WO2018093178A1 - 저항 용접용 전극 코팅 방법 및 저항 용접용 전극 - Google Patents

저항 용접용 전극 코팅 방법 및 저항 용접용 전극 Download PDF

Info

Publication number
WO2018093178A1
WO2018093178A1 PCT/KR2017/013038 KR2017013038W WO2018093178A1 WO 2018093178 A1 WO2018093178 A1 WO 2018093178A1 KR 2017013038 W KR2017013038 W KR 2017013038W WO 2018093178 A1 WO2018093178 A1 WO 2018093178A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
electrode
tungsten carbide
powder
resistance welding
Prior art date
Application number
PCT/KR2017/013038
Other languages
English (en)
French (fr)
Inventor
윤상훈
김형준
배규열
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to CN201780071211.6A priority Critical patent/CN109983161B/zh
Priority to EP17872291.4A priority patent/EP3543373A4/en
Priority to JP2019526595A priority patent/JP6808834B2/ja
Priority to US16/461,661 priority patent/US20190358734A1/en
Publication of WO2018093178A1 publication Critical patent/WO2018093178A1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/30Features relating to electrodes
    • B23K11/3009Pressure electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/30Features relating to electrodes
    • B23K11/3063Electrode maintenance, e.g. cleaning, grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • B23K35/404Coated rods; Coated electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B29/00Machines or devices for polishing surfaces on work by means of tools made of soft or flexible material with or without the application of solid or liquid polishing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/302Cu as the principal constituent

Definitions

  • Electrode coating method for resistance welding and electrode for resistance welding are Electrode coating method for resistance welding and electrode for resistance welding
  • the present invention relates to an electrode coating method for resistance welding, and an electrode for resistance welding, and more particularly, resistance welding for coating electrodes for extending the life of electrodes used in resistance welding (spot resistance welding, projection resistance welding, etc.). It relates to an electrode coating method for resistance, and an electrode for resistance welding.
  • Electrical resistance welding is a widely used welding method, in which the materials to be welded are brought into contact with each other, and electrodes made of copper-based alloys are used to flow current through the two electrodes. When it is high, it is pressurized and welded.
  • Electrodes use electrodes made of copper-based alloys (Cu-Cr, Cu-Be, Cu-Cr-N i) to improve electrical conductivity and strength. If the electrode is made of a copper-based alloy by the arc heat generated during welding is necessarily accompanied by abrasion and heat-resistance, the welding quality is drastically deteriorated, thereby replacing the electrode or polishing the electrode surface to reuse.
  • Cu-Cr, Cu-Be, Cu-Cr-N i copper-based alloys
  • productivity decreases due to reduced electrode life (including electrode replacement, electrode surface polishing and reinstallation time).
  • electrode life including electrode replacement, electrode surface polishing and reinstallation time.
  • the low melting point plating material reacts with an electrode that generates heat, and thus the electrode life is shortened due to the phenomenon that the plated layer adheres to the electrode.
  • the electrode life is sharply lowered to 10% or less than when using a general steel sheet, which is a problem. Therefore, the welding is often increased to polish the electrode, thereby lowering the productivity and increasing the electrode use cost.
  • the present invention relates to a thin plate, in particular a plated sheet, which reduces the deterioration of the electrode during welding.
  • the electrode coating method for resistance welding and the electrode for resistance welding are coated with tungsten carbide (WC) powder by using a low temperature spray coating process on the electrode surface.
  • WC tungsten carbide
  • the tungsten carbide (WC) powder in the cold spray coating process capable of coating at room temperature without melting the powder on the electrode surface. By spraying at high speed to coat with the set coating thickness.
  • Tungsten Carbide Including powder ' coating step
  • the tungsten carbide (WC) powder formed in the tungsten carbide powder forming step includes tungsten carbide (WC) of 95 wt% or more and less than 100 wt%, and the balance of Co, Ni, Cu. And.
  • an electrode coating method for resistance welding comprising any one or more ' materials selected from the group containing Cr or alloys thereof and other unavoidable impurities.
  • the average particle size of the tungsten carbide powder in the tungsten carbide powder forming step is
  • the coating thickness may be one having a size of 10 1 to 100.
  • the electrode for resistance welding When spot welding using the electrode for resistance welding obtained according to the coating method, it may have a welding strength of 6 kN or more at 400 strokes or more.
  • the coating surface polishing step of polishing the coating surface may include the step of ⁇ the low temperature spraying process accelerates the carbonization of the injection gas at a set heating temperature and pressure conditions
  • the tungsten powder may be layered on the surface of the electrode to be loaded.
  • the injection gas may be made of any one of nitrogen and helium, or a mixed gas thereof.
  • the heating temperature of the injection gas may be in the range of 2 (xrc to licxrc).
  • the set pressure of the injection gas may be in the range of 15 bar to 75 bar.
  • tungsten carbide (WC) powder particles may be embedded in the electrode surface in a depth direction to form a coating layer.
  • the tungsten carbide (WC) powder particles in the coating layer is embedded in the electrode surface may be a depth of 5 to 50 or less.
  • tungsten carbide (WQ powder can be coated at room temperature without melting the powder on the electrode surface at low temperature spray ( and a coating layer formed by spraying at a high speed at a predetermined heating temperature and pressure conditions together with the injection gas by a coating process, and forming a coating thickness.
  • the tungsten carbide (WC) division comprises at least 95% by weight and less than 1.00% by weight of tungsten carbide (WC) and the balance of any one or more of the materials selected from the group comprising Co, Ni, Cu, and Cr or their Alloys and other unavoidable impurities,
  • the coating layer is formed by laminating the tungsten carbide (WC) powder particles are laminated in the depth direction on the electrode surface, an electrode for resistance welding may be provided.
  • WC tungsten carbide
  • the average particle size of the ungsten carbide powder may have a size of 1/5!
  • the coating thickness may be of a size of 10 m to 100 ⁇ .
  • the tungsten carbide (WC) powder site-in the coating layer may be a depth of 5 to 50 or less embedded in the electrode surface.
  • the injection gas is any one of nitrogen and helium, or It may be made of a mixed gas.
  • the heating temperature of the injection gas may be in the range of 200 ° C to 1100 ° C.
  • the set pressure of the injection gas may be in the range of 15 bar to 75 bar.
  • welding productivity is increased by increasing electrode life, improving welding quality, and extending electrode polishing cycle, and further, electrode consumption cost can be reduced by increasing electrode life.
  • FIG. 1 is a schematic configuration diagram of an electrode coating method for resistance welding according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional photograph before polishing of the coated electrode-surface of Comparative Example 1.
  • FIG. 3 is a cross-sectional photograph before polishing of the coated electrode surface of Comparative Example 2.
  • Figure 4 is a cross-sectional photo before polishing and the coated nationwide surface of Inventive Example 1 according to an embodiment of the present invention.
  • Figure 5 is a schematic diagram of a nationwide coating apparatus for resistance welding according to an embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram of an electrode coating method for resistance welding according to an embodiment of the present invention.
  • the electrode coating method for resistance welding according to an embodiment of the present invention, the electrode surface coating method for increasing the life of the electrode during resistance welding of thin plate, in particular resistance welding of plated steel sheet such as Zn, A1 As
  • tungsten carbide preparation step (S10) of preparing 3 ⁇ 4 styrene (3 ⁇ 4) As a coating material for coating on the electrode surface, tungsten carbide preparation step (S10) of preparing 3 ⁇ 4 styrene (3 ⁇ 4).
  • the tungsten carbide (WC) powder may include a tungsten carbide powder coating step (S30) of spraying the electrode surface at a high speed to coat a predetermined coating thickness.
  • Tungsten carbide GVC) powder formed in the tungsten carbide powder forming step (S20) is 95% by weight or more and less than 100% by weight of the carbide (WC), and the balance comprising Co, Ni, Cu, and Cr It may include any one or more materials selected from or alloys thereof and other unavoidable impurities.
  • the coating on the electrode surface in the tungsten carbide powder coating step 320 may include a coating surface polishing step (S40) for polishing the coating surface.
  • the coating surface polishing step (S40) is performed to polish the coating surface to a predetermined surface roughness with an abrasive paper or a polishing machine.
  • tungsten carbide preparation step (S10) tungsten carbide (WC) having excellent electrical conductivity and wear resistance is used while minimizing reaction with low melting point plating materials such as zinc (Zn) and aluminum (A1).
  • the tungsten carbide powder preparation step (S20) may be formed of tungsten carbide powder having a set average particle size by grinding the tungsten carbide.
  • tungsten carbide (WC) powder may be used by mixing metal powder (Cu, Ni-Dung), but as shown in the results of Comparative Examples 1 and 2 below, low metal and zinc (Zn), etc.
  • Tungsten carbide (WC) powder containing tungsten carbide (WC) 95 wt-% and less than 100% by weight is used because the plating layer adheres to the electrode and the welding layer cannot increase the electrode life due to poor welding. .
  • the tungsten carbide powder may have an average particle size of 50 ⁇ in the rungung carbide powder preparation step (S20).
  • the critical significance limiting the average particle size of the tungsten carbide powder is ⁇ generally in the case of a low temperature spray coating material; for powders of rni or less, the coating layer is not formed during the process, and in the case of 50 or more, the same process conditions This is because lamination efficiency is lowered because it is not accelerated at a slow speed under the following conditions. Therefore, in general, the average particle size of tungsten carbide powder (material) used for low temperature spray coating is optimal in terms of coating layer formation and lamination efficiency.
  • the tungsten carbide powder coating step (S30) may be performed in a cold spray coating process that can be coated at room temperature without melting the powder in order to easily control the coating thickness and to prevent decarburization of tungsten carbide (WC).
  • the coating thickness of the electrode may have a size of 10 to.
  • the coating thickness of the electrode has a size of 10 to .100 It is optimal in view of coating effect , and prevention of welding defect and coating peeling off due to increased electrical resistance.
  • an electrode made of a CU-based alloy any alloy selected from the group containing Cu-Cr, Cu-Be, and Cu-Cr-Ni) and the like may be used.
  • tungsten carbide (WC) powder particles are formed in the depth direction on the base material (electrode) surface. It can be embedded to form a coating layer.
  • the depth direction of the base material indicates the direction from the surface of the base material to the vertical interior.
  • the depth of tungsten carbide 0VC) powder particles in the coating layer to the base material (electrode) surface may be more than 3 ⁇ 4 / ⁇ 50 ha.
  • the cold spray coating process of the present invention exposes the coating material (powder) to a high temperature flame: accelerates the coating material at a high speed without melting and , to collide the accelerated coating material to the material (electrode. surface) is a step of physically bonded to the base material (electrode) surface and the powder particles, the interface between the powder particles and the powder particles form a coating layer in the solid state.
  • the depth of tungsten carbide (WC) powder particles embedded in the substrate (electrode) surface in the depth direction may be greater than or equal to ffli.
  • the molten sites do not collide with the base materials (electrodes) and solidify as in the present invention.
  • the surface of the base material (electrode) is coated prior to coating, thereby expanding the contact area as much as possible, thereby improving the bonding force.
  • the electrode for resistance welding in which surface roughness Ra was formed is used.
  • the low temperature spray coating process is a process in which the injection gas, which is a process gas, is accelerated at a very high speed under a set heating temperature and pressure conditions to transfer tungsten carbide powder, which is a coating material at room temperature, to collide with a base material (electrode) to be laminated.
  • the purpose of raising the temperature and pressure of the process gas is not to dissolve the coating material, but to give a speed.
  • the minute 'gas may be made of one of nitrogen and helium vapor, or a mixed gas thereof.
  • the heating temperature of the injection gas may be in the range of 200 ° C to 1100 ° C.
  • the reason for setting the heating temperature of the injection gas in this way is that the lamination does not occur because the particle velocity is low under the condition that the autothermal silver of the injection gas is 200T or less.
  • the set pressure of the injection gas may be in the range of 15 bar to 75 bar.
  • the reason for setting the set pressure of the injection gas is that the lamination does not occur because the particle velocity is low under the condition that the set pressure of the injection gas is 15 bar or less.
  • metal powder is not mixed Tungsten carbide (WC) consisting of only 100% tungsten carbide (WC) is prepared (S10), and the set average particle size of the tungsten carbide is formed into a powder having a size of, for example, 1 / ⁇ ⁇ 50 (S20).
  • low melting point plating material of zinc ( ⁇ ), aluminum (A1) and ungsten carbide (WC) having excellent electrical conductivity and wear resistance while minimizing reaction are used.
  • the coating thickness set by spraying the tungsten carbide (WC) powder on the surface of the electrode at a high speed may be, for example, coated with a size of 1 to 100 (S30), and the tungsten carbide powder coating step (S30) may control the coating thickness.
  • the tungsten carbide powder coating step (S30) may control the coating thickness.
  • it is carried out with a cold spray coating process which allows coating at room temperature without melting the powder.
  • the coating surface is polished to have a surface roughness set by the polishing or polishing machine (S40).
  • Table 1 shows the electrode types for spot welding.
  • a copper (Cu) alloy electrode is used as it is as a non-coated electrode.
  • the material used for each coating was used in the form of powder, the metal powder size was used 5 ⁇ 50 / powder, the tungsten carbide (WC) powder was used 5-10 / mi powder size.
  • the coating surface was polished with polishing paper 600 and then subjected to a welding test.
  • the steel sheet used for welding is a zinc (Zn) alloy plated steel sheet having a thickness of 1.2 kPa.
  • Table 2 shows the spot welding conditions used.
  • Table 3 shows the results of measuring tensile strength by welding tensile specimens at 100 RBI intervals under the same welding conditions.
  • Comparative Example 1 shows almost similar strength in terms of welding strength as compared with the conventional example, and also after 300 RBI or 400 RBI. The welding test was stopped due to too much spatter generation.
  • Comparative Example 2 the welding strength was significantly lower than that of the conventional example, and the welding electrode was stopped due to the plated steel sheet due to reaction with the plating layer.
  • Inventive Example 1 electrode can be seen to maintain a high strength even up to 500 RBI compared with the conventional example, hardly reacted with the plated worms.
  • the coating layer mixed with nickel (Ni) metal powder has a uniform distribution of tungsten carbide (WC) powder in the metal base, and when the tungsten carbide 0VC powder is used, it is relatively harder than the copper (Cu) base material. It can be seen that the coating is formed in the form of the stainless steel (WC) particles are embedded in the base material.
  • FIG. 5 is a schematic diagram of an electrode coating apparatus for resistance welding according to an embodiment of the present invention.
  • Electrode coating apparatus for resistance 3 ⁇ 4 is the same as the details described in the electrode coating method for resistance welding according to an embodiment of the present invention except for the details that are specifically described below, the detailed description thereof will be omitted. do.
  • tungsten carbide is set as a coating material for coating on the surface of the electrode (10) (11).
  • WC. tungsten carbide
  • the electrode for resistance welding may be manufactured by the electrode coating method for resistance welding or the electrode coating apparatus for resistance welding.
  • a low temperature capable of coating tungsten carbide (WC) powder on the electrode surface 11 at room temperature without melting the powder may include a coating layer 20 formed by spraying at a high speed at a set heating temperature and pressure conditions with the injection gas by a cold spray coating process to a predetermined coating thickness.
  • the tungsten carbide (WC) powder is at least one selected from the group consisting of at least 95% by weight and less than 100% by weight of tungsten carbide (WC), and Co, Ni, Cu, and Cr, or Alloys thereof and other unavoidable impurities.
  • the coating layer 20 may be formed by laminating the tungsten carbide (WC) powder particles in the depth direction on the electrode surface 11.
  • WC tungsten carbide
  • the average particle size of the tungsten carbide powder may have a size of l rni ⁇ 5.
  • the coating thickness may have a size of 100 to tii-and, in the coating layer 20, the depth of the rung carbide (WC) powder particles embedded in the electrode surface 11 may be greater than or equal to 50 or less.
  • the depth direction of the electrode surface 11 is the up-and-down direction of the electrode 10, that is, the ice-inverting 'in' point inside the electrode 10 from the electrode surface 11.
  • the coating layer 20 of the electrode surface 10 may be polished to have a surface roughness set by a polishing machine (not shown).
  • the injection gas may be made of one of nitrogen and helium vaporizers, or a mixed gas thereof.
  • the heating temperature of the injection gas may be in the range of 2oo ° c to licxrc.
  • the set pressure of the injection gas may be in the range of 15 bar to 75 bar.

Abstract

저항 용접용 전극 코팅 방법, 및 저항 용접용 전극을 제공한다. 본 발명에 따르면, 전극 표면에 코팅하기 위한 코팅 소재로서, 탄화텅스텐(WC)을 준비하는 탄화텅스텐 준비 단계, 상기 탄화텅스텐(WC)을 설정된 평균 입도를 갖는 분말로 형성하는 탄화텅스텐 분말 형성 단계, 및 상기 탄화텅스텐(WC) 분말을 상기 전극 표면에 분말 용융 없이 상온에서 코팅이 가능한 저온 분사(cold spray) 코팅 공정에 의하여 고속으로 분사하여 설정된 코팅 두께로 코팅하는 탄화텅스텐 분말 코팅 단계를 포함한다.

Description

【명세서】
【발명의 명칭】
저항 용접용 전극 코팅 방법 및 저항 용접용 전극
[기술분야】
본 발명은 저항 용접용 전극 코팅 방법, 및 저항 용접용 전극에 관한 것으로서, 보다 상세하게는 저항 용접 (스팟 저항용접, 프로젝션 저항용접 등)시 사용되는 전극의 수명 연장을 위하여 전극에 코팅하는 저항 용접용 전극 코팅 방법, 및 저항 용접용 전극에 관한 것이다.
【발명의 배경이 되는 기술】
전기 저항 용접은 널리 사용되는 용접 방법으로서, 용접하려고 하는 재료를 서로 접촉시켜 놓고 구리계 합금으로 만들어진 전극을 사용, 두 전극에 전류를 흐르게 하여, 이때 소재에 발생하는 저항열로 접합면의 온도가 높아졌을 때 가압하여 용접을 하게 된다.
일반적으로 사용되고 있는 저항 용접 전극은 우수한 전기전도도와 강도 향상을 위해 구리계 합금 (Cu-Cr , Cu-Be , Cu-Cr-N i계 등)으로 만들어진 전극을 사용하고 있으나 여러 번 용접을 하게. 되면 용접시 발생하는 아크열에 의해 구리계 합금으로 이루어진 전극은 마모 및 열회―가 필히 수반되며 그로 인해 용접 품질이 급격히 떨어지게 되어, 전극을 교체하거나 전극 표면을 연마하여 재사용하게 된다.
. 따라서, 전극 수명 저하 (전극 교체, 전극 표면 연마 및 재설치 시간 포함)로 인한 생산성이 떨어지게 된다. 특히, 저융점 합금을 포함한 , Ζη계 도금강판이나 A 1계 도금강판 용접시는 저융점 도금 소재가 열발생 부위인 전극과 반웅하여 도금층이 전극에 달라붙는 현상으로 인해 전극 수명이 단축되며, 특히 자동차용 강판으로 널리 사용되는 Ζη계 합금을 이용한 도금강판 용접시는 전극 수명이 일반 강판 사용시보다 10% 이하로 급격하게 저하하여 문제가 되고 있다. 따라서, 자주 용접을 증단하여 전극을 연마하게 되어 생산성이 저하하고 전극 사용 비용 또한 증대된다.
【발명의 내용】
【해결하고자 하는 과제】
본 발명은 박판 특히, 도금된 박판을 저힘- 용접시 전극의 열화를 방지하고 도금층과의 반웅을 억제하여 전극 수명 및 용접 품질을 향상하기 위하여 전극 표면에 저온 분사 코팅 공정을 이용하여 탄화텅스텐 (WC) 분말을 코팅하는 저항 용접용 전극 코팅 방법, 및 저항 용접용 전극을 제공하고자 한다.
【과제의 해결 수단】
본 발명의 일 구현예에 따르면, 전극 표면에 코팅하기 위한 코팅 소재로서, 금속 분말이 흔합되지 않은 100% 탄화텅스텐 (WC) 만으로 이루어진 탄화텅스텐을 준비하는 탄화텅스텐 준비 단계,
상기 탄화텅스텐 (WC)을 설정된 평균 입도를 갖는 분말로 형성하는 탄화텅스텐 분말 형성 단계, 및
상기 탄화텅스텐 (WC) 분말을 상기 전극 표면에 분말 용융 없이 상온에서 코팅이 가능한 저온 분사 ( co l d spray) 코팅 공정에. 의하여 고속으로 분사하여 설정된 코팅 두께로 코팅하는. 탄화텅스텐 :분밀' 코팅 단계를 포함하고,
상기 탄화텅스텐 분말 형성 단계에서 형성된 탄화텅스텐 (WC) 분말은 탄화텅스텐 (WC)을 95 중량 ¾ 이상 및 100 중량 % 미만, 및 잔부로 Co , Ni , Cu . 및 . Cr를 포함하는 군에서 선택되는 어느 하나의 이상의 '물질 또는 이들의 합금 및 기타 블가피한 불순물을 포함하는 저항 용접용 전극 코팅 방법이 제공될 수 있다. ,
상기 탄화텅스텐 분말 형성 단계에서 탄화텅스텐 분말의 평균입도는
1 ~50 의 크기를 가지는 것일 수. 있다.
상기 코팅 두께는 10 1 내지 100 의 크기를 가지는 것일 수 있다. 상기 저항 용접용 전극.코팅 방법에 따라 수득된 저항 용접용 전극을 이용하여 스팟 용접 시, 400타 이상에서 6kN 이상의 용접 강도를 가지는 것일 수 있다.
상기 탄화텅스텐 분말 코팅 단계에서 전극 표면에 코팅을 행한 후, 상기 코팅 표면을 연마하는 코팅 표면 연마 단계를 포함하는 것일 수 있다ᅳ 상기 저온 분사 공정은 분사 가스를 설정된 가열 온도 및 압력 조건에서 가속시켜 탄화텅스텐 분말을 전극 표면에 층돌시켜 적충시키는 것일 수 있다. 상기 분사 가스는 질소 및 헬륨 중 어느 하나의 가스, 또는 이들의 흔합가스로 이루어지는 것일 수 있다.
상기 분사 가스의 가열 온도는 2(xrc 내지 licxrc의 범위 내인 것일 수 있다.
상기 분사 가스의 설정 압력은 15bar 내지 75bar 범위 내인 것일 수 있다.
상기 탄화텅스텐 분말 코팅 단계에서 탄화텅스텐 (WC) 분말 입자가 전극 표면에 깊이 방향으로 박혀 코팅층을 형성하는 것일 수 있다.
상기 코팅층에서 상기 탄화텅스텐 (WC) 분말 입자가 상기 전극 표면에 박히는 깊이는 5 이상 50 이하인 것일 수 있다.
또한, 본 발명의 일 구현예에 따르면, 전극의 외측면을 이루는 전극 상기 전극 표면에 코팅하기 위한 코팅 소재로서 , 탄화텅스텐 (WQ 분말을 상기 전극 표면에 분말 용융 없이 상온에서 코팅이 가능한 저온 분사 ( co l d spray) 코팅 공정에 의하여 분사 가스와 함께 설정된 가열 온도' 및 압력 조건에서 고속으로 분사하여 설정된 코팅 두께로 형성되는 코팅층을 포함하고,
상기 탄화텅스텐 (WC) 분일은 탄화텅스텐 (WC)을 95 중량 % 이상 및 1.00 증량 % 미만, 및 잔부로 Co , Ni , Cu , 및 Cr를 포함하는 군에서 선텍되는 어느 하나의 이상의 물질 또는 이들의 합금 및 기타 블가피한 불순물을 포함하고,
상기 코팅층은 상기 탄화텅스텐 (WC) 분말 입자가 상기 전극 표면에 깊이 방향으로 박혀 적층되어 형성되는 것인, 저항 용접용 전극이 제공될 수 있다.
상기 탄화렁스텐 분말의 평균입도는 1//!ᅵ1~5() 의 크기를 가지는 것일 수 있다.
상기 코팅 두께는 10 m 내지 100卿의 크기를 가지는 것일 수 있다. 상기 코팅층에서 상기 탄화텅스텐 (WC) 분말 입지-가 상기 전극 표면에 박히는 깊이는 5 이상 50 이하인 것일 수 있다.
상기 분사 가스는 질소 및 헬륨 중 어느 하나의 가스, 또는 이들의 흔합가스로 이루어자는 것일 수 있다.
상기 분사 가스의 가열 온도는 200°C 내지 1100 °C의 범위 내인 것일 수 있다.
상기 분사 가스의 설정 압력은 15bar 내지 75bar 범위 내인 것일 수 있다.
【발명의 효과】
본 발명의 구현예에 따르면, 전극 수명 증대, 용접 품질 향상 및 전극 연마 주기 연장에 의한 용접 생산성이 증대하며, 또한, 전극 수명 증대로 전극 소비 비용을 줄일 수 있다.
【도면의 간단한 설명】 - 도 1은 본 발명의 일 구현예에 따른 저항 용접용 전극 코팅 방법의 개략적인 구성도이다.
도 2는 비교예 1의 코팅된 전극- 표면의 연마 전의 단면 사진이다. 도 3은 비교예 2의 코팅된 전극 표면의 연마 전의 단면 사진이다. 도 4는 본 발명의 일 구현예에 따른 발명예 1의 코팅된 전국 표면와 연마 전의 단면 사진이다.
도 5는 본 발명의 일 구현예에 따른 저항 용접용 전국 코팅 장치의 개략적인 구성도이다.
【발명을 실시하기 위한 구체적인 내용】
이하, 첨부한 도면을 참조하여, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 구현예를 설명한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 이해할 수 있는 바와 같이, 후술하는 구현예는 본 발명의 개념과 범위를 벗어나지 않는 한도 내에서 다양한 형태로 변형될 수 있다. 가능한 한 동일하거나 유사한 부분은 도면에서 동일한 도면부호를 사용하여 나타낸다.
이하에서 사용되는 전문용어는 단지 특정 구현예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는" 의 의미는 특정 특성 , 영역, 정수, 단계, 동작, 요소 및 /또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및 /또는 군의 존재나 부가를 제외시키는 것은 아니다.
이하에서 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.
도 1은 본 발명의 일 구현예에 따른 저항 용접용 전극 코팅 방법의 개략적인 구성도이다.
도 1을 참고하면, 본 발명의 일 구현예에 따른 저항 용접용 전^ 코팅 방법은, 박판의 저항용접, 특히 Zn , A1 등 도금강판의 저항 용접시 전극의 수명을 증대하기 위한 전극 표면 코팅 방법으로서,
전극 표면에 코팅하기 위한 코팅 소재로서, 탄화 ¾스렌(¾ (:)을 준비하는 탄화텅스텐 준비 단계 ( S10) .
상기 탄화텅스텐 (WC)을 설정된 평균 입도를 갖는 탄화텅스텐 (WC) 분말로 형성하는 탄화텅스텐 분말 형성 단계 (S20) . 및
상기 탄화텅스텐 (WC) 분말을 상기 전극 표면에 고속으로 분사하여 설정된 코팅 두께로 코팅하는 탄화텅스텐 분말 코팅 단계 (S30 )를 포함할 수 있다,
상기 탄화텅스텐 분말 형성 단계 (S20)에서 형성된 탄화텅스텐 GVC) 분말은 탄화렁스텐 (WC)을 95 중량 % 이상 및 100 중량 % 미만, 및 잔부로 Co , N i , Cu , 및 Cr를 포함하는 군에서 선택되는 어느 하나의 이상의 물질 또는 이들의 합금 및 기타 불가피한 불순물을 포함할 수 있다.
또한, 상기 탄화텅스텐 분말 코팅 단계 (320)에서 전극 표면에 코팅을 행한 후, 상기 코팅 표면을 연마하는 코팅 표면 연마 단계 (S40)를 포함할 수 있다.
또한, 상기 코팅 표면 연마 단계 (S40)는 연마지 또는 연마기 등으로 코팅 표면을 설정된 표면조도를 갖도록 연마를 행한다. 상기 ,탄화텅스텐 준비 단계 (S10)에서 상기 코팅 소재로서는 아연 (Zn) , 알루미늄 (A1 ) 등의 저융점 도금소재와 반응을 최소화하면서, 전기 전도성 및 내마모성이 우수한 탄화텅스텐 (WC)을 사용한다.
상기 탄화텅스텐 분말 준비 단계 (S20)는 상기 탄화텅스텐을 분쇄기 등에 의하여 분쇄하여 설정된 평균 입도를 갖는 탄화텅스텐 분말로 형성할 수 있다.
적층 효율을 높이기 위해 탄화텅스텐 (WC) 분말에 금속 분말 (Cu , Ni 둥)을 혼합하여 사용할 수 있으나, 하기의 비교예 1, 비교예 2 의 결과에서 알 수 있듯이 금속과 아연 (Zn) 등 저융점 도금층과의 반웅이 증대하여 도금층이 전극에 부착, 용접 불량으로 전극 수명 증대 효과를 볼 수 없기에 탄화텅스텐 (WC)을 95 중량 이싱 및 100중량 % 미만을 포함한 탄화텅스텐 (WC) 분말을 사용한다.
상기 탄화렁스텐 분말 준비 단계 (S20)에서 상기 탄화텅스텐 분말의 평균입도는 니 50 ΠΙ의 크기를 가질 수 있다.
상기와 같이, 탄화텅스텐 분말의 평균입도를 한정하는 임계적 의의는ᅳ 일반적으로 저온분사 코팅 소재의 경우, ; rni 이하의 분말은 너무 가법기에 코팅층이 형성이 되지 않으며, 50 이상일 경우에는 동일 공정 조건하에서 층분한 속도로 가속되지 못하기 때문에 적층 효율이 저하되기 때문입니다. 따라서, 일반적으로 저온분사 코팅에 사용되는 탄화텅스텐 분말 (소재)의 평균입도는 1~50 의 크기를 갖는 것이 코팅층 형성과 적층 효율의 관점에서 최적입니다.
상기 탄화텅스텐 분말 코팅 단계 (S30)는 코팅 두께 조절이 용이하고 탄화텅스텐 (WC)의 탈탄을 방지하기 위하여 분말 용융 없이 상온에서 코팅이 가능한 저온 분사 (cold spray) 코팅 공정으로 실행될 수 있다.
상기 전극의 코팅 두께는 10 내지 의 크기를 가질 수 있다. 상기와 같이 코팅의 두께를 이와 같이 설정하는 이유는. 코팅의 두께가 10 m 이하에서는 코팅의 효과를 보기가 어려우며, 코팅의 두께가 이상에서는 전기 저항 증대로 인한 용접 불량 및 코팅 박리 가능성이 증대하기 때문이다.
따라서 , 상기 전극의 코팅 두께는 10 내지 .100 의 크기를 갖는 것이 코팅 효과, 및 전기 저항 증대로 인한 용접 불량 및 코팅 박리 방지의 관점에서 최적입니다.
여기서, 전극은 CU계 합금 (Cu-Cr , Cu-Be , 및 Cu-Cr-Ni를 포함하는 군에서 선택되는 어느 하나의 합금) 등으로 만들어진 전극이 사용될 수 있다.
이와 같이, 코팅 공정이 기존의 열용사 ( thermal spray) 코팅 공정에 비하여, 본 발명에서는 분말 용융 없이 저온 분사 코팅 공정만으로 실행되므로, 탄화텅스텐 (WC) 분말 입자가 모재 (전극) 표면에 깊이 방향으로 박혀 코팅층을 형성할 수 있다.
여기서, 모재 (전극 표면)의 깊이 방향은 모재의 표면으로부터 수직 내부로의 방향을 가리킨다- .
코팅층에서 탄화텅스텐 0VC) 분말 입자가 모재 (전극) 표면에 박히는 깊이는 ¾/ηι 이상 50 아하일 수 있다.
즉, 기존 열용사 (Thermal Spray) 코팅 공정과 달리 본 발명의 저온분사 (Co ld Spray) 코팅 공정은 코팅 소재 (분말)를 고온의 화염에 노출: 용융시키지 않고 상온에서 코팅 소재를 초고속으로 가속시키고, 가속된 코팅 소재를 소재 (전극 .표면)에 충돌시켜 모재 (전극) 표면과 분말 입자, 분말 입자와 분말 입자간 계면에서 물리적으로 접합하여 고상 상태에서 코팅층을 형성하는 공정이다.
따라서, 기존 열용사 코팅 공정 대비 본 발명의 저온 분사 공정의 다음과 같은 특징 및 장점을 갖는다.
( 1) 상대적으로 경질 (Hard)의 탄화텅스텐 분말 입자가, 연질 (Sof t )의 모재 (Cu계 전극)에 충돌시 모재 (전극) 표면에 박힘 현상이 발생된다.
공정 조건과 입자 크기에 따라 모재 (전극) 표면에 탄화텅스텐 (WC) 분말 입자가 깊이 방향으로 박히는 깊이는 ffli 이상 50 이하일 수—있다. 그러나, 기존의 열용사 코팅.공정에서는 용융된 입지-가 모재 (전극)에 충돌하여 응고되기 때문에 본 발명에서와 같이 입지-가 박히는 현상이 발생되지 않는다.
(2) 고속으로 충돌시켜 코팅하는 공정이므로 결합력이 우수하기에 코팅 전 추가로 모재 (전극) 표면을 거칠게 다듬는 작업 (그릿 블래스팅: gr i t bl ast ing)-할 필요 없다.
그러나, 기존의 열용사 코팅 공정에서는 용융된 입자가 충돌, 웅고되어 기계적 결합을 해야 하기에 코팅 전 모재 (전극) 표면을 걸치게 해서 최대한 접촉면적을 넓혀 결합력을 향상해주므로, 5 내지 20마이크로의 표면 조도 (Ra)가 형성된 저항 용접용 전극을 사용한다.
또한, 상기 저온 분사 코팅 공정은 공정 가스인 분사 가스를 설정된 가열 온도 및 압력 조건에서 초고속으로 가속시켜 상온의 코팅 소재인 탄화텅스텐 분말을 이송, 모재 (전극)에 충돌시켜 적층시키는 공정입니다. 여기서, 공정가스의 온도와 압력을 올려주는 목적은 코팅소재를 녹이는 목적이 아닌, 단지 속도를 주기 위한 것이디- .
여기서, 분시' 가스는 질소 및 헬륨 증 어느 하나의 가스, 또는 이들의 흔합가스로 아루어질 수 있다.
또한, 분사 가스의 가열 온도는 200°C 내지 1100°C의 범위 내일 수 있다.
이와 같이 분사 가스의 가열 온도를 범위를 설정하는 이유는, 분사 가스의 자열 은도가 200T: 이하인 조건에서는 입자 속도기- 낮기 때문에 적층이 일어나지 않기 때문이머,
또한, 분사 가스의 가열 온도가 licxrc 이상인 조건에서는 입자 속도가 너무 빨라 모재에 균열을 발생시킬 수 있기 때문이다.
또한, 분사 가스의 설정 압력은 15bar 내지 75bar 범위 내일 수 있다.
이와 같이, 분사 가스의 설정 압력을 설정하는 이유는, 분사 가스의 설정 압력이 15bar 이하인 조건에서는 입자 속도가 낮기 때문에 적층이 일어나지 않기 때문이며.
또한, 분사 가스의 설정 압력이 75bar 이상인 조건에서는 입자 속도가 너무 빨라 모재에 균열을 발생시킬 수 있기 때문이다.
이하에서, 도 1을 참조하여, 본 발명의 일 구현예에 따른 저항 용접용 전극 코팅 방법의 과정에 대해서 설명한다.
전극 표면에 코팅하기 위한 코팅 소재로서, 금속 분말이 흔합되지 않은 100% 탄화텅스텐 (WC) 만으로 이루어진 탄화텅스텐 (WC)을 준비하고 (S10) , 상기 탄화텅스텐의 설정된 평균 입도는, 예컨대 1/ Ι~50 의 크기를 갖는 분말로 형성한다 (S20) .
여기서, 상기 코팅 소재로서는 아연 (Ζη) , 알루미늄 (A1 ) 둥의 저융점 도금소재와 반웅을 최소화하면서, 전기 전도성 및 내마모성이 우수한 탄화렁스텐 (WC)을 사용한다.
그리고, 상기 탄화텅스텐 (WC) 분말을 상기 전극 표면에 고속으로 분사하여 설정된 코팅 두께는 예컨대, 1 내지 100 의 크기로 코팅하는데 (S30) , 상기 탄화텅스텐 분말 코팅 단계 (S30 )는 코팅 두께 조절이 용이하고 탄화텅스텐 (WC)의 탈탄을 방지하기 위하여 분말 용융 없이 상온에서 코팅이 가능한 저온 분사 ( co l d spray) 코팅 공정으로 실행된다. 그 다음 상기 탄화렁스텐 분말 코팅 단계 (320)에서 전국 표면에 코팅을 행한 후, 상기 코팅 표면을 '연마지 또는 연마기 등에 의하여 설정된 표면 조도를 갖도록 연마한다 ( S40 ) .
(실시예)
[표 1 ]에서 스팟 용접을 위한 전극 종류를 나타내고 있다. 종래예는 무코팅 전극으로 구리 (Cu)계 합금 전극을 그대로 사용한 것어다. 각 코팅에 사용한 소재는 분말의 형태로 사용되었으며, 금속 분말 크기는 5~50/ 분말을 사용하였으며, 탄화텅스텐 (WC) 분말은 5-10/mi 크기의 분말을 사용하였다. 전극에 코팅 후 코팅 표면은 600번 연마지로 표면을 연마 후 용접 시험을 실시하였다. 용접에 사용된 강판은 두께 1 .2 隱인 아연 (Zn) 합금 도금강판이다.
[표 2]에서는 사용된 스팟 용접 조건을 나타내고 았다.
[표 3]에서는 동일 용접 조건에서 용접시 100타점 간격으로 인장시편을 용접하여 인장 강도를 측정한 결과를 보이고 있다.
종래예 전극은 용접 강도가 100타 이후 점점 감소할 뿐만 아니라, 400타점 이후 도금강판이 너무 많이 전극에 부착되고, 이로 인하여 스패터가 너무 많이 발생하여 용접 시험을 중단하였다.
용접 강도에서 비교예 1는 종래예와 비교하여 용접 강도 측면에서 거의 유사한 강도를 보이고, 역시 마찬가지로 300타점 혹은 400타점 이후 너무 많은 스패터 발생으로 용접 시험을 중단하였다.
비교예 2는 종래예와 비교하여 용접 강도가 현저히 떨어지며 도금층과의 반웅으로 인해 용접 전극이 도금강판과 붙어서 중단하였다. 반면에 발명예 1 전극은 종래예와 비교하여 500타점까지도 높은 강도를 유지함을 알 수 있고, 도금충과의 반웅도 거의 발생하지 않았다.
도 2에서 도 4까지에서는 비교예 1 , 비교예 2 및 발명예 1로 구리 (Cu) 모재에 코팅한 코팅 단면 사진을 보이고 있다.
저온 분사 코팅 공정 특성상 탄화텅스텐 (WC) 분말에 구리 (Cu) . 니켈 (Ni ) 금속 분말이 흔합된 코팅층은 금속기지내 탄화텅스텐 (WC) 분말이 균일하게 분포되어 있고, 탄화텅스텐 0VC) 분말을 사용한 경우는 구리 (Cu) 모재보다 상대적으로 경질 (Hard)의 탄화렁스텐 (WC) 입자가 모재에 박히는 형태로 코팅이 형성됨을 알 수 있다.
【표 1]
Figure imgf000012_0001
【표 2】
Figure imgf000012_0002
【표 3】
용접 강도 용접 전류
100타 200타 300타 400타 500타
(kN) - (KA)
8.7 7.0 2.5 3.1
종래예 10.5 불가
7.3 6.3 3.1 3.2 7.9 7.8 4.9 4.9
비교예 1 10.5 불가
8.9 8.8 8.2 2.0
1.9 1.0 2.6
비교예 2 10.5 불가 -
0.8 1.6 0
9.1 9.4 7.77 9.20 7.79 발명예 1 10.5
9.4 9.3 9.31 6.01 7.90 도 5는 본 발명의 일 구현예에 따른 저항 용접용 전극 코팅 장치의 개략적인 구성도이다.
본 발명의 일 실시예에 따른 저항 용¾용 전극 코팅 장치는 하기에서 특별히 설명하는 사항 이외에는 본 발명의 일 실시예에 따른 저항 용접용 전극 코팅 방법에서 설명한 사항과 동일하므로 그 자세한 설명은 생략하기로 한다.
도 5를 참고하면, 본 발명의 일 실시예에 따른 저항 용접용 전극 코팅 장치는ᅳ, 전극 ( 10) 표면 ( 11 )에 코팅하기 위한 코팅 소재로서, 탄화텅스텐 (WC)을 설정된. 평균 입도를 갖는 분말로 분쇄하기 위한 분쇄기 ( 100) ,
상기 분쇄기 ( 100)에서 분쇄된 탄화텅스텐 (WC) 분말을 상온에서 분사 가스와 함께 설정된 가열 은도 및 압력 조건에서 가속시키는 가속기 (200) , 및
전극 ( 10) 표면 ( 11)의 상부에 배치되고, 가속기 (200)에서 가속된 분사 가스를 탄화텅스텐 (WC.) 분말과 함께 전극 표면 ( 10)에 고속으로 분사하여 설정된 코팅 두께의 코팅충 (20)을 형성하는 저온 분사 (co ld spray) 코팅기 (300)를 포함할 수 있다.
상기한 저항 용접용 전극 코팅 방법 또는 저항 용접용 전극 코팅 장치에 의하여 저항 용접용 전극이 제조될 수 있다.
' 이러한 저힝- 용접용 전극은, 전극 ( 10)의 외측면을 이루는 전극 표면 ( 11), 및
상기 전극 표면 ( 11)에 코팅하기 위한 코팅 소재로서, 탄화텅스텐 (WC) 분말을 상기 전극 표면 ( 11)에 분말 용융 없이 상온에서 코팅이 가능한 저온 분사 (cold spray) 코팅 공정에 의하여 분사 가스와 함께 설정된 가열 온도 및 압력 조건에서 고속으로 분사하여 설정된 코팅 두께로 형성되는 코팅층 (20)을 포함할 수 있다.
여기서, 상기 탄화텅스텐 (WC) 분말은 탄화텅스텐 (WC)을 95 중량 % 이상 및 100 중량 % 미만, 및 잔부로 Co , Ni , Cu, 및 Cr를 포함하는 군에서 선택되는 어느 하나의 이상의 물질 또는 이들의 합금 및 기타 불가피한 불순물을 포함할 수 있다.
또한, 상기 코팅층 (20)은 상기 탄화텅스텐 (WC) 분말 입자가 상기 전극 표면 ( 11)에 깊이 방향으로 박혀 적층되어 형성되는 것일 수 있다.
상기 탄화텅스텐 분말의 평균입도는 l rni~5 의 크기를 가질 수 있다.
상기 코팅 두께는 내지 lOO tii의 크기를 가질 수 있다- 또한, 상기 코팅층 (20)에서 상기 탄화렁스텐 (WC) 분말 입자가 상기 전극 표면 ( 11)에 박히는 깊이는 이상 50 이하일 수 있다.
여기서, 전극 표면 ( 11)의 깊이 방향은 도 5에 도시된 바와 같이, 전극 ( 10) 상, 하 방향, 즉 전극 표면 ( 11)으로부터 전극 ( 10) 내부 빙 -향올 'ᅳ' 가리킨디- .
상기 전극 표면 ( 10)의 코팅층 (20)은 연마기 (미도시)에 의하여 설정된 표면조도를 갖도록 연마될 수 있다.
상기 분사 가스는 질소 및 헬륨 증 어느 하나의 가스, 또는 이들의 흔합가스로 이루어질 수 있다.
상기 분사 가스의 가열 온도는 2oo°c 내지 licxrc의 범위 내일 수 있다.
상기 분사 가스의 설정 압력은 15bar 내지 75bar 범위 내일 수 있다.

Claims

【청구범위】
[청구항 1】
전극 표면에 코팅하기 위한 코팅 소재로서, 탄화텅스텐 (WC)을 준비하는 탄화텅스텐 준비 단계,
상기 탄화텅스텐 (WC)을 설정된 평균 입도를 갖는 분말로 형성하는 탄화텅스텐 분말 형성 단계, 및
상기 탄화텅스텐 (WC) 분말을 상기 전극 표면에 분말 용융 없이 상온에서 코팅이 가능한 저온 분사 ( co ld spray) 코팅 공정에 의하여 고속으로 분사하여 설정된 코탕 두께의 코팅으로 코팅하는 탄화텅스텐 분말 코팅 단계
를 포함하고,
상기 탄화텅스텐 분말 형성 단계에서 형성된 탄화텅스텐 (WC) 분말은 탄화텅스텐 (WC)을 95 중량 % 이상 및 100 중량 % 미만, 및 잔부로 Co , Ni . Cu , 및 Cr를 포함하는 군에서 선택되는 어느 하나의 이상의 물질 또는 이들의 합금 및 기타 불가피한 불순물을 포함하는, 저항 용접용 전극 코팅 방법.
【청구항 2】
제 1항에 있어서,
상기 탄화텅스텐 분말 형성 단계에서 탄화텅스텐 분말의 평균입도는 니5 의 크기를 가지는 것인, 저항 용접용 전극 코팅 방법.
【청구항 3】
제 1항에 있어서,
상기 코팅 두께는 lOtffli 내지 100卿의 크기를 가지는 것 저항 용접용 전극 코팅 방법.
【청구항 4】
제 1항에 있어서,
상기 저항 용접용 코팅 방법에 따라 수득된 저항 용접용 전극을 이용하여 스팟 용접 시, 400타 이상에서 6kN 이상의 용접 강도를 가지는 것인, 저항 용¾용 전극 코팅 방법
【청구항 5]
제 1항에 있어서, 상기 탄화텅스텐 분말 코팅 단계에서 전극 표면에 코팅을 행한 후, 상기 코팅 표면을 연마하는 코팅 표면 연마 단계를 포함하는 것인, 저항 용접용 전극 코팅 방법 .
【청구항 6】
제 1항에 있어서,
상기 저온 분사 코팅 공정은 분사 가스를 설정된 가열 온도 및 압력 조건에서 가속시켜 탄화텅스텐 분말을 전극 표면에 충돌시켜 적층시키는 것인, 저항 용접용 전극 코팅 방법.
【청구항 71
제 6항에 있어서,
상기 분사 가스는 질소 및 헬륨 중 어느 하나의 가스, 또는 이들의 흔합가스로 이루어지는 것인, 저항 용접용 전극 코팅 방법.
【청구항 8】
제 7항에 있어서,
상기 분사 가스의 가열 온도는 2oo°c 내지 liocrc의 범위 니ᅵ인'것인, 저항 용접용 전극 코팅 방법.
【청구항 9]
저 18항에 있어서,
상기 분사 가스의 설정 압력은 15bar 내지 75bar 범위 내인 것인, 저항 용접용 전극 코팅 방법 .
【청구항 10】
제 9항에 있어서'
상기 탄화텅스텐 분말 코팅 단계에서 탄화텅스텐 (WC) 분말 입자가 전극 표면에 깊이 방향으로 박혀 코팅층을 형성하는 것인, 저항 용접용 전극 코팅 방법 .
[청구항 11】
제 10항에 있어서,
상기 코팅층에서 상기 탄화텅스텐 (WC) 분말 입자가 상기 전극 표면에 박히는 깊이는 5 이상 50 이하인 것인. 저항 용접용 전극 코팅 방법.
【청구항 12】 전극의 외측면을 이루는 전극 표면,. 및
상기 전극 표면에 코팅하기 위한 코팅 소재로서, 탄화텅스텐 (WC) 분말을 상기 전극 표면에 분말 용융 없이 상온에서 코팅이 가능한 저온 분사 (co ld spray) 코팅 공정에 의하여 분사 가스와 함께 설정된 가열 온도 및 압력 조건에서 고속으로 분사하여 설정된 코팅 두께로 형성되는 코팅층 을 포함하고,
상기 탄화텅스텐 (WC) 분말은 탄화텅스텐 (WC)을 95 중량 % 이상 및 100 증량 % 미만, 및 잔부로 Co , N i„ CLI , 및 Cr를 포함하는 군에서 선택되는 어느 하나의 이상의 물질 또는 이들의 합금 및 기타 불가피한 불순물을 포함하고,
상기 코팅층은 상기 탄화텅스텐 (WC) 분말 입자가 상기 전극 표.면에 깊이 방향으로 박혀 적층되어 형성되는 것인, 저항 용접용 전극,
【청구항 13]
제 12항에 있어서,
상기 탄화텅스텐 분말의 평균입도는 l//m~50/ini의 크기를가지는 ¾인, 저항 용접용 전극.
[청구힝' 14J
제 12항에 있어서,
상기 코팅층의 코팅 두께는 10卿 내지 100 의 크기를 가지는 것인, 저항 용접용 전극.
[청구항 15】
제 12항 내지 제 14항 중 어느 한 항에 있어서,
상기 코팅층에서 상기 탄화텅스텐 (WC) 분말 입자가 상기 전극 표면에 박히는 깊이는 m 이상 50 이하인 것인, 저항 용접용 전극.
【청구항 16】
제 12항에 있어서, ᅳ
상기 분사 가스는 질소 및 헬륨 중 어느 하나의 가스, 또는 이들의 흔합가스로 이루어지는 것인, 저항 용접용 전극.
【청구항 17]
제 16항에 있어서, 상기 분사 가스의 가열 온도는 200°C 내지 1100 °C의 범위 내인 것인, 저항 용접용 전극.
【청구항 18】
제 17항에 있어서,
상기 분사 가스의 설정 압력은 15bar 내지 75bar 범위 내인 것인. 저항 용접용 전극.
PCT/KR2017/013038 2016-11-17 2017-11-16 저항 용접용 전극 코팅 방법 및 저항 용접용 전극 WO2018093178A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780071211.6A CN109983161B (zh) 2016-11-17 2017-11-16 电阻焊电极涂覆方法及电阻焊电极
EP17872291.4A EP3543373A4 (en) 2016-11-17 2017-11-16 METHOD FOR COATING AN ELECTRODE FOR RESISTANCE WELDING AND ELECTRODE FOR RESISTANCE WELDING
JP2019526595A JP6808834B2 (ja) 2016-11-17 2017-11-16 抵抗溶接用電極コーティング方法および抵抗溶接用電極
US16/461,661 US20190358734A1 (en) 2016-11-17 2017-11-16 Method for coating electrode for resistance welding, and electrode for resistance welding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0153390 2016-11-17
KR1020160153390A KR101797136B1 (ko) 2016-11-17 2016-11-17 저항 용접용 전극 코팅 방법

Publications (1)

Publication Number Publication Date
WO2018093178A1 true WO2018093178A1 (ko) 2018-05-24

Family

ID=60385942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013038 WO2018093178A1 (ko) 2016-11-17 2017-11-16 저항 용접용 전극 코팅 방법 및 저항 용접용 전극

Country Status (6)

Country Link
US (1) US20190358734A1 (ko)
EP (1) EP3543373A4 (ko)
JP (1) JP6808834B2 (ko)
KR (1) KR101797136B1 (ko)
CN (1) CN109983161B (ko)
WO (1) WO2018093178A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115369397A (zh) * 2022-08-18 2022-11-22 湖北超卓航空科技股份有限公司 航空铝合金零件腐蚀故障修复方法、复合涂层及用途

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110653475A (zh) * 2019-09-25 2020-01-07 江苏科技大学 一种电极头涂层及其制备方法与应用
KR102306289B1 (ko) 2019-12-20 2021-10-01 주식회사 포스코 저항 용접용 코팅 전극 및 그 제조 방법
CN116900434B (zh) * 2023-09-12 2023-12-15 长春三友汽车部件制造有限公司 一种提高铝合金电阻点焊电极耐磨性的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100754012B1 (ko) * 2006-09-04 2007-09-03 포항공과대학교 산학협력단 고유전율 박막 형성방법
KR20080010086A (ko) * 2006-07-26 2008-01-30 (주)태광테크 저온분사 코팅법을 이용한 부스바 제조방법
KR20130115847A (ko) * 2012-04-13 2013-10-22 한국과학기술연구원 2차원 나노구조의 텅스텐 카바이드 및 그 제조방법
JP2014162965A (ja) * 2013-02-26 2014-09-08 Mitsubishi Materials Corp 抵抗溶接用タングステン電極材料
JP5984805B2 (ja) * 2010-07-08 2016-09-06 シーメンス エナジー インコーポレイテッド 非金属基板の表面に材料層を形成する方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5874290A (ja) * 1981-09-30 1983-05-04 Tanaka Kikinzoku Kogyo Kk 抵抗溶接用電極
JP2008231527A (ja) * 2007-03-22 2008-10-02 Shinshu Univ コールドスプレー用粉末及び皮膜形成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080010086A (ko) * 2006-07-26 2008-01-30 (주)태광테크 저온분사 코팅법을 이용한 부스바 제조방법
KR100754012B1 (ko) * 2006-09-04 2007-09-03 포항공과대학교 산학협력단 고유전율 박막 형성방법
JP5984805B2 (ja) * 2010-07-08 2016-09-06 シーメンス エナジー インコーポレイテッド 非金属基板の表面に材料層を形成する方法
KR20130115847A (ko) * 2012-04-13 2013-10-22 한국과학기술연구원 2차원 나노구조의 텅스텐 카바이드 및 그 제조방법
JP2014162965A (ja) * 2013-02-26 2014-09-08 Mitsubishi Materials Corp 抵抗溶接用タングステン電極材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3543373A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115369397A (zh) * 2022-08-18 2022-11-22 湖北超卓航空科技股份有限公司 航空铝合金零件腐蚀故障修复方法、复合涂层及用途

Also Published As

Publication number Publication date
EP3543373A1 (en) 2019-09-25
CN109983161B (zh) 2021-04-20
EP3543373A4 (en) 2019-11-20
CN109983161A (zh) 2019-07-05
KR101797136B1 (ko) 2017-11-13
US20190358734A1 (en) 2019-11-28
JP2020510747A (ja) 2020-04-09
JP6808834B2 (ja) 2021-01-06

Similar Documents

Publication Publication Date Title
WO2018093178A1 (ko) 저항 용접용 전극 코팅 방법 및 저항 용접용 전극
Ming et al. Laser cladding of nickel-based hardfacing alloys
CN110144582B (zh) 一种用于制备结晶器或风口的金属基材料及其制备方法
JP6377733B2 (ja) 新規な粉末
EP2933535B1 (en) Piston ring with sprayed coating and method for producing piston ring with sprayed coating
TWI498435B (zh) 具有低溫高強度接合的濺鍍靶材組合
CN113122841B (zh) 一种具有梯度组合结构的耐蚀耐磨涂层及其制备方法
CN101818343A (zh) 一种含有球形碳化钨复合涂层的激光熔覆方法
TW200831691A (en) Sputter target assemblies having a controlled solder thickness
JP4399248B2 (ja) 溶射用粉末
Cinca et al. Study of stellite-6 deposition by cold gas spraying
CN108690946B (zh) 一种喷焊粉末材料及其制备方法和应用
JP2012139696A (ja) 回転ツール
JP4563318B2 (ja) 放電表面処理用電極、放電表面処理装置および放電表面処理方法
EP4023783A1 (en) Method for manufacturing continuous casting mold
CN108720619B (zh) 一种烹饪器具及其制备方法
TWI518185B (zh) 碳化物/結合金屬之複合粉體
WO2021103120A1 (zh) 一种高耐磨耐腐蚀等离子熔覆金属涂层及其制备方法
JP2011017080A (ja) 薄板金属基材上に金属ガラス溶射被膜層が形成された複合材料及びその製造方法
JP2000266055A (ja) 耐蝕耐摩耗性摺動部材およびその製造方法
JP4146112B2 (ja) 冶金用水冷ランスおよびその製造方法
KR20210064275A (ko) 용접 가능한 알루미늄 시트 그리고 관련 방법 및 장치
WO2018111013A1 (ko) 저항 용접용 전극 및 그의 제조 방법
JP6193651B2 (ja) 抵抗溶接用電極
CN114850646B (zh) 一种硬质合金片与金属基体间的电阻焊方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872291

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019526595

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017872291

Country of ref document: EP

Effective date: 20190617