WO2021199243A1 - 測位システム、ドローン、測量機、および測位方法 - Google Patents

測位システム、ドローン、測量機、および測位方法 Download PDF

Info

Publication number
WO2021199243A1
WO2021199243A1 PCT/JP2020/014749 JP2020014749W WO2021199243A1 WO 2021199243 A1 WO2021199243 A1 WO 2021199243A1 JP 2020014749 W JP2020014749 W JP 2020014749W WO 2021199243 A1 WO2021199243 A1 WO 2021199243A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinate
coordinate value
value
positioning
base station
Prior art date
Application number
PCT/JP2020/014749
Other languages
English (en)
French (fr)
Inventor
知宏 末永
千大 和氣
宏記 加藤
Original Assignee
株式会社ナイルワークス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナイルワークス filed Critical 株式会社ナイルワークス
Priority to PCT/JP2020/014749 priority Critical patent/WO2021199243A1/ja
Publication of WO2021199243A1 publication Critical patent/WO2021199243A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry

Definitions

  • the present invention relates to a positioning system, a drone, a surveying instrument, and a positioning method.
  • the coordinate values of the base station are positioned using the coordinates of the electronic reference point, and the position of the drone is specified by relative positioning with the base station.
  • the position of the drone is specified by relative positioning with the base station.
  • Patent Document 2 describes a system that performs relative positioning of mobile stations based on GPS information from GPS satellites and information on a plurality of virtual reference points.
  • Patent Document 3 is a positioning method that uses a modified precision calendar as supplementary information when positioning the position of an observation station using correction information provided by a reference station, and calculates the position of the observation station in the first positioning solution calculation. It is described that it is obtained by a unit and a second positioning solution calculation unit, and these are compared.
  • Patent Document 4 describes a positioning system that calculates an integer bias and switches a reference station.
  • Patent Document 5 describes a positioning device that selects four electronic reference points to perform highly accurate positioning.
  • the positioning system is a positioning system that positions at least the coordinates of the base station used for relative positioning of the drone, and refers to at least two reference points that are different from each other.
  • the coordinate acquisition unit that calculates the first coordinate value and the second coordinate value indicating the position of the base station
  • the comparison unit that calculates the difference or distance between the first coordinate value and the second coordinate value, and the above.
  • the difference or the distance is equal to or less than a predetermined value
  • the first coordinate value or the coordinate value of the point located between the first coordinate value and the second coordinate value is determined as the positioning coordinate of the base station.
  • a coordinate determination unit and so on.
  • the comparison unit When the difference exceeds a predetermined value, the comparison unit includes a third coordinate value calculated with reference to a third reference point different from the two reference points, and the first coordinate value and the second coordinate value.
  • the difference with at least one of the above is calculated, and the coordinate determination unit extracts a pair of coordinate values whose difference is equal to or less than a predetermined value, and forms the coordinate value of any of the coordinate values forming the pair or the pair.
  • the coordinate value of the intermediate point of the coordinate value or the coordinate value of an arbitrary point between the coordinate values forming the pair may be determined as the positioning coordinate.
  • the coordinate acquisition unit further includes a reference point determination unit for determining the reference point used as a reference for calculating the base station coordinates, and the reference point determination unit is within a predetermined range from the coordinates of the base station obtained by independent positioning.
  • the reference point located at may be determined as the reference for the calculation.
  • the positioning system is a positioning system that positions at least the coordinates of the base station used for relative positioning of the drone, and refers to at least three different reference points.
  • a coordinate acquisition unit that calculates a plurality of coordinate values indicating the positions of the base stations
  • a comparison unit that calculates the sum of the differences between the plurality of coordinate values, the sum of the distances, or the average value thereof.
  • the coordinate value of any of the plurality of coordinate values, the intermediate point, or the coordinate value of any point in the area surrounded by the plurality of coordinate values is set. It is provided with a coordinate determination unit that determines the positioning coordinates of the base station.
  • the comparison unit is the sum of the differences of a plurality of coordinate values calculated with reference to other plurality of reference points different from the plurality of reference points, the sum of the distances, or the sum of them.
  • the average value is calculated, and the coordinate determination unit extracts a plurality of coordinate values whose value calculated by the comparison unit is equal to or less than a predetermined value, and the coordinate value of any of the plurality of coordinate values or the coordinates of the intermediate point.
  • the value or the coordinate value of an arbitrary point in the area surrounded by the plurality of coordinate values may be determined as the positioning coordinate.
  • the coordinate acquisition unit further includes a reference point determination unit that determines the reference point as a reference for calculating the base station coordinates, and the reference point determination unit has a predetermined range from the coordinates of the base station obtained by independent positioning.
  • the reference point located within may be determined as the reference for the calculation.
  • the drone according to still another aspect of the present invention is a drone that flies based on the positioning result of the positioning system that positions the coordinates of the base station used for relative positioning.
  • a coordinate acquisition unit that calculates a first coordinate value and a second coordinate value indicating the position of the base station, and the first coordinate value and the second coordinate value, respectively, with reference to at least two different reference points.
  • a comparison unit that calculates a difference or distance, and a coordinate value of the first coordinate value or a point located between the first coordinate value and the second coordinate value when the difference or the distance is equal to or less than a predetermined value. Is provided as a coordinate determination unit, which determines the positioning coordinates of the base station.
  • the positioning method is a positioning method for positioning at least the coordinates of the base station used for the relative positioning of the drone, and at least two reference points different from each other are set respectively.
  • a coordinate acquisition step for calculating the first coordinate value and the second coordinate value indicating the position of the base station
  • a comparison step for calculating the difference or distance between the first coordinate value and the second coordinate value
  • a comparison step for calculating the difference or distance between the first coordinate value and the second coordinate value
  • a comparison step When the difference or the distance is equal to or less than a predetermined value, the first coordinate value or the coordinate value of a point located between the first coordinate value and the second coordinate value is determined as the positioning coordinate of the base station. Includes a coordinate determination step.
  • the surveying instrument is a surveying instrument for positioning the position coordinates of the target area, and the surveying instrument is based on at least two reference points different from each other.
  • the coordinate acquisition unit that calculates the first coordinate value and the second coordinate value indicating the position of the above
  • the comparison unit that calculates the difference or distance between the first coordinate value and the second coordinate value, and the difference or the distance are When it is equal to or less than a predetermined value, the coordinate determination unit and the coordinate determination unit that determine the first coordinate value or the coordinate value of a point located between the first coordinate value and the second coordinate value as the positioning coordinates of the surveying instrument. , Equipped with.
  • the drone according to still another viewpoint of the present invention is a drone that positions its own position coordinates with reference to the coordinates of a reference point, and uses at least two different reference points as a reference.
  • the coordinate acquisition unit that calculates the first coordinate value and the second coordinate value indicating the position of the drone
  • the comparison unit that calculates the difference or distance between the first coordinate value and the second coordinate value, and the difference or When the distance is equal to or less than a predetermined value, the first coordinate value or the coordinate value of a point located between the first coordinate value and the second coordinate value is determined as the positioning coordinate of the drone. It has a department.
  • the positioning system is a positioning system that positions at least the coordinates of the base station used for relative positioning of the drone, and radio waves from at least two satellites different from each other.
  • a coordinate acquisition unit that calculates the first coordinate value and the second coordinate value indicating the position of the base station, and a comparison unit that calculates the difference or distance between the first coordinate value and the second coordinate value.
  • the difference or the distance is equal to or less than a predetermined value
  • the first coordinate value or the coordinate value of a point located between the first coordinate value and the second coordinate value is used as the positioning coordinate of the base station. It is provided with a coordinate fixing unit for fixing.
  • the comparison unit When the difference exceeds a predetermined value, the comparison unit includes a third coordinate value calculated based on a radio wave from a third satellite different from the two satellites, the first coordinate value, and the second coordinate. The difference from at least one of the values is calculated, and the coordinate determination unit extracts a pair of coordinate values whose difference is equal to or less than a predetermined value, and obtains the coordinate value of any of the coordinate values forming the pair or the pair.
  • the coordinate value of the intermediate point of the coordinate values to be formed, or the coordinate value of an arbitrary point between the coordinate values forming the pair may be determined as the positioning coordinate.
  • the coordinate acquisition unit further includes a satellite determination unit that determines the satellite referred to in the calculation of the base station coordinates, and the satellite determination unit is a satellite located within a predetermined range from the coordinates of the base station obtained by independent positioning. May be determined as the satellite referred to in the calculation.
  • the positioning system is a positioning system that positions at least the coordinates of the base station used for relative positioning of the drone, and radio waves from at least three satellites different from each other.
  • a comparison that calculates the sum of the differences between the plurality of coordinate values, the sum of the distances, or the average value of the coordinate acquisition unit that calculates a plurality of coordinate values indicating the positions of the base stations with reference to.
  • the coordinate value of any of the multiple coordinate values, the intermediate point, or the coordinate value of any point in the area surrounded by the multiple coordinate values is provided as a coordinate determination unit, which determines the positioning coordinates of the base station.
  • the comparison unit is the sum of the differences of a plurality of coordinate values calculated by referring to radio waves from other satellites different from the plurality of satellites, the sum of the distances, or the sum of them.
  • the average value of the above is calculated, and the coordinate determination unit extracts a plurality of coordinate values whose values calculated by the comparison unit are equal to or less than a predetermined value, and the coordinate value of any of the plurality of coordinate values or the intermediate point.
  • the coordinate value or the coordinate value of an arbitrary point in the area surrounded by the plurality of coordinate values may be determined as the positioning coordinate.
  • the coordinate acquisition unit further includes a satellite determination unit that determines the satellite as a reference for calculating the base station coordinates, and the satellite determination unit is located within a predetermined range from the coordinates of the base station obtained by independent positioning.
  • the satellite to be used may be determined to be the satellite referred to in the calculation.
  • the drone according to still another aspect of the present invention is a drone that flies based on the positioning result of the positioning system that positions the coordinates of the base station used for relative positioning.
  • a coordinate acquisition unit that calculates a first coordinate value and a second coordinate value indicating the position of the base station by referring to radio waves from at least two satellites that are different from each other, and the first coordinate value and the second coordinate value.
  • a comparison unit that calculates the difference or distance between the two and the first coordinate value, or a point located between the first coordinate value and the second coordinate value when the difference or the distance is equal to or less than a predetermined value. It includes a coordinate determination unit that determines the coordinate values as the positioning coordinates of the base station.
  • the positioning method is a positioning method for positioning at least the coordinates of the base station used for relative positioning of the drone, and radio waves from at least two satellites different from each other.
  • a coordinate acquisition step for calculating the first coordinate value and the second coordinate value indicating the position of the base station, and a comparison step for calculating the difference or distance between the first coordinate value and the second coordinate value with reference to.
  • the difference or the distance is equal to or less than a predetermined value
  • the first coordinate value or the coordinate value of a point located between the first coordinate value and the second coordinate value is set as the positioning coordinate of the base station.
  • a coordinate determination step which is determined as.
  • the surveying instrument is a surveying instrument for positioning the position coordinates of the target area, and the surveying is performed with reference to radio waves from at least two satellites different from each other.
  • a coordinate acquisition unit that calculates the first coordinate value and the second coordinate value indicating the position of the machine
  • a comparison unit that calculates the difference or distance between the first coordinate value and the second coordinate value, and the difference or the distance.
  • the coordinate determination unit that determines the first coordinate value or the coordinate value of a point located between the first coordinate value and the second coordinate value as the positioning coordinate of the surveying instrument.
  • the drone is a drone that positions its own position coordinates with reference to radio waves from satellites, and receives radio waves from at least two satellites that are different from each other.
  • a coordinate acquisition unit that calculates the first coordinate value and the second coordinate value indicating the position of the drone
  • a comparison unit that calculates the difference or distance between the first coordinate value and the second coordinate value.
  • the difference or the distance is equal to or less than a predetermined value
  • the first coordinate value or the coordinate value of a point located between the first coordinate value and the second coordinate value is determined as the positioning coordinate of the drone.
  • a coordinate determination unit and so on.
  • the positioning accuracy of the coordinates of the base station can be improved.
  • the drone is regardless of the power means (electric power, prime mover, etc.) and the maneuvering method (wireless or wired, autonomous flight type, manual maneuvering type, etc.). It refers to all air vehicles with multiple rotor blades.
  • the rotor blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b are It is a means for flying the Drone 100, and is equipped with eight aircraft (four sets of two-stage rotor blades) in consideration of the balance between flight stability, aircraft size, and power consumption.
  • Each rotor 101 is arranged on all sides of the housing 110 by an arm protruding from the housing 110 of the drone 100.
  • the rotor blades 101-1a and 101-1b are on the left rear side in the traveling direction
  • the rotor blades 101-2a and 101-2b are on the left front side
  • the rotor blades 101-3a and 101-3b are on the right rear side
  • the rotor blades 101- are on the right front side.
  • 4a and 101-4b are arranged respectively.
  • the drone 100 has the traveling direction facing downward on the paper in FIG.
  • a grid-shaped propeller guard 115-1,115-2,115-3,115-4 forming a substantially cylindrical shape is provided on the outer circumference of each set of the rotor blade 101 to prevent the rotor blade 101 from interfering with foreign matter.
  • the radial members for supporting the propeller guards 115-1,115-2,115-3,115-4 are not horizontal but have a yagura-like structure. This is to encourage the member to buckle outside the rotor in the event of a collision and prevent it from interfering with the rotor.
  • Rod-shaped legs 107-1, 107-2, 107-3, 107-4 extend downward from the rotation axis of the rotor 101, respectively.
  • Motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are rotary blades 101-1a, 101-1b, 101-2a, 101- It is a means to rotate 2b, 101-3a, 101-3b, 101-4a, 101-4b (typically an electric motor, but it may also be a motor, etc.), and one machine is provided for one rotary blade. Has been done.
  • Motor 102 is an example of a thruster.
  • the upper and lower rotors (eg, 101-1a and 101-1b) in one set, and their corresponding motors (eg, 102-1a and 102-1b), are used for drone flight stability, etc.
  • the axes are on the same straight line and rotate in opposite directions.
  • Nozzles 103-1, 103-2, 103-3, 103-4 are means for spraying the sprayed material downward and are equipped with four nozzles.
  • the sprayed material generally refers to a liquid or powder sprayed on a field such as a pesticide, a herbicide, a liquid fertilizer, an insecticide, a seed, and water.
  • the tank 104 is a tank for storing the sprayed material, and is provided at a position close to the center of gravity of the drone 100 and at a position lower than the center of gravity from the viewpoint of weight balance.
  • the hose 105 is a means for connecting the tank 104 and each nozzle 103-1, 103-2, 103-3, 103-4, is made of a hard material, and may also serve to support the nozzle. ..
  • the pump 106 is a means for discharging the sprayed material from the nozzle.
  • FIG. 6 shows an overall conceptual diagram of the flight control system of the drone 100 according to the present invention.
  • This figure is a schematic view, and the scale is not accurate.
  • the drone 100, the actuator 401, the base station 404, and the server 405 are connected to each other via the mobile communication network 400.
  • These connections may be wireless communication by Wi-Fi instead of the mobile communication network 400, or may be partially or wholly connected by wire.
  • the components may have a configuration in which they are directly connected to each other in place of or in addition to the mobile communication network 400.
  • the drone 100 and the base station 404 communicate with the GNSS positioning satellite 410 such as GPS to acquire the coordinates of the drone 100 and the base station 404.
  • the GNSS positioning satellite 410 such as GPS to acquire the coordinates of the drone 100 and the base station 404.
  • the operator 401 transmits a command to the drone 100 by the operation of the user, and also displays information received from the drone 100 (for example, position, amount of sprayed material, battery level, camera image, etc.). It is a means and may be realized by a portable information device such as a general tablet terminal that runs a computer program.
  • the actuator 401 includes an input unit and a display unit as a user interface device.
  • the drone 100 according to the present invention is controlled to perform autonomous flight, but may be capable of manual operation during basic operations such as takeoff and return, and in an emergency.
  • an emergency operation device (not shown) having a function dedicated to emergency stop may be used.
  • the emergency operation device may be a dedicated device provided with a large emergency stop button or the like so that an emergency response can be taken quickly.
  • the system may include a small mobile terminal capable of displaying a part or all of the information displayed on the operating device 401, for example, a smart phone.
  • the small mobile terminal is connected to, for example, the base station 404, and can receive information and the like from the server 405 via the base station 404.
  • Field 403 is a rice field, field, etc. that is the target of spraying with the drone 100. In reality, the terrain of the field 403 is complicated, and the topographic map may not be available in advance, or the topographic map and the situation at the site may be inconsistent. Field 403 is usually adjacent to houses, hospitals, schools, other crop fields, roads, railroads, etc. In addition, intruders such as buildings and electric wires may exist in the field 403.
  • Base station 404 functions as an RTK-GNSS base station and can provide the exact location of the drone 100. Further, it may be a device that provides a master unit function of Wi-Fi communication. The base unit function of Wi-Fi communication and the base station of RTK-GNSS may be independent devices. Further, the base station 404 may be able to communicate with the server 405 by using a mobile communication system such as 3G, 4G, and LTE. The base station 404 and the server 405 constitute a farming cloud.
  • the base station 404 can acquire accurate coordinates by positioning relative to the reference point.
  • the reference point here is a so-called electronic reference point.
  • the electronic reference points are GNSS continuous observation points and are installed at intervals of about 20 km.
  • the relative positional relationship of a plurality of electronic reference points can be obtained with an accuracy of one millionth by performing relative positioning. This accuracy means that the relative positional relationship between two adjacent electronic reference points can be obtained with an error of 2 cm.
  • the relative positional relationship between the base station 404 and the electronic reference point can be obtained with an accuracy of one millionth.
  • relative positioning is a method of observing four or more same GNSS satellites at the same time at two points, measuring the time difference when the radio signal from the GNSS satellite reaches two points, and obtaining the relative positional relationship.
  • the position of the drone 100 can be provided with an error of, for example, several cm.
  • the coordinates of the base station 404 are calculated based on at least one coordinate of the reference points D1, D2, and D3 arranged in the periphery.
  • Reference points are set at intervals of, for example, about 20 km.
  • the reference points include electronic reference points that are set up and managed by public institutions such as the Geospatial Information Authority of Japan in Japan and provide information on absolute position coordinates, as well as private reference points that are set up and managed by private companies. Is done.
  • the reference point is a virtual reference point (virtual reference point) generated by a technique that creates a state as if there is a reference point in the immediate vicinity of the surveying site from the observation data of a plurality of electronic reference points. May be good.
  • the server 405 is typically a group of computers operated on a cloud service and related software, and may be wirelessly connected to the actuator 401 by a mobile phone line or the like.
  • the server 405 may be configured by a hardware device.
  • the server 405 may analyze the image of the field 403 taken by the drone 100, grasp the growing condition of the crop, and perform a process for determining the flight route.
  • the topographical information of the stored field 403 may be provided to the drone 100.
  • the history of the flight and captured images of the drone 100 may be accumulated and various analysis processes may be performed.
  • the small mobile terminal is, for example, a smart phone.
  • information on the expected operation of the drone 100 more specifically, the scheduled time when the drone 100 will return to the departure / arrival point 406, the content of the work to be performed by the user at the time of return, etc. Information is displayed as appropriate. Further, the operation of the drone 100 may be changed based on the input from the small mobile terminal.
  • the drone 100 takes off from the departure / arrival point outside the field 403 and returns to the departure / arrival point after spraying the sprayed material on the field 403 or when it becomes necessary to replenish or charge the sprayed material.
  • the flight route (invasion route) from the departure / arrival point to the target field 403 may be stored in advance on the server 405 or the like, or may be input by the user before the start of takeoff.
  • the departure / arrival point may be a virtual point defined by the coordinates stored in the drone 100, or may have a physical departure / arrival point.
  • FIG. 7 shows a block diagram showing a control function of an embodiment of the spraying drone according to the present invention.
  • the flight controller 501 is a component that controls the entire drone, and may be an embedded computer including a CPU, memory, related software, and the like.
  • the flight controller 501 uses motors 102-1a and 102-1b via control means such as ESC (Electronic Speed Control) based on the input information received from the controller 401 and the input information obtained from various sensors described later. , 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b to control the flight of the drone 100.
  • ESC Electronic Speed Control
  • the actual rotation speeds of the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b are fed back to the flight controller 501, and normal rotation is performed. It is configured so that it can be monitored.
  • the rotary blade 101 may be provided with an optical sensor or the like so that the rotation of the rotary blade 101 is fed back to the flight controller 501.
  • the software used by the flight controller 501 can be rewritten through a storage medium for function expansion / change, problem correction, etc., or through communication means such as Wi-Fi communication or USB. In this case, protection is performed by encryption, checksum, electronic signature, virus check software, etc. so that rewriting by unauthorized software is not performed.
  • a part of the calculation process used by the flight controller 501 for control may be executed by another computer located on the controller 401, the server 405, or somewhere else. Due to the high importance of the flight controller 501, some or all of its components may be duplicated.
  • the flight controller 501 communicates with the actuator 401 via the communication device 530 and further via the mobile communication network 400, receives necessary commands from the actuator 401, and transmits necessary information to the actuator 401. Can be sent. In this case, the communication may be encrypted so as to prevent fraudulent acts such as interception, spoofing, and device hijacking.
  • the base station 404 also has the function of an RTK-GNSS base station in addition to the communication function via the mobile communication network 400. By combining the signal of the RTK base station 404 and the signal from the positioning satellite 410 such as GPS, the flight controller 501 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Flight controllers 501 are so important that they may be duplicated and multiplexed, and each redundant flight controller 501 should use a different satellite to handle the failure of a particular GPS satellite. It may be controlled.
  • the 6-axis gyro sensor 505 is a means for measuring the acceleration of the drone body in three directions orthogonal to each other, and further, a means for calculating the velocity by integrating the acceleration.
  • the 6-axis gyro sensor 505 is a means for measuring the change in the attitude angle of the drone aircraft in the above-mentioned three directions, that is, the angular velocity.
  • the geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring the geomagnetism.
  • the barometric pressure sensor 507 is a means for measuring barometric pressure, and can also indirectly measure the altitude of the drone.
  • the laser sensor 508 is a means for measuring the distance between the drone body and the ground surface by utilizing the reflection of the laser light, and may be an IR (infrared) laser.
  • the sonar 509 is a means for measuring the distance between the drone aircraft and the ground surface by utilizing the reflection of sound waves such as ultrasonic waves. These sensors may be selected according to the cost target and performance requirements of the drone. In addition, a gyro sensor (angular velocity sensor) for measuring the inclination of the airframe, a wind power sensor for measuring wind power, and the like may be added. Further, these sensors may be duplicated or multiplexed.
  • the flight controller 501 may use only one of them, and if it fails, it may switch to an alternative sensor for use. Alternatively, a plurality of sensors may be used at the same time, and if the measurement results do not match, it may be considered that a failure has occurred.
  • the flow rate sensor 510 is a means for measuring the flow rate of the sprayed material, and is provided at a plurality of locations on the path from the tank 104 to the nozzle 103.
  • the liquid drainage sensor 511 is a sensor that detects that the amount of sprayed material has fallen below a predetermined amount.
  • the growth diagnosis camera 512a is a means for photographing the field 403 and acquiring data for the growth diagnosis.
  • the growth diagnostic camera 512a is, for example, a multispectral camera and receives a plurality of light rays having different wavelengths from each other.
  • the plurality of light rays are, for example, red light (wavelength of about 650 nm) and near-infrared light (wavelength of about 774 nm).
  • the growth diagnosis camera 512a may be a camera that receives visible light.
  • the pathological diagnosis camera 512b is a means for photographing the crops growing in the field 403 and acquiring the data for the pathological diagnosis.
  • the pathological diagnosis camera 512b is, for example, a red light camera.
  • the red light camera is a camera that detects the amount of light in the frequency band corresponding to the absorption spectrum of chlorophyll contained in the plant, and detects, for example, the amount of light in the band around 650 nm.
  • the pathological diagnosis camera 512b may detect the amount of light in the frequency bands of red light and near infrared light.
  • the pathological diagnosis camera 512b may include both a red light camera and a visible light camera such as an RGB camera that detects the amount of light having at least three wavelengths in the visible light band.
  • the pathological diagnosis camera 512b may be a multispectral camera, and may detect the amount of light in the band having a wavelength of 650 nm to 680 nm.
  • the growth diagnosis camera 512a and the pathology diagnosis camera 512b may be realized by one hardware configuration.
  • the obstacle detection camera 513 is a camera for detecting a drone intruder, and since the image characteristics and the orientation of the lens are different from the growth diagnosis camera 512a and the pathology diagnosis camera 512b, what are the growth diagnosis camera 512a and the pathology diagnosis camera 512b? Another device.
  • the switch 514 is a means for the user 402 of the drone 100 to make various settings.
  • the obstacle contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard part, has come into contact with an intruder such as an electric wire, a building, a human body, a standing tree, a bird, or another drone. ..
  • the obstacle contact sensor 515 may be replaced by a 6-axis gyro sensor 505.
  • the cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the cover for internal maintenance are in the open state.
  • the inlet sensor 517 is a sensor that detects that the inlet of the tank 104 is
  • sensors may be selected according to the cost target and performance requirements of the drone, and may be duplicated / multiplexed.
  • a sensor may be provided at the base station 404, the actuator 401, or some other place outside the drone 100, and the read information may be transmitted to the drone.
  • a wind power sensor may be provided in the base station 404 to transmit information on the wind power and the wind direction to the drone 100 via the mobile communication network 400 or Wi-Fi communication.
  • the flight controller 501 sends a control signal to the pump 106 to adjust the discharge amount and stop the discharge.
  • the current status of the pump 106 (for example, the number of revolutions) is fed back to the flight controller 501.
  • the LED107 is a display means for notifying the drone operator of the drone status.
  • Display means such as a liquid crystal display may be used in place of or in addition to the LED.
  • the buzzer is an output means for notifying the state of the drone (particularly the error state) by an audio signal.
  • the communication device 530 is connected to a mobile communication network 400 such as 3G, 4G, and LTE, and can communicate with a farming cloud composed of a base station and a server and an operator via the mobile communication network 400. Will be done.
  • other wireless communication means such as Wi-Fi, infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection. You may use it.
  • the speaker 520 is an output means for notifying the state of the drone (particularly the error state) by means of recorded human voice, synthetic voice, or the like. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 in flight. In such cases, voice communication is effective.
  • the warning light 521 is a display means such as a strobe light for notifying the state of the drone (particularly the error state). These input / output means may be selected according to the cost target and performance requirements of the drone, and may be duplicated or multiplexed.
  • the positioning system 1000 is a system including, for example, a drone 100, a user interface device 200, a surveying instrument 300, and a positioning device 600, and these are connected to each other so as to be able to communicate with each other through a network NW.
  • the positioning device 600 may have a hardware configuration or may be configured on the server 405.
  • the drone 100, the user interface device 200, the surveying instrument 300, and the positioning device 600 may be connected to each other wirelessly, or may be partially or wholly connected by wire.
  • the configuration shown in FIG. 8 is an example, and one component may include another component, and the functional unit of each component may be included in another component. ..
  • some or all of the functions of the positioning device 600 may be mounted on the drone 100.
  • the user interface device 200 may be provided with an input unit and a display unit by an operator, and may be realized by the function of the actuator 401. Further, the user interface device 200 may be a personal computer, or information may be input and displayed in the UI on the Web via a Web browser installed in the personal computer.
  • ⁇ Functional part of the drone Drone 100 is equipped with an arithmetic unit such as a CPU (Central Processing Unit) for executing information processing and a storage device such as RAM (Random Access Memory) and ROM (Read Only Memory). It has at least a flight control unit 1001 and a spray control unit 1002 as resources.
  • arithmetic unit such as a CPU (Central Processing Unit) for executing information processing
  • a storage device such as RAM (Random Access Memory) and ROM (Read Only Memory). It has at least a flight control unit 1001 and a spray control unit 1002 as resources.
  • the flight control unit 1001 is a functional unit that operates the motor 102 and controls the flight and takeoff and landing of the drone 100.
  • the flight control unit 1001 is realized by, for example, a flight controller 501, and controls the flight altitude, flight speed, and flight route to fly the drone 100 over the field.
  • the spray control unit 1002 is a functional unit that operates the pump 106 and controls the spraying of the sprayed material from the nozzles 103-1, 103-2, 103-3, 103-4.
  • the spray control unit 1002 is realized by, for example, a flight controller 501.
  • the surveying instrument 300 is a device that functions as an observation point for RTK-GNSS, communicates with the base station 404 or the electronic reference point, and uses the base station 404 or the electronic reference point as a reference for the field.
  • the coordinate information of 403 can be surveyed.
  • the surveying instrument 300 is a small device that can be held and walked by the user, for example, a rod-shaped device.
  • the surveying instrument 300 may be a wand-like device having a length sufficient for the user to stand upright and hold the upper part with the lower end touching the ground.
  • the number of surveying instruments 300 that can be used to read the coordinate information of a field may be one or a plurality.
  • a plurality of users can each hold the surveying instrument 300 and walk in the field, so that the surveying work can be performed in a short time. Can be completed with.
  • the surveying instrument 300 can measure information on obstacles in the field. Obstacles include walls, slopes, utility poles, power lines, etc. where the drone 100 may collide, and various objects that do not require chemical spraying or monitoring.
  • the surveying instrument 300 includes an input unit 301, a coordinate detection unit 302, and a transmission unit 303.
  • the input unit 301 has a configuration provided in the main body of the surveying instrument 300, and is, for example, a button that accepts a user's press. The user presses the button of the input unit 301 when measuring the three-dimensional coordinates of the lower end of the surveying instrument 300.
  • the input unit 301 may be configured to be able to input by distinguishing whether the input information is the coordinates related to the outer circumference of the field or the coordinates of the outer circumference of the obstacle. Further, the input unit 301 may be configured so that the coordinates of the outer circumference of the obstacle can be input in association with the type of the obstacle.
  • the coordinate detection unit 302 is a functional unit that can appropriately communicate with the reference point information providing system or the base station 404 to detect the three-dimensional coordinates of the lower end of the surveying instrument 300 by relative positioning with the base station 404.
  • the transmission unit 303 uses the three-dimensional coordinates of the lower end of the surveying instrument 300 at the time of the input and the identification information (ID) of the electronic reference point used as the reference for the measurement of the three-dimensional coordinates. It is a functional unit that transmits to the flight management device that generates and manages the flight route of the drone 100 in the target area including the operator 401 or the field via the network NW. The transmission unit 303 transmits the three-dimensional coordinates together with the pointed time information (or order).
  • the user moves the field with the surveying instrument 300. First, the three-dimensional coordinates of the field are acquired. The user points by the input unit 301 at the end point or the end side of the field. Next, the user performs pointing by the input unit 301 at the end point or the end side of the obstacle.
  • 3D coordinates on the edge or edge of the field (3D coordinates on the outer circumference of the field) and 3D coordinates on the edge or edge of the obstacle (3D coordinates of the obstacle) are flight management. Received by the device. Further, the three-dimensional coordinates to be pointed may be received by the receiving unit of the user interface device 200 and displayed by the display unit included in the user interface device 200.
  • the positioning device 600 includes arithmetic units such as a CPU (Central Processing Unit) for executing information processing, RAM (Random Access Memory), ROM (Read Only Memory), etc. It has at least a reference point determination unit 610, a coordinate acquisition unit 620, a comparison unit 630, and a coordinate determination unit 640 as software resources.
  • the positioning device 600 is a device for positioning the coordinate values of the base station 404.
  • the positioning device 600 may be mounted in the base station 404, or may be mounted in another hardware connected to the base station via a network.
  • the reference point determination unit 610 is a functional unit that determines the reference point used to acquire the coordinate values of the base station 404.
  • the reference point determination unit 610 selects at least two reference points that are different from each other.
  • the reference point determination unit 610 may select a reference point close to the base station coordinates obtained by independent positioning.
  • the reference point determination unit 610 may select, for example, the reference point closest to the base station coordinates obtained by independent positioning and the reference point closest to the reference point.
  • independent positioning the distance is calculated based on the time required from the transmission of radio waves from the satellite to the arrival at the receiver by receiving the satellite information transmitted from the GNSS satellite with a single antenna. It is a positioning method to be performed.
  • the reference point determination unit 610 may determine an arbitrary reference point as a reference point for acquiring coordinate values, regardless of independent positioning.
  • the reference point determination unit 610 may acquire the approximate position of the base station 404 via a user interface device such as the actuator 401, and determine the reference point based on the approximate position.
  • the position of the field owned by the manager of the positioning system for example, the address display or the like may be associated with the system in advance, and a relatively close reference point may be determined with reference to the position of the field.
  • the coordinate acquisition unit 620 is a functional unit that acquires coordinate values indicating the position of the base station 404 with reference to the reference point determined by the reference point determination unit 610.
  • the coordinate acquisition unit 620 calculates the number of coordinate values corresponding to the number of determined reference points.
  • the comparison unit 630 is a functional unit that compares the first coordinate value obtained with reference to the first reference point acquired by the coordinate acquisition unit 620 and the second coordinate value obtained with reference to the second reference point. Specifically, the comparison unit 630 calculates the difference or distance between the first coordinate value and the second coordinate value. When three or more reference points are used, the comparison unit calculates the sum of the differences between the coordinates of the plurality of points, the sum of the distances, or the average value of the distances.
  • the coordinate determination unit 640 is a functional unit that determines the positioning coordinates of the base station 404 based on the result of comparison by the comparison unit 630. When the difference or distance (or the sum of the differences of three or more coordinate values, or the sum of the distances, or the average value of the distances) is equal to or less than a predetermined value, the coordinate determination unit 640 sets the first coordinate value as the base station 404. It is the positioning result of the coordinates of. If the difference or distance between the first and second coordinate values (or the sum of the differences of three or more coordinate values, or the sum of the distances, or the average value of the distances) is small, the occurrence and measurement of multipath due to reflection.
  • the coordinate determination unit 640 uses the difference or distance (or the sum of the differences of three or more coordinate values, or the sum of the distances, or the average of the distances).
  • the coordinate value located between the first coordinate value and the second coordinate value can be used as the positioning result of the coordinates of the base station 404.
  • two reference points for example, it may be an intermediate point between the first coordinate value and the second coordinate value.
  • three or more reference points for example, it should be any coordinate value of one of the intermediate points of multiple coordinate values, an intermediate point of multiple coordinate values, or an arbitrary point in the area surrounded by multiple coordinate values. Can be done.
  • the coordinate determination unit 640 does not determine the coordinates when the difference between the first coordinate value and the second coordinate value calculated by the comparison unit 630 is larger than the predetermined value. This is because it is highly probable that at least one of the first coordinate value and the second coordinate value deviates from the accurate coordinate value due to an error or disturbance, but it is not possible to determine which one deviates.
  • the coordinate determination unit 640 When the difference between the first coordinate value and the second coordinate value is larger than the predetermined value, the coordinate determination unit 640 causes the reference point determination unit 610 to acquire the first reference point and the third reference point different from the second reference point.
  • the comparison unit 630 calculates the difference between the third coordinate value obtained by the third reference point and the first coordinate value and the second coordinate value, respectively.
  • the coordinate determination unit 640 identifies a pair of coordinate values whose difference is equal to or less than a predetermined value, and determines any one of the coordinate values forming the pair as the positioning coordinates of the base station coordinates.
  • FIG. 9 is a schematic view showing the situation. As shown in the figure, the first, second and third reference points D1, D2 and D3 are arranged close to each other in this order around the base station 404.
  • the reference point determination unit 610 determines the first reference point D1 and the second reference point D2 (S1).
  • the coordinate acquisition unit 620 acquires the first coordinate value of the base station 404 with reference to the first reference point D1 and acquires the second coordinate value of the base station 404 with reference to the second reference point D2 (S2). ).
  • the virtual base station 404-D1 located at the first coordinate value and the virtual base station 404-D2 located at the second coordinate value are shown for convenience.
  • the comparison unit 630 calculates the difference between the first coordinate value D1 and the second coordinate value D2 (S3). It is determined whether or not the difference is equal to or less than the predetermined value (S4), and if it is equal to or less than the predetermined value, the first coordinate value D1 or the second coordinate value D2 is determined as the coordinates of the base station 404 (S7). When the difference exceeds a predetermined value in step S4, it is determined with reference to another reference point, that is, another third reference point D3 (S5).
  • the coordinate acquisition unit 620 calculates the coordinates of the base station 404 with reference to the third reference point D3, and acquires the third coordinate value (S6). In FIG.
  • the virtual base station 404-D3 located at the third coordinate value is shown for convenience.
  • the comparison unit 630 calculates the difference or distance between the first coordinate value and the third coordinate value, and the difference or distance between the second coordinate value and the third coordinate value, respectively. Further, the comparison unit 630 calculates the sum of the differences between the coordinates, the sum of the distances, or the average value of the distances.
  • the coordinate determination unit 640 determines the coordinates of the base station 404 based on the difference or distance between the first coordinate value and the third coordinate value, and the difference or distance between the second coordinate value and the third coordinate value. Specifically, when the difference or distance between the first coordinate value and the third coordinate value is equal to or less than a predetermined value, the first coordinate value is set as the coordinate of the base station 404. When the difference or distance between the second coordinate value and the third coordinate value is equal to or less than a predetermined value, the second coordinate value is set as the coordinate of the base station 404.
  • the number of reference points used to acquire the coordinate values referred to by the coordinate determination unit 640 may be four or more, and the coordinate values such that the difference from another coordinate value is equal to or less than a predetermined value are set. Steps S3 to S6 may be repeated until it can be obtained. Further, when the sum of the differences between the three or more coordinate values, the sum of the distances, or the average value of the distances is equal to or less than a predetermined value, the coordinates located between the plurality of coordinate values or the plurality of coordinate values.
  • the value, for example, the midpoint may be the coordinates of the base station 404. Any point in the area surrounded by three or more coordinate values may be the coordinates of the base station 404.
  • step S5 is repeatedly executed until the difference becomes equal to or less than a predetermined value, and instead of the configuration in which new reference points are sequentially selected, three or more reference points are selected in steps S1 and S2 to acquire coordinate values.
  • Step S3 may be repeatedly executed to sequentially calculate the difference, thereby determining the positioning coordinates.
  • the positioning system 1000 may be used to position the surveying instrument 300 or the drone 100.
  • the positioning of the drone 100 is applicable to the estimation of the initial position performed at the start of the drone 100 before flight.
  • the reference point determination unit 610 of the positioning device 600 determines the reference point used to acquire the coordinate values of the surveying instrument 300 or the drone 100.
  • Positioning system 2 The positioning system 2000 of the second embodiment according to the present invention will be described with reference to FIG. 11, focusing on a portion different from the above-described first embodiment.
  • the positioning system 2000 positions at least the coordinates of the base station used for relative positioning of the drone based on radio waves from at least two different satellites. In the figure, the same reference numerals are given to the same configurations as those in the first embodiment.
  • the positioning system 2000 includes the positioning device 601.
  • the positioning device 601 has each functional block of a satellite determination unit 611, a coordinate acquisition unit 621, a comparison unit 631, and a coordinate determination unit 640.
  • the satellite determination unit 611 determines the reference point used to acquire the coordinate value of the reference point.
  • the satellite determination unit 611 may select at least two satellites that are different from each other, and for example, select a satellite that is close to the base station coordinates obtained by independent positioning.
  • the coordinate acquisition unit 621 acquires a coordinate value indicating the position of the base station 404 with reference to the radio wave from the satellite determined by the satellite determination unit 611.
  • the coordinate acquisition unit 621 calculates the coordinate values of the number corresponding to the determined number of satellites.
  • the comparison unit 631 is a functional unit that compares the first coordinate value obtained with reference to the first satellite acquired by the coordinate acquisition unit 621 and the second coordinate value obtained with reference to the second satellite. Specifically, the comparison unit 630 calculates the difference or distance between the first coordinate value and the second coordinate value. When using three or more satellites, the comparison unit calculates the sum of the differences between the coordinates obtained from the plurality of satellites, the sum of the distances, or the average value of the distances.
  • the positioning system 2000 may be used to position the surveying instrument 300 or the drone 100.
  • the positioning of the drone 100 is applicable to the estimation of the initial position performed at the start of the drone 100 before flight.
  • the satellite determination unit 611 of the positioning device 601 determines the satellite to be used for acquiring the coordinate values of the surveying instrument 300 or the drone 100.
  • the coordinates of the base station can be accurately positioned.
  • the drone since the drone flies according to the amount of electricity stored in the battery, it is necessary to move at a higher speed than the land-based agricultural machine in order to complete the work in the field with a small number of charging times. Therefore, highly accurate positioning with high real-time performance is important for drone flight.
  • the position of the base station of RTK-GNSS can be positioned with high accuracy, precision agriculture by an agricultural drone can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

【課題】 基地局の座標の測位精度を向上させる。 【解決手段】少なくともドローン100の相対測位に用いる基地局404の座標を測位する測位システム1000であって、互いに異なる少なくとも2個の基準点D1、D2をそれぞれ基準として、基地局の位置を示す第1座標値および第2座標値を算出する座標取得部620と、第1座標値と第2座標値との差分又は距離を計算する比較部630と、差分が所定値以下であるとき、第1座標値、もしくは前記第1座標値と前記第2座標値の間に位置する点の座標値を、基地局の測位座標として確定する、座標確定部640と、を備える。

Description

測位システム、ドローン、測量機、および測位方法
 本願発明は、測位システム、ドローン、測量機および測位方法に関する。
 一般にドローンと呼ばれる小型ヘリコプター(マルチコプター)の応用が進んでいる。その重要な応用分野の一つとして農地(圃場)への農薬や液肥などの散布が挙げられる(たとえば、特許文献1)。比較的狭い農地においては、有人の飛行機やヘリコプタではなくドローンの使用が適しているケースが多い。
 ドローンを使用して、圃場への散布作業を行う場合、電子基準点の座標を用いて基地局の座標値を測位し、当該基地局との相対測位によりドローンの位置を特定する。ここで、基地局の座標値を正確に測位するシステムが必要とされている。
 特許文献2には、GPS衛星からのGPS情報および複数の仮想基準点の情報に基づいて移動局の相対測位を行うシステムが記載されている。特許文献3には、基準局より提供される補正情報を用いて観測局の位置を測位する際に、補足情報として修正精密暦を用いる測位方法であって、観測局の位置を第1測位解演算部および第2測位解演算部により求め、これらを比較することが記載されている。特許文献4には、整数値バイアスを算出して基準局を切り替える測位システムが記載されている。特許文献5には、4つの電子基準点を選択して高精度な測位を行う測位装置が記載されている。
特開2001-120151号公報 特開2005-172738号公報 特開2016-57239号公報 特開2017-133896号公報 特開2018-124296号公報
 基地局の座標の測位精度を向上させることができる、測位システムを提供する。
 上記目的を達成するため、本発明の一の観点に係る測位システムは、少なくともドローンの相対測位に用いる基地局の座標を測位する測位システムであって、互いに異なる少なくとも2個の基準点をそれぞれ基準として、前記基地局の位置を示す第1座標値および第2座標値を算出する座標取得部と、前記第1座標値と前記第2座標値との差分又は距離を計算する比較部と、前記差分又は前記距離が所定値以下であるとき、前記第1座標値、もしくは前記第1座標値と前記第2座標値の間に位置する点の座標値を、前記基地局の測位座標として確定する、座標確定部と、を備える。
 前記比較部は、前記差分が所定値を超えるとき、前記2個の基準点とは異なる第3基準点を基準として算出される第3座標値と、前記第1座標値および前記第2座標値の少なくともいずれかとの差分を計算し、前記座標確定部は、当該差分が所定値以下となる座標値の対を抽出し、当該対をなす座標値のいずれかの座標値、もしくは当該対をなす座標値の中間点の座標値、もしくは当該対をなす座標値の間の任意の点の座標値を前記測位座標として確定するものとしてもよい。
 前記座標取得部が前記基地局座標の算出の基準とする前記基準点を決定する基準点決定部をさらに備え、前記基準点決定部は、単独測位で求めた前記基地局の座標から所定範囲内に位置する基準点を、前記算出の基準に決定するものとしてもよい。
 上記目的を達成するため、本発明の別の観点に係る測位システムは、少なくともドローンの相対測位に用いる基地局の座標を測位する測位システムであって、互いに異なる少なくとも3個の基準点をそれぞれ基準として、前記基地局の位置を示す複数個の座標値を算出する座標取得部と、前記複数個の座標値の差分の総和、又は距離の総和、又はそれらの平均値を計算する比較部と、前記比較部で計算した値が所定値以下であるとき、前記複数座標値のいずれかの座標値、または中間点、または複数座標値で囲まれたエリア内の任意の点の座標値を、前記基地局の測位座標として確定する、座標確定部と、を備える。
 前記比較部は、前記差分が所定値を超えるとき、前記複数の基準点とは異なる他の複数基準点を基準として算出される複数の座標値の差分の総和、又は距離の総和、又はそれらの平均値を計算し、前記座標確定部は、前記比較部が算出した値が所定値以下となる複数の座標値を抽出し、当該複数の座標値のいずれかの座標値、又は中間点の座標値、又は当該複数の座標値により囲まれるエリア内の任意の点の座標値を前記測位座標として確定するものとしてもよい。
 前記座標取得部が前記基地局座標の算出の基準とする前記基準点を決定する基準点決定部をさらに備え、前記基準点決定部は、単独測位で求めた前記基地局の座標から所定の範囲内に位置する基準点を、前記算出の基準に決定するものとしてもよい。
 上記目的を達成するため、本発明のさらに別の観点に係るドローンは、相対測位に用いる基地局の座標を測位する測位システムの測位結果に基づいて飛行するドローンであって、前記測位システムは、互いに異なる少なくとも2個の基準点をそれぞれ基準として、前記基地局の位置を示す第1座標値および第2座標値を算出する座標取得部と、前記第1座標値と前記第2座標値との差分又は距離を計算する比較部と、前記差分又は前記距離が所定値以下であるとき、前記第1座標値、もしくは前記第1座標値と前記第2座標値の間に位置する点の座標値を、前記基地局の測位座標として確定する、座標確定部と、を備える。
 上記目的を達成するため、本発明のさらに別の観点に係る測位方法は、少なくともドローンの相対測位に用いる基地局の座標を測位する測位方法であって、互いに異なる少なくとも2個の基準点をそれぞれ基準として、前記基地局の位置を示す第1座標値および第2座標値を算出する座標取得ステップと、前記第1座標値と前記第2座標値との差分又は距離を計算する比較ステップと、前記差分又は前記距離が所定値以下であるとき、前記第1座標値、もしくは前記第1座標値と前記第2座標値の間に位置する点の座標値を、前記基地局の測位座標として確定する、座標確定ステップと、を含む。
 上記目的を達成するため、本発明のさらに別の観点に係る測量機は、対象エリアの位置座標を測位する測量機であって、互いに異なる少なくとも2個の基準点をそれぞれ基準として、前記測量機の位置を示す第1座標値および第2座標値を算出する座標取得部と、前記第1座標値と前記第2座標値との差分又は距離を計算する比較部と、前記差分又は前記距離が所定値以下であるとき、前記第1座標値、もしくは前記第1座標値と前記第2座標値の間に位置する点の座標値を、前記測量機の測位座標として確定する、座標確定部と、を備える。
 上記目的を達成するため、本発明のさらに別の観点に係るドローンは、基準点の座標を基準として自己の位置座標を測位するドローンであって、互いに異なる少なくとも2個の基準点をそれぞれ基準として、前記ドローンの位置を示す第1座標値および第2座標値を算出する座標取得部と、前記第1座標値と前記第2座標値との差分又は距離を計算する比較部と、前記差分又は前記距離が所定値以下であるとき、前記第1座標値、もしくは前記第1座標値と前記第2座標値の間に位置する点の座標値を、前記ドローンの測位座標として確定する、座標確定部と、を備える。
 上記目的を達成するため、本発明のさらに別の観点に係る測位システムは、少なくともドローンの相対測位に用いる基地局の座標を測位する測位システムであって、互いに異なる少なくとも2個の衛星からの電波に基づいて、前記基地局の位置を示す第1座標値および第2座標値を算出する座標取得部と、前記第1座標値と前記第2座標値との差分又は距離を計算する比較部と、前記差分又は前記距離が所定値以下であるとき、前記第1座標値、もしくは前記第1座標値と前記第2座標値の間に位置する点の座標値を、前記基地局の測位座標として確定する、座標確定部と、を備える。
 前記比較部は、前記差分が所定値を超えるとき、前記2個の衛星とは異なる第3衛星からの電波に基づいて算出される第3座標値と、前記第1座標値および前記第2座標値の少なくともいずれかとの差分を計算し、前記座標確定部は、当該差分が所定値以下となる座標値の対を抽出し、当該対をなす座標値のいずれかの座標値、もしくは当該対をなす座標値の中間点の座標値、もしくは当該対をなす座標値の間の任意の点の座標値を前記測位座標として確定するものとしてもよい。
 前記座標取得部が前記基地局座標の算出に参照する前記衛星を決定する衛星決定部をさらに備え、前記衛星決定部は、単独測位で求めた前記基地局の座標から所定範囲内に位置する衛星を、前記算出に参照する衛星に決定するものとしてもよい。
 上記目的を達成するため、本発明のさらに別の観点に係る測位システムは、少なくともドローンの相対測位に用いる基地局の座標を測位する測位システムであって、互いに異なる少なくとも3個の衛星からの電波を参照して、前記基地局の位置を示す複数個の座標値を算出する座標取得部と、前記複数個の座標値の差分の総和、又は距離の総和、又はそれらの平均値を計算する比較部と、前記比較部で計算した値が所定値以下であるとき、前記複数座標値のいずれかの座標値、または中間点、または複数座標値で囲まれたエリア内の任意の点の座標値を、前記基地局の測位座標として確定する、座標確定部と、を備える。
 前記比較部は、前記差分が所定値を超えるとき、前記複数の衛星とは異なる他の衛星からの電波を参照して算出される複数の座標値の差分の総和、又は距離の総和、又はそれらの平均値を計算し、前記座標確定部は、前記比較部が算出した値が所定値以下となる複数の座標値を抽出し、当該複数の座標値のいずれかの座標値、又は中間点の座標値、又は当該複数の座標値により囲まれるエリア内の任意の点の座標値を前記測位座標として確定するものとしてもよい。
 前記座標取得部が前記基地局座標の算出の基準とする前記衛星を決定する衛星決定部をさらに備え、前記衛星決定部は、単独測位で求めた前記基地局の座標から所定の範囲内に位置する衛星を、前記算出に参照する衛星に決定するものとしてもよい。
 上記目的を達成するため、本発明のさらに別の観点に係るドローンは、相対測位に用いる基地局の座標を測位する測位システムの測位結果に基づいて飛行するドローンであって、前記測位システムは、互いに異なる少なくとも2個の衛星からの電波を参照して、前記基地局の位置を示す第1座標値および第2座標値を算出する座標取得部と、前記第1座標値と前記第2座標値との差分又は距離を計算する比較部と、前記差分又は前記距離が所定値以下であるとき、前記第1座標値、もしくは前記第1座標値と前記第2座標値の間に位置する点の座標値を、前記基地局の測位座標として確定する、座標確定部と、を備える。
 上記目的を達成するため、本発明のさらに別の観点に係る測位方法は、少なくともドローンの相対測位に用いる基地局の座標を測位する測位方法であって、互いに異なる少なくとも2個の衛星からの電波を参照して、前記基地局の位置を示す第1座標値および第2座標値を算出する座標取得ステップと、前記第1座標値と前記第2座標値との差分又は距離を計算する比較ステップと、前記差分又は前記距離が所定値以下であるとき、前記第1座標値、もしくは前記第1座標値と前記第2座標値の間に位置する点の座標値を、前記基地局の測位座標として確定する、座標確定ステップと、を含む。
 上記目的を達成するため、本発明のさらに別の観点に係る測量機は、対象エリアの位置座標を測位する測量機であって、互いに異なる少なくとも2個の衛星からの電波を参照として、前記測量機の位置を示す第1座標値および第2座標値を算出する座標取得部と、前記第1座標値と前記第2座標値との差分又は距離を計算する比較部と、前記差分又は前記距離が所定値以下であるとき、前記第1座標値、もしくは前記第1座標値と前記第2座標値の間に位置する点の座標値を、前記測量機の測位座標として確定する、座標確定部と、を備える。
 上記目的を達成するため、本発明のさらに別の観点に係るドローンは、衛星からの電波を参照して自己の位置座標を測位するドローンであって、互いに異なる少なくとも2個の衛星からの電波を参照して、前記ドローンの位置を示す第1座標値および第2座標値を算出する座標取得部と、前記第1座標値と前記第2座標値との差分又は距離を計算する比較部と、前記差分又は前記距離が所定値以下であるとき、前記第1座標値、もしくは前記第1座標値と前記第2座標値の間に位置する点の座標値を、前記ドローンの測位座標として確定する、座標確定部と、を備える。
 基地局の座標の測位精度を向上させることができる。
本願発明に係る測位システムに含まれるドローンの平面図である。 上記ドローンの正面図である。 上記ドローンの右側面図である。 上記ドローンの背面図である。 上記ドローンの斜視図である。 上記ドローンの飛行制御システムの全体概念図である。 上記ドローンが有する機能ブロック図である。 上記測位システムが有するドローン、基地局および測位装置の機能ブロック図である。 上記測位システムが上記基地局の座標を測位する様子を示す模式図である。 上記測位システムが上記基地局の座標を測位する流れを示すフローチャートである。 本願発明に係る第2実施形態に係る測位システムの機能ブロック図である。
 以下、図を参照しながら、本願発明を実施するための形態について説明する。図はすべて例示である。以下の詳細な説明では、説明のために、開示された実施形態の完全な理解を促すために、ある特定の詳細について述べられている。しかしながら、実施形態は、これらの特定の詳細に限られない。また、図面を単純化するために、周知の構造および装置については概略的に示されている。
 まず、本発明にかかるドローンの構成について説明する。本願明細書において、ドローンとは、動力手段(電力、原動機等)、操縦方式(無線であるか有線であるか、および、自律飛行型であるか手動操縦型であるか等)を問わず、複数の回転翼を有する飛行体全般を指すこととする。
 図1乃至図5に示すように、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4b(ローターとも呼ばれる)は、ドローン100を飛行させるための手段であり、飛行の安定性、機体サイズ、および、電力消費量のバランスを考慮し、8機(2段構成の回転翼が4セット)備えられている。各回転翼101は、ドローン100の筐体110からのび出たアームにより筐体110の四方に配置されている。すなわち、進行方向左後方に回転翼101-1a、101-1b、左前方に回転翼101-2a、101-2b、右後方に回転翼101-3a、101-3b、右前方に回転翼101-4a、101-4bがそれぞれ配置されている。なお、ドローン100は図1における紙面下向きを進行方向とする。
 回転翼101の各セットの外周には、略円筒形を形成する格子状のプロペラガード115-1,115-2,115-3,115-4が設けられ、回転翼101が異物と干渉しづらくなるようにしている。図2および図3に示されるように、プロペラガード115-1,115-2,115-3,115-4を支えるための放射状の部材は水平ではなくやぐら状の構造である。衝突時に当該部材が回転翼の外側に座屈することを促し、ローターと干渉することを防ぐためである。
 回転翼101の回転軸から下方には、それぞれ棒状の足107-1,107-2,107-3,107-4が伸び出ている。
 モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bは、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bを回転させる手段(典型的には電動機だが発動機等であってもよい)であり、一つの回転翼に対して1機設けられている。モーター102は、推進器の例である。1セット内の上下の回転翼(たとえば、101-1aと101-1b)、および、それらに対応するモーター(たとえば、102-1aと102-1b)は、ドローンの飛行の安定性等のために軸が同一直線上にあり、かつ、互いに反対方向に回転する。
 ノズル103-1、103-2、103-3、103-4は、散布物を下方に向けて散布するための手段であり4機備えられている。なお、本願明細書において、散布物とは、農薬、除草剤、液肥、殺虫剤、種、および、水などの圃場に散布される液体または粉体を一般的に指すこととする。
 タンク104は散布物を保管するためのタンクであり、重量バランスの観点からドローン100の重心に近い位置でかつ重心より低い位置に設けられている。ホース105は、タンク104と各ノズル103-1、103-2、103-3、103-4とを接続する手段であり、硬質の素材から成り、当該ノズルを支持する役割を兼ねていてもよい。ポンプ106は、散布物をノズルから吐出するための手段である。
 図6に本願発明に係るドローン100の飛行制御システムの全体概念図を示す。本図は模式図であって、縮尺は正確ではない。同図において、ドローン100、操作器401、基地局404およびサーバ405が移動体通信網400を介して互いに接続されている。これらの接続は、移動体通信網400に代えてWi-Fiによる無線通信を行ってもよいし、一部又は全部が有線接続されていてもよい。また、構成要素間において、移動体通信網400に代えて、又は加えて、直接接続する構成を有していてもよい。
 ドローン100および基地局404は、GPS等のGNSSの測位衛星410と通信を行い、ドローン100および基地局404の座標を取得する。ドローン100および基地局404が通信する測位衛星410は複数あってもよい。
 操作器401は、使用者の操作によりドローン100に指令を送信し、また、ドローン100から受信した情報(たとえば、位置、散布物の貯留量、電池残量、カメラ映像等)を表示するための手段であり、コンピューター・プログラムを稼働する一般的なタブレット端末等の携帯情報機器によって実現されてよい。操作器401は、ユーザインターフェース装置としての入力部および表示部を備える。本願発明に係るドローン100は自律飛行を行なうよう制御されるが、離陸や帰還などの基本操作時、および、緊急時にはマニュアル操作が行なえるようになっていてもよい。携帯情報機器に加えて、緊急停止専用の機能を有する非常用操作器(図示していない)を使用してもよい。非常用操作器は緊急時に迅速に対応が取れるよう大型の緊急停止ボタン等を備えた専用機器であってもよい。さらに、操作器401とは別に、操作器401に表示される情報の一部又は全部を表示可能な小型携帯端末、例えばスマートホンがシステムに含まれていてもよい。小型携帯端末は、例えば基地局404と接続されていて、基地局404を介してサーバ405からの情報等を受信可能である。
 圃場403は、ドローン100による散布の対象となる田圃や畑等である。実際には、圃場403の地形は複雑であり、事前に地形図が入手できない場合、あるいは、地形図と現場の状況が食い違っている場合がある。通常、圃場403は家屋、病院、学校、他の作物圃場、道路、鉄道等と隣接している。また、圃場403内に、建築物や電線等の侵入者が存在する場合もある。
 基地局404は、RTK-GNSS基地局として機能し、ドローン100の正確な位置を提供できるようになっている。また、Wi-Fi通信の親機機能等を提供する装置であってもよい。Wi-Fi通信の親機機能とRTK-GNSSの基地局が独立した装置であってもよい。また、基地局404は、3G、4G、およびLTE等の移動通信システムを用いて、サーバ405と互いに通信可能であってもよい。基地局404およびサーバ405は、営農クラウドを構成する。
 また、基地局404は、基準点との相対測位によって正確な座標を取得することができる。ここでの、基準点は、いわゆる電子基準点である。電子基準点は、GNSS連続観測点であり、約20km間隔で設置されている。複数の電子基準点の相対的な位置関係は、相対測位を行うことで、100万分の1の精度で得られる。この精度は、隣接する2つの電子基準点の相対的な位置関係を2cmの誤差で得られることを意味する。同様に、基地局404と電子基準点との相対的な位置関係も、100万分の1の精度で得られる。
 ここで、相対測位は、2点で、同時に4個以上の同じGNSS衛星を観測し、GNSS衛星からの電波信号が2点に到達する時間差を測定して、相対的な位置関係を求める方法である。この基地局404を用いて、RTK-GNSS測位を行うことで、ドローン100の位置を、例えば、数cmの誤差で提供できるようになっている。
 図6においては、基地局404の座標は、周辺に配置される基準点D1、D2およびD3の少なくとも1個の座標に基づいて算出される。基準点は、例えば約20km間隔で設置されている。なお、基準点は、例えば日本における国土地理院等の公的機関により設置および管理され、絶対位置座標の情報が提供される電子基準点の他、民間企業が設置および管理する私設基準点も含まれる。さらに、基準点は、複数の電子基準点の観測データから、測量現場のごく近傍にあたかも基準点があるかのような状態を作り出す技術により生成されるバーチャル基準点(仮想基準点)であってもよい。
 サーバ405は、典型的にはクラウドサービス上で運営されているコンピュータ群と関連ソフトウェアであり、操作器401と携帯電話回線等で無線接続されていてもよい。サーバ405は、ハードウェア装置により構成されていてもよい。サーバ405は、ドローン100が撮影した圃場403の画像を分析し、作物の生育状況を把握して、飛行ルートを決定するための処理を行ってよい。また、保存していた圃場403の地形情報等をドローン100に提供してよい。加えて、ドローン100の飛行および撮影映像の履歴を蓄積し、様々な分析処理を行ってもよい。
 小型携帯端末は例えばスマートホン等である。小型携帯端末の表示部には、ドローン100の運転に関し予測される動作の情報、より具体的にはドローン100が発着地点406に帰還する予定時刻や、帰還時に使用者が行うべき作業の内容等の情報が適宜表示される。また、小型携帯端末からの入力に基づいて、ドローン100の動作を変更してもよい。
 通常、ドローン100は圃場403の外部にある発着地点から離陸し、圃場403に散布物を散布した後に、あるいは、散布物の補充や充電等が必要になった時に発着地点に帰還する。発着地点から目的の圃場403に至るまでの飛行経路(侵入経路)は、サーバ405等で事前に保存されていてもよいし、使用者が離陸開始前に入力してもよい。発着地点は、ドローン100に記憶されている座標により規定される仮想の地点であってもよいし、物理的な発着台があってもよい。
 図7に本願発明に係る散布用ドローンの実施例の制御機能を表したブロック図を示す。フライトコントローラー501は、ドローン全体の制御を司る構成要素であり、具体的にはCPU、メモリー、関連ソフトウェア等を含む組み込み型コンピュータであってよい。フライトコントローラー501は、操作器401から受信した入力情報、および、後述の各種センサーから得た入力情報に基づき、ESC(Electronic Speed Control)等の制御手段を介して、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの回転数を制御することで、ドローン100の飛行を制御する。モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの実際の回転数はフライトコントローラー501にフィードバックされ、正常な回転が行なわれているかを監視できる構成になっている。あるいは、回転翼101に光学センサー等を設けて回転翼101の回転がフライトコントローラー501にフィードバックされる構成でもよい。
 フライトコントローラー501が使用するソフトウェアは、機能拡張・変更、問題修正等のために記憶媒体等を通じて、または、Wi-Fi通信やUSB等の通信手段を通じて書き換え可能になっている。この場合において、不正なソフトウェアによる書き換えが行なわれないように、暗号化、チェックサム、電子署名、ウィルスチェックソフト等による保護が行われている。また、フライトコントローラー501が制御に使用する計算処理の一部が、操作器401上、または、サーバ405上や他の場所に存在する別のコンピュータによって実行されてもよい。フライトコントローラー501は重要性が高いため、その構成要素の一部または全部が二重化されていてもよい。
 フライトコントローラー501は、通信機530を介して、さらに、移動体通信網400を介して操作器401とやり取りを行ない、必要な指令を操作器401から受信すると共に、必要な情報を操作器401に送信できる。この場合に、通信には暗号化を施し、傍受、成り済まし、機器の乗っ取り等の不正行為を防止できるようにしておいてもよい。基地局404は、移動体通信網400を介した通信機能に加えて、RTK-GNSS基地局の機能も備えている。RTK基地局404の信号とGPS等の測位衛星410からの信号を組み合わせることで、フライトコントローラー501により、ドローン100の絶対位置を数センチメートル程度の精度で測定可能となる。フライトコントローラー501は重要性が高いため、二重化・多重化されていてもよく、また、特定のGPS衛星の障害に対応するため、冗長化されたそれぞれのフライトコントローラー501は別の衛星を使用するよう制御されていてもよい。
 6軸ジャイロセンサー505はドローン機体の互いに直交する3方向の加速度を測定する手段であり、さらに、加速度の積分により速度を計算する手段である。6軸ジャイロセンサー505は、上述の3方向におけるドローン機体の姿勢角の変化、すなわち角速度を測定する手段である。地磁気センサー506は、地磁気の測定によりドローン機体の方向を測定する手段である。気圧センサー507は、気圧を測定する手段であり、間接的にドローンの高度も測定することもできる。レーザーセンサー508は、レーザー光の反射を利用してドローン機体と地表との距離を測定する手段であり、IR(赤外線)レーザーであってもよい。ソナー509は、超音波等の音波の反射を利用してドローン機体と地表との距離を測定する手段である。これらのセンサー類は、ドローンのコスト目標や性能要件に応じて取捨選択してよい。また、機体の傾きを測定するためのジャイロセンサー(角速度センサー)、風力を測定するための風力センサーなどが追加されていてもよい。また、これらのセンサー類は、二重化または多重化されていてもよい。同一目的複数のセンサーが存在する場合には、フライトコントローラー501はそのうちの一つのみを使用し、それが障害を起こした際には、代替のセンサーに切り替えて使用するようにしてもよい。あるいは、複数のセンサーを同時に使用し、それぞれの測定結果が一致しない場合には障害が発生したと見なすようにしてもよい。
 流量センサー510は散布物の流量を測定するための手段であり、タンク104からノズル103に至る経路の複数の場所に設けられている。液切れセンサー511は散布物の量が所定の量以下になったことを検知するセンサーである。
 生育診断カメラ512aは、圃場403を撮影し、生育診断のためのデータを取得する手段である。生育診断カメラ512aは例えばマルチスペクトルカメラであり、互いに波長の異なる複数の光線を受信する。当該複数の光線は、例えば赤色光(波長約650nm)と近赤外光(波長約774nm)である。また、生育診断カメラ512aは、可視光線を受光するカメラであってもよい。
 病理診断カメラ512bは、圃場403に生育する作物を撮影し、病理診断のためのデータを取得する手段である。病理診断カメラ512bは、例えば赤色光カメラである。赤色光カメラは、植物に含有されるクロロフィルの吸収スペクトルに対応する周波数帯域の光量を検出するカメラであり、例えば波長650nm付近の帯域の光量を検出する。病理診断カメラ512bは、赤色光と近赤外光の周波数帯域の光量を検出してもよい。また、病理診断カメラ512bとして、赤色光カメラおよびRGBカメラ等の可視光帯域の少なくとも3波長の光量を検出する可視光カメラの両方を備えていてもよい。なお、病理診断カメラ512bはマルチスペクトルカメラであってもよく、波長650nm乃至680nm付近の帯域の光量を検出するものとしてもよい。
 なお、生育診断カメラ512aおよび病理診断カメラ512bは、1個のハードウェア構成により実現されていてもよい。
 障害物検知カメラ513はドローン侵入者を検知するためのカメラであり、画像特性とレンズの向きが生育診断カメラ512aおよび病理診断カメラ512bとは異なるため、生育診断カメラ512aおよび病理診断カメラ512bとは別の機器である。スイッチ514はドローン100の使用者402が様々な設定を行なうための手段である。障害物接触センサー515はドローン100、特に、そのローターやプロペラガード部分が電線、建築物、人体、立木、鳥、または、他のドローン等の侵入者に接触したことを検知するためのセンサーである。なお、障害物接触センサー515は、6軸ジャイロセンサー505で代用してもよい。カバーセンサー516は、ドローン100の操作パネルや内部保守用のカバーが開放状態であることを検知するセンサーである。注入口センサー517はタンク104の注入口が開放状態であることを検知するセンサーである。
 これらのセンサー類はドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。また、ドローン100外部の基地局404、操作器401、または、その他の場所にセンサーを設けて、読み取った情報をドローンに送信してもよい。たとえば、基地局404に風力センサーを設け、風力・風向に関する情報を移動体通信網400経由又はWi-Fi通信経由でドローン100に送信するようにしてもよい。
 フライトコントローラー501はポンプ106に対して制御信号を送信し、吐出量の調整や吐出の停止を行なう。ポンプ106の現時点の状況(たとえば、回転数等)は、フライトコントローラー501にフィードバックされる構成となっている。
 LED107は、ドローンの操作者に対して、ドローンの状態を知らせるための表示手段である。LEDに替えて、または、それに加えて液晶ディスプレイ等の表示手段を使用してもよい。ブザーは、音声信号によりドローンの状態(特にエラー状態)を知らせるための出力手段である。通信機530は、3G、4G、およびLTE等の移動体通信網400と接続されており、移動体通信網400を介して基地局、サーバで構成される営農クラウド、操作器と通信可能に接続される。通信機に替えて、または、それに加えて、Wi‐Fi、赤外線通信、Bluetooth(登録商標)、ZigBee(登録商標)、NFC等の他の無線通信手段、または、USB接続などの有線通信手段を使用してもよい。スピーカー520は、録音した人声や合成音声等により、ドローンの状態(特にエラー状態)を知らせる出力手段である。天候状態によっては飛行中のドローン100の視覚的表示が見にくいことがあるため、そのような場合には音声による状況伝達が有効である。警告灯521はドローンの状態(特にエラー状態)を知らせるストロボライト等の表示手段である。これらの入出力手段は、ドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。
●制御システムの概要
 図8に示すように、測位システム1000は、例えばドローン100、ユーザインターフェース装置200、測量機300、および測位装置600を含むシステムであり、これらはネットワークNWを通じて互いに通信可能に接続されている。測位装置600は、ハードウェア構成であってもよいし、サーバ405上に構成されていてもよい。ドローン100、ユーザインターフェース装置200、測量機300および測位装置600は、無線で互いに接続されていてもよいし、一部又は全部が有線により接続されていてもよい。
 なお、図8に示した構成は例示であり、ある構成要素が別の構成要素を包含していてもよいし、各構成要素が有する機能部は、別の構成要素が有していてもよい。例えば、測位装置600の機能の一部および全部がドローン100に搭載されていてもよい。
 ユーザインターフェース装置200は、作業者による入力部および表示部を備えていればよく、操作器401の機能により実現されてもよい。また、ユーザインターフェース装置200は、パーソナルコンピュータであってもよく、パーソナルコンピュータにインストールされたWebブラウザを介して、Web上のUIに情報を入力し、表示させてもよい。
●ドローンの機能部
 ドローン100は、情報処理を実行するためのCPU(Central Processing Unit)などの演算装置、RAM(Random Access Memory)やROM(Read Only Memory)などの記憶装置を備え、これによりソフトウェア資源として少なくとも、飛行制御部1001および散布制御部1002を有する。
 飛行制御部1001は、モーター102を稼働させ、ドローン100の飛行および離着陸を制御する機能部である。飛行制御部1001は、例えばフライトコントローラー501によって実現され、飛行高度、飛行速度、および飛行ルートを制御して、ドローン100を圃場の上空に飛行させる。
 散布制御部1002は、ポンプ106を稼働させ、ノズル103-1、103-2、103-3、103-4からの散布物の散布を制御する機能部である。散布制御部1002は、例えばフライトコントローラー501によって実現される。
●測量機の機能部
 測量機300は、RTK-GNSSの観測点としての機能を有する装置であり、基地局404または電子基準点と通信を行って、基地局404または電子基準点を基準として圃場403の座標情報を測量することができる。測量機300は、使用者により保持して歩行することが可能な小型の装置であり、例えば棒状の装置である。測量機300は、下端を地面についた状態で、使用者が直立して上部を保持できる程度の長さの、杖のような装置であってもよい。ある圃場の座標情報を読み取るために使用可能な測量機300の個数は、1個であっても複数であってもよい。複数の測量機300により1か所の圃場に関する座標情報を測量可能な構成によれば、複数の使用者がそれぞれ測量機300を保持して圃場を歩行することができるため、測量作業を短時間で完了することができる。
 また、測量機300は、圃場における障害物の情報を測量することができる。障害物は、ドローン100が衝突する危険のある壁や法面、電柱、電線などや、薬剤散布又は監視を要さない各種物体を含む。
 測量機300は、入力部301、座標検出部302、および送信部303を備える。
 入力部301は、測量機300の本体部に設けられる構成であり、例えば使用者の押下を受け付けるボタンである。使用者は、測量機300の下端の3次元座標を測量する際に、入力部301のボタンを押下する。
 また、入力部301は、入力される情報が圃場の外周に関する座標であるか、障害物の外周の座標であるかを区別して入力可能に構成してもよい。さらに、入力部301は、障害物の外周の座標を、障害物の種類と関連付けて入力可能に構成しても良い。
 座標検出部302は、基準点情報提供システムまたは基地局404と適宜通信を行って測量機300の下端の3次元座標を、基地局404との相対測位により検出可能な機能部である。
 送信部303は、入力部301への入力に基づいて、当該入力時の測量機300下端の3次元座標、及び当該3次元座標の測量の基準とした電子基準点の識別情報(ID)を、ネットワークNWを介して操作器401又は圃場を含む対象エリアにおけるドローン100の飛行ルートを生成および管理する飛行管理装置に送信する機能部である。送信部303は、当該3次元座標を、ポインティングされた時刻情報(または順番)とともに送信する。
 圃場の座標情報を読み取る工程において、使用者は、測量機300を持って圃場を移動する。まず、当該圃場の3次元座標を取得する。使用者は、圃場の端点又は端辺上において入力部301によるポインティングを行う。次いで、使用者は、障害物の端点又は端辺上において入力部301によるポインティングを行う。
 ポインティングされて送信される圃場の端点又は端辺上の3次元座標(圃場外周の3次元座標)および障害物の端点又は端辺上の3次元座標(障害物の3次元座標)は、飛行管理装置により受信される。また、ポインティングされる3次元座標は、ユーザインターフェース装置200の受信部により受信され、ユーザインターフェース装置200が備える表示部により表示されてもよい。
●測位装置の機能部
 図8に示すように、測位装置600は、情報処理を実行するためのCPU(Central Processing Unit)などの演算装置、RAM(Random Access Memory)やROM(Read Only Memory)などの記憶装置を備え、これによりソフトウェア資源として少なくとも、基準点決定部610、座標取得部620、比較部630および座標確定部640を有する。測位装置600は、基地局404の座標値を測位するための装置である。測位装置600は、基地局404内に実装されていても良いし、ネットワークを介して基地局と接続される別のハードウエア内に実装されていても良い。
 基準点決定部610は、基地局404の座標値を取得するために用いる基準点を決定する機能部である。
 基準点決定部610は、互いに異なる少なくとも2個の基準点を選択する。基準点決定部610は、単独測位で求めた基地局座標から近い基準点を選択してもよい。基準点決定部610は、例えば単独測位で求められる基地局座標から最も近い基準点と、次いで近い基準点を選択してよい。なお、単独測位は、GNSS衛星から送信される衛星の情報を1台のアンテナで受信することにより、衛星から電波が発信されてから受信機に到達するまでに要した時間に基づいて距離を算出する測位手法である。
 基準点決定部610は、単独測位によらず、任意の基準点を座標値取得の基準点として決定してもよい。基準点決定部610は、操作器401などのユーザインターフェース装置を介して基地局404のおおよその位置を取得し、これに基づいて基準点を決定してもよい。また、測位システムの管理者が有する圃場の位置、例えば住所表示等があらかじめシステムに対応付けられていて、当該圃場の位置を参照して比較的近い基準点を決定してもよい。
 座標取得部620は、基準点決定部610により決定される基準点を基準として基地局404の位置を示す座標値を取得する機能部である。座標取得部620は、決定される基準点の個数に対応する個数の座標値を算出する。
 比較部630は、座標取得部620により取得した第1基準点を基準として得られる第1座標値と、第2基準点を基準として得られる第2座標値と、を比較する機能部である。具体的には、比較部630は、第1座標値と第2座標値との差分又は距離を算出する。3つ以上の基準点を利用する場合には、比較部は、複数点のそれぞれの座標間の差分の総和、距離の総和、もしくは距離の平均値を算出する。
 座標確定部640は、比較部630による比較の結果に基づいて、基地局404の測位座標を確定する機能部である。座標確定部640は、当該差分又は距離(もしくは3つ以上の座標値の差分の総和、又は距離の総和、又は距離の平均値)が所定値以下であるとき、第1座標値を基地局404の座標の測位結果とする。第1座標値および第2座標値の差又は距離(もしくは3つ以上の座標値の差分の総和、又は距離の総和、又は距離の平均値)が小さい場合は、反射によるマルチパスの発生、計測誤差および外乱の影響が少ないことが想定され、第1座標値の信頼性が第2座標値により担保されるためである。
また別の基地局404の座標の測位結果を得る別の方法として、座標確定部640は、当該差分又は距離(もしくは3つ以上の座標値の差分の総和、又は距離の総和、又は距離の平均値)が所定値以下であるとき、第1座標値と第2座標値の間に位置する座標値を基地局404の座標の測位結果とすることもできる。2つの基準点を用いる場合は、例えば、第1座標値と第2座標値の中間点としても良い。
3つ以上の基準点を用いる場合は、例えば、複数座標値の中間点のいずれかの座標値、複数座標値の中間点、もしくは複数座標値で囲まれたエリア内の任意の点とすることができる。
 座標確定部640は、比較部630により算出される第1座標値および第2座標値の差分が所定値より大きい場合には、座標の確定を行わない。第1座標値および第2座標値の少なくともいずれかが、誤差又は外乱等により正確な座標値からずれている蓋然性が高いが、いずれがずれているか判別できないためである。
 座標確定部640は、第1座標値および第2座標値の差分が所定値より大きい場合、基準点決定部610に第1基準点および第2基準点とは異なる第3基準点を取得させる。比較部630は、第3基準点により求められる第3座標値と、第1座標値および第2座標値との差分をそれぞれ算出する。座標確定部640は、差分が所定値以下となった座標値の対を特定し、当該対をなす座標値のいずれか1個を、基地局座標の測位座標として確定する。
 この構成によれば、複数の基準点を参照することで、計測誤差や外乱の影響を排除して基地局の座標を測位することができる。
●基地局の座標を確定する処理フロー
 図9および図10を用いて、複数の基準点から基地局404の座標を測位する処理フローの一例を説明する。図9は、様子を示す模式図である。同図に示すように、基地局404の周囲には第1、第2および第3基準点D1、D2およびD3がこの順に近接して配置されている。
 図10に示すように、まず、基準点決定部610により第1基準点D1および第2基準点D2を決定する(S1)。次いで、座標取得部620により、第1基準点D1を基準として基地局404の第1座標値を取得するとともに、第2基準点D2を基準として基地局404の第2座標値を取得する(S2)。図9には、第1座標値に位置する仮想の基地局404-D1、第2座標値に位置する仮想の基地局404-D2が便宜的に表されている。
 次いで、比較部630により、第1座標値D1と第2座標値D2の差分を算出する(S3)。差分が所定値以下か否かを判別し(S4)、所定値以下である場合は、第1座標値D1又は第2座標値D2を基地局404の座標に確定する(S7)。ステップS4において差分が所定値を超えるときは、さらに別の基準点、すなわち別の第3基準点D3を基準として決定する(S5)。次いで、座標取得部620は、第3基準点D3を基準として基地局404の座標を計算し、第3座標値を取得する(S6)。図9において、第3座標値に位置する仮想の基地局404-D3が便宜的に表されている。ステップS3に戻り、比較部630は、第1座標値と第3座標値の差分又は距離、および第2座標値と第3座標値の差分又は距離をそれぞれ算出する。また、比較部630は、それぞれの座標間の差分の総和、距離の総和、又は距離の平均値を算出する。
 ステップS7において、座標確定部640は、第1座標値と第3座標値の差分又は距離、および第2座標値と第3座標値の差分又は距離に基づいて基地局404の座標を確定する。具体的には、第1座標値と第3座標値の差分又は距離が所定値以下であるとき、第1座標値を基地局404の座標とする。第2座標値と第3座標値の差分又は距離が所定値以下であるとき、第2座標値を基地局404の座標とする。なお、座標確定部640が参照する座標値を取得するために用いる基準点の個数は、4個以上であってもよく、別の座標値との差分が所定値以下となるような座標値が取得できるまで、ステップS3乃至S6を繰り返してもよい。また、3つ以上の座標値の差分の総和、距離の総和、又は距離の平均値が所定値以下となるとき、当該複数の座標値のいずれか、又は複数の座標値の間に位置する座標値、例えば中間点を基地局404の座標としてもよい。3つ以上の座標値で囲まれたエリア内の任意の点を基地局404の座標としてもよい。
 また、差分が所定値以下となるまでステップS5を繰り返し実行し、順次新たな基準点を選択する構成に代えて、ステップS1乃至S2において3個以上の基準点を選択して座標値を取得し、ステップS3を繰り返し実行して順次差分を算出することで、測位座標を確定してもよい。
 なお、上述の説明においては、基地局404の座標を測位するものとして説明したが、本発明にかかる測位システム1000により、測量機300又はドローン100の測位を行ってもよい。特に、ドローン100の測位は、飛行前のドローン100の起動時に行われる初期位置の推定に適用可能である。この場合、測位装置600の基準点決定部610は、測量機300又はドローン100の座標値を取得するために用いる基準点を決定する。
●測位システム(2)
 図11を用いて、本願発明に係る第2実施形態の測位システム2000に関し、上述の第1実施形態とは異なる部分を中心に説明する。測位システム2000は、互いに異なる少なくとも2個の衛星からの電波に基づいて、少なくともドローンの相対測位に用いる基地局の座標を測位する。なお、同図において、第1実施形態と同じ構成については、同じ符号を付した。
 測位システム2000は、測位装置601を含む。測位装置601は、衛星決定部611、座標取得部621、比較部631および座標確定部640の各機能ブロックを有する。
 衛星決定部611は、基準点の座標値を取得するために用いる基準点を決定する。衛星決定部611は、互いに異なる少なくとも2個の衛星を選択し、例えば、単独測位で求めた基地局座標から近い衛星を選択してもよい。
 座標取得部621は、衛星決定部611により決定される衛星からの電波を参照して基地局404の位置を示す座標値を取得する。座標取得部621は、決定される衛星の個数に対応する個数の座標値を算出する。
 比較部631は、座標取得部621により取得した第1衛星を基準として得られる第1座標値と、第2衛星を基準として得られる第2座標値と、を比較する機能部である。具体的には、比較部630は、第1座標値と第2座標値との差分又は距離を算出する。3つ以上の衛星を利用する場合には、比較部は、複数の衛星からそれぞれ得られる座標間の差分の総和、距離の総和、もしくは距離の平均値を算出する。
 この構成によれば、複数の衛星からの電波を参照することで、計測誤差や外乱の影響を排除して基地局の座標を測位することができる。
 なお、上述の説明においては、基地局404の座標を測位するものとして説明したが、本発明にかかる測位システム2000により、測量機300又はドローン100の測位を行ってもよい。特に、ドローン100の測位は、飛行前のドローン100の起動時に行われる初期位置の推定に適用可能である。この場合、測位装置601の衛星決定部611は、測量機300又はドローン100の座標値を取得するために用いる衛星を決定する。
(本願発明による技術的に顕著な効果)
 本発明にかかる測位システムにおいては、基地局の座標を精度よく測位することができる。特に、圃場において薬剤散布、又は作物の生育監視を行う農業用ドローンにおいては、散布および監視精度を担保するために、1乃至2cm程度の誤差で正確に飛行する必要がある。また、ドローンはバッテリの蓄電量により飛行するため、少ない充電回数で圃場内作業を完了させるために、陸上走行農機と比較して速い速度で移動する必要がある。したがって、ドローンの飛行には、高いリアルタイム性を有する高精度な測位が重要である。本発明にかかる測位システムにおいては、RTK-GNSSの基地局の位置を高精度に測位できるため、農業用ドローンによる精密農業を実現することができる。

 

Claims (20)

  1.  少なくともドローンの相対測位に用いる基地局の座標を測位する測位システムであって、
     互いに異なる少なくとも2個の基準点をそれぞれ基準として、前記基地局の位置を示す第1座標値および第2座標値を算出する座標取得部と、
     前記第1座標値と前記第2座標値との差分又は距離を計算する比較部と、
     前記差分又は前記距離が所定値以下であるとき、前記第1座標値、もしくは前記第1座標値と前記第2座標値の間に位置する点の座標値を、前記基地局の測位座標として確定する、座標確定部と、
    を備える、
    測位システム。
     
  2.  前記比較部は、前記差分が所定値を超えるとき、前記2個の基準点とは異なる第3基準点を基準として算出される第3座標値と、前記第1座標値および前記第2座標値の少なくともいずれかとの差分を計算し、前記座標確定部は、当該差分が所定値以下となる座標値の対を抽出し、当該対をなす座標値のいずれかの座標値、もしくは当該対をなす座標値の中間点の座標値、もしくは当該対をなす座標値の間の任意の点の座標値を前記測位座標として確定する、
    請求項1記載の測位システム。
  3.  前記座標取得部が前記基地局座標の算出の基準とする前記基準点を決定する基準点決定部をさらに備え、
     前記基準点決定部は、単独測位で求めた前記基地局の座標から所定範囲内に位置する基準点を、前記算出の基準に決定する、
    請求項1又は2記載の測位システム。
     
  4.  少なくともドローンの相対測位に用いる基地局の座標を測位する測位システムであって、
     互いに異なる少なくとも3個の基準点をそれぞれ基準として、前記基地局の位置を示す複数個の座標値を算出する座標取得部と、
     前記複数個の座標値の差分の総和、又は距離の総和、又はそれらの平均値を計算する比較部と、
     前記比較部で計算した値が所定値以下であるとき、前記複数座標値のいずれかの座標値、または中間点、または複数座標値で囲まれたエリア内の任意の点の座標値を、前記基地局の測位座標として確定する、座標確定部と、
    を備える、
    測位システム。
     
  5.  前記比較部は、前記差分が所定値を超えるとき、前記複数の基準点とは異なる他の複数基準点を基準として算出される複数の座標値の差分の総和、又は距離の総和、又はそれらの平均値を計算し、前記座標確定部は、前記比較部が算出した値が所定値以下となる複数の座標値を抽出し、当該複数の座標値のいずれかの座標値、又は中間点の座標値、又は当該複数の座標値により囲まれるエリア内の任意の点の座標値を前記測位座標として確定する、
    請求項4記載の測位システム。
     
  6.  前記座標取得部が前記基地局座標の算出の基準とする前記基準点を決定する基準点決定部をさらに備え、
     前記基準点決定部は、単独測位で求めた前記基地局の座標から所定の範囲内に位置する基準点を、前記算出の基準に決定する、
    請求項4又は5記載の測位システム。
     
  7.  相対測位に用いる基地局の座標を測位する測位システムの測位結果に基づいて飛行するドローンであって、
     前記測位システムは、
      互いに異なる少なくとも2個の基準点をそれぞれ基準として、前記基地局の位置を示す第1座標値および第2座標値を算出する座標取得部と、
      前記第1座標値と前記第2座標値との差分又は距離を計算する比較部と、
      前記差分又は前記距離が所定値以下であるとき、前記第1座標値、もしくは前記第1座標値と前記第2座標値の間に位置する点の座標値を、前記基地局の測位座標として確定する、座標確定部と、
    を備える、
    ドローン。
     
  8.  少なくともドローンの相対測位に用いる基地局の座標を測位する測位方法であって、
     互いに異なる少なくとも2個の基準点をそれぞれ基準として、前記基地局の位置を示す第1座標値および第2座標値を算出する座標取得ステップと、
     前記第1座標値と前記第2座標値との差分又は距離を計算する比較ステップと、
     前記差分又は前記距離が所定値以下であるとき、前記第1座標値、もしくは前記第1座標値と前記第2座標値の間に位置する点の座標値を、前記基地局の測位座標として確定する、座標確定ステップと、
    を含む、
    測位方法。
     
  9.  対象エリアの位置座標を測位する測量機であって、
     互いに異なる少なくとも2個の基準点をそれぞれ基準として、前記測量機の位置を示す第1座標値および第2座標値を算出する座標取得部と、
     前記第1座標値と前記第2座標値との差分又は距離を計算する比較部と、
     前記差分又は前記距離が所定値以下であるとき、前記第1座標値、もしくは前記第1座標値と前記第2座標値の間に位置する点の座標値を、前記測量機の測位座標として確定する、座標確定部と、
    を備える、
    測量機。
     
  10.  基準点の座標を基準として自己の位置座標を測位するドローンであって、
     互いに異なる少なくとも2個の基準点をそれぞれ基準として、前記ドローンの位置を示す第1座標値および第2座標値を算出する座標取得部と、
     前記第1座標値と前記第2座標値との差分又は距離を計算する比較部と、
     前記差分又は前記距離が所定値以下であるとき、前記第1座標値、もしくは前記第1座標値と前記第2座標値の間に位置する点の座標値を、前記ドローンの測位座標として確定する、座標確定部と、
    を備える、
    ドローン。
     
  11.  少なくともドローンの相対測位に用いる基地局の座標を測位する測位システムであって、
     互いに異なる少なくとも2個の衛星からの電波に基づいて、前記基地局の位置を示す第1座標値および第2座標値を算出する座標取得部と、
     前記第1座標値と前記第2座標値との差分又は距離を計算する比較部と、
     前記差分又は前記距離が所定値以下であるとき、前記第1座標値、もしくは前記第1座標値と前記第2座標値の間に位置する点の座標値を、前記基地局の測位座標として確定する、座標確定部と、
    を備える、
    測位システム。
     
  12.  前記比較部は、前記差分が所定値を超えるとき、前記2個の衛星とは異なる第3衛星からの電波に基づいて算出される第3座標値と、前記第1座標値および前記第2座標値の少なくともいずれかとの差分を計算し、前記座標確定部は、当該差分が所定値以下となる座標値の対を抽出し、当該対をなす座標値のいずれかの座標値、もしくは当該対をなす座標値の中間点の座標値、もしくは当該対をなす座標値の間の任意の点の座標値を前記測位座標として確定する、
    請求項11記載の測位システム。
     
  13.  前記座標取得部が前記基地局座標の算出に参照する前記衛星を決定する衛星決定部をさらに備え、
     前記衛星決定部は、単独測位で求めた前記基地局の座標から所定範囲内に位置する衛星を、前記算出に参照する衛星に決定する、
    請求項11又は12記載の測位システム。
     
  14.  少なくともドローンの相対測位に用いる基地局の座標を測位する測位システムであって、
     互いに異なる少なくとも3個の衛星からの電波を参照して、前記基地局の位置を示す複数個の座標値を算出する座標取得部と、
     前記複数個の座標値の差分の総和、又は距離の総和、又はそれらの平均値を計算する比較部と、
     前記比較部で計算した値が所定値以下であるとき、前記複数座標値のいずれかの座標値、または中間点、または複数座標値で囲まれたエリア内の任意の点の座標値を、前記基地局の測位座標として確定する、座標確定部と、
    を備える、
    測位システム。
     
  15.  前記比較部は、前記差分が所定値を超えるとき、前記複数の衛星とは異なる他の衛星からの電波を参照して算出される複数の座標値の差分の総和、又は距離の総和、又はそれらの平均値を計算し、前記座標確定部は、前記比較部が算出した値が所定値以下となる複数の座標値を抽出し、当該複数の座標値のいずれかの座標値、又は中間点の座標値、又は当該複数の座標値により囲まれるエリア内の任意の点の座標値を前記測位座標として確定する、
    請求項14記載の測位システム。
     
  16.  前記座標取得部が前記基地局座標の算出の基準とする前記衛星を決定する衛星決定部をさらに備え、
     前記衛星決定部は、単独測位で求めた前記基地局の座標から所定の範囲内に位置する衛星を、前記算出に参照する衛星に決定する、
    請求項14又は15記載の測位システム。
     
  17.  相対測位に用いる基地局の座標を測位する測位システムの測位結果に基づいて飛行するドローンであって、
     前記測位システムは、
      互いに異なる少なくとも2個の衛星からの電波を参照して、前記基地局の位置を示す第1座標値および第2座標値を算出する座標取得部と、
      前記第1座標値と前記第2座標値との差分又は距離を計算する比較部と、
      前記差分又は前記距離が所定値以下であるとき、前記第1座標値、もしくは前記第1座標値と前記第2座標値の間に位置する点の座標値を、前記基地局の測位座標として確定する、座標確定部と、
    を備える、
    ドローン。
     
  18.  少なくともドローンの相対測位に用いる基地局の座標を測位する測位方法であって、
     互いに異なる少なくとも2個の衛星からの電波を参照して、前記基地局の位置を示す第1座標値および第2座標値を算出する座標取得ステップと、
     前記第1座標値と前記第2座標値との差分又は距離を計算する比較ステップと、
     前記差分又は前記距離が所定値以下であるとき、前記第1座標値、もしくは前記第1座標値と前記第2座標値の間に位置する点の座標値を、前記基地局の測位座標として確定する、座標確定ステップと、
    を含む、
    測位方法。
     
  19.  対象エリアの位置座標を測位する測量機であって、
     互いに異なる少なくとも2個の衛星からの電波を参照して、前記測量機の位置を示す第1座標値および第2座標値を算出する座標取得部と、
     前記第1座標値と前記第2座標値との差分又は距離を計算する比較部と、
     前記差分又は前記距離が所定値以下であるとき、前記第1座標値、もしくは前記第1座標値と前記第2座標値の間に位置する点の座標値を、前記測量機の測位座標として確定する、座標確定部と、
    を備える、
    測量機。
     
  20.  衛星からの電波を参照して自己の位置座標を測位するドローンであって、
     互いに異なる少なくとも2個の衛星からの電波を参照して、前記ドローンの位置を示す第1座標値および第2座標値を算出する座標取得部と、
     前記第1座標値と前記第2座標値との差分又は距離を計算する比較部と、
     前記差分又は前記距離が所定値以下であるとき、前記第1座標値、もしくは前記第1座標値と前記第2座標値の間に位置する点の座標値を、前記ドローンの測位座標として確定する、座標確定部と、
    を備える、
    ドローン。
     
     
PCT/JP2020/014749 2020-03-31 2020-03-31 測位システム、ドローン、測量機、および測位方法 WO2021199243A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/014749 WO2021199243A1 (ja) 2020-03-31 2020-03-31 測位システム、ドローン、測量機、および測位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/014749 WO2021199243A1 (ja) 2020-03-31 2020-03-31 測位システム、ドローン、測量機、および測位方法

Publications (1)

Publication Number Publication Date
WO2021199243A1 true WO2021199243A1 (ja) 2021-10-07

Family

ID=77927051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014749 WO2021199243A1 (ja) 2020-03-31 2020-03-31 測位システム、ドローン、測量機、および測位方法

Country Status (1)

Country Link
WO (1) WO2021199243A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062514A (ja) * 1996-08-26 1998-03-06 Techno Kobo:Kk Gps誤差補正装置
JP2006258461A (ja) * 2005-03-15 2006-09-28 Mitsubishi Electric Corp 測位装置、測位方法および測位プログラム
US20170057634A1 (en) * 2015-08-28 2017-03-02 Mcafee, Inc. Location verification and secure no-fly logic for unmanned aerial vehicles
WO2018034295A1 (ja) * 2016-08-16 2018-02-22 本郷飛行機株式会社 情報処理システム
WO2019052645A1 (en) * 2017-09-14 2019-03-21 Telefonaktiebolaget Lm Ericsson (Publ) TECHNIQUE FOR VERIFYING A GEOGRAPHICAL POSITION OF A UAV
US20200033888A1 (en) * 2016-12-22 2020-01-30 Intel Corporation Uav positions method and apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062514A (ja) * 1996-08-26 1998-03-06 Techno Kobo:Kk Gps誤差補正装置
JP2006258461A (ja) * 2005-03-15 2006-09-28 Mitsubishi Electric Corp 測位装置、測位方法および測位プログラム
US20170057634A1 (en) * 2015-08-28 2017-03-02 Mcafee, Inc. Location verification and secure no-fly logic for unmanned aerial vehicles
WO2018034295A1 (ja) * 2016-08-16 2018-02-22 本郷飛行機株式会社 情報処理システム
US20200033888A1 (en) * 2016-12-22 2020-01-30 Intel Corporation Uav positions method and apparatus
WO2019052645A1 (en) * 2017-09-14 2019-03-21 Telefonaktiebolaget Lm Ericsson (Publ) TECHNIQUE FOR VERIFYING A GEOGRAPHICAL POSITION OF A UAV

Similar Documents

Publication Publication Date Title
JP6752481B2 (ja) ドローン、その制御方法、および、プログラム
US12014641B2 (en) Agricultural drone having improved foolproof
WO2021214812A1 (ja) 測量システム、測量方法、および測量プログラム
WO2021140657A1 (ja) ドローンシステム、飛行管理装置およびドローン
JP7008999B2 (ja) 運転経路生成システム、運転経路生成方法、および運転経路生成プログラム、ならびにドローン
JP7270265B2 (ja) 運転経路生成装置、運転経路生成方法、運転経路生成プログラム、およびドローン
JP2022084735A (ja) ドローン、ドローンの制御方法、および、ドローンの制御プログラム
WO2021205559A1 (ja) 表示装置、ドローンの飛行可否判定装置、ドローン、ドローンの飛行可否判定方法、およびコンピュータプログラム
JPWO2020085239A1 (ja) 運転経路生成装置、運転経路生成方法、および運転経路生成プログラム、ならびにドローン
JP7037235B2 (ja) 産業機械システム、産業機械、管制装置、産業機械システムの制御方法、および、産業機械システムの制御プログラム
WO2021224970A1 (ja) 測位システム、移動体、速度推定システム、測位方法、および速度推定方法
JP7079547B1 (ja) 圃場評価装置、圃場評価方法および圃場評価プログラム
US12117297B2 (en) Traveling route generating system, traveling route generating method, traveling route generating program, coordinate measuring system, and drone
JP7412037B2 (ja) ドローンシステム、操作器および作業エリアの定義方法
WO2021199243A1 (ja) 測位システム、ドローン、測量機、および測位方法
WO2021191947A1 (ja) ドローンシステム、ドローンおよび障害物検知方法
JP7411259B2 (ja) 植物の病理診断システム、植物の病理診断方法、植物の病理診断装置、およびドローン
JP7412038B2 (ja) 再測量要否判定装置、測量システム、ドローンシステム、および再測量要否判定方法
JP7011233B2 (ja) 散布システムおよび散布管理装置
JP7387195B2 (ja) 圃場管理システム、圃場管理方法およびドローン
JP7285557B2 (ja) 運転経路生成システム、運転経路生成方法、運転経路生成プログラム、およびドローン
JP7570710B2 (ja) エリア編集システム、作業エリアの編集方法
WO2021220409A1 (ja) エリア編集システム、ユーザインターフェース装置および作業エリアの編集方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20929192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP