven sprocket 3 and the roller that is close to the center of the driven sprocket 3. The position of 15 settles to a certain value.
  • FIG. 11 is a diagram showing the amount of movement of each roller 15 from the pitch circle when elongation occurs in only a part of the chain 1.
  • FIG. 11 shows the amount of movement of each roller 15 when the roller 15 in the stretched portion of the chain 1 meshes with the teeth of the driven sprocket 3 on the pitch circle.
  • some of the rollers 15 arranged forward in the rotational direction with respect to the rollers 15 on the pitch circle are far away from the pitch circle.
  • the positions of the plurality of rollers 15 arranged forward in the rotational direction with respect to the roller 15 having a large movement amount from the pitch circle gradually approach the pitch circle.
  • a mesh height position having a correlation with the amount of extension can be detected at a position approximately 15 teeth ahead in the rotational direction from the position of the meshing roller 15.
  • FIG. 13 is a view showing a chain elongation detecting apparatus according to Embodiment 1 of the present invention.
  • a chain 1 is wound around a driving sprocket 2 having a driving force and a driven sprocket 3 serving as a load. Power from the drive sprocket 2 is transmitted to the driven sprocket 3 via the chain 1.
  • the chain elongation detecting device includes a mesh height measuring device 4 that measures the height of the roller, and a signal processing device 5 to which a measurement result of the mesh height measuring device 4 is input.
  • the mesh height measuring device 4 is installed at a position 15 or more teeth away from the teeth meshing with the driven sprocket 3 on the pitch circle in the rotational direction.
  • the meshing height measuring device 4 measures the height of the chain 1 in the teeth of the driven sprocket 3.
  • a non-contact displacement meter using a laser is used as the mesh height measuring device 4.
  • the mesh height measuring device 4 measures the height of the chain 1 in the teeth of the driven sprocket 3, but measures the height of the chain 1 in the teeth of the drive sprocket 2. Also good.
  • FIG. 14 is a diagram showing a measurement position in the chain 1 of FIG.
  • the mesh height measuring device 4 can measure the change in the mesh height of the chain 1 in the teeth by irradiating the points a to c in FIG. 14 with laser.
  • a change in the meshing height of the chain 1 is measured.
  • the signal processing device 5 has a meshing height every other roller 15 arranged as shown in FIG. A changing waveform can be obtained. Further, when elongation occurs in a part of the chain 1, in the signal processing device 5, the meshing position of the stretched part as shown in FIG. 17 is clearly different from the meshing position of the other part. A position waveform is obtained. Further, the approximate elongation rate of the chain 1 is obtained by using the difference in meshing height between the adjacent rollers 15 shown in FIG. 16 and the difference in meshing height between the uniform waveform portion and the maximum displacement portion shown in FIG. Can be estimated. Specifically, the difference in meshing height between adjacent rollers 15 shown in FIG.
  • FIG. 18 is a diagram showing a method for obtaining the meshing height by stretching of the graphic chain 1 using CAD or the like.
  • the first roller 15a meshed with an ideal position in the tooth of the driven sprocket 3 is assumed.
  • the surface of the first roller 15 a is in contact with the tooth surface of the tooth 3 ⁇ / b> A of the driven sprocket 3.
  • the radius of the roller 15 is r.
  • the second roller 15b adjacent to the first roller 15a in the rotational direction moves on a circumference having a chain pitch p as a radius from the center of the first roller 15a.
  • the second roller 15b having a radius r is moved along a circumference centered on the center of the first roller 15a meshed with the teeth 3a of the driven sprocket 3, and the tooth surfaces of the teeth 8b of the driven sprocket 3 and the second roller 15b
  • the position where the surface contacts is obtained by drawing.
  • the position thus determined is the meshing position between the driven sprocket 3 and the second roller 15b, and the distance between the center of the driven sprocket 3 and the center of the second roller 15b at this time is the meshing height of the second roller 15b. It becomes.
  • the meshing position and the meshing height of the third roller 15c can be obtained.
  • FIG. FIG. 19 is a view showing a chain stretch detection device according to Embodiment 2 of the present invention.
  • the chain stretch detection device according to Embodiment 2 of the present invention further includes an external alarm device 6 that receives a signal from the signal processing device 5.
  • the external alarm device 6 automatically measures the amount of elongation from the mesh height waveform sent to the signal processing device 5, displays that there is elongation, and when local elongation is detected, the elongation is detected. The part where is generated is displayed. Therefore, the external alarm device 6 has a display unit. Also, the external alarm device notifies the outside that the chain 1 has been stretched by emitting light or sounding the outside.
  • the elongation of the chain 1 can be known without recalculating from the signal obtained by the signal processing device 5, and locally.
  • the position can be specified while operating the chain 1 at the time of measurement.
  • FIG. 20 is a diagram showing a passenger conveyor according to Embodiment 3 of the present invention.
  • a passenger conveyor according to Embodiment 3 of the present invention includes a casing 71, a power unit 72 that generates a driving force, a driving sprocket 2 attached to an output shaft of the power unit 72, a driven sprocket 3, and a driving sprocket. 2 and the chain 1 wound around the driven sprocket 3, the main shaft 73 to which the driven sprocket 3 is attached, a step 74 that moves when the main shaft 73 rotates, and a control panel that controls the operation of the power source and the passenger conveyor. And a stored controller unit 75.
  • the power unit, the drive sprocket 2, the driven sprocket 3, the chain 1, the main shaft, the step, and the controller unit are stored inside the housing.
  • the chain elongation detecting device described in the first or second embodiment is used during periodic inspection of the chain 1 of the passenger conveyor.
  • the power unit 72 is a high-speed motor with a relatively small output torque for the purpose of reducing the size of the power unit 72.
  • the reducer decelerates the output of the motor by the chain 1. As a result, a large torque is transmitted to the main shaft 73 at a low speed.
  • the driven sprocket 3 has the same number of teeth as the reduction ratio with respect to the drive sprocket 2.
  • the elongation of the chain 1 can be easily measured at the time of inspection with respect to the currently installed passenger conveyor.
  • the passenger conveyor according to the fourth embodiment of the present invention since it is possible to always monitor the elongation of the chain 1 as well as at the time of periodic inspection, periodic inspection is unnecessary. Thus, the reliability of the passenger conveyor can be improved along with the reduction of work.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)
  • Escalators And Moving Walkways (AREA)
  • Gears, Cams (AREA)

Abstract

チェーンの伸び量を精度よく測定することができるチェーン伸び検出装置を得る。駆動スプロケット(2)と、従動スプロケット(3)と、駆動スプロケット(2)および従動スプロケット(3)に巻き掛けられ、駆動スプロケット(2)の動力を従動スプロケット(3)に伝達するチェーン(1)とを備えた伝達装置におけるチェーン(1)の伸びを検出するチェーン伸び検出装置であって、従動スプロケット(3)とチェーン(1)とが噛み合っている範囲におけるチェーン(1)の噛合い高さを測定する噛合い高さ測定装置(4)と、噛合い高さ測定装置(4)で取得された信号を用いて、チェーン(1)における隣り合うローラ(15)の高さの差を求め、求めた高さの差からチェーン(1)の伸び量を推定する信号処理装置(5)とを備えている。

Description

チェーン伸び検出装置、チェーン伸び検出方法および乗客コンベヤ
 この発明は、チェーンの伸びを検出するチェーン伸び検出装置およびチェーン伸び検出方法並びにチェーン伸び検出装置を備えた乗客コンベヤに関する。
 動力伝達に用いられるチェーンには、経年的なチェーンの稼働によって、チェーンにおける回転関節部分の部材間に発生する摩擦が原因となって、長手方向についての伸びが生じる。この伸びは、チェーンにおける隣接する各ローラのそれぞれの中心の間隔が拡がる現象として現れる。チェーンに伸びが生じることによって、チェーンの弛みが増加して歯飛びという不具合が生じる可能性がある。また、チェーンに伸びが生じることによって、チェーンとスプロケットとが噛み合う位置である噛合い位置がスプロケットの歯底から歯先に向かって移動する。これによって、スプロケットの歯に生じるせん断応力が増加して、歯の欠損という不具合が生じる可能性がある。通常、チェーンが駆動する場合に、チェーンの回転関節部分に潤滑オイルを供給することにより、回転関節部分に発生する摺動摩耗が抑制される。しかしながら、これは回転関節部分に生じる摩耗の促進を抑制するものであるので、長期間のチェーンの駆動によって生じるチェーンの経年的な伸びを防止することはできない。
 そこで、従来、チェーンに伸びが生じるとチェーンとスプロケットとが噛み合う噛合い位置が歯底から歯先に移動することを利用して、噛合い位置または噛合い高さを測定し、測定された噛合い位置または噛合い高さからチェーンの伸び量を特定し、特定されたチェーンの伸び量からチェーンの伸びの状態を把握することで、歯飛びまたは歯の欠損という不具合を未然に防ぐ対策を講じるためのチェーン伸び検出装置が知られている(例えば、特許文献1参照)。
特開平11-199168号公報
 しかしながら、従来のチェーン伸び検出装置では、例えば、チェーンの全域に渡って均等に伸びが生じた場合に、チェーンにおけるスプロケットに噛み合う部分において、噛合い高さが一律に大きくなったような高さとなると想定されている。また、従来のチェーン伸び検出装置では、チェーンに局所的な伸びが生じた場合に、チェーンにおける伸びが生じた部分において、噛合い高さが一定であると想定されている。
 一方、実際のチェーンでは、チェーンの構造的な特徴、一対のスプロケットにおける寸法的な関係、一対のスプロケットのそれぞれの回転軸を結んだ線の水平面に対する傾き、一対のスプロケットの間の寸法と一対のスプロケットのそれぞれの中心軸の間の寸法とから計算される適正なチェーンのリンク数と実際のチェーンのリンク数との差によって表される撓みなどから、チェーンにおけるスプロケットに噛み合う部分の任意の位置で、チェーンの伸びと相関のある噛合い高さを測定できるとは限らない。したがって、測定されたチェーンの伸び量の精度が悪いという問題点があった。
 この発明は、チェーンの伸び量を精度よく測定することができるチェーン伸び検出装置、チェーン伸び検出方法および乗客コンベヤを提供するものである。
 この発明に係るチェーン伸び検出装置は、駆動力が伝達されることによって回転する駆動スプロケットと、回転自在な回転軸に支持された従動スプロケットと、駆動スプロケットおよび従動スプロケットに巻き掛けられ、駆動スプロケットの動力を従動スプロケットに伝達するチェーンとを備えた伝達装置におけるチェーンの伸びを検出するチェーン伸び検出装置であって、駆動スプロケットまたは従動スプロケットとチェーンとが噛み合っている範囲におけるチェーンの噛合い高さを測定する噛合い高さ測定装置と、噛合い高さ測定装置で取得された信号を用いて、チェーンにおける隣り合うローラの高さの差を求め、求めた高さの差からチェーンの伸び量を推定する信号処理装置とを備えている。
 この発明に係るチェーン伸び検出装置によれば、駆動スプロケットまたは従動スプロケットとチェーンとが噛み合っている範囲におけるチェーンの噛合い高さを測定する噛合い高さ測定装置と、噛合い高さ測定装置で取得された信号を用いて、チェーンにおける隣り合うローラの高さの差を求め、求めた高さの差からチェーンの伸び量を推定する信号処理装置とを備えているので、チェーンの伸び量を精度よく測定することができる。
この発明の実施の形態1に係るチェーン伸び検出装置によって伸びが検出されるチェーンの構造を示す断面図である。 図1のチェーンを備えた伝達装置を示す図である。 図1のピンとブッシュとの間の摺動接触面に隙間が生じたチェーンを示す断面図である。 図3のチェーンに張力が作用した状態を示す断面図である。 図4のチェーンのリンク数を多くした状態を示す断面図である。 伸びが生じていない初期状態のチェーンと従動スプロケットとの噛合いを示す図である。 図6のチェーンおよび従動スプロケットを示す拡大図である。 全域に渡って伸びのあるチェーンと従動スプロケットとの巻き掛け状態を示す図である。 図8のチェーンおよび従動スプロケットの要部を示す拡大図である。 チェーンの全域に渡って均一な伸びが生じた場合のそれぞれのローラのピッチ円からの移動量を表した図である。 チェーンの一部の領域だけ伸びが生じた場合のそれぞれのローラのピッチ円からの移動量を表した図である。 チェーンの一部の領域だけ伸びが生じた場合のそれぞれのローラのピッチ円からの移動量を表した図である。 この発明の実施の形態1に係るチェーン伸び検出装置を示す図である。 図13のチェーンにおける測定位置を示す図である。 チェーンに伸びがない場合またはチェーンの伸びが小さい場合のチェーンの噛合い高さを示す図である。 チェーンの全域に渡って不均一な伸びが生じた場合のチェーンの噛合い高さを示す図である。 チェーンの一部に伸びが生じた場合のチェーンの噛合い高さを示す図である。 CADなどを用いた作図的なチェーンの伸びによる噛合い高さを求める方法を示す図である。 この発明の実施の形態2に係るチェーン伸び検出装置を示す図である。 この発明の実施の形態3に係る乗客コンベヤを示す図である。 この発明の実施の形態4に係る乗客コンベヤを示す図である。
 実施の形態1.
 図1はこの発明の実施の形態1に係るチェーン伸び検出装置によって伸びが検出されるチェーンの構造を示す断面図である。動力伝達に用いられるチェーン1は、互いに対向して設けられた一対の外プレート11と、一対の外プレート11に渡って設けられた2本のピン12と、互いに対向して設けられた一対の内プレート13と、一対の内プレート13に渡って設けられ、円筒形状に形成された2本のブッシュ14と、それぞれのブッシュ14の周囲に設けられたローラ15とを備えている。一対の外プレート11と一対の内プレート13とが、チェーン1の長手方向に交互に配置されている。
 それぞれのピン12は、それぞれの外プレート11に対して、かしめによって固定されている。それぞれのブッシュ14は、それぞれの内プレート13に固定されている。また、ブッシュ14には、ピン12が挿入されている。長手方向に隣り合う一対の外プレート11と一対の内プレート13とは、ピン12がブッシュ14に挿入されることによって連結されている。チェーン1におけるピン12がブッシュ14に挿入されている部分が、チェーン1の関節となっている。言い換えれば、チェーン1におけるピン12がブッシュ14に挿入されている部分において、チェーン1は屈曲可能となっている。
 内プレート13に固定されたブッシュ14の周囲にはローラ15が装着されており、ローラ15はブッシュ14に対して回転可能となっている。したがって、ローラ15は、ブッシュ14に対して回転可能な状態でスプロケットの歯と噛み合う。チェーン1の伸びを評価する場合のチェーン1の基準長さは、隣り合うローラ15の間の寸法で規定されている。チェーンの基準長さは、チェーン1の基準ピッチpと呼ばれている。
 図2は図1のチェーン1を備えた伝達装置を示す図である。伝達装置は、駆動力が伝達されることによって回転する駆動スプロケット2と、駆動スプロケット2に離れて設けられ、回転自在な回転軸に支持された従動スプロケット3と、駆動スプロケット2と従動スプロケット3に渡って巻き掛けられたチェーン1とを備えている。駆動スプロケット2が図2の矢印Aに示すように、左回りに回転する場合、チェーン1における駆動スプロケット2と従動スプロケット3との間の部分であって上側の部分が張り側部分となり、チェーン1における駆動スプロケット2と従動スプロケット3との間の部分であって下側の部分が弛み側部分となる。チェーン1における張り側部分には、伝達される負荷トルクに応じた張力が作用する。チェーン1における弛み側部分には、伝達される負荷トルクに応じた張力が作用せず、弛み側部分の自重とチェーン1の回転動作に伴う振動による微小な変動とによる張力が作用する。
 チェーン1におけるスプロケットと噛み合っている部分では、スプロケットの歯数で決定される歯毎の角度で関節の角度が決まる。また、チェーン1におけるスプロケットに掛かり始める部分からチェーン1におけるスプロケットから抜け出る部分までにおいて、チェーン1の進行に伴って関節の回転屈曲動作が行われる。
 回転屈曲動作が行われる関節には伝達トルクに応じた張力が作用するので、回転屈曲動作において、ピン12とブッシュ14との間のそれぞれの接触摺動面には、面圧を有する摺動動作が行われる。これにより、ピン12およびブッシュ14のそれぞれの接触摺動面には摩耗が発生する。特に、ピン12の両端部には、ブッシュ14の角との間での局所的な接触が発生するので、ピン12の両端部における摩耗がより促進される。ピン12とブッシュ14との間の接触摺動面の摩耗により、ピン12とブッシュ14との間には、初期状態に比べて隙間が生じる。この隙間は、チェーン1の伸びの最も主な要因である。
 図3は図1のピン12とブッシュ14との間の摺動接触面に隙間が生じたチェーン1を示す断面図、図4は図3のチェーン1に張力が作用した状態を示す断面図、図5は図4のチェーン1のリンク数を多くした状態を示す断面図である。図3はチェーン1には張力が作用していない状態を示している。経年的な摺動摩耗により、ピン12とブッシュ14との間には、一律に隙間Bが形成されている。
 チェーン1に張力が作用すると、ピン12とブッシュ14との間の隙間Bの寸法だけピン12がブッシュ14に対して移動して、ピン12とブッシュ14とが接触する。チェーン1の伸びの評価は、隣り合うローラ15の間の寸法で規定され、基準ピッチpに対してどれだけ変化したかによって測定される。
 ブッシュ14の両端部が内プレート13に固定されており、同一の内プレート13に固定された一対のブッシュ14のそれぞれの中心の間隔がチェーン1の基準ピッチpに設定されている。同一の内プレート13に固定された一対のブッシュ14の間隔は、内プレート13が伸びない限り、変化することがない。チェーン1の許容張力と、内プレート13の材料、形状とから、通常のトルク伝達で作用する張力では、同一の内プレート13に固定された一対のブッシュ14の間隔は変化しない。
 隣り合う一対のブッシュ14のそれぞれの中心の間の距離は、隣り合う一対のローラ15のそれぞれの中心の間の距離と同じである。摺動摩耗によってピン12とブッシュ14との間に生じた隙間Bだけ伸びたチェーン1と摺動摩耗のない初期の状態のチェーン1とを比較すると、延びたチェーン1では、同一の外プレート11に設けられた一対のローラ15の間の距離のみが基準ピッチpに対して伸びが生じ、同一の内プレート13に設けられた一対のローラ15の間の寸法は変化しない。つまり、ピン12とブッシュ14との経年的な摺動摩耗により生じる両者の隙間Bを原因とするチェーン1の伸びは、同一の外プレート11に設けられた一対のローラ15の間でのみ生じており、隣り合うローラ15の間隔は、一つ置きに伸びが生じる。
 次に、チェーン1と従動スプロケット3との噛合いについて説明する。図6は伸びが生じていない初期状態のチェーン1と従動スプロケット3との噛合いを示す図、図7は図6のチェーン1および従動スプロケット3を示す拡大図である。実際のチェーン1では、円滑な動作が行われるようい各部材間には、微小な隙間が設けられており、その隙間によって初期状態からチェーン1における伸びとして現れるが、この実施の形態1では、この隙間は誤差とする。
 チェーン1のピッチ長さpは、チェーン1の引張強度に応じた型番に対して規格で定められている。チェーン1のピッチ長さpと、従動スプロケット3の歯数zとを用いて、下記の式(1)から求められるピッチ径Dの位置で、チェーン1が従動スプロケット3の歯と噛み合う。
   D×sin(180/Z)=p   (1)
 ピッチ径Dがチェーン1の型番と従動スプロケット3の歯数zとが決まると一意に決まるので、従動スプロケット3におけるローラ15の位置は、幾何的な作図によって予め求めることができる。
 次に、チェーン1の全域に渡って一律に伸びが生じた場合について説明する。従来は、チェーン1が一律に伸びることによって、上記の式(1)のピッチ長さpに伸びの分の長さΔpを足し合わせた値を用いて算出されるピッチ径Dの位置でローラ15が従動スプロケット3と噛み合うとしていた。
 しかしながら、図5に示すように、チェーン1は構造上の理由から、伸びとしてピッチ長さpに変化が生じるのは、同一の外プレート11に設けられた一対のローラ15の中心間の距離だけであり、同一の内プレート13に設けられた一対のローラ15の中心間の距離は変化しない。つまり、全周に渡って一律に伸びが生じたチェーン1では、外プレート11の部分にだけ、隣り合うローラ15の中心間の距離に伸びが生じるので、並べられたローラ15の中で1つ置きに隣り合うローラ15の中心間の距離の変化が生じる。これにより、チェーン1に伸びが生じた場合の従動スプロケット3の歯内でのローラ15の噛合い位置は、上記の式(1)によって一律に求めることができない。
 次に、動力を伝達している状態でのチェーン1と従動スプロケット3との巻き掛け状態について説明する。チェーン1の全域に渡って伸びがない状態では、従動スプロケット3に巻き掛けられている範囲で、ローラ15は、上記の式(1)で算出されるピッチ径Dの位置で従動スプロケット3の歯と噛み合う。
 図8は全域に渡って伸びのあるチェーン1と従動スプロケット3との巻き掛け状態を示す図、図9は図8のチェーン1および従動スプロケット3の要部を示す拡大図である。チェーン1の伸びの状態に関わらず、チェーン1が巻き掛けられている従動スプロケット3の範囲で、伸びのないチェーン1が巻き掛けられている場合と同じ噛合い状態となる歯が存在する。
 この歯は、経験上、駆動スプロケット2および従動スプロケット3のそれぞれの回転軸を結んだ線の延長線上にある。正確な位置は、チェーン1に掛かる負荷、チェーン1における撓み側の部分の自重、従動スプロケット3の歯面の摩擦係数などの刻々と変化する条件に応じて移動する。この実施の形態1では、駆動スプロケット2および従動スプロケット3のそれぞれの回転軸を結んだ線の延長線上にある歯が、チェーン1の伸びの状態に関わらず伸びのないチェーン1が巻き掛けられている場合と同じ噛合い状態となる歯とする。
 同一の外プレート11に設けられている一対のローラ15の間の距離であり、同一の内プレート13に設けられている一対のローラ15の間の距離は変化しないため、隣り合うローラ15の間の距離の伸びは、並べられた複数のローラ15の中で、一つ置きに生じる。図9では、チェーン1の伸びのないときの噛合い位置と同じ位置で噛合う歯から順に、破線を内プレート13として表し、実線を外プレート11として表している。
 従動スプロケット3の回転方向について内プレート13よりも後側に配置された第1ローラ15aが、伸びのない状態のピッチ円上で従動スプロケット3と噛合う位置にあるとき、第1ローラ15aよりも回転方向について1つ前側にある第2ローラ15bは、第1ローラ15aと同一の内プレート13に固定されたブッシュ14と同軸に配置されているため、両者の軸間距離は、チェーンピッチと等しい。したがって、第2ローラ15bも、ピッチ円上にある。
 第2ローラ15bよりも回転方向について1つ前側にある第3ローラ15cは、第2ローラ15bに貫通するピン12と同一の外プレート11に固定されたピン12が貫通するブッシュ14と同軸に配置されている。ピン12とブッシュ14との摩耗によって生じる両者の隙間Bの分だけ外プレート11に設けられた一対のブッシュ14の間の距離が拡がるので、第2ローラ15bと第3ローラ15cとの軸間距離は、チェーンピッチに対して大きくなる。第3ローラ15cは、第2ローラ15bの軸を中心としてチェーンピッチよりも伸びた分だけ長い長さの半径として回転するため、従動スプロケット3における次の歯とは、従動スプロケット3のピッチ円よりも大きな半径の円上で噛合う。これは、従動スプロケット3の歯の中で、従動スプロケット3の径方向について、歯底から歯先にずれた位置で噛合うことを意味する。
 第4ローラ15dは、第3ローラ15cと同一の内プレート13に固定されたブッシュ14と同軸のため、第4ローラ15dと第3ローラ15cとの軸間距離は、チェーンピッチと等しい。第3ローラ15cは、従動スプロケット3のピッチ径よりも大きな半径の円上で従動スプロケット3の歯内に位置するため、第3ローラ15cの軸を中心としてチェーンピッチを半径として回転する第4ローラ15dは、第3ローラ15cの位置する従動スプロケット3の中心を中心とする円よりも小さな半径の円上に位置する。
 このように、伸びのないチェーンと同じくピッチ円上で従動スプロケット3の歯と噛み合うローラ15を基点として、外プレート11の回転方向について前方にあるローラ15は、従動スプロケット3の歯内における従動スプロケット3の中心からより離れた位置で歯内と噛み合い、回転方向について次に前方に位置するローラ15は、それに対して従動スプロケット3の中心からより近い位置で歯内と噛み合う。
 図10はチェーン1の全域に渡って均一な伸びが生じた場合のそれぞれのローラ15のピッチ円からの移動量を表した図である。図10では、第1ローラ15aから第1ローラ15aに対して回転方向について前方に配置された第2ローラ15b、第3ローラ15cの順にそれぞれの移動量を表している。従動スプロケット3のピッチ円上に位置する第1ローラ15aに対して回転方向についてある程度前方に位置するローラ15について、従動スプロケット3の中心から遠いローラ15の位置と、従動スプロケット3の中心から近いローラ15の位置とは、ある一定の値に落ち着く。
 図11はチェーン1の一部の領域だけ伸びが生じた場合のそれぞれのローラ15のピッチ円からの移動量を表した図である。図11では、チェーン1における伸びの生じた部分にあるローラ15が従動スプロケット3の歯とピッチ円上で噛合った場合のそれぞれのローラ15の移動量を表している。図からわかるように、ピッチ円上にあったローラ15に対して回転方向について前方に並べられたいくつかのローラ15は、ピッチ円から大きく離れる。また、ピッチ円からの移動量が大きいローラ15に対して回転方向について前方に並べられた複数のローラ15の位置は、なだらかにピッチ円に近づく。
 図12はチェーン1の一部の領域だけ伸びが生じた場合のそれぞれのローラ15のピッチ円からの移動量を表した図である。図12では、チェーン1における伸びの生じた部分にあるローラ15が従動スプロケット3の歯とピッチ円上で噛合ったローラ15よりも回転方向について前方にある場合のそれぞれのローラ15の移動量を表している。図からわかるように、チェーン1における伸びの生じていないローラ15の噛合い位置は、ピッチ円上にあり、チェーン1における伸びの生じた部分のローラ15の噛合い位置は、ピッチ円から大きく移動する。
 以上のことから、チェーン1の全域に渡って均一な伸びが生じる場合およびチェーン1の一部の領域だけ伸びが生じる場合の何れであっても、従動スプロケット3との噛合いにおいてピッチ円上で噛合うローラ15の位置から回転方向について概ね15歯程度前方の位置で、伸び量と相関のある噛合いの高さ位置が検出できる。
 次に、チェーン1の伸びと従動スプロケット3に対するローラ15の噛合いとの特徴を利用したチェーン1の伸びの位置とその伸び量の推定方法について説明する。図13はこの発明の実施の形態1に係るチェーン伸び検出装置を示す図である。駆動力を有する駆動スプロケット2と、負荷となる従動スプロケット3とにチェーン1が巻き掛けられている。駆動スプロケット2からの動力がチェーン1を介して従動スプロケット3に伝達される。
 チェーン伸び検出装置は、ローラの高さを測定する噛合い高さ測定装置4と、噛合い高さ測定装置4の測定結果が入力される信号処理装置5とを備えている。従動スプロケット3において、チェーン1が従動スプロケット3に対してピッチ円上で噛合う歯から回転方向について前方に15歯以上離れた位置に、噛合い高さ測定装置4を設置する。噛合い高さ測定装置4は、従動スプロケット3の歯内におけるチェーン1の高さを測定する。この例では、噛合い高さ測定装置4として、レーザを用いた非接触型の変位計が用いられている。また、この例では、噛合い高さ測定装置4は、従動スプロケット3の歯内におけるチェーン1の高さを測定しているが、駆動スプロケット2の歯内におけるチェーン1の高さを測定してもよい。
 図14は図13のチェーン1における測定位置を示す図である。従動スプロケット3の歯内におけるチェーン1の高さの測定では、図14の点a~cに示すような噛合い高さとともに従動スプロケット3の中心から半径方向の位置が変化する部分を測定点とする。これにより、噛合い高さ測定装置4は、図14の点a~cにレーザを照射することで、歯内におけるチェーン1の噛合い高さの変化を測定することができる。噛合い高さ測定工程において、チェーン1の噛合い高さの変化が測定される。
 噛合い高さ測定装置4で得られた信号は、信号処理装置5に送られる。信号処理装置5において、信号処理工程が行われる。信号処理装置5は、噛合い高さ測定装置4から送られた信号を用いて、チェーン1の全域に渡った伸びの状態の有無を判断する。信号処理装置5では、具体的には、チェーン1の伸びがない場合またはチェーン1の伸びが小さい場合には、図15に示すような、各ローラ15の歯内での噛合い高さに大きな差がない波形が得られる。
 一方、チェーン1の全域に渡って不均一な伸びが生じた場合には、信号処理装置5では、図16に示すような、並べられた複数のローラ15において1つ置きに噛合い高さが変わるような波形が得られる。また、チェーン1の一部に伸びが生じた場合には、信号処理装置5では、図17に示すような、伸びが生じた部分の噛合い位置が他の部分の噛合い位置と明らかに異なる位置となる波形が得られる。また、図16に示す隣り合うローラ15の噛合い高さの差、図17に示す均一な波形部分と最大変位部分との噛合い高さの差を用いて、チェーン1の概略の伸び率を推定することができる。具体的には、図16に示す隣り合うローラ15の噛合い高さの差、図17に示す均一な波形部分と最大変位部分との噛合い高さの差と、予め測定対象となるチェーン1の仕様からCADなどを用いて作図的に求めた値と比較することで、チェーン1の概略の伸び率を推定することができる。
 図18はCADなどを用いた作図的なチェーン1の伸びによる噛合い高さを求める方法を示す図である。まず、従動スプロケット3の歯内において、理想的な位置に噛み合った第1ローラ15aを仮定する。ここで、第1ローラ15aの表面は、従動スプロケット3の歯3Aの歯面と接触している。ここで、ローラ15の半径をrとする。
 第1ローラ15aに対して回転方向に隣り合う第2ローラ15bは、第1ローラ15aの中心からチェーンピッチpを半径とする円周上を移動する。従動スプロケット3の歯3aと噛み合った第1ローラ15aの中心を中心とする円周に沿って半径rの第2ローラ15bを移動させ、従動スプロケット3の歯8bの歯面と第2ローラ15bの表面とが接する位置を作図により求める。このように求められた位置が従動スプロケット3と第2ローラ15bとの噛合い位置となり、このときの従動スプロケット3の中心と第2ローラ15bの中心の距離が、第2ローラ15bの噛合い高さとなる。第2ローラ15bと同様にして、第3ローラ15cの噛合い位置および噛合い高さを求めることができる。
 なお、このようなローラ15の噛合い位置および噛合い高さの情報は、従動スプロケット3の形状、チェーンピッチ長さ、ローラ15の形状が決まれば幾何的に一意に求められる情報であり、図18に示す手順で求めるほかにも、汎用的な幾何学ツールを用いて求めることも可能である。
 この発明の実施の形態1に係るチェーン伸び検出装置によれば、チェーン1が通常の駆動状態で、チェーン1の全域に渡るチェーン1の伸びを評価することができ、全域に渡るチェーン1の均一の伸びについてはその伸び量が推定でき、局所的な伸びについては測定点に特定のリンクに対し、明らかに信号に特異な変位を与える凸部を設けることで伸び量とともに伸びの生じている位置も確認することができる。
 実施の形態2.
 図19はこの発明の実施の形態2に係るチェーン伸び検出装置を示す図である。この発明の実施の形態2に係るチェーン伸び検出装置は、信号処理装置5から信号を受ける外部発報装置6をさらに備えている。外部発報装置6は、信号処理装置5に送られた噛合い高さの波形から自動的に伸び量を測定し、伸びがあることを表示し、局所的な伸びを検出した場合にその伸びが生じた部分を表示する。したがって、外部発報装置6は、表示部を有している。また、外部発報装置は、外部に対して光を発したり、音を鳴らしたりすることで、チェーン1に伸びが生じたことを外部に発報する。
 以上説明したように、この発明の実施の形態2に係るチェーン伸び検出装置によれば、信号処理装置5に得られた信号から改めて演算することなく、チェーン1の伸びを知ることができ、局所的な伸びがチェーン1に生じた場合には、その位置を測定時にチェーン1を稼働しながら特定することができる。
 実施の形態3.
 図20はこの発明の実施の形態3に係る乗客コンベヤを示す図である。この発明の実施の形態3に係る乗客コンベヤは、筐体71と、駆動力を発生する動力部72と、動力部72の出力軸に取り付けられた駆動スプロケット2と、従動スプロケット3と、駆動スプロケット2および従動スプロケット3に巻き掛けられたチェーン1と、従動スプロケット3が取り付けられた主軸73と、主軸73が回転することによって移動するステップ74と、電源および乗客コンベヤの動作を制御する制御盤を格納したコントローラ部75とを備えている。動力部、駆動スプロケット2、従動スプロケット3、チェーン1、主軸、ステップおよびコントローラ部は、筐体の内部に格納されている。
 チェーン1は、乗客コンベヤに必要なすべての動力を伝達する役目を担う。そのため、乗客コンベヤの駆動時には常にチェーン1に張力が作用した状態となる。したがって、経年的な伸びがチェーン1に生じることが予想される。そのため、乗客コンベヤを常に良好な状態で稼働させるためには、定期的にチェーン1の伸びを測定し、チェーン1の伸びによる状態の劣化を未然に防ぐことが求められる。
 実施の形態3では、実施の形態1または実施の形態2に記載したチェーン伸び検出装置を、乗客コンベヤのチェーン1の定期的な点検時に用いるものである。一般に、動力部72には、動力部72の小型化を目的として、高速で比較的出力トルクの小さなモータが用いられている。減速機は、モータの出力をチェーン1によって減速する。その結果、主軸73には、低速で大きなトルクが伝えられる。チェーン駆動システムで減速するためには、駆動スプロケット2に対して従動スプロケット3は減速比と同じ倍数の歯数となる。そのため、従動スプロケット3におけるチェーン1と噛み合っている歯の数は、駆動スプロケット2におけるチェーン1と噛み合っている歯の数よりも多くなる。図10に示すように、実施の形態1または実施の形態2で記載したチェーン伸び検出装置では、歯底で噛合ったローラ15から一定の歯数だけ回転方向について前方に配置された歯の噛合い高さを測定することが特徴であり、噛合う歯数の多い従動スプロケット3においてチェーン1の伸びを検出する方が、駆動スプロケット2においてチェーン1の伸びを検出するよりも適している。
 実施の形態3では、噛合い高さ測定装置4を、主軸73と一体となった従動スプロケット3の噛合いが抜けるチェーン1の部分の近くに配置して筐体71に固定し、噛合い高さを測定することを特徴としている。その際に、測定した信号を処理する信号処理装置5と、測定した結果を外部に知らせる外部発報装置6も、噛合い高さ測定装置4とともに、点検時に設置して用いられる。
 以上説明したように、この発明の実施の形態3に係る乗客コンベヤによれば、現在設置されている乗客コンベヤに対して、チェーン1の伸びを点検時に容易に測定することができる。
 実施の形態4.
 図21はこの発明の実施の形態4に係る乗客コンベヤを示す図である。実施の形態4では、筐体に固定された噛合い高さ測定装置4によって得られる信号を、コントローラ部75に格納された制御盤に取り込み、制御盤の機能としてチェーン1の伸びおよび局所的な伸びの位置を検出し、外部にそれぞれの情報を表示することを特徴としている。その他の構成は、実施の形態3と同様である。
 以上説明したように、この発明の実施の形態4に係る乗客コンベヤによれば、定期的な検査の時だけでなく、常にチェーン1の伸びを監視することができるため、定期的な検査が不要となり、作業の軽減とともに乗客コンベヤの信頼性を向上させることができる。
 1 チェーン、2 駆動スプロケット、3 従動スプロケット、4 噛合い高さ測定装置、5 信号処理装置、6 外部発報装置、11 外プレート、12 ピン、13 内プレート、14 ブッシュ、15 ローラ、71 筐体、72 動力部、73 主軸、74 ステップ、75 コントローラ部。

Claims (8)

  1.  駆動力が伝達されることによって回転する駆動スプロケットと、回転自在な回転軸に支持された従動スプロケットと、前記駆動スプロケットおよび前記従動スプロケットに巻き掛けられ、前記駆動スプロケットの動力を前記従動スプロケットに伝達するチェーンとを備えた伝達装置における前記チェーンの伸びを検出するチェーン伸び検出装置であって、
     前記駆動スプロケットまたは前記従動スプロケットと前記チェーンとが噛み合っている範囲における前記チェーンの噛合い高さを測定する噛合い高さ測定装置と、
     前記噛合い高さ測定装置で取得された信号を用いて、前記チェーンにおける隣り合うローラの高さの差を求め、求めた前記高さの差から前記チェーンの伸び量を推定する信号処理装置と
     を備えたチェーン伸び検出装置。
  2.  前記信号処理装置は、前記チェーンにおける隣り合う前記ローラの前記高さの差から、局所的な前記チェーンの伸びが生じた場合の前記チェーンの伸び量および局所的な前記チェーンの伸びが生じた部分を推定する請求項1に記載のチェーン伸び検出装置。
  3.  前記信号処理装置が推定した前記チェーンの伸び量を表示する表示部をさらに備えた請求項1または請求項2に記載のチェーン伸び検出装置。
  4.  前記信号処理装置で推定した局所的な前記チェーンの伸びが生じた場合の前記チェーンの伸び量および局所的な前記チェーンの伸びが生じた部分を表示する表示部をさらに備えた請求項2に記載のチェーン伸び検出装置。
  5.  前記噛合い高さ測定装置は、前記駆動スプロケットの回転軸および前記従動スプロケットの回転軸を結んだ直線の延長線に最も近い歯から15歯以上回転方向について前方の位置にある前記チェーンの部分の噛合い高さを測定する請求項1ないし請求項4の何れか一項に記載のチェーン伸び検出装置。
  6.  駆動力が伝達されることによって回転する駆動スプロケットと、回転自在な回転軸に支持された従動スプロケットと、前記駆動スプロケットおよび前記従動スプロケットに巻き掛けられ、前記駆動スプロケットの動力を前記従動スプロケットに伝達するチェーンとを備えた伝達装置の前記チェーンの伸びを検出するチェーン伸び検出方法であって、
     前記駆動スプロケットまたは前記従動スプロケットと前記チェーンとが噛み合っている範囲における前記チェーンの噛合い高さを測定する噛合い高さ測定工程と、
     前記噛合い高さ測定工程で取得された信号を用いて、前記チェーンにおける隣り合うローラの高さの差を求め、求めた前記高さの差から前記チェーンの伸び量を推定する信号処理工程と
     を備えたチェーン伸び検出方法。
  7.  モータから駆動力が伝達されることによって回転する駆動スプロケットと、
     ステップを駆動するステップ駆動装置に接続され、回転自在な回転軸に支持された従動スプロケットと、
     前記駆動スプロケットおよび前記従動スプロケットに巻き掛けられ、前記駆動スプロケットの動力を前記従動スプロケットに伝達するチェーンと、
     前記駆動スプロケットまたは前記従動スプロケットと前記チェーンとが噛み合っている範囲における前記チェーンの噛合い高さを測定する噛合い高さ測定装置と、
     前記噛合い高さ測定装置で取得された信号を用いて、前記チェーンにおける隣り合うローラの高さの差を求め、求めた前記高さの差から前記チェーンの伸び量を推定する信号処理装置と
    を備えた乗客コンベヤ。
  8.  前記噛合い高さ測定装置は、前記従動スプロケットと前記チェーンとが噛み合っている範囲における前記チェーンの噛合い高さを測定する請求項7に記載の乗客コンベヤ。
PCT/JP2016/084804 2016-11-24 2016-11-24 チェーン伸び検出装置、チェーン伸び検出方法および乗客コンベヤ WO2018096615A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/346,754 US10710844B2 (en) 2016-11-24 2016-11-24 Chain stretch detection device, chain stretch detection method, and passenger conveyor
PCT/JP2016/084804 WO2018096615A1 (ja) 2016-11-24 2016-11-24 チェーン伸び検出装置、チェーン伸び検出方法および乗客コンベヤ
CN201680090873.3A CN109983252B (zh) 2016-11-24 2016-11-24 链条伸长检测装置、链条伸长检测方法及乘客输送机
DE112016007470.0T DE112016007470T5 (de) 2016-11-24 2016-11-24 Detektionseinrichtung für ketten-dehnung, detektionsverfahren für ketten-dehnung sowie personenförderband
JP2018552320A JP6604615B2 (ja) 2016-11-24 2016-11-24 チェーン伸び検出装置、チェーン伸び検出方法および乗客コンベヤ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/084804 WO2018096615A1 (ja) 2016-11-24 2016-11-24 チェーン伸び検出装置、チェーン伸び検出方法および乗客コンベヤ

Publications (1)

Publication Number Publication Date
WO2018096615A1 true WO2018096615A1 (ja) 2018-05-31

Family

ID=62195804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084804 WO2018096615A1 (ja) 2016-11-24 2016-11-24 チェーン伸び検出装置、チェーン伸び検出方法および乗客コンベヤ

Country Status (5)

Country Link
US (1) US10710844B2 (ja)
JP (1) JP6604615B2 (ja)
CN (1) CN109983252B (ja)
DE (1) DE112016007470T5 (ja)
WO (1) WO2018096615A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112204342A (zh) * 2019-05-03 2021-01-08 韩国输送机工业株式会社 利用摩擦音的滚子链的长度估算方法
WO2021084707A1 (ja) * 2019-10-31 2021-05-06 三菱電機ビルテクノサービス株式会社 乗客コンベアのチェーンの点検治具および点検方法
JPWO2021176515A1 (ja) * 2020-03-02 2021-09-10
JPWO2023281583A1 (ja) * 2021-07-05 2023-01-12

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3670419B1 (en) * 2018-12-19 2023-01-25 Otis Elevator Company Method and device for monitoring chain tension
JP2022026078A (ja) * 2020-07-30 2022-02-10 東芝エレベータ株式会社 乗客コンベアのチェーン伸び検出装置
DE102021107895A1 (de) * 2021-03-29 2022-09-29 Iwis Antriebssysteme Gmbh & Co. Kg Kettensensorvorrichtung und verfahren zur ermittlung des verschleisses
JP7107409B1 (ja) * 2021-06-01 2022-07-27 三菱電機ビルソリューションズ株式会社 特定用工具
JP7136287B1 (ja) * 2021-07-20 2022-09-13 三菱電機ビルソリューションズ株式会社 エスカレーターのチェーンの振れ幅確認装置及び振れ幅確認方法
CN115468524B (zh) * 2022-09-20 2024-06-14 宝钢工程技术集团有限公司 柔性钢管通径机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199168A (ja) * 1998-01-16 1999-07-27 Hitachi Building Systems Co Ltd 乗客コンベアのハンドレールチェーン伸び検出装置
JPH11325829A (ja) * 1998-05-13 1999-11-26 Sumitomo Metal Ind Ltd リンクチェーンの摩耗伸び量測定方法およびその測定装置
JP2000291748A (ja) * 1999-04-07 2000-10-20 Hitachi Building Systems Co Ltd チェーンの伸長度診断装置
JP2004177196A (ja) * 2002-11-26 2004-06-24 Hitachi Plant Eng & Constr Co Ltd チェーンの伸び検出装置及び検出方法
EP1850087A1 (de) * 2006-04-25 2007-10-31 Prüftechnik Dieter Busch Ag Verfahren und Vorrichtung zum Überwachen der Dehnung einer Antriebskette

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19642118C2 (de) * 1996-10-12 1999-12-09 Koenig & Bauer Ag Vorrichtung zum Transportieren gefalzter Signaturen
US20070170037A1 (en) * 2004-08-19 2007-07-26 Mitsubishi Denki Kabushiki Kaisha Lifting machine image monitoring system
JP2009084028A (ja) * 2007-10-02 2009-04-23 Hitachi Building Systems Co Ltd 乗客コンベアのチェーン診断方法
JP5283608B2 (ja) * 2009-11-30 2013-09-04 株式会社椿本チエイン 伸張度測定装置、伸張度測定システム及びコンピュータプログラム
JP2011149445A (ja) * 2010-01-19 2011-08-04 Honda Motor Co Ltd チェーン状態判定装置
JP2011173719A (ja) 2010-02-26 2011-09-08 Mitsubishi Electric Building Techno Service Co Ltd チェーン摩耗検出装置
JP5536147B2 (ja) * 2012-06-27 2014-07-02 東芝エレベータ株式会社 乗客コンベアのチェーン状態検出装置
JP2015178413A (ja) * 2014-03-19 2015-10-08 株式会社日立ビルシステム 乗客コンベアの安全装置
CN203744957U (zh) * 2014-03-24 2014-07-30 上海市特种设备监督检验技术研究院 一种链条伸长状况实时检测装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199168A (ja) * 1998-01-16 1999-07-27 Hitachi Building Systems Co Ltd 乗客コンベアのハンドレールチェーン伸び検出装置
JPH11325829A (ja) * 1998-05-13 1999-11-26 Sumitomo Metal Ind Ltd リンクチェーンの摩耗伸び量測定方法およびその測定装置
JP2000291748A (ja) * 1999-04-07 2000-10-20 Hitachi Building Systems Co Ltd チェーンの伸長度診断装置
JP2004177196A (ja) * 2002-11-26 2004-06-24 Hitachi Plant Eng & Constr Co Ltd チェーンの伸び検出装置及び検出方法
EP1850087A1 (de) * 2006-04-25 2007-10-31 Prüftechnik Dieter Busch Ag Verfahren und Vorrichtung zum Überwachen der Dehnung einer Antriebskette

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112204342A (zh) * 2019-05-03 2021-01-08 韩国输送机工业株式会社 利用摩擦音的滚子链的长度估算方法
WO2021084707A1 (ja) * 2019-10-31 2021-05-06 三菱電機ビルテクノサービス株式会社 乗客コンベアのチェーンの点検治具および点検方法
JP6870782B1 (ja) * 2019-10-31 2021-05-12 三菱電機ビルテクノサービス株式会社 乗客コンベアのチェーンの点検治具および点検方法
JPWO2021176515A1 (ja) * 2020-03-02 2021-09-10
WO2021176515A1 (ja) * 2020-03-02 2021-09-10 三菱電機株式会社 チェーン伸び検出装置、チェーン伸び検出方法および乗客コンベア
JPWO2023281583A1 (ja) * 2021-07-05 2023-01-12
WO2023281583A1 (ja) * 2021-07-05 2023-01-12 三菱電機ビルソリューションズ株式会社 検出用装置
JP7380954B2 (ja) 2021-07-05 2023-11-15 三菱電機ビルソリューションズ株式会社 検出用装置
KR20240008411A (ko) 2021-07-05 2024-01-18 미쓰비시 덴키 빌딩 솔루션즈 가부시키가이샤 검출용 장치
KR102638080B1 (ko) 2021-07-05 2024-02-20 미쓰비시 덴키 빌딩 솔루션즈 가부시키가이샤 검출용 장치
CN117580794A (zh) * 2021-07-05 2024-02-20 三菱电机楼宇解决方案株式会社 检测用装置

Also Published As

Publication number Publication date
CN109983252B (zh) 2022-03-22
CN109983252A (zh) 2019-07-05
JPWO2018096615A1 (ja) 2019-06-24
DE112016007470T5 (de) 2019-08-14
US20200055710A1 (en) 2020-02-20
US10710844B2 (en) 2020-07-14
JP6604615B2 (ja) 2019-11-13

Similar Documents

Publication Publication Date Title
JP6604615B2 (ja) チェーン伸び検出装置、チェーン伸び検出方法および乗客コンベヤ
US20170087719A1 (en) Rotation driving apparatus, robot apparatus, control program, and article manufacturing method
US20170015004A1 (en) Robot apparatus, and measuring method of rotation driving apparatus
KR102003583B1 (ko) 기어 전동 장치 및 기어 전동 장치의 사용도를 측정하는 사용도 측정 장치
CN102640986B (zh) 用于对烟草加工工业的传输和/或存储装置用的输送链进行监测的装置和方法
JP2016041625A (ja) 乗客コンベヤのチェーン片伸び検出装置
JP2009068950A (ja) 機械診断装置
JPH11325829A (ja) リンクチェーンの摩耗伸び量測定方法およびその測定装置
JP2019119555A (ja) エレベータのロープ検査システム
JP4188855B2 (ja) 制御装置
JP4986556B2 (ja) エスカレーター踏段チェーンの伸び量測定装置
JP7222206B2 (ja) 機械診断装置及び機械診断プログラム
JP7222204B2 (ja) 機械診断装置及び機械診断プログラム
WO2021176515A1 (ja) チェーン伸び検出装置、チェーン伸び検出方法および乗客コンベア
CN106660765B (zh) 检测链条中的磨损链节的方法及升降装置
JP7222205B2 (ja) 機械診断装置及び機械診断プログラム
JP4019052B2 (ja) 歯車の噛み合い起振力推定方法及び装置
JP4391926B2 (ja) 手摺駆動装置、手摺走行抵抗値算出装置、監視装置
JP4478508B2 (ja) ベルト交換時期判別システム
Stojanovic et al. Analysis of tribological processes at timing belt's tooth flank
JP2020185666A (ja) 二軸混練押出機の減速装置
JP3188898B2 (ja) リンクチェーンの伸び量測定装置
JP7478051B2 (ja) 乗客コンベアの診断装置および乗客コンベア
JP6278066B2 (ja) ギヤ歯面の異常検出装置及びギヤ歯面の異常検出方法
JP2023115945A (ja) スプラインの診断装置、ホイスト、及び電動車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922565

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018552320

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16922565

Country of ref document: EP

Kind code of ref document: A1