WO2018092579A1 - ボール減速機 - Google Patents

ボール減速機 Download PDF

Info

Publication number
WO2018092579A1
WO2018092579A1 PCT/JP2017/039304 JP2017039304W WO2018092579A1 WO 2018092579 A1 WO2018092579 A1 WO 2018092579A1 JP 2017039304 W JP2017039304 W JP 2017039304W WO 2018092579 A1 WO2018092579 A1 WO 2018092579A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
ball
corrugated groove
radial
speed reducer
Prior art date
Application number
PCT/JP2017/039304
Other languages
English (en)
French (fr)
Inventor
靖 梶原
Original Assignee
株式会社エンプラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エンプラス filed Critical 株式会社エンプラス
Priority to CN201780071452.0A priority Critical patent/CN109964057A/zh
Priority to US16/461,643 priority patent/US20190353229A1/en
Publication of WO2018092579A1 publication Critical patent/WO2018092579A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/04Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying rotary motion
    • F16H25/06Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying rotary motion with intermediate members guided along tracks on both rotary members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H13/00Gearing for conveying rotary motion with constant gear ratio by friction between rotary members
    • F16H13/06Gearing for conveying rotary motion with constant gear ratio by friction between rotary members with members having orbital motion
    • F16H13/08Gearing for conveying rotary motion with constant gear ratio by friction between rotary members with members having orbital motion with balls or with rollers acting in a similar manner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/04Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying rotary motion
    • F16H25/06Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying rotary motion with intermediate members guided along tracks on both rotary members
    • F16H2025/063Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying rotary motion with intermediate members guided along tracks on both rotary members the intermediate members being balls engaging on opposite cam discs

Definitions

  • This invention relates to a ball speed reducer used for decelerating and transmitting rotation.
  • the ball speed reducer is smaller and has a larger speed reduction ratio than the gear speed reduction device, so that it can be used as a power transmission unit for various machines (for example, industrial robots, steering angle variable type steering devices, etc.). in use.
  • FIG. 14 is a view showing such a conventional ball speed reducer 100.
  • 14A is a longitudinal sectional view of a conventional ball speed reducer 100
  • FIG. 14B is a ball speed reducer 100 cut along line A13-A13 in FIG. 14A.
  • FIG. 14A is a longitudinal sectional view of a conventional ball speed reducer 100
  • FIG. 14B is a ball speed reducer 100 cut along line A13-A13 in FIG. 14A.
  • an eccentric rotating plate 104 is attached to the outer peripheral side of an eccentric cam 102 formed on the input shaft 101 via a bearing 103, and the eccentric rotating plate 104 is the eccentric cam 102. Is driven eccentrically.
  • output side rotating bodies 105 connected to an output shaft are arranged on both sides on the radially inner side of the eccentric rotating plate 104, and the input shaft 101 is an output side rotating body. It is supported on the inner peripheral side of 105 through a bearing 106 so as to be relatively rotatable.
  • fixing members 107 fixed to a part of an industrial robot or the like are arranged on both sides on the radially outer side of the eccentric rotating plate 104 via balls 108, respectively.
  • a rotating body 105 is rotatably supported on the inner peripheral side of the fixed member 107 via a bearing 110.
  • the ball 108 sandwiched between the eccentric rotating plate 104 and the fixing member 107 is formed by a first corrugated groove (first cycloid groove formed by an outer cycloid curve) 111 formed on the side surface of the eccentric rotating plate 104 and the fixing member 107.
  • the eccentric rotating plate 104 is engaged with a second corrugated groove (second cycloid groove formed by an inner cycloid curve) 112 formed on the inner side surface (side surface facing the eccentric rotating plate 104) so as to roll. And the fixing member 107 are connected.
  • the wave number of the second corrugated groove 112 is formed so as to be two more than the wave number of the first corrugated groove 111.
  • the output-side rotator 105 is connected to the eccentric rotating plate 104 via the eccentric absorbing mechanism 113.
  • the eccentric absorbing mechanism 113 allows the eccentric rotating plate 104 to move eccentrically with respect to the output side rotating body 105 (absorbs the eccentricity of the eccentric rotating plate 104). The rotation is transmitted to the output side rotating body 105.
  • the eccentric absorbing mechanism 113 includes a plurality of balls 114 interposed between the eccentric rotating plate 104 and the output-side rotating body 105, and a driving annular groove 115 of the eccentric rotating plate 104 that accommodates the balls 114 in a rollable manner. And a driven annular groove 116 of the output side rotator 105.
  • the shape and size of the driving annular groove 115 and the driven annular groove 116 are determined in consideration of the amount of eccentricity of the eccentric cam 102, and the ball 114 when the eccentric rotating plate 104 rotates eccentrically with respect to the rotation center of the input shaft 101.
  • the output-side rotator 105 can rotate integrally with the eccentric rotating plate 104 via a ball 114 (see Patent Document 1).
  • the input shaft When 101 is rotationally driven by an electric motor (not shown) or the like, the eccentric rotating plate 104 is eccentrically driven by the eccentric cam 102 of the input shaft 101, and the output side rotating body 105 is integrated with the eccentric rotating plate 104 via the eccentric absorbing mechanism 113.
  • the output-side rotator 105 rotates -2 / (N-2) with respect to one rotation of the input shaft 101 (2 / (N- in the direction opposite to the rotation direction of the input shaft 101). 2) Rotate).
  • the reduction ratio is 2 / (N-2).
  • the first corrugated grooves 111 are formed on both side surfaces of the eccentric rotating plate 104, and the inner surfaces of the fixing members 107 respectively disposed on both sides of the eccentric rotating plate 104 are used. Since the second corrugated groove 112 is formed, the corrugated grooves 111, 111, 112, 112 must be formed with high accuracy on a total of four side surfaces (four locations), and the processing man-hours increase. It was.
  • the conventional ball speed reducer 100 shown in FIG. 14 rotates the eccentric rotating plate 104 and the output side rotating body 105 together, the output side rotating body 105 is eccentrically rotated via the eccentric absorbing mechanism 113.
  • the structure is complicated and the processing man-hours increase.
  • an object of the present invention is to provide a ball speed reducer with a simple structure and a small number of processing steps.
  • the present invention relates to a ball speed reducer 1 that decelerates and transmits the rotation of the input side rotating body 2 to the output side rotating body 7.
  • a ball speed reducer 1 according to the present invention is fitted to an eccentric disk cam 3 that rotates integrally with the input-side rotator 2 and to the outer peripheral side of the eccentric disk cam 3 so as to be capable of relative rotation.
  • An oscillating body 4 oscillated by a plate cam 3, a plurality of balls 5 accommodated in a ball holding portion 23 (56) of the oscillating body 4 (55), and both sides of the oscillating body 4 (55)
  • a fixing member 6 having a first side surface portion 24 positioned opposite to one of the surfaces 4a and 4b (55a and 55b) and fixed to the fixed member;
  • the ball holding portion 23 (56) of the rocking body 4 (55) is formed along the relative rotation direction of the rocking body 4 (55) and the eccentric disc cam 3, and the plurality of balls 5 Is accommodated so as to roll along the relative rotation direction.
  • the output-side rotator 7 has a second side surface portion 40 that faces the other of the two side surfaces 4a and 4b (55a and 55b) of the oscillator 4 (55), and serves as a rotation center. Is arranged so as to be coaxial with the rotation center 2a of the input-side rotator 2. Further, any one of the first side surface portion 24 and the second side surface portion 40 has a radial direction extending in a radial direction from the rotation center 2a in a virtual plane orthogonal to the rotation center 2a of the input-side rotator 2. Then, the radial groove 30 that guides the ball 5 so as to roll along the radial direction of one of the first side surface portion 24 and the second side surface portion 40 of the input shaft side rotating body 2.
  • a plurality are formed around the rotation center 2a. Further, the other of the first side surface portion 24 and the second side surface portion 40 has the ball in the virtual plane when the direction along the outer edge of the virtual circle centered on the rotation center 2a is the circumferential direction.
  • An annular corrugated groove 31 (61, 62) is formed to guide 5 in a wave shape along the circumferential direction of the other of the first side surface portion 24 and the second side surface portion 40.
  • the ball 5 is slidably engaged with the radial groove 30 and the corrugated groove 31 (61, 62), and the rocking body 4 (55) is rocked by the eccentric disc cam 3. And roll in the radial groove 30 and the corrugated groove 31 (61, 62).
  • the corrugated grooves are formed only on one side surface portion of the output side rotating body and the fixed member facing the oscillating body. Compared to the conventional example, it is possible to reduce the number of processing steps.
  • the swinging body since the swinging body can swing independently with respect to the output-side rotating body and the fixed member, the output-side rotating body and the swinging body rotate together. This eliminates the need for a complicated mechanism, and simplifies the structure and reduces the number of processing steps.
  • FIG. 1 is a longitudinal sectional view of a ball speed reducer according to a first embodiment of the present invention. It is a figure which shows the input shaft (input side rotary body) of the ball
  • Fig.2 (a) is the front of the input shaft seen from the direction of arrow B1 of FIG.2 (c).
  • FIG. 2B is a cross-sectional view taken along line A1-A1 in FIG. 2C
  • FIG. 2C is a side view of the input shaft.
  • FIG.3 (a) is a longitudinal cross-sectional view (A2-A2 line
  • 3 (b) is a front view of the oscillating body
  • FIG. 3 (c) is a longitudinal sectional view of the inner oscillating ring (a cross section taken along the line A3-A3 in FIG. 3 (d)).
  • 3 (d) is a front view of the inner rocking ring
  • FIG. 3 (e) is a longitudinal sectional view of the outer rocking ring (a cross-sectional view taken along line A4-A4 in FIG.
  • FIG.4 (a) is a front view of a fixing member
  • FIG.4 (b) is a longitudinal cross-sectional view (Fig.4 (a) of a fixing member. ) Of the fixing member cut along the line A5-A5 in FIG.
  • Fig.5 (a) is a figure which shows the front end surface of an output shaft part (from the direction of arrow B2 of FIG.5 (b)).
  • FIG. 5B is a longitudinal sectional view of the output side rotating body (a sectional view taken along line A6-A6 in FIG. 5C), FIG. 5C.
  • FIG. 6 is a front view of the output-side rotator (view of the output-side rotator as seen from the direction of arrow B3 in FIG. 5B). It is a figure which shows the cover of the ball reducer which concerns on 1st Embodiment of this invention, Fig.6 (a) is a front view of a cover, FIG.6 (b) follows the A7-A7 line
  • FIG.7 (a) is a front view of a fixing member
  • FIG.7 (b) is a longitudinal cross-sectional view (figure) of a fixing member
  • FIG. 7A is a cross-sectional view of a fixing member cut along the line A8-A8 in FIG.
  • FIG. 8 is a view showing a modified example of the rocking body of the ball reducer according to the first embodiment of the present invention
  • FIG. 8A is a longitudinal sectional view of the rocking body (along line A9-A9 in FIG. 8B).
  • FIG. 8B is a front view of the oscillating body
  • FIG. 8C is an enlarged view of the ball holding portion of the oscillating body. It is a figure which shows the modification of the waveform groove
  • FIG.12 (a) is a figure which shows the front end surface of an output shaft part (from the direction of arrow B4 of FIG.12 (b)).
  • FIG. 12B is a longitudinal sectional view of the output side rotating body (a sectional view taken along the line A11-A11 in FIG. 12C), and FIG. 12C. These are front views (the figure seen from the direction of arrow B5 of Drawing 12 (b)) of an output side rotating body.
  • FIG. 13A is a view showing a modification of the output side rotating body of the ball reducer according to the second embodiment of the present invention, and FIG.
  • FIG. 13A is a longitudinal sectional view of the output side rotating body (A12-A12 in FIG. 13B).
  • FIG. 13B is a front view of the output-side rotator as seen from the direction of arrow B6 in FIG. 13A.
  • 14A and 14B are views showing a conventional ball reducer, in which FIG. 14A is a longitudinal sectional view of the ball reducer, and FIG. 14B is a sectional view taken along line A13-A13 of FIG. 14A. It is.
  • FIG. 1 is a longitudinal sectional view of a ball speed reducer 1 according to a first embodiment of the present invention.
  • a ball speed reducer 1 according to this embodiment includes an input shaft (input-side rotating body) 2, an eccentric disc cam 3, a rocking body 4, a plurality of balls (steel balls) 5, and a fixing member. 6, an output side rotating body 7, a cover 8, and the like.
  • the input shaft 2 is configured such that the shaft body portion 10 is rotatably supported by a fixing member 6 via a first bearing 11 and is driven to rotate by an electric motor (not shown) or the like. It has become.
  • the input shaft 2 has a hook-shaped portion 12 having a diameter larger than that of the shaft main body portion 10 adjacent to the shaft main body portion 10, and the side surface of the first bearing 11 is abutted against the side surface of the hook-shaped portion 12.
  • the one bearing 11 is held between the inner peripheral projection 14 of the boss portion 13 of the fixing member 6 and the flange portion 12.
  • the input shaft 2 is formed with an eccentric disc cam 3 at a position closer to the shaft tip side than the flange-shaped portion 12 and adjacent to the flange-shaped portion 12.
  • the eccentric disc cam 3 is a disc whose center 3a is eccentric with respect to the rotation center 2a of the input shaft 2 (the rotation center 10a of the shaft body 10) by an eccentric amount (e).
  • the input shaft 2 are rotated eccentrically around the rotation center 2a.
  • the rocking body 4 is attached to the outer peripheral side of the eccentric disk cam 3 via the 2nd bearing 15 so that relative rotation is possible.
  • the input shaft 2 has a balance weight attaching portion 16 formed at the outer periphery of the eccentric disc cam 3 and at a position closer to the tip of the shaft than the place where the second bearing 15 is attached.
  • the balance weight mounting portion 16 is formed in a portion (FIG. 2A) formed by cutting out one portion on the outer peripheral side of the eccentric disc cam 3 along a line indicating the center 3a of the eccentric disc cam 3. D-cut shape as shown).
  • a balance weight 17 is press-fitted and fixed to the balance weight mounting portion 16, and a second bearing 15 is held between the balance weight 17 and the hook-shaped portion 12 in a positioned state.
  • the input shaft 2 is formed with a tip shaft portion 20 to which the third bearing 18 is attached.
  • the tip shaft portion 20 has a rotational center concentric with the rotational center 2 a of the shaft main body portion 2, and supports the output side rotating body 7 via a third bearing 18 so as to be rotatable.
  • the radial direction means a direction extending radially from the rotation center 2a on the virtual plane.
  • the circumferential direction refers to a direction along the outer edge of the virtual circle centered on the rotation center 2a of the input shaft 2.
  • the rocking body 4 is rocked by an eccentric disk cam 3 and is composed of an inner rocking ring 21 and an outer rocking ring 22.
  • a ball holding portion 23 is formed between the inner swing ring 21 and the outer swing ring 22, and a plurality of balls 5 are accommodated in the ball holding portion 23 in a rollable manner.
  • the ball holding portion 23 of the rocking body 4 has an annular space (the rocking body 4 and the eccentric disk cam 3) formed between the outer peripheral surface 21 a of the inner rocking ring 21 and the inner peripheral surface 22 a of the outer rocking ring 22.
  • the outer rocking ring 22 is supported by a plurality of balls 5 arranged along the circumferential direction of the outer peripheral surface 21a of the inner rocking ring 21 so as to be able to roll. Yes.
  • the rocking body 4 accommodates a ball support protrusion 25 formed on a first side surface 24 of the fixing member 6 to be described later, and a ball support protrusion relief 26 that enables relative rotation with the fixing member 6. Is formed.
  • the ball support protrusion relief portion 26 includes an inner tapered surface 21b formed so as to be obliquely cut away from the outer peripheral surface 21a of the inner swing ring 21 toward the radially inward side, and the inner periphery of the outer swing ring 22.
  • the outer surface 22a is formed so that the surface 22a is obliquely cut out radially outward, and has a cross-sectional shape that expands toward the first side surface 24 of the fixing member 6. ing. And the 1st side surface part 24 of the fixing member 6 is arrange
  • the inner rocking ring 21 has a plurality of lightening holes 27 formed at equal intervals along the circumferential direction between the bearing surface 21c to which the second bearing 15 is fitted and the outer peripheral surface 21a for supporting the ball 5. Has been.
  • the fixing member 6 is fixed to a fixed member (not shown) (for example, a machine frame or a robot arm), and the shaft main body portion 10 of the input shaft 2 is placed inside the boss portion 13.
  • the first bearing 11 attached to the peripheral surface is rotatably supported.
  • the fixing member 6 is provided on the inner side surface 24a of the first side surface portion 24 facing the one side surface 4a of the oscillating body 4 (side surface facing the one side surface 4a), and the ball support protrusion relief portion 26 of the oscillating body 4.
  • a ball support protrusion 25 is formed to be engaged so as not to come into contact with.
  • the ball support protrusion 25 is a trapezoidal annular body having a tapered cross section, and is an annular body formed concentrically with the center 28 a of the bearing mounting hole 28 of the boss portion 13.
  • the ball support protrusions 25 are formed with a plurality of radial grooves 30 that engage with the balls 5 accommodated in the ball holding portion 23 of the rocking body 4 at equal intervals along the circumferential direction.
  • the radial groove 30 is formed so as to cut out the ball support protrusion 25 in the radial direction, and the cross-sectional shape perpendicular to the radial direction is an arc shape having a curvature radius similar to the radius of the ball 5, and the radial inner end To the radially outer end.
  • the radial groove 30 of the fixing member 6 is formed at (N + 1) locations when the wave number of the waved groove 31 of the output side rotator 7 is N wave, and rolls (N + 1) balls 5 one by one. Accommodate as possible.
  • Such a radial groove 30 of the fixing member 6 is such that when the eccentric disk cam 3 rotates once and the rocking body 4 is swung by one stroke, the ball 5 is divided according to the rocking amount of the rocking body 4. Can only roll in the radial direction.
  • the fixing member 6 reduces the contact area between the first side surface portion 24 and the rocking body 4 and reduces the contact resistance, so that the first side surface portion 24 and the ball support which are radially inward from the ball support protrusion 25 are used.
  • a plurality of contact relief recesses 32 and 33 are formed along the circumferential direction on the first side surface portion 24 radially outward from the protrusion 25.
  • the fixing member 6 has a cover mounting portion 34 formed on the radially outer end side thereof. And inside this cover attaching part 34, while the rocking
  • a positioning pin (not shown) that engages with the positioning pin engaging hole 48 of the cover 8 is press-fitted into the positioning pin mounting hole 35. Thereby, the cover 8 is fixed in a state of being positioned on the fixing member 6.
  • a thread portion (not shown) of an assembly bolt for fixing the cover 8 to the fixing member 6 is screwed into the assembly screw hole 36.
  • a shaft portion (not shown) of a fixing bolt for integrally attaching the cover 8 and the fixing member 6 to a fixed member (not shown) is inserted into the fixing bolt insertion hole 37.
  • a lubricant such as grease is appropriately accommodated in the contact relief recesses 32 and 33 of the fixing member 6.
  • the output-side rotator 7 includes a second side surface portion 40 that faces the other side surface 4 b of the both side surfaces 4 a and 4 b of the oscillating body 4, and the second side surface. It has a bearing cylindrical portion 41 formed integrally on the radially inner side of the portion 40, and an output shaft portion 42 formed integrally with the bearing cylindrical portion 41.
  • the output-side rotator 7 has an inner peripheral side of the bearing cylindrical portion 41 rotatably supported by the tip shaft portion 20 of the input shaft 2 via the third bearing 18, and an outer peripheral side of the bearing cylindrical portion 41 is
  • the output shaft 42 is concentrically rotated with the rotation center 2 a of the input shaft 2 by being rotatably supported by the cover 8 via a fourth bearing 43.
  • a corrugated groove 31 that engages with the ball 5 accommodated in the ball holding portion 23 of the oscillating body 4 is formed on the inner side surface 40 a of the second side surface portion 40 (side surface facing the other side surface 4 b of the oscillating body 4).
  • the output shaft portion 42 is formed in an annular shape (endless shape) around the rotation center (axial center) 42a.
  • the corrugated groove 31 guides the ball 5 in a wave shape along the circumferential direction of the second side surface portion 40.
  • the eccentric disk cam 3 rotates once, the swinging body 4 swings by one stroke, and the ball 5 reciprocates in the radial groove 30 of the fixed member 6 once in the radial direction. Then, the wave groove 31 is rotated by one wave.
  • the output shaft portion 42 is disposed such that the rotation center 42a is concentric with the rotation center of the input shaft 2, and is connected to a driven member (not shown). Further, the output-side rotator 7 reduces the contact area between the second side surface portion 40 and the rocking body 4 to reduce the contact resistance, so that the second side surface portion 40 on the radially inner side from the corrugated groove 31
  • a plurality of contact relief recesses 44 are formed along the circumferential direction, and a plurality of contact relief recesses 45 are formed along the circumferential direction on the second side surface portion 40 radially outward from the corrugated groove 31.
  • the contact relief recesses 44 and 45 appropriately contain a lubricant such as grease.
  • the cover 8 integrally includes a flange portion 46 and a cylindrical portion 47, and a space for rotatably accommodating the output-side rotator 7 is formed radially inward.
  • the flange portion 46 has a substantially rectangular shape as viewed from the front side, similar to the outer shape of the cover mounting portion 34 of the fixing member 6, and includes a positioning pin engaging hole 48, an assembly bolt mounting hole 50, and Fixing bolt insertion holes 51 are formed at each corner (four corners).
  • the positioning pin engaging hole 48, the assembly bolt mounting hole 50, and the fixing bolt insertion hole 51 of the cover 8 are in one-to-one correspondence with the positioning pin mounting hole 35, the assembly screw hole 36, and the fixing bolt insertion hole 37 of the fixing member 6.
  • a positioning pin (not shown) fixed to the fixing member 6 is inserted into the positioning pin engaging hole 48. Further, an assembly bolt (not shown) for fastening and fixing the fixing member 6 and the cover 8 is engaged with the assembly bolt mounting hole 50. Further, the fixing bolt insertion hole 51 is engaged with a fixing bolt (not shown) for attaching the cover 8 and the fixing member 6 together to an object to be attached which is not shown.
  • the flange portion 46 of the cover 8 is arranged such that a gap is formed between the side surface 46 a facing the output side rotating body 7 and the second side surface portion 40 of the output side rotating body 7.
  • cylindrical portion 47 of the cover 8 has an inner peripheral surface of the bearing fitting hole 52 fitted to an outer peripheral surface of the fourth bearing 43, and the cylindrical portion 41 for bearing of the output-side rotating body 7 through the fourth bearing 43. Is supported rotatably.
  • a bearing positioning projection 53 is formed at the axial end of the cylindrical portion 47 and is located on the side of the outer race of the fourth bearing 43. This bearing positioning projection 53 accommodates the fourth bearing 43 between the bearing positioning step 54 of the output side rotating body 7 and prevents the fourth bearing 43 from coming out between the output side rotating body 7 and the cover 8. It is preventing.
  • the oscillator 4 when the input shaft 2 and the eccentric disc cam 3 are integrated and rotated once, the oscillator 4 has an eccentric amount (e) of the eccentric disc cam 3.
  • the ball 5 accommodated in the ball holding portion 23 of the rocking body 4 reciprocates once in the radial groove 30 of the fixing member 6 by being swung by a double size (2e).
  • the output-side rotator 7 simply moves the ball 5 in the radial groove 30 of the fixing member 6 along the radial direction of the first side surface portion 24, so Is rotated by one wave.
  • the wave number of the corrugated groove 31 is N and the number of grooves of the radial groove 30 is (N + 1).
  • the body 7 rotates 1 / N in the opposite direction to the input shaft 2.
  • the wave number (N) of the corrugated groove 31 of the output side rotating body 7 is 51, and the radial groove 30 of the fixing member 6.
  • the number of grooves (N + 1) is 52. Therefore, the ball speed reducer 1 according to the present embodiment reduces the rotation of the input shaft 2 to 1/51 (1 / N) and transmits it to the output side rotating body 7.
  • the ball speed reducer 1 according to the present embodiment configured as described above is configured to form the corrugated groove 31 only in the second side surface portion 40 of the output-side rotator 7 facing the oscillator 4.
  • the conventional ball reducer 100 in which the corrugated grooves 111, 111, 112, 112 are respectively formed at four locations (see FIG. 14)
  • the number of processing steps can be reduced.
  • the oscillating body 4 and the output side rotator can be independently oscillated with respect to the fixed member 6 and the output side rotator 7. It is not necessary to provide a complicated mechanism (for example, the eccentric absorption mechanisms 113 and 113 of the ball speed reducer 100 according to the conventional example) for integrally rotating the motor 7 and the structure can be simplified and the number of processing steps can be reduced. Become.
  • the ball 5 is positioned at the intersection of the radial groove 30 and the corrugated groove 31, so that the ball 108 is the first corrugated of the eccentric rotating plate 104.
  • the conventional ball reducer 100 configured to simultaneously contact the groove wall of the groove 111 and the groove wall of the second corrugated groove 112 of the fixing member 107 (see FIG. 14), the radial groove 30 and the corrugated groove 31. This makes it easy to assemble the rocking body 4, the fixing member 6, the output side rotating body 7, and the like.
  • the adjustment of the gap amount between the flange portion 46 of the cover 8 and the second side surface portion 40 of the output-side rotator 7 is performed, for example, by the protrusion between the cover mounting portion 34 of the fixing member 6 and the flange portion 46 of the cover 8. This can be done by sandwiching a gap adjusting shim (not shown) between the contact surfaces. Ratcheting may also occur between adjacent radial grooves 30,30.
  • the ball speed reducer 1 is formed on the first side surface portion 24 of the fixing member 6 so that the ball support protrusion 25 protrudes toward the rocking body 4, and the ball holding portion 23 of the rocking body 4
  • the position where the ball 5 is held is located closer to the second side surface portion 40 of the output side rotating body 7 than the center in the plate thickness direction of the oscillating body 4 (than the intermediate position between both side surfaces 4a and 4b).
  • the ball speed reducer 1 according to the present embodiment can increase the depth of the corrugated groove 31 of the output-side rotator 7, and can reduce the occurrence of ratcheting during power transmission.
  • the contact relief recesses 32, 33, 44 for reducing the contact area by reducing the contact area with the rocking body 4 on the fixed member 6 and the output side rotating body 7 are provided. , 45 are formed in a plurality, the power can be transmitted efficiently.
  • the contact relief recesses 32, 33, 44, 45 of the oscillating body 4 are filled with grease, the fixed member 6, the output side rotating body 7, and the oscillating body 4 Since the viscous resistance of the grease acting during this period can be reduced, energy loss caused by the viscous resistance of the grease can be reduced, and power transmission can be performed efficiently.
  • the ball speed reducer 1 has a balance weight 17 fixed to the input shaft 2 and maintains the rotational balance of the input shaft when the rocking body 4 is swung by the eccentric disc cam 3. Therefore, it is possible to prevent vibrations and noises caused by imbalance in the rotation balance of the input shaft 2 and to extend the life of the first to fourth bearings.
  • the reduction ratio becomes 1 / N, and the ball speed reducer 100 of the conventional example shown in FIG.
  • the reduction ratio can be increased.
  • the wave number (N) of the corrugated groove 31 of the output side rotating body 7 is 51 waves
  • the number of grooves (N + 1) of the radial groove 30 of the fixing member 6 is 52 grooves
  • the number is 52, but the present invention is not limited to this.
  • the wave number (N) of the corrugated groove 31, the number of grooves (N + 1) of the radial groove 30, and the number of balls 5 are not limited to this. Is determined.
  • the balls 5 may be arranged to be smaller than the number of the radial grooves 30.
  • the wave number of the waveform groove 31 of the output side rotating body 7 is N.
  • the number of radial grooves 30 of the fixing member 6 is (N-1), and the number of balls 5 is (N-1).
  • the radial grooves 30 are arranged at equal intervals along the circumferential direction of the fixing member 6.
  • the balls 5 may be arranged to be smaller than the number of the radial grooves 30.
  • FIG. 7 is a diagram illustrating a third modification of the ball speed reducer 1 according to the present embodiment, and is a diagram illustrating a modification of the radial groove 30 of the fixing member 6.
  • the balls 5 may be arranged to be smaller than the number of the radial grooves 30.
  • the present modification is established when the number of grooves m is a natural number with respect to the wave number (N) of the waveform groove 31 of the output side rotator 7.
  • the ball speed reducer 1 using the fixing member 6 according to the present modified example has the number of balls 5 reduced by half. It becomes possible to reduce (it becomes possible to reduce in weight), and the product cost can be reduced.
  • the ball speed reducer 1 using the fixing member 6 according to the present modification can increase the ball 5 by the amount that the number of the balls 5 is reduced to half, and the depth of the corrugated groove 31 is increased. Therefore, the occurrence of ratcheting during power transmission can be reduced, and the torque that can be transmitted can be increased.
  • FIG. 8 is a view showing a modification of the rocking body 4 of the ball speed reducer 1 according to the first embodiment.
  • FIG. 8A is a longitudinal sectional view of the oscillating body 55 according to this modification (a cross-sectional view of the oscillating body 55 cut along the line A9-A9 in FIG. 8B).
  • FIG. 8B is a front view of the oscillating body 55 according to this modification.
  • FIG. 8C is an enlarged view of the ball holding portion 56 of the rocking body 55.
  • the oscillating body 55 according to this modification has a structure in which the inner oscillating ring 21 and the outer oscillating ring 22 according to the first embodiment are integrally connected by a plurality of ribs connected in the radial direction. . That is, the rocking body 55 according to this modification has the same shape as the inner rocking ring portion 57 having the same shape as the inner rocking ring 21 according to the first embodiment and the outer rocking ring 22 according to the first embodiment.
  • the swinging body 55 is configured such that the outer rocking ring part 58 is rocked inward by connecting the outer peripheral side of the inner rocking ring part 57 and the inner peripheral side of the outer rocking ring part 58 with a plurality of ribs 60. It is located concentrically with the ring portion 57. A plurality of ribs 60 are formed at equal intervals along the outer peripheral surface 57 a of the inner rocking ring portion 57.
  • the ball holding portion 56 is a long hole formed along the circumferential direction, and is a semicircular portion 56a (both ends having the same dimensions as the radius R of the ball 5) that are in contact with the generatrix of the ball 5.
  • the distance L between the pair of semicircular portions 56a and 56a positioned so as to be larger than the dimension (2e) twice the eccentric amount (e) of the eccentric disc cam 3 is formed.
  • one of the side surfaces 55a of both side surfaces 55a and 55b is the first side surface portion 24 of the fixing member 6.
  • the other side surface 55b of the side surfaces 55a and 55b is disposed so as to oppose the second side surface portion 40 of the output side rotating body 7.
  • the swinging body 55 is not limited in movement (swinging) by the fixing member 6 and the output side rotating body 7, and is smoothly swung with respect to the fixing member 6 and the output side rotating body 7, and the first embodiment.
  • the ball reducer 1 using the oscillating body 55 according to this modification example is different from the ball reducer 1 according to the first embodiment in which the inner oscillating ring 21 and the outer oscillating ring 22 are separate from each other. Assembly work is facilitated. Further, the ball speed reducer 1 using the rocking body 55 according to the present modification has 26 balls 5 to be used, so that it is compared with the ball speed reducer 1 according to the first embodiment in which the number of balls 5 is 52. As a result, the overall weight can be reduced (the weight can be reduced), and the product cost can be reduced.
  • FIG. 9 is a view showing a modification of the wave groove 31 of the output side rotator 7.
  • the output-side rotator 7 according to this modification includes a first corrugated groove 61 formed in an annular shape around the rotation center 42 a, a first corrugated groove 61 concentric with the first corrugated groove 61, and a first corrugated groove 61.
  • An annular second corrugated groove 62 is formed on the radially outer side of the corrugated groove 61.
  • the wave number (N) is 51 waves
  • the first wave groove 61 and the second wave groove 62 are formed so that the amplitude of the wave becomes the same size as the eccentric amount (e) of the eccentric disc cam 3.
  • 26 ((N + 1) / 2) or 25 ((N ⁇ ) balls 5 rolling in the first corrugated groove 61 are arranged at equal intervals around the rotation center 42a of the output side rotating body 7 (circumferential direction). 1) / 2) It is accommodated in a radial groove (not shown) of the fixing member 6 so as to be arranged. Further, the ball 5 rolling in the second corrugated groove 62 is positioned so as to be shifted from the ball 5 in the first corrugated groove 61 by a half wave along the circumferential direction of the output side rotating body 7.
  • the ball speed reducer 1 in which the output-side rotator 7 according to this modification is used is an oscillating body (not shown) including an inner oscillating ring, an intermediate oscillating ring, and an outer oscillating ring, or an inner side.
  • An oscillating body (not shown) in which the oscillating ring, the intermediate ring, and the outer oscillating ring are connected in a radial direction with ribs is used.
  • the ball speed reducer 1 using the output-side rotator 7 according to this modification example is different from the ball speed reducer 1 according to the modification example 3 of the present embodiment in that the output torque fluctuations (from the output-side rotator body 7). (Variation in torque transmitted to the driven member) can be reduced.
  • the size of the ball 5 that rolls in the first corrugated groove 61 is not limited to the same size as the ball that rolls in the second corrugated groove 62. A ball smaller than the moving ball 5 may be used.
  • the ball 5 rolling in the second corrugated groove 62 is not limited to the case where the ball 5 in the first corrugated groove 61 is arranged so as to be shifted by a half wave in the circumferential direction.
  • the ball 5 may be arranged so as to be deviated by less than a half wave in the circumferential direction, or may be arranged so as to be deviated from the ball 5 in the first corrugated groove 61 by a half wave or more in the circumferential direction.
  • FIG. 10 is a longitudinal sectional view of the ball speed reducer 1 according to the second embodiment of the present invention.
  • the ball speed reducer 1 according to the present embodiment is similar to the ball speed reducer 1 according to the first embodiment in that an input shaft (input side rotating body) 2, an eccentric disc cam 3, The moving body 4, the plurality of balls 5, the fixing member 6, the output side rotating body 7, and the cover 8 are configured.
  • the corrugated groove 31 is formed in the fixed member 6, the radial groove 30 is formed in the output-side rotating body 7, and the swinging body 4 is reversed and used.
  • the ball speed reducer 1 according to the present embodiment the same components as those of the ball speed reducer 1 according to the first embodiment are denoted by the same reference numerals, and the description of the ball speed reducer 1 according to the first embodiment is duplicated. Description is omitted.
  • the fixing member 6 has an annular corrugated groove 31 formed on the first side surface portion 24 facing the one side surface 4 a of the both side surfaces 4 a and 4 b of the rocking body 4.
  • the corrugated groove 31 has the same shape as the corrugated groove 31 formed in the second side surface portion 40 of the output side rotating body 7 of the ball speed reducer 1 according to the first embodiment, and is formed in the ball holding portion 23 of the rocking body 4.
  • the accommodated ball 5 is guided in a wave shape along the circumferential direction of the first side surface portion 24.
  • the output-side rotator 7 is formed on the second side surface portion 40 in which the plurality of radial grooves 30 are opposed to the other side surface 4 b of the both side surfaces 4 a and 4 b of the rocking body 4.
  • the second side surface portion 40 is formed with a ball support projection 25 similar to the ball support projection 25 formed on the first side surface portion 24 of the fixing member 6 of the ball speed reducer 1 according to the first embodiment.
  • the ball support protrusion 25 is formed with a plurality of radial grooves 30 that engage with the balls 5 accommodated in the ball holding portion 23 of the rocking body 4 at equal intervals along the circumferential direction.
  • the radial groove 30 has the same shape as the radial groove 30 formed in the first side surface portion 24 of the fixing member 6 of the ball speed reducer 1 according to the first embodiment. Further, the number of the grooves in the radial groove 30 is N + 1 when the wave number of the corrugated groove 31 is N, similarly to the number of the radial grooves 30 of the ball reducer 1 according to the first embodiment.
  • the oscillator 4 when the input shaft 2 and the eccentric disc cam 3 are integrated and rotated once, the oscillator 4 has an eccentric amount (e) of the eccentric disc cam 3.
  • the output-side rotator 7 rotates 1 / (N + 1) in the same direction as the input shaft 2.
  • the ball speed reducer 1 according to the present embodiment configured as described above is configured to form the corrugated groove 31 only in the first side surface portion 24 of the fixing member 6 facing the oscillator 4, the corrugated groove Compared to the conventional ball speed reducer 100 in which 111, 111, 112, and 112 are formed at four locations, respectively (see FIG. 14), the number of processing steps can be reduced. Further, in the ball speed reducer 1 according to the present embodiment, the swinging body 4 can swing independently with respect to the output side rotating body 7 and the fixed member 6 in the same manner as the ball speed reducer 1 according to the first embodiment.
  • the wave number (N) of the corrugated groove 31 of the fixing member 6 is 51 waves
  • the number of grooves (N + 1) of the radial groove 30 of the output shaft rotating body 7 is 52 grooves
  • the number is 52, but the present invention is not limited to this.
  • the wave number (N) of the corrugated groove 31, the number of grooves (N + 1) of the radial groove 30, and the number of balls 5 are not limited to this. Is determined.
  • the balls 5 may be arranged to be smaller than the number of the radial grooves 30.
  • the wave number of the corrugated groove 31 of the fixed member 6 is N
  • the number of radial grooves 30 of the output shaft rotating body 7 is (N ⁇ 1)
  • the ball 5 When the number is (N ⁇ 1), when the input shaft rotates once, the output-side rotator 7 rotates 1 / (N ⁇ 1) in the opposite direction to the input shaft 2.
  • the balls 5 may be arranged to be smaller than the number of the radial grooves 30.
  • FIG. 13 is a diagram illustrating a third modification of the ball speed reducer 1 according to the present embodiment, and is a diagram illustrating a modification of the radial groove 30 of the output-side rotator 7.
  • the ball reducer 1 using the output-side rotator 7 according to this modified example has the number of balls 5 reduced by half, It became possible to reduce the weight (it became possible to reduce the weight), and it became possible to reduce the product cost.
  • the ball speed reducer 1 according to the present embodiment can be used in place of the rocking body 55 shown in FIG. 8 in place of the rocking body 4 shown in FIG. 8, as in the fourth modification of the first embodiment.
  • the effect similar to the modification 4 of 1st Embodiment can be acquired.
  • ball bearings are exemplified as the first to fourth bearings 11, 15, 18, and 43.
  • the present invention is not limited to this. Roller bearings, bushes, etc. may be used instead of ball bearings.
  • the whole (the input shaft 2, the oscillating bodies 4, 55, the fixing member 6, the output side rotating body 7, the cover 8, etc.) is formed of metal.
  • the ball speed reducer 1 according to the first and second embodiments reduces the weight when the entirety other than the first to fourth bearings 11, 15, 18, 43 and the ball 5 is formed of a synthetic resin material. Product price can be reduced.
  • the ball speed reducer 1 when the ball speed reducer 1 is formed entirely of a synthetic resin material other than the first to fourth bearings 11, 15, 18, 43 and the ball 5, the ball reducer 1 generates a contact sound with the ball. It is possible to reduce (can reduce noise) and suppress vibration.
  • the ball speed reducer 1 according to the first and second embodiments when the rocking body 4 is formed of a synthetic resin material, the ball 5 is pressed toward the inner rocking ring 21 by the elastic force of the outer rocking ring 22. It is possible to prevent the ball 5 from violating in the ball holding portion 23 (rattle).
  • the number of the radial grooves 30 and the balls 5 is (N + 1) / 2 or (N ⁇ 1) / 2.
  • the present invention is not limited to this, and the number (m) of the radial grooves 30 and the balls 5 may be (N + 1) / 3 or (N ⁇ 1) / 3.
  • the number (m) of the radial grooves 30 and the balls 5 is a natural number, (N + 1) is a multiple of 3, and (N ⁇ 1) is a multiple of 3.
  • the ball speed reducer 1 when the number (m) of the radial grooves 30 and the balls 5 is smaller than the wave number (N) of the corrugated grooves 31, the radial grooves 30 and the balls It is preferable to determine the number of radial grooves 30 and the number of balls 5 (m) so that 5 are positioned at equal intervals (equal) in the circumferential direction.
  • the ball speed reducer 1 configured in this way is capable of smooth power transmission without causing torque fluctuations due to uneven arrangement of the radial grooves 30 and the balls 5 in the circumferential direction during power transmission. Enable.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)
  • Retarders (AREA)

Abstract

【課題】構造が簡単で、加工工数が少ないボール減速機を提供する。 【解決手段】ボール減速機1は、入力側回転体2と一体に回動する偏心円板カム3と、偏心円板カム3の外周側に相対回動可能に嵌合されて揺動させられる揺動体4と、揺動体4のボール保持部23に転動可能に収容された複数のボール5と、揺動体4の一方の側面4aに対向する第1側面部24が形成された固定部材6と、を備えている。出力側回転体7は、揺動体4の他方の側面4bに対向する第2側面部40が形成されている。第1側面部24には、ボール5を径方向に沿って案内する径方向溝30が複数形成されている。第2側面部40には、ボール5を周方向に沿って波形状に案内する環状の波形溝31が形成されている。ボール5は、径方向溝30及び波形溝31に係合され、揺動体4が偏心円板カム3によって揺動させられると、径方向溝30及び波形溝31内を転動させられる。

Description

ボール減速機
 この発明は、回転を減速して伝達するために使用されるボール減速機に関するものである。
 従来から、ボール減速機は、歯車減速装置と比較して、小型で且つ大きな減速比を得られることから、各種機械(例えば、産業用ロボット、舵角可変式ステアリング装置等)の動力伝達部に使用されている。
 図14は、このような従来のボール減速機100を示す図である。なお、図14(a)は、従来のボール減速機100の縦断面図であり、図14(b)は、図14(a)のA13-A13線に沿って切断して示すボール減速機100の断面図である。
 図14に示すように、ボール減速機100は、入力軸101に形成された偏心カム102の外周側にベアリング103を介して偏心回転板104が取り付けられており、偏心回転板104が偏心カム102によって偏心駆動されるようになっている。また、このボール減速機100は、図示しない出力軸に連結される出力側回転体105が偏心回転板104の径方向内方側の両側にそれぞれ配置されており、入力軸101が出力側回転体105の内周側にベアリング106を介して相対回動できるように支持されている。また、このボール減速機100は、産業用ロボットの一部等に固定される固定部材107が偏心回転板104の径方向外方側の両側にボール108を介してそれぞれ配置されており、出力側回転体105が固定部材107の内周側にベアリング110を介して回動可能に支持されている。そして、偏心回転板104と固定部材107とに挟まれるボール108は、偏心回転板104の側面に形成された第1波形溝(外サイクロイド曲線で形作られる第1サイクロイド溝)111と固定部材107の内側面(偏心回転板104に対向する側面)に形成された第2波形溝(内サイクロイド曲線で形作られる第2サイクロイド溝)112とに転動できるように係合されており、偏心回転板104と固定部材107とを連結している。なお、第2波形溝112の波数は、第1波形溝111の波数よりも2波多くなるように形成されている。
 また、出力側回転体105は、偏心吸収機構113を介して偏心回転板104に連結されている。偏心吸収機構113は、偏心回転板104が出力側回転体105に対して偏心運動するのを可能にするものであり(偏心回転板104の偏心を吸収するものであり)、偏心回転板104の回転を出力側回転体105に伝達するようになっている。この偏心吸収機構113は、偏心回転板104と出力側回転体105との間に介装された複数のボール114と、このボール114を転動可能に収容する偏心回転板104の駆動環状溝115と、出力側回転体105の従動環状溝116とによって構成されている。駆動環状溝115及び従動環状溝116は、偏心カム102の偏心量を考慮して形状及び大きさが決定され、偏心回転板104が入力軸101の回転中心に対して偏心回転する際のボール114の動きを許容し、出力側回転体105がボール114を介して偏心回転板104と一体に回動するのを可能にしている(特許文献1参照)。
 このような従来のボール減速機100は、例えば、偏心回転板104の第1波形溝111の波数をN-2とし、固定部材107の第2波形溝112の波数をNとした場合、入力軸101が図示しない電動機等によって回転駆動されると、偏心回転板104が入力軸101の偏心カム102によって偏心駆動され、出力側回転体105が偏心吸収機構113を介して偏心回転板104と一体となって回転することになるが、出力側回転体105が入力軸101の1回転に対して-2/(N-2)回転(入力軸101の回転方向と逆の方向に2/(N-2)回転)することになる。すなわち、従来のボール減速機100は、偏心回転板104の第1波形溝111の波数をN-2とし、固定部材107の第2波形溝112の波数をNとした場合、減速比が2/(N-2)になる。
特開平5-10400号公報
 しかしながら、図14に示す従来のボール減速機100は、偏心回転板104の両側面にそれぞれ第1波形溝111が形成され、偏心回転板104の両側にそれぞれ配置された固定部材107の内側面に第2波形溝112が形成されているため、合計4側面(4箇所)に波形溝111,111,112,112を高精度に形成しなければならず、加工工数が嵩むという問題を有していた。
 また、図14に示す従来のボール減速機100は、偏心回転板104と出力側回転体105とを一体に回動させるため、出力側回転体105が偏心吸収機構113を介して偏心回転板104に連結されており、構造が複雑であると共に、加工工数が嵩むという問題を有していた。
 そこで、本発明は、構造が簡単で、加工工数が少ないボール減速機の提供を目的とする。
 本発明は、入力側回転体2の回転を出力側回転体7に減速して伝達するボール減速機1に関するものである。本発明のボール減速機1は、前記入力側回転体2と一体に回動する偏心円板カム3と、前記偏心円板カム3の外周側に相対回動可能に嵌合され、前記偏心円板カム3によって揺動させられる揺動体4(55)と、前記揺動体4(55)のボール保持部23(56)に収容された複数のボール5と、前記揺動体4(55)の両側面4a,4b(55a,55b)のうちの一方に対向して位置する第1側面部24を有し、被固定部材に固定される固定部材6と、を備えている。そして、前記揺動体4(55)のボール保持部23(56)は、前記揺動体4(55)と前記偏心円板カム3との相対回動方向に沿って形成され、前記複数のボール5を前記相対回動方向に沿って転動できるように収容している。また、前記出力側回転体7は、前記揺動体4(55)の両側面4a,4b(55a,55b)のうちの他方に対向して位置する第2側面部40を有し、回転中心としての軸心42aが前記入力側回転体2の回転中心2aと同軸上に位置するように配置されている。また、前記第1側面部24と前記第2側面部40のいずれか一方は、前記入力側回転体2の回転中心2aに直交する仮想平面において、前記回転中心2aから放射状に延びる方向を径方向とすると、前記ボール5を前記第1側面部24と前記第2側面部40のいずれか一方の前記径方向に沿って転動可能に案内する径方向溝30が前記入力軸側回転体2の回転中心2aの回りに複数形成されている。また、前記第1側面部24と前記第2側面部40のいずれか他方は、前記仮想平面において、前記回転中心2aを中心とする仮想円の外縁に沿った方向を周方向とすると、前記ボール5を前記第1側面部24と前記第2側面部40のいずれか他方の前記周方向に沿って波形状に案内する環状の波形溝31(61,62)が形成されている。そして、前記ボール5は、前記径方向溝30及び前記波形溝31(61,62)に転動可能に係合され、前記揺動体4(55)が前記偏心円板カム3によって揺動させられると、前記径方向溝30及び前記波形溝31(61,62)内を転動させられる。
 本発明に係るボール減速機は、揺動体に対向する出力側回転体と固定部材のうちの一方の側面部にのみ波形溝を形成するようになっているため、波形溝を4側面にそれぞれ形成する従来例と比較し、加工工数の削減が可能になる。また、本発明に係るボール減速機は、揺動体が出力側回転体及び固定部材に対して独立して揺動できるようになっているため、出力側回転体と揺動体とを一体に回動させるための複雑な機構が不要になり、構造が簡単化し、加工工数の削減が可能になる。
本発明の第1実施形態に係るボール減速機の縦断面図である。 本発明の第1実施形態に係るボール減速機の入力軸(入力側回転体)を示す図であり、図2(a)は図2(c)の矢印B1の方向から見た入力軸の正面図、図2(b)は図2(c)のA1-A1線に沿って切断して示す断面図、図2(c)は入力軸の側面図である。 本発明の第1実施形態に係るボール減速機の揺動体を示す図であり、図3(a)は揺動体の縦断面図(図3(b)のA2-A2線に沿って切断して示す断面図)、図3(b)は揺動体の正面図、図3(c)は内側揺動リングの縦断面図(図3(d)のA3-A3線に沿って切断して示す断面図、図3(d)は内側揺動リングの正面図、図3(e)は外側揺動リングの縦断面図(図3(f)のA4-A4線に沿って切断して示す断面図)である。 本発明の第1実施形態に係るボール減速機の固定部材を示す図であり、図4(a)は固定部材の正面図、図4(b)は固定部材の縦断面図(図4(a)のA5-A5線に沿って切断して示す固定部材の断面図)である。 本発明の第1実施形態に係るボール減速機の出力側回転体を示す図であり、図5(a)は出力軸部の先端面を示す図(図5(b)の矢印B2の方向から見た出力軸部の図)、図5(b)は出力側回転体の縦断面図(図5(c)のA6-A6線に沿って切断して示す断面図)、図5(c)は出力側回転体の正面図(図5(b)の矢印B3の方向から見た出力側回転体の図)である。 本発明の第1実施形態に係るボール減速機のカバーを示す図であり、図6(a)はカバーの正面図、図6(b)は図6(a)のA7-A7線に沿って切断して示すカバーの断面図である。 本発明の第1実施形態に係るボール減速機の固定部材の変形例を示す図であり、図7(a)は固定部材の正面図、図7(b)は固定部材の縦断面図(図7(a)のA8-A8線に沿って切断して示す固定部材の断面図)である。 本発明の第1実施形態に係るボール減速機の揺動体の変形例を示す図であり、図8(a)は揺動体の縦断面図(図8(b)のA9-A9線に沿って切断して示す揺動体の断面図)、図8(b)は揺動体の正面図、図8(c)は揺動体のボール保持部の拡大図である。 本発明の第1実施形態に係るボール減速機の出力側回転体に形成される波形溝の変形例を示す図である。 本発明の第2実施形態に係るボール減速機の縦断面図である。 本発明の第2実施形態に係るボール減速機の固定部材を示す図であり、図11(a)は固定部材の正面図、図11(b)は固定部材の縦断面図(図11(a)のA10-A10線に沿って切断して示す固定部材の断面図)である。 本発明の第2実施形態に係るボール減速機の出力側回転体を示す図であり、図12(a)は出力軸部の先端面を示す図(図12(b)の矢印B4の方向から見た出力軸部の図)、図12(b)は出力側回転体の縦断面図(図12(c)のA11-A11線に沿って切断して示す断面図)、図12(c)は出力側回転体の正面図(図12(b)の矢印B5の方向から見た図)である。 本発明の第2実施形態に係るボール減速機の出力側回転体の変形例を示す図であり、図13(a)は出力側回転体の縦断面図(図13(b)のA12-A12線に沿って切断して示す出力側回転体の断面図)、図13(b)は出力側回転体の正面図(図13(a)の矢印B6の方向から見た出力側回転体の図)である。 従来のボール減速機を示す図であり、図14(a)はボール減速機の縦断面図、図14(b)は図14(a)のA13-A13線に沿って切断して示す断面図である。
 以下、本発明の実施形態を図面に基づき詳述する。
 [第1実施形態]
 図1は、本発明の第1実施形態に係るボール減速機1の縦断面図である。この図1に示すように、本実施形態に係るボール減速機1は、入力軸(入力側回転体)2、偏心円板カム3、揺動体4、複数のボール(鋼球)5、固定部材6、出力側回転体7、及びカバー8等で構成されている。
 図1及び図2に示すように、入力軸2は、軸本体部10が第1ベアリング11を介して固定部材6によって回動自在に支持されており、図示しない電動機等によって回転駆動されるようになっている。この入力軸2は、軸本体部10よりも大径の鍔状部12が軸本体部10に隣接して形成され、第1ベアリング11の側面が鍔状部12の側面に突き当てられ、第1ベアリング11を固定部材6のボス部13の内周側突起14と鍔状部12との間に保持するようになっている。また、この入力軸2は、鍔状部12よりも軸先端側で且つ鍔状部12に隣接する位置に偏心円板カム3が形成されている。この偏心円板カム3は、その中心3aが入力軸2の回転中心2a(軸本体部10の回転中心10a)に対して偏心量(e)だけ偏心して位置する円板であり、入力軸2の回転中心2aの回りに入力軸2と一体となって偏心回転する。そして、偏心円板カム3の外周側には、揺動体4が第2ベアリング15を介して相対回動可能に取り付けられている。また、入力軸2は、偏心円板カム3の外周で且つ第2ベアリング15が取り付けられる箇所よりも軸先端側の位置に、バランスウェイト取付部16が形成されている。このバランスウェイト取付部16は、偏心円板カム3の外周側の1箇所を偏心円板カム3の中心3aを示す線に沿って切り欠くようにして形成された部分(図2(a)に示すようなDカット形状の部分)である。そして、このバランスウェイト取付部16にはバランスウェイト17が圧入固定され、このバランスウェイト17と鍔状部12との間には第2ベアリング15が位置決めされた状態で保持されている。また、入力軸2は、第3ベアリング18を取り付ける先端軸部20が形成されている。この先端軸部20は、その回転中心が軸本体部2の回転中心2aと同心であり、出力側回転体7を第3ベアリング18を介して回動可能に支持するようになっている。なお、以下の説明において、入力軸2の回転中心2aに直交する仮想平面を考えた場合、径方向とは、その仮想平面上を回転中心2aから放射状に延びる方向をいうものとする。また、入力軸2の回転中心2aに直交する仮想平面を考えた場合、周方向とは、入力軸2の回転中心2aを中心とする仮想円の外縁に沿った方向をいうものとする。
 図1及び図3に示すように、揺動体4は、偏心円板カム3によって揺動させられるようになっており、内側揺動リング21と外側揺動リング22とで構成されている。そして、この揺動体4は、内側揺動リング21と外側揺動リング22との間にボール保持部23が形成され、複数のボール5がボール保持部23に転動可能に収容されている。揺動体4のボール保持部23は、内側揺動リング21の外周面21aと外側揺動リング22の内周面22aとの間に形成された環状の空間(揺動体4と偏心円板カム3との相対回動方向に沿った空間)であり、外側揺動リング22が内側揺動リング21の外周面21aの周方向に沿って配置された複数のボール5によって転動可能に支持されている。また、この揺動体4は、後述する固定部材6の第1側面部24に形成されたボール支持突起25を収容し、固定部材6との相対回動を可能にするボール支持突起逃がし部26が形成されている。このボール支持突起逃がし部26は、内側揺動リング21の外周面21aを径方向内方側へ向けて斜めに切り欠くように形成された内側テーパ面21bと、外側揺動リング22の内周面22aを径方向外方側へ向けて斜めに切り欠くように形成された外側テーパ面22bとによって構成され、固定部材6の第1側面部24に向かって拡開するような断面形状になっている。そして、揺動体4の両側面4a,4bのうちの一方の側面4a側には、固定部材6の第1側面部24が対向するように配置されている。なお、内側揺動リング21は、第2ベアリング15が嵌合される軸受け面21cとボール5を支持する外周面21aとの間に、肉抜き穴27が周方向に沿って等間隔で複数形成されている。
 図1及び図4に示すように、固定部材6は、図示しない被固定部材(例えば、機械のフレーム、又はロボットのアーム)に固定され、入力軸2の軸本体部10をボス部13の内周面に取り付けられた第1ベアリング11によって回転自在に支持するようになっている。また、この固定部材6は、揺動体4の一方の側面4aに対向する第1側面部24の内側面24a(一方の側面4aに対向する側面)に、揺動体4のボール支持突起逃がし部26に接触しないように係合するボール支持突起25が形成されている。このボール支持突起25は、断面形状が先細の台形形状の環状体であり、ボス部13のベアリング取付穴28の中心28aと同心に形成された環状体である。そして、このボール支持突起25は、揺動体4のボール保持部23に収容されたボール5に係合する径方向溝30が周方向に沿って等間隔で複数形成されている。この径方向溝30は、ボール支持突起25を径方向に切り欠くように形成され、径方向に直交する断面形状がボール5の半径と同様の曲率半径の円弧形状であり、径方向内方端から径方向外方端まで同一の溝深さになっている。また、固定部材6の径方向溝30は、出力側回転体7の波形溝31の波数をN波とすると、(N+1)箇所に形成され、(N+1)個のボール5を1個ずつ転動可能に収容する。このような固定部材6の径方向溝30は、偏心円板カム3が1回転し、揺動体4が1ストローク分だけ揺動させられると、ボール5を揺動体4の揺動量に応じた分だけ径方向に転動させることができる。また、固定部材6は、第1側面部24と揺動体4との接触面積を減らして接触抵抗を低減するため、ボール支持突起25よりも径方向内方側の第1側面部24及びボール支持突起25よりも径方向外方側の第1側面部24に、接触逃がし凹所32,33が周方向に沿って複数形成されている。また、固定部材6は、その径方向外方端側にカバー取付部34が形成されている。そして、このカバー取付部34の内側には、揺動体4が揺動可能に収容されると共に、出力側回転体7が回動可能に収容されるようになっている。また、この固定部材6のカバー取付部34は、正面側から見た外形形状が略矩形形状になっており、位置決めピン取付穴35、組立用ねじ穴36、及び固定ボルト挿入穴37が各コーナー部(4隅)に形成されている。位置決めピン取付穴35には、カバー8の位置決めピン係合穴48に係合する位置決めピン(図示せず)が圧入されるようになっている。これにより、カバー8は、固定部材6に位置決めされた状態で固定される。また、組立用ねじ穴36には、カバー8を固定部材6に固定する組立用ボルトのねじ部(図示せず)が螺合されるようになっている。また、固定ボルト挿入穴37には、図外の被固定部材にカバー8及び固定部材6を一体として取り付けるための固定ボルトの軸部(図示せず)が挿入される。なお、固定部材6の接触逃がし凹所32,33には、グリース等の潤滑剤が適宜収容される。
 図1及び図5に示すように、出力側回転体7は、揺動体4の両側面4a,4bのうちの他方の側面4bに対向して位置する第2側面部40と、この第2側面部40の径方向内方側に一体に形成された軸受用円筒部41と、この軸受用円筒部41と一体に形成された出力軸部42と、を有している。この出力側回転体7は、軸受用円筒部41の内周側が第3ベアリング18を介して入力軸2の先端軸部20で回動自在に支持されると共に、軸受用円筒部41の外周側が第4ベアリング43を介してカバー8で回動自在に支持され、出力軸部42が入力軸2の回転中心2aと同心で回転するようになっている。そして、第2側面部40の内側面40a(揺動体4の他方の側面4bに対向する側面)には、揺動体4のボール保持部23に収容されたボール5に係合する波形溝31が出力軸部42の回転中心(軸心)42aを中心として環状(無端状)に形成されている。この波形溝31は、ボール5を第2側面部40の周方向に沿って波形状に案内するようになっている。そして、出力側回転体7は、偏心円板カム3が1回転し、揺動体4が1ストローク分だけ揺動させられ、ボール5が固定部材6の径方向溝30内を径方向に1往復すると、波形溝31の1波分だけ回動する。出力軸部42は、その回転中心42aが入力軸2の回転中心と同心となるように配置され、図示しない被駆動部材に接続される。また、出力側回転体7は、第2側面部40と揺動体4との接触面積を減らして接触抵抗を低減するため、波形溝31よりも径方向内方側の第2側面部40に、接触逃がし凹所44が周方向に沿って複数形成され、波形溝31よりも径方向外方側の第2側面部40に、接触逃がし凹所45が周方向に沿って複数形成されている。なお、この接触逃がし凹所44,45には、グリース等の潤滑剤が適宜収容される。
 図1及び図6に示すように、カバー8は、フランジ部46と円筒部47とを一体に有しており、径方向内方に出力側回転体7を回動可能に収容する空間が形成されている。フランジ部46は、正面側から見た外形形状が固定部材6のカバー取付部34の外形形状と同様の略矩形形状になっており、位置決めピン係合穴48、組立用ボルト取付穴50、及び固定ボルト挿入穴51が各コーナー部(4隅)に形成されている。このカバー8の位置決めピン係合穴48、組立用ボルト取付穴50、固定ボルト挿入穴51は、固定部材6の位置決めピン取付穴35、組立用ねじ穴36、及び固定ボルト挿入穴37に一対一で対応するように形成されている。そして、位置決めピン係合穴48には、固定部材6に固定された位置決めピン(図示せず)が挿入される。また、組立用ボルト取付穴50には、固定部材6とカバー8とを締め付け固定する組立用ボルト(図示せず)が係合される。また、固定ボルト挿入穴51には、図外の被取付物にカバー8及び固定部材6を一体として取り付けるための固定ボルト(図示せず)が係合される。カバー8のフランジ部46は、出力側回転体7に対向する側面46aが出力側回転体7の第2側面部40との間に隙間が生じるように配置されている。また、カバー8の円筒部47は、軸受嵌合穴52の内周面が第4ベアリング43の外周面に嵌合され、第4ベアリング43を介して出力側回転体7の軸受用円筒部41を回転自在に支持している。また、円筒部47の軸方向端部には、第4ベアリング43のアウターレースの側面側に位置するベアリング位置決め突起53が形成されている。このベアリング位置決め突起53は、出力側回転体7のベアリング位置決め段部54との間に第4ベアリング43を収容し、第4ベアリング43が出力側回転体7とカバー8との間から抜け出すのを防止している。
 以上のような本実施形態に係るボール減速機1は、入力軸2と偏心円板カム3とが一体になって1回転すると、揺動体4が偏心円板カム3の偏心量(e)の2倍の寸法(2e)だけ揺動させられ、揺動体4のボール保持部23に収容されたボール5が固定部材6の径方向溝30内を1往復する。この際、出力側回転体7は、ボール5が固定部材6の径方向溝30内を第1側面部24の径方向に沿って移動するだけであるため、固定部材6に対して波形溝31の1波分だけ回動させられる。したがって、本実施形態に係るボール減速機1は、波形溝31の波数がNであり、径方向溝30の溝数が(N+1)であるため、入力軸2の1回転に対し、出力側回転体7が入力軸2と逆方向へ1/N回転することになる。なお、本実施形態に係るボール減速機1は、図4及び図5に示すように、出力側回転体7の波形溝31の波数(N)が51であり、固定部材6の径方向溝30の溝数(N+1)が52である場合を例示している。したがって、本実施形態に係るボール減速機1は、入力軸2の回転を1/51(1/N)に減速して出力側回転体7に伝達する。
 以上のように構成された本実施形態に係るボール減速機1は、揺動体4に対向する出力側回転体7の第2側面部40にのみ波形溝31を形成するようになっているため、波形溝111,111,112,112を4箇所にそれぞれ形成する従来例のボール減速機100と比較し(図14参照)、加工工数の削減が可能になる。また、本実施形態に係るボール減速機1は、揺動体4が固定部材6及び出力側回転体7に対して独立して揺動できるようになっているため、揺動体4と出力側回転体7とを一体に回動させるための複雑な機構(例えば、従来例に係るボール減速機100の偏心吸収機構113,113)を設ける必要がなく、構造が簡単化し、加工工数の削減が可能になる。
 また、本実施形態に係るボール減速機1は、径方向溝30と波形溝31との交差する箇所にボール5が位置するようになっているため、ボール108が偏心回転板104の第1波形溝111の溝壁と固定部材107の第2波形溝112の溝壁に同時に接触するように構成された従来のボール減速機100と比較し(図14参照)、径方向溝30及び波形溝31の加工が容易になると共に、揺動体4、固定部材6、及び出力側回転体7等の組立作業が容易になる。
 また、本実施形態に係るボール減速機1は、カバー8のフランジ部46と出力側回転体7の第2側面部40との間に隙間が設けられているため、出力側回転体7の回転抵抗を減らすことができ、動力伝達効率を向上させることができると共に、カバー8のフランジ部46と出力側回転体7の第2側面部40との間の隙間量を調整することにより、出力側回転体7の第2側面部40が固定部材6から離れる方向へ変形するのをカバー8のフランジ部46で抑えることができ、波形溝31内のボール5が波形溝31に沿った動きをせずに隣り合う波の一方の溝から他方の溝に飛び越えて移動することによって発生するラチェッティングを防止することができる。なお、カバー8のフランジ部46と出力側回転体7の第2側面部40との間の隙間量の調整は、例えば、固定部材6のカバー取付部34とカバー8のフランジ部46との突き当て面に隙間調整用のシム(図示せず)を挟むことによって行うことができる。また、ラチェッティングは、隣り合う径方向溝30,30間においても発生する可能性がある。
 また、本実施形態に係るボール減速機1は、ボール支持突起25が揺動体4側へ向けて出っ張るように固定部材6の第1側面部24に形成され、揺動体4のボール保持部23によってボール5を保持する位置が揺動体4の板厚方向の中央よりも(両側面4a,4b間の中間位置よりも)出力側回転体7の第2側面部40寄りに位置している。その結果、本実施形態に係るボール減速機1は、出力側回転体7の波形溝31の溝深さを深くすることができ、動力伝達時におけるラチェッティングの発生を低減できる。
 また、本実施形態に係るボール減速機1は、固定部材6及び出力側回転体7に、揺動体4との接触面積を減らして接触抵抗を低減するための接触逃がし凹所32,33,44,45が複数形成されているため、動力伝達を効率的に行うことができる。なお、本実施形態に係るボール減速機1は、揺動体4の接触逃がし凹所32,33,44,45内にグリースを充填した場合、固定部材6及び出力側回転体7と揺動体4との間に作用するグリースの粘性抵抗を低減できるため、グリースの粘性抵抗に起因するエネルギーロスを低減でき、動力伝達を効率的に行うことができる。
 また、本実施形態に係るボール減速機1は、入力軸2にバランスウェイト17を固定し、偏心円板カム3で揺動体4を揺動させる際の入力軸の回転バランスを保つようになっているため、入力軸2の回転バランスの不釣り合いから生じる振動や騒音の発生を防止でき、第1乃至第4ベアリングの寿命を延ばすことができる。
 また、本実施形態に係るボール減速機1は、出力側回転体7の波形溝31の波数がNの場合、減速比が1/Nになり、図14に示した従来例のボール減速機100よりも減速比を大きくすることができる。
  (第1実施形態の変形例1)
 本実施形態に係るボール減速機1は、出力側回転体7の波形溝31の波数(N)が51波、固定部材6の径方向溝30の溝数(N+1)が52溝、ボール5の数が52個の場合を例示しているが、これに限られず、求められる減速比に応じて波形溝31の波数(N)、径方向溝30の溝数(N+1)、及びボール5の個数が決定される。なお、ボール5は、ボール減速機1の円滑な回転伝達を損なわない限り、径方向溝30の溝数よりも少なく配置するようにしてもよい。
  (第1実施形態の変形例2)
 また、本実施形態に係るボール減速機1は、減速比を変えずに出力軸回転体7を入力軸2と同一方向に回転させる場合、出力側回転体7の波形溝31の波数をNとすると、固定部材6の径方向溝30の溝数を(N-1)とし、ボール5の個数を(N-1)とする。そして、径方向溝30は、固定部材6の周方向に沿って等間隔で配置される。なお、ボール5は、ボール減速機1の円滑な回転伝達を損なわない限り、径方向溝30の溝数よりも少なく配置するようにしてもよい。
  (第1実施形態の変形例3)
 図7は、本実施形態に係るボール減速機1の変形例3を示す図であり、固定部材6の径方向溝30の変形例を示す図である。この図7に示すように、固定部材6の径方向溝30は、出力側回転体7の波形溝31の波数(N)が51波である場合、溝数(m)を(N+1)/2=26としてもよい。そして、これら径方向溝30に収容されるボール5の個数(m)は、(N+1)/2=26としてもよい。なお、ボール5は、ボール減速機1の円滑な回転伝達を損なわない限り、径方向溝30の溝数よりも少なく配置するようにしてもよい。また、本変形例は、出力側回転体7の波形溝31の波数(N)に対し、溝数mが自然数の場合に成立する。また、固定部材6の径方向溝30は、出力側回転体7の波形溝31の波数(N)が51波である場合、溝数(m)を(N-1)/2=25としてもよい。そして、これら径方向溝30に収容されるボール5の個数(m)は、(N-1)/2=25としてもよい。
 このような本変形例に係る固定部材6を使用したボール減速機1は、第1実施形態に係るボール減速機1と比較し、ボール5の数を半分に減らしてあるため、全体の重量を軽減することが可能になり(軽量化することが可能になり)、製品コストの削減が可能になる。また、本変形例に係る固定部材6を使用したボール減速機1は、ボール5の数を半分に減らした分だけ、ボール5を大きくすることができ、波形溝31の溝深さを深くすることができるため、動力伝達時におけるラチェッティングの発生を減少させ、伝達可能なトルクを大きくすることができる。
  (第1実施形態の変形例4)
 図8は、第1実施形態に係るボール減速機1の揺動体4の変形例を示す図である。なお、図8(a)は、本変形例に係る揺動体55の縦断面図(図8(b)のA9-A9線に沿って切断して示す揺動体55の断面図)である。また、図8(b)は、本変形例に係る揺動体55の正面図である。また、図8(c)は、揺動体55のボール保持部56の拡大図である。
 本変形例に係る揺動体55は、第1実施形態に係る内側揺動リング21と外側揺動リング22とが複数のリブで径方向に接続されて一体化されたような構造になっている。すなわち、本変形例に係る揺動体55は、第1実施形態に係る内側揺動リング21と同一形状の内側揺動リング部57と、第1実施形態に係る外側揺動リング22と同一形状の外側揺動リング部58と、これら内側揺動リング部57と外側揺動リング部58とを接続して一体化する複数のリブ60と、隣り合うリブ60,60間に形成されたボール保持部56と、を有している。そして、揺動体55は、内側揺動リング部57の外周側と外側揺動リング部58の内周側とが複数のリブ60で接続されることにより、外側揺動リング部58が内側揺動リング部57と同心に位置している。リブ60は、内側揺動リング部57の外周面57aに沿って等間隔で複数形成されている。ボール保持部56は、周方向に沿って形成された長穴であり、両端がボール5の母線と接するような(ボール5の半径Rと同一寸法の)半円形状部分56aであり、この対向するように位置する一対の半円形状部分56a,56a間の間隔Lが偏心円板カム3の偏心量(e)の2倍の寸法(2e)よりも大きくなるように形成されている。このように形成された揺動体55は、第1実施形態に係る揺動体4に代えて使用された場合、両側面55a,55bのうちの一方の側面55aが固定部材6の第1側面部24に対向するように配置され、両側面55a,55bのうちの他方の側面55bが出力側回転体7の第2側面部40に対向するように配置される。そして、揺動体55は、固定部材6及び出力側回転体7によって動き(揺動)が制限されず、固定部材6及び出力側回転体7に対して円滑に揺動させられ、第1実施形態に係る揺動体4と同様に機能する。なお、本変形例に係る揺動体55は、出力側回転体7の波形溝31の波数Nを51とすると、ボール保持部56である長穴が内側揺動リング部57の外周面57aに沿って等間隔で26箇所形成され、各ボール保持部56内にボール5がそれぞれ1個ずつ転動可能に収容される。
 このような本変形例に係る揺動体55を使用したボール減速機1は、内側揺動リング21と外側揺動リング22とが別体の第1実施形態に係るボール減速機1と比較し、組立作業が容易化する。また、本変形例に係る揺動体55を使用したボール減速機1は、使用するボール5の数が26であるため、ボール5の数が52の第1実施形態に係るボール減速機1と比較し、全体の重量を軽減することが可能になり(軽量化することが可能になり)、製品コストの削減が可能になる。
  (第1実施形態の変形例5)
 図9は、出力側回転体7の波形溝31の変形例を示す図である。この図9に示すように、本変形例に係る出力側回転体7は、回転中心42aの回りに環状に形成された第1波形溝61と、この第1波形溝61と同心で且つ第1波形溝61よりも径方向外方側に位置する環状の第2波形溝62とが形成されている。第1波形溝61と第2波形溝62は、波数(N)が51波の場合、波の振幅が偏心円板カム3の偏心量(e)と同寸法になるように形成されている。そして、第1波形溝61内を転動するボール5は、出力側回転体7の回転中心42aの回り(周方向)に等間隔で26((N+1)/2)個又は25((N-1)/2)個配置されるように、固定部材6の図示しない径方向溝内に収容される。また、第2波形溝62内を転動するボール5は、第1波形溝61内のボール5に対し、出力側回転体7の周方向に沿って半波分だけずれて位置するように、出力側回転体7の回転中心42aの回り(周方向)に等間隔で26((N+1)/2)個又は25((N-1)/2)個配置され、固定部材6の図示しない径方向溝内に収容される。なお、本変形例に係る出力側回転体7が使用されるボール減速機1は、内側揺動リング、中間揺動リング、及び外側揺動リングからなる揺動体(図示せず)か、又は内側揺動リング、中間リング、及び外側揺動リングをリブで径方向に接続して一体化した揺動体(図示せず)が使用される。
 このような本変形例に係る出力側回転体7を使用したボール減速機1は、本実施形態の変形例3に係るボール減速機1と比較して、出力トルク変動(出力側回転体7から被駆動部材に伝達されるトルクの変動)を小さくすることができる。なお、第1波形溝61内を転動するボール5の大きさは、第2波形溝62内を転動するボールの大きさと同一にする場合に限定されず、第2波形溝62内を転動するボール5よりも小さいものを使用してもよい。また、第2波形溝62内を転動するボール5は、第1波形溝61内のボール5から周方向に半波分ずれて配置される場合に限定されず、第1波形溝61内のボール5から周方向に半波未満ずれて配置されるか、又は第1波形溝61内のボール5から周方向に半波以上ずれて配置されるようにしてもよい。
 [第2実施形態]
 図10は、本発明の第2実施形態に係るボール減速機1の縦断面図である。この図10に示すように、本実施形態に係るボール減速機1は、第1実施形態に係るボール減速機1と同様に、入力軸(入力側回転体)2、偏心円板カム3、揺動体4、複数のボール5、固定部材6、出力側回転体7、及びカバー8等で構成されている。このような本実施形態に係るボール減速機1は、固定部材6に波形溝31が形成され、出力側回転体7に径方向溝30が形成され、揺動体4が表裏反転させて使用される点を除き、第1実施形態に係るボール減速機1と同様に構成されている。したがって、本実施形態に係るボール減速機1は、第1実施形態に係るボール減速機1と同様の構成部分に同一符号を付し、第1実施形態に係るボール減速機1の説明と重複する説明を省略する。
 図10及び図11に示すように、固定部材6は、環状の波形溝31が揺動体4の両側面4a,4bのうちの一方の側面4aに対向する第1側面部24に形成されている。この波形溝31は、第1実施形態に係るボール減速機1の出力側回転体7の第2側面部40に形成された波形溝31と同一形状であり、揺動体4のボール保持部23に収容されたボール5を第1側面部24の周方向に沿って波形状に案内するようになっている。
 図10及び図12に示すように、出力側回転体7は、複数の径方向溝30が揺動体4の両側面4a,4bのうちの他方の側面4bに対向する第2側面部40に形成されている。この第2側面部40には、第1実施形態に係るボール減速機1の固定部材6の第1側面部24に形成されたボール支持突起25と同様のボール支持突起25が形成されている。そして、このボール支持突起25には、揺動体4のボール保持部23に収容されたボール5に係合する径方向溝30が周方向に沿って等間隔で複数形成されている。この径方向溝30は、第1実施形態に係るボール減速機1の固定部材6の第1側面部24に形成された径方向溝30と同様の形状になっている。また、この径方向溝30の溝数は、第1実施形態に係るボール減速機1の径方向溝30の溝数と同様に、波形溝31の波数がNの場合、N+1になっている。
 以上のような本実施形態に係るボール減速機1は、入力軸2と偏心円板カム3とが一体になって1回転すると、揺動体4が偏心円板カム3の偏心量(e)の2倍の寸法(2e)だけ揺動させられ、揺動体4のボール保持部23に収容されたボール5が出力側回転体7の径方向溝30内を移動させられると共に、固定部材6の波形溝31内を移動させられる。その結果、本実施形態に係るボール減速機1は、波形溝31の波数がNであり、径方向溝の溝数がN+1であり、ボール5の個数がN+1である場合、入力軸2の1回転に対し、出力側回転体7が入力軸2と同一方向に1/(N+1)回転することになる。
 以上のように構成された本実施形態に係るボール減速機1は、揺動体4に対向する固定部材6の第1側面部24にのみ波形溝31を形成するようになっているため、波形溝111,111,112,112を4箇所にそれぞれ形成する従来例のボール減速機100と比較し(図14参照)、加工工数の削減が可能になる。また、本実施形態に係るボール減速機1は、第1実施形態に係るボール減速機1と同様に、揺動体4が出力側回転体7及び固定部材6に対して独立して揺動できるようになっているため、揺動体4と出力側回転体7とを一体に回動させるための複雑な機構(例えば、従来例のボール減速機100の偏心吸収機構113,113)を設ける必要がなく、構造が簡単化し、加工工数の削減が可能になる。
  (第2実施形態の変形例1)
 本実施形態に係るボール減速機1は、固定部材6の波形溝31の波数(N)が51波、出力軸回転体7の径方向溝30の溝数(N+1)が52溝、ボール5の数が52個の場合を例示しているが、これに限られず、求められる減速比に応じて波形溝31の波数(N)、径方向溝30の溝数(N+1)、及びボール5の個数が決定される。なお、ボール5は、ボール減速機1の円滑な回転伝達を損なわない限り、径方向溝30の溝数よりも少なく配置するようにしてもよい。
  (第2実施形態の変形例2)
 また、本実施形態に係るボール減速機1は、固定部材6の波形溝31の波数をNとし、出力軸回転体7の径方向溝30の溝数を(N-1)とし、ボール5の個数を(N-1)とした場合、入力軸が1回転すると、出力側回転体7が入力軸2と逆方向に1/(N-1)回転する。なお、ボール5は、ボール減速機1の円滑な回転伝達を損なわない限り、径方向溝30の溝数よりも少なく配置するようにしてもよい。
  (第2実施形態の変形例3)
 図13は、本実施形態に係るボール減速機1の変形例3を示す図であり、出力側回転体7の径方向溝30の変形例を示す図である。この図13に示すように、出力側回転体7の径方向溝30は、固定部材6の波形溝31の波数(N)が51波である場合、溝数(m)を(N+1)/2=26としてもよい。そして、これら径方向溝31に収容されるボール5の個数(m)は、(N+1)/2=26としてもよい。なお、ボール5は、ボール減速機1の円滑な回転伝達を損なわない限り、径方向溝30の溝数よりも少なく配置するようにしてもよい。また、本変形例は、固定部材6の波形溝31の波数(N)に対し、溝数mが自然数の場合に成立する。また、出力側回転体7の径方向溝30は、固定部材6の波形溝31の波数(N)が51波である場合、溝数(m)を(N-1)/2=25としてもよい。そして、これら径方向溝30に収容されるボール5の個数(m)は、(N-1)/2=25としてもよい。
 このような本変形例に係る出力側回転体7を使用したボール減速機1は、第2実施形態に係るボール減速機1と比較し、ボール5の数を半分に減らしてあるため、全体の重量を軽減することが可能になり(軽量化することが可能になり)、製品コストの削減が可能になった。
  (第2実施形態の変形例4)
 また、本実施形態に係るボール減速機1は、第1実施形態の変形例4と同様に、図3に示した揺動体4を図8に示した揺動体55に代えて使用することができ、第1実施形態の変形例4と同様の効果を得ることができる。
  (第2実施形態の変形例5)
 また、本実施形態に係るボール減速機1は、第1実施形態の変形例5と同様に、図11に示した固定部材6の波形溝31を図9に示した第1波形溝61及び第2波形溝62に変更し、第1波形溝61内に等間隔で26個(又は25個)位置するボール5を出力側回転体7に形成した径方向溝30内に収容し、第2波形溝62内に等間隔で26個(又は25個)位置するボール5を出力側回転体7に形成した径方向溝30内に収容し、径方向溝30内のボール5を揺動体4で径方向へ転動させるようにしてもよい。このような本変形例によれば、第1実施形態の変形例5と同様の効果を得ることができる。
 [第1及び第2実施形態の変形例]
 第1及び第2実施形態に係るボール減速機1は、図1及び図10に示すように、第1乃至第4ベアリング11,15,18,43としてボールベアリングを例示したが、これに限られず、ローラベアリング、ブッシュ等をボールベアリングに代えて使用してもよい。
 また、第1及び第2実施形態に係るボール減速機1は、全体(入力軸2、揺動体4,55、固定部材6、出力側回転体7、及びカバー8等)を金属で形成する場合、全体の一部を合成樹脂材料で形成する場合、又は第1乃至第4ベアリング11,15,18,43及びボール5以外の全体を合成樹脂材料で形成する場合が考えられる。特に、第1及び第2実施形態に係るボール減速機1は、第1乃至第4ベアリング11,15,18,43及びボール5以外の全体を合成樹脂材料で形成する場合、重量を軽量化することができ、製品価格を低廉化することができる。また、第1及び第2実施形態にボール減速機1は、第1乃至第4ベアリング11,15,18,43及びボール5以外の全体を合成樹脂材料で形成する場合、ボールとの接触音を低減できる(静音化できる)と共に、振動を抑えることが可能になる。また、第1及び第2実施形態に係るボール減速機1は、揺動体4を合成樹脂材料で形成した場合、ボール5を外側揺動リング22の弾性力で内側揺動リング21側へ押圧し、ボール5がボール保持部23内で暴れる(ガタツキが生じる)のを防止できる。
 また、第1及び第2実施形態に係るボール減速機1は、波形溝31の波数がNの場合、径方向溝30及びボール5の数を(N+1)/2又は(N-1)/2にする変形例を適用することが可能であるが、これに限られず、径方向溝30及びボール5の数(m)を(N+1)/3又は(N-1)/3にしてもよい。この場合、径方向溝30及びボール5の数(m)は、自然数になり、(N+1)が3の倍数になり、(N-1)が3の倍数になる。
 また、第1及び第2実施形態に係るボール減速機1は、径方向溝30及びボール5の数(m)を波形溝31の波数(N)よりも少なくする場合、径方向溝30及びボール5が周方向に等間隔(均等)に位置するように、径方向溝30及びボール5の数(m)を決定することが好ましい。このように構成されたボール減速機1は、動力伝達時において、径方向溝30及びボール5が周方向に不均等に配置されることに起因するトルク変動を生じることがなく、円滑な動力伝達を可能にする。
 1……ボール減速機、2……入力軸(入力側回転体)、2a……回転中心、3……偏心円板カム、4,55……揺動体、4a,4b,55a,55b……側面、5……ボール、6……固定部材、7……出力側回転体、23,56……ボール保持部、24……第1側面部、30……径方向溝、31,61,62……波形溝、40……第2側面部、42a……回転中心(軸心)

Claims (10)

  1.  入力側回転体の回転を出力側回転体に減速して伝達するボール減速機において、
     前記入力側回転体と一体に回動する偏心円板カムと、
     前記偏心円板カムの外周側に相対回動可能に嵌合され、前記偏心円板カムによって揺動させられる揺動体と、
     前記揺動体のボール保持部に収容された複数のボールと、
     前記揺動体の両側面のうちの一方に対向して位置する第1側面部を有し、被固定部材に固定される固定部材と、を備え、
     前記揺動体のボール保持部は、前記揺動体と前記偏心円板カムとの相対回動方向に沿って形成され、前記複数のボールを前記相対回動方向に沿って転動できるように収容し、
     前記出力側回転体は、前記揺動体の両側面のうちの他方に対向して位置する第2側面部を有し、回転中心としての軸心が前記入力側回転体の回転中心と同軸上に位置するように配置され、
     前記第1側面部と前記第2側面部のいずれか一方は、前記入力側回転体の回転中心に直交する仮想平面において、前記回転中心から放射状に延びる方向を径方向とすると、前記ボールを前記第1側面部と前記第2側面部のいずれか一方の前記径方向に沿って転動可能に案内する径方向溝が前記入力軸側回転体の回転中心の回りに複数形成され、
     前記第1側面部と前記第2側面部のいずれか他方は、前記仮想平面において、前記回転中心を中心とする仮想円の外縁に沿った方向を周方向とすると、前記ボールを前記第1側面部と前記第2側面部のいずれか他方の前記周方向に沿って波形状に案内する環状の波形溝が形成され、
     前記ボールは、前記径方向溝及び前記波形溝に転動可能に係合され、前記揺動体が前記偏心円板カムによって揺動させられると、前記径方向溝及び前記波形溝内を転動させられる、
     ことを特徴とするボール減速機。
  2.  前記第1側面部には、前記径方向溝が複数形成され、
     前記第2側面部には、前記波形溝が形成され、
     前記波形溝の波数をNとし、前記径方向溝の溝数をN+1とした場合、
     前記出力側回転体は、前記入力側回転体の回転の1/Nだけ前記入力側回転体の回転方向と逆の方向に回転させられる、
     ことを特徴とする請求項1に記載のボール減速機。
  3.  前記第1側面部には、前記径方向溝が複数形成され、
     前記第2側面部には、前記波形溝が形成され、
     前記波形溝の波数をNとし、前記径方向溝の溝数をN-1とした場合、
     前記出力側回転体は、前記入力側回転体の回転の1/Nだけ前記入力側回転体の回転方向と同一方向に回転させられる、
     ことを特徴とする請求項1に記載のボール減速機。
  4.  前記第1側面部には、前記波形溝が形成され、
     前記第2側面部には、前記径方向溝が複数形成され、
     前記波形溝の波数をNとし、前記径方向溝の溝数をN+1とした場合、
     前記出力側回転体は、前記入力側回転体の回転の1/(N+1)だけ前記入力側回転体の回転方向と同一方向に回転させられる、
     ことを特徴とする請求項1に記載のボール減速機。
  5.  前記第1側面部には、前記波形溝が形成され、
     前記第2側面部には、前記径方向溝が形成され、
     前記波形溝の波数をNとし、前記径方向溝の溝数をN-1とした場合、
     前記出力側回転体は、前記入力側回転体の回転の1/(N-1)だけ前記入力側回転体の回転方向と逆の方向に回転させられる、
     ことを特徴とする請求項1に記載のボール減速機。
  6.  前記揺動体は、前記偏心円板カムの外周側に位置する内側揺動リングと、この内側揺動リングと同心で且つ前記内側揺動リングの径方向外方側に環状の隙間をもって配置される外側揺動リングと、を有し、
     前記内側揺動リングと前記外側揺動リングとの間の前記環状の隙間が前記ボールを転動可能に収容する前記ボール保持部である、
     ことを特徴とする請求項1乃至5のいずれかに記載のボール減速機。
  7.  前記揺動体は、前記偏心円板カムの外周側に位置する内側揺動リング部と、この内側揺動リング部の外周に等間隔で複数形成されたリブと、前記リブの先端に内周側が接続された外側揺動リング部と、を有し、
     前記内側揺動リング部と前記外側揺動リング部とが同心に位置し、
     前記リブと前記リブの間には、前記ボールを収容でき、且つ前記ボールを前記内側揺動リング部の外周に沿って転動させるボール保持部が形成された、
     ことを特徴とする請求項1乃至5のいずれかに記載のボール減速機。
  8.  前記波形溝は、径方向内方側の第1波形溝と、この第1波形溝の径方向外方側に位置する第2波形溝と、を有し、
     前記第1波形溝及び前記第2波形溝の波数をNとすると、前記第1波形溝と交差する前記径方向溝の溝数が(N+1)/2であり、前記第2波形溝と交差する前記径方向溝の溝数が(N+1)/2であり、
     前記第1波形溝と前記径方向溝とが交差する箇所、及び前記第2波形溝と前記径方向溝とが交差する箇所には、前記ボールが位置する、
     ことを特徴とする請求項1に記載のボール減速機。
  9.  前記波形溝は、径方向内方側の第1波形溝と、この第1波形溝の径方向外方側に位置する第2波形溝と、を有し、
     前記第1波形溝及び前記第2波形溝の波数をNとすると、前記第1波形溝と交差する前記径方向溝の溝数が(N-1)/2であり、前記第2波形溝と交差する前記径方向溝の溝数が(N-1)/2であり、
     前記第1波形溝と前記径方向溝とが交差する箇所、及び前記第2波形溝と前記径方向溝とが交差する箇所には、前記ボールが位置する、
     ことを特徴とする請求項1に記載のボール減速機。
  10.  前記第1波形溝に交差する前記径方向溝と前記第2波形溝に交差する前記径方向溝とが、前記第1波形溝の半波分だけずれて位置する、
     ことを特徴とする請求項8又は9に記載のボール減速機。
PCT/JP2017/039304 2016-11-17 2017-10-31 ボール減速機 WO2018092579A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780071452.0A CN109964057A (zh) 2016-11-17 2017-10-31 滚珠减速机
US16/461,643 US20190353229A1 (en) 2016-11-17 2017-10-31 Ball type speed reducer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-224235 2016-11-17
JP2016224235A JP6767244B2 (ja) 2016-11-17 2016-11-17 ボール減速機

Publications (1)

Publication Number Publication Date
WO2018092579A1 true WO2018092579A1 (ja) 2018-05-24

Family

ID=62145351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039304 WO2018092579A1 (ja) 2016-11-17 2017-10-31 ボール減速機

Country Status (4)

Country Link
US (1) US20190353229A1 (ja)
JP (1) JP6767244B2 (ja)
CN (1) CN109964057A (ja)
WO (1) WO2018092579A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110397711B (zh) * 2019-07-16 2020-08-28 燕山大学 凸轮激波式双级平面钢球减速器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04500714A (ja) * 1989-05-18 1992-02-06 ボルマン ディーター 球体動力伝達装置
DE19757845A1 (de) * 1997-12-24 1999-07-01 Bollmann Dieter Kugelkraftgetriebe

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762495B2 (ja) * 1985-06-27 1995-07-05 加茂精工株式会社 転動ボ−ル形差動減速機構
ZA888713B (en) * 1988-01-23 1990-10-31 Bollmann Hydraulik Gears
IL94775A0 (en) * 1989-06-21 1991-04-15 Bollmann Dieter Ball power gear unit
US5312306A (en) * 1991-03-14 1994-05-17 Synkinetics, Inc. Speed converter
JPH053713U (ja) * 1991-06-28 1993-01-22 株式会社椿本チエイン ボール式減速機
JP2003172419A (ja) * 2001-12-10 2003-06-20 Nsk Ltd ボール式変速装置
JP2016160980A (ja) * 2015-02-27 2016-09-05 Ntn株式会社 車両用モータ駆動装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04500714A (ja) * 1989-05-18 1992-02-06 ボルマン ディーター 球体動力伝達装置
DE19757845A1 (de) * 1997-12-24 1999-07-01 Bollmann Dieter Kugelkraftgetriebe

Also Published As

Publication number Publication date
JP2018080780A (ja) 2018-05-24
CN109964057A (zh) 2019-07-02
JP6767244B2 (ja) 2020-10-14
US20190353229A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
KR101561400B1 (ko) 비틀림 진동 감쇠 장치
JP5851406B2 (ja) 動吸振器
US10533629B2 (en) Centrifugal pendulum damper and torque transmission device
WO2018092579A1 (ja) ボール減速機
JP7020574B2 (ja) 遠心振り子ダンパ及びトルク伝達装置
WO2018142909A1 (ja) ボール減速機
JP6124583B2 (ja) 偏心揺動型歯車装置
WO2017122812A1 (ja) 遠心振り子ダンパ及びトルク伝達装置
JP2018115715A (ja) ボール減速機
WO2018207625A1 (ja) ボール減速機
WO2020149219A1 (ja) 減速機
JP2018159466A (ja) ボール減速機
JP2022190915A (ja) 動力伝達装置
WO2020017312A1 (ja) 減速機
JP2013002504A (ja) 軸継手
JP6314534B2 (ja) 摩擦ローラ式減速機
JP2018013204A (ja) ボール減速機
JP5919773B2 (ja) トロイダル型無段変速機
JP2019194486A (ja) 減速機
JP5867132B2 (ja) 摩擦ローラ式減速機
JP2018204643A (ja) 変速機構および変速機構の組立方法
JP6733506B2 (ja) 捩り振動低減装置
JP6568749B2 (ja) 遊星ローラ式の動力伝達装置
JP6589531B2 (ja) 摩擦ローラ式減速機
JP2022186256A (ja) 減速機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17870908

Country of ref document: EP

Kind code of ref document: A1