WO2018095370A1 - 一种香梨多温区冰温保鲜库及保鲜方法 - Google Patents

一种香梨多温区冰温保鲜库及保鲜方法 Download PDF

Info

Publication number
WO2018095370A1
WO2018095370A1 PCT/CN2017/112640 CN2017112640W WO2018095370A1 WO 2018095370 A1 WO2018095370 A1 WO 2018095370A1 CN 2017112640 W CN2017112640 W CN 2017112640W WO 2018095370 A1 WO2018095370 A1 WO 2018095370A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
pear
ice
storage
conveyor belt
Prior art date
Application number
PCT/CN2017/112640
Other languages
English (en)
French (fr)
Inventor
孙大文
潘廷跳
蒲洪彬
朱志伟
韩忠
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US16/324,586 priority Critical patent/US11330824B2/en
Publication of WO2018095370A1 publication Critical patent/WO2018095370A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B7/00Preservation or chemical ripening of fruit or vegetables
    • A23B7/04Freezing; Subsequent thawing; Cooling
    • A23B7/0408Freezing; Subsequent thawing; Cooling the material being transported through or in the apparatus with or without shaping, e.g. in the form of powder, granules or flakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D13/00Stationary devices, e.g. cold-rooms
    • F25D13/02Stationary devices, e.g. cold-rooms with several cooling compartments, e.g. refrigerated locker systems
    • F25D13/04Stationary devices, e.g. cold-rooms with several cooling compartments, e.g. refrigerated locker systems the compartments being at different temperatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/025Fruits or vegetables
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D13/00Stationary devices, e.g. cold-rooms
    • F25D13/06Stationary devices, e.g. cold-rooms with conveyors carrying articles to be cooled through the cooling space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2500/00Problems to be solved
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • F25D2700/121Sensors measuring the inside temperature of particular compartments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/087Inventory or stock management, e.g. order filling, procurement or balancing against orders

Definitions

  • the invention relates to the invention of fruit and vegetable fresh-keeping storage and fruit and vegetable ice temperature preservation technology, in particular to a icing pear multi-temperature zone ice temperature preservation and preservation method.
  • Korla pear skin is thin, juicy, sweet, crispy, nutritious, good quality, but not resistant to storage. After 15 days of storage at room temperature, its flesh begins to soften, and the peel loses water and shrinks, thus lowering the value of the commodity. Therefore, how to extend the shelf life of pears more effectively and maintain its original quality and flavor is of great significance.
  • the existing fresh pear preservation methods mainly include traditional low-temperature refrigeration and modified atmosphere preservation, and ice temperature storage technology developed in recent years.
  • Ice temperature storage means storing fresh food in the unfrozen area below 0 °C to above freezing temperature, minimizing the respiratory rate of living body and inhibiting the growth of pathogenic microorganisms without destroying the cell structure of the storage and causing no chilling damage.
  • Ice temperature storage has obvious advantages in maintaining food freshness and flavor, but it has strict requirements on storage temperature and requires close to the freezing temperature of food. Because the temperature is too low, it will directly cause food freezing damage, but the temperature will not reach high. Maximize the purpose of food preservation period.
  • Chinese invention patent application CN104567198A discloses a design method and a refrigeration control method for a multi-refrigeration co-cold refrigeration system.
  • the cooling equipment load of the n warehouses is separately calculated, and the load is applied to n rooms.
  • the configuration of the cooling equipment of the warehouse is based on the load multiplied by the correction factor of 1.1 to 1.3 for the configuration of the cooling equipment; fully consider the influence of the highest temperature of the ambient temperature, the maximum number of door opening times and the maximum purchase quantity on the cooling rate of the cold storage, and
  • the maximum cooling capacity of a warehouse cooling unit is configured with a compression condensing unit.
  • the method of the invention can greatly reduce the investment of the refrigeration system and reduce the investment in construction, power equipment and the like. It can reduce the volume of the large-scale cold storage refrigeration system, reduce the amount of refrigerant filling, and reduce the safety hazard and the one-time input of the refrigerant.
  • the invention patent can provide a multi-refrigerator cold storage, and has obvious advantages in construction, power equipment investment and operating energy consumption, and the design method of the invention refrigeration system reduces safety hazards and improves environmental performance, but The temperature set in the invention of multiple warehouses is the same temperature, and the preservation effect is limited.
  • Chinese invention patent application CN104482703A discloses a multi-refrigeration cold storage with integrated refrigeration system, which can be cooled according to refrigeration requirements; including library maintenance structure, cold storage cooling fan, air-cooled compression condensing unit, transverse track and longitudinal track
  • the library maintenance structure is divided into a plurality of warehouses, An open type insulated door is installed at the front of each of the warehouses, and the cold storage air cooler is connected with the air-cooled compression condensing unit to form an integrated refrigeration system, and the integrated refrigeration system is slidably connected with the transverse rail and the longitudinal rail to realize multi-refrigeration Mobile cooling.
  • the invention has a plurality of warehouses sharing a refrigeration system, and the initial investment is greatly reduced.
  • the refrigerant charge is only the filling amount of a refrigeration system, and the safety of the system is greatly improved. Achieve energy-saving operation of the cold storage and constant temperature in the storage.
  • the invention patent can provide a cold storage of a multi-reservoir, it can also be cooled according to the cooling requirement, but the invention does not involve ice temperature storage technology, and the storage temperature is not designed according to the law of gradient descent, which easily leads to cold damage and freezing damage of fruits and vegetables. The quality has declined and the purpose of preservation has not been achieved.
  • the object of the present invention is to provide an ice-temperature preservation and preservation method for the multi-temperature region of the pear; during the storage and storage process, the temperature of the pear freezing point is detected online, and the classification is carried out according to the detection result, and the grading storage is carried out.
  • the storage temperature is strictly designed according to the law of gradient descent, ensuring that the pears are stored at near freezing temperature, which can prevent the rot and deterioration of the pear fruit, the occurrence of freezing damage and prolong the shelf life, and control the chilling injury rate below 1%.
  • Ice temperature storage technology was first discovered and proposed by Dr. Yamane, Japan in the 1970s. After that, the ice temperature technology was widely used in Japan, and the corresponding ice temperature cold chain system was established. China introduced the concept of ice temperature technology from the 1980s.
  • the near-ice storage technology similar to the principle has been applied to agricultural products such as garlic, winter jujube, grape, chestnut, etc., but the application effect is not very satisfactory, mainly in ice temperature storage technology.
  • the freezing point of fruits and vegetables involved is not easy to determine. The temperature is slightly lower, which will cause freezing damage to fruits and vegetables, but it is not conducive to the long-term storage of fruits and vegetables.
  • the temperature is slightly higher and can not achieve the ideal preservation effect, and the technology is difficult to control the temperature.
  • the existing ice temperature storage technology determines the freezing point temperature mainly by means of the accumulation of fruit and vegetable freezing point data as a reference range, or indirectly by traditional methods (such as ice brine bath method) to determine the freezing point temperature. From a practical point of view, the freezing point temperature determined by these methods is not only inaccurate, but also has a long experimental period, which is not conducive to rapid control.
  • the freezing point temperature of fragrant pear varies greatly depending on its sugar content, and the sugar content is directly related to the variety, origin and maturity of the pear. It is generally in the range of 10% ⁇ 13%, usually the syrup with high sugar content is due to the concentration of cytosol. Higher, so the freezing point temperature is lower; and when the sugar content is low, the freezing point temperature is higher.
  • Korla pear is a famous and special product in Xinjiang, and its production area is broad; in addition, the ripeness of pears is different when picking. Therefore, the freezing point temperature of the pear to be stored is quite different.
  • the freezing point temperature of the other pears is directly determined by means of the pear freezing point data or the traditional method to determine the freezing point temperature of the pear to be stored. Scientific; at the same time, for different pears, their freezing point temperature is a larger The range is changed. Therefore, if only a certain value is selected in this large range to set the storage temperature, it is easy to cause the storage temperature to be high or low, and the ice temperature storage effect is not obvious.
  • the ice temperature preservation storage tank of the multi-temperature zone of the fragrant pear of the invention is equipped with an ice temperature on-line detecting device, which can directly detect the freezing point temperature of all the pears that are about to enter the cold storage, thereby solving the problem by indirect method.
  • the problem that the freezing temperature of pears is unscientific; in particular, the present invention finds that the temperature distribution of different pears is in the range of ⁇ 3°C to 0°C, and four temperature (0, ⁇ 1, ⁇ 2 and ⁇ 3) cold storages are designed.
  • a chilled pear ice temperature preservation fresh-keeping warehouse includes: a pre-cooling zone, an inlet and outlet channel, a cold zone, an ice temperature detecting device, a grading device, a conveyor belt control device, an automatic storage device, and a temperature-lowering buffer channel; Including 4 cold storages, which are the first cold storage with storage temperature of 0 °C, the second cold storage with storage temperature of ⁇ 1 °C, the third cold storage with storage temperature of ⁇ 2 °C and the fourth cold storage with storage temperature of ⁇ 3 °C.
  • the pre-cooling zone is connected to the cold zone through the inlet and outlet channels;
  • the ice temperature detecting device comprises a first ice temperature detecting device, a second ice temperature detecting device, and a third ice temperature a detecting device and a fourth ice temperature detecting device;
  • the classifying device comprising a first classifying device, a second classifying device, a third classifying device and a fourth classifying device;
  • the conveyor belt control device comprising a first conveyor belt control device, a conveyor belt control device, a third conveyor belt control device and a fourth conveyor belt control device;
  • the automatic storage device comprises a first automatic storage device, a second automatic storage device, a third automatic storage device and a fourth self Storage means;
  • said buffer channel comprises a first ramp cooling channel buffer, a second cooling channel buffer, buffering the third cooling channel, a first heating track buffer, a second buffer heating channel and the third channel buffer warmed;
  • the inlet of the first ice temperature detecting device is connected to the feed channel through a conveyor belt, and the outlet of the first ice temperature detecting device is connected to the inlet of the first classifying device through a conveyor belt; the outlet of the first classifying device passes through the conveyor belt and the first cooling buffer channel and a first automatic storage device is connected; the first conveyor control device is connected to the first automatic storage device, the first temperature increasing buffer channel, the discharge channel and the inlet of the first classifying device through a conveyor belt; the entrance of the second ice temperature detecting device Connected to the outlet of the first classifying device by a conveyor belt, the outlet of the second ice temperature detecting device is connected to the inlet of the second classifying device by a conveyor belt; the outlet of the second classifying device passes the conveyor belt and the second cooling buffer channel and the second automatic a storage device connection; the second conveyor control device passes the conveyor belt and the second automatic storage device, the second heating buffer channel, and the first temperature buffer
  • the inlet of the third ice level detecting device is connected to the
  • the cold zone is selected from the cold storage of Guangzhou Yuelian Aquatic Refrigeration Engineering Co., Ltd., and the working temperature is ⁇ 3 to 0 ° C, and is used for storing pears with different freezing temperatures.
  • the ice temperature detecting device selects the GaiaSort push-scan hyperspectral imaging system of Sichuan Shuangli Hepu Co., Ltd., and is used for obtaining the spectral image of the pear, and realizing the rapid detection of the pear ice temperature.
  • the classification device selects a classifier of Jiangsu Seagull Food Machinery Manufacturing Co., Ltd. for realizing the partition storage of the pear according to the ice temperature of the pear.
  • the automatic storage device adopts an automatic storage system in a refrigerating/freezing environment of Taiwan Murata Machinery Co., Ltd. for storage management of pears in different cold storages.
  • the conveyor belt control device selects a food grade base belt type horizontal conveyor of Jiangsu Seagull Food Machinery Manufacturing Co., Ltd., and is used for conveying and dispatching pears in different cold storages.
  • the pre-cooling zone is selected from the cold storage of Guangzhou Yuelian Aquatic Refrigeration Engineering Co., Ltd., and the working temperature is 0 ° C, and is used for centrally pre-cooling the pear, reducing the first cold zone, the second cold zone, and the third cold zone.
  • the temperature of the fourth cold zone fluctuates.
  • the method for preserving the fresh-keeping ice storage base of the fragrant pear multi-temperature zone comprises the following steps:
  • the pear is pre-cooled in the pre-cooling zone. After the pre-cooling is finished, the pear is transported to the first ice temperature detecting device through the feeding channel, and the first ice temperature detecting device obtains the spectral imaging information of the pear, which is established based on the step S0.
  • the prediction model quickly predicts the freezing point of the pear to be stored, and transmits the freezing point temperature to the first classifying device through the communication line.
  • the first classifying device judges the storage process of the pear according to the freezing point temperature of the pear, if the freezing point temperature of the pear is ⁇ At 1 ° C, the first classifying device conveys the pear to the first automatic storage device through the conveyor belt, and the first automatic storage device completes the automatic storage of the pear; if the freezing point temperature of the pear is ⁇ -1 ° C, the first classifying device passes the first a cooling buffer channel conveys the pear to the second cold storage, and proceeds to step S3;
  • step S3 the pear is transported to the second ice temperature detecting device by the temperature drop of the first cooling buffer channel, and the second ice temperature detecting device obtains the spectral imaging information of the pear, and quickly predicts the freezing point of the pear based on the prediction model established in step S0.
  • the freezing point temperature is transmitted to the second classifying device through the communication line, and the second classifying device judges the storage process of the pear according to the freezing point temperature of the pear, and if the freezing point temperature of the pear is ⁇ ⁇ 2 ° C, the second classifying device passes through the conveyor belt to The pear is transported to the second automatic storage device, and the second automatic storage device completes the automatic storage of the pear; if the freezing point temperature of the pear is ⁇ -2 ° C, the second classifying device delivers the pear to the third cold storage through the second cooling buffer channel Going to step S4;
  • step S4 the pear is transported to the third ice temperature detecting device by the temperature drop of the second cooling buffer channel, and the third ice temperature detecting device obtains the spectral imaging information of the pear, and quickly predicts the freezing point of the pear based on the prediction model established in step S0.
  • the freezing point temperature is transmitted to the third classifying device through the communication line, and the third classifying device judges the storage process of the pear according to the freezing point temperature of the pear, and if the freezing point temperature of the pear is ⁇ ⁇ 3 ° C, the third classifying device passes the conveyor belt to The pear is transported to the third automatic storage device, and the third automatic storage device completes the automatic storage of the pear; if the freezing point temperature of the pear is ⁇ -3 ° C, the third classifying device delivers the pear to the fourth cold storage through the third cooling buffer channel Going to step S5;
  • step S5 the pear is transported to the fourth ice temperature detecting device by the temperature drop of the third cooling buffer channel, and the fourth ice temperature detecting device obtains the spectral imaging information of the pear, and quickly predicts the freezing point of the pear based on the prediction model established in step S0.
  • the fourth grading device judges the storage process of the fragrant pear according to the freezing point temperature of the fragrant pear, and if the freezing point temperature of the fragrant pear is ⁇ ⁇ 3 ° C, the fourth grading device passes the conveying belt To transfer the pear to the fourth automatic storage device, the fourth automatic storage device completes the automatic storage of the pear; if the freezing point temperature of the pear is ⁇ ⁇ 3 ° C, the fourth grading device controls the fourth conveyor belt through the conveyor belt The device proceeds to step S6;
  • the fourth conveyor belt control device conveys the pear to the third conveyor control device through the third temperature rising buffer channel according to the freezing point temperature information of the pear. If the freezing point temperature of the pear is ⁇ -2 ° C, the pear is transported to the third Automatic storage device, otherwise the third conveyor control device passes the information of the freezing point temperature of the pear
  • the second heating buffer channel transports the pear to the second conveyor control device. If the freezing point temperature of the pear is ⁇ -1 °C, the pear is transported to the second automatic storage device, otherwise the second conveyor control device according to the freezing point temperature information of the pear
  • the pear is conveyed to the first conveyor belt control device through the first temperature rising buffer passage, and the first conveyor belt control device conveys the pear to the first automatic storage device.
  • the present invention has the following advantages and benefits:
  • the multi-temperature zone ice-temperature preservation store of the invention has a plurality of cold storages, which can meet the different requirements of different storages for temperature; the temperature is strictly controlled between different cold storages to carry out the gradient descent storage mode, the purpose of which is to ensure the freezing point
  • the pears with relatively high temperature are first screened for storage, while the lower freezing point temperature needs to be pre-cooled to near freezing point and then stored, so as to avoid the effect of rapid cooling on the quality of pears;
  • the rapid detection of the freezing point temperature of the pear of the present invention realizes the partition storage of the pears according to the freezing point; for fruits and vegetables with a large range of freezing point temperature, the grading storage can ensure the storage temperature set in the ice temperature storage process. It is closer to the freezing point temperature of fruits and vegetables, avoiding the storage temperature being too high or too low, and better maintaining the original quality of fruits and vegetables; chilling damage is the most likely problem of ice temperature storage, and the chilling injury rate of the pear is controlled below 1%. Significantly lower than the chilling rate of existing ice temperature storage technology;
  • the pre-cooling zone and the buffer channel are arranged in the multi-temperature zone ice-temperature preservation store of the invention, thereby effectively avoiding frequent temperature fluctuations of the cold store;
  • the multi-temperature zone ice temperature preservation library of the invention can simultaneously realize the determination and control of the freezing point temperature of the pear, and the ice temperature detecting device is arranged in the fresh-keeping warehouse, and the freezing point temperature can be determined according to the detection result; in addition, during the storage process According to the change of the freezing point temperature of the pear, the storage area can be continuously adjusted to achieve precise control of the storage and preservation of the pear.
  • FIG. 1 is a schematic structural view of a glaze multi-temperature zone ice temperature preservation and preservation method according to the present invention.
  • the utility model relates to a glaze multi-temperature zone ice temperature fresh-keeping library, comprising a pre-cooling zone 1, an inlet and outlet channel, a cold zone, an ice temperature detecting device, a grading device, a conveyor belt control device, an automatic storage device and a temperature-lowering buffer channel;
  • the cold zone 1 is connected to the cold zone through the inlet and outlet channels;
  • the inlet and outlet channels include a feed channel 2 ⁇ 1 and a discharge channel 2 ⁇ 2;
  • the cold zone includes 4 cold storages, respectively, the storage temperature is 0° C.
  • Cold storage 3 ⁇ 4, 4 cold storages are connected step by step according to the law of decreasing temperature.
  • the ice temperature detecting device includes a first ice temperature detecting device 4-1, a second ice temperature detecting device 4-2, a third ice temperature detecting device 4-3, and a fourth ice temperature detecting device 4-4;
  • the apparatus comprises a first classifying device 5-1, a second classifying device 5-2, a third classifying device 5-3 and a fourth classifying device 5-4;
  • the conveyor belt control device comprising a first conveyor belt control device 6-1 a second conveyor control device 6-2, a third conveyor control device 6-3 and a fourth conveyor control device 6-4;
  • the automatic storage device comprises a first automatic storage device 7-1, a second automatic storage The device 7 ⁇ 2, the third automatic storage device 7 ⁇ 3 and the fourth automatic storage device 7 ⁇ 4;
  • the temperature-lowering buffer channel includes a first cooling buffer channel 8 ⁇ 1, a second cooling buffer channel 8 ⁇ 2, and a third a cooling buffer channel 8-3, a first temperature increasing buffer channel 8-4, a second temperature increasing buffer channel 8-5 and a third temperature increasing buffer channel 8-6
  • the outlet of the first classifying device 5-1 is connected to the first cooling buffer channel 8.1 and the first automatic storage device 7-1 by a conveyor belt; the first conveyor belt control device 6-1 passes the conveyor belt and the first The automatic storage device 7-1, the first temperature increasing buffer channel 8-4, the discharging channel 2-2, and the inlet of the first ice temperature detecting device 4-1; the inlet of the second ice temperature detecting device 4-2 passes The conveyor belt is connected to the outlet of the first classifying device 5-1, and the outlet of the second ice temperature detecting device 4-2 is connected to the inlet of the second classifying device 5-2 via a conveyor belt; the outlet of the second classifying device 5-2 passes The conveyor belt is connected to the second cooling buffer channel 8-2 and the second automatic storage device 7-2; the second conveyor belt control device 6-2 passes through the conveyor belt and the second automatic storage device 7-2, and the second temperature increasing buffer channel 8 1-5, the first temperature rising buffer channel 8-1 is connected to the second classifying device 6-3; the inlet of the third ice temperature detecting device 4-3
  • the cold zone 1 is selected from the cold storage of Guangzhou Yuelian Aquatic Refrigeration Engineering Co., Ltd., and the working temperature is ⁇ 3 to 0 ° C, and is used for storing pears with different freezing temperatures.
  • the ice temperature detecting device selects the GaiaSort push-scan hyperspectral imaging system of Sichuan Shuangli Hepu Co., Ltd., and is used for obtaining the spectral image of the pear, and realizing the rapid detection of the pear ice temperature.
  • the classification device selects a classifier of Jiangsu Seagull Food Machinery Manufacturing Co., Ltd. for realizing the partition storage of the pear according to the ice temperature of the pear.
  • the automatic storage device uses an automatic storage system in a refrigerating/freezing environment of Taiwan Murata Machinery Co., Ltd. for storage of pears in different cold storages.
  • the conveyor belt control device selects a food grade base belt type horizontal conveyor of Jiangsu Seagull Food Machinery Manufacturing Co., Ltd., and is used for conveying and dispatching pears in different cold storages.
  • S0 ⁇ 2 pre-processing the spectral information of the sample, that is, extracting corresponding average reflection spectrum values at the characteristic wavelength of the pear sample, the characteristic wavelengths are 434 nm, 531 nm, 689 nm, 819 nm and 996 nm;
  • the pear is pre-cooled in the pre-cooling zone. After the pre-cooling is finished, the pear is transported to the first ice temperature detecting device through the feeding channel, and the first ice temperature detecting device obtains the spectral imaging information of the pear, which is established based on the step S0.
  • the prediction model quickly predicts the freezing point of the pear to be stored, and transmits the freezing point temperature to the first classifying device through the communication line.
  • the first classifying device judges the storage process of the pear according to the freezing point temperature of the pear, if the freezing point temperature of the pear is ⁇ At 1 ° C, the first classifying device conveys the pear to the first automatic storage device through the conveyor belt, and the first automatic storage device completes the automatic storage of the pear; if the freezing point temperature of the pear is ⁇ -1 ° C, the first classifying device passes the first a cooling buffer channel conveys the pear to the second cold storage, and proceeds to step S3;
  • step S3 the pear is transported to the second ice temperature detecting device by the temperature drop of the first cooling buffer channel, and the second ice temperature detecting device obtains the spectral imaging information of the pear, and quickly predicts the freezing point of the pear based on the prediction model established in step S0.
  • the freezing point temperature is transmitted to the second classifying device through the communication line, and the second classifying device judges the storage process of the pear according to the freezing point temperature of the pear, and if the freezing point temperature of the pear is ⁇ ⁇ 2 ° C, the second classifying device passes through the conveyor belt to Transfer the pear to the second automatic storage device, and the second automatic storage device completes the automatic storage of the pear; if the pear freezing point temperature is ⁇ -2 ° C, the second classifying device passes the second cooling buffer The road conveys the pear to the third cold storage, and proceeds to step S4;
  • step S4 the pear is transported to the third ice temperature detecting device by the temperature drop of the second cooling buffer channel, and the third ice temperature detecting device obtains the spectral imaging information of the pear, and quickly predicts the freezing point of the pear based on the prediction model established in step S0.
  • the freezing point temperature is transmitted to the third classifying device through the communication line, and the third classifying device judges the storage process of the pear according to the freezing point temperature of the pear, and if the freezing point temperature of the pear is ⁇ ⁇ 3 ° C, the third classifying device passes the conveyor belt to The pear is transported to the third automatic storage device, and the third automatic storage device completes the automatic storage of the pear; if the freezing point temperature of the pear is ⁇ -3 ° C, the third classifying device delivers the pear to the fourth cold storage through the third cooling buffer channel Going to step S5;
  • step S5 the pear is transported to the fourth ice temperature detecting device by the temperature drop of the third cooling buffer channel, and the fourth ice temperature detecting device obtains the spectral imaging information of the pear, and quickly predicts the freezing point of the pear based on the prediction model established in step S0.
  • the fourth grading device judges the storage process of the fragrant pear according to the freezing point temperature of the fragrant pear, and if the freezing point temperature of the fragrant pear is ⁇ ⁇ 3 ° C, the fourth grading device passes the conveying belt To transfer the pear to the fourth automatic storage device, the fourth automatic storage device completes the automatic storage of the pear; if the freezing point temperature of the pear is ⁇ ⁇ 3 ° C, the fourth grading device controls the fourth conveyor belt through the conveyor belt The device proceeds to step S6;
  • the fourth conveyor belt control device conveys the pear to the third conveyor control device through the third temperature rising buffer channel according to the freezing point temperature information of the pear. If the freezing point temperature of the pear is ⁇ -2 ° C, the pear is transported to the third Automatic storage device, otherwise the third conveyor belt control device delivers the pear to the second conveyor control device through the second temperature rising buffer channel according to the freezing point temperature information of the pear, and if the pear freezing point temperature is ⁇ -1 ° C, the pear conveying Go to the second automatic storage device, otherwise the second conveyor control device delivers the pear to the first conveyor control device through the first temperature rise buffer according to the freezing point temperature information of the pear, and the first conveyor control device transports the pear to The first automatic storage device.
  • the different preservation methods are: group 1, natural storage; group 2, low temperature refrigeration (temperature: 4 ° C; humidity: 90% - 95%); group 3, ice temperature storage (multi-temperature zone, temperature is 0 , ⁇ 1, ⁇ 2 and ⁇ 3°C), in steps S1 to S6; Group 4, ice temperature storage (fixed temperature: ⁇ 2°C), After steps S1 to S6, the pears in all the automatic storage devices are moved to the third automatic storage device 7-3.
  • the measurement results are shown in Table 1.
  • ice temperature storage can avoid the occurrence of pear fruit decay; in addition, the weight loss rate of ice temperature storage is below 1%, which is significantly lower than the weight loss rate of low temperature refrigeration (1.83%). It indicates that the ice temperature storage can better maintain the moisture of the pear; at the same time, the ice temperature storage can delay the decrease of the hardness and the titratable acid content of the pear fruit, and can also effectively delay the increase of the sugar content of the fruit; In terms of maintaining the brightness of pear fruit, the effect of ice temperature storage (especially ice temperature storage in multi-temperature zone) is also better than that of low temperature refrigeration.
  • the preservation effect of the ice temperature storage is better, and the ice temperature storage can better maintain the original quality of the pear.
  • the effect of ice temperature storage in the multi-temperature zone of the invention is better than that of ice temperature storage at a fixed temperature; most notably, the ice temperature storage in the multi-temperature zone can almost avoid the occurrence of chilling damage of the pear fruit because of the temperature
  • the storage temperature set by the ice temperature storage area is near freezing point temperature
  • the storage temperature set by the fixed temperature ice temperature storage is a certain value within a range. In the long-term storage process, the freezing point temperature is higher than this.
  • the value of the pear fruit may cause chilling injury; while the multi-temperature zone ice temperature storage of the present invention keeps the color of the pear peel better than the fixed temperature ice temperature storage, the reason may be that the fixed temperature ice temperature storage may cause frostbite of some pears. Increases the possibility of contact of the enzyme with the substrate and eventually leads to some enzymatic reactions that cause a change in the color of the peel.
  • ice temperature storage in multi-temperature zone is the most ideal method for storage and preservation of pears. Compared with the cold damage rate of 34% at a fixed temperature, the invention has only 1% chilling rate and has a significant improvement. effect.
  • the ice temperature storage technology tends to set the storage temperature to be very low, and the chilling damage is the most important problem of the existing ice temperature storage technology.
  • the invention greatly reduces the chilling injury rate while obtaining the best fresh-keeping effect. .

Abstract

一种香梨多温区冰温保鲜库及保鲜方法,该香梨多温区冰温保鲜库包括预冷区(1)、进出料道(2-1,2-2)、冷区、冰温检测装置(4-1,4-2,4-3,4-4)、分级装置(5-1,5-2,5-3,5-4)、输送带控制装置(6-1,6-2,6-3,6-4)、自动仓储装置(7-1,7-2,7-3,7-4)和升降温缓冲道(8-1,8-2,8-3,8-4),冷区包括4个冷库,分别是贮藏温度为0℃的第一冷库(3-1),贮藏温度为‐1℃的第二冷库(3-2),贮藏温度为‐2℃的第三冷库(3-3)和贮藏温度为‐3℃的第四冷库(3-4),4个冷库按照温度递减规律逐级连接,本保鲜库实现了依据冰点温度大小对香梨进行多温区分级贮藏,比传统静态的冰温贮藏,能根据香梨冰点温度的变化,动态调整香梨的贮藏分区,确保香梨始终在近冰点温度条件下贮藏,从而防止香梨果实冻害发生和延长香梨货架期。

Description

一种香梨多温区冰温保鲜库及保鲜方法 技术领域
本发明涉及果蔬保鲜库与果蔬冰温保鲜技术领域,特别涉及一种香梨多温区冰温保鲜库及保鲜方法。
背景技术
库尔勒香梨皮薄、汁多、味甜、酥香、营养丰富,品质好,但不耐贮藏,常温下存放15天左右其果肉开始变软,果皮失水皱缩,从而商品价值下降。因此,如何更有效地延长香梨保鲜期,保持其原有品质和风味具有重要意义。
现有的香梨保鲜方法主要包括传统的低温冷藏和气调保鲜以及近年来发展起来的冰温贮藏技术等。冰温贮藏是指在0℃以下至冰点温度以上的未冻区域内贮藏鲜活食品,在不破坏贮品细胞结构和不产生冷害的情况下,最大程度地降低活体呼吸速率,抑制病原微生物生长,从而延长食品的贮藏期。冰温贮藏在保持食品鲜度、风味等方面有明显的优势,但它对贮藏温度要求严格,要求接近食品冰点温度,因为温度过低会直接导致食品冻害发生,而温度偏高则达不到最大限度延长食品保鲜期的目的。
中国发明专利申请CN104567198A公开了一种多库房同温冷库制冷系统的设计方法及制冷控制方法,按照现有的冷库热负荷计算法,分别计算n间库房的冷却设备负荷,该负荷适用于n间库房冷却设备的配置,以此负荷为依据乘以修正系数1.1~1.3来进行冷却设备的配置;充分考虑环境温度最高季节、开门次数最多阶段和最大进货量期间对冷库降温速率的影响,并按照最大一间库房冷却设备制冷量配置压缩冷凝机组。本发明的方法可以大大减少制冷系统的一次投入,减少建筑、电力设备等的投资。可以缩小大型冷库制冷系统的体积,较少制冷剂的充灌量,减小了安全隐患及制冷剂的一次投入。虽然该发明专利能够提供一种多库房的冷库,且在建筑、电力设备投资和运行能耗方面有明显的优势,同时该发明制冷系统的设计方法减少了安全隐患、提高了环保性能,但是该发明多库房所设的温度为同温,保鲜效果有限。
中国发明专利申请CN104482703A公开了一种带有一体式制冷系统的多库房冷库,能够根据制冷需要进行制冷;包括库体维护结构、冷库用冷风机、风冷式压缩冷凝机组、横向轨道和纵向轨道,库体维护结构内分隔成多个库房, 每个所述库房前部安装有开启式保温门,冷库用冷风机与风冷式压缩冷凝机组连接组成一体式制冷系统,一体式制冷系统与所述横向轨道和纵向轨道滑动连接,实现多库房移动制冷。该发明冷库多个库房共用一套制冷系统,初投资大大降低。制冷剂充灌量仅为一套制冷系统的充灌量,系统的安全性大大提高。实现冷库的节能运行和库内温度恒定。虽然该发明专利能够提供一种多库房的冷库,也能够根据制冷需要进行制冷,但是该发明没有涉及冰温贮藏技术,贮藏温度没有按梯度下降的规律来设计,容易导致果蔬冷害、冻害发生和品质下降,没有达到保鲜的目的。
发明内容
本发明的目的在于提供一种香梨多温区冰温保鲜库及保鲜方法;贮藏前与贮藏过程中,对香梨冰点温度进行在线检测,并依据检测结果对其进行分级,实行分级贮藏,贮藏温度严格按梯度下降的规律设计,确保香梨始终在近冰点温度条件下贮藏,从而能更有效地防止香梨果实腐烂变质、冻害发生和延长货架期,控制冷害率在1%以下。
冰温贮藏技术最早由日本的山根昭美博士于20世纪70年代发现并提出。之后,冰温技术在日本得到广泛应用,并建立了相应的冰温冷藏链体系。我国从20世纪80年代引进冰温技术的理念,与之原理类似的近冰点贮藏技术先后在大蒜、冬枣、葡萄、板栗等农产品上应用,但应用效果并不是很理想,主要在于冰温贮藏技术涉及的果蔬冰点不易确定,温度稍低会对果蔬造成冻害,反而不利于果蔬的长期贮藏;而温度稍高又不能达到理想的保鲜效果,而且该技术控制温度的难度较大。
现有的冰温贮藏技术对冰点温度的确定主要借助果蔬冰点资料的积累作为参考范围,或以传统方法(如冰盐水浴法)测定结果间接来确定冰点温度。从实际应用的角度来看,通过这些方式所确定的冰点温度不仅结果不够精确,而且实验周期很长,不利于快速控制。
香梨的冰点温度随其糖度不同而差异较大,而糖度与香梨的品种、产地和成熟度等直接相关,一般在10%‐13%区间内,通常糖度高的香梨由于细胞液浓度较高,故冰点温度较低;而糖度低的则冰点温度较高。如库尔勒香梨为新疆名优特产品,其产地广阔;另外,采摘时香梨的成熟度也是不一样的。因此,待贮藏香梨的冰点温度差异较大,所以,如果不考虑个体差异,直接借助香梨冰点资料或通过传统方法测定其他香梨的冰点温度间接来确定待贮藏香梨的冰点温度是不科学的;同时,对不同香梨而言,它们的冰点温度是在一个较大 范围内变化的,因此,如果只是在这个较大范围内选择某个值来设定贮藏温度,很容易导致所设贮藏温度偏高或偏低问题的发生,冰温贮藏效果不明显。
本发明的一种香梨多温区冰温保鲜库安装有冰温在线检测装置,该装置可以直接对所有即将进入冷库贮藏的香梨的冰点温度进行在线检测,从而可以解决通过间接方法来确定香梨冰点温度不科学的问题;特别是,本发明发现,不同香梨冰点温度分布在‐3℃至0℃的范围内,设计4个温度(0,‐1,‐2和‐3)冷库可以实现对不同冰点香梨的分级贮藏,解决贮藏温度偏高或偏低问题,确保香梨始终在近冰点温度条件下贮藏,4个冷库按照温度递减规律逐级连接,可以确保冰点较低的香梨温度缓慢降至近冰点温度,避免快速降温导致香梨品质下降,在限度延长货架期的同时避免冷害的发生效果非常显著,与固定温度的冰温贮藏34%的冷害率相比,本发明只有1%的冷害率。
本发明的目的通过以下技术方案实现:
一种香梨多温区冰温保鲜库:包括预冷区、进出料道、冷区、冰温检测装置、分级装置、输送带控制装置、自动仓储装置和升降温缓冲道;所述冷区包括4个冷库,分别是贮藏温度为0℃的第一冷库,贮藏温度为‐1℃的第二冷库,贮藏温度为‐2℃的第三冷库和贮藏温度为‐3℃的第四冷库,4个冷库按照温度递减规律逐级连接;所述预冷区通过进出料道与冷区连接;所述冰温检测装置包括第一冰温检测装置、第二冰温检测装置、第三冰温检测装置和第四冰温检测装置;所述分级装置包括第一分级装置、第二分级装置、第三分级装置和第四分级装置;所述输送带控制装置包括第一输送带控制装置、第二输送带控制装置、第三输送带控制装置和第四输送带控制装置;所述自动仓储装置包括第一自动仓储装置、第二自动仓储装置、第三自动仓储装置和第四自动仓储装置;所述升降温缓冲道包括第一降温缓冲道、第二降温缓冲道、第三降温缓冲道、第一升温缓冲道、第二升温缓冲道和第三升温缓冲道;
第一冰温检测装置的入口通过传送带与进料道连接,第一冰温检测装置的出口通过传送带与第一分级装置的入口连接;第一分级装置的出口通过传送带与第一降温缓冲道和第一自动仓储装置连接;第一输送带控制装置通过传送带与第一自动仓储装置、第一升温缓冲道、出料道和第一分级装置的入口连接;所述第二冰温检测装置的入口通过传送带与第一分级装置的出口连接,第二冰温检测装置的出口通过传送带与第二分级装置的入口连接;所述第二分级装置的出口通过传送带与第二降温缓冲道和第二自动仓储装置连接;所述第二输送带控制装置通过传送带与第二自动仓储装置、第二升温缓冲道、第一升温缓冲 道和第二分级装置的入口连接;所述第三冰温检测装置的入口通过传送带与第二分级装置的出口连接,第三冰温检测装置的出口通过传送带与第三分级装置的入口连接;所述第三分级装置的出口通过传送带与第三降温缓冲道和第三自动仓储装置连接;所述第三输送带控制装置通过传送带与第三自动仓储装置、第三升温缓冲道、第二升温缓冲道和第三分级装置的入口连接;所述第四冰温检测装置的入口通过传送带与第三分级装置的出口连接,第四冰温检测装置的出口通过传送带与第四分级装置的入口连接;所述第四分级装置的出口通过传送带与第四自动仓储装置和连接;所述第四输送带控制装置通过传送带与第四自动仓储装置、第四分级装置的入口和第三升温缓冲道连接。
为进一步实现本发明目的,优选地,所述冷区选用广州市粤联水产制冷工程有限公司的冷库,工作温度为‐3~0℃,用于贮藏不同冰点温度的香梨。
优选地,所述冰温检测装置选用四川双利合谱有限公司的GaiaSort推扫型高光谱成像系统,用于获取香梨的光谱图像,实现香梨冰温的快速检测。
优选地,所述分级装置选用江苏海鸥食品机械制造有限公司的分级机,用于根据香梨的冰温实现香梨的分区贮藏。
优选地,所述自动仓储装置选用台湾村田机械股份有限公司的冷藏/冷冻环境下的自动仓储系统,用于不同冷库内香梨的仓储管理。
优选地,所述输送带控制装置选用江苏海鸥食品机械制造有限公司的食品级片基带式水平输送机,用于不同冷库内香梨的输送调度。
优选地,所述预冷区选用广州市粤联水产制冷工程有限公司的冷库,工作温度为0℃,用于集中预冷香梨,减少第一冷区、第二冷区、第三冷区、第四冷区的温度波动。
应用所述香梨多温区冰温保鲜库的保鲜方法,包括以下步骤:
S0:预测模型的建立
S0‐1:采收不同产地、不同成熟度的香梨样本,利用温检测装置获取香梨样本的波谱成像信息,同时采用冰盐水浴法测定香梨样本的冰点;
S0‐2:提取香梨波谱特征波长处对应的平均反射光谱值,所述特征波长为434nm,531nm,689nm,819nm和996nm;
S0‐3:结合步骤S0‐1得到的冰点和步骤S0‐2得到的特征波长处对应的平均反射光谱值,利用偏最小二乘法建立香梨冰点的预测模型方程为:Yb=‐1.261‐0.022X434+0.056X531‐0.061X689‐0.079X819+0.072X996;其中,Yb为冰点的预测结果;Xi为i波长对应的平均反射光谱值;
S1:判断是否有香梨进入保鲜库,如有香梨进入保鲜库,则进入S2;
S2:香梨在预冷区预冷,预冷结束后,香梨通过进料道输送到第一冰温检测装置,第一冰温检测装置获取香梨的波谱成像信息,基于步骤S0建立的预测模型快速预测待贮藏香梨的冰点,并将冰点温度通过通讯线传递给第一分级装置,第一分级装置根据香梨的冰点温度判断,香梨的仓储流程,如果香梨冰点温度≥‐1℃,第一分级装置通过输送带到把香梨输送到第一自动仓储装置,第一自动仓储装置完成香梨的自动仓储;如果香梨冰点温度<‐1℃,第一分级装置通过第一降温缓冲道把香梨输送第二冷库,进入步骤S3;
S3:香梨通过第一降温缓冲道的降温后输送到第二冰温检测装置,第二冰温检测装置获取香梨的波谱成像信息,基于步骤S0建立的预测模型快速预测香梨的冰点,并将冰点温度通过通讯线传递给第二分级装置,第二分级装置根据香梨的冰点温度判断,香梨的仓储流程,如果香梨冰点温度≥‐2℃,第二分级装置通过输送带到把香梨输送到第二自动仓储装置,第二自动仓储装置完成香梨的自动仓储;如果香梨冰点温度<‐2℃,第二分级装置通过第二降温缓冲道把香梨输送第三冷库,进入步骤S4;
S4:香梨通过第二降温缓冲道的降温后输送到第三冰温检测装置,第三冰温检测装置获取香梨的波谱成像信息,基于步骤S0建立的预测模型快速预测香梨的冰点,并将冰点温度通过通讯线传递给第三分级装置,第三分级装置根据香梨的冰点温度判断,香梨的仓储流程,如果香梨冰点温度≥‐3℃,第三分级装置通过输送带到把香梨输送到第三自动仓储装置,第三自动仓储装置完成香梨的自动仓储;如果香梨冰点温度<‐3℃,第三分级装置通过第三降温缓冲道把香梨输送第四冷库,进入步骤S5;
S5:香梨通过第三降温缓冲道的降温后输送到第四冰温检测装置,第四冰温检测装置获取香梨的波谱成像信息,基于步骤S0建立的预测模型快速预测香梨的冰点,并将冰点温度通过通讯线传递给第四分级装置,第四分级装置根据香梨的冰点温度判断,香梨的仓储流程,如果香梨冰点温度为<‐3℃,第四分级装置通过输送带到把香梨输送到第四自动仓储装置,第四自动仓储装置完成香梨的自动仓储;如果香梨冰点温度≥‐3℃,第四分级装置通过输送带把香梨输送第四输送带控制装置,进入步骤S6;
S6:第四输送带控制装置根据香梨的冰点温度信息,通过第三升温缓冲道输送香梨到第三输送带控制装置,如果香梨冰点温度<‐2℃,则香梨输送到第三自动仓储装置,否则第三输送带控制装置根据香梨的冰点温度信息,通过第 二升温缓冲道输送香梨到第二输送带控制装置,如果香梨冰点温度<‐1℃,则香梨输送到第二自动仓储装置,否则第二输送带控制装置根据香梨的冰点温度信息,通过第一升温缓冲道输送香梨到第一输送带控制装置,第一输送带控制装置将香梨输送到第一自动仓储装置。
与现有技术相比,本发明具有以下优点和有益效果:
(1)本发明的多温区冰温保鲜库内设有多间冷库,可以满足不同贮品对温度的不同要求;不同冷库之间严格控制温度进行梯度下降保存方式,其目的是为了确保冰点温度相对较高的香梨首先被筛选出来贮藏,而冰点温度较低的则需要逐级预冷至近冰点温度后再贮藏,这样可以避免快速降温对香梨品质的影响;
(2)本发明的香梨冰点温度的波谱快速检测,实现根据的香梨冰点分区贮藏;对于冰点温度变化范围较大的果蔬而言,分级贮藏可确保冰温贮藏过程中所设的贮藏温度更接近果蔬的冰点温度,避免贮藏温度过高或过低,更好地保持果蔬原有品质;冷害是冰温贮藏最可能出现的问题,本发明将香梨冷害率控制在1%之下,明显低于现有冰温贮藏技术的冷害率;
(3)本发明的多温区冰温保鲜库内设置有预冷区和缓冲道,有效避免冷库的温度波动频繁;
(4)本发明的多温区冰温保鲜库可同时实现香梨冰点温度的确定和控制,保鲜库内设有冰温检测装置,可依据检测结果来确定冰点温度;另外,在贮藏过程中还可以根据香梨冰点温度的变化,不断调整其贮藏区域,实现香梨贮藏保鲜的精准化控制。
附图说明
图1为本发明的一种香梨多温区冰温保鲜库及保鲜方法的结构示意图。
具体实施方式
为更好地理解本发明,下面结合附图和实施例对本发明作进一步的说明,但本发明的实施方式不限于此。
实施例1
一种香梨多温区冰温保鲜库,包括预冷区1、进出料道、冷区、冰温检测装置、分级装置、输送带控制装置、自动仓储装置和升降温缓冲道;所述预冷区1通过进出料道与冷区连接;所述进出料道包括进料道2‐1和出料道2‐2;所述冷区包括4个冷库,分别是贮藏温度为0℃的第一冷库3‐1,贮藏温度为‐1℃的第二冷库3‐2,贮藏温度为‐2℃的第三冷库3‐3和贮藏温度为‐3℃的第四 冷库3‐4,4个冷库按照温度递减规律逐级连接。所述冰温检测装置包括第一冰温检测装置4‐1,第二冰温检测装置4‐2,第三冰温检测装置4‐3和第四冰温检测装置4‐4;所述分级装置包括第一分级装置5‐1,第二分级装置5‐2,第三分级装置5‐3和第四分级装置5‐4;所述输送带控制装置包括第一输送带控制装置6‐1,第二输送带控制装置6‐2,第三输送带控制装置6‐3和第四输送带控制装置6‐4;所述自动仓储装置包括第一自动仓储装置7‐1,第二自动仓储装置7‐2,第三自动仓储装置7‐3和第四自动仓储装置7‐4;所述升降温缓冲道包括第一降温缓冲道8‐1,第二降温缓冲道8‐2,第三降温缓冲道8‐3,第一升温缓冲道8‐4,第二升温缓冲道8‐5和第三升温缓冲道8‐6;所述第一冰温检测装置4‐1的入口通过传送带与进料道2‐1连接,第一冰温检测装置4‐1的出口通过传送带与第一分级装置5‐1的入口连接;所述第一分级装置5‐1的出口通过传送带与第一降温缓冲道8‐1和第一自动仓储装置7‐1连接;所述第一输送带控制装置6‐1通过传送带与第一自动仓储装置7‐1、第一升温缓冲道8‐4、出料道2‐2和第一冰温检测装置4‐1的入口连接;所述第二冰温检测装置4‐2的入口通过传送带与第一分级装置5‐1的出口连接,第二冰温检测装置4‐2的出口通过传送带与第二分级装置5‐2的入口连接;所述第二分级装置5‐2的出口通过传送带与第二降温缓冲道8‐2和第二自动仓储装置7‐2连接;所述第二输送带控制装置6‐2通过传送带与第二自动仓储装置7‐2、第二升温缓冲道8‐5、第一升温缓冲道8‐1和第二分级装置6‐3连接;所述第三冰温检测装置4‐3的入口通过传送带与第二分级装置5‐2的出口连接,第三冰温检测装置4‐3的出口通过传送带与第三分级装置5‐3的入口连接;所述第三分级装置5‐3的出口通过传送带与第三降温缓冲道8‐3和第三自动仓储装置7‐3连接;所述第三输送带控制装置6‐3通过传送带与第三自动仓储装置7‐3、第三升温缓冲道8‐6、第二升温缓冲道8‐5和第三自动仓储装置7‐3连接;所述第四冰温检测装置4‐4的入口通过传送带与第三分级装置5‐3的出口连接,第四冰温检测装置4‐4的出口通过传送带与第四分级装置5‐4的入口连接;所述第四分级装置5‐4的出口通过传送带与第四自动仓储装置7‐4和连接;所述第四输送带控制装置6‐4通过传送带与第四自动仓储装置7‐4、第四分级装置5‐4的入口和第三升温缓冲道8‐6连接;所述输送带控制装置通过通讯线与自动仓储装置、分级装置和冰温检测装置的控制器连接。
优选地,所述冷区1选用广州市粤联水产制冷工程有限公司的冷库,工作温度为‐3~0℃,用于贮藏不同冰点温度的香梨。
优选地,所述冰温检测装置选用四川双利合谱有限公司的GaiaSort推扫型高光谱成像系统,用于获取香梨的光谱图像,实现香梨冰温的快速检测。
优选地,所述分级装置选用江苏海鸥食品机械制造有限公司的分级机,用于根据香梨的冰温实现香梨的分区贮藏。
优选地,所述自动仓储装置选用台湾村田机械股份有限公司的冷藏/冷冻环境下的自动仓储系统,用于不同冷库内香梨的仓储。
优选地,所述输送带控制装置选用江苏海鸥食品机械制造有限公司的食品级片基带式水平输送机,用于不同冷库内香梨的输送调度。
本实施例的一种香梨多温区冰温保鲜库的保鲜方法,包括以下步骤:
S0:预测模型的建立
S0‐1:采收不同产地、不同成熟度的香梨样本,利用温检测装置获取香梨样本的波谱成像信息,同时采用冰盐水浴法测定这些样本的冰点;
S0‐2:对样本的波谱信息进行预处理,即提取香梨样本特征波长处对应的平均反射光谱值,所述特征波长为434nm,531nm,689nm,819nm和996nm;
S0‐3:结合S0‐1得到的冰点和S0‐2得到的特征波长处对应的平均反射光谱值,利用偏最小二乘法建立香梨冰点的预测模型,预测模型方程具体为:Yb=‐1.261‐0.022X434+0.056X531‐0.061X689‐0.079X819+0.072X996;其中,Yb为冰点的预测结果;Xi为i波长对应的平均反射光谱值;
S1:判断是有香梨进入保鲜库,如有香梨进入保鲜库,则进入S2;
S2:香梨在预冷区预冷,预冷结束后,香梨通过进料道输送到第一冰温检测装置,第一冰温检测装置获取香梨的波谱成像信息,基于步骤S0建立的预测模型快速预测待贮藏香梨的冰点,并将冰点温度通过通讯线传递给第一分级装置,第一分级装置根据香梨的冰点温度判断,香梨的仓储流程,如果香梨冰点温度≥‐1℃,第一分级装置通过输送带到把香梨输送到第一自动仓储装置,第一自动仓储装置完成香梨的自动仓储;如果香梨冰点温度<‐1℃,第一分级装置通过第一降温缓冲道把香梨输送第二冷库,进入步骤S3;
S3:香梨通过第一降温缓冲道的降温后输送到第二冰温检测装置,第二冰温检测装置获取香梨的波谱成像信息,基于步骤S0建立的预测模型快速预测香梨的冰点,并将冰点温度通过通讯线传递给第二分级装置,第二分级装置根据香梨的冰点温度判断,香梨的仓储流程,如果香梨冰点温度≥‐2℃,第二分级装置通过输送带到把香梨输送到第二自动仓储装置,第二自动仓储装置完成香梨的自动仓储;如果香梨冰点温度<‐2℃,第二分级装置通过第二降温缓冲 道把香梨输送第三冷库,进入步骤S4;
S4:香梨通过第二降温缓冲道的降温后输送到第三冰温检测装置,第三冰温检测装置获取香梨的波谱成像信息,基于步骤S0建立的预测模型快速预测香梨的冰点,并将冰点温度通过通讯线传递给第三分级装置,第三分级装置根据香梨的冰点温度判断,香梨的仓储流程,如果香梨冰点温度≥‐3℃,第三分级装置通过输送带到把香梨输送到第三自动仓储装置,第三自动仓储装置完成香梨的自动仓储;如果香梨冰点温度<‐3℃,第三分级装置通过第三降温缓冲道把香梨输送第四冷库,进入步骤S5;
S5:香梨通过第三降温缓冲道的降温后输送到第四冰温检测装置,第四冰温检测装置获取香梨的波谱成像信息,基于步骤S0建立的预测模型快速预测香梨的冰点,并将冰点温度通过通讯线传递给第四分级装置,第四分级装置根据香梨的冰点温度判断,香梨的仓储流程,如果香梨冰点温度为<‐3℃,第四分级装置通过输送带到把香梨输送到第四自动仓储装置,第四自动仓储装置完成香梨的自动仓储;如果香梨冰点温度≥‐3℃,第四分级装置通过输送带把香梨输送第四输送带控制装置,进入步骤S6;
S6:第四输送带控制装置根据香梨的冰点温度信息,通过第三升温缓冲道输送香梨到第三输送带控制装置,如果香梨冰点温度<‐2℃,则香梨输送到第三自动仓储装置,否则第三输送带控制装置根据香梨的冰点温度信息,通过第二升温缓冲道输送香梨到第二输送带控制装置,如果香梨冰点温度<‐1℃,则香梨输送到第二自动仓储装置,否则第二输送带控制装置根据香梨的冰点温度信息,通过第一升温缓冲道输送香梨到第一输送带控制装置,第一输送带控制装置将香梨输送到第一自动仓储装置。
不同保鲜方法对香梨品质的影响
采摘八成熟(果面光滑,果皮青黄色、阳面微带点红晕)的库尔勒香梨,包装后(用拷白纸包果,外套网袋)装箱,于采收次日运回实验室冷库;挑选无病虫害、果形整齐、大小和色泽基本一致、无表皮损伤的果实400个,随机分为4组,每组100个,4组香梨先分别按照不同保鲜方法处理80天后(第1组为对照组),再在室温(25℃左右)下放置2天,然后分别测定4组香梨的腐烂率、冷害率、失重率、果皮色泽(亮度)、果肉品质硬度、糖度和可滴定酸。不同保鲜方法分别为:第1组,自然贮藏;第2组,低温冷藏(温度:4℃;湿度:90%‐95%);第3组,冰温贮藏(多温区,温度分别为0,‐1,‐2和‐3℃),按步骤S1至S6进行;第4组,冰温贮藏(固定温度:‐2℃),经 步骤S1至S6后,再将所有自动仓储装置中的香梨移到第三自动仓储装置7‐3。测定结果如表1所示。
表1 不同保鲜方法对香梨品质的影响
Figure PCTCN2017112640-appb-000001
注:发生腐烂和冷害的果实未统计。
如表1所示,与低温冷藏相比,冰温贮藏可以避免香梨果实腐烂的发生;另外,冰温贮藏的失重率都在1%以下,明显低于低温冷藏的失重率(1.83%),说明冰温贮藏能更好地保持香梨的水分;同时冰温贮藏比低温冷藏能更好地延缓香梨果实硬度和可滴定酸含量下降,也能更有效地延缓果实糖度的上升;在保持香梨果实亮度方面,冰温贮藏(特别是多温区冰温贮藏)的效果也明显优于低温冷藏。总之,不论是从贮品的外部品质来看,还是从内部品质来分析,冰温贮藏的保鲜效果都更出色,冰温贮藏能更好地保持香梨原有品质。就冰温贮藏而言,本发明多温区冰温贮藏的效果要好于固定温度的冰温贮藏;最值得注意的是多温区冰温贮藏几乎可以避免香梨果实冷害的发生,因为多温区冰温贮藏所设定的贮藏温度都是近冰点温度,而固定温度的冰温贮藏所设定的贮藏温度是一个范围内的某个值,在长期的贮藏过程中,冰点温度高于这个值的香梨果实都可能发生冷害;而本发明多温区冰温贮藏比固定温度的冰温贮藏更好保持香梨果皮色泽,原因可能是固定温度的冰温贮藏可能引起部分香梨的冻伤,增加酶与底物接触的可能,并最终导致一些酶促反应发生,引起果皮颜色变化。综上所述,多温区冰温贮藏是香梨贮藏保鲜最理想的方法,与固定温度的冰温贮藏34%的冷害率相比,本发明只有1%的冷害率,具有非常显著的改进效果。为了获得更好的保鲜效果,冰温贮藏技术往往将贮藏温度设得很低,而冷害是现有冰温贮藏技术最主要的问题,本发明在获得最好保鲜效果的同时大大降低了冷害率。
本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的 精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

  1. 一种香梨多温区冰温保鲜库,其特征在于:包括预冷区、进出料道、冷区、冰温检测装置、分级装置、输送带控制装置、自动仓储装置和升降温缓冲道;所述冷区包括4个冷库,分别是贮藏温度为0℃的第一冷库,贮藏温度为‐1℃的第二冷库,贮藏温度为‐2℃的第三冷库和贮藏温度为‐3℃的第四冷库,4个冷库按照温度递减规律逐级连接;所述预冷区通过进出料道与冷区连接;所述冰温检测装置包括第一冰温检测装置、第二冰温检测装置、第三冰温检测装置和第四冰温检测装置;所述分级装置包括第一分级装置、第二分级装置、第三分级装置和第四分级装置;所述输送带控制装置包括第一输送带控制装置、第二输送带控制装置、第三输送带控制装置和第四输送带控制装置;所述自动仓储装置包括第一自动仓储装置、第二自动仓储装置、第三自动仓储装置和第四自动仓储装置;所述升降温缓冲道包括第一降温缓冲道、第二降温缓冲道、第三降温缓冲道、第一升温缓冲道、第二升温缓冲道和第三升温缓冲道;
    第一冰温检测装置的入口通过传送带与进料道连接,第一冰温检测装置的出口通过传送带与第一分级装置的入口连接;第一分级装置的出口通过传送带与第一降温缓冲道和第一自动仓储装置连接;第一输送带控制装置通过传送带与第一自动仓储装置、第一升温缓冲道、出料道和第一分级装置的入口连接;所述第二冰温检测装置的入口通过传送带与第一分级装置的出口连接,第二冰温检测装置的出口通过传送带与第二分级装置的入口连接;所述第二分级装置的出口通过传送带与第二降温缓冲道和第二自动仓储装置连接;所述第二输送带控制装置通过传送带与第二自动仓储装置、第二升温缓冲道、第一升温缓冲道和第二分级装置的入口连接;所述第三冰温检测装置的入口通过传送带与第二分级装置的出口连接,第三冰温检测装置的出口通过传送带与第三分级装置的入口连接;所述第三分级装置的出口通过传送带与第三降温缓冲道和第三自动仓储装置连接;所述第三输送带控制装置通过传送带与第三自动仓储装置、第三升温缓冲道、第二升温缓冲道和第三分级装置的入口连接;所述第四冰温检测装置的入口通过传送带与第三分级装置的出口连接,第四冰温检测装置的出口通过传送带与第四分级装置的入口连接;所述第四分级装置的出口通过传送带与第四自动仓储装置和连接;所述第四输送带控制装置通过传送带与第四自动仓储装置、第四分级装置的入口和第三升温缓冲道连接。
  2. 根据权利要求1所述的一种香梨多温区冰温保鲜库,其特征在于,所述预冷区选用冷库,工作温度为0℃。
  3. 根据权利要求1所述的一种香梨多温区冰温保鲜库,其特征在于,所述冷区选用冷库。
  4. 根据权利要求1所述的一种香梨多温区冰温保鲜库,其特征在于,所述冰温检测装置选用GaiaSort推扫型高光谱成像系统。
  5. 根据权利要求1所述的一种香梨多温区冰温保鲜库,其特征在于,所述分级装置选用分级机。
  6. 根据权利要求1所述的一种香梨多温区冰温保鲜库,其特征在于,所述自动仓储装置选用冷藏/冷冻环境下的自动仓储系统。
  7. 根据权利要求1所述的一种香梨多温区冰温保鲜库,其特征在于,所述输送带控制装置选用食品级片基带式水平输送机。
  8. 根据权利要求1所述的一种香梨多温区冰温保鲜库,其特征在于,所述输送带控制装置通过通讯线与自动仓储装置、分级装置和冰温检测装置的控制器连接。
  9. 一种香梨多温区冰温保鲜库及保鲜方法,其特征在于,包括以下步骤:
    S0:预测模型的建立
    S0‐1:采收不同产地、不同成熟度的香梨样本,利用温检测装置获取香梨样本的波谱成像信息,同时采用冰盐水浴法测定香梨样本的冰点;
    S0‐2:提取香梨样本特征波长处对应的平均反射光谱值,所述特征波长为434nm,531nm,689nm,819nm和996nm;
    S0‐3:结合步骤S0‐1得到的冰点和步骤S0‐2得到的特征波长处对应的平均反射光谱值,利用偏最小二乘法建立预测模型方程具体为:Yb=‐1.261‐0.022X434+0.056X531‐0.061X689‐0.079X819+0.072X996;其中,Yb为冰点的预测结果;Xi为i波长对应的平均反射光谱值;
    S1:判断是有香梨进入保鲜库,如有香梨进入保鲜库,则进入S2;
    S2:香梨在预冷区预冷,预冷结束后,香梨通过进料道输送到第一冰温检测装置,第一冰温检测装置获取香梨的波谱成像信息,基于步骤S0建立的预测模型快速预测待贮藏香梨的冰点,并将冰点温度通过通讯线传递给第一分级装置,第一分级装置根据香梨的冰点温度判断,香梨的仓储流程,如果香梨冰点温度≥‐1℃,第一分级装置通过输送带到把香梨输送到第一自动仓储装置,第一自动仓储装置完成香梨的自动仓储;如果香梨冰点温度<‐1℃,第一分级 装置通过第一降温缓冲道把香梨输送第二冷库,进入步骤S3;
    S3:香梨通过第一降温缓冲道的降温后输送到第二冰温检测装置,第二冰温检测装置获取香梨的波谱成像信息,基于步骤S0建立的预测模型快速预测香梨的冰点,并将冰点温度通过通讯线传递给第二分级装置,第二分级装置根据香梨的冰点温度判断,香梨的仓储流程,如果香梨冰点温度≥‐2℃,第二分级装置通过输送带到把香梨输送到第二自动仓储装置,第二自动仓储装置完成香梨的自动仓储;如果香梨冰点温度<‐2℃,第二分级装置通过第二降温缓冲道把香梨输送第三冷库,进入步骤S4;
    S4:香梨通过第二降温缓冲道的降温后输送到第三冰温检测装置,第三冰温检测装置获取香梨的波谱成像信息,基于步骤S0建立的预测模型快速预测香梨的冰点,并将冰点温度通过通讯线传递给第三分级装置,第三分级装置根据香梨的冰点温度判断,香梨的仓储流程,如果香梨冰点温度≥‐3℃,第三分级装置通过输送带到把香梨输送到第三自动仓储装置,第三自动仓储装置完成香梨的自动仓储;如果香梨冰点温度<‐3℃,第三分级装置通过第三降温缓冲道把香梨输送第四冷库,进入步骤S5;
    S5:香梨通过第三降温缓冲道的降温后输送到第四冰温检测装置,第四冰温检测装置获取香梨的波谱成像信息,基于步骤S0建立的预测模型快速预测香梨的冰点,并将冰点温度通过通讯线传递给第四分级装置,第四分级装置根据香梨的冰点温度判断,香梨的仓储流程,如果香梨冰点温度为<‐3℃,第四分级装置通过输送带到把香梨输送到第四自动仓储装置,第四自动仓储装置完成香梨的自动仓储;如果香梨冰点温度≥‐3℃,第四分级装置通过输送带把香梨输送第四输送带控制装置,进入步骤S6;
    S6:第四输送带控制装置根据香梨的冰点温度信息,通过第三升温缓冲道输送香梨到第三输送带控制装置,如果香梨冰点温度<‐2℃,则香梨输送到第三自动仓储装置,否则第三输送带控制装置根据香梨的冰点温度信息,通过第二升温缓冲道输送香梨到第二输送带控制装置,如果香梨冰点温度<‐1℃,则香梨输送到第二自动仓储装置,否则第二输送带控制装置根据香梨的冰点温度信息,通过第一升温缓冲道输送香梨到第一输送带控制装置,第一输送带控制装置将香梨输送到第一自动仓储装置。
PCT/CN2017/112640 2016-11-24 2017-11-23 一种香梨多温区冰温保鲜库及保鲜方法 WO2018095370A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/324,586 US11330824B2 (en) 2016-11-24 2017-11-23 Multi-temperature-region ice-temperature fresh keeping storehouse and fresh keeping method for bergamot pears

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611041797.5A CN106472659B (zh) 2016-11-24 2016-11-24 一种香梨多温区冰温保鲜库及保鲜方法
CN201611041797.5 2016-11-24

Publications (1)

Publication Number Publication Date
WO2018095370A1 true WO2018095370A1 (zh) 2018-05-31

Family

ID=58275156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112640 WO2018095370A1 (zh) 2016-11-24 2017-11-23 一种香梨多温区冰温保鲜库及保鲜方法

Country Status (3)

Country Link
US (1) US11330824B2 (zh)
CN (1) CN106472659B (zh)
WO (1) WO2018095370A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112314695A (zh) * 2020-10-30 2021-02-05 南京晓庄学院 一种冰温保鲜方法、装置及系统

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106472659B (zh) * 2016-11-24 2023-06-20 华南理工大学 一种香梨多温区冰温保鲜库及保鲜方法
CN110145899B (zh) * 2018-02-13 2021-03-30 中国中元国际工程有限公司 回液分配器的回液分配方法及多温区冷库系统的制冷方法
CN110145918B (zh) * 2018-02-13 2021-03-30 中国中元国际工程有限公司 一种供冷分配器及其应用
CN108502431B (zh) * 2018-03-30 2020-05-19 中铁第四勘察设计院集团有限公司 一种温度分区的冷链仓库及货物存储方法
CN108849107B (zh) * 2018-05-07 2020-09-15 长沙理工大学 一种耐冷种子培育设备
CN108684248A (zh) * 2018-05-28 2018-10-23 蚌埠市圆周率电子科技有限公司 一种抗癌症的中草药种子的抗冷设备及共生长方法
CN108835231A (zh) * 2018-06-20 2018-11-20 浙江大学 一种高氧处理保存草莓香气的草莓保鲜方法
CN109028707A (zh) * 2018-07-02 2018-12-18 珠海格力电器股份有限公司 冷库控制系统和方法
CN110050826A (zh) * 2018-12-26 2019-07-26 曾中苏 一种生物休眠保鲜系统及方法
EP4019864A4 (en) * 2019-09-30 2023-09-20 Daikin Industries, Ltd. DEVICE FOR QUALITY DETERMINATION
CN113049760B (zh) * 2021-03-10 2022-02-01 中国农业大学 一种改善冷链果蔬品质的防冻害预警调控方法及装置
CN114419311B (zh) * 2022-03-29 2022-07-01 武汉轻工大学 一种基于多源信息的百香果成熟度无损检测方法及装置
CN117095068B (zh) * 2023-10-20 2024-02-02 北京市农林科学院信息技术研究中心 番茄贮藏温度调控方法、装置、电子设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011078333A (ja) * 2009-10-05 2011-04-21 Mitsubishi Electric Corp 食品の冷却、冷凍方法及びその装置
CN202522003U (zh) * 2012-03-07 2012-11-07 天津商业大学 多终端冰温贮藏系统
CN104567198A (zh) * 2014-12-29 2015-04-29 天津商业大学 多库房同温冷库制冷系统的设计方法及制冷控制方法
CN104920588A (zh) * 2015-06-19 2015-09-23 莆田市华林蔬菜基地有限公司 蔬菜贮藏方法
CN105910366A (zh) * 2016-05-18 2016-08-31 中国农业大学 用于果蔬近冰点冷藏的专用冷藏柜及该冷藏柜的控温方法
CN106472659A (zh) * 2016-11-24 2017-03-08 华南理工大学 一种香梨多温区冰温保鲜库及保鲜方法
CN206413678U (zh) * 2016-11-24 2017-08-18 华南理工大学 一种香梨多温区冰温保鲜库

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2103925A (en) * 1934-04-10 1937-12-28 Pack Corp Z Method of freezing fruits
US5873254A (en) * 1996-09-06 1999-02-23 Interface Multigrad Technology Device and methods for multigradient directional cooling and warming of biological samples
CN100531580C (zh) * 2007-12-04 2009-08-26 冷平 果品生物冰点保鲜方法及保鲜库
DE102008019903A1 (de) * 2008-04-21 2009-10-22 Airinotec Gmbh Kühltunnel und Verfahren zum Betrieb eines solchen
CN103440006B (zh) * 2013-08-22 2015-07-29 四川长虹电器股份有限公司 一种鲜活食品配送终端保鲜系统及其工作方法
ES2952028T3 (es) * 2014-04-11 2023-10-26 Naturo Innovations Pty Ltd Un procedimiento para el tratamiento de aguacates
CN103954563B (zh) * 2014-04-15 2016-06-22 华南理工大学 一种基于高光谱的果蔬表面损伤检测装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011078333A (ja) * 2009-10-05 2011-04-21 Mitsubishi Electric Corp 食品の冷却、冷凍方法及びその装置
CN202522003U (zh) * 2012-03-07 2012-11-07 天津商业大学 多终端冰温贮藏系统
CN104567198A (zh) * 2014-12-29 2015-04-29 天津商业大学 多库房同温冷库制冷系统的设计方法及制冷控制方法
CN104920588A (zh) * 2015-06-19 2015-09-23 莆田市华林蔬菜基地有限公司 蔬菜贮藏方法
CN105910366A (zh) * 2016-05-18 2016-08-31 中国农业大学 用于果蔬近冰点冷藏的专用冷藏柜及该冷藏柜的控温方法
CN106472659A (zh) * 2016-11-24 2017-03-08 华南理工大学 一种香梨多温区冰温保鲜库及保鲜方法
CN206413678U (zh) * 2016-11-24 2017-08-18 华南理工大学 一种香梨多温区冰温保鲜库

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112314695A (zh) * 2020-10-30 2021-02-05 南京晓庄学院 一种冰温保鲜方法、装置及系统

Also Published As

Publication number Publication date
CN106472659B (zh) 2023-06-20
CN106472659A (zh) 2017-03-08
US20190166860A1 (en) 2019-06-06
US11330824B2 (en) 2022-05-17

Similar Documents

Publication Publication Date Title
WO2018095370A1 (zh) 一种香梨多温区冰温保鲜库及保鲜方法
CN206413678U (zh) 一种香梨多温区冰温保鲜库
CN104799394B (zh) 一种食品的快速冷冻工艺
CN104522140B (zh) 一种生鲜肉亚过冷保鲜方法
WO2020207023A1 (zh) 一种果蔬货架期和品质的预测方法
CN110477084A (zh) 一种冷冻牛肉三段式解冻方法
Zhao et al. Numerical and experimental study on the quick freezing process of the bayberry
CN103238665A (zh) 一种红肉猕猴桃的保鲜方法
CN104222262A (zh) 一种果蔬预冷驯化方法及制冷设备
CN105325535A (zh) 草莓冷链物流保鲜方法
Cheng Vacuum cooling combined with hydrocooling and vacuum drying on bamboo shoots
CN102845511A (zh) 提高李果常温保鲜存放时间的方法
Yanat et al. Effect of freezing rate and storage time on quality parameters of strawberry frozen in modified and home type freezer
CN109430370A (zh) 一种适宜生鲜电商模式的果蔬物流保鲜方法
CN101990933A (zh) 一种枇杷果实热空气和MeJA复合处理保鲜方法
KR101348977B1 (ko) 곶감의 냉동변온건조 방법
Harsan et al. Research regarding the principal chemical component loss in the apple fruit during storage
CN107751356A (zh) 一种葡萄的冷冻保鲜的方法
CN105300005B (zh) 一种静风冰鲜冷库
CN108157489B (zh) 一种小白杏预冷保鲜方法
CN107960458A (zh) 一种苹果低温分段贮藏方法
KR101293486B1 (ko) 곶감의 건조방법
CN204165310U (zh) 一种静风冰鲜冷库
CN105211269B (zh) 一种蓝莓全程冷链的方法
CN114403199B (zh) 一种显热与潜热分段处理的肉类冷冻方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25.09.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17874759

Country of ref document: EP

Kind code of ref document: A1