WO2018092565A1 - 衝突判定装置、及び衝突判定方法 - Google Patents

衝突判定装置、及び衝突判定方法 Download PDF

Info

Publication number
WO2018092565A1
WO2018092565A1 PCT/JP2017/039080 JP2017039080W WO2018092565A1 WO 2018092565 A1 WO2018092565 A1 WO 2018092565A1 JP 2017039080 W JP2017039080 W JP 2017039080W WO 2018092565 A1 WO2018092565 A1 WO 2018092565A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
host vehicle
distance
course
detectable
Prior art date
Application number
PCT/JP2017/039080
Other languages
English (en)
French (fr)
Inventor
敬之 弘光
真司 北浦
明宏 貴田
Original Assignee
株式会社デンソー
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, トヨタ自動車株式会社 filed Critical 株式会社デンソー
Priority to CN201780070972.XA priority Critical patent/CN109997055B/zh
Priority to DE112017005802.3T priority patent/DE112017005802T5/de
Priority to US16/461,261 priority patent/US11340348B2/en
Publication of WO2018092565A1 publication Critical patent/WO2018092565A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/932Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles using own vehicle data, e.g. ground speed, steering wheel direction
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present disclosure relates to a collision determination device that performs a collision determination between a host vehicle and a target, and a collision determination method.
  • Patent Document 1 there is a collision determination device that performs a collision determination between a host vehicle and a target to make the vehicle travel safe (for example, Patent Document 1).
  • the system ECU acquires the behavior (running state) of the host vehicle from a vehicle speed sensor or the like, and estimates the course of the host vehicle.
  • the radar ECU detects the position of the other vehicle (target) using the millimeter wave radar device, and estimates the course of the other vehicle based on the change in the position. Then, the system ECU performs a collision determination based on the estimated course of the own vehicle and the estimated course of the other vehicle, and executes a vehicle control such as braking the vehicle when it is determined that the collision occurs. Thereby, traveling safety of the vehicle can be achieved.
  • the millimeter wave radar device detects the position of a target based on a reflected wave from another vehicle as a target. For this reason, when estimating the target path based on the detection information from the millimeter wave radar device, the target path is erroneously estimated due to the influence of unnecessary reflected waves reflected from vehicles other than the target. There is a risk of it. Therefore, in order to suppress the influence of unnecessary reflected waves, the detection information is filtered (smoothed) using a low-pass filter or the like, and the course is appropriately estimated.
  • the present disclosure has been made in view of the above circumstances, and has as its main purpose to provide a collision determination device and a collision determination method capable of improving the accuracy of collision determination.
  • This disclosure is as follows in order to solve the above problems.
  • the collision determination device includes an acquisition unit that transmits a search wave and receives detection information based on the reflected wave from the search device that receives the reflected wave reflected by the target, and the detection information is filtered.
  • a setting unit that sets a filter characteristic of the filter processing at the time, a target information detection unit that detects the position of the target using the filtered detection information, and a target information detection unit Estimated by the target course estimation unit that estimates the course of the target based on the detected change in the position of the target, the host path estimation unit that estimates the course of the host vehicle, and the target course estimation unit
  • a collision determination unit that performs a collision determination between the host vehicle and the target based on the route of the target and the path of the host vehicle estimated by the host vehicle path estimation unit, and the setting unit Is the position of the target and the vehicle Based on the running state, the detection time or the detection distance capable of detecting the position of the target on the course of the target is estimated, and according to the estimated detection time or the detection distance, Set the filter characteristics.
  • the detectable time or the detectable distance When the detectable time or the detectable distance is long, it is possible to increase the number of times the target position is detected as compared to the short time. And if the detection of the position of the target increases, it can be expected that the course of the target is corrected. For this reason, the desired responsiveness (trackability) and stability of the target path differ depending on the detectable time or the detectable distance. Therefore, filter characteristics are set according to the detectable time or the detectable distance. Thereby, the accuracy of collision determination can be improved.
  • FIG. 1 is a block diagram of PCSS.
  • FIG. 2 is a diagram showing the course of the target
  • FIG. 3 is a diagram showing the detection range of the radar sensor
  • 4A and 4B are diagrams illustrating a situation in which a deviation in the course of a target occurs.
  • FIG. 5 is a diagram showing the relationship between the filter characteristics and the course of the target.
  • FIGS. 6A to 6C are diagrams showing the detectable distance
  • FIG. 7 is a flowchart showing the collision determination process.
  • FIG. 1 shows a pre-crash safety system (hereinafter referred to as PCSS: Pre-crash safety system) 100.
  • the PCSS 100 is an example of a vehicle system mounted on a vehicle, detects an object positioned around the vehicle, and when the detected object and the vehicle may collide, A collision mitigation operation (PCS) is performed.
  • PCS collision mitigation operation
  • a vehicle on which the PCSS 100 is mounted is referred to as a host vehicle CS
  • an object to be detected is referred to as a target Ob.
  • the driving assistance ECU 20 functions as a collision determination device and executes a collision determination method.
  • the various sensors are connected to the driving support ECU 20, and output to the driving support ECU 20 the detection information of the target Ob and the vehicle information related to the host vehicle CS.
  • the various sensors include a radar sensor 31 as a search device, a vehicle speed sensor 32, and a steering angle sensor 33.
  • the radar sensor 31 is, for example, a known millimeter-wave radar device that uses a millimeter-wave band high-frequency signal as a transmission wave.
  • the radar sensor 31 is provided at the rear end of the host vehicle CS, and detects a region that falls within a predetermined detection angle ⁇ . And the position Pr of the target Ob within the detection range 31a is detected.
  • an exploration wave is transmitted at a predetermined period, and a reflected wave is received by a plurality of antennas.
  • the distance from the target Ob is calculated from the transmission time of the exploration wave and the reception time of the reflected wave. Further, the relative velocity is calculated from the frequency of the reflected wave reflected by the target Ob, which has changed due to the Doppler effect.
  • the direction of the target Ob is calculated from the phase difference of the reflected waves received by the plurality of antennas.
  • the relative position of the target Ob with respect to the host vehicle CS can be specified.
  • the radar sensor 31 transmits an exploration wave, receives a reflected wave, calculates a distance, calculates an azimuth, and calculates a relative velocity at predetermined intervals. Then, the radar sensor 31 outputs the driving assistance ECU 20 with the calculated distance from the target Ob, the direction of the target Ob, and the relative speed as radar detection information. The radar sensor 31 may calculate the relative position of the target object Ob and output it as radar detection information.
  • the vehicle speed sensor 32 detects the current vehicle speed of the host vehicle CS. The detected vehicle speed is input to the driving assistance ECU 20.
  • the steering angle sensor 33 detects the steering angle of the steering wheel (or tire). The detected steering angle is input to the driving assistance ECU 20.
  • the brake device 40 includes a brake mechanism that changes the braking force of the host vehicle CS and a brake ECU that controls the operation of the brake mechanism.
  • the brake ECU is communicably connected to the driving support ECU 20, and controls the brake mechanism under the control of the driving support ECU 20.
  • the brake mechanism includes, for example, a master cylinder, a wheel cylinder that applies braking force to wheels (tires), and an ABS actuator that adjusts the distribution of pressure (hydraulic pressure) from the master cylinder to the wheel cylinder.
  • the ABS actuator is connected to the brake ECU, and the amount of operation with respect to the wheels (tires) is adjusted by adjusting the hydraulic pressure from the master cylinder to the wheel cylinder under the control of the brake ECU.
  • the alarm device 50 warns the driver that there is a target Ob approaching the rear of the vehicle under the control of the driving support ECU 20.
  • the alarm device 50 includes, for example, a speaker provided in the passenger compartment and a display unit that displays an image.
  • the seat belt device 60 includes a seat belt provided in each seat of the own vehicle and a pretensioner that pulls in the seat belt.
  • the seat belt device 60 performs a preliminary operation of retracting the seat belt when the possibility of the host vehicle CS colliding with the target Ob increases as the operation of the PCS. If the collision cannot be avoided, the seat belt is retracted to remove the slack, and the driver or other passenger is fixed to the seat to protect the passenger.
  • the transmission 70 sets the shift position of the host vehicle CS when a shift lever (not shown) is operated by a driver.
  • the shift position includes, for example, an R position (reverse) that is a position indicating that the host vehicle CS is moving backward, and a D position (drive) that is a position indicating that the host vehicle CS is moving forward. is there.
  • the shift position includes an N position (neutral) and a P position (parking). Information indicating the shift position is input to the driving support ECU 20.
  • the driving support ECU 20 is configured as a well-known microcomputer including a CPU, a ROM, and a RAM, and performs vehicle control on the host vehicle CS with reference to a calculation program and control data in the ROM.
  • the driving assistance ECU 20 causes the PCS to be performed when the host vehicle CS is moving backward, that is, when the shift position is the R position.
  • the driving support ECU 20 acquires radar detection information from the radar sensor 31 and detects the position Pr of the target Ob based on the acquired radar detection information. Then, based on the detection result, the driving support ECU 20 causes the PCS to be executed with at least one of the devices 40, 50, 60 as a control target.
  • the driving support ECU 20 executes the program stored in the ROM, thereby obtaining the acquisition unit 21, the filter processing unit 22, the target information detection unit 23, the target course estimation unit 24, and the own vehicle course estimation.
  • the acquisition unit 21 acquires the radar detection information input from the radar sensor 31 every predetermined period (for example, 80 ms).
  • the radar detection information includes position information indicating the position Pr of the target object Ob.
  • the acquisition unit 21 acquires information indicating the vehicle speed of the host vehicle CS from the vehicle speed sensor 32, and acquires information indicating the steering angle from the steering angle sensor 33. Further, the acquisition unit 21 acquires information indicating the shift position from the transmission 70.
  • the filter processing unit 22 performs a filtering process on the radar detection information acquired by the acquisition unit 21.
  • the filter process is, for example, an annealing process that suppresses changes in radar detection information. More specifically, the filtering process indicates that information included in the radar detection information (such as the direction, distance, relative speed, or relative position of the target Ob) changes abruptly from the information included in the previous radar detection information. It is a process of relaxing by a filter, or a process of selecting information that has changed suddenly by a filter. By this filtering process, it is possible to suppress a sudden change in the position Pr of the target object Ob detected based on the radar detection information.
  • the filter process suppresses (smooths) the position Pr of the target Ob from being rapidly changed from the position Pr of the target Ob detected up to the previous time. And by this filter process, the influence of the unnecessary reflected wave other than the target Ob is suppressed or excluded.
  • the filter process includes a low-pass filter process that excludes radar detection information based on a reflected wave in a high-frequency band by a low-pass filter.
  • the target information detection unit 23 detects the position Pr of the target Ob based on the radar detection information filtered by the filter processing unit 22. Specifically, the target information detection unit 23 detects a position Pr on the coordinates with the host vehicle CS as the origin based on the distance and direction from the target Ob included in the radar detection information. In this coordinate, the X axis is set along the vehicle width direction of the host vehicle CS, and the Y axis direction is set along the traveling direction of the host vehicle CS. More specifically, the origin is set as the origin at the midpoint of the rear wheel of the host vehicle CS. Thereby, the relative position of the target Ob with respect to the host vehicle CS is detected.
  • the lateral direction orthogonal to the traveling direction is the vehicle width direction (X-axis direction). Further, when the radar detection information includes the relative position of the target Ob, it may be obtained as a detection result. The position Pr of the target Ob is recorded in the history information.
  • the target course estimation unit 24 estimates the course A2 of the target Ob based on the change in the position Pr stored as the history information. For example, the moving direction vector of the target Ob is calculated as the course A2 of the target Ob.
  • FIG. 2 shows the position Pr of the target Ob at each time from time t1 to t4 of the vehicle detected as the target Ob, and the course A2 of the target Ob calculated from this position Pr. The time t4 becomes the position Pr of the latest target Ob recorded in the history information.
  • the target course estimation unit 24 estimates the course A2 of the target Ob by using a known linear interpolation operation such as a least square method for a straight line passing through a position closest to each position Pr.
  • the own vehicle course estimation unit 25 estimates the course A1 of the host vehicle CS based on the vehicle speed and the steering angle.
  • the course A1 of the host vehicle CS is estimated by calculating the turning direction, turning radius, turning center, and the like based on the vehicle speed and the steering angle.
  • the steering angle is 0 degrees
  • the course A1 of the host vehicle CS is estimated by a straight line
  • the steering angle is other than 0 degrees
  • the course A1 of the host vehicle CS is estimated by a curve.
  • the turning direction may be specified based on the steering angle
  • the course A1 of the host vehicle CS may be estimated from a straight line along the turning direction.
  • the vehicle speed is 0 km / h
  • the host vehicle CS is stopped, and the course A1 of the host vehicle CS is fixed at a local point.
  • the collision determination unit 26 performs a collision determination between the host vehicle CS and the target Ob based on the estimated course A2 of the target Ob and the course A1 of the host vehicle CS. For example, when the course A2 of the target Ob and the course A1 of the host vehicle CS intersect, the collision determination unit 26 determines that the host vehicle CS and the target Ob may collide.
  • the collision determination unit 26 may determine whether or not to collide in consideration of the vehicle width of the host vehicle CS. For example, the collision determination unit 26, based on the estimated course A1 of the host vehicle CS and the vehicle width of the host vehicle CS, the path through which the left rear end portion (for example, the left rear wheel and the left tail lamp) passes in the host vehicle CS, The path through which the right rear end (for example, the right rear wheel or the right tail lamp) passes is estimated. And the collision determination part 26 may determine based on whether one of the estimated courses and the course A2 of the target Ob intersect. Similarly, the collision determination may be performed in consideration of the width of the target object Ob.
  • the vehicle control unit 27 determines that there is a possibility of a collision, the intersection point (predicted collision point D1) between the course A2 of the target Ob determined to have a possibility of collision and the course A1 of the host vehicle CS. The distance to (predicted distance) is calculated. Then, the vehicle control unit 27 controls the alarm device 50, the brake device 40, and the seat belt device 60 according to the predicted distance, thereby causing the PCS to be performed.
  • the vehicle control unit 27 determines whether or not the calculated predicted distance is equal to or less than a predetermined first distance.
  • the first time is a threshold for indicating the PCS start timing, and a value such as 10 m is set, for example.
  • the vehicle control unit 27 controls the alarm device 50 to output an alarm.
  • the vehicle control unit 27 controls the brake device 40 to brake the host vehicle CS.
  • the vehicle control unit 27 controls the seat belt device 60, and the seat belt To pull in.
  • the detection angle ⁇ of the radar sensor 31 attached to the rear side of the vehicle is set wider than the radar sensor attached to the front side of the vehicle.
  • the radar sensor 31 has a detection angle ⁇ of about 50 to 140 degrees, and a range up to a distance of about 50 m from the host vehicle CS is set as a detection range 31a.
  • a radar sensor mounted in front of the vehicle has a detection angle ⁇ of about 20 to 30 degrees, and a range up to a distance of about 100 m from the host vehicle CS is often used as a detection range.
  • the driving assistance ECU 20 acquires the radar detection information from the radar sensor 31 having such a detection range 31a and detects the position Pr of the target Ob, the driving support ECU 20 is effective in the rear of the host vehicle CS that has many blind spots for the driver. It is possible to detect the target Ob and make a collision determination.
  • the position Pr of the target Ob may be erroneously detected due to the influence of the reflected wave (unnecessary reflected wave) from the adjacent stopped vehicle TS. That is, the position of the stopped vehicle TS may be erroneously detected as the position Pr of the target object Ob.
  • Radar detection information based on such unnecessary reflected waves often changes abruptly compared to previous radar detection information. That is, the target Ob is often erroneously detected at an unnatural position, for example, a position that does not follow the traveling direction up to that point or a position away from the previous position. In this case, there is a possibility that necessary PCS is not performed or unnecessary PCS is performed. For this reason, in order to reduce the influence of unnecessary reflected waves, it is desirable to perform filter processing so as to suppress changes in radar detection information.
  • the filtering process is performed so as to suppress the change of the radar detection information
  • the response to the movement of the target Ob is deteriorated. That is, it is selected that the position Pr of the target Ob detected based on the radar detection information is a position that is suppressed more than a position that has actually changed (a position that is close to the previous position) or that has been erroneously detected. May be excluded (ignored).
  • the course A2 (indicated by the broken line) of the target Ob does not follow the actual course (indicated by the solid line) and is easily estimated to cross the back of the host vehicle CS, and is determined to collide in the collision determination.
  • Unnecessary PCS may be implemented.
  • the driving support ECU 20 is provided with a filter setting unit 28 for setting a filter characteristic in the filter process, and an appropriate filter process is performed according to the situation.
  • the filter setting unit 28 will be described in detail.
  • the filter setting unit 28 sets the filter characteristics of the filter processing when the filter processing by the filter processing unit 22 is executed.
  • the filter characteristics are the degree of smoothing (filter strength) that suppresses changes in radar detection information.
  • the greater the degree of smoothing of the filter the stronger the filter characteristics
  • the position Pr and the course A2 of the target Ob are hardly changed, and the response to the movement of the target Ob is deteriorated.
  • the filtering process it becomes easy to be influenced by unnecessary reflected waves other than the target Ob, and the stability of the position Pr of the target Ob and the course A2 is deteriorated. That is, as the filter characteristic is weaker, even radar detection information having a large change is not excluded or changes in the radar detection information are less likely to be mitigated. Specifically, in the low-pass filter processing, the filter characteristics are strengthened by narrowing the pass band, while the filter characteristics are weakened by widening the pass band.
  • FIG. 5A specifically explains how the course A2 of the target Ob is estimated due to the difference in filter characteristics when the traveling vehicle to be the target Ob turns.
  • the course Y1 (shown by a broken line) of the target Ob when the filter characteristic is weak is compared with the course Y2 (shown by a one-dot chain line) of the target Ob when the filter characteristic is strong. It becomes easy to respond (shown by a solid line). That is, when the filter characteristic is weak, the estimated course Y1 of the target Ob is easily along the turning direction as the target Ob turns. On the other hand, when the filter characteristic is strong, even if the target Ob turns, the estimated course Y2 of the target Ob is likely to go straight.
  • the filter setting unit 28 determines the filter characteristics used in the filter processing in the next cycle according to the detectable distance at which the position Pr of the target Ob can be detected on the path of the target Ob. Set.
  • a method for estimating the detectable distance will be described.
  • the filter setting unit 28 estimates the detectable distance based on the position Pr of the target Ob and the traveling state of the host vehicle CS. Specifically, as shown in FIG. 6A, the filter setting unit 28 includes the course A2 of the target Ob estimated by the target course estimation unit 24 and the own path estimated by the host vehicle path estimation unit 25. The intersection point of the vehicle CS with the course A1 is specified as the predicted collision point D1. When the predicted collision point D1 exists within the detection range 31a of the radar sensor 31, the filter setting unit 28 estimates the distance E1 from the detected position Pr of the target Ob to the predicted collision point D1 as a detectable distance. To do.
  • the distance E1 is a distance that can specify a margin time or a margin distance until a timing at which the host vehicle CS may collide with the target Ob.
  • the allowance time can be calculated by dividing the distance E1 by the speed of the target Ob.
  • the distance E1 from the position Pr of the target Ob to the predicted collision point D1 is set as the detectable distance, so that the position Pr of the target Ob can be detected at least before the host vehicle CS and the target Ob collide. That's why. Further, after the collision, the course of the target Ob and the course of the host vehicle CS are affected by the collision, so it is unclear whether or not they can be detected.
  • the detection range 31a of the radar sensor 31 is calculated based on the detection angle and detection distance of the radar sensor 31.
  • the filter setting unit 28 continues from the position Pr of the target Ob until it is outside the detection range 31a of the radar sensor 31. Is estimated as a detectable distance.
  • the filter setting unit 28 estimates a shorter distance among the distance E3 from the position Pr of the target Ob to the orthogonal point D2 and the distance E1 from the position Pr of the target Ob to the predicted collision point D1 as a detectable distance.
  • the orthogonal point D2 is a path A2 of the target Ob obtained by drawing a perpendicular (shown by a broken line) with respect to the path A2 of the target Ob from the position of the radar sensor 31 (that is, the position of the host vehicle CS). It is the intersection of perpendicular lines.
  • the filter setting unit 28 estimates the distance E3 from the position Pr of the target object Ob to the orthogonal point D2 as a detectable distance. .
  • the radar sensor 31 detects the target Ob based on the reflected wave from the front of the vehicle. For example, as shown in FIG. 6C, when the target Ob travels after the orthogonal point D2, the reflected wave is not received from the front of the target Ob, and the position Pr of the target Ob may be lost.
  • the filter setting unit 28 sets the filter characteristics to be weaker when the estimated detectable distance is longer than when it is shorter. For example, the filter setting unit 28 sets a weak filter having a weak filter characteristic when the detectable distance is greater than or equal to a predetermined distance, and a strong filter having a filter characteristic stronger than the weak filter when the detectable distance is less than the predetermined distance.
  • the predetermined distance for example, a distance longer than the first distance (for example, 15 m) is set in consideration of the timing at which PCS is performed.
  • two types of filters, a strong filter and a weak filter can be set.
  • the weak filter is set.
  • the responsiveness to the actual movement of the target Ob is improved, and the accuracy of the collision determination is improved even if the target Ob turns sharply.
  • the stability is deteriorated, and the influence of unnecessary reflected waves from other than the target Ob is increased.
  • the detectable distance is long, more positions Pr of the target Ob can be detected than when the detectable distance is short, and there is a grace (margin) until the influence based on the false detection is corrected. Is big.
  • a strong filter is set.
  • stability is improved. Therefore, the influence of unnecessary reflected waves from other than the target Ob is suppressed, and the accuracy of collision determination is improved.
  • the strong filter when the strong filter is set, the response to the movement of the target Ob is deteriorated.
  • the distance E1 from the position Pr of the target Ob to the predicted collision point D1 is a detectable distance
  • the detectable distance when the detectable distance is less than a predetermined distance, the grace (margin) until the PCS is performed is small. Probability is high. For this reason, even if the responsiveness is poor due to the setting of the strong filter, there is no delay until the PCS is performed, and therefore it is expected that the deviation will not increase.
  • the course A2 of the target Ob is estimated based on the position Pr detected in a plurality of cycles based on the history information.
  • the course A2 of the target Ob is determined in consideration of the position Pr of the target Ob when the distance is longer than a predetermined distance (when the responsiveness is good). Therefore, the deviation is considered to be small. From the above, even if the target Ob turns sharply, it is considered that the accuracy of collision determination is suppressed from being lowered.
  • a weak filter is set when the course A2 of the target Ob and the course A1 of the host vehicle CS do not intersect. Thereby, even if it turns suddenly, it responds to the motion of the target Ob, and it becomes possible to perform an appropriate collision determination. In the initial state, a weak filter is set.
  • And driving assistance ECU20 performs a collision determination process for every predetermined period (for example, 80 ms), in order to implement PCS.
  • predetermined period for example, 80 ms
  • the driving support ECU 20 acquires radar detection information input from the radar sensor 31 (step S101). Further, the driving support ECU 20 acquires information indicating the vehicle speed of the host vehicle CS from the vehicle speed sensor 32 and acquires information indicating the steering angle from the steering angle sensor 33. Further, the driving assistance ECU 20 acquires information indicating the shift position from the transmission 70.
  • the driving support ECU 20 determines whether or not the R position is set (step S102). When it is not the R position (step S102: No), the driving assistance ECU 20 ends the collision determination process.
  • the driving assistance ECU 20 filters the radar detection information (step S103). At this time, the filter characteristic used in the filter process is set in the previous cycle. If the filter characteristic is not set in the previous cycle, the filter characteristic is in the initial state (weak filter).
  • the driving assistance ECU 20 detects the position Pr of the target object Ob based on the filtered radar detection information (Step S104). Further, the driving assistance ECU 20 records the detected position Pr in the history information.
  • the driving support ECU 20 estimates the course A2 of the target Ob based on the change in the position Pr stored as history information (step S105). Further, the driving support ECU 20 estimates the course A1 of the host vehicle CS based on the steering angle or the like (step S106). Next, as described above, the driving assistance ECU 20 estimates the detectable distance, and sets the filter characteristics in the next cycle based on the detectable distance (step S107). Specifically, the driving support ECU 20 sets a weak filter having a weak filter characteristic when the detectable distance is equal to or greater than a predetermined distance, and has a stronger filter characteristic than the weak filter when the distance is less than the predetermined distance. Set the strong filter.
  • the driving assistance ECU 20 When estimating the detectable distance, as described above, the driving assistance ECU 20 specifies the intersection (predicted collision point D1) between the course A2 of the target Ob and the course A1 of the host vehicle CS. In addition, the driving assistance ECU 20 sets a weak filter when the course A2 of the target Ob and the course A1 of the host vehicle CS do not intersect.
  • the driving support ECU 20 performs a collision determination between the host vehicle CS and the target Ob based on the estimated course A2 of the target Ob and the course A1 of the host vehicle CS (step S108). Specifically, when the driving support ECU 20 can identify an intersection (predicted collision point D1) where the course A2 of the target Ob and the course A1 of the host vehicle CS intersect in step S107, the driving support ECU 20 and the target Ob. Are determined to collide with each other. When it determines with there being no collision possibility (step S108: No), driving assistance ECU20 complete
  • step S108 determines that there is a possibility of a collision
  • step S109 the driving assistance ECU 20 calculates a distance (predicted distance) from the host vehicle CS to the predicted collision point D1 specified in step S107 (step S109). ).
  • the driving support ECU 20 determines whether or not the calculated predicted distance is equal to or less than a predetermined first distance (step S110). If it is determined that the distance is not less than the first distance (step S110: No), the driving assistance ECU 20 ends the collision determination process.
  • step S110 When it determines with it being below 1st distance (step S110: Yes), driving assistance ECU20 implements PCS by controlling the alarm device 50, the brake device 40, and the seatbelt apparatus 60 according to prediction distance. (Step S111). Then, the collision determination process ends. As described above, the driving assistance ECU 20 executes the collision determination process, thereby executing the collision determination method.
  • the driving assistance ECU 20 sets the filter characteristics according to the detectable distance.
  • the filter characteristics are varied depending on whether or not the detectable distance is a predetermined distance or more.
  • the filter characteristic becomes weak when the detectable distance is equal to or greater than the predetermined distance, and therefore the path A2 of the target Ob is made to respond to the actual movement of the target Ob. be able to.
  • the filter characteristic becomes strong, and the course A2 of the target Ob is stabilized. Therefore, the accuracy of collision determination can be improved by changing the filter characteristics depending on the situation. Also, by calculating the predicted distance using the course A2 of the target Ob, the PCS can be performed at an appropriate timing.
  • the driving support ECU 20 sets the filter characteristics so that the degree of smoothing is smaller when the detectable distance is long than when it is short. Thereby, a filter characteristic can be set more appropriately and the accuracy of collision determination can be improved. If the filter characteristic is weakened, the stability is deteriorated and it is easy to be affected by unnecessary reflected waves, but it is expected to be corrected because the detectable distance is long. For this reason, even if the filter characteristics are weakened when the detectable distance is long, it is possible to suppress a decrease in the accuracy of collision determination due to the influence of unnecessary reflected waves.
  • the filter characteristics are strengthened (when the degree of annealing is large), the stability is improved. For this reason, when the detectable distance is short, the driving assistance ECU 20 can suppress the influence of unnecessary reflected waves and suppress erroneous detection by setting the filter characteristics so that the degree of smoothing is increased. Thereby, a filter characteristic can be set more appropriately and the accuracy of collision determination can be improved. Moreover, PCS can be implemented at an appropriate timing.
  • the filter characteristics are strengthened and the responsiveness is deteriorated, the responsiveness is improved when the distance is equal to or greater than the predetermined distance, and the target Pr at the position Pr when the distance is equal to or greater than the predetermined distance is taken into consideration.
  • the course A2 of Ob is determined. For this reason, even when the filter characteristic is increased when the distance is less than the predetermined distance, it is possible to suppress a decrease in accuracy in collision determination.
  • the driving assistance ECU 20 specifies a predicted collision point D1 that is an intersection of the course A1 of the host vehicle CS estimated in the current cycle and the course A2 of the target Ob estimated in the current cycle, and the target object Ob
  • the detectable distance was specified according to the distance E1 to the predicted collision point D1.
  • driving assistance ECU20 set the filter characteristic in the period after the next based on the specified detectable distance. For this reason, the filter characteristic can be set more appropriately in consideration of the distance or time until the PCS is performed, and the accuracy of collision determination can be improved.
  • PCS can be implemented at an appropriate timing.
  • the driving support ECU 20 specifies the detectable distance according to the distance E2 from the position Pr of the target Ob to the outside of the detection range 31a. For this reason, a filter characteristic can be set more appropriately and the accuracy of collision determination can be improved. Moreover, PCS can be implemented at an appropriate timing.
  • the driving support ECU 20 extends from the position Pr of the target Ob to the orthogonal point D2.
  • the shorter distance of the distance E3 and the distance E1 from the position Pr of the target Ob to the predicted collision point D1 is set as a detectable distance.
  • the detectable distance which can detect substantially the position Pr of target Ob can be specified. Therefore, the filter characteristics can be set more appropriately, and the accuracy of collision determination can be improved.
  • PCS can be implemented at an appropriate timing.
  • PCS vehicle control
  • the filter setting unit 28 may specify the detectable distance according to the distance from the host vehicle CS to the predicted collision point D1.
  • the radar sensor 31 may perform filter processing.
  • the radar sensor 31 may include the filter processing unit 22.
  • the driving assistance ECU 20 needs to notify the radar sensor 31 of the filter characteristic set by the filter setting unit 28 and cause the radar sensor 31 to set the filter characteristic.
  • the filter setting unit 28 estimates the detectable distance, but may estimate the detectable time. Specifically, after calculating the detectable distance, the filter setting unit 28 may estimate the detectable time by dividing the detectable distance by the speed of the target Ob. In this case, the filter setting unit 28 may set the filter characteristics according to the detectable time. For example, the filter setting unit 28 may set the filter characteristics depending on whether or not the detectable time is a predetermined time or more. That is, the filter setting unit 28 may set a weak filter when the detectable time is 10 seconds or more, and may set a strong filter when the detectable time is less than 10 seconds. .
  • the filter setting unit 28 may estimate the distance (inter-vehicle distance) between the host vehicle CS and the target Ob as a detectable distance.
  • the time obtained by dividing the inter-vehicle distance by the relative speed may be estimated as the detectable time.
  • the millimeter wave radar device is employed as the exploration device, but a sonar that detects and measures an object (target) using sound waves may be employed.
  • the course of the host vehicle CS is estimated using the steering angle detected by the steering angle sensor 33.
  • the yaw rate sensor is used instead of the steering angle sensor 33, and the own vehicle CS is estimated based on the yaw rate and the vehicle speed. You may estimate the course of vehicle CS.
  • -PCSS100 may be adopted in order to perform PCS on the target Ob in front of the host vehicle CS.
  • the filter setting unit 28 is configured to be able to set two types of filters, but may be configured to be able to set three or more types of filters according to the detectable distance.
  • the vehicle control unit 27 may calculate a collision allowance time (TTC) until the host vehicle CS and the target Ob collide instead of the predicted distance.
  • the collision allowance time is calculated by dividing the distance (inter-vehicle distance) from the target Ob by the relative speed with respect to the target Ob.
  • the vehicle control part 27 may implement PCS according to a collision margin time.
  • the driving support ECU 20 sets a weak filter when the course A2 of the target Ob and the course A1 of the host vehicle CS do not intersect, but can detect the distance from the position Pr of the target Ob to the outside of the detection range.
  • a filter characteristic may be set as the distance.
  • the filter setting unit 28 sets the distance from the position Pr of the target Ob to the orthogonal point D2. The distance may be estimated as a detectable distance.
  • the filter setting unit 28 estimates the detectable distance or the detectable time based on the course A2 of the target Ob and the course A1 of the host vehicle CS estimated in the previous cycle, and sets the estimated detectable distance or detectable time. Accordingly, the filter characteristics in the current cycle may be set. In this case, it is desirable that the driving support ECU 20 sets the filter characteristics before acquiring radar detection information (before step S101) in the collision determination process.
  • the filter setting unit 28 may always estimate the distance E1 from the position Pr of the target Ob to the predicted collision point D1 as a detectable distance. That is, even when the predicted collision point D1 exists outside the detection range 31a or when the orthogonal point D2 exists within the detection range 31a, the distance E1 from the position Pr of the target Ob to the predicted collision point D1 is calculated. It may be estimated as a detectable distance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

衝突判定装置(20)は、探査装置(31)からその反射波に基づく検知情報を取得する取得部(21)と、検知情報がフィルタ処理される際における当該フィルタ処理のフィルタ特性を設定する設定部(28)と、フィルタ処理された検知情報を利用して、物標の位置を検出する物標情報検出部(23)と、物標情報検出部により検出された物標の位置の変化に基づき、物標の進路を推定する物標進路推定部(24)と、自車両の進路を推定する自車進路推定部(25)と、自車両と物標との衝突判定を実行する衝突判定部(26)と、を備える。設定部は、物標の位置と自車両の走行状態とに基づいて、物標の進路上において前記物標の位置を検出可能な検出可能時間又は検出可能距離を推定し、推定した検出可能時間又は検出可能距離に応じて、フィルタ特性を設定する。

Description

衝突判定装置、及び衝突判定方法 関連出願の相互参照
 本出願は、2016年11月17日に出願された日本出願番号2016-224529号に基づくもので、ここにその記載内容を援用する。
 本開示は、自車両と物標との衝突判定を行う衝突判定装置、及び衝突判定方法に関する。
 従来、自車両と物標との衝突判定を行い、車両の走行安全を図る衝突判定装置が存在する(例えば、特許文献1)。特許文献1において、システムECUは、車速センサなどから自車両の挙動(走行状態)を取得し、自車両の進路を推定する。その一方、レーダECUは、ミリ波レーダ装置を利用して他車両(物標)の位置を検出し、位置の変化に基づき、他車両の進路を推定する。そして、システムECUは、推定した自車両の進路と、推定された他車両の進路に基づき、衝突判定を行い、衝突すると判定した場合、車両に制動を加えるなどの車両制御を実行させる。これにより、車両の走行安全を図ることができる。
特開2007-317018号公報
 ところで、ミリ波レーダ装置は、物標となる他車両からの反射波に基づき、物標の位置を検出するものである。このため、ミリ波レーダ装置からの検知情報に基づき物標の進路を推定する場合、物標以外の車両などから反射される不要な反射波の影響により、物標の進路を誤って推定してしまう虞がある。そこで、不要な反射波の影響を抑制するため、ローパスフィルタなどを利用して、検知情報をフィルタ処理(なまし処理)し、進路を適切に推定するようにしている。
 しかしながら、フィルタ特性によっては、不要な車両制御が行われたり、必要な車両制御が行われなかったりする可能性がある。具体的には、フィルタ特性を強くする場合(なまし度合いを大きくする場合)、不要な反射波の影響が少なくなる一方、物標の動きに応答しにくくなる。つまり、安定性が良くなる一方、応答性が悪くなる。このため、物標が急に進行方向を変化させると、推定する進路との間にずれが生じる場合があり、この場合、正確な衝突判定を行うことができなかった。
 一方、フィルタ特性を弱くする場合(なまし度合いを小さくする場合)、物標の動きに応答しやすくなるが、不要な反射波の影響も強くなる。つまり、応答性が良くなる一方、安定性が悪くなる。その結果、不要な反射波の影響を受けて、実際の進路とずれる場合があり、この場合、正確な衝突判定を行うことができなかった。
 このように、進路の応答性と安定性を両立させることが難しい。その結果、衝突判定を正確に行うことができない場合があった。これにより、不要な車両制御が行われたり、必要な車両制御が行われなかったりする可能性があった。
 本開示は、上記事情に鑑みてなされたものであり、衝突判定の正確性を向上させることができる衝突判定装置及び衝突判定方法を提供することを主たる目的とするものである。
 本開示は、上記課題を解決するために、以下のようにした。
 本開示の衝突判定装置は、探査波を送信し、物標により反射された反射波を受信する探査装置からその反射波に基づく検知情報を取得する取得部と、前記検知情報がフィルタ処理される際における当該フィルタ処理のフィルタ特性を設定する設定部と、前記フィルタ処理された前記検知情報を利用して、前記物標の位置を検出する物標情報検出部と、前記物標情報検出部により検出された前記物標の位置の変化に基づき、前記物標の進路を推定する物標進路推定部と、自車両の進路を推定する自車進路推定部と、前記物標進路推定部により推定された前記物標の進路と、前記自車進路推定部により推定された自車両の進路に基づき、自車両と前記物標との衝突判定を実行する衝突判定部と、を備え、前記設定部は、前記物標の位置と自車両の走行状態とに基づいて、前記物標の進路上において前記物標の位置を検出可能な検出可能時間又は検出可能距離を推定し、推定した前記検出可能時間又は前記検出可能距離に応じて、前記フィルタ特性を設定する。
 検出可能時間又は検出可能距離が長い場合には、短い場合と比較して、物標の位置の検出回数を多くすることが可能となる。そして、物標の位置を検出が多くなれば、物標の進路が修正されることが期待できる。このため、検出可能時間又は検出可能距離に応じて、物標の進路の望ましい応答性(追従性)と安定性は異なる。そこで、検出可能時間又は検出可能距離に応じて、フィルタ特性を設定した。これにより、衝突判定の正確性を向上させることができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、PCSSの構成図であり、 図2は、物標の進路を示す図であり、 図3は、レーダセンサの検知範囲を示す図であり、 図4は、(a)及び(b)は、物標の進路のずれが生じる状況を示す図であり、 図5は、フィルタ特性と物標の進路との関係性を示す図であり、 図6は、(a)~(c)は、検出可能距離を示す図であり、 図7は、衝突判定処理を示すフローチャートである。
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
 図1は、プリクラッシュセーフティシステム(以下、PCSS:Pre-crash safety systemと記載する。)100を示している。PCSS100は、車両に搭載される車両システムの一例であり、車両周囲に位置する物体を検出し、検出した物体と車両とが衝突するおそれがある場合、物体に対する自車両の衝突の回避動作、又は衝突の緩和動作(PCS)を実施させる。以下では、このPCSS100が搭載された車両を自車両CSと記載し、検出対象となる物体を物標Obと記載する。
 図1に示すPCSS100は、各種センサと、運転支援ECU20と、ブレーキ装置40と、警報装置50と、シートベルト装置60と、変速装置70と、を備えている。図1に示す実施形態において、運転支援ECU20が衝突判定装置として機能し、衝突判定方法を実行する。
 各種センサは、運転支援ECU20に接続されており、物標Obの検知情報や自車両CSに関する車両情報を運転支援ECU20に出力する。図1では、各種センサには、探査装置としてのレーダセンサ31と、車速センサ32と、操舵角センサ33と、が含まれる。
 レーダセンサ31は、例えば、ミリ波帯の高周波信号を送信波とする公知のミリ波レーダ装置であり、自車両CSの後端部に設けられ、所定の検知角αに入る領域を検知範囲31aとし、検知範囲31a内の物標Obの位置Prを検出する。具体的には、所定周期で探査波を送信し、複数のアンテナにより反射波を受信する。この探査波の送信時刻と反射波の受信時刻とにより、物標Obとの距離を算出する。また、物標Obに反射された反射波の、ドップラー効果により変化した周波数により、相対速度を算出する。加えて、複数のアンテナが受信した反射波の位相差により、物標Obの方位を算出する。なお、物標Obとの距離及び方位が算出できれば、その物標Obの、自車両CSに対する相対位置を特定することができる。
 レーダセンサ31は、所定周期毎に、探査波の送信、反射波の受信、距離の算出、方位の算出、及び相対速度の算出を行う。そして、レーダセンサ31は、算出した物標Obとの距離、物標Obの方位及び相対速度をレーダ検知情報として運転支援ECU20を出力する。なお、レーダセンサ31は、物標Obの相対位置を算出してレーダ検知情報として出力してもよい。
 車速センサ32は、自車両CSの現在の車速を検知する。検知された車速は、運転支援ECU20に入力される。操舵角センサ33は、ステアリングホイール(又はタイヤ)の操舵角を検知する。検知された操舵角は、運転支援ECU20に入力される。
 ブレーキ装置40は、自車両CSの制動力を変化させるブレーキ機構と、このブレーキ機構の動作を制御するブレーキECUとを備えている。ブレーキECUは、運転支援ECU20と通信可能に接続されており、運転支援ECU20の制御により、ブレーキ機構を制御する。ブレーキ機構は、例えば、マスターシリンダと、車輪(タイヤ)に制動力を与えるホイルシリンダと、マスターシリンダからホイルシリンダへの圧力(油圧)の分配を調整するABSアクチュエータとを備えている。ABSアクチュエータは、ブレーキECUに接続されており、このブレーキECUからの制御によりマスターシリンダからホイルシリンダへの油圧を調整することで、車輪(タイヤ)に対する作動量を調整する。
 警報装置50は、運転支援ECU20の制御により、ドライバに対して自車後方に接近する物標Obが存在することを警報する。警報装置50は、例えば、車室内に設けられたスピーカや、画像を表示する表示部により構成されている。
 シートベルト装置60は、自車の各座席に設けられたシートベルトや、このシートベルトを引き込むプリテンショナにより構成されている。シートベルト装置60は、PCSの動作として、自車両CSが物標Obに衝突する可能性が高まった場合に、シートベルトの引き込みの予備動作を行う。また衝突を回避できない場合には、シートベルトを引き込んで弛みを除くことにより、ドライバ等の乗員を座席に固定し、乗員の保護を行う。
 変速装置70は、図示しないシフトレバー等がドライバにより操作されることにより、自車両CSのシフトポジションを設定する。シフトポジションには、例えば、自車両CSが後退する状態であることを示す位置であるRポジション(リバース)、自車両CSが前進する状態であることを示す位置であるDポジション(ドライブ)が少なくともある。また、シフトポジションには、他に、Nポジション(ニュートラル)、Pポジション(パーキング)などもある。シフトポジションを示す情報は、運転支援ECU20に入力される。
 運転支援ECU20は、CPU、ROM、RAMを備える周知のマイクロコンピュータとして構成されており、ROM内の演算プログラムや制御データを参照して、自車両CSに対する車両制御を実施する。本実施形態において、運転支援ECU20は、自車両CSが後退している状態の場合、すなわち、シフトポジションがRポジションである場合に、PCSを実施させる。具体的には、運転支援ECU20は、シフトポジションがRポジションである場合、レーダセンサ31からのレーダ検知情報を取得し、取得したレーダ検知情報に基づいて物標Obの位置Prを検出する。そして、運転支援ECU20は、その検出結果に基づいて、各装置40,50,60の少なくともいずれかを制御対象としてPCSを実施させる。運転支援ECU20は、PCSを実施させるに際し、ROMに記憶されたプログラムを実行することで、取得部21、フィルタ処理部22、物標情報検出部23、物標進路推定部24、自車進路推定部25、衝突判定部26、車両制御部27及びフィルタ設定部28として機能する。各機能について、以下に説明する。
 取得部21は、レーダセンサ31から入力されたレーダ検知情報を所定周期(例えば、80ms)ごとに取得する。レーダ検知情報には、物標Obの位置Prを示す位置情報が含まれる。また、取得部21は、車速センサ32から自車両CSの車速を示す情報を取得し、操舵角センサ33から操舵角を示す情報を取得する。また、取得部21は、変速装置70からシフトポジションを示す情報を取得する。
 フィルタ処理部22は、取得部21が取得したレーダ検知情報に対してフィルタ処理を実行する。フィルタ処理は、例えば、レーダ検知情報の変化を抑制するなまし処理である。より詳しく説明すると、フィルタ処理は、レーダ検知情報に含まれる情報(物標Obの方位、距離、相対速度又は相対位置など)が、前回のレーダ検知情報に含まれる情報から急激に変化することをフィルタにより緩和する処理、又は急激に変化した情報をフィルタにより選別する処理である。このフィルタ処理により、レーダ検知情報に基づき検出される物標Obの位置Prが急激に変化することが抑制される。つまり、フィルタ処理によって、物標Obの位置Prが、前回までに検出された物標Obの位置Prから急激に変化することが抑制される(なまされる)。そして、このフィルタ処理により、物標Ob以外からの不要な反射波の影響が抑制又は除外される。例えば、フィルタ処理には、ローパスフィルタにより、高周波帯域の反射波に基づくレーダ検知情報を除くローパスフィルタ処理などがある。
 物標情報検出部23は、フィルタ処理部22によりフィルタ処理されたレーダ検知情報に基づき、物標Obの位置Prを検出する。具体的には、物標情報検出部23は、レーダ検知情報に含まれる物標Obとの距離及び方位に基づき、自車両CSを原点とする座標上の位置Prを検出する。この座標では、自車両CSの車幅方向に沿ってX軸が設定され、自車両CSの進行方向に沿ってY軸方向が設定される。原点は、より詳しくは、自車両CSの後輪における中点が原点として設定される。これにより、自車両CSに対する物標Obの相対位置が検出される。なお、進行方向(Y軸方向)と直交する横方向が、車幅方向(X軸方向)となる。また、レーダ検知情報に物標Obの相対位置が含まれている場合、それを取得して検出結果としてもよい。物標Obの位置Prは、履歴情報に記録される。
 物標進路推定部24は、履歴情報として記憶されている位置Prの変化に基づいて、物標Obの進路A2を推定する。例えば、物標Obの進路A2として、物標Obの移動方向ベクトルを算出する。図2では、物標Obとして検出された車両の時刻t1からt4での各時刻での物標Obの位置Prと、この位置Prにより算出される物標Obの進路A2を示している。時刻t4が履歴情報に記録された最新の物標Obの位置Prとなる。例えば、物標進路推定部24は、各位置Prに最も近い位置を通る直線を最小二乗法といった、周知の線形補間演算を用いて物標Obの進路A2を推定する。
 自車進路推定部25は、車速及び操舵角に基づき、自車両CSの進路A1を推定する。例えば、車速及び操舵角に基づき、旋回方向と、旋回半径と、旋回中心等を算出して、自車両CSの進路A1を推定する。操舵角が0度の場合には、自車両CSの進路A1は直線により推定され、操舵角が0度以外の場合には、自車両CSの進路A1は曲線により推定される。なお、操舵角に基づき、旋回方向を特定し、旋回方向に沿った直線により、自車両CSの進路A1を推定してもよい。また、車速が0km/hである場合には、自車両CSは停止していることとなり、自車両CSの進路A1は、現地点に固定される。
 衝突判定部26は、推定された物標Obの進路A2と自車両CSの進路A1とに基づいて、自車両CSと物標Obとの衝突判定を実行する。例えば、衝突判定部26は、物標Obの進路A2と自車両CSの進路A1とが交わる場合、自車両CSと物標Obとが衝突する可能性があると判定する。
 なお、衝突判定を行う際、衝突判定部26は、自車両CSの車幅を考慮して衝突するか否かを判定してもよい。例えば、衝突判定部26は、推定した自車両CSの進路A1と自車両CSの車幅に基づき、自車両CSにおける左側後端部(例えば、左側後輪や左側テールランプ)が通過する進路と、右側後端部(例えば、右側後輪や右側テールランプ)が通過する進路とを推定する。そして、衝突判定部26は、推定した進路のいずれか一方と、物標Obの進路A2が交差するか否かに基づき、判定してもよい。同様に、物標Obの幅を考慮して衝突判定を行ってもよい。
 車両制御部27は、衝突する可能性があると判定した場合、衝突する可能性があると判定された物標Obの進路A2と、自車両CSの進路A1との交点(予測衝突点D1)までの距離(予測距離)を算出する。そして、車両制御部27は、予測距離に応じて、警報装置50、ブレーキ装置40、及びシートベルト装置60を制御することで、PCSを実施させる。
 具体的には、車両制御部27は、算出した予測距離が予め決められた第1距離以下であるか否かを判定する。第1時間は、PCSの開始タイミングを示すための閾値であり、例えば、10mなどの値が設定される。
 第1距離以下であると判定した場合、車両制御部27は、警報装置50を制御して、警報を出力させる。予測距離が、第1距離よりも短い第2距離(例えば、5m)以下である場合、警報装置50に加えて、車両制御部27は、ブレーキ装置40を制御して、自車両CSを制動させる。予測距離が、第2距離よりも短い第3距離(例えば、1m)以下である場合、警報装置50及びブレーキ装置40に加えて、車両制御部27は、シートベルト装置60を制御し、シートベルトの引き込みなどを実施させる。
 ところで、車両前方にもレーダセンサが取り付けられる場合、車両前方に取り付けられるレーダセンサと比較して、車両後方に取り付けられるレーダセンサ31の検知角αは、広く設定されている。具体的には、図3に示すように、レーダセンサ31は、50度~140度程度の検知角αを有し、また、自車両CSから50m程度離れた距離までの範囲を検知範囲31aとしている。一方、車両前方に取り付けられるレーダセンサの場合、20度~30度程度の検知角βを有する一方、自車両CSから100m程度離れた距離までの範囲を検知範囲としていることが多い。
 運転支援ECU20は、このような検知範囲31aを有するレーダセンサ31からのレーダ検知情報を取得して、物標Obの位置Prを検出するため、ドライバにとって死角が多い自車両CSの後方において、効果的に物標Obを検知し、衝突判定を行うことができる。
 特に、後退時において、自車両CSの斜め後方から、例えば、自車両CSの後ろを横切るように走行するような他車両の位置は、認識しにくい。また、駐車場などにおいて自車両CSを駐車する場合又は駐車場から出る場合に後退させることが多いが、駐車場においては車両の速度が低速であるために車両の操舵角が大きくなりやすく、車両の動きが不規則になりやすい。この結果、駐車場などでは、ドライバの死角から他車両が旋回してくることが道路などと比較して多く、他車両の動きを把握しにくい。このため、車両後方のレーダセンサ31の検知角αを広くして、自車両CSの後退時においてPCSを実施させることは、ドライバにとって特に有用となる。
 しかしながら、検知角αを広くすることにより、不要な反射波の影響を受けて、物標Obの誤検出が生じる可能性が高くなる。誤検出が生じる状況としては、例えば、図4(a)に示すような状況が考えられる。図4(a)では、駐車場において、複数台の車両が整列して駐車されている中で、自車両CSが駐車位置から後退させる場合に、自車両CSの進行方向と直交するように通路を物標Obとしての他車両が走行する状況を示している。
 この場合、レーダセンサ31の検知角αが広いと、隣接する停止車両TSからの反射波(不要な反射波)の影響により、物標Obの位置Prが誤検出される場合がある。すなわち、停止車両TSの位置が物標Obの位置Prとして誤検出される場合がある。このような不要な反射波に基づくレーダ検知情報は、前回のレーダ検知情報と比較して急激に変化していることが多い。つまり、物標Obが不自然な位置、例えば、それまでの進行方向に沿っていない位置や前回の位置から離れた位置において誤検出されることが多い。この場合、必要なPCSが実施されない原因や、不要なPCSが実施される原因となる可能性がある。このため、不要な反射波の影響を少なくするため、レーダ検知情報の変化を抑制するようにフィルタ処理を行うことが望ましい。
 しかしながら、常にレーダ検知情報の変化を抑制すると、駐車場など、物標Obとなる車両の操舵角(旋回角度)が大きくなりやすい状況では、問題が生じる可能性がある。このような状況としては、例えば、図4(b)に示すような状況がある。図4(b)では、駐車場において、自車両CSが駐車位置から後退させる場合に、通路を走行する物標Obとしての走行車両が、自車両CSの隣に駐車するように旋回する状況を示している。
 この場合、レーダ検知情報の変化を抑制するようにフィルタ処理が行われた場合、物標Obの動きに対する応答性が悪くなる。すなわち、レーダ検知情報に基づき検出される物標Obの位置Prが、実際に変化した位置よりも抑制された位置(前回の位置に近い位置)となる、あるいは誤検出されたものであると選別されて除外(無視)される場合がある。これにより、物標Obの進路A2(破線で示す)は、実際の進路(実線で示す)に沿わず、自車両CSの後方を横切るように推定されやすくなり、衝突判定において衝突すると判定され、不要なPCSが実施されてしまう可能性がある。
 そこで、運転支援ECU20に、フィルタ処理におけるフィルタ特性を設定するフィルタ設定部28を備え、状況に応じて適切なフィルタ処理が行われるようにしている。以下、フィルタ設定部28について詳しく説明する。
 フィルタ設定部28は、フィルタ処理部22によるフィルタ処理が実行される際におけるフィルタ処理のフィルタ特性を設定する。フィルタ特性とは、レーダ検知情報の変化を抑制するなまし度合い(フィルタの強弱)のことである。フィルタのなまし度合いが大きい(フィルタ特性が強い)ほど、物標Ob以外のものからの不要な反射波の影響を抑制又は除外しやすくなり、物標Obの位置Prや進路A2の安定性が良くなる。つまり、フィルタ特性が強いほど、フィルタ処理において、変化が小さいレーダ検知情報であっても除きやすくなる、又は変化が小さくなるようにレーダ検知情報が緩和される。その反面、物標Obの位置Prや進路A2が変化しにくくなり、物標Obの動きに対する応答性が悪くなる。
 一方、フィルタのなまし度合いが小さい(フィルタ特性が弱い)ほど、物標Obの位置Prや進路A2が変化しやすくなり、物標Obの動きに対する応答性が良くなる。その反面、フィルタ処理において、物標Ob以外からの不要な反射波の影響を受けやすくなり、物標Obの位置Prや進路A2の安定性が悪くなる。つまり、フィルタ特性が弱いほど、変化が大きいレーダ検知情報であっても除外されない、又はレーダ検知情報の変化が緩和されにくくなる。具体的には、ローパスフィルタ処理においては、通過帯域を狭くすることにより、フィルタ特性が強くなる一方、通過帯域を広くすることにより、フィルタ特性が弱くなる。
 図5(a)では、物標Obとなる走行車両が旋回する場合において、フィルタ特性の違いにより物標Obの進路A2がどのように推定されるかについて具体的に説明する。フィルタ特性が弱い場合における物標Obの進路Y1(破線で示す)は、フィルタ特性が強い場合における物標Obの進路Y2(一点鎖線で示す)と比較して、物標Obの実際の進路Y0(実線で示す)に応答しやすくなる。すなわち、フィルタ特性が弱い場合、物標Obが旋回することに応じて、推定される物標Obの進路Y1も旋回方向に沿いやすくなる。その一方、フィルタ特性が強い場合、物標Obが旋回しても、推定される物標Obの進路Y2は、直進しやすくなる。
 その反面、例えば、図5(b)に示すように、物標Obが直進する場合、フィルタ特性が弱いと、物標Obの位置Prが誤検出されやすくなり、進路Y1が実際の進路Y0からずれて推定されやすい。その一方、フィルタ特性が強いと、物標Obが直進する場合、物標Obの位置Prが誤検出されにくくなり、進路Y2が実際の進路Y0からずれないように推定されやすい。
 本実施形態において、フィルタ設定部28は、次の周期におけるフィルタ処理にて利用されるフィルタ特性を、物標Obの進路上において、物標Obの位置Prを検出可能な検出可能距離に応じて設定する。ここで、検出可能距離の推定方法について説明する。
 フィルタ設定部28は、物標Obの位置Pr及び自車両CSの走行状態に基づき、検出可能距離を推定する。具体的には、図6(a)に示すように、フィルタ設定部28は、物標進路推定部24により推定された物標Obの進路A2と、自車進路推定部25により推定された自車両CSの進路A1との交点を予測衝突点D1として特定する。そして、レーダセンサ31の検知範囲31a内に予測衝突点D1が存在する場合、フィルタ設定部28は、検出された物標Obの位置Prから予測衝突点D1までの距離E1を検出可能距離として推定する。
 なお、距離E1は、自車両CSが物標Obと衝突する可能性があるタイミングまでの余裕時間又は余裕距離を特定可能な距離ともいえる。余裕時間は、物標Obの速度で距離E1を除算することにより算出可能である。また、物標Obの位置Prから予測衝突点D1までの距離E1を検出可能距離としたのは、少なくとも自車両CSと物標Obとが衝突する前まで、物標Obの位置Prを検出可能だからである。また、衝突後、物標Obの進路及び自車両CSの進路は、衝突の影響を受けるため、検出可能であるか否かは不明である。レーダセンサ31の検知範囲31aは、レーダセンサ31の検知角及び検知距離に基づき、算出される。
 ただし、図6(b)に示すように、予測衝突点D1が検知範囲31a外に存在する場合、フィルタ設定部28は、物標Obの位置Prからレーダセンサ31の検知範囲31a外となるまでの距離E2を、検出可能距離として推定する。
 また、図6(c)に示すように、物標Obの進路A2とレーダセンサ31からの探査波の送信方向とが直交する直交点D2が検知範囲31a内に存在する場合、フィルタ設定部28は、物標Obの位置Prから直交点D2までの距離E3と、物標Obの位置Prから予測衝突点D1までの距離E1とのうちより短い距離を検出可能距離として推定する。直交点D2は、レーダセンサ31の位置(すなわち、自車両CSの位置)から、物標Obの進路A2に対して垂線(破線で図示する)を引くことにより得られる物標Obの進路A2と垂線の交点である。なお、直交点D2が検知範囲31a内に存在し、予測衝突点D1が存在しない場合、フィルタ設定部28は、物標Obの位置Prから直交点D2までの距離E3を検出可能距離として推定する。
 このようにしたのは、レーダセンサ31の検知範囲31a内であっても、直交点D2に物標Obが到達した以降は、レーダセンサ31の性質上、物標Obの正面からの反射波を受信することができず、物標Obの位置Prを検出できなくなる場合があるからである。つまり、レーダセンサ31は、車両の正面からの反射波に基づき、物標Obを検出しているからである。例えば、図6(c)に示すように、直交点D2以降に物標Obが進行すると、物標Obの正面から反射波を受けることがなくなり、物標Obの位置Prを見失う場合がある。
 そして、検出可能距離の推定後、フィルタ設定部28は、推定した検出可能距離が長い場合には、短い場合と比較して、フィルタ特性を弱くするように設定する。例えば、フィルタ設定部28は、検出可能距離が所定距離以上である場合には、フィルタ特性が弱い弱フィルタを設定し、所定距離未満である場合には、フィルタ特性が弱フィルタよりも強い強フィルタを設定する。所定距離としては、例えば、PCSが実施されるタイミングを考慮して、第1距離よりも長い距離(例えば、15m)が設定される。なお、本実施形態では、強フィルタと、弱フィルタの2種類のフィルタが設定可能となっている。
 これにより、検出可能距離が所定距離以上である場合には、弱フィルタが設定される。弱フィルタが設定された場合、物標Obの実際の動きに対する応答性が良くなり、物標Obが急旋回したとしても、衝突判定の正確性が向上する。その一方、安定性が悪くなり、物標Ob以外からの不要な反射波の影響が大きくなる。しかしながら、検出可能距離が長い場合には、検出可能距離が短い場合と比較して、物標Obの位置Prを多く検出することができ、誤検出に基づく影響を修正するまでの猶予(余裕)が大きい。また、物標Obの位置Prから予測衝突点D1までの距離E1を検出可能距離とすることにより、PCSが実施されるまで距離又は時間に余裕がある。このため、弱フィルタが設定されることにより誤検出による影響を受けても、その後に誤検出に基づく影響が修正されることを期待することができる。
 さらに、検出可能距離が所定距離未満である場合には、強フィルタが設定される。強フィルタが設定された場合、安定性が良くなる。したがって、物標Ob以外からの不要な反射波の影響が抑制され、衝突判定の正確性が向上する。
 その一方、強フィルタが設定された場合、物標Obの動きに対する応答性が悪くなる。しかしながら、物標Obの位置Prから予測衝突点D1までの距離E1を検出可能距離としている場合、検出可能距離が所定距離未満である際には、PCSを実施させるまでの猶予(余裕)が小さい可能性が高い。このため、強フィルタが設定されることにより、応答性が悪かったとしても、PCSを実施させるまでの猶予がないため、ずれが大きくなることはないと予想される。また、物標Obの進路A2は、履歴情報に基づき、複数周期において検出された位置Prによって推定されるものである。このため、フィルタ特性を強くして応答性が悪くなったとしても、所定距離以上の場合(応答性の良い時)における物標Obの位置Prも考慮して物標Obの進路A2を決定することにより、ずれが小さくなると考えられる。以上により、物標Obが急旋回したとしても、衝突判定の正確性が低下することが抑えられると考えられる。
 なお、物標Obの進路A2と、自車両CSの進路A1が交わらない場合、弱フィルタが設定される。これにより、急旋回したとしても物標Obの動きに応答し、適切な衝突判定を行うことが可能となる。また、初期状態では、弱フィルタが設定される。
 そして、運転支援ECU20は、PCSを実施させるため、衝突判定処理を所定周期(例えば、80ms)ごとに実行する。以下、図7に基づき、衝突判定処理について説明する。
 運転支援ECU20は、レーダセンサ31から入力されたレーダ検知情報を取得する(ステップS101)。また、運転支援ECU20は、車速センサ32から自車両CSの車速を示す情報を取得し、操舵角センサ33から操舵角を示す情報を取得する。また、運転支援ECU20は、変速装置70からシフトポジションを示す情報を取得する。
 運転支援ECU20は、Rポジションであるか否かを判定する(ステップS102)。Rポジションでない場合(ステップS102:No)、運転支援ECU20は、衝突判定処理を終了する。
 一方、Rポジションである場合(ステップS102:Yes)、運転支援ECU20は、レーダ検知情報をフィルタ処理する(ステップS103)。このとき、フィルタ処理において利用されるフィルタ特性は、前回の周期において設定されたものである。なお、前回の周期においてフィルタ特性が設定されていない場合には、フィルタ特性は初期状態(弱フィルタ)である。
 そして、運転支援ECU20は、フィルタ処理によりレーダ検知情報を得られた場合、フィルタ処理されたレーダ検知情報に基づき、物標Obの位置Prを検出する(ステップS104)。また、運転支援ECU20は、検出した位置Prは、履歴情報に記録する。
 運転支援ECU20は、履歴情報として記憶されている位置Prの変化に基づいて、物標Obの進路A2を推定する(ステップS105)。また、運転支援ECU20は、操舵角等に基づき、自車両CSの進路A1を推定する(ステップS106)。次に、運転支援ECU20は、前述したように、検出可能距離を推定し、検出可能距離に基づき、次の周期におけるフィルタ特性を設定する(ステップS107)。具体的には、運転支援ECU20は、検出可能距離が所定距離以上である場合には、フィルタ特性が弱い弱フィルタを設定し、所定距離未満である場合には、フィルタ特性が弱フィルタよりも強い強フィルタを設定する。なお、検出可能距離を推定する際、前述したように、運転支援ECU20は、物標Obの進路A2と、自車両CSの進路A1との交点(予測衝突点D1)を特定する。また、運転支援ECU20は、物標Obの進路A2と、自車両CSの進路A1が交わらない場合、弱フィルタを設定する。
 次に、運転支援ECU20は、推定された物標Obの進路A2と自車両CSの進路A1とに基づいて、自車両CSと物標Obとの衝突判定を実行する(ステップS108)。具体的には、運転支援ECU20は、ステップS107において物標Obの進路A2と自車両CSの進路A1とが交差する交点(予測衝突点D1)を特定できた場合、自車両CSと物標Obとが衝突する可能性があると判定する。衝突可能性がないと判定した場合(ステップS108:No)、運転支援ECU20は、衝突判定処理を終了する。
 また、運転支援ECU20は、衝突する可能性があると判定した場合(ステップS108:Yes)、自車両CSからステップS107において特定した予測衝突点D1までの距離(予測距離)を算出する(ステップS109)。
 また、運転支援ECU20は、算出した予測距離が予め決められた第1距離以下であるか否かを判定する(ステップS110)。第1距離以下でないと判定された場合(ステップS110:No)、運転支援ECU20は、衝突判定処理を終了する。
 第1距離以下であると判定した場合(ステップS110:Yes)、運転支援ECU20は、予測距離に応じて警報装置50、ブレーキ装置40、及びシートベルト装置60を制御することで、PCSを実施させる(ステップS111)。そして、衝突判定処理を終了する。このように、運転支援ECU20が、衝突判定処理を実行することにより、衝突判定方法を実行することとなる。
 上記構成により、以下の効果を奏する。
 検出可能時間又は検出可能距離が長い場合には、短い場合と比較して、物標Obの位置Prの検出回数を多くすることが可能となる。そして、位置Prの検出回数が多くなれば、物標Obの進路A2が修正されることが期待できる。物標Obの進路A2が修正されることが期待できるのであれば、物標Obの進路A2における望ましい応答性と安定性は異なる。したがって、物標Obの位置Prが検出可能な検出可能距離に応じて、物標Obの進路A2の望ましい応答性と安定性は異なる。そこで、運転支援ECU20は、検出可能距離に応じて、フィルタ特性を設定した。
 すなわち、検出可能距離が所定距離以上であるか否かにより、フィルタ特性を異ならせた。これにより、実際の進路が急激に変化したとしても、検出可能距離が所定距離以上である場合に、フィルタ特性が弱くなるため、物標Obの実際の動きに物標Obの進路A2を応答させることができる。また、不要な反射波を入力したとしても、検出可能距離が所定距離未満である場合に、フィルタ特性が強くなるため、物標Obの進路A2が安定する。したがって、状況によってフィルタ特性を変えて、衝突判定の正確性が向上させることができる。また、この物標Obの進路A2を利用して予測距離を算出することにより、PCSを適切なタイミングで実施させることができる。
 フィルタ特性を弱くする場合(なまし度合いが小さい場合)、応答性が良くなる。このため、物標Obが急に進行方向を変化させても、物標Obの進路A2をそれに合わせて変化させることができる。このため、運転支援ECU20は、検出可能距離が長い場合には短い場合と比較して、なまし度合いが小さくなるようにフィルタ特性を設定することとした。これにより、より適切にフィルタ特性を設定することができ、衝突判定の正確性を向上させることができる。なお、フィルタ特性を弱くすると、安定性が悪くなり、不要な反射波の影響を受けやすくなるが、検出可能距離が長いため、修正されることが期待される。このため、検出可能距離が長い場合にフィルタ特性を弱くしても、不要な反射波の影響により、衝突判定の正確性が低下することを抑制できる。
 フィルタ特性を強くする場合(なまし度合いが大きい場合)、安定性が良くなる。このため、運転支援ECU20は、検出可能距離が短い場合、なまし度合いが大きくなるようにフィルタ特性を設定することにより、不要な反射波の影響を抑え、誤検出を抑制することができる。これにより、より適切にフィルタ特性を設定することができ、衝突判定の正確性を向上させることができる。また、PCSを適切なタイミングで実施させることができる。
 なお、フィルタ特性を強くして、応答性が悪くなったとしても、所定距離以上のときには、応答性をよくしており、所定距離以上のときの物標Obの位置Prも考慮して物標Obの進路A2が決定される。このため、所定距離未満の場合に、フィルタ特性を強くしても、衝突判定における正確性が低下することを抑制できる。
 運転支援ECU20は、今回の周期において推定された自車両CSの進路A1と、今回の周期において推定された物標Obの進路A2との交点である予測衝突点D1を特定し、物標Obから予測衝突点D1までの距離E1に応じて検出可能距離を特定した。そして、運転支援ECU20は、特定した検出可能距離に基づき、次以降の周期におけるフィルタ特性を設定した。このため、PCSが実施されるまでの距離又は時間を考慮して、より適切にフィルタ特性を設定することができ、衝突判定の正確性を向上させることができる。また、PCSを適切なタイミングで実施させることができる。
 運転支援ECU20は、特定した予測衝突点D1が検知範囲31a外に存在する場合、物標Obの位置Prから検知範囲31a外となるまでの距離E2に応じて検出可能距離を特定した。このため、より適切にフィルタ特性を設定することができ、衝突判定の正確性を向上させることができる。また、PCSを適切なタイミングで実施させることができる。
 運転支援ECU20は、物標Obの進路A2と、探査波の送信方向とが直交する直交点D2がレーダセンサ31の検知範囲31a内に存在する場合、物標Obの位置Prから直交点D2までの距離E3と、物標Obの位置Prから予測衝突点D1までの距離E1とのうちより短い距離を検出可能距離とした。これにより、物標Obの位置Prを実質的に検出可能な検出可能距離を特定することができる。したがって、より適切にフィルタ特性を設定することができ、衝突判定の正確性を向上させることができる。また、PCSを適切なタイミングで実施させることができる。
 物標Obと自車両CSとが衝突するまでの予測距離が第1距離(閾値)以下となった場合に、PCS(車両制御)が行わるようにした。これにより、第1距離未満となるまで、物標Obの進路A2のずれを修正することが可能となり、不要なPCSが行われることを抑制することができる。
 (他の実施形態)
 本開示は、上記実施形態に限定されず、例えば以下のように実施してもよい。なお、以下では、各実施形態で互いに同一又は均等である部分には同一符号を付しており、同一符号の部分についてはその説明を援用する。
 ・フィルタ設定部28は、自車両CSから予測衝突点D1までの距離に応じて検出可能距離を特定してもよい。
 ・レーダセンサ31にフィルタ処理を実行させてもよい。すなわち、レーダセンサ31にフィルタ処理部22を備えてもよい。この場合、運転支援ECU20は、フィルタ設定部28により設定されたフィルタ特性をレーダセンサ31に通知し、レーダセンサ31にフィルタ特性を設定させる必要がある。
 ・フィルタ設定部28は、検出可能距離を推定したが、検出可能時間を推定してもよい。具体的には、フィルタ設定部28は、検出可能距離を算出した後、検出可能距離を物標Obの速度で除算することにより、検出可能時間を推定してもよい。この場合、フィルタ設定部28は、検出可能時間に応じてフィルタ特性を設定すればよい。例えば、フィルタ設定部28は、検出可能時間が所定時間以上であるか否かにより、フィルタ特性を設定してもよい。つまり、フィルタ設定部28は、検出可能時間が10秒以上である場合には、弱フィルタを設定し、検出可能時間が10秒未満である場合には、強フィルタを設定するようにしてもよい。
 ・フィルタ設定部28は、自車両CSと物標Obとの距離(車間距離)を、検出可能距離として推定してもよい。また、車間距離を相対速度で除算した時間を、検出可能時間として推定してもよい。
 ・上記実施形態において、探査装置として、ミリ波レーダ装置を採用したが、音波を用いて物体(物標)を探知及び測距するソナーを採用してもよい。
 ・上記実施形態では、操舵角センサ33により検出された操舵角を用いて、自車両CSの進路を推定したが、操舵角センサ33の代わりにヨーレートセンサを用いて、ヨーレートと車速に基づき、自車両CSの進路を推定してもよい。
 ・自車両CSの前方における物標Obに対してPCSを実施するために、PCSS100を採用してもよい。
 ・フィルタ設定部28は、2種類のフィルタを設定可能に構成されていたが、検出可能距離に応じて、3種類以上のフィルタを設定可能に構成されていてもよい。
 ・車両制御部27は、予測距離の代わりに、自車両CSと物標Obが衝突するまでの衝突余裕時間(TTC)を算出してもよい。衝突余裕時間は、物標Obとの距離(車間距離)を物標Obとの相対速度で除算することにより算出される。そして、車両制御部27は、衝突余裕時間に応じて、PCSを実施させてもよい。
 ・運転支援ECU20は、物標Obの進路A2と、自車両CSの進路A1が交わらない場合、弱フィルタを設定したが、物標Obの位置Prから検知範囲外となるまでの距離を検出可能距離として、フィルタ特性を設定してもよい。この場合、物標Obの進路A2と探査波の送信方向とが直交する直交点D2が検知範囲31a内に存在する場合、フィルタ設定部28は、物標Obの位置Prから直交点D2までの距離を検出可能距離として推定してもよい。
 ・フィルタ設定部28は、前回周期において推定された物標Obの進路A2及び自車両CSの進路A1に基づき、検出可能距離又は検出可能時間を推定し、推定した検出可能距離又は検出可能時間に応じて、今回の周期におけるフィルタ特性を設定するようにしてもよい。この場合、運転支援ECU20は、衝突判定処理において、レーダ検知情報を取得する前(ステップS101の前)に、フィルタ特性を設定することが望ましい。
 ・上記実施形態において、フィルタ設定部28は、常に、物標Obの位置Prから予測衝突点D1までの距離E1を検出可能距離として推定してもよい。すなわち、予測衝突点D1が検知範囲31a外に存在する場合や、直交点D2が検知範囲31a内に存在する場合であっても、物標Obの位置Prから予測衝突点D1までの距離E1を検出可能距離として推定してもよい。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (8)

  1.  探査波を送信し、物標により反射された反射波を受信する探査装置(31)からその反射波に基づく検知情報を取得する取得部(21)と、
     前記検知情報がフィルタ処理される際における当該フィルタ処理のフィルタ特性を設定する設定部(28)と、
     前記フィルタ処理された前記検知情報を利用して、前記物標の位置を検出する物標情報検出部(23)と、
     前記物標情報検出部により検出された前記物標の位置の変化に基づき、前記物標の進路を推定する物標進路推定部(24)と、
     自車両の進路を推定する自車進路推定部(25)と、
     前記物標進路推定部により推定された前記物標の進路と、前記自車進路推定部により推定された自車両の進路に基づき、自車両と前記物標との衝突判定を実行する衝突判定部(26)と、を備え、
     前記設定部は、前記物標の位置と自車両の走行状態とに基づいて、前記物標の進路上において前記物標の位置を検出可能な検出可能時間又は検出可能距離を推定し、推定した前記検出可能時間又は前記検出可能距離に応じて、前記フィルタ特性を設定する衝突判定装置(20)。
  2.  前記フィルタ処理は、前記検知情報の変化を抑制するなまし処理であり、
     前記設定部は、前記検出可能時間又は前記検出可能距離が短い場合には、長い場合と比較して、前記検知情報の変化を抑制するなまし度合いが大きくなるように前記フィルタ特性を設定する請求項1に記載の衝突判定装置。
  3.  前記取得部は、前記探査装置から自車両の後方における前記物標の検知情報を取得するものであり、
     前記自車進路推定部は、自車両が後退する場合に、自車両の進路を推定する請求項1又は2に記載の衝突判定装置。
  4.  前記取得部は、所定周期ごとに前記検知情報を取得するように構成され、
     前記設定部は、前記自車進路推定部により今回の周期において推定された前記自車両の進路と、前記物標進路推定部により今回の周期において推定された前記物標の進路との交点である予測衝突点を特定し、今回の周期において検出された前記物標の位置から前記予測衝突点までの距離に応じて前記検出可能時間又は前記検出可能距離を推定し、推定した前記検出可能時間又は前記検出可能距離に基づき、次以降の周期におけるフィルタ特性を設定する請求項1~3のうちいずれか1項に記載の衝突判定装置。
  5.  前記探査装置による前記物標の検知範囲は、あらかじめ定められており、
     前記設定部は、特定した前記予測衝突点が前記検知範囲外に存在する場合、前記物標の位置から前記検知範囲外となるまでの距離に応じて前記検出可能距離又は前記検出可能時間を推定する請求項4に記載の衝突判定装置。
  6.  前記探査装置による前記物標の検知範囲は、あらかじめ定められており、
     前記設定部は、前記物標の進路と、前記探査装置からの探査波の送信方向とが直交する直交点が前記検知範囲内に存在する場合、前記物標の位置から前記直交点までの距離と、前記物標の位置から前記予測衝突点までの距離とのうちより短い距離に応じて前記検出可能距離又は前記検出可能時間を推定する請求項4又は5に記載の衝突判定装置。
  7.  自車両の車両制御を実行させる車両制御部(27)を備え、
     前記車両制御部は、自車両と前記物標とが衝突すると判定された場合であって、前記物標と自車両とが衝突するまでの距離又は時間が閾値以下となった場合に、前記車両制御を実行させる請求項1~6のうちいずれか1項に記載の衝突判定装置。
  8.  探査波を送信し、物標により反射された反射波を受信する探査装置からその反射波に基づく検知情報を取得するステップ(S101)と、
     前記検知情報がフィルタ処理される際における当該フィルタ処理のフィルタ特性を設定するステップ(S107)と、
     前記フィルタ処理された前記検知情報を利用して、前記物標の位置を検出するステップ(S104)と、
     検出された前記物標の位置の変化に基づき、前記物標の進路を推定するステップ(S105)と、
     自車両の進路を推定するステップ(S106)と、
     推定された前記物標の進路と、推定された自車両の進路に基づき、自車両と前記物標とが衝突するか否かを判定するステップ(S108)と、を含み、
     前記フィルタ特性を設定するステップにおいて、前記物標の位置と自車両の走行状態とに基づいて、前記物標の進路上において前記物標の位置を検出可能な検出可能時間又は検出可能距離を推定し、推定した前記検出可能時間又は前記検出可能距離に応じて、前記フィルタ特性を設定する衝突判定方法。
PCT/JP2017/039080 2016-11-17 2017-10-30 衝突判定装置、及び衝突判定方法 WO2018092565A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780070972.XA CN109997055B (zh) 2016-11-17 2017-10-30 碰撞判定装置以及碰撞判定方法
DE112017005802.3T DE112017005802T5 (de) 2016-11-17 2017-10-30 Kollisionsbestimmungsapparat und Kollisionsbestimmungsverfahren
US16/461,261 US11340348B2 (en) 2016-11-17 2017-10-30 Collision determination apparatus and collision determination method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016224529A JP6595966B2 (ja) 2016-11-17 2016-11-17 衝突判定装置、及び衝突判定方法
JP2016-224529 2016-11-17

Publications (1)

Publication Number Publication Date
WO2018092565A1 true WO2018092565A1 (ja) 2018-05-24

Family

ID=62145291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039080 WO2018092565A1 (ja) 2016-11-17 2017-10-30 衝突判定装置、及び衝突判定方法

Country Status (5)

Country Link
US (1) US11340348B2 (ja)
JP (1) JP6595966B2 (ja)
CN (1) CN109997055B (ja)
DE (1) DE112017005802T5 (ja)
WO (1) WO2018092565A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6717240B2 (ja) * 2017-03-08 2020-07-01 株式会社デンソー 物標検出装置
JP2020091672A (ja) * 2018-12-06 2020-06-11 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 鞍乗型車両のライダー支援システムのための処理装置及び処理方法、鞍乗型車両のライダー支援システム、及び、鞍乗型車両
US11735051B2 (en) * 2020-03-27 2023-08-22 Toyota Research Institute, Inc. Detection of bicyclists near ego vehicles
JP7415846B2 (ja) * 2020-08-11 2024-01-17 株式会社デンソー 物体検出装置および物体検出方法
JP7472816B2 (ja) * 2021-02-12 2024-04-23 トヨタ自動車株式会社 注意喚起装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0640270A (ja) * 1992-06-22 1994-02-15 Fujitsu Ten Ltd 車間距離制御装置
JP2001183451A (ja) * 1999-12-24 2001-07-06 Denso Corp レーダ装置
US20050004719A1 (en) * 2003-06-10 2005-01-06 Daimlerchrysler Ag Device and method for determining the position of objects in the surroundings of a motor vehicle
JP2007317018A (ja) * 2006-05-26 2007-12-06 Toyota Motor Corp 衝突判定装置
JP2009059082A (ja) * 2007-08-30 2009-03-19 Honda Motor Co Ltd 車両用物体検知装置
JP2009168624A (ja) * 2008-01-16 2009-07-30 Toyota Motor Corp 物体速度検出装置
WO2010073292A1 (ja) * 2008-12-22 2010-07-01 トヨタ自動車株式会社 レーダ装置、及び当該レーダ装置において用いられる測定方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3411369B2 (ja) * 1994-03-28 2003-05-26 マツダ株式会社 車両の障害物検知装置および安全装置
US7124027B1 (en) * 2002-07-11 2006-10-17 Yazaki North America, Inc. Vehicular collision avoidance system
DE102005011241A1 (de) * 2005-03-11 2006-09-14 Robert Bosch Gmbh Verfahren und Vorrichtung zur Kollisionswarnung
US7797108B2 (en) * 2006-10-19 2010-09-14 Gm Global Technology Operations, Inc. Collision avoidance system and method of aiding rearward vehicular motion
JP2008190964A (ja) * 2007-02-02 2008-08-21 Omron Corp 測定装置および方法
JP4978494B2 (ja) * 2008-02-07 2012-07-18 トヨタ自動車株式会社 自律移動体、及びその制御方法
JP2014227000A (ja) * 2013-05-21 2014-12-08 日本電産エレシス株式会社 車両制御装置、その方法およびそのプログラム
JP6138655B2 (ja) * 2013-10-10 2017-05-31 日立オートモティブシステムズ株式会社 車両の運動制御装置
CN104943605B (zh) * 2014-03-27 2017-10-13 启碁科技股份有限公司 用于交通工具的警示系统及警示方法
US9841768B2 (en) * 2014-03-28 2017-12-12 Yanmar Co., Ltd. Autonomous travelling service vehicle
JP2016224529A (ja) 2015-05-27 2016-12-28 株式会社リコー 仲介装置および機器管理システム
US10745003B2 (en) * 2015-11-04 2020-08-18 Zoox, Inc. Resilient safety system for a robotic vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0640270A (ja) * 1992-06-22 1994-02-15 Fujitsu Ten Ltd 車間距離制御装置
JP2001183451A (ja) * 1999-12-24 2001-07-06 Denso Corp レーダ装置
US20050004719A1 (en) * 2003-06-10 2005-01-06 Daimlerchrysler Ag Device and method for determining the position of objects in the surroundings of a motor vehicle
JP2007317018A (ja) * 2006-05-26 2007-12-06 Toyota Motor Corp 衝突判定装置
JP2009059082A (ja) * 2007-08-30 2009-03-19 Honda Motor Co Ltd 車両用物体検知装置
JP2009168624A (ja) * 2008-01-16 2009-07-30 Toyota Motor Corp 物体速度検出装置
WO2010073292A1 (ja) * 2008-12-22 2010-07-01 トヨタ自動車株式会社 レーダ装置、及び当該レーダ装置において用いられる測定方法

Also Published As

Publication number Publication date
US11340348B2 (en) 2022-05-24
JP6595966B2 (ja) 2019-10-23
JP2018081034A (ja) 2018-05-24
CN109997055A (zh) 2019-07-09
DE112017005802T5 (de) 2019-09-12
CN109997055B (zh) 2022-11-08
US20190271777A1 (en) 2019-09-05

Similar Documents

Publication Publication Date Title
WO2018092565A1 (ja) 衝突判定装置、及び衝突判定方法
JP6574407B2 (ja) 車両制御装置、及び車両制御方法
WO2018092566A1 (ja) 衝突判定装置、及び衝突判定方法
JP6561584B2 (ja) 車両制御装置、及び車両制御方法
US9594166B2 (en) Object detecting apparatus
US10436900B2 (en) Object detection apparatus
US11414074B2 (en) Driving support device
JP6609237B2 (ja) 衝突判定装置、及び衝突判定方法
US20190263344A1 (en) Vehicle control device
JP2007317018A (ja) 衝突判定装置
WO2016158726A1 (ja) 物体検知装置、及び物体検知方法
WO2017145845A1 (ja) 衝突予測装置
EP2916306B1 (en) Collision avoidance assist device and collision avoidance assist method
WO2017183668A1 (ja) 車両制御装置、車両制御方法
JP2011123535A (ja) 障害物検出装置
US20230166730A1 (en) Vehicle control device
JP5071885B2 (ja) 車両の障害物検知装置
JP6462610B2 (ja) 横断判定装置
WO2021070882A1 (ja) 制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872476

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17872476

Country of ref document: EP

Kind code of ref document: A1