WO2021205559A1 - 表示装置、ドローンの飛行可否判定装置、ドローン、ドローンの飛行可否判定方法、およびコンピュータプログラム - Google Patents

表示装置、ドローンの飛行可否判定装置、ドローン、ドローンの飛行可否判定方法、およびコンピュータプログラム Download PDF

Info

Publication number
WO2021205559A1
WO2021205559A1 PCT/JP2020/015784 JP2020015784W WO2021205559A1 WO 2021205559 A1 WO2021205559 A1 WO 2021205559A1 JP 2020015784 W JP2020015784 W JP 2020015784W WO 2021205559 A1 WO2021205559 A1 WO 2021205559A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
field
effective range
displayed
base station
Prior art date
Application number
PCT/JP2020/015784
Other languages
English (en)
French (fr)
Inventor
俊一郎 渡辺
了 宮城
千大 和氣
宏記 加藤
Original Assignee
株式会社ナイルワークス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナイルワークス filed Critical 株式会社ナイルワークス
Priority to JP2022513761A priority Critical patent/JP7412039B2/ja
Priority to PCT/JP2020/015784 priority patent/WO2021205559A1/ja
Publication of WO2021205559A1 publication Critical patent/WO2021205559A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]

Definitions

  • the present invention relates to a display device, a drone flight availability determination device, a drone flight availability determination method, and a computer program.
  • Patent Document 2 provides the current location information of various moving bodies and various information related to the current location information of the moving body.
  • a mobile information display system that supplies users in places that do not depend on is disclosed.
  • Patent Document 3 describes a flight control unit that controls the distance to the ground to fly within a predetermined range based on map data including height information, and a position information acquisition that acquires position information indicating the flight position. The flight position when the response signal is acquired when the communication control unit receives the response signal and the communication control unit that transmits the notification signal that can be received by the mobile terminal and receives the response signal to the notification signal.
  • a flight apparatus having an output unit that outputs report information indicating that a response signal including position information indicating that the device has been received is received.
  • the current altitude information of the aircraft is stored in the storage means by storing an airspace database in which the position and the altitude (range in the vertical direction) are associated with each airspace related to the operation of the aircraft.
  • a display is disclosed that displays the airspace including the altitude of the aircraft among the airspaces existing around the current position of the aircraft by referring to the airspace database.
  • the display device displays an effective range within a predetermined distance range from a predetermined base station on a map, and displays a field included in the effective range as a field in which a drone can fly.
  • the fields not included in the effective range are displayed as non-flyable fields of the drone so as to be distinguishable from the fields included in the effective range.
  • a list in which the fields included in the effective range and the fields not included in the effective range can be distinguished may be further displayed.
  • the effective range, the fields included in the effective range, and the fields not included in the effective range may be superimposed and displayed on the map displayed on the display.
  • the drone that can fly and the drone that cannot fly are displayed so as to be able to distinguish between the drone included in the effective range and the drone not included in the effective range. May be.
  • a predetermined drone outside the effective range cannot fly.
  • the display device includes a plurality of fields selected as candidate fields for the drone to fly, or a plurality of the selected drones within a predetermined distance range from a predetermined base station.
  • the recommended installation positions of at least one base station that fits the position of the field or the drone selected in a certain effective range are displayed on the map displayed on the display.
  • the drone flight availability determination device includes a position information acquisition processing unit that acquires position information of the drone or the field, and a predetermined base based on the position information of the drone or the field.
  • a position information acquisition processing unit that acquires position information of the drone or the field, and a predetermined base based on the position information of the drone or the field.
  • the determination processing unit for determining whether or not the drone or the field is located in the effective range which is a predetermined distance range from the station. It has a regulatory processing unit that regulates the flight of the drone.
  • the drone determines whether or not the drone or the field is located in an effective range within a predetermined distance range from a predetermined base station based on the position information of the drone or the field. It has a determination processing unit for determining, and a regulation processing unit for restricting the drone from flying when it is determined that the drone or the field is located outside the effective range.
  • the computer program according to another aspect of the present invention can fly an effective range within a predetermined distance range from a predetermined base station and a drone included in the effective range on a map displayed on a display.
  • the fields and the fields where the drone cannot fly, which are not included in the effective range, are displayed, and the fields where the drone can fly and the fields where the drone cannot fly are displayed so as to be distinguishable.
  • the method for determining whether or not the drone can fly according to another aspect of the present invention is predetermined based on the position information acquisition process in which the computer acquires the position information of the drone or the field and the position information of the drone or the field.
  • a determination process for determining whether or not the drone or the field is located within an effective range within a predetermined distance range from the base station, and a determination that the drone or the field is located outside the effective range.
  • the regulatory process that regulates the flight of the drone is executed.
  • the computer program according to another aspect of the present invention is a predetermined base based on the position information acquisition process for acquiring the position information of the drone or the field and the position information of the drone or the field to the computer.
  • a regulatory process that regulates the flight of the drone is carried out.
  • the computer program can be provided by downloading via a network such as the Internet, or can be recorded and provided on various computer-readable recording media such as a CD-ROM.
  • the configuration of the drone according to the present invention will be described.
  • the drone is regardless of the power means (electric power, prime mover, etc.) and the maneuvering method (wireless or wired, autonomous flight type, manual maneuvering type, etc.). It refers to all air vehicles with multiple rotor blades.
  • the rotor blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b are It is a means for flying the Drone 100, and is equipped with eight aircraft (four sets of two-stage rotor blades) in consideration of the balance between flight stability, aircraft size, and power consumption.
  • Each rotor 101 is arranged on all sides of the housing 110 by an arm protruding from the housing 110 of the drone 100.
  • the rotor blades 101-1a and 101-1b are on the left rear side in the traveling direction
  • the rotor blades 101-2a and 101-2b are on the left front side
  • the rotor blades 101-3a and 101-3b are on the right rear side
  • the rotor blades 101- are on the right front side.
  • 4a and 101-4b are arranged respectively.
  • the drone 100 has the traveling direction facing downward on the paper in FIG.
  • a grid-shaped propeller guard 115-1,115-2,115-3,115-4 forming a substantially cylindrical shape is provided on the outer circumference of each set of the rotor blade 101 to prevent the rotor blade 101 from interfering with foreign matter.
  • the radial members for supporting the propeller guards 115-1,115-2,115-3,115-4 are not horizontal but have a yagura-like structure. This is to encourage the member to buckle outside the rotor in the event of a collision and prevent it from interfering with the rotor.
  • Rod-shaped legs 107-1, 107-2, 107-3, 107-4 extend downward from the rotation axis of the rotor 101, respectively.
  • Motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are rotary blades 101-1a, 101-1b, 101-2a, 101- It is a means to rotate 2b, 101-3a, 101-3b, 101-4a, 101-4b (typically an electric motor, but it may also be a motor, etc.), and one machine is provided for one rotary blade. Has been done.
  • Motor 102 is an example of a thruster.
  • the upper and lower rotors (eg, 101-1a and 101-1b) in one set, and the corresponding motors (eg, 102-1a and 102-1b), are used for the flight stability of the drone 100, etc.
  • the axes are on the same straight line and rotate in opposite directions.
  • Nozzles 103-1 and 103-2 are means for spraying the sprayed material downward, and are equipped with four nozzles.
  • the sprayed material generally refers to a liquid or powder sprayed on a field such as a pesticide, a herbicide, a liquid fertilizer, an insecticide, a seed, and water.
  • the tank 104 is a tank for storing the sprayed material, and is provided at a position close to the center of gravity of the drone 100 and at a position lower than the center of gravity from the viewpoint of weight balance.
  • the hose 105 is a means for connecting the tank 104 and the nozzles 103-1 and 103-2, is made of a hard material, and may also serve to support the nozzles 103-1 and 103-2.
  • the pump 106 is a means for discharging the sprayed material from the nozzles 103-1 and 103-2.
  • Fig. 6 shows an overall conceptual diagram of the flight control system of the drone 100 according to the present invention. This figure is a schematic view, and the scale is not accurate.
  • the drone 100, the actuator 401, the base station 404, and the server 405 are connected to each other via the mobile communication network 400. These connections may be wireless communication by Wi-Fi instead of the mobile communication network 400, or may be partially or wholly connected by wire. Further, the components may have a configuration in which they are directly connected to each other in place of or in addition to the mobile communication network 400.
  • GNSS positioning satellite 410 such as GPS to acquire the coordinates of drone 100 and base station 404.
  • GNSS positioning satellite 410 such as GPS to acquire the coordinates of drone 100 and base station 404.
  • the operator 401 is a device for transmitting a command to the drone 100 by the operation of the user, and information received from the drone 100 (for example, position, amount of sprayed material, remaining battery level, camera image). Etc.) and the display device that displays the execution result of the computer program executed by the server 405 or the like.
  • the actuator 401 may be realized by a portable information device such as a general tablet terminal that runs a computer program.
  • the actuator 401 includes an input unit and a display unit as a user interface device.
  • the drone 100 according to the present invention is controlled to perform autonomous flight, but may be capable of manual operation during basic operations such as takeoff and return, and in an emergency.
  • an emergency operation device (not shown) having a function dedicated to emergency stop may be used.
  • the emergency operation device may be a dedicated device provided with a large emergency stop button or the like so that an emergency response can be taken quickly.
  • the system may include a small mobile terminal capable of displaying a part or all of the information displayed on the operating device 401, for example, a smart phone.
  • the small mobile terminal is connected to, for example, the base station 404, and can receive information and the like from the server 405 via the base station 404.
  • On the display of this small mobile terminal information on expected operations regarding the operation of the drone 100, more specifically, the scheduled time when the drone 100 will return to the departure / arrival point, the content of the work to be performed by the user at the time of return, etc. Information is displayed as appropriate. Further, the operation of the drone 100 may be changed based on the input from the small mobile terminal.
  • -Field Field 403 is a rice field, a field, or the like to which the drone 100 sprays the sprayed material.
  • the terrain of the field 403 is complicated, and the topographic map may not be available in advance, or the topographic map and the situation at the site may be inconsistent.
  • Field 403 is usually adjacent to houses, hospitals, schools, other crop fields, roads, railroads, etc.
  • intruders such as buildings and electric wires may exist in the field 403.
  • Base station 404 functions as an RTK-GNSS base station, and can provide information for generating an accurate position of the drone 100 with respect to the drone 100 located within a predetermined range. Further, it may be a device that provides a master unit function of Wi-Fi communication. The base unit function of Wi-Fi communication and the RTK-GNSS base station may be independent devices. Further, the base station 404 may be able to communicate with the server 405 by using a mobile communication system such as 3G, 4G, and LTE. The base station 404 and the server 405 constitute a farming cloud.
  • the server 405 is typically a group of computers operated on a cloud service and related software, and may be wirelessly connected to the actuator 401 by a mobile phone line or the like.
  • the server 405 may be configured by a hardware device.
  • the server 405 may analyze the image of the field 403 taken by the drone 100, grasp the growing condition of the crop, and perform a process for determining the flight route.
  • the topographical information of the stored field 403 may be provided to the drone 100.
  • the history of the flight and captured images of the drone 100 may be accumulated and various analysis processes may be performed.
  • the drone 100 takes off from the departure / arrival point outside the field 403 and returns to the departure / arrival point after spraying the sprayed material on the field 403 or when it becomes necessary to replenish or charge the sprayed material.
  • the flight route (invasion route) from the departure / arrival point to the target field 403 may be stored in advance on the server 405 or the like, or may be input by the user before the start of takeoff.
  • the departure / arrival point may be a virtual point defined by the coordinates stored in the drone 100, or may have a physical departure / arrival point.
  • the flight controller 501 is a component that controls the entire drone 100, and may be an embedded computer including a CPU, memory, related software, and the like.
  • the flight controller 501 uses motors 102-1a and 102-1b via control means such as ESC (Electronic Speed Control) based on the input information received from the controller 401 and the input information obtained from various sensors described later. , 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b to control the flight of the drone 100.
  • ESC Electronic Speed Control
  • the actual rotation speeds of the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b are fed back to the flight controller 501, and normal rotation is performed. It is configured so that it can be monitored.
  • the rotary blade 101 may be provided with an optical sensor or the like so that the rotation of the rotary blade 101 is fed back to the flight controller 501.
  • the software used by the flight controller 501 can be rewritten through a storage medium for function expansion / change, problem correction, etc., or through communication means such as Wi-Fi communication or USB. In this case, protection is performed by encryption, checksum, electronic signature, virus check software, etc. so that rewriting by unauthorized software is not performed.
  • a part of the calculation process used by the flight controller 501 for control may be executed by another computer located on the controller 401, the server 405, or somewhere else. Due to the high importance of the flight controller 501, some or all of its components may be duplicated.
  • the flight controller 501 communicates with the actuator 401 via the communication device 530 and further via the mobile communication network 400, receives necessary commands from the actuator 401, and transmits necessary information to the actuator 401. Can be sent. In this case, the communication may be encrypted so as to prevent fraudulent acts such as interception, spoofing, and device hijacking.
  • the base station 404 also has an RTK-GPS base station function in addition to a communication function via the mobile communication network 400. By combining the signal of the RTK base station 404 and the signal from the positioning satellite 410 such as GPS, the flight controller 501 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Flight controllers 501 are so important that they may be duplicated and multiplexed, and each redundant flight controller 501 should use a different satellite to handle the failure of a particular GPS satellite. It may be controlled.
  • the 6-axis gyro sensor 505 is a means for measuring the acceleration of 100 drones in three directions orthogonal to each other, and further, a means for calculating the velocity by integrating the acceleration.
  • the 6-axis gyro sensor 505 is a means for measuring the change in the attitude angle of the drone 100 aircraft in the above-mentioned three directions, that is, the angular velocity.
  • the geomagnetic sensor 506 is a means for measuring the direction of the drone 100 aircraft by measuring the geomagnetism.
  • the barometric pressure sensor 507 is a means for measuring barometric pressure, and can also indirectly measure the altitude of the drone 100.
  • the laser sensor 508 is a means for measuring the distance between the Drone 100 aircraft and the ground surface by utilizing the reflection of the laser light, and may be an IR (infrared) laser.
  • the sonar 509 is a means for measuring the distance between the drone 100 aircraft and the ground surface by utilizing the reflection of sound waves such as ultrasonic waves. These sensors may be selected according to the cost target and performance requirements of the drone 100. In addition, a gyro sensor (angular velocity sensor) for measuring the inclination of the airframe, a wind power sensor for measuring wind power, and the like may be added. Further, these sensors may be duplicated or multiplexed.
  • the flight controller 501 may use only one of them, and if it fails, it may switch to an alternative sensor for use. Alternatively, a plurality of sensors may be used at the same time, and if the measurement results do not match, it may be considered that a failure has occurred.
  • the flow rate sensor 510 is a means for measuring the flow rate of the sprayed material, and is provided at a plurality of locations on the route from the tank 104 to the nozzles 103-1 and 103-2.
  • the liquid drainage sensor 511 is a sensor that detects that the amount of sprayed material has fallen below a predetermined amount.
  • the growth diagnosis camera 512a is a means for photographing the field 403 and acquiring data for the growth diagnosis.
  • the growth diagnostic camera 512a is, for example, a multispectral camera and receives a plurality of light rays having different wavelengths from each other.
  • the plurality of light rays are, for example, red light (wavelength of about 650 nm) and near-infrared light (wavelength of about 774 nm).
  • the growth diagnosis camera 512a may be a camera that receives visible light.
  • the pathological diagnosis camera 512b is a means for photographing the crops growing in the field 403 and acquiring the data for the pathological diagnosis.
  • the pathological diagnosis camera 512b is, for example, a red light camera.
  • the red light camera is a camera that detects the amount of light in the frequency band corresponding to the absorption spectrum of chlorophyll contained in the plant, and detects, for example, the amount of light in the band around 650 nm.
  • the pathological diagnosis camera 512b may detect the amount of light in the frequency bands of red light and near infrared light.
  • the pathological diagnosis camera 512b may include both a red light camera and a visible light camera such as an RGB camera that detects the amount of light having at least three wavelengths in the visible light band.
  • the pathological diagnosis camera 512b may be a multispectral camera, and may detect the amount of light in the band having a wavelength of 650 nm to 680 nm.
  • the growth diagnosis camera 512a and the pathology diagnosis camera 512b may be realized by one hardware configuration.
  • the obstacle detection camera 513 is a camera for detecting a drone 100 intruder, and since the image characteristics and the orientation of the lens are different from the growth diagnosis camera 512a and the pathology diagnosis camera 512b, the growth diagnosis camera 512a and the pathology diagnosis camera 512b are used. Is another device.
  • the switch 514 is a means for the user of the drone 100 to make various settings.
  • the obstacle contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard part, has come into contact with an intruder such as an electric wire, a building, a human body, a standing tree, a bird, or another drone. ..
  • the obstacle contact sensor 515 may be replaced by a 6-axis gyro sensor 505.
  • the cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the cover for internal maintenance are in the open state.
  • the inlet sensor 517 is a sensor that detects that the inlet of the tank 104
  • sensors may be selected according to the cost target and performance requirements of the drone 100, and may be duplicated / multiplexed.
  • a sensor may be provided at the base station 404, the actuator 401, or some other place outside the drone 100, and the read information may be transmitted to the drone 100.
  • the base station 404 may be provided with a wind sensor to transmit information on wind power and wind direction to the drone 100 via the mobile communication network 400 or Wi-Fi communication.
  • the flight controller 501 sends a control signal to the pump 106 to adjust the discharge amount and stop the discharge.
  • the current status of the pump 106 (for example, the number of revolutions) is fed back to the flight controller 501.
  • the LED107 is a display means for notifying the operator of the drone 100 of the status of the drone 100.
  • Display means such as a liquid crystal display may be used in place of or in addition to the LED.
  • the buzzer is an output means for notifying the state of the drone 100 (particularly the error state) by an audio signal.
  • the communication device 530 is connected to a mobile communication network 400 such as 3G, 4G, and LTE, and can communicate with a farming cloud composed of a base station and a server and an operator via the mobile communication network 400. Will be done.
  • other wireless communication means such as Wi-Fi, infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection.
  • the speaker 520 is an output means for notifying the state of the drone 100 (particularly an error state) by means of a recorded human voice, synthetic voice, or the like. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 in flight. In such cases, voice communication is effective.
  • the warning light 521 is a display means such as a strobe light for notifying the state of the drone 100 (particularly the error state).
  • the flight control system described above includes the flight availability determination device 406 according to the present invention, which is shown in FIG.
  • the flight availability determination device 406 is based on a range within a predetermined distance from the predetermined base station 404, which is an effective range in which the base station 404 can provide information for generating an accurate position of the drone 100. It is a device that determines whether or not 100 flights are possible.
  • the flight availability determination device 406 can be configured by a server 405 or the like that constitutes a flight control system, or can be incorporated as a module that constitutes the server 405 or the drone 100. Further, one functional part of the flight control system can be configured as a device such as a computer provided separately from the server 405 and the drone 100.
  • the flight availability determination device 406 has at least a position information acquisition processing unit 4061, a determination processing unit 4062, a regulation processing unit 4063, an installation recommended position search unit 4064, a map information storage unit 4065, as functional units that realize its characteristic functions. It has a field information storage unit 4066.
  • the position information acquisition processing unit 4061 acquires the three-dimensional coordinates of the drone 100 and the coordinates of the field 403 as position information.
  • the position information acquisition processing unit 4061 can be acquired directly from the base station 404 by the flight availability determination device 406, or can be acquired from the drone 100 that has acquired the position information from the base station 404.
  • the information acquired by the position information acquisition processing unit 4061 may be position information that can specify the position of a predetermined object by itself, or information required to specify the position of the predetermined object. It may be. If the information acquired by the position information acquisition processing unit 4061 is information required to specify the position of a predetermined object, the position information acquisition processing unit 4061 performs the predetermined information processing by appropriate information processing. Based on the information required to locate an object in, it is possible to generate location information that can identify the location of a given object by itself.
  • the determination processing unit 4062 sets the effective range for the predetermined drone 100 so that the drone 100 can generate the position information with the accuracy required for flight based on the information provided by the base station 404 to the drone 100 based on the position information of the drone 100. Determine if it is located. Further, the determination processing unit 4062 is effective in generating the position information of the predetermined field 403 with the accuracy required for the drone 100 based on the information provided by the base station 404 to the drone 100 based on the position information of the field 403. Determine if it is in the range.
  • the effective range is a range of a predetermined distance from the predetermined base station 404, for example, a range within a certain radius centered on the base station 404, and the position information of the accuracy required for the drone 100 to fly. It is a range that can be regarded as being able to generate.
  • the numerical value of the radius centered on the base station 404 is stored in advance in a predetermined reference table, and the flight availability determination device 406 determines the effective range for each base station 404 by referring to this reference table. be able to. Then, based on the coordinates of the drone 100, it can be determined that the drone 100 within the effective range of the base station 404 can fly, and the drone 100 outside the effective range of the base station 404 cannot fly.
  • the field included in the effective range of the base station 404 is set as the field 403 in which the drone 100 can fly, and the field 403 not included in the effective range of the base station 404 is set as the field 403 in which the drone 100 cannot fly. It can also be determined to be field 403.
  • the term "flyable” as used herein means that the drone 100 can acquire accurate position information based on the information from the base station 404, which allows the drone 100 to perform work in the field 403. Means.
  • the regulation processing unit 4063 is located in the effective range of the drone 100 or the field 403 to which the drone 100 is scheduled to fly. It regulates the flight of the drone 100 if it is not, or if the drone 100 or the field 403 to which the drone 100 is scheduled to fly is located outside the effective range.
  • the installation recommended position search unit 4064 can keep the one or more fields 403 within the effective range for one or more fields 403 selected by the user as the candidate fields 403 for the drone 100 to fly.
  • the installation position of one base station 404 that is, the recommended installation position is searched.
  • the search for the recommended installation position can be performed by various methods. For example, based on the coordinates of the boundary line of the field 403, the coordinates of the base station 404 temporarily set at an arbitrary position and the radius centered on the coordinates of the base station 404. By comparing with the coordinates of the effective range where is a certain distance, the position of the base station 404 in which the field 403 fits can be obtained.
  • the recommended installation position of the base station 404 can be displayed on the map displayed on the display.
  • the base station 404 Even if the base station 404 is installed at any position, if all the fields 403 do not fall within the effective range, that fact may be output as a search result, or a plurality of base stations 404 may be used. If all the fields 403 can be contained in the effective range by installing the plurality of base stations 404, the recommended installation positions of the plurality of base stations 404 may be output as the search result.
  • the recommended installation position search unit 4064 also refers to the recommended installation position of at least one base station 404 that can keep the one or more drones 100 within the effective range for one or more drones 100 selected by the user. You can also search for.
  • the search for the recommended installation position in this case can also be performed by various methods. For example, based on the position coordinates of the drone 100, centering on the coordinates of the base station 404 temporarily set at an arbitrary position and the coordinates of the base station 404. By comparing with the coordinates of the effective range where the radius is a constant distance, the position of the base station 404 in which the drone 100 fits can be obtained.
  • the search result can be output in the same manner as when the recommended installation position of the base station 404 is searched for the field 403.
  • the map information storage unit 4065 is a storage unit that stores information related to the map that can grasp the position of the field 403. By referring to the map information storage unit 4065, the user can display a desired map on the display of the actuator 401. In addition, the field 4031 and the drone 100 can be displayed in a superimposed manner on the map, and their positions can be grasped.
  • the field information storage unit 4066 is a storage unit that stores information about the field 403 in which the drone 100 flies and sprays chemicals and the like. At least, as the information of the field 403, the field information storage unit 4066 stores the position information capable of specifying the position of the field 403, such as the three-dimensional coordinates of the boundary of the field 403.
  • the position information of the field 403 the data of the aerial photograph or the farmland bank may be referred to, or the data input by the operator may be used.
  • the coordinate information of the field 403 may be surveyed by a device having a function of a mobile station of RTK-GNSS, and the survey result may be received and acquired.
  • FIG. 9 shows an embodiment of a screen displayed on the display 4011 of the operating device 401 according to the present invention.
  • the information displayed on this screen is displayed as a result of appropriately executing the functions provided in the flight availability determination device 406.
  • the map stored in the map information storage unit 4065 is displayed on the screen, and the fields 4031, 4032, 4033, 4034, 4035, 4036, the base station 4041, 4042, and the base station 4041 are displayed on the map.
  • the boundary lines 4041a and 4042a of the effective range of 4042 are displayed in an overlapping manner.
  • a menu screen for selecting a plurality of fields 403 under the control of the user may be displayed, and a map around the selected fields 403 is displayed from the map information storage unit 4065. It may be read out.
  • the map is a map including the field 403 to be sprayed with the chemicals, and may be an aerial photograph, a topographic map, or a superposed display thereof.
  • the scale and position may be adjustable by gesture operation or the like.
  • an icon or the like indicating the current position of the drone 100 may be displayed in real time on the map.
  • the image of the field 403 taken by the cameras 512 and 513 of the drone 100 may be displayed by switching to the map display or together with the map display.
  • the planned flight route of the drone 100 may be displayed on an aerial photograph or a map.
  • Fields 4031, 4032, 4033, 4034, 4035, 4036 are examples of field 403 described above.
  • Base stations 4041 and 4042 are shown in the installation coordinates on the map, and at a position with a predetermined radius centered on each base station 4041 and 4042, a boundary line that is the outer edge of the effective range of each base station 4041 and 4042. 4041a and 4042a are displayed.
  • the fields 4031, 4032, 4033, 4034, 4035, 4036 displayed on the map are out of the effective range. It is displayed visually distinguishable from the fields 4034, 4035, 4036 in.
  • the fields 4031, 4032, 4033 within the effective range are shaded inside the image, while the fields 4034, 4035, 4036 outside the effective range are inside the image. It is in an unfilled state.
  • such a display method is an example, and any identification effect may be imparted as long as the inside and outside of the effective range can be visually distinguished.
  • the field 4034 which is only partially within the effective range of the base station 4041 and the field 4035 which is not completely within the effective range are both regarded as the field 403 which is not within the effective range.
  • the effective range of the base station 404 can be displayed by various modes such as filling the range with a predetermined color and displaying the range regardless of the boundary line.
  • the effective range in which the base station 404 can effectively provide the position information on the map it is possible to grasp whether or not the predetermined field 403 is within the effective range, and as a result, it is possible to grasp the field 403 to which the drone 100 can fly.
  • FIG. 10 shows another embodiment of the screen displayed on the display 4011 of the actuator 401 according to the present invention.
  • a map is displayed on the screen as in the example of FIG. 9, and on the map, the fields 4031, 4032, 4033, 4034, 4035, 4036, the base station 4041, 4042, and the base station 4041, 4042 are displayed.
  • the boundary lines 4041a and 4042a of the effective range are displayed in an overlapping manner.
  • the field 4036 is hidden in the field list 810.
  • the field list 810 of the field 403 stored in the field information storage unit 4066 is displayed. Further, in the field list 810, each field 403 is listed so that it can be grasped whether or not it is within the effective range of the base station 4041 specified by the user among the base stations 4041 and 4042 on the map. There is.
  • the example of FIG. 10 shows the case where the base station 4041 is specified by the user, and the fields 4031, 4032 within the effective range of the base station 4041 and the fields 4033, 4034, 4035, 4036 not within the effective range. Are listed in a distinguishable manner. Also, on the map, only the fields 4031 and 4032 within the effective range of the base station 4041 specified by the user are displayed with diagonal lines so that they can be visually grasped.
  • the base station 4041 specified by the user is displayed so as to be distinguishable from other base stations 4042 not specified by the user.
  • the base station 4041 specified by the user is displayed as a solid line together with the boundary line 4041a indicating its effective range, whereas the base station 4042 not specified by the user has its effective range. It is displayed as a broken line along with the boundary line 4042a indicating.
  • the fields 403 displayed in the field list 810 may be individually selected so that the selected field 403 indicates which field 403 on the map.
  • the selected field 403 may be the center of the screen, or the selected field 403 may blink so as to be distinguishable from other fields 403.
  • the fields 403 are numbered so that the correspondence between the fields 403 displayed in the field list 810 and the fields 403 on the map can be understood. Further, in the field list 810, the coordinates of each field 403 are displayed.
  • FIG. 11 shows another embodiment of the screen displayed on the display 4011 of the actuator 401 according to the present invention. Similar to the example in FIG. 9, the fields 4031, 4032, 4033, 4034, 4035, 4036, the base stations 4041, 4042, and the boundary lines 4041a, 4042a of the effective range of the base stations 4041 and 4042 are superimposed on the screen as in the example of FIG. In addition to being displayed in, the current position of the drone 100-1,100-2,100-3,100-4 is displayed. Drones 100-1,100-2,100-3,100-4 are examples of the drone 100 described above.
  • each drone 100-1,100-2,100-3,100-4 is displayed so that it can be distinguished whether it is within the effective range of any of the base stations 4041 and 4042, thereby making it effective. It is possible to grasp the drone 100 that can be included and can fly, and the drone 100 that is not included in the effective range and cannot fly.
  • drones 100-1,100-2 that are within the effective range of any of the base stations 4041 and 4042 are displayed in white, and drones 100-3,100 that are not within the effective range of any of the base stations 4041 and 4042 are displayed.
  • -4 is painted black.
  • the drone 100 capable of effectively acquiring the position information by any of the base stations 4041 and 4042 can be grasped, and the field 403 to which the drone 100 can be flown can be visually grasped. That is, in the example of FIG. 11, it can be seen that the drone 100-1 is made to work in the fields 4031 and 4032.
  • Whether or not the drone 100 displayed on the map is within the effective range of any of the base stations 4041 and 4042 is determined by the determination processing unit 4062, and the processing result by the determination processing unit 4062 is determined. It is reflected on the screen.
  • the display indicating whether or not the drone 100 on the map is within the effective range of any of the base stations 404 can be displayed in various modes regardless of this example, and only the drone 100 within the effective range is mapped. It is also possible to display it on the top.
  • FIG. 12 shows another embodiment of the screen displayed on the display 4011 of the actuator 401 according to the present invention.
  • the fields 4031, 4032, 4033, 4034, 4035, 4036, the base station 4041, 4042, the boundary line of the effective range of the base station 4041, 4042 4041a, 4042a, the drone 100 The current positions of -1,100-2,100-3,100-4 are displayed in a superimposed manner. Further, in this example, a flight status display area 805 and a detailed status 806 are provided.
  • the flight status display area 805 is arranged in a band shape at the top of the screen, and displays the flight time, flight speed, altitude, etc. of the predetermined drone 100 specified by the user. Further, on the left side of the illustration of the flight status display area 805, the current status of the predetermined drone 100 specified by the user, for example, during flight preparation, drug replenishment, takeoff, flight, emergency evacuation, etc. is displayed. There is.
  • the detailed status 806 is whether or not it is within the effective range of the base stations 4041 and 4042 based on the position information of the drone 100 as the detailed information of the predetermined drone 100 specified by the user, and further specified by the operator 401. Based on the position information of the field 403, it indicates whether or not it is possible to fly in the designated field 403 to be flown from now on.
  • the example in Figure 12 shows the case where drone 100-3 is specified by the user. Since the drone 100-3 is not in the effective range of any of the base stations 4041 and 4042, it is displayed as an error (cannot fly because it is out of the effective range) in the detailed status 806.
  • FIG. 13 shows another embodiment of the screen displayed on the display 4011 of the actuator 401 according to the present invention. Similar to the example of FIG. 9, the fields 4031, 4032, 4033, 4034, 4035, 4036 are displayed on the screen as in the example of FIG. In this screen example, the recommended installation position of the base station 4043 that can include the field 403 specified by the user in the effective range is shown. That is, in this example, among the fields 4031, 4032, 4033, 4034, the fields 4032, 4034 were designated by the user, and the recommended installation position of the base station 4043 was searched by the recommended installation position search unit 4064 accordingly. The result is shown.
  • the boundary line 4043a indicating the effective range of the base station 4043 shown at the recommended installation position is also displayed.
  • the position of the base station 404 suitable for flying the drone 100 to the predetermined field 403 can be visually grasped at the stage where the base station 404 is not installed.
  • the coordinates of the recommended installation position of the base station 4043 are also displayed.
  • the drone 100 or the field to be flown is within the effective range where the drone 100 itself can generate accurate position information for flight control based on the satellite radio wave information received by the base station 404.
  • the process of permitting or restricting flight depending on the presence or absence of 403 will be described.
  • the flight control system accepts this (S101).
  • the flight control system acquires the position information of the drone 100 designated by the position information acquisition processing unit 4061.
  • the position information acquisition processing unit 4061 acquires the position information of the field 403 to be flown designated by the actuator 401 (S102).
  • the determination processing unit 4062 determines whether or not the designated drone 100 or the field 403 is within the effective range of the base station 404 (S103).
  • the regulation processing unit 4063 regulates the flight operation of the drone 100 (S105).

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

【課題】ドローンの位置情報を提供する基地局の有効範囲を容易に把握可能とする。 【解決手段】表示装置は、予め定められた基地局4041,4042から所定距離範囲である有効範囲の境界線4041a,4042aを地図上に表示すると共に、当該有効範囲に含まれる圃場4031,4032,4033をドローンの飛行可能な圃場として表示し、当該有効範囲に含まれない圃場4034,4035,4036をドローンの飛行不可能な圃場として、当該有効範囲に含まれる圃場4031,4032,4033と区別可能に表示する。

Description

表示装置、ドローンの飛行可否判定装置、ドローン、ドローンの飛行可否判定方法、およびコンピュータプログラム
 本願発明は、表示装置、ドローンの飛行可否判定装置、ドローンの飛行可否判定方法、およびコンピュータプログラムに関する。
 一般にドローンと呼ばれる小型ヘリコプター(マルチコプター)の応用が進んでいる。その重要な応用分野の一つとして農地(圃場)への農薬や液肥などの薬剤散布が挙げられる(たとえば、特許文献1)。比較的狭い農地においては、有人の飛行機やヘリコプターではなくドローンの使用が適しているケースが多い。
 準天頂衛星システムやRTK-GPS(Real Time Kinematic - Global Positioning System)などの技術によりドローンが飛行中に自機の絶対位置をセンチメートル単位で正確に知ることができるようになったことで、日本において典型的な狭く複雑な地形の農地でも、人手による操縦を最小限として自律的に飛行し、効率的かつ正確に薬剤散布を行なえるようになっている。
 この点、ドローンなどの移動体の位置情報を表示する技術として、特許文献2には、各種の移動体の現在地情報と、移動体の現在地情報に関連する多様な各種情報を、移動体の現在地に依存せぬ場所の利用者に供給する移動体情報表示システムが開示されている。
 特許文献3には、高さ情報を含む地図データに基づいて、地面までの距離が所定の範囲内を飛行するように制御する飛行制御部と、飛行位置を示す位置情報を取得する位置情報取得部と、携帯端末が受信可能な報知信号を送信するとともに、報知信号に対する応答信号を受信する通信制御部と、通信制御部が応答信号を受信した場合に、応答信号を取得したときの飛行位置を示す位置情報を含む応答信号を受信したことを示す報告情報を出力する出力部とを有する飛行装置が記載されている。
 特許文献4には、航空機の運行に係わるそれぞれの空域に対して、その位置と、その高度(上下方向の範囲)とを対応づけた空域データベースを記憶手段に記憶させて、航空機の現在高度情報をもとに空域データベースを参照して、航空機の現在位置周辺に存在する空域のうち自機高度を含む空域を表示する表示器が開示されている。
再公表公報 再表2017/175804 特開2019-185778号公報 特開2019-18847号公報 特開2000-309299号公報
 ドローンを安全に飛行させることができる有効範囲を容易に把握可能とする。
 本発明の一の観点に係る表示装置は、予め定められた基地局から所定距離範囲である有効範囲を地図上に表示すると共に、当該有効範囲に含まれる圃場をドローンの飛行可能な圃場として表示し、当該有効範囲に含まれない圃場をドローンの飛行不可能な圃場として、当該有効範囲に含まれる圃場と区別可能に表示する。
 前記有効範囲に含まれる圃場と前記有効範囲に含まれない圃場を区別可能なリスト、をさらに表示するものとしてもよい。
 また、前記有効範囲と、前記有効範囲に含まれる圃場と、前記有効範囲に含まれない圃場をディスプレイに表示させた地図上に重畳的に表示する、ものとしてもよい。
 また、前記ディスプレイに表示させた地図上において、飛行可能な前記ドローンと飛行不可能な前記ドローンとして、前記有効範囲に含まれるドローンと前記有効範囲に含まれないドローンとを区別可能に表示するものとしてもよい。
 また、前記ドローンの位置情報に基づき、前記有効範囲外にある所定のドローンが飛行できないこと、をさらに表示するものとしてもよい。
 また、本発明の別の観点に係る表示装置は、ドローンが飛行する候補の圃場として選択された複数の圃場、もしくは選択された複数の当該ドローンと、予め定められた基地局から所定距離範囲である有効範囲に選択された当該圃場又は当該ドローンの位置が収まる少なくとも1箇所の基地局の設置推奨位置と、をディスプレイに表示させた地図上に表示する。
 また、本発明の別の観点に係るドローンの飛行可否判定装置は、ドローン又は圃場の位置情報を取得する位置情報取得処理部と、前記ドローン又は前記圃場の位置情報に基づき、予め定められた基地局から所定距離範囲である有効範囲に前記ドローン又は前記圃場が位置しているか否かを判定する判定処理部と、前記ドローン又は前記圃場が前記有効範囲外に位置していると判定した場合に、前記ドローンが飛行することを規制する規制処理部と、を有する。
 また、本発明の別の観点に係るドローンは、ドローン又は圃場の位置情報に基づき、予め定められた基地局から所定距離範囲である有効範囲に当該ドローン又は当該圃場が位置しているか否かを判定する判定処理部と、前記ドローン又は前記圃場が前記有効範囲外に位置していると判定した場合に、前記ドローンが飛行することを規制する規制処理部と、を有する。
 また、本発明の別の観点に係るコンピュータプログラムは、ディスプレイに表示させた地図上において、予め定められた基地局から所定距離範囲である有効範囲と、当該有効範囲に含まれるドローンの飛行可能な圃場と、当該有効範囲に含まれないドローンの飛行不可能な圃場と、を表示させ、前記ドローンの飛行可能な圃場と、前記ドローンの飛行不可能な圃場とを区別可能に表示させる。
 また、本発明の別の観点に係るドローンの飛行可否判定方法は、コンピュータが、ドローン又は圃場の位置情報を取得する位置情報取得処理と、前記ドローン又は前記圃場の位置情報に基づき、予め定められた基地局から所定距離範囲である有効範囲に前記ドローン又は前記圃場が位置しているか否かを判定する判定処理と、前記ドローン又は前記圃場が前記有効範囲外に位置していると判定した場合に、前記ドローンが飛行することを規制する規制処理と、を実行する。
 また、本発明の別の観点に係るコンピュータプログラムは、コンピュータに対し、ドローン又は前記圃場の位置情報を取得する位置情報取得処理と、前記ドローン又は前記圃場の位置情報に基づき、予め定めされた基地局から所定距離範囲である有効範囲に前記ドローン又は前記圃場が位置しているか否かを判定する判定処理と、前記ドローン又は前記圃場が前記有効範囲外に位置していると判定した場合に、前記ドローンが飛行することを規制する規制処理と、を実行させる。
 なお、コンピュータプログラムは、インターネット等のネットワークを介したダウンロードによって提供したり、CD-ROMなどのコンピュータ読取可能な各種の記録媒体に記録して提供したりすることができる。
 ドローンを安全に飛行させることができる有効範囲を容易に把握可能とする。
本願発明に係るドローンの平面図である。 上記ドローンの正面図である。 上記ドローンの右側面図である。 上記ドローンの背面図である。 上記ドローンの斜視図である。 上記ドローンの飛行制御システムの全体概念図である。 上記ドローンが有する機能ブロック図である。 本願発明に係る飛行可否判定装置の機能ブロック図である。上記ドローンに接続される操作器に表示されるメイン画面の例を示す模式図である。 本願発明に係る表示器を構成する操作器のディスプレイ上に表される画面の一例である。 上記操作器のディスプレイ上に表される画面の一例である。 上記操作器のディスプレイ上に表される画面の一例である。 上記操作器のディスプレイ上に表される画面の一例である。 上記操作器のディスプレイ上に表される画面の一例である。 本願発明に係る飛行可否判定装置によって実行される処理の一例を示した処理フロー図である。
 以下、図を参照しながら、本願発明を実施するための形態について説明する。図はすべて例示である。以下の詳細な説明では、説明のために、開示された実施形態の完全な理解を促すために、ある特定の詳細について述べられている。しかしながら、実施形態は、これらの特定の詳細に限られない。また、図面を単純化するために、周知の構造および装置については概略的に示されている。
●ドローン
 まず、本発明にかかるドローンの構成について説明する。本願明細書において、ドローンとは、動力手段(電力、原動機等)、操縦方式(無線であるか有線であるか、および、自律飛行型であるか手動操縦型であるか等)を問わず、複数の回転翼を有する飛行体全般を指すこととする。
 図1乃至図5に示すように、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4b(ローターとも呼ばれる)は、ドローン100を飛行させるための手段であり、飛行の安定性、機体サイズ、および、電力消費量のバランスを考慮し、8機(2段構成の回転翼が4セット)備えられている。各回転翼101は、ドローン100の筐体110からのび出たアームにより筐体110の四方に配置されている。すなわち、進行方向左後方に回転翼101-1a、101-1b、左前方に回転翼101-2a、101-2b、右後方に回転翼101-3a、101-3b、右前方に回転翼101-4a、101-4bがそれぞれ配置されている。なお、ドローン100は図1における紙面下向きを進行方向とする。
 回転翼101の各セットの外周には、略円筒形を形成する格子状のプロペラガード115-1,115-2,115-3,115-4が設けられ、回転翼101が異物と干渉しづらくなるようにしている。図2および図3に示されるように、プロペラガード115-1,115-2,115-3,115-4を支えるための放射状の部材は水平ではなくやぐら状の構造である。衝突時に当該部材が回転翼の外側に座屈することを促し、ローターと干渉することを防ぐためである。
 回転翼101の回転軸から下方には、それぞれ棒状の足107-1,107-2,107-3,107-4が伸び出ている。
 モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bは、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bを回転させる手段(典型的には電動機だが発動機等であってもよい)であり、一つの回転翼に対して1機設けられている。モーター102は、推進器の例である。1セット内の上下の回転翼(たとえば、101-1aと101-1b)、および、それらに対応するモーター(たとえば、102-1aと102-1b)は、ドローン100の飛行の安定性等のために軸が同一直線上にあり、かつ、互いに反対方向に回転する。
 ノズル103-1、103-2は、散布物を下方に向けて散布するための手段であり4機備えられている。なお、本願明細書において、散布物とは、農薬、除草剤、液肥、殺虫剤、種、および、水などの圃場に散布される液体または粉体を一般的に指すこととする。
 タンク104は散布物を保管するためのタンクであり、重量バランスの観点からドローン100の重心に近い位置でかつ重心より低い位置に設けられている。ホース105は、タンク104と各ノズル103-1、103-2とを接続する手段であり、硬質の素材から成り、当該ノズル103-1、103-2を支持する役割を兼ねていてもよい。ポンプ106は、散布物をノズル103-1、103-2から吐出するための手段である。
●飛行制御システム
 図6に本願発明に係るドローン100の飛行制御システムの全体概念図を示す。本図は模式図であって、縮尺は正確ではない。同図において、ドローン100、操作器401、基地局404およびサーバ405が移動体通信網400を介して互いに接続されている。これらの接続は、移動体通信網400に代えてWi-Fiによる無線通信を行ってもよいし、一部又は全部が有線接続されていてもよい。また、構成要素間において、移動体通信網400に代えて、又は加えて、直接接続する構成を有していてもよい。
・ドローン
 ドローン100および基地局404は、GPS等のGNSSの測位衛星410と通信を行い、ドローン100および基地局404座標を取得する。ドローン100および基地局404が通信する測位衛星410は複数あってもよい。
・操作器
 操作器401は、使用者の操作によりドローン100に指令を送信するための機器であると共に、ドローン100から受信した情報(たとえば、位置、散布物の貯留量、電池残量、カメラ映像等)やサーバ405等が実行したコンピュータプログラムの実行結果を表示する表示装置でもある。
 この操作器401は、コンピュータプログラムを稼働する一般的なタブレット端末等の携帯情報機器によって実現されてよい。操作器401は、ユーザインターフェース装置としての入力部および表示部を備える。本願発明に係るドローン100は自律飛行を行なうよう制御されるが、離陸や帰還などの基本操作時、および、緊急時にはマニュアル操作が行なえるようになっていてもよい。携帯情報機器に加えて、緊急停止専用の機能を有する非常用操作器(図示していない)を使用してもよい。非常用操作器は緊急時に迅速に対応が取れるよう大型の緊急停止ボタン等を備えた専用機器であってもよい。
 さらに、操作器401とは別に、操作器401に表示される情報の一部又は全部を表示可能な小型携帯端末、例えばスマートホンがシステムに含まれていてもよい。小型携帯端末は、例えば基地局404と接続されていて、基地局404を介してサーバ405からの情報等を受信可能である。
 この小型携帯端末の表示部には、ドローン100の運転に関し予測される動作の情報、より具体的にはドローン100が発着地点に帰還する予定時刻や、帰還時に使用者が行うべき作業の内容等の情報が適宜表示される。また、小型携帯端末からの入力に基づいて、ドローン100の動作を変更してもよい。
・圃場
 圃場403は、ドローン100が散布物を散布する対象となる田圃や畑等である。実際には、圃場403の地形は複雑であり、事前に地形図が入手できない場合、あるいは、地形図と現場の状況が食い違っている場合がある。通常、圃場403は家屋、病院、学校、他の作物圃場、道路、鉄道等と隣接している。また、圃場403内に、建築物や電線等の侵入者が存在する場合もある。
・基地局
 基地局404は、RTK-GNSS基地局として機能し、所定の範囲内に位置するドローン100に対してドローン100の正確な位置を生成するための情報を提供できるようになっている。また、Wi-Fi通信の親機機能等を提供する装置であってもよい。Wi-Fi通信の親機機能とRTK-GNSS基地局が独立した装置であってもよい。また、基地局404は、3G、4G、およびLTE等の移動通信システムを用いて、サーバ405と互いに通信可能であってもよい。基地局404およびサーバ405は、営農クラウドを構成する。
・サーバ
 サーバ405は、典型的にはクラウドサービス上で運営されているコンピュータ群と関連ソフトウェアであり、操作器401と携帯電話回線等で無線接続されていてもよい。サーバ405は、ハードウェア装置により構成されていてもよい。サーバ405は、ドローン100が撮影した圃場403の画像を分析し、作物の生育状況を把握して、飛行ルートを決定するための処理を行ってよい。また、保存していた圃場403の地形情報等をドローン100に提供してよい。加えて、ドローン100の飛行および撮影映像の履歴を蓄積し、様々な分析処理を行ってもよい。
 通常、ドローン100は圃場403の外部にある発着地点から離陸し、圃場403に散布物を散布した後に、あるいは、散布物の補充や充電等が必要になった時に発着地点に帰還する。発着地点から目的の圃場403に至るまでの飛行経路(侵入経路)は、サーバ405等で事前に保存されていてもよいし、使用者が離陸開始前に入力してもよい。発着地点は、ドローン100に記憶されている座標により規定される仮想の地点であってもよいし、物理的な発着台があってもよい。
・フライトコントローラー
 図7に本願発明に係る散布用ドローン100の実施例の制御機能を表したブロック図を示す。フライトコントローラー501は、ドローン100全体の制御を司る構成要素であり、具体的にはCPU、メモリー、関連ソフトウェア等を含む組み込み型コンピュータであってよい。フライトコントローラー501は、操作器401から受信した入力情報、および、後述の各種センサーから得た入力情報に基づき、ESC(Electronic Speed Control)等の制御手段を介して、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの回転数を制御することで、ドローン100の飛行を制御する。モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの実際の回転数はフライトコントローラー501にフィードバックされ、正常な回転が行なわれているかを監視できる構成になっている。あるいは、回転翼101に光学センサー等を設けて回転翼101の回転がフライトコントローラー501にフィードバックされる構成でもよい。
 フライトコントローラー501が使用するソフトウェアは、機能拡張・変更、問題修正等のために記憶媒体等を通じて、または、Wi-Fi通信やUSB等の通信手段を通じて書き換え可能になっている。この場合において、不正なソフトウェアによる書き換えが行なわれないように、暗号化、チェックサム、電子署名、ウィルスチェックソフト等による保護が行われている。また、フライトコントローラー501が制御に使用する計算処理の一部が、操作器401上、または、サーバ405上や他の場所に存在する別のコンピュータによって実行されてもよい。フライトコントローラー501は重要性が高いため、その構成要素の一部または全部が二重化されていてもよい。
 フライトコントローラー501は、通信機530を介して、さらに、移動体通信網400を介して操作器401とやり取りを行ない、必要な指令を操作器401から受信すると共に、必要な情報を操作器401に送信できる。この場合に、通信には暗号化を施し、傍受、成り済まし、機器の乗っ取り等の不正行為を防止できるようにしておいてもよい。基地局404は、移動体通信網400を介した通信機能に加えて、RTK-GPS基地局の機能も備えている。RTK基地局404の信号とGPS等の測位衛星410からの信号を組み合わせることで、フライトコントローラー501により、ドローン100の絶対位置を数センチメートル程度の精度で測定可能となる。フライトコントローラー501は重要性が高いため、二重化・多重化されていてもよく、また、特定のGPS衛星の障害に対応するため、冗長化されたそれぞれのフライトコントローラー501は別の衛星を使用するよう制御されていてもよい。
 6軸ジャイロセンサー505はドローン100機体の互いに直交する3方向の加速度を測定する手段であり、さらに、加速度の積分により速度を計算する手段である。6軸ジャイロセンサー505は、上述の3方向におけるドローン100機体の姿勢角の変化、すなわち角速度を測定する手段である。地磁気センサー506は、地磁気の測定によりドローン100機体の方向を測定する手段である。気圧センサー507は、気圧を測定する手段であり、間接的にドローン100の高度も測定することもできる。レーザーセンサー508は、レーザー光の反射を利用してドローン100機体と地表との距離を測定する手段であり、IR(赤外線)レーザーであってもよい。ソナー509は、超音波等の音波の反射を利用してドローン100機体と地表との距離を測定する手段である。これらのセンサー類は、ドローン100のコスト目標や性能要件に応じて取捨選択してよい。また、機体の傾きを測定するためのジャイロセンサー(角速度センサー)、風力を測定するための風力センサーなどが追加されていてもよい。また、これらのセンサー類は、二重化または多重化されていてもよい。同一目的複数のセンサーが存在する場合には、フライトコントローラー501はそのうちの一つのみを使用し、それが障害を起こした際には、代替のセンサーに切り替えて使用するようにしてもよい。あるいは、複数のセンサーを同時に使用し、それぞれの測定結果が一致しない場合には障害が発生したと見なすようにしてもよい。
 流量センサー510は散布物の流量を測定するための手段であり、タンク104からノズル103-1、103-2に至る経路の複数の場所に設けられている。液切れセンサー511は散布物の量が所定の量以下になったことを検知するセンサーである。
 生育診断カメラ512aは、圃場403を撮影し、生育診断のためのデータを取得する手段である。生育診断カメラ512aは例えばマルチスペクトルカメラであり、互いに波長の異なる複数の光線を受信する。当該複数の光線は、例えば赤色光(波長約650nm)と近赤外光(波長約774nm)である。また、生育診断カメラ512aは、可視光線を受光するカメラであってもよい。
 病理診断カメラ512bは、圃場403に生育する作物を撮影し、病理診断のためのデータを取得する手段である。病理診断カメラ512bは、例えば赤色光カメラである。赤色光カメラは、植物に含有されるクロロフィルの吸収スペクトルに対応する周波数帯域の光量を検出するカメラであり、例えば波長650nm付近の帯域の光量を検出する。病理診断カメラ512bは、赤色光と近赤外光の周波数帯域の光量を検出してもよい。また、病理診断カメラ512bとして、赤色光カメラおよびRGBカメラ等の可視光帯域の少なくとも3波長の光量を検出する可視光カメラの両方を備えていてもよい。なお、病理診断カメラ512bはマルチスペクトルカメラであってもよく、波長650nm乃至680nm付近の帯域の光量を検出するものとしてもよい。
 なお、生育診断カメラ512aおよび病理診断カメラ512bは、1個のハードウェア構成により実現されていてもよい。
 障害物検知カメラ513はドローン100侵入者を検知するためのカメラであり、画像特性とレンズの向きが生育診断カメラ512aおよび病理診断カメラ512bとは異なるため、生育診断カメラ512aおよび病理診断カメラ512bとは別の機器である。スイッチ514はドローン100の使用者が様々な設定を行なうための手段である。障害物接触センサー515はドローン100、特に、そのローターやプロペラガード部分が電線、建築物、人体、立木、鳥、または、他のドローン等の侵入者に接触したことを検知するためのセンサーである。なお、障害物接触センサー515は、6軸ジャイロセンサー505で代用してもよい。カバーセンサー516は、ドローン100の操作パネルや内部保守用のカバーが開放状態であることを検知するセンサーである。注入口センサー517はタンク104の注入口が開放状態であることを検知するセンサーである。
 これらのセンサー類はドローン100のコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。また、ドローン100外部の基地局404、操作器401、または、その他の場所にセンサーを設けて、読み取った情報をドローン100に送信してもよい。たとえば、基地局404に風力センサーを設け、風力・風向に関する情報を移動体通信網400経由又はWi-Fi通信経由でドローン100に送信するようにしてもよい。
 フライトコントローラー501はポンプ106に対して制御信号を送信し、吐出量の調整や吐出の停止を行なう。ポンプ106の現時点の状況(たとえば、回転数等)は、フライトコントローラー501にフィードバックされる構成となっている。
 LED107は、ドローン100の操作者に対して、ドローン100の状態を知らせるための表示手段である。LEDに替えて、または、それに加えて液晶ディスプレイ等の表示手段を使用してもよい。ブザーは、音声信号によりドローン100の状態(特にエラー状態)を知らせるための出力手段である。通信機530は、3G、4G、およびLTE等の移動体通信網400と接続されており、移動体通信網400を介して基地局、サーバで構成される営農クラウド、操作器と通信可能に接続される。通信機に替えて、または、それに加えて、Wi‐Fi、赤外線通信、Bluetooth(登録商標)、ZigBee(登録商標)、NFC等の他の無線通信手段、または、USB接続などの有線通信手段を使用してもよい。スピーカー520は、録音した人声や合成音声等により、ドローン100の状態(特にエラー状態)を知らせる出力手段である。天候状態によっては飛行中のドローン100の視覚的表示が見にくいことがあるため、そのような場合には音声による状況伝達が有効である。警告灯521はドローン100の状態(特にエラー状態)を知らせるストロボライト等の表示手段である。これらの入出力手段は、ドローン100のコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。
・飛行可否判定装置
 上述した飛行制御システムは、図8に示される、本願発明に係る飛行可否判定装置406を備えている。
 飛行可否判定装置406は、予め定められた基地局404から所定の距離にある範囲であって、基地局404がドローン100の正確な位置を生成するための情報を提供できる有効範囲に基づき、ドローン100の飛行可否を判定する装置である。
 この飛行可否判定装置406は、飛行制御システムを構成するサーバ405等によって構成することができるほか、サーバ405やドローン100を構成するモジュールとして組み込むこともできる。また、サーバ405やドローン100とは別に設けられたコンピュータ等の装置として、飛行制御システムの一機能部を構成させることもできる。
 飛行可否判定装置406は、その特徴的な機能を実現する機能部として少なくとも、位置情報取得処理部4061、判定処理部4062、規制処理部4063、設置推奨位置検索部4064、地図情報記憶部4065、圃場情報記憶部4066を有する。
 位置情報取得処理部4061は、ドローン100の3次元座標と圃場403の座標を位置情報として取得する。この位置情報取得処理部4061は、飛行可否判定装置406が直接、基地局404から取得することもできるし、基地局404から位置情報を取得したドローン100から取得することもできる。なお、位置情報取得処理部4061が取得する情報は、それ自体で所定のオブジェクトの位置を特定できる位置情報であってもよいし、当該所定のオブジェクトの位置を特定するために必要とされる情報であってもよい。なお、位置情報取得処理部4061が取得した情報が、所定のオブジェクトの位置を特定するために必要とされる情報である場合には、位置情報取得処理部4061は適宜の情報処理により、当該所定のオブジェクトの位置を特定するために必要とされる情報に基づいて、それ自体で所定のオブジェクトの位置を特定できる位置情報を生成することができる。
 判定処理部4062は、所定のドローン100について、ドローン100の位置情報に基づき、基地局404がドローン100へ提供する情報に基づいてドローン100が飛行に必要な精度の位置情報を生成できる有効範囲に位置しているか否かを判定する。また、判定処理部4062は、所定の圃場403について、圃場403の位置情報に基づき、基地局404がドローン100へ提供する情報に基づいてドローン100が飛行に必要な精度の位置情報を生成できる有効範囲に位置しているか否かを判定する。
 有効範囲は、予め定められた基地局404から所定の距離の範囲であって、例えば、基地局404を中心とした一定の半径に収まる範囲であり、ドローン100が飛行に必要な精度の位置情報を生成できるとみなせる範囲である。この基地局404を中心とした半径の数値は例えば、所定の参照テーブルに予め保持されており、飛行可否判定装置406はこの参照テーブルを参照することにより、基地局404ごとにその有効範囲を定めることができる。そして、ドローン100の座標に基づき、基地局404の有効範囲内にいるドローン100は飛行可能とし、基地局404の有効範囲外にいるドローン100は飛行不可能と判定することができる。また、圃場403の座標に基づき、基地局404の有効範囲に含まれる圃場をドローン100の飛行可能な圃場403とし、基地局404の有効範囲に含まれない圃場403をドローン100の飛行不可能な圃場403と判定することもできる。
 なお、ここにいう「飛行可能」とは、ドローン100が正確な位置情報を基地局404からの情報に基づいて取得することができ、これにより当該ドローン100に圃場403で作業を実行させられることを意味する。
 規制処理部4063は、操作器401を介して、使用者がドローン100に対して飛行を指示する操作を実行した際、当該ドローン100又は当該ドローン100が飛行予定の圃場403が有効範囲に位置していない場合に、あるいは当該ドローン100又は当該ドローン100が飛行予定の圃場403が有効範囲外に位置していると場合に、ドローン100の飛行を規制する。
 設置推奨位置検索部4064は、使用者により、ドローン100が飛行する候補の圃場403として選択された一又は複数の圃場403について、当該一又は複数の圃場403を有効範囲に収めることのできる、少なくとも1箇所の基地局404の設置位置、即ち設置推奨位置を検索する。
 設置推奨位置の検索は各種の方法によることができ、例えば、圃場403の境界線の座標に基づき、任意の位置に仮に設定した基地局404の座標と、当該基地局404の座標を中心として半径が一定の距離となる有効範囲の座標とを対比することで、圃場403が収まる基地局404の位置を求めることができる。
 基地局404の設置推奨位置は、ディスプレイに表示させた地図上に表示することができる。
 なお、どのような位置に基地局404を設置したとしても、全ての圃場403が有効範囲に収まらない場合には、その旨を検索結果として出力してもよいし、複数の基地局404を用い、当該複数の基地局404を設置することで全ての圃場403を有効範囲に収めることができる場合には、複数の基地局404の設置推奨位置を検索結果として出力してもよい。
 設置推奨位置検索部4064はまた、使用者により選択された一又は複数のドローン100について、当該一又は複数のドローン100を有効範囲に収めることのできる、少なくとも1箇所の基地局404の設置推奨位置を検索することもできる。
 この場合の設置推奨位置の検索も各種の方法によることができ、例えば、ドローン100の位置座標に基づき、任意の位置に仮に設定した基地局404の座標と、当該基地局404の座標を中心として半径が一定の距離となる有効範囲の座標とを対比することで、ドローン100が収まる基地局404の位置を求めることができる。なお、検索結果は、圃場403に関して基地局404の設置推奨位置を検索した場合と同様に出力できる。
 地図情報記憶部4065は、圃場403の位置を把握することのできる地図に係る情報を記憶した記憶部である。この地図情報記憶部4065を参照することにより、使用者は所望の地図を操作器401のディスプレイ上に表示させることができる。また、当該地図上において、圃場4031やドローン100を重畳的に表示し、その位置を把握することができる。
 圃場情報記憶部4066は、ドローン100が飛行し、薬剤の散布作業等を行う圃場403に関する情報を記憶した記憶部である。この圃場情報記憶部4066には少なくとも、圃場403の情報として、圃場403の境界の3次元座標など、圃場403の位置を特定可能な位置情報が記憶されている。
 ここで、圃場403の位置情報は、航空写真又は農地バンクのデータを参照してもよいし、作業者により入力されるデータを使用してもよい。また、RTK-GNSSの移動局の機能を有する装置により圃場403の座標情報を測量し、当該測量結果を受信することで取得してもよい。
●操作器の画面構成
 図9に、本願発明に係る操作器401のディスプレイ4011に表示される画面の実施例を示す。この画面に表示される情報は、飛行可否判定装置406が備える機能を適宜に実行させた結果として表示されているものである。
 画面上には地図情報記憶部4065に記憶されている地図が表示されており、当該地図上には、圃場4031,4032,4033,4034,4035,4036、基地局4041,4042を、基地局4041,4042の有効範囲の境界線4041a,4042aが重畳的に表示されている。
 なお、当該画面の表示前には、使用者の管理下にある複数の圃場403の選択を行なわせるメニュー画面が表示されてもよく、選択された圃場403周辺の地図が地図情報記憶部4065から読みだされるようになっていてもよい。
 また、地図は、薬剤散布の対象となる圃場403を含む地図であり、航空写真であっても地形図であっても、または、それらの重ね合わせ表示であってよい。縮尺、および、位置が、ジェスチャー操作等で調整可能になっていてもよい。また、地図上には、ドローン100の現在の位置を示すアイコン等がリアルタイムで表示されてもよい。地図表示と切り替えて、あるいは、地図表示と共に、ドローン100のカメラ512、513が撮影した圃場403の画像を表示してもよい。ドローン100の飛行予定ルートが航空写真又は地図上に表示されてもよい。
 圃場4031,4032,4033,4034,4035,4036は上述した圃場403の例である。
 基地局4041,4042は地図上の設置座標に示されており、各基地局4041,4042を中心とした所定の半径の位置に、当該各基地局4041,4042の有効範囲の外縁となる境界線4041a,4042aが表示されている。
 ここで、地図上に表示されている圃場4031,4032,4033,4034,4035,4036のうち、いずれかの基地局4041,4042の有効範囲内にある圃場4031,4032,4033と、有効範囲外にある圃場4034,4035,4036とは視覚的に区別可能に表示されている。本例であれば、有効範囲内にある圃場4031,4032,4033にはその画像の内側に斜線が表示されており、一方、有効範囲外にある圃場4034,4035,4036の画像の内側は何ら塗りつぶされていない状態になっている。もっとも、このような表示方法は一例であり、有効範囲の内外を視覚的に区別可能であれば、どのような識別効果が付与されていてもよい。
 なお、図9の例においては、基地局4041の有効範囲に一部しか収まっていない圃場4034と、有効範囲に全く収まっていない圃場4035はいずれも、有効範囲内にない圃場403としてみなされ、区別されていないが、いずれであるかを区別可能となるように表示してもよい。
 また、基地局404の有効範囲は、境界線によらず、その範囲を所定の色で塗りつぶして表示するなど、各種の態様によって表示することができる。
 この画面例によれば、地図上において、基地局404が有効に位置情報を提供できる有効範囲を把握することができる。また、所定の圃場403が当該有効範囲にあるか否かを把握することができ、その結果、ドローン100が飛行可能な圃場403を把握することができる。
 図10に本願発明に係る操作器401のディスプレイ4011に表示される画面の他の実施例を示す。画面上には図9の例と同様、地図が表示されており、当該地図上には、圃場4031,4032,4033,4034,4035,4036、基地局4041,4042を、基地局4041,4042の有効範囲の境界線4041a,4042aが重畳的に表示されている。なお、図10では、圃場4036は圃場リスト810に隠れいている。
 この例では、圃場情報記憶部4066に記憶されている圃場403の圃場リスト810が表示されている。さらに、圃場リスト810では、各圃場403について、地図上の基地局4041,4042のうち、使用者が指定した基地局4041の有効範囲にあるか否かが把握可能となるようにリスト化されている。図10の例は、基地局4041が使用者によって指定された場合を示しており、当該基地局4041の有効範囲内にある圃場4031,4032と、有効範囲にない圃場4033,4034,4035,4036とが区別可能にリスト化されている。また、地図上においても、使用者が指定した基地局4041の有効範囲にある圃場4031,4032のみ斜線で表示されており、視覚的にも把握できるようになっている。
 地図上において、使用者が指定した基地局4041は、使用者が指定していない他の基地局4042とは区別可能に表示されている。図10の例では、使用者によって指定された基地局4041は、その有効範囲を示す境界線4041aと共に実線表示されているのに対し、使用者によって指定されていない基地局4042は、その有効範囲を示す境界線4042aと共に破線表示されている。
 なお、圃場リスト810にリスト表示されている圃場403は、個別に選択することで、選択された圃場403が地図上のどの圃場403を示すかわかるようになっていてもよい。例えば、選択した圃場403が画面の中心となるようになっていてもよいし、選択された圃場403が明滅するなど、他の圃場403と区別できるようになっていてもよい。
 また、図10の例では、圃場リスト810に表示された圃場403と地図上の圃場403の対応関係が分かるように、圃場403に番号が付されている。また、圃場リスト810では、各圃場403の座標が表示されている。
 図11に本願発明に係る操作器401のディスプレイ4011に表示される画面の他の実施例を示す。画面上には図9の例と同様、地図上に圃場4031,4032,4033,4034,4035,4036、基地局4041,4042、基地局4041,4042の有効範囲の境界線4041a,4042aが重畳的に表示されているほか、ドローン100-1,100-2,100-3,100-4の現在位置が表示されている。
なお、ドローン100-1,100-2,100-3,100-4は、上述したドローン100の例である。
 この例において、各ドローン100-1,100-2,100-3,100-4は、いずれかの基地局4041,4042の有効範囲内にいるか否かが区別可能となるように表示されており、これにより有効範囲に含まれて飛行可能なドローン100と、有効範囲に含まれず飛行不可能なドローン100とを把握できるようになっている。図11の例では、いずれかの基地局4041,4042の有効範囲内にいるドローン100-1,100-2は、白抜き表示され、いずれの基地局4041,4042の有効範囲にもいないドローン100-3,100-4は黒く塗りつぶされている。
 この例によれば、いずれかの基地局4041,4042によって有効に位置情報を取得できるドローン100を把握できると共に、当該ドローン100を飛行させられる圃場403を視覚的に把握することができる。即ち、図11の例では、ドローン100-1に圃場4031,4032で作業させられることが分かる。
 なお、地図上に表示されているドローン100について、いずれかの基地局4041,4042の有効範囲内にいるか否かは、判定処理部4062によって判定されており、かかる判定処理部4062による処理結果が画面上に反映されている。
 また、地図上のドローン100について、いずれかの基地局404の有効範囲にいるか否かを示す表示は、本例に関わらず、各種の態様によることができ、有効範囲にいるドローン100のみを地図上に表示させるといったことも可能である。
 図12に本願発明に係る操作器401のディスプレイ4011に表示される画面の他の実施例を示す。画面上には図11の例と同様、地図上に圃場4031,4032,4033,4034,4035,4036、基地局4041,4042、基地局4041,4042の有効範囲の境界線4041a,4042a、ドローン100-1,100-2,100-3,100-4の現在位置が重畳的に表示されている。さらに、この例では、飛行状況表示領域805、詳細ステータス806が設けられている。
 飛行状況表示領域805は、画面の上部に帯状に配置され、使用者が指定した所定のドローン100の飛行時間、飛行速度、高度等を表示している。また、飛行状況表示領域805の図示左側には、使用者が指定した所定のドローン100の現在のステータス、たとえば、飛行準備中、薬剤補充中、離陸中、飛行中、緊急退避中等が表示されている。
 詳細ステータス806は、使用者が指定した所定のドローン100の詳細情報として、ドローン100の位置情報に基づき、基地局4041,4042の有効範囲にいるか否か、さらには、操作器401で指定された圃場403の位置情報に基づき、これから飛行予定の当該指定された圃場403で飛行可能であるか否かを示している。
 図12の例は、ドローン100-3が使用者によって指定されている場合を示している。当該ドローン100-3は、いずれの基地局4041,4042の有効範囲にもいないため、詳細ステータス806において、エラー(有効範囲外により飛行できない)と表示されている。即ち、いずれの基地局4041,4042の有効範囲にもいないため、基地局4041,4042から受信する情報に基づいて飛行に求められる精度の位置情報を取得することができず、飛行が不可能であることが示されている。
 また、操作器401によって飛行予定の圃場403として圃場4034が選択されていた場合、圃場4034の一部はいずれの基地局4041,4042の有効範囲にもないため、基地局404から受信する情報に基づいて飛行に求められる精度の位置情報を取得することができず、飛行が不可能である。このような場合も、図12に示すようにドローン100の詳細ステータスとしてエラー(有効範囲外により飛行できない)を表示してもよい。
 図13に本願発明に係る操作器401のディスプレイ4011に表示される画面の他の実施例を示す。画面上には図9の例と同様、地図上に圃場4031,4032,4033,4034,4035,4036が表示されている。
 この画面例では、使用者が指定した圃場403を有効範囲に含めることのできる基地局4043の設置推奨位置が示されている。即ち、この例では、圃場4031,4032,4033,4034のうち、圃場4032,4034が使用者によって指定され、これに応じて基地局4043の設置推奨位置が設置推奨位置検索部4064によって検索された結果を示している。
 また図13の例では、設置推奨位置に示された基地局4043の有効範囲を示す境界線4043aも合わせて表示されている。
 この例によれば、基地局404を設置していない段階において、所定の圃場403を対象としてドローン100を飛行させるのに適した基地局404の位置を視覚的にも把握することができる。
 なお、図13の例では、基地局4043の設置推奨位置の座標も合わせて表示されている。
●ドローンの飛行規制処理
 図14により、基地局404の受信した衛星電波の情報に基づいて、ドローン100自らが飛行制御するための正確な位置情報を生成できる有効範囲にドローン100又は飛行予定の圃場403が存在しているか否かによって、飛行を許可又は規制する場合の処理を説明する。
 使用者が操作器401を介して、所定のドローン100について飛行操作を要求すると、飛行制御システムはこれを受け付ける(S101)。
 これに応じて、飛行制御システムは、位置情報取得処理部4061により指定されたドローン100の位置情報を取得する。ここで、位置情報取得処理部4061により、操作器401により指定された飛行予定の圃場403の位置情報を取得する(S102)。そして、判定処理部4062により、指定された当該ドローン100又は当該圃場403が基地局404の有効範囲にいるか否かを判定する(S103)。
 判定の結果、ドローン100又は圃場403が基地局404の有効範囲内にいる場合には、飛行操作を許可する(S104)。一方、ドローン100が基地局404の有効広範にいない場合には、規制処理部4063によりドローン100の飛行操作を規制する(S105)。
 このような処理により、位置情報を正確に取得し、安全に飛行させることのできるドローン100のみを飛行可能とすることができる。
(本願発明による技術的に顕著な効果)
 ドローンの位置情報を提供する基地局の有効範囲を容易に把握できる。

 

Claims (11)

  1.  予め定められた基地局から所定距離範囲である有効範囲を地図上に表示すると共に、当該有効範囲に含まれる圃場をドローンの飛行可能な圃場として表示し、当該有効範囲に含まれない圃場をドローンの飛行不可能な圃場として、当該有効範囲に含まれる圃場と区別可能に表示する、
     表示装置。
  2.  前記有効範囲に含まれる圃場と前記有効範囲に含まれない圃場を区別可能なリスト、をさらに表示する、
     請求項1記載の表示装置。
  3.  前記有効範囲と、前記有効範囲に含まれる圃場と、前記有効範囲に含まれない圃場をディスプレイに表示させた地図上に重畳的に表示する、
     請求項1又は2記載の表示装置。
  4.  前記ディスプレイに表示させた地図上において、飛行可能な前記ドローンと飛行不可能な前記ドローンとして、前記有効範囲に含まれるドローンと前記有効範囲に含まれないドローンとを区別可能に表示する、
     請求項3記載の表示装置。
  5.  前記ドローンの位置情報に基づき、前記有効範囲外にある所定のドローンが飛行できないこと、をさらに表示する、
     請求項1乃至4いずれかの項に記載の表示装置。
  6.  ドローンが飛行する候補の圃場として選択された複数の圃場、もしくは選択された複数の当該ドローンと、予め定められた基地局から所定距離範囲である有効範囲に選択された当該圃場又は当該ドローンの位置が収まる少なくとも1箇所の基地局の設置推奨位置と、をディスプレイに表示させた地図上に表示する、
     表示装置。
  7.  ドローン又は圃場の位置情報を取得する位置情報取得処理部と、
     前記ドローン又は前記圃場の位置情報に基づき、予め定められた基地局から所定距離範囲である有効範囲に前記ドローン又は前記圃場が位置しているか否かを判定する判定処理部と、
     前記ドローン又は前記圃場が前記有効範囲外に位置していると判定した場合に、前記ドローンが飛行することを規制する規制処理部と、を有する、
     ドローンの飛行可否判定装置。
  8.  ドローン又は圃場の位置情報に基づき、予め定められた基地局から所定距離範囲である有効範囲に当該ドローン又は当該圃場が位置しているか否かを判定する判定処理部と、
     前記ドローン又は前記圃場が前記有効範囲外に位置していると判定した場合に、前記ドローンが飛行することを規制する規制処理部と、を有する、
     ドローン。
  9.  ディスプレイに表示させた地図上において、
     予め定められた基地局から所定距離範囲である有効範囲と、当該有効範囲に含まれるドローンの飛行可能な圃場と、当該有効範囲に含まれないドローンの飛行不可能な圃場と、を表示させ、
     前記ドローンの飛行可能な圃場と、前記ドローンの飛行不可能な圃場とを区別可能に表示させる、
     コンピュータプログラム。
  10.  コンピュータが、
     ドローン又は圃場の位置情報を取得する位置情報取得処理と、
     前記ドローン又は前記圃場の位置情報に基づき、予め定められた基地局から所定距離範囲である有効範囲に前記ドローン又は前記圃場が位置しているか否かを判定する判定処理と、
     前記ドローン又は前記圃場が前記有効範囲外に位置していると判定した場合に、前記ドローンが飛行することを規制する規制処理と、を実行する、
     ドローンの飛行可否判定方法。
  11.  コンピュータに対し、
     ドローン又は前記圃場の位置情報を取得する位置情報取得処理と、
     前記ドローン又は前記圃場の位置情報に基づき、予め定めされた基地局から所定距離範囲である有効範囲に前記ドローン又は前記圃場が位置しているか否かを判定する判定処理と、
     前記ドローン又は前記圃場が前記有効範囲外に位置していると判定した場合に、前記ドローンが飛行することを規制する規制処理と、を実行させる、
     コンピュータプログラム。
PCT/JP2020/015784 2020-04-08 2020-04-08 表示装置、ドローンの飛行可否判定装置、ドローン、ドローンの飛行可否判定方法、およびコンピュータプログラム WO2021205559A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022513761A JP7412039B2 (ja) 2020-04-08 2020-04-08 表示装置、コンピュータプログラム
PCT/JP2020/015784 WO2021205559A1 (ja) 2020-04-08 2020-04-08 表示装置、ドローンの飛行可否判定装置、ドローン、ドローンの飛行可否判定方法、およびコンピュータプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/015784 WO2021205559A1 (ja) 2020-04-08 2020-04-08 表示装置、ドローンの飛行可否判定装置、ドローン、ドローンの飛行可否判定方法、およびコンピュータプログラム

Publications (1)

Publication Number Publication Date
WO2021205559A1 true WO2021205559A1 (ja) 2021-10-14

Family

ID=78023120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015784 WO2021205559A1 (ja) 2020-04-08 2020-04-08 表示装置、ドローンの飛行可否判定装置、ドローン、ドローンの飛行可否判定方法、およびコンピュータプログラム

Country Status (2)

Country Link
JP (1) JP7412039B2 (ja)
WO (1) WO2021205559A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7265079B1 (ja) 2022-08-18 2023-04-25 Kddi株式会社 情報処理装置及び情報処理方法
JP7495561B1 (ja) 2023-07-10 2024-06-04 楽天グループ株式会社 情報処理装置、及び表示制御方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110824A1 (ja) * 2015-12-25 2017-06-29 シャープ株式会社 移動体、通信端末、および移動体の制御方法
JP2017144811A (ja) * 2016-02-16 2017-08-24 株式会社ナイルワークス 無人飛行体による薬剤散布方法、および、プログラム
JP2018113940A (ja) * 2017-01-20 2018-07-26 株式会社クボタ 作業車の位置計測装置
JP2018144765A (ja) * 2017-03-09 2018-09-20 株式会社Nttドコモ 遠隔制御装置、移動体及び制御システム
JP2019021975A (ja) * 2017-07-12 2019-02-07 富士通株式会社 制御装置および飛行体制御方法
JP2019059258A (ja) * 2017-09-25 2019-04-18 Kddi株式会社 管理装置、飛行管理システム、飛行管理方法及びプログラム
JP2019158635A (ja) * 2018-03-14 2019-09-19 株式会社ゼンリンデータコム 飛行経路生成装置及び飛行経路生成方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6692735B2 (ja) * 2016-11-11 2020-05-13 株式会社富士通エフサス 監視システム、監視方法および監視プログラム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110824A1 (ja) * 2015-12-25 2017-06-29 シャープ株式会社 移動体、通信端末、および移動体の制御方法
JP2017144811A (ja) * 2016-02-16 2017-08-24 株式会社ナイルワークス 無人飛行体による薬剤散布方法、および、プログラム
JP2018113940A (ja) * 2017-01-20 2018-07-26 株式会社クボタ 作業車の位置計測装置
JP2018144765A (ja) * 2017-03-09 2018-09-20 株式会社Nttドコモ 遠隔制御装置、移動体及び制御システム
JP2019021975A (ja) * 2017-07-12 2019-02-07 富士通株式会社 制御装置および飛行体制御方法
JP2019059258A (ja) * 2017-09-25 2019-04-18 Kddi株式会社 管理装置、飛行管理システム、飛行管理方法及びプログラム
JP2019158635A (ja) * 2018-03-14 2019-09-19 株式会社ゼンリンデータコム 飛行経路生成装置及び飛行経路生成方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7265079B1 (ja) 2022-08-18 2023-04-25 Kddi株式会社 情報処理装置及び情報処理方法
JP2024027679A (ja) * 2022-08-18 2024-03-01 Kddi株式会社 情報処理装置及び情報処理方法
JP7495561B1 (ja) 2023-07-10 2024-06-04 楽天グループ株式会社 情報処理装置、及び表示制御方法

Also Published As

Publication number Publication date
JPWO2021205559A1 (ja) 2021-10-14
JP7412039B2 (ja) 2024-01-12

Similar Documents

Publication Publication Date Title
JP6752481B2 (ja) ドローン、その制御方法、および、プログラム
WO2021214812A1 (ja) 測量システム、測量方法、および測量プログラム
WO2021140657A1 (ja) ドローンシステム、飛行管理装置およびドローン
JP7008999B2 (ja) 運転経路生成システム、運転経路生成方法、および運転経路生成プログラム、ならびにドローン
JP7270265B2 (ja) 運転経路生成装置、運転経路生成方法、運転経路生成プログラム、およびドローン
JPWO2020095842A1 (ja) ドローン
JP7045122B2 (ja) ドローン、ドローンの制御方法、および、ドローンの制御プログラム
WO2021205559A1 (ja) 表示装置、ドローンの飛行可否判定装置、ドローン、ドローンの飛行可否判定方法、およびコンピュータプログラム
WO2020209255A1 (ja) ドローンシステム、ドローン、管制装置、ドローンシステムの制御方法、および、ドローンシステム制御プログラム
JP6982908B2 (ja) 運転経路生成装置、運転経路生成方法、および運転経路生成プログラム、ならびにドローン
JP7037235B2 (ja) 産業機械システム、産業機械、管制装置、産業機械システムの制御方法、および、産業機械システムの制御プログラム
JP7079547B1 (ja) 圃場評価装置、圃場評価方法および圃場評価プログラム
JP7412037B2 (ja) ドローンシステム、操作器および作業エリアの定義方法
WO2021224970A1 (ja) 測位システム、移動体、速度推定システム、測位方法、および速度推定方法
WO2021191947A1 (ja) ドローンシステム、ドローンおよび障害物検知方法
US12117297B2 (en) Traveling route generating system, traveling route generating method, traveling route generating program, coordinate measuring system, and drone
JP7412038B2 (ja) 再測量要否判定装置、測量システム、ドローンシステム、および再測量要否判定方法
WO2021199243A1 (ja) 測位システム、ドローン、測量機、および測位方法
JP2021054280A (ja) 運転経路生成システム、運転経路生成方法、運転経路生成プログラム、およびドローン
JP7570710B2 (ja) エリア編集システム、作業エリアの編集方法
WO2021220409A1 (ja) エリア編集システム、ユーザインターフェース装置および作業エリアの編集方法
JP6996792B2 (ja) 薬剤の吐出制御システム、その制御方法、および、制御プログラム
WO2021166101A1 (ja) 操作器、および、ドローンの操作用プログラム
JP2021082134A (ja) ドローンシステム、ドローン、管制装置、ドローンシステムの制御方法、および、ドローンシステム制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929948

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022513761

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20929948

Country of ref document: EP

Kind code of ref document: A1