WO2018094661A1 - 农业无人飞行器的航线规划方法及地面控制端 - Google Patents

农业无人飞行器的航线规划方法及地面控制端 Download PDF

Info

Publication number
WO2018094661A1
WO2018094661A1 PCT/CN2016/107146 CN2016107146W WO2018094661A1 WO 2018094661 A1 WO2018094661 A1 WO 2018094661A1 CN 2016107146 W CN2016107146 W CN 2016107146W WO 2018094661 A1 WO2018094661 A1 WO 2018094661A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
unmanned aerial
aerial vehicle
agricultural unmanned
ground control
Prior art date
Application number
PCT/CN2016/107146
Other languages
English (en)
French (fr)
Inventor
钟和立
徐节文
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201910087260.XA priority Critical patent/CN109655067B/zh
Priority to CN201680002746.3A priority patent/CN106716062B/zh
Priority to PCT/CN2016/107146 priority patent/WO2018094661A1/zh
Publication of WO2018094661A1 publication Critical patent/WO2018094661A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/0202Control of position or course in two dimensions specially adapted to aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C1/00Measuring angles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Definitions

  • the embodiment of the invention relates to the field of drones, and in particular to a route planning method for an agricultural unmanned aerial vehicle and a ground control end.
  • the farmland Before the agricultural unmanned aerial vehicle performs the plant protection operation, the farmland needs to be surveyed.
  • the existing technology carries the Global Positioning System (GPS) antenna and walks along the edge of the farmland while the GPS antenna will be located by the user.
  • GPS Global Positioning System
  • the position information is sent to the remote controller of the agricultural unmanned aerial vehicle, and the shape of the farmland is determined by the remote controller of the agricultural unmanned aerial vehicle according to the position information of the user at different positions.
  • the embodiment of the invention provides a route planning method and a ground control end of an agricultural unmanned aerial vehicle to save human resources during the mapping of the working area.
  • An aspect of an embodiment of the present invention provides a route planning method for an agricultural unmanned aerial vehicle, including:
  • a ground control terminal including:
  • One or more processors working alone or in concert;
  • a positioning device communicatively coupled to the processor, for detecting a current bit of the ground control terminal Positioning information
  • An input device communicatively coupled to the processor, for determining identification information of a current location of the ground control terminal
  • a memory in communication with the processor, for storing positioning information of the current location of the ground control terminal and marking information
  • the processor is used to:
  • the positioning information of the current position of the ground control terminal and the indication information are stored in the memory.
  • the route planning method and the ground control end of the agricultural unmanned aerial vehicle determine the positioning information of the current position of the ground control end through the positioning device provided by the ground control end, and determine the current position of the ground control end through the input device of the ground control end.
  • the location information indicates that the location indicates the type of the current location.
  • Each location corresponds to location information and label information.
  • the site control is performed by the ground control terminal, not only the latitude and longitude information of each anchor point but also the latitude and longitude information of each anchor point can be determined.
  • Each positioning point is located at the boundary or inside of the working area. When it is inside the working area, it is an obstacle.
  • the ground control terminal can also control the agricultural unmanned aerial vehicle. Before the agricultural unmanned aerial vehicle works, only one test is needed. The personnel can complete the mapping work of the work area, and after the surveying is finished, the agricultural unmanned aerial vehicle can be controlled to start the operation, which saves human resources compared with the prior art.
  • FIG. 1 is a flowchart of a route planning method for an agricultural unmanned aerial vehicle according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of display content of a display screen of a remote controller according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of display content of a display screen of a remote controller according to another embodiment of the present invention.
  • FIG. 4 is a schematic diagram of display content of a display screen of a remote controller according to another embodiment of the present invention.
  • FIG. 5 is a schematic diagram of display content of a display screen of a remote controller according to another embodiment of the present invention.
  • FIG. 6 is a flowchart of a route planning method for an agricultural unmanned aerial vehicle according to another embodiment of the present invention.
  • FIG. 7 is a schematic diagram of display content of a display screen of a remote controller according to another embodiment of the present invention.
  • FIG. 8 is a schematic diagram of display content of a display screen of a remote controller according to another embodiment of the present invention.
  • FIG. 9 is a flowchart of a route planning method for an agricultural unmanned aerial vehicle according to another embodiment of the present invention.
  • FIG. 10 is a flowchart of a route planning method for an agricultural unmanned aerial vehicle according to another embodiment of the present invention.
  • FIG. 11 is a schematic diagram showing display content of a display screen of a remote controller according to another embodiment of the present invention.
  • FIG. 12 is a structural diagram of a ground control terminal according to an embodiment of the present invention.
  • FIG. 13 is a rear elevational view of a ground control end according to another embodiment of the present invention.
  • Figure 14 is a front elevational view of a ground control end according to another embodiment of the present invention.
  • Figure 15 is a top plan view of a ground control end according to another embodiment of the present invention.
  • a component when referred to as being "fixed” to another component, it can be directly on the other component or the component can be present. When a component is considered to "connect” another component, it can be directly connected to another component or possibly a central component.
  • FIG. 1 is a flowchart of a route planning method for an agricultural unmanned aerial vehicle according to an embodiment of the present invention. As shown in FIG. 1, the method in this embodiment may include:
  • Step S101 Obtain positioning information of a current position of the ground control end by using a positioning device provided by the ground control end of the agricultural unmanned aerial vehicle.
  • the execution body of this embodiment may be a ground control end for controlling an agricultural unmanned aerial vehicle, and the ground control end may include at least one of the following: head mounted display glasses (VR glasses, VR helmets, etc.), a mobile phone, and a remote controller (such as a remote control with a display), a smart bracelet, a tablet.
  • a remote control device with a display screen is taken as an example to introduce the principle of the route planning method for the agricultural unmanned aerial vehicle provided in this embodiment.
  • the remote control with a display screen in this embodiment is provided with a positioning device, and the positioning device may specifically be a GPS positioning module, and the positioning device can perform real-time positioning or periodic positioning on the position where the remote controller is located, and periodically locate the specific It can be located once every certain time, for example, once every 1 second.
  • the working area of the agricultural unmanned aerial vehicle may be a farmland, a forest, a forest or the like, and the agricultural unmanned aerial vehicle may be a crop, a vegetation or the like, and the agricultural unmanned aerial vehicle may spray the pesticide in the working area. Sprays such as water and seeds.
  • the premise of the route planning is that the working area of the agricultural unmanned aerial vehicle needs to be mapped.
  • An achievable way to map the working area of an agricultural unmanned aerial vehicle is: tester The person carries the remote controller to walk in the working area of the agricultural unmanned aerial vehicle, such as a farmland, and the GPS positioning module provided by the remote controller performs real-time positioning or periodic positioning of the position where the remote controller is located.
  • the remote controller can display the positioning information of the GPS positioning module on the display screen in real time, and map the working area according to the positioning information of the GPS positioning module when the remote controller is located at different positions in the working area.
  • the tester can carry the remote control to walk around the edge of the working area, and during the walking process, the GPS positioning module provided by the remote controller can perform real-time positioning or periodic positioning on the boundary point of the working area, when the tester After walking the edge of the working area with the remote controller, the remote controller obtains the positioning information of a large number of boundary points of the working area, as shown in FIG. 2, 20 represents the display screen of the remote controller, and 21 represents the positioning point, and each positioning point
  • the positioning information includes longitude information and dimension information, and the boundary 22 of the working area can be determined according to the positioning information of a plurality of boundary points.
  • the tester can carry the remote control to walk inside the working area, when the tester finds When an obstacle point such as a large tree or an obstacle area such as a fish pond, the position information of the obstacle point or the obstacle area needs to be recorded by the remote controller. If there is an obstacle area in the working area of the agricultural unmanned aerial vehicle, the positioning information of the boundary point of the obstacle area needs to be measured according to the same mapping method as the boundary of the working area.
  • Step S102 Obtain indication information of a current location of the ground control end by using an input device of a ground control end of the agricultural unmanned aerial vehicle.
  • the GPS positioning module Since the GPS positioning module records the positioning information of a certain position or a certain point, in the mapping process, the GPS positioning module needs to record the positioning information of an infinite number of positions or points, and the implementation is different for different positioning positions or different positioning points.
  • the example indicates the type of each position or each point by indicating information, for example, the position is the boundary point of the obstacle area.
  • the remote controller includes a plurality of buttons, and the plurality of buttons serve as an input device of the remote controller, and the plurality of buttons are respectively disposed at different positions of the remote control housing, for example, the remote controller has four independent outer casings.
  • the button, the button C1, the button C2, the button C3, the button C4, each button corresponds to different indication information, for example, the button C1 corresponds to the first type of indication information, and the first type of indicator information is used to identify the current position of the ground control terminal is The boundary point of the work area.
  • the button C2 corresponds to the second type of indication information, and the second type of indicator information is used to identify the ground.
  • the current position of the control end is the position where the obstacle is located in the work area, or the current position for identifying the ground control end is the boundary point of the area where the obstacle is located in the work area.
  • the button C3 corresponds to the third type of indication information, and the third type of indicator information is used to identify that the current position of the ground control end is a key point on the boundary of the work area, and the key points include at least one of the following: a corner position and a non-linear position.
  • the button C4 corresponds to the fourth type of indication information, and the fourth type of indicator information is used to identify that the current position of the ground control terminal is a preset location, and the preset location is used to calibrate the positioning deviation of the agricultural unmanned aerial vehicle.
  • the button C1 when the tester carries the remote control to start walking around the edge of the work area, the button C1 is operated, and the operation mode includes at least one of pressing, clicking, pressing, and double-clicking.
  • the function of the tester operating button C1 is to indicate that the remote controller is currently located at the boundary of the work area, and the current positioning information of the GPS positioning module is the positioning information of the boundary point of the work area.
  • the subsequent positioning information of the default GPS positioning module is the positioning information of the boundary point of the working area until the tester operates the button C1 again, or the tester operates other buttons.
  • the tester when the tester carries the remote control to walk inside the work area and finds an obstacle point such as a big tree, the tester operates the button C2, where the operation of the button It can also be used to trigger the positioning of the GPS positioning module, that is, the positioning mechanism of the GPS positioning module here is triggered.
  • the function of the tester operating the button C2 is to indicate that the remote controller is currently located at the obstacle location.
  • the current positioning information of the GPS positioning module is the positioning information of the location of the obstacle.
  • 31 denotes an anchor point determined by the remote controller according to the positioning information of the GPS positioning module after the button C2 is operated by the tester, and the anchor point 31 indicates an obstacle in the work area 32.
  • the tester After the tester operates the button C2, the tester carries the remote controller to walk along the boundary of the obstacle area. The tester operates the button C2 to indicate that the remote controller is currently located.
  • the boundary information of the obstacle area, the current positioning information of the GPS positioning module is the positioning information of the boundary point of the area where the obstacle is located.
  • 41 denotes an anchor point determined by the remote controller according to the positioning information of the GPS positioning module after the tester operates the button C2, and the anchor point 41 represents the boundary point of the obstacle region in the work area 32, which is composed of multiple
  • the area 42 formed by the positioning point 41 is an obstacle area in the work area 32.
  • the touch screen can also be used as an input device for the remote controller.
  • 50 denotes a touch screen
  • 51 denotes a key C1
  • 52 denotes a key C2
  • 53 denotes a key C3
  • 54 denotes a key press C4.
  • Each button corresponds to different indication information
  • each button shown in FIG. 5 has the same function as the button on the bottom shell of the remote controller, and the remote controller can determine the current position of the remote controller according to different buttons clicked by the user on the touch screen.
  • the marking information is determined in accordance with the foregoing method.
  • Step S103 Record positioning information of the current position of the ground control end and the indication information.
  • each positioning point of the remote controller the positioning information and the marking information of the positioning point are recorded, that is, each positioning point corresponds to latitude and longitude information and marking information, and the marking information indicates the type of the positioning point, for example,
  • the anchor point is a boundary point of the work area or a boundary point of the obstacle area.
  • the positioning information of the current position of the ground control end is determined by the positioning device provided by the ground control end, and the indication information of the current position of the ground control end is determined by the input device of the ground control end, and the indication information indicates the type of the current position, each of which indicates The positioning point corresponds to the positioning information and the marking information.
  • the ground control terminal can also control the agricultural unmanned aerial vehicle. Before the agricultural unmanned aerial vehicle operation, only one tester can complete the mapping work of the working area, and at the end of the mapping After that, the agricultural unmanned aerial vehicle can be controlled to start operations, which saves human resources compared to the prior art.
  • Embodiments of the present invention provide a route planning method for an agricultural unmanned aerial vehicle.
  • FIG. 6 is a flowchart of a route planning method for an agricultural unmanned aerial vehicle according to another embodiment of the present invention. As shown in FIG. 6, on the basis of the embodiment shown in FIG. 1, the method in this embodiment may include:
  • Step S201 Obtain positioning information of a current position of the ground control end by using a positioning device provided by the ground control end of the agricultural unmanned aerial vehicle.
  • Step S201 is the same as step S101. The specific method is not described here.
  • Step S202 Acquire, by the input device of the ground control end of the agricultural unmanned aerial vehicle, the indication information of the current position of the ground control end.
  • Step S202 is the same as step S102. The specific method is not described here.
  • Step S203 recording positioning information of the current position of the ground control end and marking information.
  • Step S203 is the same as step S103. The specific method is not described here.
  • Step S204 Determine, according to the recorded positioning information and the indication information, geographic information of a working area of the agricultural unmanned aerial vehicle.
  • the remote controller determines, according to the recorded positioning information and the indication information, an achievable manner of determining geographic information of the working area of the agricultural unmanned aerial vehicle includes the following:
  • the remote controller can determine the geographic information of the boundary 2 of the work area according to the positioning information of each boundary point 21 of the work area, and the geographic information may specifically be a geographic location, such as latitude and longitude information.
  • the positioning point 31 represents an obstacle in the work area 32
  • the geographic information of the obstacle in the work area 32 can be obtained according to the positioning information of the positioning point 31.
  • the positioning point 41 represents the boundary point of the obstacle area in the work area 32
  • the remote controller can obtain the geographic information of the obstacle area in the work area 32 according to the positioning information of each positioning point 41, and the obstacle area.
  • the geographic information may be the longitude range and the latitude range occupied by the obstacle area.
  • the third type is the third type.
  • the indication information is used to identify that the current position of the ground control end is a key point on the boundary of the work area, and the key point includes at least one of the following: a corner position and a non-linear position.
  • the boundary point 61 has a larger rotation angle than the other boundary points, and the boundary line 22 cannot smoothly transition at the boundary point 61.
  • the button C3 described in the above embodiment can be operated, and the tester operates the button C3 to indicate that the remote controller is currently located at the boundary of the work area.
  • the current positioning information of the GPS positioning module is the positioning information of the key points on the boundary of the working area.
  • the terrain information of the work area may be determined, as shown in FIG. 7 by the boundary point 61, and according to the positioning information of the boundary point 61, the terrain of the work area may be determined. For example, steep slopes, terraces, etc.
  • Step S205 Determine a working route of the agricultural unmanned aerial vehicle according to geographic information of a working area of the agricultural unmanned aerial vehicle.
  • the area where the agricultural unmanned aerial vehicle actually needs to be operated is determined according to the The area where the actual operation is required, and the operation route of the agricultural unmanned aerial vehicle is determined.
  • 70 indicates an obstacle area
  • 71 indicates an area where an agricultural unmanned aerial vehicle actually needs to operate
  • 72 indicates a route. It can be seen that the route of the agricultural unmanned aerial vehicle does not pass through the obstacle area, and if the obstacle area is a fish Ponds, if not avoided, are likely to cause agricultural unmanned aerial vehicles to spray pesticides into fish ponds, causing unnecessary losses.
  • each positioning point corresponds to positioning information and marking information.
  • the marking information When the working area is mapped by the ground control end, not only the latitude and longitude information of each positioning point but also the latitude and longitude information of each positioning point can be determined. It is determined whether each positioning point is located at the boundary or inside of the working area, and when it is inside the working area, whether it is an obstacle or not, according to the positioning information and the marking information corresponding to each positioning point, the boundary of the working area and the obstacle area can be determined. Borders to prevent agricultural unmanned aerial vehicles from spraying spray onto obstacle areas or obstacles.
  • Embodiments of the present invention provide a route planning method for an agricultural unmanned aerial vehicle.
  • FIG. 9 is a flowchart of a route planning method for an agricultural unmanned aerial vehicle according to another embodiment of the present invention. As shown in FIG. 9, on the basis of the embodiment shown in FIG. 1, the indication information is used to identify that the current location of the ground control terminal is a preset location, and the preset location is used to calibrate the agricultural unmanned aerial vehicle. Positional deviation.
  • the tester can also designate a location as a preset location for calibrating the positioning deviation of the agricultural unmanned aerial vehicle. Assuming that the working area is relatively large, the pesticides that can be loaded by the agricultural unmanned aerial vehicle are certain at a time, and the agricultural unmanned aerial vehicles may not be enough to spray the entire working area, and the agricultural unmanned aerial vehicles need to be loaded multiple times, multiple operations, If there is a deviation in the positioning of agricultural unmanned flights, it may lead to the failure of agricultural unmanned aerial vehicles. Determining the location to the previous departure point, causing the agricultural unmanned aerial vehicle to leak or re-spray.
  • the tester can specify a point in the work area as the preset location in the work area mapping.
  • the tester operates the button C4 described in the above embodiment at a preset location, indicating that the remote controller is currently located at a preset location specified by the tester, and triggers the GPS positioning module to locate the preset location, so that the remote controller obtains the preset location.
  • the positioning information is stored and the positioning information of the preset location is stored as a reference standard.
  • the specific calibration methods may include:
  • Step S301 Acquire location information of the preset location detected by the agricultural unmanned aerial vehicle when the agricultural unmanned aerial vehicle is located at the preset location.
  • the positioning system of the agricultural unmanned aerial vehicle locates the preset location to obtain location information, and transmits the location information to the remote controller. It is assumed that the position information of the preset location detected by the positioning system of the agricultural unmanned aerial vehicle is 29 degrees north latitude and 38 degrees longitude.
  • Step S302 Calibrate the positioning deviation of the agricultural unmanned aerial vehicle according to the positioning information of the preset location and the location information of the preset location detected by the agricultural unmanned aerial vehicle.
  • the positioning information of the preset location stored in the remote controller is 30 degrees north latitude and 40 degrees longitude.
  • the preset location stored in the remote controller is The positioning information is compared with the position information of the preset location sent by the agricultural unmanned aerial vehicle. It can be seen that there is a certain error in the position information of the preset location sent by the agricultural unmanned aerial vehicle.
  • the remote controller can send the calibration to the agricultural unmanned aerial vehicle. Directives to enable agricultural unmanned aerial vehicles to calibrate their own positioning deviations.
  • the tester before each take-off of the agricultural unmanned aerial vehicle, places the agricultural unmanned aerial vehicle at the preset location, by comparing the positioning information of the preset location stored in the remote controller with the pre-detected by the agricultural unmanned aerial vehicle.
  • the location information of the location is used to calibrate the positioning deviation of the agricultural unmanned aerial vehicle, which improves the positioning accuracy of the agricultural unmanned aerial vehicle and avoids the phenomenon of leakage or repeated spraying when the agricultural unmanned aerial vehicle is operated in the same operation area.
  • Embodiments of the present invention provide a route planning method for an agricultural unmanned aerial vehicle.
  • Figure 10 is the main A flow chart of a route planning method for an agricultural unmanned aerial vehicle provided by another embodiment of the invention.
  • the plurality of buttons include a first button, a second button, a third button, and a fourth button.
  • the first button and the first button are used in this embodiment.
  • the two buttons, the third button and the fourth button are different from the button C1, the button C2, the button C3, and the button C4 in the above embodiment.
  • Step S401 Acquire, by using a first button operated by a user, positioning information of the first position of the agricultural unmanned aerial vehicle in the working area.
  • the agricultural unmanned aerial vehicle operates in the work area.
  • the first button operated by the user obtains the positioning information of the first position of the agricultural unmanned aerial vehicle in the working area, that is, point A. .
  • Step S402 Acquire, by the second button operated by the user, location information of the second position of the agricultural unmanned aerial vehicle in the work area.
  • the second button operated by the user obtains the positioning information of the second position of the agricultural unmanned aerial vehicle in the working area, that is, point B.
  • Step S403 Determine a connection between the first location and the second location according to the positioning information of the first location and the positioning information of the second location.
  • connection line AB is determined.
  • Step S404 Determine, by a third button or a fourth button operated by the user, a direction of spraying of the agricultural unmanned aerial vehicle with respect to the connection.
  • the left side of the connection AB can be selected when the user operates the third button, and the right side of the connection AB can be selected when the user operates the fourth button.
  • the agricultural unmanned aerial vehicle will fly along the route 121 as shown in FIG. 11, and the route 121 is located on the left side of the connection line AB, and the route is adjusted while adjusting the agriculture.
  • the spray direction of the unmanned aerial vehicle is adjusted while adjusting the agriculture.
  • the user operates the button to select the left or right side of the two-point connection to control the spraying direction of the agricultural unmanned aerial vehicle, and the flexibility of the spray direction control is improved.
  • FIG. 12 is a structural diagram of a ground control terminal according to an embodiment of the present invention.
  • the ground control terminal 120 includes one or more processors 121, a positioning device 122, an input device 123, and a memory 124.
  • Positioning device 122 input The device 123 and the memory 124 are respectively connected to the processor 121, and the positioning device 122 is configured to detect the positioning information of the current position of the ground control terminal; the input device 123 is configured to determine the marking information of the current position of the ground control terminal; And storing the positioning information of the current position of the ground control end and the indication information; the processor 121 is configured to: acquire, by using the positioning device, positioning information of a current location of the ground control end; and acquire the ground by using the input device The indication information of the current position of the control end; the positioning information of the current position of the ground control end and the indication information are stored in the memory.
  • the processor 121 is further configured to: determine, according to the positioning information and the indication information stored in the memory, geographic information of a working area of the agricultural unmanned aerial vehicle; according to a geographic area of the working area of the agricultural unmanned aerial vehicle Information determining the operational route of the agricultural unmanned aerial vehicle.
  • the indication information is used to identify that a current location of the ground control end is a boundary point of the work area.
  • the processor 121 is configured to: determine geographic information of a boundary of a work area of the agricultural unmanned aerial vehicle according to positioning information of a boundary point of the work area.
  • the identifier information is used to identify that the current location of the ground control end is a location where the obstacle is located in the work area; or the indication information is used to identify that the current location of the ground control end is within the work area
  • the boundary point of the area where the obstacle is located is configured to: determine, according to the positioning information of the location where the obstacle is located in the working area, geographic information of an obstacle in the working area of the agricultural unmanned aerial vehicle; or, according to the area of the obstacle in the working area
  • the positioning information of the boundary point determines the geographic information of the obstacle in the working area of the agricultural unmanned aerial vehicle.
  • the indication information is used to identify that the current location of the ground control end is a key point on a boundary of the work area, and the key point includes at least one of the following: a corner position, a non-linear position.
  • the processor 121 is configured to: determine terrain information of a boundary of a work area of the agricultural unmanned aerial vehicle according to positioning information of a key point on a boundary of the work area.
  • the indication information is used to identify that the current location of the ground control terminal is a preset location, and the preset location is used to calibrate a positioning deviation of the agricultural unmanned aerial vehicle.
  • the processor 121 is further configured to: acquire location information of the preset location detected by the agricultural unmanned aerial vehicle when the agricultural unmanned aerial vehicle is located at the preset location; according to positioning information of the preset location, and Position information of the preset location detected by the agricultural unmanned aerial vehicle The positioning deviation of the aircraft is calibrated.
  • the positioning information of the current position of the ground control end is determined by the positioning device provided by the ground control end, and the indication information of the current position of the ground control end is determined by the input device of the ground control end, and the indication information indicates the type of the current position, each of which indicates The positioning point corresponds to the positioning information and the marking information.
  • the ground control terminal can also control the agricultural unmanned aerial vehicle. Before the agricultural unmanned aerial vehicle operation, only one tester can complete the mapping work of the working area, and at the end of the mapping After that, the agricultural unmanned aerial vehicle can be controlled to start operations, which saves human resources compared to the prior art.
  • Embodiments of the present invention provide a ground control terminal.
  • Figure 13 is a rear elevational view of a ground control terminal according to another embodiment of the present invention.
  • Figure 14 is a front elevational view of a ground control terminal according to another embodiment of the present invention;
  • Figure 15 is a top plan view of a ground control terminal according to another embodiment of the present invention.
  • the processor 121 determines the operation route of the agricultural unmanned aerial vehicle according to the geographic information of the working area of the agricultural unmanned aerial vehicle, and is specifically used for: The geographic information of the boundary of the working area of the agricultural unmanned aerial vehicle and the geographical information of the obstacle in the working area of the agricultural unmanned aerial vehicle determine the working route of the agricultural unmanned aerial vehicle.
  • the ground control end includes a plurality of buttons 131, and the plurality of buttons 131 are respectively disposed at different positions of the ground control end housing, and each button corresponds to different indication information.
  • the plurality of buttons 131 may be the button C1, the button C2, the button C3, and the button C4 in the foregoing method embodiment, and the corresponding relationship is not limited.
  • the embodiment does not limit the specific position of the plurality of buttons 131 on the ground control end. .
  • the ground control terminal includes a touch screen 140.
  • the processor 121 acquires the indication information of the current location of the ground control terminal by the operation of the user on the touch screen 140.
  • the ground control terminal further includes a first button 151, a second button 152, a third button 153, and a fourth button 154.
  • the first button 151 is used to acquire the agricultural unmanned aerial vehicle Positioning information of the first position in the working area;
  • the second button 152 is configured to acquire positioning information of the second position of the agricultural unmanned aerial vehicle in the working area;
  • the processor 121 is configured according to the positioning information of the first position Determining a connection between the first location and the second location with the positioning information of the second location;
  • the third button 153 or the fourth button 154 is configured to determine a spray direction of the agricultural unmanned aerial vehicle In the direction of the connection.
  • each positioning point corresponds to positioning information and marking information.
  • the marking information corresponds to positioning information and marking information.
  • the latitude and longitude information of each positioning point can be determined. It is determined whether each positioning point is located at the boundary or inside of the working area, and when it is inside the working area, whether it is an obstacle or not, according to the positioning information and the marking information corresponding to each positioning point, the boundary of the working area and the obstacle area can be determined.
  • the boundary thereby preventing the agricultural unmanned aerial vehicle from spraying the spray onto the obstacle area or the obstacle; before each take-off of the agricultural unmanned aerial vehicle, the tester places the agricultural unmanned aerial vehicle at the preset location, by comparing the remote control
  • the stored positioning information of the preset location and the position information of the preset location detected by the agricultural unmanned aerial vehicle are used to calibrate the positioning deviation of the agricultural unmanned aerial vehicle, thereby improving the positioning accuracy of the agricultural unmanned aerial vehicle and avoiding the agricultural unmanned aerial vehicle in the same Leakage or repeated spraying during the operation of the work area;
  • the user operates keys to select the left or right of the two connections, controlling the spray direction of agricultural UAV, increase the flexibility of control of the direction of the spray.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, ie may be located A place, or it can be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the methods of the various embodiments of the present invention. Part of the steps.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Abstract

一种农业无人飞行器的航线规划方法及地面控制端(120),航线规划方法包括:通过地面控制端(120)自带的定位装置(122),获取地面控制端(120)当前位置的定位信息(S101);通过地面控制端(120)的输入装置(123),获取地面控制端(120)的当前位置的标示信息(S102);记录地面控制端(120)的当前位置的定位信息以及标示信息(S103)。在农业无人飞行器作业之前,只需一个测试人员即可完成对作业区域(32, 71)的测绘工作,并且在测绘结束后即可控制农业无人飞行器开始作业,节省了人力资源。

Description

农业无人飞行器的航线规划方法及地面控制端 技术领域
本发明实施例涉及无人机领域,尤其涉及一种农业无人飞行器的航线规划方法及地面控制端。
背景技术
在农业无人飞行器执行植保作业前,需要对农田进行测绘,现有技术通过用户携带全球定位系统(GlobalPositioning System,简称GPS)天线,沿着农田的边缘行走的同时,GPS天线将用户所处的位置信息发送给农业无人飞行器的遥控器,由农业无人飞行器的遥控器根据用户在不同位置的位置信息,确定该农田的形状。
因此,在农田测绘时,不仅需要携带GPS天线围绕农田行走的测试人员,还需要操控遥控器的操控者,导致农田测绘时需要消耗较大的人力资源。
发明内容
本发明实施例提供一种农业无人飞行器的航线规划方法及地面控制端,以节省作业区域测绘时的人力资源。
本发明实施例的一个方面是提供一种农业无人飞行器的航线规划方法,包括:
通过所述农业无人飞行器的地面控制端自带的定位装置,获取所述地面控制端当前位置的定位信息;
通过所述农业无人飞行器的地面控制端的输入装置,获取所述地面控制端的当前位置的标示信息;
记录所述地面控制端的当前位置的定位信息以及标示信息。
本发明实施例的另一个方面是提供一种地面控制端,包括:
一个或多个处理器,单独或协同工作;
定位装置,与所述处理器通信连接,用于检测所述地面控制端当前位 置的定位信息;
输入装置,与所述处理器通信连接,用于确定所述地面控制端的当前位置的标示信息;
存储器,与所述处理器通信连接,用于存储所述地面控制端的当前位置的定位信息以及标示信息;
所述处理器用于:
通过所述定位装置,获取所述地面控制端当前位置的定位信息;
通过所述输入装置,获取所述地面控制端的当前位置的标示信息;
将所述地面控制端的当前位置的定位信息以及标示信息存储到所述存储器。
本实施例提供的农业无人飞行器的航线规划方法及地面控制端,通过地面控制端自带的定位装置,确定地面控制端当前位置的定位信息,通过地面控制端的输入装置,确定地面控制端的当前位置的标示信息,标示信息表示当前位置的类型,每个定位点对应有定位信息和标示信息,通过该地面控制端进行作业区域测绘时,不仅可以确定每个定位点的经纬度信息,还可以确定每个定位点位于作业区域的边界或内部,当位于作业区域内部时,是否是障碍物,另外,该地面控制端还可以控制农业无人飞行器,在农业无人飞行器作业之前,只需一个测试人员即可完成对作业区域的测绘工作,并且在测绘结束后即可控制农业无人飞行器开始作业,相比于现有技术,节省了人力资源。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的农业无人飞行器的航线规划方法的流程图;
图2为本发明实施例提供的遥控器的显示屏显示内容的示意图;
图3为本发明另一实施例提供的遥控器的显示屏显示内容的示意图;
图4为本发明另一实施例提供的遥控器的显示屏显示内容的示意图;
图5为本发明另一实施例提供的遥控器的显示屏显示内容的示意图;
图6为本发明另一实施例提供的农业无人飞行器的航线规划方法的流程图;
图7为本发明另一实施例提供的遥控器的显示屏显示内容的示意图;
图8为本发明另一实施例提供的遥控器的显示屏显示内容的示意图;
图9为本发明另一实施例提供的农业无人飞行器的航线规划方法的流程图;
图10为本发明另一实施例提供的农业无人飞行器的航线规划方法的流程图;
图11为本发明另一实施例提供的遥控器的显示屏显示内容的示意图;
图12为本发明实施例提供的地面控制端的结构图;
图13为本发明另一实施例提供的地面控制端的后视图;
图14为本发明另一实施例提供的地面控制端的主视图;
图15为本发明另一实施例提供的地面控制端的俯视图。
附图标记:
20-显示屏  21-作业区域边界点  22-作业区域边界
31-障碍物点  32-作业区域  41-障碍物边界点
42-障碍物区域  50-显示屏  51-按键C1 52-按键C2
53-按键C3  54-按键C4  61-关键点  70-障碍物区域
71-作业区域  72-航线  121-航线  120-地面控制端
121-处理器  122-定位装置  123-输入装置  124-存储器
131-多个按键  140-触摸屏  151-第一按键  152-第二按键
153-第三按键  154-第四按键
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本发明实施例提供一种农业无人飞行器的航线规划方法。图1为本发明实施例提供的农业无人飞行器的航线规划方法的流程图。如图1所示,本实施例中的方法,可以包括:
步骤S101、通过所述农业无人飞行器的地面控制端自带的定位装置,获取所述地面控制端当前位置的定位信息。
本实施例的执行主体可以是用于控制农业无人飞行器的地面控制端,该地面控制端可以包括如下至少一种:头戴式显示眼镜(VR眼镜、VR头盔等)、手机、遥控器(如带显示屏的遥控器)、智能手环、平板电脑。本实施例以带显示屏的遥控器为例,介绍本实施例提供的农业无人飞行器的航线规划方法原理。
本实施例中的带显示屏的遥控器设置有定位装置,该定位装置具体可以是GPS定位模块,该定位装置可对该遥控器所处的位置进行实时定位或周期性定位,周期性定位具体可以是每隔一定时间定位一次,例如1秒定位一次。在本实施例中,农业无人飞行器的作业区域可以是一片农田、森林、树林或其他,农业无人飞行器的作业对象可以是农作物、植被或其他,农业无人飞行器可以在作业区域喷洒农药、水、种子等喷洒物。在农业无人飞行器作业之前,需要对农业无人飞行器的航线进行规划,航线规划的前提是需要对农业无人飞行器的作业区域进行测绘。
对农业无人飞行器的作业区域进行测绘的一种可实现方式是:测试人 员携带该遥控器在农业无人飞行器的作业区域例如农田行走,该遥控器自带的GPS定位模块会对该遥控器所处的位置进行实时定位或周期性定位。该遥控器可实时的在显示屏上显示GPS定位模块的定位信息,并根据该遥控器位于作业区域的不同位置时GPS定位模块的定位信息,对该作业区域进行测绘。
具体的,测试人员可携带该遥控器围绕作业区域的边缘行走一圈,在行走过程中,遥控器自带的GPS定位模块会对作业区域的边界点进行实时定位或周期性定位,当测试人员携带该遥控器围绕作业区域的边缘行走一圈后,遥控器获得作业区域的大量边界点的定位信息,如图2所示,20表示遥控器的显示屏,21表示定位点,每个定位点的定位信息包括经度信息和维度信息,根据大量边界点的定位信息,可确定出该作业区域的边界22。
通常农业无人飞行器的作业区域内会存在障碍物,因此,还需将作业区域内存在的障碍物测绘出来,具体的,测试人员可携带该遥控器在作业区域的内部行走,当测试人员发现障碍物点比如一颗大树、障碍物区域比如一个鱼塘时,需要通过该遥控器记录障碍物点或障碍物区域的定位信息。如果农业无人飞行器的作业区域内存在障碍物区域,则需要按照和作业区域的边界一样的测绘方法,测量障碍物区域的边界点的定位信息。
步骤S102、通过所述农业无人飞行器的地面控制端的输入装置,获取所述地面控制端的当前位置的标示信息。
由于GPS定位模块记录的是某一位置或某一点的定位信息,在测绘过程中,GPS定位模块需要记录无数个位置或点的定位信息,为了分区定位位置的不同或定位点的不同,本实施例通过标示信息来标示每个位置或每个点的类型,例如,该位置是障碍物区域的边界点。
在本实施例中,遥控器包括多个按键,该多个按键作为遥控器的一种输入装置,该多个按键分别设置在遥控器外壳的不同位置,例如遥控器底部外壳设置有4个独立的按键,按键C1、按键C2、按键C3、按键C4,各个按键对应不同的标示信息,例如,按键C1对应第一种标示信息,第一种标示信息用于标识所述地面控制端的当前位置是所述作业区域的边界点。按键C2对应第二种标示信息,第二种标示信息用于标识所述地面 控制端的当前位置是所述作业区域内障碍物所在的位置,或者用于标识所述地面控制端的当前位置是所述作业区域内障碍物所在区域的边界点。按键C3对应第三种标示信息,第三种标示信息用于标识所述地面控制端的当前位置是作业区域边界上的关键点,所述关键点包括如下至少一种:转角位置、非直线位置。按键C4对应第四种标示信息,第四种标示信息用于标识所述地面控制端的当前位置是预设地点,所述预设地点用于校准所述农业无人飞行器的定位偏差。
例如,测试人员携带该遥控器围绕作业区域的边缘开始行走时,对按键C1进行操作,操作方式包括如下至少一种:按压、点击、按下、双击。测试人员操作按键C1的作用是:标示遥控器当前位于作业区域的边界,GPS定位模块当前的定位信息是作业区域的边界点的定位信息。可选的,测试人员操作按键C1之后,默认GPS定位模块后续的定位信息均是作业区域边界点的定位信息,直到测试人员再次操作按键C1,或者,测试人员操作了其他的按键。
另外,在一些实施例中,当测试人员携带该遥控器在作业区域的内部行走时,发现了障碍物点比如一颗大树,则测试人员对按键C2进行操作,此处,对按键的操作还可以用于触发GPS定位模块定位,即此处的GPS定位模块的定位机制是触发式的,同时,测试人员操作按键C2的作用是:标示遥控器当前位于障碍物所在的位置,此时,GPS定位模块当前的定位信息是障碍物所在位置的定位信息。如图3所示,31表示测试人员操作按键C2之后,遥控器根据GPS定位模块的定位信息,确定出的定位点,定位点31表示作业区域32中的障碍物。
再如,作业区域内部存在一个面积较大的障碍物区域,测试人员操作按键C2之后,携带该遥控器沿着障碍物区域的边界行走,测试人员操作按键C2的作用是:标示遥控器当前位于障碍物区域的边界,GPS定位模块当前的定位信息是障碍物所在区域的边界点的定位信息。如图4所示,41表示测试人员操作按键C2之后,遥控器根据GPS定位模块的定位信息,确定出的定位点,定位点41表示作业区域32中的障碍物区域的边界点,由多个定位点41构成的区域42为作业区域32中的障碍物区域。
此外,在其他一些实施例中,触摸屏也可以作为遥控器的一种输入装 置,如图5所示,50表示触摸屏,51表示按键C1,52表示按键C2,53表示按键C3,54表示按键按键C4。各个按键对应不同的标示信息,图5所示的各个按键和前述的遥控器底部外壳上的按键其功能是一致的,遥控器可根据用户在触摸屏上点击的不同按键,确定遥控器的当前位置的标示信息,确定方法和前述方法一致。
步骤S103、记录所述地面控制端的当前位置的定位信息以及标示信息。
在本实施例中,对于遥控器的每个定位点,均记录该定位点的定位信息和标示信息,即每个定位点对应有经纬度信息、标示信息,标示信息标示该定位点的类型,例如,该定位点是作业区域的边界点或障碍物区域的边界点。
本实施例通过地面控制端自带的定位装置,确定地面控制端当前位置的定位信息,通过地面控制端的输入装置,确定地面控制端的当前位置的标示信息,标示信息表示当前位置的类型,每个定位点对应有定位信息和标示信息,通过该地面控制端进行作业区域测绘时,不仅可以确定每个定位点的经纬度信息,还可以确定每个定位点位于作业区域的边界或内部,当位于作业区域内部时,是否是障碍物,另外,该地面控制端还可以控制农业无人飞行器,在农业无人飞行器作业之前,只需一个测试人员即可完成对作业区域的测绘工作,并且在测绘结束后即可控制农业无人飞行器开始作业,相比于现有技术,节省了人力资源。
本发明实施例提供一种农业无人飞行器的航线规划方法。图6为本发明另一实施例提供的农业无人飞行器的航线规划方法的流程图。如图6所示,在图1所示实施例的基础上,本实施例中的方法,可以包括:
步骤S201、通过所述农业无人飞行器的地面控制端自带的定位装置,获取所述地面控制端当前位置的定位信息。
步骤S201与步骤S101一致,具体方法,此处不再赘述。
步骤S202、通过所述农业无人飞行器的地面控制端的输入装置,获取所述地面控制端的当前位置的标示信息。
步骤S202与步骤S102一致,具体方法,此处不再赘述。
步骤S203、记录所述地面控制端的当前位置的定位信息以及标示信息。
步骤S203与步骤S103一致,具体方法,此处不再赘述。
步骤S204、根据记录的所述定位信息以及标示信息,确定所述农业无人飞行器的作业区域的地理信息。
在本实施例中,遥控器根据记录的所述定位信息以及标示信息,确定所述农业无人飞行器的作业区域的地理信息的可实现方式包括如下几种:
第一种:
根据所述作业区域的边界点的定位信息,确定所述农业无人飞行器的作业区域边界的地理信息。
如图2所示,遥控器可根据作业区域的每个边界点21的定位信息,确定出作业区域边界2的地理信息,地理信息具体可以是地理位置,例如经纬度信息。
第二种:
根据所述作业区域内障碍物所在的位置的定位信息,确定所述农业无人飞行器的作业区域内障碍物的地理信息;或者,根据所述作业区域内障碍物所在区域的边界点的定位信息,确定所述农业无人飞行器的作业区域内障碍物的地理信息。
如图3所示,定位点31表示作业区域32中的障碍物,根据定位点31的定位信息即可获得作业区域32中障碍物的地理信息。如图4所示,定位点41表示作业区域32中的障碍物区域的边界点,遥控器根据每个定位点41的定位信息即可获得作业区域32中障碍物区域的地理信息,障碍物区域的地理信息可以是障碍物区域所占的经度范围和纬度范围。
第三种:
所述标示信息用于标识所述地面控制端的当前位置是作业区域边界上的关键点,所述关键点包括如下至少一种:转角位置、非直线位置。
如图7所示,边界点61相比于其他的边界点,其转角较大,边界线22无法在边界点61处平滑过渡,当测试人员携带该遥控器沿着作业区域的边界行走时,若发现这样的关键点,可操作上述实施例所述的按键C3,测试人员操作按键C3的作用是:标示遥控器当前位于作业区域边界的关 键点,此时,GPS定位模块当前的定位信息是作业区域边界上的关键点的定位信息。具体的,根据该关键点的定位信息还可确定作业区域在此处的地形信息,如图7所示的边界点61,根据边界点61的定位信息,可确定出作业区域在此处的地形,例如陡坡、梯田等。
步骤S205、根据所述农业无人飞行器的作业区域的地理信息,确定所述农业无人飞行器的作业航线。
具体的,可根据所述农业无人飞行器的作业区域边界的地理信息,以及所述农业无人飞行器的作业区域内障碍物的地理信息,确定出农业无人飞行器实际需要作业的区域,根据该实际需要作业的区域,确定农业无人飞行器的作业航线。如图8所示,70表示障碍物区域,71表示农业无人飞行器实际需要作业的区域,72表示航线,可见,农业无人飞行器的航线并不经过障碍物区域,若障碍物区域是一个鱼塘,若不加以避免,很可能导致农业无人飞行器将农药喷洒到鱼塘,造成不必要的损失。
本实施例通过标示信息标识每个定位点的类型,每个定位点对应有定位信息和标示信息,通过该地面控制端进行作业区域测绘时,不仅可以确定每个定位点的经纬度信息,还可以确定每个定位点位于作业区域的边界或内部,当位于作业区域内部时,是否是障碍物,根据每个定位点对应有定位信息和标示信息,可以确定出作业区域的边界和障碍物区域的边界,从而避免农业无人飞行器将喷洒物喷洒到障碍物区域或障碍物上。
本发明实施例提供一种农业无人飞行器的航线规划方法。图9为本发明另一实施例提供的农业无人飞行器的航线规划方法的流程图。如图9所示,在图1所示实施例的基础上,所述标示信息用于标识所述地面控制端的当前位置是预设地点,所述预设地点用于校准所述农业无人飞行器的定位偏差。
在本实施例中,测试人员还可以指定一个地点作为预设地点,该预设地点用于校准所述农业无人飞行器的定位偏差。假设作业区域比较大,农业无人飞行器每次可装载的农药是一定的,则农业无人飞行器一次装载的农药可能不够喷洒整个作业区域,则需要农业无人飞行器多次装载,多次作业,若农业无人飞行的定位存在偏差,可能导致农业无人飞行器无法准 确定位到前一次离开的地点,导致农业无人飞行器漏喷或重复喷洒,因此,为了校准农业无人飞行的定位偏差,在作业区域测绘时,测试人员可以在作业区域指定一点作为预设地点,测试人员在预设地点操作上述实施例所述的按键C4,标示遥控器当前位于测试人员指定的预设地点,并触发GPS定位模块对该预设地点进行定位,以便遥控器获得预设地点的定位信息,并将预设地点的定位信息作为参考标准进行存储。
农业无人飞行器每次起飞之前,测试人员将农业无人飞行器放置在该预设地点,校准农业无人飞行的定位偏差,具体的校准方法可以包括:
步骤S301、获取所述农业无人飞行器位于所述预设地点时,所述农业无人飞行器检测的所述预设地点的位置信息。
当测试人员将农业无人飞行器放置在该预设地点时,农业无人飞行器的定位系统对该预设地点进行定位得到位置信息,并将该位置信息发送给遥控器。假设农业无人飞行器的定位系统检测的预设地点的位置信息是北纬29度,经度38度。
步骤S302、根据所述预设地点的定位信息,以及所述农业无人飞行器检测的所述预设地点的位置信息,对所述农业无人飞行器的定位偏差进行校准。
假设遥控器中存储的预设地点的定位信息是北纬30度,经度40度,当遥控器接收到农业无人飞行器发送的预设地点的位置信息时,对遥控器中存储的预设地点的定位信息和农业无人飞行器发送的预设地点的位置信息进行比较,可见,农业无人飞行器发送的预设地点的位置信息存在一定的误差,此时,遥控器可以向农业无人飞行器发送校准指令,以使农业无人飞行器将其自身的定位偏差进行校准。
本实施例中,在农业无人飞行器每次起飞之前,测试人员将农业无人飞行器放置在该预设地点,通过比较遥控器中存储的预设地点的定位信息和农业无人飞行器检测的预设地点的位置信息,对农业无人飞行器的定位偏差进行校准,提高了农业无人飞行器的定位精度,避免农业无人飞行器在同一作业区域分次作业时出现漏喷或重复喷洒的现象。
本发明实施例提供一种农业无人飞行器的航线规划方法。图10为本 发明另一实施例提供的农业无人飞行器的航线规划方法的流程图。如图10所示,在图1所示实施例的基础上,所述多个按键包括第一按键、第二按键、第三按键和第四按键,本实施例所述的第一按键、第二按键、第三按键和第四按键不同于上述实施例中的按键C1、按键C2、按键C3、按键C4。
本实施例中的方法,可以包括:
步骤S401、通过用户操作的第一按键,获取所述农业无人飞行器在所述作业区域中第一位置的定位信息。
如图11所示,农业无人飞行器在作业区域作业,当农业无人飞行器位于A点时,用户操作的第一按键,获得农业无人飞行器在作业区域中第一位置即A点的定位信息。
步骤S402、通过用户操作的第二按键,获取所述农业无人飞行器在所述作业区域中第二位置的定位信息。
当农业无人飞行器位于B点时,用户操作的第二按键,获得农业无人飞行器在作业区域中第二位置即B点的定位信息。
步骤S403、根据所述第一位置的定位信息和所述第二位置的定位信息,确定所述第一位置和所述第二位置之间的连线。
根据A点的定位信息和B点的定位信息,确定连线AB。
步骤S404、通过用户操作的第三按键或第四按键,确定所述农业无人飞行器的喷洒方向相对于所述连线的方向。
另外,用户操作第三按键时可选定连线AB的左边,用户操作第四按键时可选定连线AB的右边。例如,用户操作第三按键选定连线AB的左边后,农业无人飞行器将沿着如图11所示的航线121飞行,航线121位于连线AB的左侧,调整航线的同时调整了农业无人飞行器的喷洒方向。
本实施例通过用户操作按键选择两点连线的左边或右边,控制农业无人飞行器的喷洒方向,提高了对喷洒方向控制的灵活度。
本发明实施例提供一种地面控制端。图12为本发明实施例提供的地面控制端的结构图,如图12所示,地面控制端120包括一个或多个处理器121、定位装置122、输入装置123、存储器124。定位装置122、输入 装置123、存储器124分别与处理器121通信连接,定位装置122用于检测所述地面控制端当前位置的定位信息;输入装置123用于确定所述地面控制端的当前位置的标示信息;存储器124用于存储所述地面控制端的当前位置的定位信息以及标示信息;处理器121用于:通过所述定位装置,获取所述地面控制端当前位置的定位信息;通过所述输入装置,获取所述地面控制端的当前位置的标示信息;将所述地面控制端的当前位置的定位信息以及标示信息存储到所述存储器。
另外,处理器121还用于:根据所述存储器中存储的所述定位信息以及标示信息,确定所述农业无人飞行器的作业区域的地理信息;根据所述农业无人飞行器的作业区域的地理信息,确定所述农业无人飞行器的作业航线。
所述标示信息用于标识所述地面控制端的当前位置是所述作业区域的边界点。处理器121用于:根据所述作业区域的边界点的定位信息,确定所述农业无人飞行器的作业区域边界的地理信息。
或者,所述标示信息用于标识所述地面控制端的当前位置是所述作业区域内障碍物所在的位置;或者,所述标示信息用于标识所述地面控制端的当前位置是所述作业区域内障碍物所在区域的边界点。处理器121用于:根据所述作业区域内障碍物所在的位置的定位信息,确定所述农业无人飞行器的作业区域内障碍物的地理信息;或者,根据所述作业区域内障碍物所在区域的边界点的定位信息,确定所述农业无人飞行器的作业区域内障碍物的地理信息。
或者,所述标示信息用于标识所述地面控制端的当前位置是作业区域边界上的关键点,所述关键点包括如下至少一种:转角位置、非直线位置。处理器121用于:根据作业区域边界上的关键点的定位信息,确定所述农业无人飞行器的作业区域边界的地形信息。
或者,所述标示信息用于标识所述地面控制端的当前位置是预设地点,所述预设地点用于校准所述农业无人飞行器的定位偏差。处理器121还用于:获取所述农业无人飞行器位于所述预设地点时,所述农业无人飞行器检测的所述预设地点的位置信息;根据所述预设地点的定位信息,以及所述农业无人飞行器检测的所述预设地点的位置信息,对所述农业无人 飞行器的定位偏差进行校准。
本发明实施例提供的地面控制端的具体原理和实现方式均与图1所示实施例类似,此处不再赘述。
本实施例通过地面控制端自带的定位装置,确定地面控制端当前位置的定位信息,通过地面控制端的输入装置,确定地面控制端的当前位置的标示信息,标示信息表示当前位置的类型,每个定位点对应有定位信息和标示信息,通过该地面控制端进行作业区域测绘时,不仅可以确定每个定位点的经纬度信息,还可以确定每个定位点位于作业区域的边界或内部,当位于作业区域内部时,是否是障碍物,另外,该地面控制端还可以控制农业无人飞行器,在农业无人飞行器作业之前,只需一个测试人员即可完成对作业区域的测绘工作,并且在测绘结束后即可控制农业无人飞行器开始作业,相比于现有技术,节省了人力资源。
本发明实施例提供一种地面控制端。图13为本发明另一实施例提供的地面控制端的后视图;图14为本发明另一实施例提供的地面控制端的主视图;图15为本发明另一实施例提供的地面控制端的俯视图。在图12所示实施例提供的技术方案的基础上,处理器121根据所述农业无人飞行器的作业区域的地理信息,确定所述农业无人飞行器的作业航线时,具体用于:根据所述农业无人飞行器的作业区域边界的地理信息,以及所述农业无人飞行器的作业区域内障碍物的地理信息,确定所述农业无人飞行器的作业航线。
另外,如图13所示,地面控制端包括多个按键131,多个按键131分别设置在地面控制端外壳的不同位置,各个按键对应不同的标示信息。多个按键131可以是上述方法实施例中的按键C1、按键C2、按键C3、按键C4,其对应关系不限定,此外,本实施例也不限定多个按键131在地面控制端上的具体位置。
如图14所示,地面控制端包括触摸屏140。处理器121通过用户在触摸屏140上的操作,获取所述地面控制端的当前位置的标示信息。
如图15所示,地面控制端还包括第一按键151、第二按键152、第三按键153和第四按键154。第一按键151用于获取所述农业无人飞行器在 所述作业区域中第一位置的定位信息;第二按键152用于获取所述农业无人飞行器在所述作业区域中第二位置的定位信息;处理器121根据所述第一位置的定位信息和所述第二位置的定位信息,确定所述第一位置和所述第二位置之间的连线;第三按键153或第四按键154用于确定所述农业无人飞行器的喷洒方向相对于所述连线的方向。
本发明实施例提供的地面控制端的具体原理和实现方式均与上述实施例类似,此处不再赘述。
本实施例通过标示信息标识每个定位点的类型,每个定位点对应有定位信息和标示信息,通过该地面控制端进行作业区域测绘时,不仅可以确定每个定位点的经纬度信息,还可以确定每个定位点位于作业区域的边界或内部,当位于作业区域内部时,是否是障碍物,根据每个定位点对应有定位信息和标示信息,可以确定出作业区域的边界和障碍物区域的边界,从而避免农业无人飞行器将喷洒物喷洒到障碍物区域或障碍物上;在农业无人飞行器每次起飞之前,测试人员将农业无人飞行器放置在该预设地点,通过比较遥控器中存储的预设地点的定位信息和农业无人飞行器检测的预设地点的位置信息,对农业无人飞行器的定位偏差进行校准,提高了农业无人飞行器的定位精度,避免农业无人飞行器在同一作业区域分次作业时出现漏喷或重复喷洒的现象;通过用户操作按键选择两点连线的左边或右边,控制农业无人飞行器的喷洒方向,提高了对喷洒方向控制的灵活度。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于 一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (30)

  1. 一种农业无人飞行器的航线规划方法,其特征在于,所述方法包括:
    通过所述农业无人飞行器的地面控制端自带的定位装置,获取所述地面控制端当前位置的定位信息;
    通过所述农业无人飞行器的地面控制端的输入装置,获取所述地面控制端的当前位置的标示信息;
    记录所述地面控制端的当前位置的定位信息以及标示信息。
  2. 根据权利要求1所述的方法,其特征在于,所述记录所述地面控制端的当前位置的定位信息以及标示信息之后,还包括:
    根据记录的所述定位信息以及标示信息,确定所述农业无人飞行器的作业区域的地理信息;
    根据所述农业无人飞行器的作业区域的地理信息,确定所述农业无人飞行器的作业航线。
  3. 根据权利要求2所述的方法,其特征在于,所述标示信息用于标识所述地面控制端的当前位置是所述作业区域的边界点。
  4. 根据权利要求3所述的方法,其特征在于,所述根据记录的所述定位信息以及标示信息,确定所述农业无人飞行器的作业区域的地理信息,包括:
    根据所述作业区域的边界点的定位信息,确定所述农业无人飞行器的作业区域边界的地理信息。
  5. 根据权利要求2所述的方法,其特征在于,所述标示信息用于标识所述地面控制端的当前位置是所述作业区域内障碍物所在的位置;
    或者,
    所述标示信息用于标识所述地面控制端的当前位置是所述作业区域内障碍物所在区域的边界点。
  6. 根据权利要求5所述的方法,其特征在于,所述根据记录的所述定位信息以及标示信息,确定所述农业无人飞行器的作业区域的地理信息,包括:
    根据所述作业区域内障碍物所在的位置的定位信息,确定所述农业无 人飞行器的作业区域内障碍物的地理信息;
    或者,
    根据所述作业区域内障碍物所在区域的边界点的定位信息,确定所述农业无人飞行器的作业区域内障碍物的地理信息。
  7. 根据权利要求2所述的方法,其特征在于,所述标示信息用于标识所述地面控制端的当前位置是作业区域边界上的关键点,所述关键点包括如下至少一种:
    转角位置、非直线位置。
  8. 根据权利要求7所述的方法,其特征在于,所述根据记录的所述定位信息以及标示信息,确定所述农业无人飞行器的作业区域的地理信息,包括:
    根据作业区域边界上的关键点的定位信息,确定所述农业无人飞行器的作业区域边界的地形信息。
  9. 根据权利要求2所述的方法,其特征在于,所述标示信息用于标识所述地面控制端的当前位置是预设地点,所述预设地点用于校准所述农业无人飞行器的定位偏差。
  10. 根据权利要求9所述的方法,其特征在于,还包括:
    获取所述农业无人飞行器位于所述预设地点时,所述农业无人飞行器检测的所述预设地点的位置信息;
    根据所述预设地点的定位信息,以及所述农业无人飞行器检测的所述预设地点的位置信息,对所述农业无人飞行器的定位偏差进行校准。
  11. 根据权利要求4或6所述的方法,其特征在于,所述根据所述农业无人飞行器的作业区域的地理信息,确定所述农业无人飞行器的作业航线,包括:
    根据所述农业无人飞行器的作业区域边界的地理信息,以及所述农业无人飞行器的作业区域内障碍物的地理信息,确定所述农业无人飞行器的作业航线。
  12. 根据权利要求1所述的方法,其特征在于,所述输入装置包括多个按键,所述多个按键分别设置在地面控制端外壳的不同位置,各个按键对应不同的标示信息。
  13. 根据权利要求1所述的方法,其特征在于,所述输入装置为触摸屏。
  14. 根据权利要求13所述的方法,其特征在于,所述通过所述农业无人飞行器的地面控制端的输入装置,获取所述地面控制端的当前位置的标示信息,包括:
    通过用户在所述触摸屏上的操作,获取所述地面控制端的当前位置的标示信息。
  15. 根据权利要求12所述的方法,其特征在于,所述多个按键包括第一按键、第二按键、第三按键和第四按键,所述方法还包括:
    通过用户操作的第一按键,获取所述农业无人飞行器在所述作业区域中第一位置的定位信息;
    通过用户操作的第二按键,获取所述农业无人飞行器在所述作业区域中第二位置的定位信息;
    根据所述第一位置的定位信息和所述第二位置的定位信息,确定所述第一位置和所述第二位置之间的连线;
    通过用户操作的第三按键或第四按键,确定所述农业无人飞行器的喷洒方向相对于所述连线的方向。
  16. 一种地面控制端,其特征在于,包括:
    一个或多个处理器,单独或协同工作;
    定位装置,与所述处理器通信连接,用于检测所述地面控制端当前位置的定位信息;
    输入装置,与所述处理器通信连接,用于确定所述地面控制端的当前位置的标示信息;
    存储器,与所述处理器通信连接,用于存储所述地面控制端的当前位置的定位信息以及标示信息;
    所述处理器用于:
    通过所述定位装置,获取所述地面控制端当前位置的定位信息;
    通过所述输入装置,获取所述地面控制端的当前位置的标示信息;
    将所述地面控制端的当前位置的定位信息以及标示信息存储到所述存储器。
  17. 根据权利要求16所述的地面控制端,其特征在于,所述处理器还用于:
    根据所述存储器中存储的所述定位信息以及标示信息,确定所述农业无人飞行器的作业区域的地理信息;
    根据所述农业无人飞行器的作业区域的地理信息,确定所述农业无人飞行器的作业航线。
  18. 根据权利要求17所述的地面控制端,其特征在于,所述标示信息用于标识所述地面控制端的当前位置是所述作业区域的边界点。
  19. 根据权利要求18所述的地面控制端,其特征在于,所述处理器用于:
    根据所述作业区域的边界点的定位信息,确定所述农业无人飞行器的作业区域边界的地理信息。
  20. 根据权利要求17所述的地面控制端,其特征在于,所述标示信息用于标识所述地面控制端的当前位置是所述作业区域内障碍物所在的位置;
    或者,
    所述标示信息用于标识所述地面控制端的当前位置是所述作业区域内障碍物所在区域的边界点。
  21. 根据权利要求20所述的地面控制端,其特征在于,所述处理器用于:
    根据所述作业区域内障碍物所在的位置的定位信息,确定所述农业无人飞行器的作业区域内障碍物的地理信息;
    或者,
    根据所述作业区域内障碍物所在区域的边界点的定位信息,确定所述农业无人飞行器的作业区域内障碍物的地理信息。
  22. 根据权利要求17所述的地面控制端,其特征在于,所述标示信息用于标识所述地面控制端的当前位置是作业区域边界上的关键点,所述关键点包括如下至少一种:
    转角位置、非直线位置。
  23. 根据权利要求22所述的地面控制端,其特征在于,所述处理器 用于:
    根据作业区域边界上的关键点的定位信息,确定所述农业无人飞行器的作业区域边界的地形信息。
  24. 根据权利要求17所述的地面控制端,其特征在于,所述标示信息用于标识所述地面控制端的当前位置是预设地点,所述预设地点用于校准所述农业无人飞行器的定位偏差。
  25. 根据权利要求24所述的地面控制端,其特征在于,所述处理器还用于:
    获取所述农业无人飞行器位于所述预设地点时,所述农业无人飞行器检测的所述预设地点的位置信息;
    根据所述预设地点的定位信息,以及所述农业无人飞行器检测的所述预设地点的位置信息,对所述农业无人飞行器的定位偏差进行校准。
  26. 根据权利要求19或21所述的地面控制端,其特征在于,所述处理器根据所述农业无人飞行器的作业区域的地理信息,确定所述农业无人飞行器的作业航线时,具体用于:
    根据所述农业无人飞行器的作业区域边界的地理信息,以及所述农业无人飞行器的作业区域内障碍物的地理信息,确定所述农业无人飞行器的作业航线。
  27. 根据权利要求16所述的地面控制端,其特征在于,所述输入装置包括多个按键,所述多个按键分别设置在地面控制端外壳的不同位置,各个按键对应不同的标示信息。
  28. 根据权利要求16所述的地面控制端,其特征在于,所述输入装置为触摸屏。
  29. 根据权利要求28所述的地面控制端,其特征在于,所述触摸屏感测用户在所述触摸屏上的操作;
    所述处理器通过用户在所述触摸屏上的操作,获取所述地面控制端的当前位置的标示信息。
  30. 根据权利要求27所述的地面控制端,其特征在于,所述多个按键包括第一按键、第二按键、第三按键和第四按键;
    所述第一按键用于获取所述农业无人飞行器在所述作业区域中第一 位置的定位信息;
    所述第二按键用于获取所述农业无人飞行器在所述作业区域中第二位置的定位信息;
    所述处理器根据所述第一位置的定位信息和所述第二位置的定位信息,确定所述第一位置和所述第二位置之间的连线;
    所述第三按键或所述第四按键用于确定所述农业无人飞行器的喷洒方向相对于所述连线的方向。
PCT/CN2016/107146 2016-11-24 2016-11-24 农业无人飞行器的航线规划方法及地面控制端 WO2018094661A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910087260.XA CN109655067B (zh) 2016-11-24 2016-11-24 农业无人飞行器的航线规划方法及地面控制端
CN201680002746.3A CN106716062B (zh) 2016-11-24 2016-11-24 农业无人飞行器的航线规划方法及地面控制端
PCT/CN2016/107146 WO2018094661A1 (zh) 2016-11-24 2016-11-24 农业无人飞行器的航线规划方法及地面控制端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/107146 WO2018094661A1 (zh) 2016-11-24 2016-11-24 农业无人飞行器的航线规划方法及地面控制端

Publications (1)

Publication Number Publication Date
WO2018094661A1 true WO2018094661A1 (zh) 2018-05-31

Family

ID=58903809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107146 WO2018094661A1 (zh) 2016-11-24 2016-11-24 农业无人飞行器的航线规划方法及地面控制端

Country Status (2)

Country Link
CN (2) CN106716062B (zh)
WO (1) WO2018094661A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108803665A (zh) * 2018-09-10 2018-11-13 朱彬 全自动无人机集群作业装置及方法
CN110869872A (zh) * 2018-11-30 2020-03-06 深圳市大疆创新科技有限公司 障碍物的精准确定方法、设备及计算机可读存储介质
CN111427375A (zh) * 2020-03-09 2020-07-17 深圳中科保泰科技有限公司 无人机巡采巡查的微区域智能划分方法及系统
CN111750858A (zh) * 2019-12-11 2020-10-09 广州极飞科技有限公司 航线生成方法、装置、电子设备及存储介质
CN112129298A (zh) * 2020-09-28 2020-12-25 广州极飞科技有限公司 无人机航线的确定方法、装置、设备及存储介质
CN112286189A (zh) * 2020-10-22 2021-01-29 广州极飞科技有限公司 一种作业路线规划方法、装置、无人设备和存储介质
CN113518747A (zh) * 2019-02-22 2021-10-19 株式会社尼罗沃克 无人机操纵器及操纵用程序

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108521804A (zh) * 2017-06-20 2018-09-11 深圳市大疆创新科技有限公司 一种无人机的飞行区域规划方法及设备
CN107368094A (zh) * 2017-08-25 2017-11-21 上海拓攻机器人有限公司 一种无人机植保作业航线规划方法及装置
CN107491091A (zh) * 2017-09-30 2017-12-19 广州天翔航空科技有限公司 航线编辑方法及装置
CN108521799A (zh) * 2017-10-26 2018-09-11 深圳市大疆创新科技有限公司 农用机控制方法、装置及系统
CN108885467B (zh) * 2017-11-30 2021-09-03 深圳市大疆创新科技有限公司 一种控制方法、终端、管理平台、系统及存储介质
CN109074038A (zh) * 2017-12-29 2018-12-21 深圳市大疆创新科技有限公司 农用机控制方法、装置及农用机
CN108170164A (zh) * 2018-01-04 2018-06-15 广东容祺智能科技有限公司 一种基于无人机自动喷洒鱼料的方法
WO2020061738A1 (zh) * 2018-09-25 2020-04-02 深圳市大疆软件科技有限公司 农业无人飞行器的控制方法、控制端及存储介质
CN109814597A (zh) * 2019-02-03 2019-05-28 唐山坤翼创新科技有限公司 集群式植保无人机控制系统的控制方法
WO2020237527A1 (zh) * 2019-05-29 2020-12-03 深圳市大疆创新科技有限公司 一种无人机的飞行控制方法、设备、无人机及存储介质
CN111504297B (zh) * 2019-06-03 2023-08-11 极目(海南)智能育种装备有限公司 无路网导航作业方法、装置及导航设备
CN112109894A (zh) * 2019-06-20 2020-12-22 咸宁绿生植保服务有限公司 一种全自动农药喷洒无人机及无人机航线规划方法
CN110597279A (zh) * 2019-08-30 2019-12-20 南京精微迅智能科技有限公司 一种农业无人机的作业方法及其控制方法
CN111176308A (zh) * 2019-12-27 2020-05-19 西安羚控电子科技有限公司 一种封闭环境小型多旋翼无人机集群控制系统
CN111025360A (zh) * 2020-03-10 2020-04-17 南京嘉谷初成通信科技有限公司 一种无人机控制方法、装置、系统、设备及介质
WO2021212519A1 (zh) * 2020-04-24 2021-10-28 深圳市大疆创新科技有限公司 飞行指引方法、装置、系统、遥控终端及可读存储介质
CN117775467A (zh) * 2024-02-27 2024-03-29 民航成都电子技术有限责任公司 一种无人机收纳箱、系统及路径规划方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5334987A (en) * 1993-04-01 1994-08-02 Spectra-Physics Laserplane, Inc. Agricultural aircraft control system using the global positioning system
JP2002211494A (ja) * 2001-01-17 2002-07-31 Todaka Seisakusho:Kk 無人ヘリコプタ用飛行計画装置
CN103728637A (zh) * 2014-01-03 2014-04-16 中南大学 一种农田作业区域边界点和无人直升机位置点绘图方法
CN203909300U (zh) * 2014-05-23 2014-10-29 湖南博联航空技术有限公司 一种便携式农田边界及障碍物点gps数据采集装置
CN204788357U (zh) * 2015-06-10 2015-11-18 巴州极飞农业航空科技有限公司 手持测绘装置
GB2533140A (en) * 2014-12-11 2016-06-15 Caterpillar Inc Drone
CN106054917A (zh) * 2016-05-27 2016-10-26 广州极飞电子科技有限公司 一种无人飞行器的飞行控制方法、装置和遥控器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5334987A (en) * 1993-04-01 1994-08-02 Spectra-Physics Laserplane, Inc. Agricultural aircraft control system using the global positioning system
JP2002211494A (ja) * 2001-01-17 2002-07-31 Todaka Seisakusho:Kk 無人ヘリコプタ用飛行計画装置
CN103728637A (zh) * 2014-01-03 2014-04-16 中南大学 一种农田作业区域边界点和无人直升机位置点绘图方法
CN203909300U (zh) * 2014-05-23 2014-10-29 湖南博联航空技术有限公司 一种便携式农田边界及障碍物点gps数据采集装置
GB2533140A (en) * 2014-12-11 2016-06-15 Caterpillar Inc Drone
CN204788357U (zh) * 2015-06-10 2015-11-18 巴州极飞农业航空科技有限公司 手持测绘装置
CN106054917A (zh) * 2016-05-27 2016-10-26 广州极飞电子科技有限公司 一种无人飞行器的飞行控制方法、装置和遥控器

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108803665A (zh) * 2018-09-10 2018-11-13 朱彬 全自动无人机集群作业装置及方法
CN110869872A (zh) * 2018-11-30 2020-03-06 深圳市大疆创新科技有限公司 障碍物的精准确定方法、设备及计算机可读存储介质
CN113518747A (zh) * 2019-02-22 2021-10-19 株式会社尼罗沃克 无人机操纵器及操纵用程序
CN111750858A (zh) * 2019-12-11 2020-10-09 广州极飞科技有限公司 航线生成方法、装置、电子设备及存储介质
CN111750858B (zh) * 2019-12-11 2022-12-27 广州极飞科技股份有限公司 航线生成方法、装置、电子设备及存储介质
CN111427375A (zh) * 2020-03-09 2020-07-17 深圳中科保泰科技有限公司 无人机巡采巡查的微区域智能划分方法及系统
CN111427375B (zh) * 2020-03-09 2024-01-09 深圳块织类脑智能科技有限公司 无人机巡采巡查的微区域智能划分方法及系统
CN112129298A (zh) * 2020-09-28 2020-12-25 广州极飞科技有限公司 无人机航线的确定方法、装置、设备及存储介质
CN112286189A (zh) * 2020-10-22 2021-01-29 广州极飞科技有限公司 一种作业路线规划方法、装置、无人设备和存储介质

Also Published As

Publication number Publication date
CN109655067A (zh) 2019-04-19
CN106716062B (zh) 2019-03-12
CN106716062A (zh) 2017-05-24
CN109655067B (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
WO2018094661A1 (zh) 农业无人飞行器的航线规划方法及地面控制端
AU2019276115B2 (en) Target Region Operation Planning Method and Apparatus, Storage Medium, and Processor
JP5997255B2 (ja) 現場作業者のための視覚情報システム及びコンピュータ・モビリティ・アプリケーション
WO2019100188A1 (zh) 无人机作业航线的规划方法及地面端设备
US9111320B2 (en) Automated location-based information recall
WO2022104848A1 (zh) 快速测绘方法和装置
US20230214747A1 (en) Method and system for managing agricultural processes
Akula et al. Integration of infrastructure based positioning systems and inertial navigation for ubiquitous context-aware engineering applications
RU2668319C1 (ru) Способ и система обработки зон посева сельскохозяйственных культур на основании данных мониторинга
CN109917798A (zh) 一种农业航空施药方法及系统
CN108885467A (zh) 一种控制方法、终端、管理平台、系统及存储介质
EP2530630A1 (en) Method for position monitoring
CN111076707B (zh) 一种天线姿态测量方法、装置、系统和存储介质
US20230152094A1 (en) Survey system, survey method, and survey program
CN115936953A (zh) 碳汇计算方法、电子设备及存储介质
US20230251386A1 (en) Real-time kinematic (rtk) positioning system, base station and methods for calibrating and operating
CN110244764A (zh) 一种植保作业方法、系统及电子设备和存储介质
WO2021207977A1 (zh) 可移动平台的作业方法、可移动平台以及电子设备
EP4099120A1 (en) Route determination method, route determination system, and route determination program
WO2021087727A1 (zh) 定位方法、系统、遥控设备及rtk模块
US20230153709A1 (en) Work Management Method, Work Management System, And Work Management Program
WO2021199243A1 (ja) 測位システム、ドローン、測量機、および測位方法
JP2023072848A (ja) 作業管理方法、作業管理システム、及び作業管理プログラム
KR20220060081A (ko) 스마트 농업 방제 시스템
Phillips The sky’s no limit: using drones for precision farming

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16922086

Country of ref document: EP

Kind code of ref document: A1