WO2018092745A1 - ポリウレタン樹脂の製造方法、ポリウレタン樹脂および成形品 - Google Patents

ポリウレタン樹脂の製造方法、ポリウレタン樹脂および成形品 Download PDF

Info

Publication number
WO2018092745A1
WO2018092745A1 PCT/JP2017/040837 JP2017040837W WO2018092745A1 WO 2018092745 A1 WO2018092745 A1 WO 2018092745A1 JP 2017040837 W JP2017040837 W JP 2017040837W WO 2018092745 A1 WO2018092745 A1 WO 2018092745A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular weight
polyurethane resin
less
polyol
isocyanatomethyl
Prior art date
Application number
PCT/JP2017/040837
Other languages
English (en)
French (fr)
Inventor
大輔 長谷川
浩明 田子
正和 景岡
山崎 聡
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to CN201780067028.9A priority Critical patent/CN109906241B/zh
Priority to JP2018509629A priority patent/JP6378852B1/ja
Priority to US16/348,349 priority patent/US10927213B2/en
Priority to KR1020197012929A priority patent/KR102205059B1/ko
Priority to EP17870773.3A priority patent/EP3543272A4/en
Publication of WO2018092745A1 publication Critical patent/WO2018092745A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/757Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the cycloaliphatic ring by means of an aliphatic group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/166Catalysts not provided for in the groups C08G18/18 - C08G18/26
    • C08G18/168Organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/227Catalysts containing metal compounds of antimony, bismuth or arsenic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/242Catalysts containing metal compounds of tin organometallic compounds containing tin-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • C08G18/4808Mixtures of two or more polyetherdiols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/664Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/82Post-polymerisation treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes

Definitions

  • the present invention relates to a method for producing a polyurethane resin, a polyurethane resin and a molded product.
  • Thermoplastic polyurethane resin is generally a rubber elastic body obtained by reaction of polyisocyanate, high molecular weight polyol and low molecular weight polyol, and comprises a hard segment formed by reaction of polyisocyanate and low molecular weight polyol, And a soft segment formed by the reaction of an isocyanate and a high molecular weight polyol.
  • a thermoplastic polyurethane resin By molding such a thermoplastic polyurethane resin, a molded product made of the polyurethane resin can be obtained.
  • a tin catalyst is usually used as a urethanization catalyst.
  • 1,4-bis (isocyanatomethyl) cyclohexane having a trans / cis ratio of 86/14 is reacted with polytetramethylene ether glycol having a number average molecular weight of 1800 to 2000 to give an isocyanate group-terminated polyurethane.
  • a polypolymer was synthesized, and the isocyanate group-terminated polyurethane prepolymer was reacted with 1,4-butanediol in the presence of bismuth neodecanoate (catalyst) at 150 ° C. for 1 hour and at 100 ° C. for 23 hours.
  • a molded product of polyurethane elastomer requires mechanical properties, but a molded product obtained using a bismuth catalyst has insufficient mechanical properties compared to a molded product obtained using a tin catalyst. There is.
  • the present invention provides a method for producing a polyurethane resin capable of producing a polyurethane resin having excellent mechanical properties and excellent molding stability even when a bismuth catalyst is used, a polyurethane resin, and the polyurethane It is a molded product obtained from resin.
  • the present invention [1] includes a polyisocyanate component containing bis (isocyanatomethyl) cyclohexane, a low molecular weight polyol having a number average molecular weight of 400 or less, and a polyol component containing a high molecular weight polyol having an average molecular weight of 2500 to 4000.
  • a method for producing a polyurethane resin wherein the heat treatment conditions in the heat treatment step are 50 ° C. or more and 100 ° C. or less and 3 days or more and 10 days or less.
  • the bis (isocyanatomethyl) cyclohexane is 1,4-bis (isocyanatomethyl) cyclohexane, and the 1,4-bis (isocyanatomethyl) cyclohexane is 70 mol% or more and 99.
  • the process for producing a polyurethane resin according to the above [1], which contains a trans isomer in a proportion of mol% or less is included.
  • the present invention [3] includes a polyisocyanate component containing 1,4-bis (isocyanatomethyl) cyclohexane, a low molecular weight polyol having a number average molecular weight of 400 or less, and a high molecular weight polyol having a number average molecular weight of 2500 or more and 4000 or less.
  • the bismuth catalyst content is 0.1 ppm or more and 1000 ppm or less
  • the aggregation temperature measured by a differential scanning calorimeter is equal to or higher than the aggregation temperature T 1 of the hard segment phase represented by the following calculation formula and is less agglomeration temperature T 2 of the hard segment phase indicated by the following equation, includes a polyurethane resin.
  • a polyol containing a polyisocyanate component containing bis (isocyanatomethyl) cyclohexane, a low molecular weight polyol having a number average molecular weight of 400 or less, and a high molecular weight polyol having a number average molecular weight of 2500 or more and 4000 or less The components are reacted in the presence of a bismuth catalyst, and the obtained primary product is heat-treated under predetermined conditions.
  • the polyurethane resin of the present invention obtained by the method for producing a polyurethane resin of the present invention, and further, the molded product of the present invention containing the polyurethane resin is excellent in molding stability and a bismuth catalyst is used. Excellent mechanical properties.
  • FIG. 1 is a distribution diagram showing the agglomeration temperature of the polyurethane resin of each example and each comparative example.
  • thermoplastic polyurethane resin is produced by reacting a polyisocyanate component and a polyol component and then heat-treating (heat curing).
  • the polyurethane resin is a reaction product of a polyisocyanate component and a polyol component.
  • the polyisocyanate component contains bis (isocyanatomethyl) cyclohexane as an essential component.
  • Examples of bis (isocyanatomethyl) cyclohexane include 1,3-bis (isocyanatomethyl) cyclohexane and 1,4-bis (isocyanatomethyl) cyclohexane, and preferably have a symmetric structure and mechanical properties of polyurethane resin. From the viewpoint of improving molding stability, 1,4-bis (isocyanatomethyl) cyclohexane may be mentioned.
  • 1,4-bis (isocyanatomethyl) cyclohexane includes cis-1,4-bis (isocyanatomethyl) cyclohexane (hereinafter referred to as cis 1,4 isomer), and trans- , 4-bis (isocyanatomethyl) cyclohexane (hereinafter referred to as trans 1,4), and in the present invention, 1,4-bis (isocyanatomethyl) cyclohexane is trans 1,4.
  • the body is, for example, 60 mol% or more, preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 85 mol% or more, such as 99.8 mol% or less, preferably 99 mol%.
  • cis 1,4 is converted to, for example, 0.2 mol. %, Preferably 1 mol% or more, more preferably 4 mol% or more, still more preferably 10 mol% or more, such as 40 mol% or less, preferably 30 mol% or less, more preferably 20 mol%. % Or less, more preferably 15 mol% or less.
  • the molding stability can be improved. If the content ratio of the transformers 1 and 4 is not more than the above upper limit, it is possible to improve mechanical properties such as tear strength, breaking strength, breaking elongation, and molding stability.
  • Bis (isocyanatomethyl) cyclohexane is, for example, commercially available bis (aminomethyl) cyclohexane or bis (aminomethyl) cyclohexane obtained by the method described in JP2011-6382A. No. -309827 and Japanese Patent Application Laid-Open No. 2014-55229, a cold two-stage phosgenation method (direct method) and a salt formation method, or Japanese Patent Application Laid-Open No. 2004-244349 and Japanese Patent Application Laid-Open No. 2003-212835 The non-phosgene method can be used.
  • bis (isocyanatomethyl) cyclohexane can be prepared as a modified product as long as the excellent effects of the present invention are not inhibited.
  • modified bis (isocyanatomethyl) cyclohexane examples include, for example, multimers of bis (isocyanatomethyl) cyclohexane (eg, dimer (eg, uretdione-modified product), trimer (eg, isocyanurate-modified product, iminooxadiazinedione).
  • dimer eg, uretdione-modified product
  • trimer eg, isocyanurate-modified product, iminooxadiazinedione
  • biuret modified products for example, biuret modified products produced by the reaction of bis (isocyanatomethyl) cyclohexane and water
  • allophanate modified products for example, bis (isocyanatomethyl) cyclohexane and monovalent Allophanate modified products produced by reaction with alcohol or dihydric alcohol
  • polyol modified products for example, polyol modified product produced by reaction of bis (isocyanatomethyl) cyclohexane and trihydric alcohol (adduct), etc.
  • Oxadia Modified by tritonone for example, oxadiazinetrione produced by reaction of bis (isocyanatomethyl) cyclohexane and carbon dioxide
  • carbodiimide for example, by decarboxylation condensation reaction of bis (isocyanatomethyl) cyclohexane Carbodiimide modified products, etc.
  • polyisocyanate component contains other polyisocyanates such as aliphatic polyisocyanate, aromatic polyisocyanate, araliphatic polyisocyanate, etc. as optional components as long as the excellent effects of the present invention are not impaired. Can do.
  • aliphatic polyisocyanate examples include ethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate (PDI), hexamethylene diisocyanate (HDI), octamethylene diisocyanate, nonamethylene diisocyanate, and 2,2′-dimethylpentane diisocyanate.
  • 2,2,4-trimethylhexane diisocyanate decamethylene diisocyanate, butene diisocyanate, 1,3-butadiene-1,4-diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, 1,6,11-undecamethylene Triisocyanate, 1,3,6-hexamethylene triisocyanate, 1,8-diisocyanate-4-isocyanatomethi Octane, 2,5,7-trimethyl-1,8-diisocyanate-5-isocyanatomethyloctane, bis (isocyanatoethyl) carbonate, bis (isocyanatoethyl) ether, 1,4-butylene glycol dipropyl ether- ⁇ , ⁇ '-diisocyanate, lysine isocyanatomethyl ester, lysine triisocyanate, 2-isocyanatoethyl-2,6-diisocyanatohexanoate
  • the aliphatic polyisocyanate includes alicyclic polyisocyanates (excluding bis (isocyanatomethyl) cyclohexane).
  • Alicyclic polyisocyanates include, for example, isophorone diisocyanate (IPDI), trans, trans-, trans, cis-, and cis, cis-dicyclohexylmethane diisocyanate and mixtures thereof.
  • aromatic polyisocyanates examples include 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate, and isomer mixtures of these tolylene diisocyanates (TDI), 4,4′-diphenylmethane diisocyanate, 2,4 Examples include '-diphenylmethane diisocyanate and 2,2'-diphenylmethane diisocyanate, and any isomer mixture of these diphenylmethane diisocyanates (MDI), toluidine diisocyanate (TODI), paraphenylene diisocyanate, naphthalene diisocyanate (NDI), and the like.
  • MDI diphenylmethane diisocyanates
  • TODI toluidine diisocyanate
  • NDI naphthalene diisocyanate
  • araliphatic polyisocyanate examples include 1,3- or 1,4-xylylene diisocyanate or a mixture thereof (XDI), 1,3- or 1,4-tetramethylxylylene diisocyanate or a mixture thereof (TMXDI), etc. Is mentioned.
  • These other polyisocyanates can be used alone or in combination of two or more.
  • polyisocyanates can be prepared as modified products within a range that does not impair the excellent effects of the present invention.
  • polyisocyanate modified products examples include other polyisocyanate multimers (dimers, trimers, etc.), biuret modified products, allophanate modified products, polyol modified products, oxadiazine trione modified products, carbodiimide modified products, and the like. Can be mentioned.
  • the content ratio when other polyisocyanate is contained is, for example, 50% by mass or less, preferably 30% by mass or less, more preferably 20% by mass or less, with respect to the total amount of the polyisocyanate component.
  • polyisocyanate component can contain monoisocyanate as an optional component as long as the excellent effects of the present invention are not impaired.
  • Examples of the monoisocyanate include methyl isocyanate, ethyl isocyanate, n-hexyl isocyanate, cyclohexyl isocyanate, 2-ethylhexyl isocyanate, phenyl isocyanate, and benzyl isocyanate.
  • the content ratio is, for example, 20% by mass or less, preferably 10% by mass or less, based on the total amount of the polyisocyanate component.
  • the polyisocyanate component preferably, bis (isocyanatomethyl) cyclohexane is used alone. That is, the polyisocyanate component is preferably made of bis (isocyanatomethyl) cyclohexane, more preferably 1,4-bis (isocyanatomethyl) cyclohexane.
  • the polyol component includes a compound having two or more hydroxyl groups in the molecule and having a molecular weight of 50 or more and 5000 or less.
  • the polyol component contains a low molecular weight polyol having a molecular weight of 400 or less and a high molecular weight polyol having a molecular weight of 2500 or more and 4000 or less, preferably a low molecular weight polyol having a molecular weight of 400 or less, and a high molecular weight polyol having a molecular weight of 2500 or more and 4000 or less. Consists of.
  • a number average molecular weight is employ
  • the number average molecular weight can be determined by the measurement by GPC method, the hydroxyl value of each component constituting the high molecular weight compound and the prescription (the same applies hereinafter).
  • Examples of the low molecular weight polyol include a compound (monomer) having two or more hydroxyl groups in the molecule and having a molecular weight of 50 or more and 400 or less.
  • ethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, 1,4-butylene glycol (1,4-butanediol, 1,4-BD), 1,3-butylene C2-C4 alkanediols such as glycol, 1,2-butylene glycol, such as 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, 2,2 , 2-trimethylpentanediol, 3,3-dimethylolheptane, other C7-C11 alkanediols, cyclohexanedimethanol (1,3- or 1,4-cyclohexanedimethanol and
  • These low molecular weight polyols can be used alone or in combination of two or more.
  • the low molecular weight polyol is preferably a dihydric alcohol, more preferably a C2 to C4 alkanediol, and still more preferably 1,4-butanediol.
  • the low molecular weight polyol is as described above, a molded article (described later) having excellent mechanical properties such as breaking strength can be obtained.
  • the number average molecular weight of the low molecular weight polyol is, for example, 50 or more, preferably 70 or more, and 400 or less, preferably 300 or less.
  • the molecular weight of the low molecular weight polyol is in the above range, a molded article (described later) having excellent mechanical properties can be obtained.
  • the high molecular weight polyol examples include a high molecular weight compound (preferably a polymer) having a number average molecular weight of 2500 or more and 4000 or less and having two or more hydroxyl groups in the molecule.
  • a high molecular weight compound preferably a polymer having a number average molecular weight of 2500 or more and 4000 or less and having two or more hydroxyl groups in the molecule.
  • high molecular weight polyol examples include polyether polyol, polyester polyol, polycarbonate polyol, vegetable oil polyol, polyolefin polyol, and acrylic polyol.
  • polyether polyol examples include polyoxyalkylene polyol and polytetramethylene ether polyol.
  • the polyoxyalkylene polyol is, for example, an addition polymer of alkylene oxide starting from the above-described low molecular weight polyol or a known low molecular weight polyamine.
  • alkylene oxide examples include propylene oxide, ethylene oxide, and butylene oxide. These alkylene oxides can be used alone or in combination of two or more. Of these, propylene oxide and ethylene oxide are preferable.
  • polyoxyalkylene polyol examples include polyethylene glycol, polypropylene glycol, and random and / or block copolymers of propylene oxide and ethylene oxide.
  • polytetramethylene ether polyol for example, a ring-opening polymer (polytetramethylene ether glycol) obtained by cationic polymerization of tetrahydrofuran, or a polymer unit such as tetrahydrofuran is copolymerized with alkyl-substituted tetrahydrofuran or the above dihydric alcohol.
  • Non-crystalline (non-crystalline) polytetramethylene ether glycol for example, a ring-opening polymer (polytetramethylene ether glycol) obtained by cationic polymerization of tetrahydrofuran, or a polymer unit such as tetrahydrofuran is copolymerized with alkyl-substituted tetrahydrofuran or the above dihydric alcohol.
  • Non-crystalline (non-crystalline) polytetramethylene ether glycol Non-crystalline (non-crystalline) polytetramethylene ether glycol
  • amorphous (non-crystalline) means being liquid at normal temperature (25 ° C.) (the same applies hereinafter).
  • polyester polyol examples include polycondensates obtained by reacting the above-described low molecular weight polyol and polybasic acid under known conditions.
  • polybasic acid examples include oxalic acid, malonic acid, succinic acid, methyl succinic acid, glutaric acid, adipic acid, 1,1-dimethyl-1,3-dicarboxypropane, 3-methyl-3-ethylglutaric acid , Azelaic acid, sebacic acid, other saturated aliphatic dicarboxylic acids (C11-13) such as maleic acid, fumaric acid, itaconic acid, other unsaturated aliphatic dicarboxylic acids such as orthophthalic acid, isophthalic acid, terephthalic acid , Toluene dicarboxylic acid, naphthalene dicarboxylic acid, other aromatic dicarboxylic acids such as hexahydrophthalic acid, other alicyclic dicarboxylic acids such as dimer acid, hydrogenated dimer acid, het acid and other carboxylic acids, And acid anhydrides derived from these carboxylic acids, such as oxalic an
  • polyester polyol for example, a plant-derived polyester polyol, specifically, a hydroxyl group-containing vegetable oil fatty acid (for example, castor oil fatty acid containing ricinoleic acid, 12-hydroxystearic acid, using the above-described low molecular weight polyol as an initiator, And vegetable oil-based polyester polyols obtained by subjecting a hydroxycarboxylic acid such as hydrogenated castor oil fatty acid and the like to a condensation reaction under known conditions.
  • a hydroxycarboxylic acid such as hydrogenated castor oil fatty acid and the like
  • the polyester polyol for example, the above-described low molecular weight polyol (preferably dihydric alcohol) is used as an initiator, for example, lactones such as ⁇ -caprolactone and ⁇ -valerolactone, for example, L-lactide, D- Examples thereof include polycaprolactone polyol and polyvalerolactone polyol obtained by ring-opening polymerization of lactides such as lactide, and lactone-based polyester polyols such as those obtained by copolymerizing the above dihydric alcohol.
  • lactones such as ⁇ -caprolactone and ⁇ -valerolactone
  • L-lactide L-lactide
  • D- Examples thereof include polycaprolactone polyol and polyvalerolactone polyol obtained by ring-opening polymerization of lactides such as lactide, and lactone-based polyester polyols such as those obtained by copolymerizing the above dihydric alcohol.
  • polycarbonate polyol examples include a ring-opening polymer of ethylene carbonate using the above-described low molecular weight polyol (preferably, the above dihydric alcohol) as an initiator, for example, 1,4-butanediol, 1,5-pentanediol.
  • An amorphous polycarbonate polyol obtained by copolymerizing a dihydric alcohol such as 3-methyl-1,5-pentanediol or 1,6-hexanediol with a ring-opening polymer.
  • Examples of the vegetable oil polyol include hydroxyl group-containing vegetable oils such as castor oil and palm oil.
  • castor oil polyol, or ester-modified castor oil polyol obtained by reaction of castor oil fatty acid and polypropylene polyol can be used.
  • polystyrene resin examples include polybutadiene polyol, partially saponified ethylene-vinyl acetate copolymer, and the like.
  • acrylic polyol examples include a copolymer obtained by copolymerizing a hydroxyl group-containing acrylate and a copolymerizable vinyl monomer copolymerizable with the hydroxyl group-containing acrylate.
  • hydroxyl group-containing acrylates examples include 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, 2,2-dihydroxymethylbutyl (meth) acrylate, polyhydroxyalkyl maleate, Examples thereof include polyhydroxyalkyl fumarate.
  • Preferable examples include 2-hydroxyethyl (meth) acrylate.
  • Examples of the copolymerizable vinyl monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, s-butyl ( Alkyl (meth) acrylate, t-butyl (meth) acrylate, pentyl (meth) acrylate, isopentyl (meth) acrylate, hexyl (meth) acrylate, isononyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl acrylate, etc.
  • (Meth) acrylate (having 1 to 12 carbon atoms), for example, aromatic vinyl such as styrene, vinyltoluene and ⁇ -methylstyrene, vinyl cyanide such as (meth) acrylonitrile, Vinyl monomers containing carboxyl groups such as (meth) acrylic acid, fumaric acid, maleic acid, itaconic acid, or alkyl esters thereof such as ethylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, hexanediol di ( Alkane polyol poly (meth) acrylates such as (meth) acrylate and oligoethylene glycol di (meth) acrylate, for example, vinyl monomers containing isocyanate groups such as 3- (2-isocyanato-2-propyl) - ⁇ -methylstyrene Can be mentioned.
  • aromatic vinyl such as styrene, vinyltoluene and ⁇ -methylsty
  • the acrylic polyol can be obtained by copolymerizing these hydroxyl group-containing acrylate and copolymerizable vinyl monomer in the presence of a suitable solvent and a polymerization initiator.
  • the acrylic polyol includes, for example, silicone polyol and fluorine polyol.
  • silicone polyol examples include an acrylic polyol in which a silicone compound containing a vinyl group such as ⁇ -methacryloxypropyltrimethoxysilane is blended as the copolymerizable vinyl monomer in the copolymerization of the acrylic polyol described above. .
  • the fluorine polyol for example, in the copolymerization of the acrylic polyol described above, as the copolymerizable vinyl monomer, for example, an acrylic polyol in which a fluorine compound containing a vinyl group such as tetrafluoroethylene or chlorotrifluoroethylene is blended may be mentioned. .
  • These high molecular weight polyols can be used alone or in combination of two or more.
  • High molecular weight polyols preferably include polyether polyols and polyester polyols, and more preferably include polyethylene glycol, polytetramethylene ether glycol, and polycaprolactone polyol.
  • the high molecular weight polyol is as described above, a molded product (described later) having excellent mechanical properties such as breaking strength and tear strength can be obtained.
  • the number average molecular weight of the high molecular weight polyol is 2500 or more as described above, preferably 2700 or more, more preferably 2800 or more, and further preferably 2900 or more, and as described above, 4000 or less, preferably Is 3500 or less, more preferably 3200 or less.
  • the molecular weight of the high molecular weight polyol is less than the above lower limit, the mechanical properties such as elongation at break, compression set and residual strain are inferior, the physical properties are likely to change depending on the molding conditions, and further, molding defects such as fish eyes are caused. There is a problem that it tends to occur.
  • the molecular weight of the high molecular weight polyol exceeds the above upper limit, the mechanical properties such as tear strength and breaking strength are inferior, the physical properties are likely to change depending on molding conditions, and further, molding defects such as fish eyes are likely to occur. There is a bug.
  • the molecular weight of the high molecular weight polyol is within the above range, good mechanical properties can be exhibited.
  • the content ratio of the low molecular weight polyol and the high molecular weight polyol is such that the high molecular weight polyol is, for example, 5 mol% or more, preferably 7 mol% or more, more preferably 10 mol%, based on the total amount thereof. As mentioned above, More preferably, it is 15 mol% or more, for example, 75 mol% or less, Preferably, it is 65 mol% or less, More preferably, it is 50 mol% or less.
  • the low molecular weight polyol is, for example, 25 mol% or more, preferably 35 mol% or more, more preferably 50 mol% or more, for example, 95 mol% or less, preferably 93 mol% or less, more preferably. Is 90 mol% or less, more preferably 85 mol% or less.
  • the content ratio of the low molecular weight polyol and the high molecular weight polyol is within the above range, the mechanical properties of the obtained molded product (described later) can be improved.
  • the polyurethane resin of the present invention contains a bismuth catalyst.
  • the bismuth catalyst is contained in the polyurethane resin by using a bismuth catalyst (described later) as a urethanization catalyst in the polyurethane resin production method described later. That is, the polyurethane resin of the present invention is produced using a bismuth catalyst, as will be described in detail later.
  • the bismuth catalyst content is 0.1 ppm or more, preferably 0.2 ppm or more, more preferably 0.5 ppm or more, still more preferably 1 ppm or more, and 1000 ppm or less, preferably 800 ppm, relative to the polyurethane resin. Below, more preferably, it is 500 ppm or less, More preferably, it is 100 ppm or less.
  • the bismuth catalyst content is less than the above lower limit, there are problems that mechanical properties such as breaking strength and breaking elongation are inferior, molding defects such as fish eyes are likely to occur, and molding stability is inferior.
  • the bismuth catalyst content exceeds the above upper limit, the mechanical properties such as elongation at break and compression set are inferior, the physical properties are likely to change depending on the molding conditions, and further, molding defects such as fish eyes are likely to occur. There is a problem that the molding stability is poor. In addition, when the bismuth catalyst content exceeds the upper limit, there is a problem that durability (discoloration resistance) is inferior.
  • the polyurethane resin of the present invention preferably does not contain a known urethanization catalyst other than a bismuth catalyst, and more preferably does not contain a tin catalyst.
  • the tin catalyst is contained in the polyurethane resin by using a known tin catalyst as the urethanization catalyst in the polyurethane resin production method described later. Therefore, although the polyurethane resin of this invention is mentioned later in detail, it is manufactured without using a tin catalyst. Thereby, the work environment can be improved.
  • the tin catalyst content is, for example, 0.1 ppm or less, preferably 0.01 ppm or less, more preferably 0.001 ppm or less, and still more preferably 0 ppm with respect to the polyurethane resin.
  • the tin catalyst content is in the above range, in other words, if no tin catalyst is used, molding stability can be improved.
  • bismuth catalyst content and tin catalyst content can be calculated
  • Such a polyurethane resin is obtained by the manufacturing method of a polyurethane resin provided with the reaction process and the heat processing process as shown below.
  • the reaction step is a step of obtaining a primary product (reaction product before heat treatment) by reacting the polyisocyanate component and the polyol component in the presence of a bismuth catalyst.
  • each of the above components polyisocyanate component, polyol component
  • a known method such as a one-shot method or a prepolymer method is employed.
  • a prepolymer method is employed.
  • prepolymer synthesis step a polyisocyanate component and a high molecular weight polyol are reacted to synthesize an isocyanate group-terminated polyurethane prepolymer (prepolymer synthesis step).
  • the polyisocyanate component and the high molecular weight polyol are reacted by a polymerization method such as bulk polymerization or solution polymerization.
  • the polyisocyanate component and the high-molecular weight polyol are reacted at a reaction temperature of, for example, 50 ° C. or higher, for example, 250 ° C. or lower, preferably 200 ° C. or lower, for example, 0.5 hours.
  • a reaction temperature of, for example, 50 ° C. or higher, for example, 250 ° C. or lower, preferably 200 ° C. or lower, for example, 0.5 hours.
  • the reaction is performed for 15 hours or less.
  • a polyisocyanate component and a high molecular weight polyol are added to an organic solvent, and the reaction temperature is, for example, 50 ° C. or higher, for example, 120 ° C. or lower, preferably 100 ° C. or lower, for example, 0.5 hour or longer.
  • the reaction is performed for 15 hours or less.
  • organic solvent examples include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, nitriles such as acetonitrile, alkyl esters such as methyl acetate, ethyl acetate, butyl acetate, and isobutyl acetate, such as n- Aliphatic hydrocarbons such as hexane, n-heptane and octane, for example, alicyclic hydrocarbons such as cyclohexane and methylcyclohexane, for example, aromatic hydrocarbons such as toluene, xylene and ethylbenzene, such as methyl cellosolve acetate , Ethyl cellosolve acetate, methyl carbitol acetate, ethyl carbitol acetate, ethylene glycol ethyl ether acetate, propy
  • the bismuth catalyst is a catalyst that promotes the urethanization reaction (urethanization catalyst), and examples thereof include bismuth carboxylates such as bismuth octylate, bismuth neodecanoate, bismuth stearate, and bismuth oleate.
  • These bismuth catalysts can be used alone or in combination of two or more.
  • bismuth catalyst bismuth carboxylate is preferable, and bismuth octylate is more preferable.
  • the addition ratio of the bismuth catalyst is appropriately set so that the bismuth catalyst content in the polyurethane resin falls within the above range. Specifically, for example, 0.001 part by mass or more, preferably 0.01 part by mass or more, for example, 1 part by mass or less, preferably 10000 parts by mass of the total amount of the polyisocyanate component and the high molecular weight polyol. Is 0.5 parts by mass or less.
  • the unreacted polyisocyanate component and, when an organic solvent is used, the organic solvent can be removed by a known removing means such as distillation or extraction.
  • the mixing ratio of each component is, for example, 2.0 or more, preferably 2 as the equivalent ratio of the isocyanate group in the polyisocyanate component to the hydroxyl group in the high molecular weight polyol (isocyanate group / hydroxyl group). 0.5 or more, for example, 20 or less, preferably 15 or less, more preferably 10 or less, and still more preferably 8 or less.
  • the blend ratio of each component in the prepolymer synthesis step is such that the polyisocyanate component is, for example, 5 parts by mass or more, preferably 10 parts by mass or more, more preferably 100 parts by mass of the high molecular weight polyol. Is 15 parts by mass or more, for example, 100 parts by mass or less, preferably 70 parts by mass or less, more preferably 50 parts by mass or less, and further preferably 30 parts by mass or less.
  • the isocyanate group content is, for example, 1.0% by mass or more, preferably 3.0% by mass or more, more preferably 4.0% by mass or more, for example, 30.0% by mass or less.
  • it is 19.0 mass% or less, More preferably, it is 16.0 mass% or less, More preferably, it is 12.0 mass% or less, More preferably, it is 10.0 mass% or less, Especially preferably, 5.
  • the above components are allowed to react until reaching 0% by weight or less. Thereby, an isocyanate group-terminated polyurethane prepolymer can be obtained.
  • the isocyanate group content (isocyanate group content) can be determined by a known method such as titration with di-n-butylamine or FT-IR analysis.
  • the isocyanate group-terminated polyurethane prepolymer obtained above is reacted with a low molecular weight polyol to obtain a primary product of a polyisocyanate component and a polyol component (chain extension step).
  • the low molecular weight polyol is a chain extender.
  • the isocyanate group-terminated polyurethane prepolymer and the low molecular weight polyol are reacted with each other by a polymerization method such as bulk polymerization or solution polymerization described above.
  • the reaction temperature is, for example, room temperature or more, preferably 50 ° C. or more, such as 200 ° C. or less, preferably 150 ° C. or less, and the reaction time is, for example, 5 minutes or more, preferably 1 hour or more, for example, 72 hours or less, preferably 48 hours or less.
  • the blending ratio of each component is, for example, 0.75 or more, preferably 0.00 as the equivalent ratio of the isocyanate group in the isocyanate group-terminated polyurethane prepolymer to the hydroxyl group in the low molecular weight polyol (isocyanate group / hydroxyl group). 9 or more, for example, 1.3 or less, preferably 1.1 or less.
  • the blending ratio of each component in the chain extension step is such that the low molecular weight polyol is, for example, 1.0 part by mass or more, preferably 2.0 parts per 100 parts by mass of the isocyanate group-terminated polyurethane prepolymer. More than mass part, More preferably, it is 3.0 mass part or more, for example, 30 mass parts or less, Preferably, it is 20 mass parts or less, More preferably, it is 15 mass parts or less, More preferably, it is 10 mass parts or less, Particularly preferably, it is 6.0 parts by mass or less.
  • a high molecular weight polyol in order to adjust the hard segment concentration (described later) of the obtained polyurethane resin, a high molecular weight polyol can be blended in addition to the low molecular weight polyol.
  • the blending ratio of the high molecular weight polyol in the case of blending the high molecular weight polyol is such that the high molecular weight polyol is, for example, 5 parts by weight or more with respect to 100 parts by weight of the isocyanate group-terminated polyurethane prepolymer.
  • it is 20 mass parts or more, for example, 100 mass parts or less
  • the above-described bismuth catalyst can be added as necessary.
  • the bismuth catalyst can be blended with the isocyanate group-terminated polyurethane prepolymer and / or the low molecular weight polyol, or can be blended separately when mixing them.
  • a polyisocyanate component and a polyol component are compared with a hydroxyl group in the polyol component.
  • the equivalent ratio of isocyanate groups (isocyanate group / hydroxyl group) in the polyisocyanate component is, for example, 0.9 or more, preferably 0.95 or more, more preferably 0.98 or more, for example 1.2 or less, preferably Are mixed at a rate of 1.1 or less, more preferably 1.08 or less, and mixed with stirring.
  • the stirring and mixing is performed, for example, in an inert gas (for example, nitrogen) atmosphere at a reaction temperature of, for example, 40 ° C. or more, preferably 100 ° C. or more, for example, 280 ° C. or less, preferably 260 ° C. or less.
  • the reaction time is, for example, 30 seconds or longer and 1 hour or shorter.
  • the stirring and mixing method is not particularly limited.
  • a method of stirring and mixing using a known mixing apparatus such as a rotary extruder and a belt conveyor type.
  • the above-described bismuth catalyst and organic solvent can be added at an appropriate ratio, if necessary.
  • the heat treatment step is a step of obtaining a secondary product (a reaction product after the heat treatment, that is, a polyurethane resin that is a reaction product) by heat-treating the primary product.
  • the primary product obtained in the above reaction step is heat-treated by allowing it to stand at a predetermined heat treatment temperature for a predetermined heat treatment period, and then, if necessary, dried.
  • the heat treatment temperature is 50 ° C. or higher, preferably 60 ° C. or higher, more preferably 70 ° C. or higher, 100 ° C. or lower, preferably 90 ° C. or lower.
  • the mechanical properties such as tear strength, breaking strength, elongation at break are inferior, the physical properties are likely to change depending on molding conditions, and further, molding defects such as fish eyes are likely to occur. There is.
  • the mechanical properties such as tear strength, breaking strength and breaking elongation are inferior, the physical properties are likely to change depending on the molding conditions, and further, molding defects such as fish eyes are caused. There is a problem that it tends to occur.
  • the heat treatment temperature exceeds the upper limit, there is a problem that durability (discoloration resistance) is inferior.
  • the heat treatment period is 3 days or more, preferably 4 days or more, more preferably 5 days or more, still more preferably 6 days or more, 10 days or less, preferably 9 days or less, more preferably 8 days. Less than a day.
  • the mechanical properties such as tear strength, breaking strength, elongation at break are inferior, the physical properties are likely to change depending on molding conditions, and further, molding defects such as fish eyes are likely to occur. There is.
  • the mechanical properties such as tear strength, breaking strength and breaking elongation are inferior, the physical properties are likely to change depending on the molding conditions, and further, molding defects such as fish eyes are caused. There is a problem that it tends to occur.
  • the heat treatment period exceeds the upper limit, there is a problem that durability (discoloration resistance) is inferior.
  • additives for example, antioxidants, heat stabilizers, UV absorbers, light stabilizers, plasticizers, antiblocking agents, mold release agents, pigments are used as necessary.
  • Dyes lubricants (fatty acid amide lubricants), fillers, hydrolysis inhibitors, rust inhibitors, fillers, bluing agents, and the like can be added.
  • additives can be added at the time of mixing each component, at the time of synthesis, or after the synthesis.
  • the heat stabilizer is not particularly limited, and may be a known heat stabilizer (for example, described in the catalog made by BASF Japan). More specifically, for example, phosphorus-based processing heat stabilizer, lactone-based processing heat stability. Agents, sulfur processing heat stabilizers and the like.
  • the ultraviolet absorber is not particularly limited, and includes known ultraviolet absorbers (for example, described in the catalog made by BASF Japan). More specifically, for example, benzotriazole ultraviolet absorbers, triazine ultraviolet absorbers. And benzophenone ultraviolet absorbers.
  • the light-resistant stabilizer is not particularly limited, and examples thereof include known light-resistant stabilizers (for example, described in the catalog made by ADEKA), and more specifically, for example, benzoate-based light stabilizers, hindered amine-based light stabilizers, and the like. Can be mentioned.
  • Each of these additives is, for example, 0.01% by mass or more, preferably 0.1% by mass or more, for example, 3.0% by mass or less, preferably 2.0% by mass or less, with respect to the polyurethane resin. Is added at a rate of
  • a polyisocyanate component containing bis (isocyanatomethyl) cyclohexane, a low molecular weight polyol having a number average molecular weight of 400 or less, and a high molecular weight polyol having a number average molecular weight of 2500 or more and 4000 or less is reacted in the presence of a bismuth catalyst, and the obtained primary product is heat-treated under predetermined conditions.
  • the polyurethane resin obtained by such a production method is excellent in molding stability and has excellent mechanical properties even when a bismuth catalyst is used.
  • the polyurethane resin includes a hard segment formed by a reaction of a polyisocyanate component and a low molecular weight polyol, and a soft segment formed by a reaction of a polyisocyanate component and a high molecular weight polyol.
  • the hard segment concentration of the polyurethane resin is, for example, 3% by mass or more, preferably 5% by mass or more, more preferably 8% by mass or more, for example, 55% by mass or less, preferably 50% by mass or less. Preferably, it is 45 mass% or less, More preferably, it is 35 mass% or less, Most preferably, it is 20 mass% or less.
  • the hard segment concentration of the polyurethane resin is within the above range, the mechanical properties of the obtained molded product (described later) can be improved.
  • the hard segment (hard segment formed by reaction of the polyisocyanate component and the low molecular weight polyol) concentration of the polyurethane resin can be calculated from, for example, the blending ratio (preparation) of each component (Examples described later) reference.).
  • the aggregation temperature of the polyurethane resin corresponds to the aggregation temperature of the hard segment phase in the polyurethane resin, and the hard segment represented by the following calculation formula: phase agglomeration temperature above T 1 and less than or equal agglomeration temperature T 2 of the hard segment phase indicated by the following equation.
  • Aggregation temperature T 1 of hard segment phase (unit: ° C.): 100 + 0.75 ⁇ hard segment concentration (mass%)
  • Aggregation temperature T 2 of hard segment phase (unit: ° C.): 160 + 0.75 ⁇ hard segment concentration (mass%)
  • agglomeration temperature of the polyurethane resin the following formula in the hard segment phase of agglomeration temperature T 3 than shown, and is less agglomeration temperature T 4 of the hard segment phase indicated by the following equation.
  • a polyurethane resin having an aggregation temperature in the above range is excellent in mechanical properties.
  • the above calculation formula is not a theoretical formula but an empirical formula (empirical formula) obtained by measuring the aggregation temperature of a polyurethane resin excellent in various mechanical properties.
  • a polyurethane resin having such an agglomeration temperature is easily produced by using, for example, a known tin catalyst as a urethanization catalyst.
  • the use of a bismuth catalyst as an alternative to the tin catalyst is considered.
  • the aggregation temperature of the resulting polyurethane resin may be less than the aggregation temperature T 1 or may exceed the aggregation temperature T 2 .
  • Such a polyurethane resin is inferior in mechanical properties.
  • the primary product obtained by the urethanization reaction is heat-treated (heat-cured) under predetermined conditions.
  • the aggregation temperature of the polyurethane resin can be adjusted to the above range, and a polyurethane resin having excellent mechanical properties can be obtained.
  • the aggregation temperature of the polyurethane resin is, for example, 75 ° C. or higher, preferably 90 ° C. or higher, more preferably 100 ° C. or higher, still more preferably 110 ° C. or higher, and particularly preferably 130 ° C. or higher.
  • it is 200 ° C. or less, preferably 180 ° C. or less, more preferably 170 ° C. or less, further preferably 150 ° C. or less, and particularly preferably 140 ° C. or less.
  • the breaking strength and tear strength of the obtained molded product (described later) can be improved, and if the aggregation temperature of the polyurethane resin is not more than the above upper limit, it can be obtained. It is possible to improve the impact resilience of the molded product (described later) and to suppress the compression set.
  • the aggregation temperature of the polyurethane resin can be measured by differential scanning calorimetry (DSC measurement) in accordance with the conditions of the examples.
  • this invention contains the molded article containing the polyurethane resin of the above-mentioned this invention.
  • the molded product is molded from a polyurethane resin.
  • the molded product is, for example, the above-mentioned polyurethane resin, a known molding method, for example, heat compression molding and injection molding using a specific mold, extrusion molding using a sheet winding device, for example, melt spinning molding, etc.
  • a known molding method for example, heat compression molding and injection molding using a specific mold, extrusion molding using a sheet winding device, for example, melt spinning molding, etc.
  • it can be obtained by molding into various shapes such as pellets, plates, fibers, strands, films, sheets, pipes, hollows, and boxes.
  • the obtained molded article is excellent in molding stability and has excellent mechanical properties even when a bismuth catalyst is used.
  • the polyurethane resin of the present invention and the production method thereof are a thermoplastic polyurethane resin and the production method thereof.
  • the polyurethane resin of the present invention and the production method thereof are a thermosetting polyurethane resin and a production method thereof. It can also be applied to.
  • thermosetting polyurethane resin for example, the above isocyanate group-terminated polyurethane prepolymer, dihydric alcohol (1,4-butanediol, 1,4-butanediol, etc.) and trihydric alcohol (trimethylolpropane) are used.
  • reaction process for example, cast molding
  • the obtained molded product is heat-treated under the above conditions (heat treatment process).
  • the molded product which consists of a thermosetting polyurethane resin and the thermosetting polyurethane resin can be obtained.
  • thermosetting polyurethane resin and its production method and also a molded product made of the thermosetting polyurethane resin is excellent in molding stability and excellent mechanical properties even when a bismuth catalyst is used.
  • the molded product can be widely used industrially.
  • bands for example, bands such as watch bands, belts for automobiles, belts for various industrial conveyor belts (conveyor belts)
  • tubes for example, medical tubes, parts such as catheters, air tubes, Hydraulic tube, tube such as electric wire tube (for example, hose such as fire hose), blade, speaker, sensors, LED sealant for high brightness, organic EL member, solar power generation member, robot member, android member, wearable member , Clothing, hygiene, cosmetics, food packaging, sports equipment, recreation Goods, medical supplies, nursing care products, housing components, acoustic components, lighting components, chandeliers, outdoor lights, sealing materials, sealing materials, corks, packing, anti-vibration / vibration control / isolation components, soundproof components, daily necessities, miscellaneous goods, Cushion, bedding, stress absorbing material, stress relieving material, interior
  • bands for example, bands such as watch bands, belts for automobiles, belts for various industrial conveyor belts (conveyor belts)
  • tubes
  • the above-mentioned molded products include coating materials (films, sheets, belts, wires, electric wires, metal rotating devices, wheels, drills, etc.), yarns and fibers (tubes, tights, spats, sportswear, Threads and composite fibers used in swimwear, etc.), extrusion applications (extrusion applications such as tennis and badminton guts and their converging materials), slush molding products in powder form by micropelletization, artificial leather, skin, Sheet, packing, coating roll (coating roll such as steel), seal, sealant, roller, gear, tablet cover, ball cover or core material (cover or core material such as golf ball, basketball, tennis ball, volleyball, softball) ), Shoes (cover material, midsole, out ), Ski equipment, boots, tennis equipment, grips (grips for golf clubs, motorcycles, etc.), bats, automotive interior and exterior members, rack boots, wipers, seat cushion members, robots, cosmetics, nursing care product films, 3D printer moldings, fiber reinforced materials (carbon fiber, 3D
  • 1,4-BIC 1,4-bis (isocyanatomethyl) cyclohexane 1,3-BIC synthesized by the method described in Production Examples 1 to 5 below, 1,3-bis (isocyanatomethyl) cyclohexane, commercial product Name: Takenate 600, manufactured by Mitsui Chemicals, Ltd.
  • ⁇ Urethaneization catalyst> Bismuth catalyst: Bismuth octylate, trade name: Neostan U-600, tin catalyst manufactured by Nitto Kasei Co., Ltd .: Tin (II) octylate, trade name: Stanocto, manufactured by API Corporation ⁇ Catalyst Diluent> Diisononyl adipate: Trade name: DINA, manufactured by Daihachi Chemical Industry Co., Ltd.
  • 1,4-BIC (1) The purity of 1,4-BIC (1) as determined by gas chromatography was 99.9%, the hue as measured by APHA was 5, and the trans / cis ratio as determined by 13 C-NMR was 99.5 / 0.5.
  • the hydrolyzable chlorine concentration (hereinafter referred to as HC concentration) was 18 ppm.
  • Production Example 2 (Production method of 1,4-bis (isocyanatomethyl) cyclohexane (2) (hereinafter referred to as 1,4-BIC (2)))
  • 1,4-BIC (2) Production method of 1,4-bis (isocyanatomethyl) cyclohexane (2)
  • 92% yield of 1,4-bis (aminomethyl) cyclohexane having a trans isomer / cis isomer ratio of 98/2 with a purity of 99.5% or more was obtained. Obtained at a rate.
  • the purity of the obtained 1,4-BIC (2) as measured by gas chromatography was 99.9%, the hue as measured by APHA was 5, and the trans isomer / cis isomer ratio as determined by 13 C-NMR was 98/2. .
  • the HC concentration was 18 ppm.
  • Production Example 3 (Production method of 1,4-bis (isocyanatomethyl) cyclohexane (3) (hereinafter referred to as 1,4-BIC (3)))
  • 1,4-BIC (3) Production method of 1,4-bis (isocyanatomethyl) cyclohexane (3)
  • 1,4-BIC (3) was charged in 211 parts by mass and stirred at room temperature for 1 hour in a nitrogen atmosphere.
  • the purity of the obtained 1,4-BIC (3) as measured by gas chromatography was 99.9%, the hue as measured by APHA was 5, and the trans / cis ratio as determined by 13 C-NMR was 86/14.
  • the HC concentration was 19 ppm.
  • Production Example 4 Metal for producing 1,4-bis (isocyanatomethyl) cyclohexane (4) (hereinafter referred to as 1,4-BIC (4))
  • 1,4-BIC (4) Metal for producing 1,4-bis (isocyanatomethyl) cyclohexane (4)
  • 1,4-BIC (4) a thermometer for producing 1,4-bis (isocyanatomethyl) cyclohexane (4)
  • 1,4-BIC (4) Metal for producing 1,4-bis (isocyanatomethyl) cyclohexane (4)
  • the purity of the obtained 1,4-BIC (4) as measured by gas chromatography was 99.9%, the hue as measured by APHA was 5, and the trans / cis ratio as determined by 13 C-NMR was 73/27.
  • the HC concentration was 20 ppm.
  • Production Example 5 (Production method of 1,4-bis (isocyanatomethyl) cyclohexane (5) (hereinafter referred to as 1,4-BIC (5)))
  • 1,4-BIC (5) Production method of 1,4-bis (isocyanatomethyl) cyclohexane (5)
  • 1,4-BIC (2) of Production Example 2 and 1,4-BIC of Production Example 6 described later are used.
  • 526 parts by mass of (6) was charged and stirred at room temperature for 1 hour in a nitrogen atmosphere.
  • the purity of the obtained 1,4-BIC (5) as measured by gas chromatography was 99.9%, the hue as measured by APHA was 5, and the trans / cis ratio as determined by 13 C-NMR was 68/32.
  • the HC concentration was 21 ppm.
  • the purity of the obtained 1,4-BIC (6) as measured by gas chromatography was 99.9%, the hue as measured by APHA was 5, and the trans isomer / cis isomer ratio as determined by 13 C-NMR was 41/59. .
  • the HC concentration was 22 ppm.
  • the urethanization catalyst was added so that the bismuth catalyst content or tin catalyst content described in Tables 1 and 2 was obtained with respect to the total amount of the polyisocyanate component (a) and the high molecular weight polyol (b).
  • Synthesis Examples 1 to 5 (isocyanate group-terminated polyurethane prepolymers (a) to (e)), Synthesis Examples 7 to 14 (isocyanate group-terminated polyurethane prepolymers (g) to (n)) and synthesis Examples 17 to 19 (isocyanate group-terminated polyurethane prepolymers (q) to (s)) include bismuth octylate (trade name: Neostan U-600, previously diluted to 4% by mass with DINA (manufactured by Jay Plus). Nitto Kasei Co., Ltd.) was used.
  • Synthesis Example 16 (isocyanate group-terminated polyurethane prepolymer (p)) has tin octylate (trade names: Stanocto, AP) diluted to 4% by mass in advance with DINA (manufactured by Jay Plus). I Corporation) was used.
  • reaction is advanced until it reaches the isocyanate group content of Table 1, stirring and mixing under 80 degreeC temperature control and nitrogen stream, and an isocyanate group terminal polyurethane prepolymer (a ) To (s) were obtained.
  • 1,4-butanediol (1,4-BD) as a low molecular weight polyol has an equivalent ratio (isocyanate group / hydroxyl group) of isocyanate groups in the isocyanate group-terminated polyurethane prepolymer to hydroxyl groups in the low molecular weight polyol.
  • the sample was weighed into a stainless steel cup and adjusted to 80 ° C. so that the values described in 3 to 5 were obtained.
  • the isocyanate group-terminated polyurethane prepolymer was weighed into another stainless steel cup, and 2 parts by mass of Irganox 245 (heat-resistant stabilizer manufactured by BASF) with respect to the total amount of the isocyanate group-terminated polyurethane prepolymer and 1,4-BD, Tinuvin 234 (BASF UV absorber) 0.3 parts by mass and ADK STAB LA-72 (ADEKA HALS) 0.3 parts by mass were added to the isocyanate group-terminated polyurethane prepolymer. Further, in Examples 14 to 16, 0.1 part by mass of Kao wax EB-P (manufactured by Kao Chemical Co., Ltd., fatty acid amide lubricant) was added.
  • Irganox 245 heat-resistant stabilizer manufactured by BASF
  • Tinuvin 234 BASF UV absorber
  • ADK STAB LA-72 ADK STAB LA-72
  • the isocyanate group-terminated polyurethane prepolymer was stirred and mixed in an oil bath at 80 ° C. for 3 minutes using a high-speed stirring disper while stirring at 500 to 1500 rpm.
  • 1,4-BD pre-weighed and temperature-controlled at 80 ° C. is added to the isocyanate group-terminated polyurethane prepolymer, and the mixture is stirred and mixed for 3 to 10 minutes under stirring at 500 to 1500 rpm using a high-speed stirring disper. did.
  • the pulverized pellets were heat-treated (cured and aged) at the heat-treatment temperatures and heat-treatment periods described in Tables 2 and 3, and dried at 23 ° C. for 12 hours under vacuum.
  • the obtained pulverized pellets are used to extrude and cut the strand using a single-screw extruder (model: SZW40-28MG, manufactured by Technobel) at a screw speed of 30 rpm and a cylinder temperature of 200 to 270 ° C.
  • a single-screw extruder model: SZW40-28MG, manufactured by Technobel
  • ⁇ Aggregation temperature (unit: ° C)>
  • the aggregation temperature of the polyurethane resin was measured using a differential scanning calorimeter (manufactured by SII Nano Technology, trade name: EXSTAR6000 PC station, and DSC220C).
  • the polyurethane resin obtained in each example and each comparative example was thinly cut and collected so as to be as close as possible to an aluminum pan.
  • This aluminum pan covered with a cover and crimped was used as a measurement sample (sample).
  • a sample obtained by collecting alumina was used as a reference sample. After setting the sample and reference at a predetermined position in the cell, the sample was cooled to ⁇ 100 ° C. at a rate of 10 ° C./min under a nitrogen stream at a flow rate of 40 NmL / min, held at the same temperature for 5 minutes, and then 10 The temperature was raised to 270 ° C at a rate of ° C / min. Further, it was kept at 270 ° C. for 5 minutes, and then cooled to ⁇ 70 ° C. at a rate of 10 ° C./min. The temperature of the exothermic peak that appears during this cooling was taken as the aggregation temperature of the polyurethane resin.
  • FIG. 1 shows a distribution diagram showing the aggregation temperatures of the polyurethane resins of the examples and the comparative examples.
  • the obtained film was annealed in an oven at 80 ° C. for 24 hours, and then cured under constant temperature and humidity conditions of room temperature 23 ° C. and relative humidity 55% for 7 days to obtain a polyurethane film.
  • ⁇ Injection molding> The polyurethane resin pellets obtained in each example and each comparative example were previously dried at 80 ° C. for 12 hours under vacuum and reduced pressure, and an injection molding machine (model: NEX-140, manufactured by Nissei Plastic Industry Co., Ltd.) was used. Injecting under the conditions of a screw speed of 80 rpm, a barrel temperature of 200 to 270 ° C., a mold temperature of 20 ° C., an injection time of 10 seconds, an injection speed of 60 mm / s, a holding pressure of 50 MPa, and a cooling time of 20 to 60 seconds. Molding was performed to obtain a sheet having a thickness of 2 mm.
  • the obtained sheet was annealed in an oven at 80 ° C. for 24 hours, and then cured under constant temperature and humidity conditions of room temperature 23 ° C. and relative humidity 55% for 7 days to obtain a polyurethane sheet.
  • T f: 20rpm -T f: 5rpm was calculated as a decrease in flow beginning temperature after retention.
  • T f 20rpm -T f: as the value of 5rpm is small, the flow beginning temperature is not dependent on the molding conditions, the better the molding stability.
  • Breaking strength (TS) was measured using a polyurethane film having a thickness of 100 ⁇ m obtained by extrusion molding at screw rotation speeds of 5 rpm and 20 rpm according to the above-described measuring method of breaking strength.
  • the breaking strength TS 5 rpm polyurethane film obtained at a screw rotation speed of 5 rpm, the breaking strength of the polyurethane film obtained in screw speed of 20rpm was TS 20rpm.
  • Tear strength retention (molding stability) (unit:%)> Tear strength (TR) was measured using a polyurethane film having a thickness of 100 ⁇ m obtained by extrusion molding at screw rotation speeds of 5 rpm and 20 rpm according to the above-described tear strength measurement method. Tear strength TR 5 rpm polyurethane film obtained at a screw rotation speed of 5 rpm, a tear strength of the polyurethane film obtained in screw speed of 20rpm was TR 20rpm.
  • TR 5rpm / TR 20rpm ⁇ 100 (%) was calculated as the tear strength retention rate.
  • ⁇ Initial hue and UV discoloration resistance> A test piece having a size of 20 ⁇ 60 mm was cut out from a polyurethane sheet having a thickness of 2 mm, and the yellowness b * was measured using a color difference meter (manufactured by Tokyo Denshoku Co., Ltd., Color Ace Model TC-1). Note that b * is generally an index of the hue of polyurethane.
  • the polyurethane sheet is subjected to 60 ° C., 10% relative humidity, and ultraviolet (wavelength 270 ⁇ 720 nm) with an irradiation intensity of 28 W / m 2 and 50 ° C., relative humidity of 95%, and no UV irradiation were repeated every 4 hours for 48 hours and 6 cycles.
  • a QUV weathering tester manufactured by Suga Test Instruments Co., Ltd., UV fluorescent weather meter FUV
  • ⁇ b (b value change amount) of the polyurethane sheet before and after the test was measured using a color difference meter (manufactured by Tokyo Denshoku Co., Ltd., Color Ace Model TC-1).
  • ⁇ b is an index of UV discoloration resistance of polyurethane.
  • the polyurethane resin production method, polyurethane resin and molded product of the present invention are widely used industrially in various industrial fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

ビス(イソシアナトメチル)シクロヘキサンを含むポリイソシアネート成分と、数平均分子量400以下の低分子量ポリオール、および、平均分子量2500以上4000以下の高分子量ポリオールを含むポリオール成分とを、ビスマス触媒の存在下において反応させて一次生成物を得て(反応工程)、その後、一次生成物を熱処理してポリウレタン樹脂を得る(熱処理工程)ポリウレタン樹脂の製造方法において、ポリウレタン樹脂のビスマス触媒含有量が0.1ppm以上1000ppm以下であり、熱処理工程における熱処理条件が、50℃以上100℃以下、3日以上10日以下である。

Description

ポリウレタン樹脂の製造方法、ポリウレタン樹脂および成形品
 本発明は、ポリウレタン樹脂の製造方法、ポリウレタン樹脂および成形品に関する。
 熱可塑性ポリウレタン樹脂(TPU)は、一般に、ポリイソシアネート、高分子量ポリオールおよび低分子量ポリオールの反応により得られるゴム弾性体であって、ポリイソシアネートおよび低分子量ポリオールの反応により形成されるハードセグメントと、ポリイソシアネートおよび高分子量ポリオールの反応により形成されるソフトセグメントとを備えている。このような熱可塑性ポリウレタン樹脂を溶融成形することにより、ポリウレタン樹脂からなる成形品を得ることができる。
 このようなポリウレタン樹脂の製造では、通常、ウレタン化触媒として、スズ触媒が用いられる。しかし、近年、作業環境などの観点から、スズ触媒を低減し、また、スズ触媒の代替として、ビスマス触媒を用いることが検討されている。
 具体的には、例えば、トランス/シス比が86/14の1,4-ビス(イソシアナトメチル)シクロヘキサンと、数平均分子量1800~2000のポリテトラメチレンエーテルグリコールとを反応させてイソシアネート基末端ポリウレタンポレポリマーを合成し、そのイソシアネート基末端ポリウレタンプレポリマーと、1,4-ブタンジオールとを、ネオデカン酸ビスマス(触媒)の存在下において、150℃で1時間、100℃で23時間反応させ、23℃で7日間養生させて、ポリウレタンエラストマーを製造することが提案されている。また、そのポリウレタンエラストマーを、溶融成形することにより、成形品を得ることも提案されている(例えば、特許文献1(合成例1、実施例1)参照。)。
特開2013-23656号公報
 一方、ポリウレタンエラストマーの成形品は、機械物性が要求されるが、ビスマス触媒を用いて得られた成形品は、スズ触媒を用いて得られた成形品に比べて、機械物性が十分ではない場合がある。
 また、工業生産においては、大型の成形機が用いられる場合があるため、加熱状態における滞留時間が、比較的長くなる場合がある。このような工業生産において、耐熱性が十分でないポリウレタンエラストマーを用いると、得られる成形品の機械物性に劣る場合や、フィッシュアイなどの成形不良を生じる場合がある。そのため、成形品の工業生産においては、成形条件に依存することなく物性を発現できること、すなわち、工業生産における成形安定性が要求されている。
 そこで、本発明は、ビスマス触媒を用いた場合にも、優れた機械物性を有し、成形安定性にも優れるポリウレタン樹脂を製造できるポリウレタン樹脂の製造方法、および、ポリウレタン樹脂、さらには、そのポリウレタン樹脂から得られる成形品である。
 本発明[1]は、ビス(イソシアナトメチル)シクロヘキサンを含むポリイソシアネート成分と、数平均分子量400以下の低分子量ポリオール、および、平均分子量2500以上4000以下の高分子量ポリオールを含むポリオール成分とを、ビスマス触媒の存在下において反応させて一次生成物を得る反応工程と、前記一次生成物を熱処理してポリウレタン樹脂を得る熱処理工程とを備え、前記ポリウレタン樹脂のビスマス触媒含有量が0.1ppm以上1000ppm以下であり、前記熱処理工程における熱処理条件が、50℃以上100℃以下、3日以上10日以下である、ポリウレタン樹脂の製造方法を含んでいる。
 本発明[2]は、前記ビス(イソシアナトメチル)シクロヘキサンが、1,4-ビス(イソシアナトメチル)シクロヘキサンであり、前記1,4-ビス(イソシアナトメチル)シクロヘキサンが、70モル%以上99モル%以下の割合でトランス体を含有する、上記[1]に記載のポリウレタン樹脂の製造方法を含んでいる。
 本発明[3]は、1,4-ビス(イソシアナトメチル)シクロヘキサンを含むポリイソシアネート成分と、数平均分子量400以下の低分子量ポリオール、および、数平均分子量2500以上4000以下の高分子量ポリオールを含むポリオール成分との反応生成物であり、ビスマス触媒含有量が0.1ppm以上1000ppm以下であり、示差走査熱量計により測定した凝集温度が、以下の計算式で示すハードセグメント相の凝集温度T以上、かつ、以下の計算式で示すハードセグメント相の凝集温度T以下である、ポリウレタン樹脂を含んでいる。
  ハードセグメント相の凝集温度T(単位:℃):100+0.75×ハードセグメント濃度(質量%)
  ハードセグメント相の凝集温度T(単位:℃):160+0.75×ハードセグメント濃度(質量%)
 本発明[4]は、上記[3]に記載のポリウレタン樹脂を含む、成形品を含んでいる。
 本発明のポリウレタン樹脂の製造方法では、ビス(イソシアナトメチル)シクロヘキサンを含むポリイソシアネート成分と、数平均分子量400以下の低分子量ポリオール、および、数平均分子量2500以上4000以下の高分子量ポリオールを含むポリオール成分とを、ビスマス触媒の存在下において反応させ、得られた一次生成物を所定条件で熱処理する。
 そのため、本発明のポリウレタン樹脂の製造方法により得られる本発明のポリウレタン樹脂、さらに、そのポリウレタン樹脂を含む本発明の成形品は、成形安定性に優れ、かつ、ビスマス触媒が用いられていても、優れた機械物性を有する。
図1は、各実施例および各比較例のポリウレタン樹脂の凝集温度を示す分布図である。
 本発明のポリウレタン樹脂の製造方法では、後述するように、ポリイソシアネート成分と、ポリオール成分とを反応させ、その後、熱処理(加熱養生)することによって、熱可塑性のポリウレタン樹脂を製造する。
 換言すれば、ポリウレタン樹脂は、ポリイソシアネート成分と、ポリオール成分との反応生成物である。
 ポリイソシアネート成分は、ビス(イソシアナトメチル)シクロヘキサンを、必須成分として含んでいる。
 ビス(イソシアナトメチル)シクロヘキサンとしては、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサンが挙げられ、好ましくは、対称構造であり、ポリウレタン樹脂の機械物性および成形安定性の向上を図る観点から、1,4-ビス(イソシアナトメチル)シクロヘキサンが挙げられる。
 1,4-ビス(イソシアナトメチル)シクロヘキサンには、シス-1,4-ビス(イソシアナトメチル)シクロヘキサン(以下、シス1,4体とする。)、および、トランス-
,4-ビス(イソシアナトメチル)シクロヘキサン(以下、トランス1,4体とする。)の立体異性体があり、本発明では、1,4-ビス(イソシアナトメチル)シクロヘキサンは、トランス1,4体を、例えば、60モル%以上、好ましくは、70モル%以上、より好ましくは、80モル%以上、さらに好ましくは、85モル%以上、例えば、99.8モル%以下、好ましくは、99モル%以下、より好ましくは、96モル%以下、さらに好ましくは、90モル%以下の割合で、含有している。換言すると、1,4-ビス(イソシアナトメチル)シクロヘキサンは、トランス1,4体およびシス1,4体の総量が100モル%であるため、シス1,4体を、例えば、0.2モル%以上、好ましくは、1モル%以上、より好ましくは、4モル%以上、さらに好ましくは、10モル%以上、例えば、40モル%以下、好ましくは、30モル%以下、より好ましくは、20モル%以下、さらに好ましくは、15モル%以下の割合で、含有している。
 トランス1,4体の含有割合が上記下限以上であれば、成形安定性の向上を図ることができる。また、トランス1,4体の含有割合が上記上限以下であれば、引裂強度、破断強度、破断伸度などの機械物性や、成形安定性の向上を図ることができる。
 ビス(イソシアナトメチル)シクロヘキサンは、例えば、市販のビス(アミノメチル)シクロヘキサンや、特開2011-6382号公報に記載の方法により得られたビス(アミノメチル)シクロヘキサンなどから、例えば、特開平7-309827号公報や特開2014-55229号公報に記載される冷熱2段ホスゲン化法(直接法)や造塩法、あるいは、特開2004-244349号公報や特開2003-212835号公報に記載されるノンホスゲン法などにより、製造することができる。
 また、ビス(イソシアナトメチル)シクロヘキサンは、本発明の優れた効果を阻害しない範囲において、変性体として調製することもできる。
 ビス(イソシアナトメチル)シクロヘキサンの変性体としては、例えば、ビス(イソシアナトメチル)シクロヘキサンの多量体(ダイマー(例えば、ウレトジオン変性体など)、トリマー(例えば、イソシアヌレート変性体、イミノオキサジアジンジオン変性体など)など)、ビウレット変性体(例えば、ビス(イソシアナトメチル)シクロヘキサンと水との反応により生成するビウレット変性体など)、アロファネート変性体(例えば、ビス(イソシアナトメチル)シクロヘキサンと1価アルコールまたは2価アルコールとの反応より生成するアロファネート変性体など)、ポリオール変性体(例えば、ビス(イソシアナトメチル)シクロヘキサンと3価アルコールとの反応より生成するポリオール変性体(付加体)など)、オキサジアジントリオン変性体(例えば、ビス(イソシアナトメチル)シクロヘキサンと炭酸ガスとの反応により生成するオキサジアジントリオンなど)、カルボジイミド変性体(例えば、ビス(イソシアナトメチル)シクロヘキサンの脱炭酸縮合反応により生成するカルボジイミド変性体など)などが挙げられる。
 また、ポリイソシアネート成分は、本発明の優れた効果を阻害しない範囲で、その他のポリイソシアネート、例えば、脂肪族ポリイソシアネート、芳香族ポリイソシアネート、芳香脂肪族ポリイソシアネートなどを、任意成分として含有することができる。
 脂肪族ポリイソシアネートとしては、例えば、エチレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート(PDI)、ヘキサメチレンジイソシアネート(HDI)、オクタメチレンジイソシアネート、ノナメチレンジイソシアネート、2,2’-ジメチルペンタンジイソシアネート、2,2,4-トリメチルヘキサンジイソシアネート、デカメチレンジイソシアネート、ブテンジイソシアネート、1,3-ブタジエン-1,4-ジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、1,6,11-ウンデカメチレントリイソシアネート、1,3,6-ヘキサメチレントリイソシアネート、1,8-ジイソシアネート-4-イソシアナトメチルオクタン、2,5,7-トリメチル-1,8-ジイソシアネート-5-イソシアナトメチルオクタン、ビス(イソシアナトエチル)カーボネート、ビス(イソシアナトエチル)エーテル、1,4-ブチレングリコールジプロピルエーテル-ω、ω’-ジイソシアネート、リジンイソシアナトメチルエステル、リジントリイソシアネート、2-イソシアナトエチル-2,6-ジイソシアネートヘキサノエート、2-イソシアナトプロピル-2,6-ジイソシアネートヘキサノエート、ビス(4-イソシアネート-n-ブチリデン)ペンタエリスリトール、2,6-ジイソシアネートメチルカプロエートなどが挙げられる。
 また、脂肪族ポリイソシアネートには、脂環族ポリイソシアネート(ビス(イソシアナトメチル)シクロヘキサンを除く。)が含まれる。
 脂環族ポリイソシアネート(ビス(イソシアナトメチル)シクロヘキサンを除く。)としては、例えば、イソホロンジイソシアネート(IPDI)、トランス,トランス-、トランス,シス-、およびシス,シス-ジシクロヘキシルメタンジイソシアネートおよびこれらの混合物(水添MDI)、1,3-または1,4-シクロヘキサンジイソシアネートおよびこれらの混合物、1,3-または1,4-ビス(イソシアナトエチル)シクロヘキサン、メチルシクロヘキサンジイソシアネート、2,2’-ジメチルジシクロヘキシルメタンジイソシアネート、ダイマー酸ジイソシアネート、2,5-ジイソシアナトメチルビシクロ〔2,2,1〕-ヘプタン、その異性体である2,6-ジイソシアナトメチルビシクロ〔2,2,1〕-ヘプタン(NBDI)、2-イソシアナトメチル2-(3-イソシアナトプロピル)-5-イソシアナトメチルビシクロ-〔2,2,1〕-ヘプタン、2-イソシアナトメチル-2-(3-イソシアナトプロピル)-6-イソシアナトメチルビシクロ-〔2,2,1〕-ヘプタン、2-イソシアナトメチル3-(3-イソシアナトプロピル)-5-(2-イソシアナトエチル)-ビシクロ-〔2,2,1〕-ヘプタン、2-イソシアナトメチル3-(3-イソシアナトプロピル)-6-(2-イソシアナトエチル)-ビシクロ-〔2,2,1〕-ヘプタン、2-イソシアナトメチル2-(3-イソシアナトプロピル)-5-(2-イソシアナトエチル)-ビシクロ-〔2,2,1〕-ヘプタン、2-イソシアナトメチル2-(3-イソシアナトプロピル)-6-(2-イソシアナトエチル)-ビシクロ-〔2,2,1〕-ヘプタンなどが挙げられる。
 芳香族ポリイソシアネートとしては、例えば、2,4-トリレンジイソシアネートおよび2,6-トリレンジイソシアネート、ならびに、これらトリレンジイソシアネートの異性体混合物(TDI)、4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネートおよび2,2’-ジフェニルメタンジイソシアネート、ならびに、これらジフェニルメタンジイソシアネートの任意の異性体混合物(MDI)、トルイジンジイソシアネート(TODI)、パラフェニレンジイソシアネート、ナフタレンジイソシアネート(NDI)などが挙げられる。
 芳香脂肪族ポリイソシアネートとしては、例えば、1,3-または1,4-キシリレンジイソシアネートもしくはその混合物(XDI)、1,3-または1,4-テトラメチルキシリレンジイソシアネートもしくはその混合物(TMXDI)などが挙げられる。
 これらその他のポリイソシアネートは、単独使用または2種類以上併用することができる。
 また、その他のポリイソシアネートは、本発明の優れた効果を阻害しない範囲において、変性体として調製することもできる。
 その他のポリイソシアネートの変性体としては、例えば、その他のポリイソシアネートの多量体(ダイマー、トリマーなど)、ビウレット変性体、アロファネート変性体、ポリオール変性体、オキサジアジントリオン変性体、カルボジイミド変性体などが挙げられる。
 その他のポリイソシアネートを含有する場合の含有割合は、ポリイソシアネート成分の総量に対して、例えば、50質量%以下、好ましくは、30質量%以下、より好ましくは、20質量%以下である。
 また、ポリイソシアネート成分は、本発明の優れた効果を阻害しない範囲でモノイソシアネートを、任意成分として含有することができる。
 モノイソシアネートとしては、例えば、メチルイソシアネート、エチルイソシアネート、n-ヘキシルイソシアネート、シクロヘキシルイソシアネート、2-エチルヘキシルイソシアネート、フェニルイソシアネート、ベンジルイソシアネートなどが挙げられる。
 モノイソシアネートを含有する場合の含有割合は、ポリイソシアネート成分の総量に対して、例えば、20質量%以下、好ましくは、10質量%以下である。
 ポリイソシアネート成分として、好ましくは、ビス(イソシアナトメチル)シクロヘキサンを単独で用いる。すなわち、ポリイソシアネート成分は、好ましくは、ビス(イソシアナトメチル)シクロヘキサンからなり、より好ましくは、1,4-ビス(イソシアナトメチル)シクロヘキサンからなる。
 本発明において、ポリオール成分は、分子中に水酸基を2つ以上含有し、分子量50以上5000以下の化合物が挙げられる。
 ポリオール成分は、分子量400以下の低分子量ポリオールと、分子量2500以上4000以下の高分子量ポリオールとを含んでおり、好ましくは、分子量400以下の低分子量ポリオールと、分子量2500以上4000以下の高分子量ポリオールとからなる。
 なお、ポリオール成分に高分子量化合物が含まれる場合には、その高分子量化合物の分子量として、数平均分子量が採用される。また、このような場合において、数平均分子量は、GPC法による測定や、高分子量化合物を構成する各成分の水酸基価および処方により決定することができる(以下同様)。
 低分子量ポリオールとしては、例えば、分子中に水酸基を2つ以上有し、分子量50以上400以下の化合物(単量体)が挙げられる。具体的には、例えば、エチレングリコール、1,3-プロピレングリコール、1,2-プロピレングリコール、1,4-ブチレングリコール(1,4-ブタンジオール、1,4-BD)、1,3-ブチレングリコール、1,2-ブチレングリコールなどのC2~C4アルカンジオール、例えば、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、2,2,2-トリメチルペンタンジオール、3,3-ジメチロールヘプタン、その他、C7~C11アルカンジオール、シクロヘキサンジメタノール(1,3-または1,4-シクロヘキサンジメタノールおよびそれらの混合物)、シクロヘキサンジオール(1,3-または1,4-シクロヘキサンジオールおよびそれらの混合物)、1,4-ジヒドロキシ-2-ブテン、2,6-ジメチル-1-オクテン-3,8-ジオール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、1,2-ベンゼンジオール(別名カテコール)、1,3-ベンゼンジオール、1,4-ベンゼンジオール、ビスフェノールAおよびその水添物などの2価アルコール、例えば、グリセリン、トリメチロールプロパン、トリイソプロパノールアミンなどの3価アルコール、例えば、テトラメチロールメタン(ペンタエリスリトール)、ジグリセリンなどの4価アルコールなどの多価アルコールなどが挙げられる。
 これら低分子量ポリオールは、単独使用または2種類以上併用することができる。
 低分子量ポリオールとして、好ましくは、2価アルコール、より好ましくは、C2~C4アルカンジオール、さらに好ましくは、1,4-ブタンジオールが挙げられる。
 低分子量ポリオールが上記のものであれば、破断強度などの機械物性に優れた成形品(後述)を得ることができる。
 低分子量ポリオールの数平均分子量は、例えば、50以上、好ましくは、70以上であり、400以下、好ましくは、300以下である。
 低分子量ポリオールの分子量が上記範囲であれば、機械物性に優れた成形品(後述)を得ることができる。
 高分子量ポリオールとしては、例えば、数平均分子量が2500以上4000以下であり分子中に水酸基を2つ以上有する高分子量化合物(好ましくは、重合体)が挙げられる。
 高分子量ポリオールとして、具体的には、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、植物油ポリオール、ポリオレフィンポリオール、アクリルポリオールなどが挙げられる。
 ポリエーテルポリオールとしては、例えば、ポリオキシアルキレンポリオール、ポリテトラメチレンエーテルポリオールなどが挙げられる。
 ポリオキシアルキレンポリオールは、例えば、上記した低分子量ポリオールや、公知の低分子量ポリアミンなどを開始剤とする、アルキレンオキサイドの付加重合物である。
 アルキレンオキサイドとしては、例えば、プロピレンオキサイド、エチレンオキサイド、ブチレンオキサイドなどが挙げられる。また、これらアルキレンオキサイドは、単独使用または2種類以上併用することができる。また、これらのうち、好ましくは、プロピレンオキサイド、エチレンオキサイドが挙げられる。また、ポリオキシアルキレンポリオールとして、例えば、ポリエチレングリコール、ポリプロピレングリコール、プロピレンオキサイドとエチレンオキサイドとのランダムおよび/またはブロック共重合体などが含まれる。
 ポリテトラメチレンエーテルポリオールとしては、例えば、テトラヒドロフランのカチオン重合により得られる開環重合物(ポリテトラメチレンエーテルグリコール)や、テトラヒドロフランなどの重合単位に、アルキル置換テトラヒドロフランや、上記した2価アルコールを共重合した非晶性(非結晶性)ポリテトラメチレンエーテルグリコールなどが挙げられる。
 なお、非晶性(非結晶性)とは、常温(25℃)において液状であることを示す(以下同様)。
 ポリエステルポリオールとしては、例えば、上記した低分子量ポリオールと多塩基酸とを、公知の条件下、反応させて得られる重縮合物が挙げられる。
 多塩基酸としては、例えば、シュウ酸、マロン酸、コハク酸、メチルコハク酸、グルタール酸、アジピン酸、1,1-ジメチル-1,3-ジカルボキシプロパン、3-メチル-3-エチルグルタール酸、アゼライン酸、セバシン酸、その他の飽和脂肪族ジカルボン酸(C11~13)、例えば、マレイン酸、フマル酸、イタコン酸、その他の不飽和脂肪族ジカルボン酸、例えば、オルソフタル酸、イソフタル酸、テレフタル酸、トルエンジカルボン酸、ナフタレンジカルボン酸、その他の芳香族ジカルボン酸、例えば、ヘキサヒドロフタル酸、その他の脂環族ジカルボン酸、例えば、ダイマー酸、水添ダイマー酸、ヘット酸などのその他のカルボン酸、および、それらカルボン酸から誘導される酸無水物、例えば、無水シュウ酸、無水コハク酸、無水マレイン酸、無水フタル酸、無水2-アルキル(C12~C18)コハク酸、無水テトラヒドロフタル酸、無水トリメリット酸、さらには、これらのカルボン酸などから誘導される酸ハライド、例えば、シュウ酸ジクロライド、アジピン酸ジクロライド、セバシン酸ジクロライドなどが挙げられる。
 また、ポリエステルポリオールとして、例えば、植物由来のポリエステルポリオール、具体的には、上記した低分子量ポリオールを開始剤として、ヒドロキシル基含有植物油脂肪酸(例えば、リシノレイン酸を含有するひまし油脂肪酸、12-ヒドロキシステアリン酸を含有する水添ひまし油脂肪酸など)などのヒドロキシカルボン酸を、公知の条件下、縮合反応させて得られる植物油系ポリエステルポリオールなどが挙げられる。
 また、ポリエステルポリオールとして、例えば、上記した低分子量ポリオール(好ましくは、2価アルコール)を開始剤として、例えば、ε-カプロラクトン、γ-バレロラクトンなどのラクトン類や、例えば、L-ラクチド、D-ラクチドなどのラクチド類などを開環重合して得られる、ポリカプロラクトンポリオール、ポリバレロラクトンポリオール、さらには、それらに上記2価アルコールを共重合したものなどのラクトンベースポリエステルポリオールなどが挙げられる。
 ポリカーボネートポリオールとしては、例えば、上記した低分子量ポリオール(好ましくは、上記2価アルコール)を開始剤とするエチレンカーボネートの開環重合物や、例えば、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオールや1,6-ヘキサンジオールなどの2価アルコールと、開環重合物とを共重合した非晶性ポリカーボネートポリオールなどが挙げられる。
 植物油ポリオールとしては、例えば、ひまし油、やし油などのヒドロキシル基含有植物油などが挙げられる。例えば、ひまし油ポリオール、または、ひまし油脂肪酸とポリプロピレンポリオールとの反応により得られるエステル変性ひまし油ポリオールなどが挙げられる。
 ポリオレフィンポリオールとしては、例えば、ポリブタジエンポリオール、部分ケン価エチレン-酢酸ビニル共重合体などが挙げられる。
 アクリルポリオールとしては、例えば、ヒドロキシル基含有アクリレートと、ヒドロキシル基含有アクリレートと共重合可能な共重合性ビニルモノマーとを、共重合させることによって得られる共重合体が挙げられる。
 ヒドロキシル基含有アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、2,2-ジヒドロキシメチルブチル(メタ)アクリレート、ポリヒドロキシアルキルマレエート、ポリヒドロキシアルキルフマレートなどが挙げられる。好ましくは、2-ヒドロキシエチル(メタ)アクリレートなどが挙げられる。
 共重合性ビニルモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、s-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、イソペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、シクロヘキシルアクリレートなどのアルキル(メタ)アクリレート(炭素数1~12)、例えば、スチレン、ビニルトルエン、α-メチルスチレンなどの芳香族ビニル、例えば、(メタ)アクリロニトリルなどのシアン化ビニル、例えば、(メタ)アクリル酸、フマル酸、マレイン酸、イタコン酸などのカルボキシル基を含むビニルモノマー、または、そのアルキルエステル、例えば、エチレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、オリゴエチレングリコールジ(メタ)アクリレートなどのアルカンポリオールポリ(メタ)アクリレート、例えば、3-(2-イソシアネート-2-プロピル)-α-メチルスチレンなどのイソシアネート基を含むビニルモノマーなどが挙げられる。
 そして、アクリルポリオールは、これらヒドロキシル基含有アクリレート、および、共重合性ビニルモノマーを、適当な溶剤および重合開始剤の存在下において共重合させることにより得ることができる。
 また、アクリルポリオールには、例えば、シリコーンポリオールやフッ素ポリオールが含まれる。
 シリコーンポリオールとしては、例えば、上記したアクリルポリオールの共重合において、共重合性ビニルモノマーとして、例えば、γ-メタクリロキシプロピルトリメトキシシランなどのビニル基を含むシリコーン化合物が配合されたアクリルポリオールが挙げられる。
 フッ素ポリオールとしては、例えば、上記したアクリルポリオールの共重合において、共重合性ビニルモノマーとして、例えば、テトラフルオロエチレン、クロロトリフルオロエチレンなどのビニル基を含むフッ素化合物が配合されたアクリルポリオールが挙げられる。
 これら高分子量ポリオールは、単独使用または2種類以上併用することができる。
 高分子量ポリオールとして、好ましくは、ポリエーテルポリオール、ポリエステルポリオールが挙げられ、より好ましくは、ポリエチレングリコール、ポリテトラメチレンエーテルグリコール、ポリカプロラクトンポリオールが挙げられる。
 高分子量ポリオールが上記のものであれば、破断強度や、引裂強度などの機械物性に優れた成形品(後述)を得ることができる。
 高分子量ポリオールの数平均分子量は、上記した通り、2500以上であり、好ましくは、2700以上、より好ましくは、2800以上、さらに好ましくは、2900以上であり、上記した通り、4000以下であり、好ましくは、3500以下、より好ましくは、3200以下である。
 高分子量ポリオールの分子量が上記下限未満である場合、破断伸度、圧縮永久歪、残留歪などの機械物性に劣り、また、成形条件により物性が変化しやすく、さらに、フィッシュアイなどの成形不良を生じやすいという不具合がある。
 また、高分子量ポリオールの分子量が上記上限を超過する場合、引裂強度や破断強度などの機械物性に劣り、また、成形条件により物性が変化しやすく、さらに、フィッシュアイなどの成形不良を生じやすいという不具合がある。
 一方、高分子量ポリオールの分子量が上記範囲内であれば、良好な機械物性を発現させることができる。
 ポリオール成分において、低分子量ポリオールおよび高分子量ポリオールの含有割合は、それらの総量に対して、高分子量ポリオールが、例えば、5モル%以上、好ましくは、7モル%以上、より好ましくは、10モル%以上、さらに好ましくは、15モル%以上であり、例えば、75モル%以下、好ましくは、65モル%以下、より好ましくは、50モル%以下である。また、低分子量ポリオールが、例えば、25モル%以上、好ましくは、35モル%以上、より好ましくは、50モル%以上であり、例えば、95モル%以下、好ましくは、93モル%以下、より好ましくは、90モル%以下、さらに好ましくは、85モル%以下である。
 低分子量ポリオールおよび高分子量ポリオールの含有割合が上記範囲内であれば、得られる成形品(後述)の機械物性を向上することができる。
 また、本発明のポリウレタン樹脂は、ビスマス触媒を含有している。
 ビスマス触媒は、後述するポリウレタン樹脂の製造方法において、ウレタン化触媒としてビスマス触媒(後述)を用いることによって、ポリウレタン樹脂に含有される。つまり、本発明のポリウレタン樹脂は、詳しくは後述するが、ビスマス触媒を用いて製造される。
 ビスマス触媒含有量は、ポリウレタン樹脂に対して、0.1ppm以上、好ましくは、0.2ppm以上、より好ましくは、0.5ppm以上、さらに好ましくは、1ppm以上であり、1000ppm以下、好ましくは、800ppm以下、より好ましくは、500ppm以下、さらに好ましくは、100ppm以下である。
 ビスマス触媒含有量が上記下限未満である場合、破断強度や破断伸度などの機械物性に劣り、また、フィッシュアイなどの成形不良を生じやすく、成形安定性に劣るという不具合がある。
 また、ビスマス触媒含有量が上記上限を超過する場合、破断伸度や圧縮永久歪などの機械物性に劣り、また、成形条件により物性が変化しやすく、さらに、フィッシュアイなどの成形不良を生じやすく、成形安定性に劣るという不具合がある。加えて、ビスマス触媒含有量が上記上限を超過する場合、耐久性(耐変色性)にも劣るという不具合がある。
 一方、ビスマス触媒含有量が上記範囲であれば、機械物性および成形安定性に優れ、さらに、耐変色性にも優れた成形品(後述)を得ることができる。
 また、本発明のポリウレタン樹脂は、好ましくは、ビスマス触媒以外の公知のウレタン化触媒を含有しておらず、より好ましくは、スズ触媒を含有していない。
 スズ触媒は、後述するポリウレタン樹脂の製造方法において、ウレタン化触媒として公知のスズ触媒を用いることによって、ポリウレタン樹脂に含有される。そのため、本発明のポリウレタン樹脂は、詳しくは後述するが、スズ触媒を用いることなく製造される。これにより、作業環境の向上を図ることができる。
 スズ触媒含有量は、ポリウレタン樹脂に対して、例えば、0.1ppm以下、好ましくは、0.01ppm以下、より好ましくは、0.001ppm以下、さらに好ましくは、0ppmである。
 スズ触媒が用いられる場合(ポリウレタン樹脂にスズが比較的多く含有される場合)には、その触媒活性が高いため、成形品(後述)の成形温度や成形時間などに応じて物性が著しく異なる場合や、成形不良(フィッシュアイなど)を惹起するなど、成形安定性に劣るという不具合がある。
 一方、スズ触媒含有量が上記範囲であれば、換言すれば、スズ触媒が用いられていなければ、成形安定性の向上を図ることができる。
 なお、ビスマス触媒含有量およびスズ触媒含有量は、後述する実施例に準拠して、仕込みの処方から求めることができる。
 そして、このようなポリウレタン樹脂は、以下に示すように、反応工程および熱処理工程を備えるポリウレタン樹脂の製造方法によって、得られる。
 反応工程は、上記のポリイソシアネート成分と、上記のポリオール成分とを、ビスマス触媒の存在下で反応させて一次生成物(熱処理前の反応生成物)を得る工程である。
 上記各成分(ポリイソシアネート成分、ポリオール成分)を反応させるには、例えば、ワンショット法やプレポリマー法などの公知の方法が採用される。好ましくは、プレポリマー法が採用される。
 プレポリマー法により上記各成分を反応させれば、優れた機械物性を有する成形品(後述)を得ることができる。
 具体的には、プレポリマー法では、まず、ポリイソシアネート成分と高分子量ポリオールとを反応させて、イソシアネート基末端ポリウレタンプレポリマーを合成する(プレポリマー合成工程)。
 プレポリマー合成工程では、ポリイソシアネート成分と、高分子量ポリオールとを、例えば、バルク重合や溶液重合などの重合方法により反応させる。
 バルク重合では、例えば、窒素気流下において、ポリイソシアネート成分および高分子量ポリオールを、反応温度が、例えば、50℃以上、例えば、250℃以下、好ましくは、200℃以下で、例えば、0.5時間以上、例えば、15時間以下反応させる。
 溶液重合では、有機溶剤に、ポリイソシアネート成分および高分子量ポリオールを加えて、反応温度が、例えば、50℃以上、例えば、120℃以下、好ましくは、100℃以下で、例えば、0.5時間以上、例えば、15時間以下反応させる。
 有機溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類、例えば、アセトニトリルなどのニトリル類、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソブチルなどのアルキルエステル類、例えば、n-ヘキサン、n-ヘプタン、オクタンなどの脂肪族炭化水素類、例えば、シクロヘキサン、メチルシクロヘキサンなどの脂環族炭化水素類、例えば、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素類、例えば、メチルセロソルブアセテート、エチルセロソルブアセテート、メチルカルビトールアセテート、エチルカルビトールアセテート、エチレングリコールエチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、3-メチル-3-メトキシブチルアセテート、エチル-3-エトキシプロピオネートなどのグリコールエーテルエステル類、例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、例えば、塩化メチル、塩化メチレン、クロロホルム、四塩化炭素、臭化メチル、ヨウ化メチレン、ジクロロエタンなどのハロゲン化脂肪族炭化水素類、例えば、N-メチルピロリドン、ジメチルホルムアミド、N,N’-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホニルアミドなどの極性非プロトン類などが挙げられる。
 また、上記重合反応では、ビスマス触媒が添加される。ビスマス触媒は、ウレタン化反応を促進する触媒(ウレタン化触媒)であって、例えば、オクチル酸ビスマス、ネオデカン酸ビスマス、ステアリン酸ビスマス、オレイン酸ビスマスなどのカルボン酸ビスマス塩などが挙げられる。
 これらビスマス触媒は、単独使用または2種類以上併用することができる。
 ビスマス触媒として、好ましくは、カルボン酸ビスマス塩、より好ましくは、オクチル酸ビスマスが挙げられる。
 ビスマス触媒の添加割合は、ポリウレタン樹脂におけるビスマス触媒含有量が上記範囲となるように、適宜設定される。具体的には、ポリイソシアネート成分および高分子量ポリオールの総量10000質量部に対して、例えば、0.001質量部以上、好ましくは、0.01質量部以上であり、例えば、1質量部以下、好ましくは、0.5質量部以下である。
 また、上記重合反応においては、未反応のポリイソシアネート成分や、有機溶剤を用いた場合には有機溶剤を、例えば、蒸留や抽出などの公知の除去手段により除去することができる。
 プレポリマー合成工程において、各成分の配合割合は、高分子量ポリオール中の水酸基に対する、ポリイソシアネート成分中のイソシアネート基の当量比(イソシアネート基/水酸基)として、例えば、2.0以上、好ましくは、2.5以上であり、例えば、20以下、好ましくは、15以下、より好ましくは、10以下、さらに好ましくは、8以下である。
 より具体的には、プレポリマー合成工程における各成分の配合割合は、高分子量ポリオール100質量部に対して、ポリイソシアネート成分が、例えば、5質量部以上、好ましくは、10質量部以上、より好ましくは、15質量部以上であり、例えば、100質量部以下、好ましくは、70質量部以下、より好ましくは、50質量部以下、さらに好ましくは、30質量部以下である。
 そして、この方法では、イソシアネート基含有率が、例えば、1.0質量%以上、好ましくは、3.0質量%以上、より好ましくは、4.0質量%以上、例えば、30.0質量%以下、好ましくは、19.0質量%以下、より好ましくは、16.0質量%以下、さらに好ましくは、12.0質量%以下、さらに好ましくは、10.0質量%以下、特に好ましくは、5.0質量%以下に達するまで上記成分を反応させる。これにより、イソシアネート基末端ポリウレタンプレポリマーを得ることができる。
 なお、イソシアネート基含有量(イソシアネート基含有率)は、ジ-n-ブチルアミンによる滴定法や、FT-IR分析などの公知の方法によって求めることができる。
 次いで、この方法では、上記により得られたイソシアネート基末端ポリウレタンプレポリマーと、低分子量ポリオールとを反応させて、ポリイソシアネート成分と、ポリオール成分との一次生成物を得る(鎖伸長工程)。
 すなわち、この方法において、低分子量ポリオールは、鎖伸長剤である。
 そして、鎖伸長工程では、イソシアネート基末端ポリウレタンプレポリマーと、低分子量ポリオールとを、例えば、上記したバルク重合や上記した溶液重合などの重合方法により反応させる。
 反応温度は、例えば、室温以上、好ましくは、50℃以上、例えば、200℃以下、好ましくは、150℃以下であり、反応時間が、例えば、5分以上、好ましくは、1時間以上、例えば、72時間以下、好ましくは、48時間以下である。
 また、各成分の配合割合は、低分子量ポリオール中の水酸基に対する、イソシアネート基末端ポリウレタンプレポリマー中のイソシアネート基の当量比(イソシアネート基/水酸基)として、例えば、0.75以上、好ましくは、0.9以上、例えば、1.3以下、好ましくは、1.1以下である。
 より具体的には、鎖伸長工程における各成分の配合割合は、イソシアネート基末端ポリウレタンプレポリマー100質量部に対して、低分子量ポリオールが、例えば、1.0質量部以上、好ましくは、2.0質量部以上、より好ましくは、3.0質量部以上であり、例えば、30質量部以下、好ましくは、20質量部以下、より好ましくは、15質量部以下、さらに好ましくは、10質量部以下、特に好ましくは、6.0質量部以下である。
 また、鎖伸長工程において、得られるポリウレタン樹脂のハードセグメント濃度(後述)を調整するために、低分子量ポリオールの他に、高分子量ポリオールを配合することもできる。
 鎖伸長工程において、高分子量ポリオールを配合する場合における、高分子量ポリオールの配合割合は、イソシアネート基末端ポリウレタンプレポリマー100質量部に対して、高分子量ポリオールが、例えば、5質量部以上、好ましくは、10質量部以上、より好ましくは、50質量部以上であり、例えば、120質量部以下、好ましくは、100質量部以下であり、また、低分子量ポリオール1質量部に対して、例えば、10質量部以上、好ましくは、20質量部以上であり、例えば、100質量部以下、好ましくは、50質量部以下、より好ましくは、30質量部以下である。
 さらに、この反応においては、必要に応じて、上記したビスマス触媒を添加することができる。ビスマス触媒は、イソシアネート基末端ポリウレタンプレポリマーおよび/または低分子量ポリオールに配合することができ、また、それらの混合時に別途配合することもできる。
 また、上記の一次生成物を得る方法として、ワンショット法を採用する場合には、ポリイソシアネート成分と、ポリオール成分(高分子量ポリオールおよび低分子量ポリオールを含む)とを、ポリオール成分中の水酸基に対する、ポリイソシアネート成分中のイソシアネート基の当量比(イソシアネート基/水酸基)が、例えば、0.9以上、好ましくは、0.95以上、より好ましくは、0.98以上、例えば、1.2以下、好ましくは、1.1以下、より好ましくは、1.08以下となる割合で、同時に配合して撹拌混合する。
 また、この撹拌混合は、例えば、不活性ガス(例えば、窒素)雰囲気下、反応温度が、例えば、40℃以上、好ましくは、100℃以上、例えば、280℃以下、好ましくは、260℃以下で、反応時間が、例えば、30秒以上1時間以下で実施する。
 撹拌混合の方法としては、特に制限されないが、例えば、ディスパー、ディゾルバー、タービン翼を備えた混合槽、循環式の低圧または高圧衝突混合装置、高速撹拌ミキサー、スタティックミキサー、ニーダー、単軸または二軸回転式の押出機、ベルトコンベアー式など、公知の混合装置を用いて撹拌混合する方法が挙げられる。
 また、撹拌混合時には、必要により、上記したビスマス触媒や有機溶剤を、適宜の割合で添加することができる。
 熱処理工程は、上記の一次生成物を熱処理して二次生成物(熱処理後の反応生成物、すなわち、反応生成物であるポリウレタン樹脂)を得る工程である。
 熱処理工程では、上記の反応工程で得られた一次生成物を、所定の熱処理温度で、所定の熱処理期間静置することにより熱処理した後、必要により乾燥させる。
 熱処理温度としては、50℃以上、好ましくは、60℃以上、より好ましくは、70℃以上であり、100℃以下、好ましくは、90℃以下である。
 熱処理温度が上記下限未満である場合、引裂強度、破断強度、破断伸度などの機械物性に劣り、また、成形条件により物性が変化しやすく、さらに、フィッシュアイなどの成形不良を生じやすいという不具合がある。また、熱処理温度が上記上限を超過する場合にも、引裂強度、破断強度、破断伸度などの機械物性に劣り、また、成形条件により物性が変化しやすく、さらに、フィッシュアイなどの成形不良を生じやすいという不具合がある。加えて、熱処理温度が上記上限を超過する場合、耐久性(耐変色性)にも劣るという不具合がある。
 一方、熱処理温度が上記範囲であれば、機械物性および成形安定性に優れ、さらに、耐変色性にも優れた成形品(後述)を得ることができる。
 熱処理期間としては、3日以上、好ましくは、4日以上、より好ましくは、5日以上、さらに好ましくは、6日以上であり、10日以下、好ましくは、9日以下、より好ましくは、8日以下である。
 熱処理期間が上記下限未満である場合、引裂強度、破断強度、破断伸度などの機械物性に劣り、また、成形条件により物性が変化しやすく、さらに、フィッシュアイなどの成形不良を生じやすいという不具合がある。また、熱処理期間が上記上限を超過する場合にも、引裂強度、破断強度、破断伸度などの機械物性に劣り、また、成形条件により物性が変化しやすく、さらに、フィッシュアイなどの成形不良を生じやすいという不具合がある。加えて、熱処理期間が上記上限を超過する場合、耐久性(耐変色性)にも劣るという不具合がある。
 一方、熱処理期間が上記範囲であれば、機械物性および成形安定性に優れ、さらに、耐変色性にも優れた成形品(後述)を得ることができる。
 これにより、ポリウレタン樹脂を得ることができる。
 なお、ポリウレタン樹脂には、必要に応じて、公知の添加剤、例えば、酸化防止剤、耐熱安定剤、紫外線吸収剤、耐光安定剤、さらには、可塑剤、ブロッキング防止剤、離型剤、顔料、染料、滑剤(脂肪酸アマイド系滑剤など)、フィラー、加水分解防止剤、防錆剤、充填剤、ブルーイング剤などを添加することができる。これら添加剤は、各成分の混合時、合成時または合成後に添加することができる。
 耐熱安定剤としては、特に制限されず、公知の耐熱安定剤(例えば、BASFジャパン製カタログに記載)が挙げられ、より具体的には、例えば、リン系加工熱安定剤、ラクトン系加工熱安定剤、イオウ系加工熱安定剤などが挙げられる。
 紫外線吸収剤としては、特に制限されず、公知の紫外線吸収剤(例えば、BASFジャパン製カタログに記載)が挙げられ、より具体的には、例えば、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤などが挙げられる。
 耐光安定剤としては、特に制限されず、公知の耐光安定剤(例えば、ADEKA製カタログに記載)が挙げられ、より具体的には、例えば、ベンゾエート系光安定剤、ヒンダードアミン系光安定剤などが挙げられる。
 これら添加剤は、それぞれポリウレタン樹脂に対して、例えば、0.01質量%以上、好ましくは、0.1質量%以上、例えば、3.0質量%以下、好ましくは、2.0質量%以下となる割合で、添加される。
 そして、このようなポリウレタン樹脂の製造方法では、ビス(イソシアナトメチル)シクロヘキサンを含むポリイソシアネート成分と、数平均分子量400以下の低分子量ポリオール、および、数平均分子量2500以上4000以下の高分子量ポリオールを含むポリオール成分とを、ビスマス触媒の存在下において反応させ、得られた一次生成物を所定条件で熱処理する。
 そのため、このような製造方法により得られるポリウレタン樹脂は、成形安定性に優れ、かつ、ビスマス触媒が用いられていても、優れた機械物性を有する。
 具体的には、上記のポリウレタン樹脂は、ポリイソシアネート成分および低分子量ポリオールの反応により形成されるハードセグメントと、ポリイソシアネート成分および高分子量ポリオールの反応により形成されるソフトセグメントとを備えている。
 ポリウレタン樹脂のハードセグメント濃度は、例えば、3質量%以上、好ましくは、5質量%以上、より好ましくは、8質量%以上であり、例えば、55質量%以下、好ましくは、50質量%以下、より好ましくは、45質量%以下、さらに好ましくは、35質量%以下、特に好ましくは、20質量%以下である。
 ポリウレタン樹脂のハードセグメント濃度が上記範囲内であれば、得られる成形品(後述)の機械物性を向上させることができる。
 なお、ポリウレタン樹脂のハードセグメント(ポリイソシアネート成分と低分子量ポリオールとの反応により形成されるハードセグメント)濃度は、例えば、各成分の配合割合(仕込)から算出することができる(後述する実施例を参照。)。
 また、ポリイソシアネート成分が1,4-ビス(イソシアナトメチル)シクロヘキサンを含む場合、ポリウレタン樹脂の凝集温度は、ポリウレタン樹脂中のハードセグメント相の凝集温度に相当し、以下の計算式で示すハードセグメント相の凝集温度T以上、かつ、以下の計算式で示すハードセグメント相の凝集温度T以下である。
ハードセグメント相の凝集温度T(単位:℃):100+0.75×ハードセグメント濃度(質量%)
ハードセグメント相の凝集温度T(単位:℃):160+0.75×ハードセグメント濃度(質量%)
 また、好ましくは、ポリウレタン樹脂の凝集温度は、以下の計算式で示すハードセグメント相の凝集温度T以上、かつ、以下の計算式で示すハードセグメント相の凝集温度T以下である。
ハードセグメント相の凝集温度T(単位:℃):112+0.75×ハードセグメント濃度(質量%)
ハードセグメント相の凝集温度T(単位:℃):145+0.75×ハードセグメント濃度(質量%)
 凝集温度が上記範囲であるポリウレタン樹脂は、機械物性に優れる。
 なお、上記の計算式は、理論式ではなく、各種機械物性に優れたポリウレタン樹脂の凝集温度を測定して求めた経験式(実験式)である。
 このような凝集温度を有するポリウレタン樹脂は、例えば、ウレタン化触媒として公知のスズ触媒を用いることにより、容易に製造される。
 しかし、スズ触媒を用いると、作業性や成形安定性に劣る場合がある。そのため、スズ触媒の代替としてビスマス触媒を用いることが検討される。しかし、スズ触媒の代替としてビスマス触媒を用いるのみでは、得られるポリウレタン樹脂の凝集温度が、上記凝集温度T未満になる場合や、上記凝集温度Tを超過する場合がある。このようなポリウレタン樹脂は、機械物性に劣る。
 そこで、上記のポリウレタン樹脂の製造方法では、ウレタン化反応により得られた一次生成物を、所定条件で熱処理(加熱養生)している。
 これにより、スズ触媒の代替としてビスマス触媒を用いた場合にも、ポリウレタン樹脂の凝集温度を上記の範囲に調整することができ、機械物性に優れたポリウレタン樹脂を得ることができる。
 具体的には、ポリウレタン樹脂の凝集温度は、例えば、75℃以上、好ましくは、90℃以上、より好ましくは、100℃以上、さらに好ましくは、110℃以上、特に好ましくは、130℃以上であり、例えば、200℃以下、好ましくは、180℃以下、より好ましくは、170℃以下、さらに好ましくは、150℃以下、特に好ましくは、140℃以下である。
 ポリウレタン樹脂の凝集温度が上記下限以上であれば、得られる成形品(後述)の破断強度や引裂強度を向上させることができ、また、ポリウレタン樹脂の凝集温度が上記上限以下であれば、得られる成形品(後述)の反発弾性の向上や圧縮永久歪の抑制を図ることができる。
 なお、ポリウレタン樹脂の凝集温度は、実施例の条件に準拠した示差走査熱量測定(DSC測定)により測定することができる。
 そして、本発明は、上記した本発明のポリウレタン樹脂を含む成形品を含んでいる。成形品は、ポリウレタン樹脂から成形される。
 成形品は、例えば、上記のポリウレタン樹脂を、公知の成形方法、例えば、特定の金型を用いた熱圧縮成形および射出成形や、シート巻き取り装置を用いた押出成形、例えば、溶融紡糸成形などの熱成形加工方法により、例えば、ペレット状、板状、繊維状、ストランド状、フィルム状、シート状、パイプ状、中空状、箱状などの各種形状に成形することにより、得ることができる。
 そして、得られた成形品は、成形安定性に優れ、かつ、ビスマス触媒が用いられていても、優れた機械物性を有する。
 また、上記した説明では、本発明のポリウレタン樹脂およびその製造方法は、熱可塑性ポリウレタン樹脂およびその製造方法であるが、本発明のポリウレタン樹脂およびその製造方法は、熱硬化性ポリウレタン樹脂およびその製造方法にも適用できる。
 熱硬化性ポリウレタン樹脂およびその製造方法では、例えば、上記のイソシアネート基末端ポリウレタンプレポリマーと、2価アルコール(1,4-ブタンジオール、1,4-ブタンジオールなど)および3価アルコール(トリメチロールプロパンなど)、さらに、公知の芳香族ジアミンなどとを反応させ(反応工程)、例えば、注型成形した後、得られた成形物を、上記の条件で熱処理する(熱処理工程)。これにより、熱硬化性ポリウレタン樹脂、および、その熱硬化性ポリウレタン樹脂からなる成形品を得ることができる。
 そして、このような熱硬化性ポリウレタン樹脂およびその製造方法、さらに、その熱硬化性ポリウレタン樹脂からなる成形品も、成形安定性に優れ、かつ、ビスマス触媒が用いられていても、優れた機械物性を有する。
 そのため、成形品は、工業的に広範に使用可能であり、具体的には、例えば、透明性硬質プラスチック、コーティング材料、粘着剤、接着剤、防水材、ポッティング剤、インク、バインダー、フィルム、シート、バンド(例えば、時計バンドなどのバンド、例えば、自動車用伝動ベルト、各種産業用搬送ベルト(コンベアベルト)などのベルト)、チューブ(例えば、医療用チューブ、カテーテルなどの部品の他、エアーチューブ、油圧チューブ、電線チューブなどのチューブ、例えば、消防ホースなどのホース)、ブレード、スピーカー、センサー類、高輝度用LED封止剤、有機EL部材、太陽光発電部材、ロボット部材、アンドロイド部材、ウェアラブル部材、衣料用品、衛生用品、化粧用品、食品包装部材、スポーツ用品、レジャー用品、医療用品、介護用品、住宅用部材、音響部材、照明部材、シャンデリア、外灯、シール材、封止材、コルク、パッキン、防振・制震・免震部材、防音部材、日用品、雑貨、クッション、寝具、応力吸収材、応力緩和材、自動車の内外装部品、鉄道部材、航空機部材、光学部材、OA機器用部材、雑貨表面保護部材、半導体封止材、自己修復材料、健康器具、メガネレンズ、玩具、パッキン、ケーブルシース、ワイヤーハーネス、電気通信ケーブル、自動車配線、コンピューター配線、カールコードなど工業用品、シート、フィルムなどの介護用品、スポーツ用品、レジャー用品、各種雑貨、防振・免振材料、衝撃吸収材、光学材料、導光フィルムなどのフィルム、自動車部品、表面保護シート、化粧シート、転写シート、半導体保護テープなどのテープ部材、アウトソール、ゴルフボール部材、テニスラケット用ストリング、農業用フィルム、壁紙、防曇付与剤、糸、繊維、不織布、マットレスやソファーなどの家具用品、ブラジャーや肩パッドなどの衣料用品、紙おむつ、ナプキン、メディカルテープの緩衝材などの医療用品、化粧品、洗顔パフや枕などのサニタリー用品、靴底(アウトソール)、ミッドソールなどの靴用品、さらには、車両用のパッドやクッションなどの体圧分散用品、ドアトリム、インスツルメントパネル、ギアノブなどの手で触れる部材、電気冷蔵庫や建築物の断熱材、ショックアブソーバーなどの衝撃吸収材、充填材、車両のハンドル、自動車内装部材、自動車外装部材などの車両用品、化学機械研磨(CMP)パッドなどの半導体製造用品などにおいて、好適に用いられる。
 さらには、上記の成形品は、被覆材(フィルム、シート、ベルト、ワイヤー、電線、金属製の回転機器、ホイール、ドリルなどの被覆材)、糸や繊維(チューブ、タイツ、スパッツ、スポーツウエア、水着などに用いられる糸や複合繊維)、押出成形用途(テニス、バトミントンなどのガットおよびその収束材などの押出成形用途)、マイクロペレット化などによるパウダー形状でのスラッシュ成形品、人造皮革、表皮、シート、パッキン、被覆ロール(鉄鋼などの被覆ロール)、シール、シーラント、ローラー、ギアー、タブレットカバー、ボールのカバーあるいはコア材(ゴルフボール、バスケットボール、テニスボール、バレーボール、ソフトボールなどのカバーあるいはコア材)、シューズ部材(カバー材、ミッドソール、アウトソールなど)、スキー用品、ブーツ、テニス用品、グリップ(ゴルフクラブや二輪車などのグリップ)、バット、自動車内外装部材、ラックブーツ、ワイパー、シートクッション部材、ロボット、コスメテックス、介護製品のフィルム、3Dプリンター成形品、繊維強化材料(炭素繊維、リグニン、ケナフ、ナノセルロースファイバー、ガラス繊維などの繊維の強化材料)、安全ゴーグル、サングラス、メガネフレーム、スキーゴーグル、水泳ゴーグル、コンタクトレンズ、ガスアシストの発泡成形品、ショックアブソーバー、CMP研磨パッド、ダンバー、ベアリング、ダストカバー、切削バルブ、チッピングロール、高速回転ローラー、タイヤ、センサー、時計、ウエアブルバンドなど、繰返し伸縮、圧縮変形などによる回復性や耐摩耗が要求される用途において、好適に使用される。
 次に、本発明を、製造例、合成例、実施例および比較例に基づいて説明するが、本発明は、これらによって限定されるものではない。なお、「部」および「%」は、特に言及がない限り、質量基準である。また、以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。
 1) 原料
 <ポリイソシアネート成分(a)>
1,4-BIC:後述の製造例1~5に記載の方法で合成した1,4-ビス(イソシアナトメチル)シクロヘキサン
1,3-BIC:1,3-ビス(イソシアナトメチル)シクロヘキサン、商品名;タケネート600、三井化学社製
 <高分子量ポリオール(b)>
b-1)PTMEG(数平均分子量2000):ポリテトラメチレンエーテルグリコール、商品名;TERATHANE2000、水酸基価=56.0mgKOH/g、INVISTA社製
b-2)PTMEG(数平均分子量2900):ポリテトラメチレンエーテルグリコール、商品名;TERATHANE2900、水酸基価=38.5mgKOH/g、INVISTA社製
b-3)PEG(数平均分子量3000):ポリエチレングリコール、商品名;PEG#4000、水酸基価=37.4mgKOH/g、日油社製
b-4)PEG(数平均分子量3500):ポリエチレングリコール、商品名;PEG#4000、水酸基価=37.4mgKOH/g、日油社製およびポリエチレングリコール、商品名;PEG#6000、水酸基価=12.8mgKOH/g、日油社製を、重量比91:9でブレンドして調製した。
b-5)PEG(数平均分子量4500):ポリエチレングリコール、商品名;PEG#4000、水酸基価=37.4mgKOH/g、日油社製およびポリエチレングリコール、商品名;PEG#6000、水酸基価=12.8mgKOH/g、日油社製を、重量比74:26でブレンドして調製した。
b-6)PCL(数平均分子量3000):ポリカプロクトンポリオール、商品名;PLACCEL230N、水酸基価=37.4mgKOH/g、ダイセル社製
 <低分子量ポリオール(c)>
1,4-BD:1,4-ブタンジオール、商品名;1,4-ブタンジオール、三菱化学社製
 <ウレタン化触媒>
ビスマス触媒:オクチル酸ビスマス、商品名;ネオスタンU-600、日東化成社製
スズ触媒:オクチル酸スズ(II)、商品名;スタノクト、エーピーアイコーポレーション社製
 <触媒希釈剤>
ジイソノニルアジペート:商品名:DINA、大八化学工業社製
 <安定剤>
酸化防止剤:ヒンダードフェノール化合物、商品名;イルガノックス245、BASFジャパン社製
紫外線吸収剤:ベンゾトリアゾール化合物、商品名;チヌビン234、BASFジャパン社製
耐光安定剤:ヒンダードアミン化合物、商品名;LA-72、ADEKA社製
 2)ポリウレタン樹脂の製造
<1,4-ビス(イソシアナトメチル)シクロヘキサン(1,4-HXDI)の製造>
 製造例1(1,4-ビス(イソシアナトメチル)シクロヘキサン(1)(以下、1,4-BIC(1)とする。)の製造方法)
 後述の製造例2に記載の1,4-BIC(2)を窒素パージしながら、石油缶に充填した後、1℃のインキュベーター内で2週間静置させた。得られた凝固物を4μmメッシュのメンブレンフィルターを用いて、手早く減圧ろ過して、液相部を除去し、固相部を得た。その固相部に対して、上記した操作を繰り返して、1,4-BIC(1)を得た。1,4-BIC(1)のガスクロマトグラフィー測定による純度は99.9%、APHA測定による色相は5、13C-NMR測定によるトランス/シス比は99.5/0.5であった。加水分解性塩素濃度(以下、HC濃度とする。)は18ppmであった。
 製造例2(1,4-ビス(イソシアナトメチル)シクロヘキサン(2)(以下、1,4-BIC(2)とする。)の製造方法)
 特開2014-55229号公報の製造例6の記載に準拠して、純度99.5%以上のトランス体/シス体比98/2の1,4-ビス(アミノメチル)シクロヘキサンを92%の収率で得た。
 その後、特開2014-55229号公報の製造例1の記載に準拠して、この1,4-ビス(アミノメチル)シクロヘキサンを原料として、冷熱2段ホスゲン化法を加圧下で実施して、1,4-BIC(2)を382質量部得た。
 得られた1,4-BIC(2)のガスクロマトグラフィー測定による純度は99.9%、APHA測定による色相は5、13C-NMR測定によるトランス体/シス体比は98/2であった。HC濃度は18ppmであった。
 製造例3(1,4-ビス(イソシアナトメチル)シクロヘキサン(3)(以下、1,4-BIC(3)とする。)の製造方法)
 攪拌機、温度計、還流管、および、窒素導入管を備えた4つ口フラスコに、製造例2の1,4-BIC(2)を789質量部、後述の製造例6の1,4-BIC(6)を211質量部装入し、窒素雰囲気下、室温にて1時間撹拌した。得られた1,4-BIC(3)のガスクロマトグラフィー測定による純度は99.9%、APHA測定による色相は5、13C-NMR測定によるトランス/シス比は86/14であった。HC濃度は19ppmであった。
 製造例4(1,4-ビス(イソシアナトメチル)シクロヘキサン(4)(以下、1,4-BIC(4)とする。)の製造方法)
 攪拌機、温度計、還流管、および、窒素導入管を備えた4つ口フラスコに、製造例2の1,4-BIC(2)を561質量部、後述の製造例6の1,4-BIC(6)を439質量部装入し、窒素雰囲気下、室温にて1時間撹拌した。得られた1,4-BIC(4)のガスクロマトグラフィー測定による純度は99.9%、APHA測定による色相は5、13C-NMR測定によるトランス/シス比は73/27であった。HC濃度は20ppmであった。
 製造例5(1,4-ビス(イソシアナトメチル)シクロヘキサン(5)(以下、1,4-BIC(5)とする。)の製造方法)
 攪拌機、温度計、還流管、および、窒素導入管を備えた4つ口フラスコに、製造例2の1,4-BIC(2)を474質量部、後述の製造例6の1,4-BIC(6)を526質量部装入し、窒素雰囲気下、室温にて1時間撹拌した。得られた1,4-BIC(5)のガスクロマトグラフィー測定による純度は99.9%、APHA測定による色相は5、13C-NMR測定によるトランス/シス比は68/32であった。HC濃度は21ppmであった。
 製造例6(1,4-ビス(イソシアナトメチル)シクロヘキサン(6)(以下、1,4-BIC(6)とする。)の製造方法)
 13C-NMR測定によるトランス体/シス体比が41/59の1,4-ビス(アミノメチル)シクロヘキサン(東京化成工業社製)を原料として、特開2014-55229号公報の製造例1の記載に準拠して、388質量部の1,4-BIC(6)を得た。
 得られた1,4-BIC(6)のガスクロマトグラフィー測定による純度は99.9%、APHA測定による色相は5、13C-NMR測定によるトランス体/シス体比は41/59であった。HC濃度は22ppmであった。
  <イソシアネート基末端ポリウレタンプレポリマーの合成>
 合成例1~19
 ポリイソシアネート成分(a)および高分子量ポリオール(b)を、表1~2に記載の質量比で、撹拌機、温度計、還流管および窒素導入管を備えた4つ口フラスコに仕込み、窒素雰囲気下、80℃にて1時間撹拌した。
 ポリイソシアネート成分(a)および高分子量ポリオール(b)の総量に対して、表1~2に記載したビスマス触媒含有量またはスズ触媒含有量となるように、ウレタン化触媒を添加した。
 なお、ウレタン化触媒として、合成例1~5(イソシアネート基末端ポリウレタンプレポリマー(a)~(e))、合成例7~14(イソシアネート基末端ポリウレタンプレポリマー(g)~(n))および合成例17~19(イソシアネート基末端ポリウレタンプレポリマー(q)~(s))には、予めDINA(ジェイ・プラス社製)により4質量%に希釈したオクチル酸ビスマス(商品名:ネオスタンU-600、日東化成社製)を、用いた。
 また、ウレタン化触媒として、合成例6(イソシアネート基末端ポリウレタンプレポリマー(f))および合成例15(イソシアネート基末端ポリウレタンプレポリマー(о))には、無希釈のオクチル酸ビスマス(商品名:ネオスタンU-600、日東化成社製)を、用いた。
 また、ウレタン化触媒として、合成例16(イソシアネート基末端ポリウレタンプレポリマー(p))には、予めDINA(ジェイ・プラス社製)により4質量%に希釈したオクチル酸スズ(商品名:スタノクト、エーピーアイコーポレーション社製)を、用いた。
 そして、ウレタン化触媒を添加した後、80℃の温調下、窒素気流下で撹拌混合しながら、表1に記載のイソシアネート基含有量に達するまで反応を進め、イソシアネート基末端ポリウレタンプレポリマー(a)~(s)を得た。
 <ポリウレタン樹脂の合成>
 実施例1~16および比較例1~13
 80℃に温調したイソシアネート基末端ポリウレタンプレポリマーのイソシアネート基濃度を測定した。
 そして、低分子量ポリオールとしての1,4-ブタンジオール(1,4-BD)を、低分子量ポリオール中の水酸基に対するイソシアネート基末端ポリウレタンプレポリマー中のイソシアネート基の当量比(イソシアネート基/水酸基)が表3~5に記載の値となるように、ステンレスカップに計量して、80℃に温調した。
 次いで、イソシアネート基末端ポリウレタンプレポリマーを別のステンレスカップに計量し、イソシアネート基末端ポリウレタンプレポリマーおよび1,4-BDの総量に対して、イルガノックス245(BASF社製 耐熱安定剤)2質量部、チヌビン234(BASF社製 紫外線吸収剤)0.3質量部およびアデカスタブLA-72(ADEKA社製 HALS)0.3質量部を、イソシアネート基末端ポリウレタンプレポリマーに添加した。また、実施例14~16では、さらに、カオーワックスEB-P(花王ケミカル社製、脂肪酸アマイド系滑剤)を0.1質量部添加した。
 次いで、80℃の油浴中で、高速撹拌ディスパーを使用して、500~1500rpmの撹拌下、イソシアネート基末端ポリウレタンプレポリマーを3分間撹拌混合した。
 次いで、予め計量して80℃に温調した1,4-BDを、イソシアネート基末端ポリウレタンプレポリマーに添加し、高速撹拌ディスパーを使用して、500~1500rpmの撹拌下、3~10分間撹拌混合した。
 次いで、予め150℃に温調したテフロン(登録商標)製のバットに混合液を流し込み、150℃にて2時間反応させた後、100℃に降温して20時間反応を継続し、ポリウレタン樹脂の一次生成物(A)~(AC)を得た。
 次いで、バットからポリウレタン樹脂の一次生成物(A)~(AC)を取り外し、ベールカッターによりサイコロ状に切断し、粉砕機にてサイコロ状の樹脂を粉砕し、粉砕ペレットを得た。
 次いで、粉砕ペレットを、表2および3に記載した熱処理温度および熱処理期間で熱処理(養生、熟成)し、真空減圧下、23℃で12時間乾燥させた。
 その後、得られた粉砕ペレットを用い、単軸押出機(型式:SZW40-28MG、テクノベル社製)を用いて、スクリュー回転数30rpm、シリンダー温度200~270℃の範囲でストランドを押出し、カットすることによって、ポリウレタン樹脂(A)~(AC)のペレットを得た。
 3)ポリウレタン樹脂の物性測定
 <ビスマス触媒含有量およびスズ触媒含有量(単位:ppm)>
 各成分の配合割合(仕込)から、ポリウレタン樹脂のビスマス触媒含有量およびスズ触媒含有量を算出した。
 <凝集温度(単位:℃)>
 ポリウレタン樹脂の凝集温度を、示差走査熱量計(エスアイアイ・ナノテクノロジー社製、商品名:EXSTAR6000 PCステーション、および、DSC220C)を使用して測定した。
 具体的には、各実施例および各比較例で得られたポリウレタン樹脂を約8mg、アルミニウム製パンにできるだけ密着可能な形状となるように薄く切断して採取した。このアルミニウム製パンにカバーを被せてクリンプしたものを測定用試料(サンプル)とした。同様にアルミナを採取したものをリファレンス試料とした。サンプルおよびリファレンスをセル内の所定位置にセットした後、流量40NmL/minの窒素気流下、試料を10℃/minの速度で-100℃まで冷却し、同温度で5分間保持後、次いで、10℃/minの速度で270℃まで昇温した。さらに270℃で5分間保持した後、-70℃まで10℃/minの速度で冷却した。この冷却の間に現れる発熱ピークの温度をポリウレタン樹脂の凝集温度とした。
 また、各実施例および各比較例のポリウレタン樹脂の凝集温度を示す分布図を、図1に示す。
 4)評価用サンプル(成形品)の成形
 <押出成形>
 各実施例および各比較例において得られたポリウレタン樹脂のペレットを、予め、真空減圧下、80℃で12時間乾燥させ、単軸押出機(型式:SZW40-28MG、テクノベル社製)を用いて、スクリュー回転数20rpm(滞留時間8分)、シリンダー温度200~270℃の範囲で、Tダイから樹脂を押出し、それをベルトコンベアーで引き取ることで、厚み100μmのフィルム、および、厚み10μmのフィルムを得た。
 次いで、得られたフィルムを、80℃のオーブン中で24時間アニール処理した後、室温23℃、相対湿度55%の恒温恒湿条件下にて、7日間養生し、ポリウレタンフィルムを得た。
 <滞留時間を延長した押出成形>
 スクリュー回転数を5rpm(滞留時間30分)とした以外は、前記の押出成形ポリウレタンフィルムの成形方法と同様に、厚み100μmのポリウレタンフィルムを得た。
 <射出成形>
 各実施例および各比較例において得られたポリウレタン樹脂のペレットを、予め、真空減圧下、80℃で12時間乾燥させ、射出成型機(型式:NEX-140、日精樹脂工業社製)を使用して、スクリュー回転数80rpm、バレル温度200~270℃の設定にて、金型温度20℃、射出時間10秒、射出速度60mm/s、保圧50MPaおよび冷却時間20~60秒の条件で、射出成形し、厚み2mmのシートを得た。
 次いで、得られたシートを、80℃のオーブン中で24時間アニール処理した後、室温23℃、相対湿度55%の恒温恒湿条件下にて、7日間養生し、ポリウレタンシートを得た。
 5)評価
 <引裂強度(単位:kN/m)>
 スクリュー回転数20rpmの押出成形で得た100μm厚みのポリウレタンフィルムから、JIS K7311(1995)に従って作製した直角型引裂試験片を用いて、引張試験機(品番Model205N、インテスコ社製)にて、引裂速度300mm/minの条件で測定した。
 <破断強度(単位:MPa)および破断伸度(単位:%)>
 スクリュー回転数20rpmの押出成形で得た100μm厚みのポリウレタンフィルムから、JIS K7311(1995)に従って作製したJIS-4号ダンベル型試験片を用いて、引張試験機(品番Model205N、インテスコ社製)にて、引張速度300mm/min、標線間距離20mmの条件で測定した。
 <反発弾性(単位:%)>
 射出成形で得た2mm厚みのポリウレタンシートから、直径29mmの円柱状試験片を切り出し、それらを6枚重ねて、12mm厚みのボタン状の試験片とし、JIS K7311(1995)に従って測定した。
 <圧縮永久歪(単位:%)>
 射出成形で得た2mm厚みのポリウレタンシートから、直径29mmの円柱状試験片を切り出し、それらを6枚重ねて、12mm厚みのボタン状の試験片とし、JIS K6262に従って、70℃、25%圧縮、22時間の条件で測定した。
 <繰り返し伸長変形後の残留歪(単位:%)>
 スクリュー回転数20rpmの押出成形で得た10μm厚みのポリウレタンフィルムから、巾10mmの短冊状の試験片を切り出し、チャック間距離60mm、伸縮速度500mm/minの条件で、伸度250%まで伸長し、原点まで戻す操作を5回繰り返した。   
 5サイクル目に伸度250%から原点復帰する際に、応力が0MPaを示した際の伸度を、繰り返し伸長変形後の残留歪として測定した。
 <滞留後の流出開始温度の低下(成形安定性)(単位:℃)>
 スクリュー回転数5rpmおよび20rpmで押出成形して得られた、厚み100μmのポリウレタンフィルムを細かく刻み、真空減圧下、80℃で12時間乾燥した後、高化式フローテスター(島津製作所製、型式:島津フローテスターCFT-500)を用いて、流動開始温度より20℃低い温度を測定開始温度とし、荷重:196N、昇温速度2.5℃/分の昇温法により、流出開始温度(T)を測定した。
 スクリュー回転数5rpmで得られたポリウレタンフィルムの流出開始温度をTf:5rpm、スクリュー回転数20rpmで得られたポリウレタンフィルムの流出開始温度をTf:20rpmとした。
 そして、Tf:20rpm-Tf:5rpmを、滞留後の流出開始温度の低下として算出した。
 Tf:20rpm-Tf:5rpmの値が小さいほど、流出開始温度が成形条件に依存せず、成形安定性に優れることを示す。
 <破断強度保持率(成形安定性)(単位:%)>
 スクリュー回転数5rpmおよび20rpmで押出成形して得られた、厚み100μmのポリウレタンフィルムを用いて、上記の破断強度の測定方法に従い、破断強度(TS)を測定した。スクリュー回転数5rpmで得られたポリウレタンフィルムの破断強度をTS5rpm、スクリュー回転数20rpmで得られたポリウレタンフィルムの破断強度をTS20rpmとした。
 そして、TS5rpm/TS20rpm×100(%)を、破断強度保持率として算出した。
 TS5rpm/TS20rpm×100(%)の値が100%に近いほど、成形品の破断強度が成形条件に依存せず、成形安定性に優れることを示す。
 <引裂強度保持率(成形安定性)(単位:%)>
 スクリュー回転数5rpmおよび20rpmで押出成形して得られた、厚み100μmのポリウレタンフィルムを用いて、上記の引裂強度の測定方法に従い、引裂強度(TR)を測定した。スクリュー回転数5rpmで得られたポリウレタンフィルムの引裂強度をTR5rpm、スクリュー回転数20rpmで得られたポリウレタンフィルムの引裂強度をTR20rpmとした。
 そして、TR5rpm/TR20rpm×100(%)を、引裂強度保持率として算出した。
 TR5rpm/TR20rpm×100(%)の値が100%に近いほど、成形品の引裂強度が成形条件に依存せず、成形安定性に優れることを示す。
 <初期色相、耐UV変色性>
 厚み2mmのポリウレタンシートから20×60mmのサイズの試験片を切り出して、色差計(東京電色社製、カラーエースMODEL TC-1)を用いて、黄色度bを測定した。なお、bは、一般に、ポリウレタンの色相の指標とされる。
 その後、ポリウレタンシートに対して、紫外線蛍光灯が取り付けられたQUVウェザリングテスター(スガ試験機社製、紫外線蛍光灯ウェザーメーターFUV)を使用して、60℃、相対湿度10%、紫外線(波長270~720nm)の照射強度28W/mの条件および50℃、相対湿度95%、紫外線照射なしの条件を4時間ごとに、48時間にわたり、6サイクル繰り返した。
 試験前後におけるポリウレタンシートのΔb(b値の変化量)を、色差計(東京電色社製、カラーエースMODEL TC-1)を用いて測定した。なお、Δbは、一般に、ポリウレタンの耐UV変色性の指標とされる。
 <フィッシュアイ(成形安定性)(単位:個)>
 前記の、スクリュー回転数20rpmで押出成形して得られた、厚み100μmのポリウレタンフィルムを用いて、10cm四方中に含まれる直径0.4mm以上のブツをカウントした。5か所のカウント数の平均値の小数第一位を四捨五入した整数値をフィッシュアイとして記載した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記特許請求の範囲に含まれる。
 本発明のポリウレタン樹脂の製造方法、ポリウレタン樹脂および成形品は、各種産業分野において、工業的に広範に使用される。 

Claims (4)

  1.  ビス(イソシアナトメチル)シクロヘキサンを含むポリイソシアネート成分と、数平均分子量400以下の低分子量ポリオール、および、平均分子量2500以上4000以下の高分子量ポリオールを含むポリオール成分とを、ビスマス触媒の存在下において反応させて一次生成物を得る反応工程と、
     前記一次生成物を熱処理してポリウレタン樹脂を得る熱処理工程とを備え、
     前記ポリウレタン樹脂のビスマス触媒含有量が0.1ppm以上1000ppm以下であり、
     前記熱処理工程における熱処理条件が、50℃以上100℃以下、3日以上10日以下である
    ことを特徴とする、ポリウレタン樹脂の製造方法。
  2.  前記ビス(イソシアナトメチル)シクロヘキサンが、1,4-ビス(イソシアナトメチル)シクロヘキサンであり、
     前記1,4-ビス(イソシアナトメチル)シクロヘキサンが、70モル%以上99モル%以下の割合でトランス体を含有する
    ことを特徴とする、請求項1に記載のポリウレタン樹脂の製造方法。
  3.  1,4-ビス(イソシアナトメチル)シクロヘキサンを含むポリイソシアネート成分と、数平均分子量400以下の低分子量ポリオール、および、数平均分子量2500以上4000以下の高分子量ポリオールを含むポリオール成分との反応生成物であり、
     ビスマス触媒含有量が0.1ppm以上1000ppm以下であり、
     示差走査熱量計により測定した凝集温度が、
      以下の計算式で示すハードセグメント相の凝集温度T以上、かつ、
      以下の計算式で示すハードセグメント相の凝集温度T以下
    であることを特徴とする、ポリウレタン樹脂。
    ハードセグメント相の凝集温度T(単位:℃):100+0.75×ハードセグメント濃度(質量%)
    ハードセグメント相の凝集温度T(単位:℃):160+0.75×ハードセグメント濃度(質量%)
  4.  請求項3に記載のポリウレタン樹脂を含む
    ことを特徴とする、成形品。
PCT/JP2017/040837 2016-11-17 2017-11-14 ポリウレタン樹脂の製造方法、ポリウレタン樹脂および成形品 WO2018092745A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780067028.9A CN109906241B (zh) 2016-11-17 2017-11-14 聚氨酯树脂的制造方法、聚氨酯树脂及成型品
JP2018509629A JP6378852B1 (ja) 2016-11-17 2017-11-14 ポリウレタン樹脂の製造方法
US16/348,349 US10927213B2 (en) 2016-11-17 2017-11-14 Producing method of polyurethane resin, polyurethane resin, and molded article
KR1020197012929A KR102205059B1 (ko) 2016-11-17 2017-11-14 폴리유레테인 수지의 제조 방법, 폴리유레테인 수지 및 성형품
EP17870773.3A EP3543272A4 (en) 2016-11-17 2017-11-14 METHOD FOR PRODUCING POLYURETHANE RESIN, POLYURETHANE RESIN AND MOLDED BODY

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-224421 2016-11-17
JP2016224421 2016-11-17
JP2017084659 2017-04-21
JP2017-084659 2017-04-21

Publications (1)

Publication Number Publication Date
WO2018092745A1 true WO2018092745A1 (ja) 2018-05-24

Family

ID=62145742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040837 WO2018092745A1 (ja) 2016-11-17 2017-11-14 ポリウレタン樹脂の製造方法、ポリウレタン樹脂および成形品

Country Status (7)

Country Link
US (1) US10927213B2 (ja)
EP (1) EP3543272A4 (ja)
JP (1) JP6378852B1 (ja)
KR (1) KR102205059B1 (ja)
CN (1) CN109906241B (ja)
TW (1) TWI721232B (ja)
WO (1) WO2018092745A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020097662A (ja) * 2018-12-17 2020-06-25 三井化学株式会社 熱可塑性ポリウレタン樹脂、成形品、および、熱可塑性ポリウレタン樹脂の製造方法
JP2020151914A (ja) * 2019-03-19 2020-09-24 三井化学株式会社 ポリウレタン樹脂成形体の製造方法
WO2023153398A1 (ja) * 2022-02-09 2023-08-17 三井化学株式会社 プレポリマー組成物、ポリウレタン樹脂、弾性成形品およびプレポリマー組成物の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110343228B (zh) * 2019-07-25 2021-08-06 江苏瑞文新材料科技有限公司 一种电缆护套用耐水快速修补料及其应用
CN114375312B (zh) * 2019-09-30 2024-04-09 三井化学株式会社 热塑性聚氨酯树脂及膜
CN112430307A (zh) * 2020-11-24 2021-03-02 杭州崇耀科技发展有限公司 一种不变黄聚氨酯海绵及其制备方法
KR20220107478A (ko) 2021-01-25 2022-08-02 (주)케이투에프엠 사용이 편리한 소형 경고장치
KR20230056970A (ko) 2021-10-21 2023-04-28 (주)대한솔루션 폴리우레탄 폼 성형장치
CN115975150B (zh) * 2023-03-21 2023-07-18 淄博国创中心先进车用材料技术创新中心 用于3d打印的有机硅改性热塑性聚氨酯树脂及其制法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649409A (ja) * 1992-08-04 1994-02-22 Mitsui Toatsu Chem Inc スプレー成形によるポリウレタン・ポリウレア・エラス トマー積層物の製造方法
JPH07309827A (ja) 1994-03-22 1995-11-28 Mitsui Toatsu Chem Inc 脂肪族ポリイソシアナートの製造方法
JP2003212835A (ja) 2002-01-24 2003-07-30 Mitsui Takeda Chemicals Inc アルキルカルバメートの製造方法
JP2004244349A (ja) 2003-02-13 2004-09-02 Mitsui Takeda Chemicals Inc アルキルカルバメートの製造方法
JP2010513596A (ja) * 2006-12-14 2010-04-30 インターフェース バイオロジクス,インコーポレーテッド 高い分解温度を有する表面改質用高分子及びその使用
JP2011006382A (ja) 2009-04-09 2011-01-13 Mitsui Chemicals Inc トランス−1,4−ビス(アミノメチル)シクロヘキサンの製造方法
JP2011012141A (ja) * 2009-06-30 2011-01-20 Mitsui Chemicals Inc 光学用ポリウレタン樹脂組成物、光学用ポリウレタン樹脂およびその製造方法
JP2013023656A (ja) 2011-07-25 2013-02-04 Mitsui Chemicals Inc チューブおよびチューブの製造方法
JP2014055229A (ja) 2012-09-12 2014-03-27 Mitsui Chemicals Inc 硬質熱可塑性ポリウレタン樹脂、その製造方法および成形品
US20150051328A1 (en) * 2012-07-09 2015-02-19 Shanghai Huihai Chemical Technology Co., Ltd. Alkyl phosphinate polymer and methods for preparing and using the same
WO2016152545A1 (ja) * 2015-03-24 2016-09-29 富士フイルム株式会社 爪化粧料及びネイルアートキット

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08325346A (ja) * 1995-06-02 1996-12-10 Kuraray Co Ltd 熱可塑性ポリウレタンおよびその成形物
JPH10218962A (ja) 1997-02-13 1998-08-18 Nippon Polyurethane Ind Co Ltd フィッシュアイの少ない熱可塑性ポリウレタン樹脂の製造方法
CA2360114C (en) 1999-01-26 2009-11-24 Huntsman International Llc Foamed thermoplastic polyurethanes
JP2007238958A (ja) 2000-10-18 2007-09-20 Mitsui Chemicals Inc ウレタン系熱可塑性エラストマー組成物発泡体及びその製造方法
DE10342857A1 (de) 2003-09-15 2005-04-21 Basf Ag Expandierbare thermoplastische Polyurethan-Blends
DE102004009740A1 (de) * 2004-02-25 2005-09-15 Basf Ag Zinn- und Übergangsmetallfreie Polyurethanschaumstoffe
JP4943004B2 (ja) 2005-12-28 2012-05-30 三井化学株式会社 アロファネート基含有ポリイソシアネートの製造方法、ならびにウレタンプレポリマーおよびポリウレタン樹脂組成物
WO2007082838A1 (de) 2006-01-18 2007-07-26 Basf Se Schaumstoffe auf basis thermoplastischer polyurethane
CN101982479B (zh) * 2010-10-19 2012-06-06 黎明化工研究院 一种浇注型聚氨酯弹性体及制备方法和用途
CN102558830B (zh) 2012-02-10 2013-06-12 上海联景高分子材料有限公司 一种透明薄膜级热塑性聚氨酯弹性体和制备方法
US9926423B2 (en) 2013-08-02 2018-03-27 Nike, Inc. Low density foam, midsole, footwear, and methods for making low density foam
US9963566B2 (en) 2013-08-02 2018-05-08 Nike, Inc. Low density foamed articles and methods for making
US9919458B2 (en) 2013-08-02 2018-03-20 Nike, Inc. Method and thermoplastic foamed article
CN105556377B (zh) * 2013-09-26 2017-03-01 三井化学株式会社 眼镜材料、眼镜框及眼镜
PL3015485T3 (pl) * 2014-10-28 2017-09-29 Basf Se Technologia produkcji metakrylanu uretanowego utwardzalnego za pomocą promieniowania
US10455951B2 (en) * 2015-02-05 2019-10-29 Mitsui Chemicals, Inc. Cushioning material having sensor, and bed
CN105111408B (zh) * 2015-09-18 2018-02-16 苏州大学 一种涂装设备用聚氨酯弹性体及其制备方法
WO2017076609A1 (de) * 2015-11-04 2017-05-11 Basf Se Verfahren zur herstellung thermoplastischer polyurethane

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649409A (ja) * 1992-08-04 1994-02-22 Mitsui Toatsu Chem Inc スプレー成形によるポリウレタン・ポリウレア・エラス トマー積層物の製造方法
JPH07309827A (ja) 1994-03-22 1995-11-28 Mitsui Toatsu Chem Inc 脂肪族ポリイソシアナートの製造方法
JP2003212835A (ja) 2002-01-24 2003-07-30 Mitsui Takeda Chemicals Inc アルキルカルバメートの製造方法
JP2004244349A (ja) 2003-02-13 2004-09-02 Mitsui Takeda Chemicals Inc アルキルカルバメートの製造方法
JP2010513596A (ja) * 2006-12-14 2010-04-30 インターフェース バイオロジクス,インコーポレーテッド 高い分解温度を有する表面改質用高分子及びその使用
JP2011006382A (ja) 2009-04-09 2011-01-13 Mitsui Chemicals Inc トランス−1,4−ビス(アミノメチル)シクロヘキサンの製造方法
JP2011012141A (ja) * 2009-06-30 2011-01-20 Mitsui Chemicals Inc 光学用ポリウレタン樹脂組成物、光学用ポリウレタン樹脂およびその製造方法
JP2013023656A (ja) 2011-07-25 2013-02-04 Mitsui Chemicals Inc チューブおよびチューブの製造方法
US20150051328A1 (en) * 2012-07-09 2015-02-19 Shanghai Huihai Chemical Technology Co., Ltd. Alkyl phosphinate polymer and methods for preparing and using the same
JP2014055229A (ja) 2012-09-12 2014-03-27 Mitsui Chemicals Inc 硬質熱可塑性ポリウレタン樹脂、その製造方法および成形品
WO2016152545A1 (ja) * 2015-03-24 2016-09-29 富士フイルム株式会社 爪化粧料及びネイルアートキット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3543272A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020097662A (ja) * 2018-12-17 2020-06-25 三井化学株式会社 熱可塑性ポリウレタン樹脂、成形品、および、熱可塑性ポリウレタン樹脂の製造方法
JP7246910B2 (ja) 2018-12-17 2023-03-28 三井化学株式会社 熱可塑性ポリウレタン樹脂、成形品、および、熱可塑性ポリウレタン樹脂の製造方法
JP2020151914A (ja) * 2019-03-19 2020-09-24 三井化学株式会社 ポリウレタン樹脂成形体の製造方法
JP7267790B2 (ja) 2019-03-19 2023-05-02 三井化学株式会社 ポリウレタン樹脂成形体の製造方法
WO2023153398A1 (ja) * 2022-02-09 2023-08-17 三井化学株式会社 プレポリマー組成物、ポリウレタン樹脂、弾性成形品およびプレポリマー組成物の製造方法

Also Published As

Publication number Publication date
JPWO2018092745A1 (ja) 2018-11-15
CN109906241A (zh) 2019-06-18
KR102205059B1 (ko) 2021-01-19
TW201829524A (zh) 2018-08-16
US20200055976A1 (en) 2020-02-20
US10927213B2 (en) 2021-02-23
EP3543272A4 (en) 2020-05-20
KR20190062519A (ko) 2019-06-05
JP6378852B1 (ja) 2018-08-22
TWI721232B (zh) 2021-03-11
EP3543272A1 (en) 2019-09-25
CN109906241B (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
JP6378852B1 (ja) ポリウレタン樹脂の製造方法
JP7184760B2 (ja) ポリウレタンエラストマー、ポリウレタンエラストマーの製造方法、および、成形品
JP7268015B2 (ja) 光学用ポリウレタン樹脂、ディスプレイパネル用カバー板、アイウェア材料、アイウェアレンズ、アイウェアフレーム、自動車内外装材用部品、および、光学用ポリウレタン樹脂の製造方法
CN111065666B (zh) 聚氨酯树脂、成型品、及聚氨酯树脂的制造方法
JP5832392B2 (ja) ポリウレタンエラストマーの製造方法、ポリウレタンエラストマーおよび成形品
JP7257541B2 (ja) 熱可塑性ポリウレタン樹脂およびフィルム
JP7296249B2 (ja) 熱可塑性ポリウレタン樹脂
JP7280954B2 (ja) ポリウレタン樹脂組成物および成形品
JP7246910B2 (ja) 熱可塑性ポリウレタン樹脂、成形品、および、熱可塑性ポリウレタン樹脂の製造方法
TWI848159B (zh) 聚胺基甲酸酯樹脂組成物及成形品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018509629

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870773

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197012929

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017870773

Country of ref document: EP

Effective date: 20190617