WO2018092395A1 - 電気脱イオン装置及び脱イオン水の製造方法 - Google Patents

電気脱イオン装置及び脱イオン水の製造方法 Download PDF

Info

Publication number
WO2018092395A1
WO2018092395A1 PCT/JP2017/032787 JP2017032787W WO2018092395A1 WO 2018092395 A1 WO2018092395 A1 WO 2018092395A1 JP 2017032787 W JP2017032787 W JP 2017032787W WO 2018092395 A1 WO2018092395 A1 WO 2018092395A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
exchange resin
water
ion exchange
concentration
Prior art date
Application number
PCT/JP2017/032787
Other languages
English (en)
French (fr)
Inventor
加藤 晃久
中馬 高明
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to JP2017549109A priority Critical patent/JPWO2018092395A1/ja
Publication of WO2018092395A1 publication Critical patent/WO2018092395A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/48Apparatus therefor having one or more compartments filled with ion-exchange material, e.g. electrodeionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Definitions

  • the present invention relates to an electrodeionization apparatus and a method for producing deionized water using the same, and more particularly to an electrodeionization apparatus capable of highly removing boron and a method for producing deionized water using the same.
  • an ultrapure water production apparatus for producing ultrapure water used in the electronic industry field such as semiconductors from raw water such as city water, groundwater, and industrial water is basically a pretreatment device, a primary pure water device and a primary water. It consists of a secondary pure water device for treating pure water.
  • the pretreatment apparatus is composed of agglomeration, levitation, filtration, and a turbidity removal membrane apparatus.
  • the primary pure water device is generally composed of one or more devices selected from an activated carbon adsorption tower, an ultraviolet (UV) oxidation device, a chemical oxidation device, a degassing device, and the like, and a desalting device.
  • the apparatus generally comprises a one-stage or two-stage reverse osmosis membrane (RO membrane) apparatus and an electrodeionization apparatus or a regenerative mixed-bed or multilayer ion exchange apparatus.
  • the secondary pure water apparatus is composed of a low-pressure UV oxidizer, a non-regenerative mixed bed ion exchanger, and an ultrafiltration (UF) membrane device.
  • ionic components in the raw water are removed by an RO membrane device, an electrodeionization device or an ion exchange device such as a mixed bed type, and fine particles are removed by an RO membrane device and a UF membrane device. Is done.
  • an electrodeionization device having a high boron removal rate for example, “KCDI-UPz” manufactured by Kurita Kogyo Co., Ltd.) (product) Name)
  • the boron removal rate is about 99.9%.
  • the boron concentration of the treated water (deionized water) obtained will be only 10 ng / L, and it is difficult to make a boron concentration below 3 g / L only by these combinations. There is a point.
  • an electrodeionization apparatus a plurality of cation exchange membranes and anion exchange membranes are alternately arranged between a cathode and an anode, and compartments are formed by these cation exchange membranes and anion exchange membranes to alternate between a desalting chamber and a concentration chamber.
  • the desalting chamber and the concentrating chamber are filled with an ion exchange resin. Therefore, in order to obtain high purity ultrapure water having a boron concentration of 3 ng / L or less, it is only necessary to promote the ion movement speed in the electrodeionization apparatus. For this purpose, it is sufficient to apply as much current as possible to the electrodeionization apparatus, but at the same time, the voltage also rises, so that there is a problem that the life of the apparatus is shortened.
  • This invention is made
  • the present invention provides a concentration chamber formed alternately by arranging a plurality of cation exchange membranes and anion exchange membranes between a cathode and an anode, and the cathode and the anode. And a desalting chamber, wherein the desalting chamber and the concentrating chamber are filled with an ion exchange resin, and a concentrated water passage means for passing the condensate through the concentrating chamber; And a means for extracting deionized water by passing treated water, wherein the concentrated water passing means passes the deionized water that has passed through the demineralization chamber as concentrated water.
  • An electrodeionization apparatus is provided in which the ion exchange resin filled in the demineralization chamber is a core-shell type ion exchange resin (Invention 1).
  • invention 1 when an electric current is applied between the cathode and the anode during operation of the electrodeionization apparatus, the anion component is on the anode side and the cation component is on the cathode side via the ion exchange resin in the demineralization chamber. It moves, permeates through the ion exchange membrane, and is discharged to the concentration chamber side. At this time, normally, an anion component and a cation component are accumulated in the central portion of the ion exchange resin though a trace amount when passing through the ion exchange resin. Therefore, in the invention 1, a core-shell type ion exchange resin is used as the ion exchange resin.
  • the core-shell type ion exchange resin has an ion exchange function only on the shell (surface layer) side and the core (center part) is inactive, the anion component and cation component do not pass through the core of the ion exchange resin. Since only the side is propagated and moved, the moving speed of the ion component is increased. This increases the ion removal rate, and as a result, the boron removal rate can also be improved.
  • the thickness of the desalting chamber is preferably 5 to 30 mm (Invention 2).
  • the thickness of the desalting chamber is about this level, the time required for the ion component to move to the cation exchange membrane or anion exchange membrane can be shortened, so that it is difficult to remove boron and the like.
  • the removal rate of ionic components can be increased.
  • the said concentrated water flow means is a part which flows a part of deionized water which flowed through the said demineralization chamber as concentrated water by counterflow ( Invention 3).
  • the difference in the concentration gradient of ions in the demineralization chamber and the concentration chamber of the electrodeionization apparatus can be alleviated, so that the boron removal rate can be further improved.
  • the ion exchange resin filled in the desalting chamber is a mixed resin of an anion exchange resin and a cation exchange resin, and the ratio of the anion exchange resin is 60 to 80% by weight (drying).
  • (State) is preferable (Invention 4).
  • the second aspect of the present invention also provides a method for producing deionized water in which water to be treated is passed through the demineralization chamber of the electrodeionization apparatus according to any one of the first to fourth aspects of the present invention, deionized and discharged ( Invention 5).
  • the anion component when an electric current is applied between the cathode and the anode during operation of the electrodeionization apparatus, the anion component is on the anode side and the cation component is on the cathode side via the ion exchange resin in the demineralization chamber. It moves, permeates through the ion exchange membrane, and is discharged to the concentration chamber side. At this time, normally, an anion component and a cation component are accumulated in the central portion of the ion exchange resin though a trace amount when passing through the ion exchange resin.
  • the anion component and the cation component pass through the core of the ion exchange resin. Therefore, the ion component moves faster because it propagates and moves only on the surface layer side. Thereby, the removal rate of ions is increased, and as a result, high-purity deionized water from which boron is highly removed can be obtained.
  • water to be treated is passed through the desalting chamber, and a part of the outflow water from the desalting chamber is passed through the concentrating chamber in a direction opposite to the water passing direction of the desalting chamber. It is preferable to drain the water and discharge the remainder as treated water (Invention 6).
  • the disparity of the ion concentration gradient in the demineralization chamber and the concentration chamber of the electrodeionization apparatus can be alleviated, so that the boron removal rate of the deionized water obtained can be further improved. Can do.
  • the core-shell type ion exchange resin is filled in the demineralization chamber of the electrodeionization apparatus, so that the moving speed of the ion component in the ion exchange resin is increased, so that boron can be highly removed. It is possible to obtain deionized water having a boron concentration of 3 ng / L or less.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of an electrodeionization apparatus according to an embodiment of the present invention.
  • an electrodeionization apparatus 1 includes a plurality of cation exchange membranes 2 and anion exchange membranes 3 that are spaced apart from each other and arranged in a space formed by the cation exchange membrane 2 and the anion exchange membrane 3.
  • a plurality of desalting chambers 5 and concentration chambers 6 for flowing concentrated water are alternately formed by filling the resins 4 respectively.
  • the ion exchange resin filled in the concentration chamber 6 is omitted for convenience.
  • the concentration chamber 6 receives and discharges ions moving from the desalting chamber 5 through the ion exchange membranes.
  • the desalting chamber 5 and the concentration chamber 6 are disposed between the anode 7 and the cathode 8, and an anode chamber 9 and a cathode chamber 10 are formed inside the anode 7 and the cathode 8, respectively.
  • the anode chamber 9 and the cathode chamber 10 are usually partitioned by the cation exchange membrane 2 or the anion exchange membrane 3.
  • an inflow line 11 for the water to be treated W is provided on the upper side of each demineralization chamber 5, while treated water (deionized water) is provided on the lower side of each demineralization chamber 5.
  • the outflow line 12 of W1 is connected.
  • an inflow line 13 for concentrated water W2 is provided on the lower side of each concentration chamber 6 in the figure, while a discharge line 14 for concentrated waste water W3 is connected to the upper side of each concentration chamber 6 in the figure.
  • symbols 15 and 16 are the inflow line and discharge line of the electrode water W4, respectively.
  • a water flow means for passing the treated water W through the demineralization chamber 5 and taking out the treated water (deionized water) W ⁇ b> 1, and the concentrated water W ⁇ b> 2 in the concentration chamber 6.
  • Concentrated water passage means for passing water is provided, and in this embodiment, the concentrated water W2 is introduced into the concentration chamber 6 from the side of the desalting chamber 5 close to the outlet of the treated water W1.
  • the concentrated water W2 is introduced into the concentrating chamber 6 from the opposite direction to the flow direction of the treated water W in the desalting chamber 5 and discharged from the side close to the inlet of the desalting chamber 5 to discharge the concentrated waste water W3. It is the composition to do.
  • a part of the treated water W1 obtained from the desalting chamber 5 is introduced into the concentration chamber 6 and the anode chamber 9.
  • the concentrated water W2 having a reduced ion concentration is circulated using the treated water W1 as the concentrated water W2.
  • the thickness of the demineralization chamber 5 is preferably 5 to 30 mm.
  • the thickness of the desalting exceeds 30 mm, the boron removal efficiency decreases.
  • the thickness is less than 5 mm, not only the number of anion exchange membranes or cation exchange membranes increases, but also the ion exchange resin becomes difficult to be filled. This is not preferable because the productivity of 1 is greatly reduced.
  • the core-shell type ion exchange resin (anion exchange resin) 21 in this embodiment includes a central part (core) 22 made of inert ions and a surface layer part having ion exchange ability formed on the outside thereof. (Shell) 23.
  • a core-shell type ion exchange resin for example, a resin having a structure such as “Purolite (registered trademark) SST” series manufactured by Purolite Co., Ltd. can be used.
  • the ratio of the anion exchange resin to the cation exchange resin of the ion exchange resin filled in the desalting chamber 5 is 60:40 to 90:10, particularly 60:40 to 80:20 (dry weight ratio). If the ratio of the anion exchange resin exceeds 90% by volume, the removal rate of the cation component in the treated water W1 decreases. On the other hand, when the ratio of the anion exchange resin is less than 60% by volume, the removal rate of weak anions such as boron (borate ions) and silica is lowered.
  • This ion exchange resin does not need to be the same ratio in the whole area of the desalting chamber 5, and may be different on the inlet side and the outlet side with respect to the water flow direction of the desalting chamber 5.
  • the ratio of anion exchange resin: cation exchange resin is 70:30 to 80:20 and anion exchange is performed.
  • a large amount of resin may be blended, and the ratio of anion exchange resin: cation exchange resin may be 40:60 to 60:40, particularly 50:50 to 60:40, on the outlet side thereafter.
  • the cation exchange resin among the ion exchange resins filled in the desalting chamber 5 may be one that has been conditioned (washed) in advance so that the TOC elution amount is 1 ppb or less.
  • an acid cleaning process for example, an acid extrusion process using ultrapure water, a warm water cleaning process using warm ultrapure water, a finishing process using ultrapure water, and the like under appropriate conditions (concentration, concentration, etc.) so that the TOC elution amount is 1 ppb or less.
  • Time and flow rate may be performed sequentially.
  • An anion exchange resin that has been conditioned (washed) in advance so that the TOC elution amount is 1 ppb or less can also be used by conditioning (washing).
  • the ratio of the anion exchange resin and the cation exchange resin of the ion exchange resin filled in the concentration chamber 6 is not particularly limited, but it is preferable that both are equivalent or the cation exchange resin is increased to some extent.
  • the ratio of the cation exchange resin may be 40:60 to 70:30, particularly 50:50 to 70:30 (dry weight ratio) by volume.
  • the manufacturing method of the deionized water by the electrodeionization apparatus 1 which has the above structures is demonstrated.
  • the water to be treated W such as RO treated water is treated by the electrodeionization apparatus 1.
  • the electrodeionization apparatus 1 is operated at a current density of 500 mA / dm 2 or more.
  • the operation is preferably performed at a current density of 800 mA / dm 2 or more.
  • the water to be treated W is introduced into the desalting chamber 5, and treated water (deionized water) W ⁇ b> 1 is obtained from the desalting chamber 5.
  • a part (for example, about 10 to 35%) of this treated water W1 is passed through the concentration chamber 6 as a concentrated water W2 in a countercurrent and transient manner in a direction opposite to the direction of water flow through the desalting chamber 5.
  • Water is discharged and the concentrated waste water W3 is discharged from the concentration chamber 6 to the outside of the system.
  • the concentration chambers 6 and the desalting chambers 5 are alternately arranged in parallel, and the removal side of the treated water W1 in the desalting chamber 5 serves as the inlet of the concentration chamber 6 and the desalting chamber 5
  • the raw water inflow side is the outlet of the concentration chamber 6.
  • a part of the treated water (deionized water) W1 is supplied to the inlet side of the anode chamber 9, and the outflow water of the anode chamber 9 is supplied to the inlet side of the cathode chamber 9,
  • the effluent is discharged out of the system as wastewater.
  • the treated water W1 is passed through the concentration chamber 6 as the concentrated water W2 in a countercurrent and transient manner with respect to the desalting chamber 5, so that the concentrated water W2 in the concentration chamber 6 is closer to the desalting chamber 5 on the take-out side. Since the concentration of ions therein is low, the influence on the desalting chamber 5 due to concentration diffusion is reduced, and the ion removal rate, particularly the boron removal rate, can be dramatically increased.
  • the entire ion exchange resin (anion exchange resin) 31 has an ion exchange capacity up to the center.
  • the anion A taken in the ion exchange resin 31 moves on the surface layer of the ion exchange resin 31 while being regenerated by H + or OH ⁇ generated by water separation, and a desalination chamber is applied by applying a voltage.
  • 5 reaches the anion exchange membrane 3 and is discharged from the concentration chamber 6 as concentrated waste water W3.
  • a part of the anion A moves to the inside of the ion exchange resin 31 resin.
  • the anion A moved to the inside of the ion exchange resin 31 takes a long time to move, it gradually accumulates inside the ion exchange resin 31 and the removal rate of boron and the like due to the increase in voltage and leakage of the accumulated ions is sufficiently lowered. It was not possible.
  • a core-shell type ion exchange resin (anion exchange resin) 21 is used as the ion exchange resin 4 filled in the desalting chamber 5.
  • anion exchange resin 21 the resin center portion 22 is inactive as shown in FIG. 3, so that the anion A moves only in the surface layer portion 23 without flowing through the resin center portion 22.
  • the movement of the desalting chamber 5 in the thickness direction is promoted by the application of voltage, and the anion A reaches the anion exchange membrane 3 and is discharged from the concentration chamber 6 as the concentrated waste water W3.
  • the rise in voltage due to the accumulation of anion A in the ion exchange resin 21 is suppressed, and the removal rate of boron and the like can be improved by promoting the movement of the anion A due to the current.
  • the case of the anion exchange resin has been described above as an example. However, in the case of the cation exchange resin, the same is true except that the cation moves to the cathode side.
  • the electrodeionization apparatus 1 of the present embodiment as described above is provided in the subsequent stage of the RO membrane separation apparatus that constitutes the pure water production apparatus and treats the permeated water of the RO membrane separation apparatus.
  • the boron concentration is 3 ng / L or less, particularly, the boron concentration is 1 ng / L or less. It is possible to obtain deionized water.
  • the present invention is limited to the above embodiment as long as the core-shell type ion exchange resin is filled in the demineralization chamber 5 of the electrodeionization apparatus 1.
  • various modifications can be made.
  • the current density during operation, the anion / cation ratio of the core-shell ion exchange resin, and the like can be appropriately set according to the required water quality.
  • Electrodeionization device As a test deionization device, as shown in FIGS. 1 and 2, a part of the treated water (deionized water) W1 passed through the demineralization chamber 5 is used as a concentrated water W2 in a counter flow. A method of passing water through the concentration chamber 6 was adopted.
  • the desalination chamber 5 and the concentration chamber 6 are 400 mm in height, 50 mm in width, and 5 mm in thickness, respectively, and both sides of the desalination chamber 5 are sandwiched between the concentration chambers 6, and the anode chamber 9 and the cathode chamber 10 are attached to the both sides.
  • a structure (structure: ECCDCE) was produced.
  • the electrodeionization apparatus 1 was installed so that the concentration chamber 5 and the demineralization chamber 5 were in the vertical direction.
  • an anion exchange resin (“SSTA64” manufactured by Purolite) and a cation exchange resin (“SSTC60” manufactured by Purolite) are used as the core-shell type ion exchange resin in the desalting chamber 5.
  • Cation exchange resin 60:40 (dry weight ratio) mixed resin was mixed.
  • this treated water W1 When the boron concentration of this treated water W1 was measured, it was sufficiently low as a single treatment of 3 ng / L and an electrodeionization apparatus, and the initial operating voltage was also low at 9.39V.
  • Example 1 a normal anion exchange resin (EX-AG (manufactured by Kurita Kogyo Co., Ltd.)) and a cation exchange resin (EX-CG (manufactured by Kurita Kogyo Co., Ltd.)) and anion exchange resin: cation exchange were used in the desalting chamber 5.
  • the boron concentration was 4 ng / L, and the initial operating voltage was 10.37 V, both of which were higher than Example 1.
  • Electrodeionization apparatus Cation exchange membrane 3 Anion exchange membrane 4 Ion exchange resin 5 Desalination chamber 6 Concentration chamber 21 Core-shell type ion exchange resin 22 Center part (core) 23 Surface layer (shell) W treated water W1 treated water (deionized water) W2 Concentrated water W3 Concentrated drainage W4 Electrode water A Anion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

電気脱イオン装置1は、複数のカチオン交換膜2およびアニオン交換膜3を離間して交互に配置し、カチオン交換膜2とアニオン交換膜3とで形成される空間内にイオン交換樹脂4をそれぞれ充填することで複数の脱塩室5と、濃縮水を流すための濃縮室6とを交互に形成してなる。これらの脱塩室5と濃縮室6とは、陽極7と陰極8の間に配置されていて、陽極7と陰極8の内側には、それぞれ、陽極室9及び陰極室10が形成されている。この電気脱イオン装置1においては、脱塩室5に充填するイオン交換樹脂4(アニオン交換樹脂及びカチオン交換樹脂)として、コアシェル型のイオン交換樹脂を用いる。かかる電気脱イオン装置1によれば、ホウ素除去率を向上させることができるとともに装置寿命の低下を防止することができる。

Description

電気脱イオン装置及び脱イオン水の製造方法
 本発明は、電気脱イオン装置及びこれを用いた脱イオン水の製造方法に関し、特にホウ素を高度に除去することの可能な電気脱イオン装置及びこれを用いた脱イオン水の製造方法に関する。
 従来、市水、地下水、工水等の原水から半導体等の電子産業分野で用いられている超純水を製造する超純水製造装置は、基本的に前処理装置、一次純水装置及び一次純水を処理する二次純水装置からなる。このような超純水製造装置において、前処理装置は、凝集、浮上、ろ過及び除濁膜装置等で構成される。一次純水装置は、一般に活性炭吸着塔、紫外線(UV)酸化装置、化学的酸化装置、脱気装置などから選ばれる一種又は二種以上の装置と、脱塩装置とから構成され、この脱塩装置は、1段または2段構成の逆浸透膜(RO膜)装置と電気脱イオン装置又は再生型の混床式あるいは多層式のイオン交換装置とからなるのが一般的である。また、二次純水装置は、低圧UV酸化装置、非再生型の混床式イオン交換装置及び限外ろ過(UF)膜装置で構成される。
 このような超純水製造装置において、原水中のイオン性成分は、RO膜装置、電気脱イオン装置又は混床式などのイオン交換装置で除去され、微粒子はRO膜装置及びUF膜装置で除去される。
 上述したような装置で製造される超純水は、近年、特に電子産業分野用では、ホウ素濃度を3ng/L以下にまで抑制することが要求されるようになってきている。
 この対策として、従来、最も汎用的な一次純水装置であるRO膜装置と電気脱イオンとの組み合わせにおいて、ホウ素除去率の高い電気脱イオン装置(例えば栗田工業社製「KCDI-UPz」(商品名))を用いることが提案されているが、このような高性能な電気脱イオン装置でもそのホウ素除去率は99.9%程度である。このため、例えばホウ素濃度20μg/L程度の被処理水をRO膜装置で処理してホウ素濃度10μg/L程度のRO透過水が得られたとした場合、これをホウ素除去率99.9%の電気脱イオン装置で処理しても、得られる処理水(脱イオン水)のホウ素濃度は10ng/Lにしかならず、これらの組み合わせだけではホウ素濃度を3g/L以下にするのは困難である、という問題点がある。
 一般に電気脱イオン装置は、陰極及び陽極間に複数のカチオン交換膜とアニオン交換膜とを交互に配置し、これらカチオン交換膜及びアニオン交換膜により区画形成することで脱塩室及び濃縮室を交互に形成し、この脱塩室及び前記濃縮室にイオン交換樹脂を充填したものが用いられている。そこで、ホウ素濃度3ng/L以下という高純度の超純水を得るためには、電気脱イオン装置におけるイオンの移動速度を促進させてやればよい。このためには電気脱イオン装置にできるだけ多くの電流を印加してやればよいが、そうすると同時に電圧も上昇してしまうために装置寿命が短くなってしまう、という問題点がある。
 すなわち、ホウ素除去率を向上させるためには、電流を増やしつつ電圧の上昇を抑制するか、同じ電流条件でもホウ素除去能を高める必要がある。
 本発明は上記課題に鑑みてなされたものであり、ホウ素除去率を向上させることができるとともに電圧の上昇を抑制可能な電気脱イオン装置及びこれを用いた脱イオン水の製造方法を提供することを目的とする。
 上記目的を達成するために第一に本発明は、陰極及び陽極と、該陰極と該陽極との間に複数のカチオン交換膜とアニオン交換膜とを配列することにより交互に形成された濃縮室及び脱塩室とを有し、前記脱塩室及び前記濃縮室にイオン交換樹脂が充填されていて、前記濃縮室に濃縮水を通水する濃縮水通水手段と、前記脱塩室に被処理水を通水して脱イオン水を取り出す手段とを有し、前記濃縮水通水手段が前記脱塩室を通水した脱イオン水を濃縮水として通水する電気脱イオン装置であって、前記脱塩室に充填されるイオン交換樹脂がコアシェル型のイオン交換樹脂である電気脱イオン装置を提供する(発明1)。
 かかる発明(発明1)によれば、電気脱イオン装置の運転時に陰極及び陽極間に電流を印加すると、脱塩室内ではイオン交換樹脂を経由してアニオン成分は陽極側にカチオン成分は陰極側に移動し、イオン交換膜を透過して濃縮室側に排出される。このとき通常はアニオン成分及びカチオン成分がイオン交換樹脂を通過する際に微量ではあるがイオン交換樹脂の中心部に蓄積される。そこで、発明1においては、このイオン交換樹脂としてコアシェル型のイオン交換樹脂を用いる。コアシェル型のイオン交換樹脂はシェル(表層)側のみがイオン交換機能を有しコア(中心部)は不活性であるので、アニオン成分及びカチオン成分は、イオン交換樹脂のコアを通過することなく表層側のみを伝播して移動するため、イオン成分の移動速度が速くなる。これによりイオンの除去率が高くなり、結果としてホウ素除去率も向上させることができる。
 上記発明(発明1)においては、前記脱塩室の厚さが5~30mmであることが好ましい(発明2)。
 かかる発明(発明2)によれば、この程度の脱塩室の厚さであれば、カチオン交換膜あるいはアニオン交換膜までイオン成分が移動する時間が短くてすむので、ホウ素などの除去しにくい弱イオン成分の除去率を高くすることができる。
 上記発明(発明1又は2)においては、前記濃縮水通水手段が、前記脱塩室を通水した脱イオン水の一部を対向流で濃縮水として通水するものであることが好ましい(発明3)。
 かかる発明(発明3)によれば、電気脱イオン装置の脱塩室と濃縮室におけるイオンの濃度勾配の格差を緩和することができるので、ホウ素除去率をさらに向上させることができる。
 上記発明(発明1~3)においては、前記脱塩室に充填されるイオン交換樹脂がアニオン交換樹脂とカチオン交換樹脂との混合樹脂であり、アニオン交換樹脂の割合が60~80重量%(乾燥状態)であることが好ましい(発明4)。
 かかる発明(発明4)によれば、弱イオンであり除去しにくい炭酸、シリカ、ホウ素などがイオン化しやすくなり、これらの除去率を高くすることができる。
 また、第二に本発明は、発明1~4のいずれかの電気脱イオン装置の前記脱塩室に被処理水を通水し脱イオンして排出する脱イオン水の製造方法を提供する(発明5)。
 かかる発明(発明5)によれば、電気脱イオン装置の運転時に陰極及び陽極間に電流を印加すると、脱塩室内ではイオン交換樹脂を経由してアニオン成分は陽極側にカチオン成分は陰極側に移動し、イオン交換膜を透過して濃縮室側に排出される。このとき通常はアニオン成分及びカチオン成分がイオン交換樹脂を通過する際に微量ではあるがイオン交換樹脂の中心部に蓄積される。そこで、シェル(表層)側のみがイオン交換機能を有しコア(中心部)は不活性であるコアシェル型のイオン交換樹脂を用いることにより、アニオン成分及びカチオン成分は、イオン交換樹脂のコアを通過することなく表層側のみを伝播して移動するため、イオン成分の移動速度が速くなる。これによりイオンの除去率が高くなり、結果としてホウ素が高度に除去された高純度の脱イオン水を得ることができる。
 上記発明(発明5)においては、前記脱塩室に被処理水を通水し、前記脱塩室の流出水の一部を前記濃縮室に該脱塩室の通水方向と逆方向に通水し、残部を処理水として排出することが好ましい(発明6)。
 かかる発明(発明6)によれば、電気脱イオン装置の脱塩室と濃縮室におけるイオンの濃度勾配の格差を緩和することができるので、得られる脱イオン水のホウ素除去率をさらに向上させることができる。
 本発明によれば、電気脱イオン装置の脱塩室にコアシェル型のイオン交換樹脂を充填することにより、イオン交換樹脂におけるイオン成分の移動速度が速くなるので、ホウ素を高度に除去することができ、ホウ素濃度3ng/L以下の脱イオン水を得ることが可能となる。
本発明の一実施形態による電気脱イオン装置の構成を示す模式的な断面図である。 前記電気脱イオン装置を示す系統図である。 前記実施形態におけるコアシェル型のイオン交換樹脂でのアニオンの移動状態を示す概略図である。 従来のイオン交換樹脂でのアニオンの移動状態を示す概略図である。
 以下、本発明の一実施形態による電気脱イオン装置について添付図面を参照して説明する。
 図1は本発明の一実施形態による電気脱イオン装置の構成を示す模式的に示す断面図である。図1において、電気脱イオン装置1は、複数のカチオン交換膜2およびアニオン交換膜3を離間して交互に配置し、カチオン交換膜2とアニオン交換膜3とで形成される空間内にイオン交換樹脂4をそれぞれ充填することで複数の脱塩室5と、濃縮水を流すための濃縮室6とを交互に形成してなる。なお、図1中においては濃縮室6に充填したイオン交換樹脂については便宜上省略してある。濃縮室6は、脱塩室5から各イオン交換膜を介して移動してくるイオンを受け取って排出する。また、脱塩室5と濃縮室6とは、陽極7と陰極8の間に配置されていて、陽極7と陰極8の内側には、それぞれ、陽極室9及び陰極室10が形成されている。陽極室9、陰極室10は、通常、カチオン交換膜2あるいはアニオン交換膜3によって仕切られている。
 電気脱イオン装置1において、各脱塩室5の図示上側には被処理水Wの流入ライン11が設けられている一方、各脱塩室5の図示下側には処理水(脱イオン水)W1の流出ライン12が接続している。また、各濃縮室6の図示下側には濃縮水W2の流入ライン13が設けられている一方、各濃縮室6の図示上側には濃縮排水W3の排出ライン14が接続している。なお、図1中において、符号15、16はそれぞれ電極水W4の流入ライン及び排出ラインである。
 この電気脱イオン装置1には、脱塩室5に被処理水Wを通水して処理水(脱イオン水)W1取り出す通水手段(図示せず)と、濃縮室6に濃縮水W2を通水する濃縮水通水手段(図示せず)とが設けられていて、本実施形態においては濃縮水W2を脱塩室5の処理水W1の取り出し口に近い側から濃縮室6内に導入するとともに、脱塩室5の入口に近い側から流出する構成、すなわち脱塩室5における被処理水Wの流通方向と反対方向から濃縮水W2を濃縮室6に導入して濃縮排水W3を吐出する構成となっている。
 具体的には、図2に示すように脱塩室5から得られる処理水W1の一部を濃縮室6及び陽極室9に導入する。このように濃縮水W2として処理水W1を用いてイオン濃度が低減された濃縮水W2を流通させる。
 電気脱イオン装置1では、脱塩室5の厚さは5~30mmとするのが好ましい。脱塩の厚さが30mmを超えるとホウ素除去効率が低下する一方、5mm未満では、アニオン交換膜やカチオン交換膜の枚数が多くなるばかりか、イオン交換樹脂の充填が困難となり、電気脱イオン装置1の生産性が大幅に低下するため好ましくない。
 上述したような電気脱イオン装置1においては、脱塩室5に充填するイオン交換樹脂4(アニオン交換樹脂及びカチオン交換樹脂)として、コアシェル型のイオン交換樹脂を用いる。図3に示すように本実施形態におけるコアシェル型のイオン交換樹脂(アニオン交換樹脂)21は、不活性イオンからなる中心部(コア)22と、その外側に形成されたイオン交換能を有する表層部(シェル)23とを備える。このようなコアシェル型のイオン交換樹脂としては、例えばピュロライト(株)製「Purolite(登録商標) SST」シリーズなどのような構造を有するものを用いることができる。
 脱塩室5に充填されるイオン交換樹脂のアニオン交換樹脂:カチオン交換樹脂の比率は60:40~90:10、特に60:40~80:20(乾燥重量比)である。アニオン交換樹脂の割合が体積比で90%を超えると処理水W1中のカチオン成分の除去率が低下する。一方、アニオン交換樹脂の割合が体積比で60%未満では、ホウ素(ホウ酸イオン)やシリカなどの弱アニオンの除去率が低下する。このイオン交換樹脂は脱塩室5の全域で同じ比率である必要はなく、脱塩室5の通水方向に対する入口側と出口側とで異ならせてもよい。例えば、脱塩室5の入口側(上流側)から通水流路の1/2~1/3の領域においては、アニオン交換樹脂:カチオン交換樹脂の比率を70:30~80:20とアニオン交換樹脂を多く配合し、それ以降の出口側ではアニオン交換樹脂:カチオン交換樹脂の比率を40:60~60:40、特に50:50~60:40とほぼ等量を配合してもよい。このような割合でイオン交換樹脂を充填することで、入口側でアニオンが効果的に除去されてアルカリ性の水域となり、炭酸、シリカ、ホウ素(ホウ酸)がよりイオン化しやすくなるので、電気脱イオン装置1で除去しやすくなるので好ましい。
 また、脱塩室5に充填されるイオン交換樹脂のうち少なくともカチオン交換樹脂は、TOC溶出量が1ppb以下となるようにあらかじめコンディショニング(洗浄)を施したものを用いてもよい。なお、ここでTOC溶出量とは2Lのイオン交換樹脂量に対し、SV=50/hrで超純水を120分通水した後のTOC濃度をTOC計(アナテルA-1000)で測定したときのTOCの溶出量(増加量)をいう。このコンディショニングは、例えば酸洗浄工程、超純水による酸の押し出し工程、温超純水による温水洗浄工程、超純水による仕上げ工程などをTOC溶出量が1ppb以下となるようにそれぞれ適当な条件(濃度、時間及び流速)で順次を行えばよい。なお、アニオン交換樹脂もコンディショニング(洗浄)を施すことにより、TOC溶出量が1ppb以下となるようにあらかじめコンディショニング(洗浄)を施したものを用いることもできる。
 また、濃縮室6に充填するイオン交換樹脂のアニオン交換樹脂とカチオン交換樹脂の比率は特に制限はないが、両者を当量とするかあるいはカチオン交換樹脂をある程度多くするのが好ましく、アニオン交換樹脂:カチオン交換樹脂の比率を体積比で40:60~70:30、特に50:50~70:30(乾燥重量比)とすればよい。
 次に上述したような構成を有する電気脱イオン装置1による脱イオン水の製造方法について説明する。まず、RO処理水などの被処理水Wを電気脱イオン装置1で処理する。このとき、電気脱イオン装置1を電流密度500mA/dm以上で運転する。電流密度500mA/dm未満では、十分なホウ素除去率の向上効果が得られない。好ましくは電流密度800mA/dm以上で運転する。このとき、電気脱イオン装置1の脱塩室5における被処理水Wの通水速度はLV=50~150m/hr程度が好ましい。
 これにより被処理水Wが脱塩室5に導入され、脱塩室5から処理水(脱イオン水)W1が得られる。本実施形態においては、この処理水W1の一部(例えば10~35%程度)を濃縮水W2として濃縮室6に脱塩室5の通水方向とは逆方向に向流一過式で通水し、濃縮室6から濃縮排水W3を系外へ排出する。このとき、電気脱イオン装置1の濃縮室6における被処理水Wの通水速度はLV=10~30m/hr程度が好ましい。すなわち、本実施形態では、濃縮室6と脱塩室5とが交互に並設され、脱塩室5の処理水W1の取り出し側が濃縮室6の流入口となっているとともに脱塩室5の原水流入側が濃縮室6の流出口となっている。なお、処理水(脱イオン水)W1の一部は陽極室9の入口側に送給され、そして、陽極室9の流出水は、陰極室9の入口側へ送給され、陰極室9の流出水は排水として系外へ排出される。
 このように濃縮室6に処理水W1を濃縮水W2として脱塩室5に対して向流一過式で通水することにより、脱塩室5の取り出し側ほど濃縮室6内の濃縮水W2中のイオン濃度が低いものとなるので、濃度拡散による脱塩室5への影響が小さくなり、イオン除去率、特にホウ素の除去率を飛躍的に高めることができる。
 上述したような脱イオン水の製造工程において、通常のイオン交換樹脂を用いた従来の電気脱イオン装置では、イオン交換樹脂(アニオン交換樹脂)31は、中心部まで全体がイオン交換能を有するので、図4に示すようにイオン交換樹脂31に取り込まれたアニオンAは、水乖離により生成したHやOHで再生されながらイオン交換樹脂31の表層を移動し、電圧の印加により脱塩室5の厚さ方向に移動してアニオン交換膜3に到達し、濃縮室6から濃縮排水W3として排出される。しかしながら、アニオンAの一部はイオン交換樹脂31樹脂の内部に移動する。イオン交換樹脂31の内部に移動したアニオンAは移動に時間がかかるので、少しずつイオン交換樹脂31内部に蓄積し、電圧の上昇や、蓄積したイオンの漏洩によるホウ素等の除去率が十分に低下できない原因となっていた。
 これに対し、本実施形態においては、脱塩室5に充填するイオン交換樹脂4として、コアシェル型のイオン交換樹脂(アニオン交換樹脂)21を用いる。このコアシェル型のイオン交換樹脂21の場合には、図3に示すように樹脂中心部22が不活性であるので、アニオンAは樹脂中心部22を流れずに、表層部23だけを移動するため、電圧の印加により脱塩室5の厚さ方向への移動が促進され、アニオンAは、アニオン交換膜3に到達して、濃縮室6から濃縮排水W3として排出される。これにより、イオン交換樹脂21へのアニオンAの蓄積による電圧の上昇を抑制し、アニオンAの電流による移動の促進によりホウ素等の除去率の向上が可能となる。なお、以上アニオン交換樹脂の場合を例に説明したが、カチオン交換樹脂の場合にはカチオンが陰極側に移動する以外同じである。
 上述したような本実施形態の電気脱イオン装置1は、特に純水製造装置を構成するRO膜分離装置の後段に設けて該RO膜分離装置の透過水を処理するのが好ましい。このように構成すれば、RO膜分離装置からのホウ素濃度10~20μg/L程度のRO膜分離装置の透過水を処理することにより、ホウ素濃度3ng/L以下、特にホウ素濃度1ng/L以下の脱イオン水を得ることが可能となる。
 以上、本発明の一実施形態について添付図面を参照して説明してきたが、本発明は、電気脱イオン装置1の脱塩室5にコアシェル型のイオン交換樹脂を充填すれば前記実施形態に限定されず、種々の変更実施が可能である。例えば、要求される水質に応じて、運転時の電流密度やコアシェル型のイオン交換樹脂のアニオン/カチオン比率等を適宜設定することができる。
 以下、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
〔実施例1〕
 電気脱イオン装置1として以下のものを使用した。
 電気脱イオン装置:試験用の電気脱イオン装置として、図1及び図2に示すように脱塩室5を通水した処理水(脱イオン水)W1の一部を対向流で濃縮水W2として濃縮室6に通水する方式を採用した。脱塩室5及び濃縮室6をそれぞれ高さ400mm、幅50mm、厚さ5mmとして、脱塩室5の両側を濃縮室6で挟み、その両側に陽極室9及び陰極室10を取り付けた5室構造(構造:E-C-D-C-E)のものを製造した。この電気脱イオン装置1を濃縮室5及び脱塩室5が鉛直方向とのなるように設置した。
 このような電気脱イオン装置1において、脱塩室5にコアシェル型のイオン交換樹脂としてアニオン交換樹脂(ピュロライト社製「SSTA64」)とカチオン交換樹脂(ピュロライト社製「SSTC60」)とをアニオン交換樹脂:カチオン交換樹脂=60:40(乾燥重量比)で混合した混合樹脂を充填した。なお、濃縮室6には、通常のカチオン交換樹脂及びアニオン交換樹脂をカチオン交換樹脂:アニオン交換樹脂=60:40(乾燥重量比)で混合した混合樹脂を充填した。
 上記の電気脱イオン装置1に電流2A(KCDI-UPz(栗田工業社製)18A相当)の電流を流し、CO=1mg/L、B=3μg/L及びNa=0.5mg/Lの被処理水Wを脱塩室5にLV=50m/hrで下向流通水し、脱塩室5の流出水の33%を濃縮水W2として濃縮室6にLV=25m/hrで上向流通水し、残部を処理水(脱イオン水)W1として取り出した。
 この処理水W1のホウ素濃度を測定したところ3ng/Lと電気脱イオン装置の単独処理としては十分に低いものであり、初期運転電圧も9.39Vと低かった。
〔比較例1〕
 実施例1において、脱塩室5に通常のアニオン交換樹脂(EX-AG(栗田工業社製))とカチオン交換樹脂(EX-CG(栗田工業社製))とを、アニオン交換樹脂:カチオン交換樹脂=60:40(乾燥重量比)で混合した混合樹脂を充填した以外は同様にして電気脱イオン装置1を構成し、同様の条件で被処理水Wを通水したところ、この処理水W1のホウ素濃度は4ng/Lであり、初期運転電圧は10.37Vでいずれも実施例1よりも大きかった。
 以上の結果により、コアシェル型のイオン交換樹脂を脱塩室5に充填した電気脱イオン装置1を用いることにより、通常のイオン交換樹脂を用いた場合と比較してホウ素除去性能が高く、同電流で運転する際の電圧も低くてすむことがわかる。
1 電気脱イオン装置
2 カチオン交換膜
3 アニオン交換膜
4 イオン交換樹脂
5 脱塩室
6 濃縮室
21 コアシェル型のイオン交換樹脂
22 中心部(コア)
23 表層部(シェル)
W 被処理水
W1 処理水(脱イオン水)
W2 濃縮水
W3 濃縮排水
W4 電極水
A アニオン

Claims (6)

  1.  陰極及び陽極と、該陰極と該陽極との間に複数のカチオン交換膜とアニオン交換膜とを配列することにより交互に形成された濃縮室及び脱塩室とを有し、前記脱塩室及び前記濃縮室にイオン交換樹脂が充填されていて、前記濃縮室に濃縮水を通水する濃縮水通水手段と、前記脱塩室に被処理水を通水して脱イオン水を取り出す手段とを有し、前記濃縮水通水手段が前記脱塩室を通水した脱イオン水を濃縮水として通水する電気脱イオン装置であって、
     前記脱塩室に充填されるイオン交換樹脂がコアシェル型のイオン交換樹脂である電気脱イオン装置。
  2.  前記脱塩室の厚さが5~30mmである請求項1に記載の電気脱イオン装置。
  3.  前記濃縮水通水手段が、前記脱塩室を通水した脱イオン水の一部を対向流で濃縮水として通水する請求項1又は2に記載の電気脱イオン装置。
  4.  前記脱塩室に充填されるイオン交換樹脂がアニオン交換樹脂とカチオン交換樹脂との混合樹脂であり、アニオン交換樹脂の割合が60~80重量%(乾燥状態)である請求項1~3のいずれか一項に記載の電気脱イオン装置。
  5.  請求項1~4のいずれか一項に記載の電気脱イオン装置の前記脱塩室に被処理水を通水し脱イオンして排出する脱イオン水の製造方法。
  6.  前記脱塩室に被処理水を通水し、前記脱塩室の流出水の一部を前記濃縮室に該脱塩室の通水方向と逆方向に通水し、残部を処理水として排出する請求項5に記載の脱イオン水の製造方法。
PCT/JP2017/032787 2016-11-21 2017-09-12 電気脱イオン装置及び脱イオン水の製造方法 WO2018092395A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017549109A JPWO2018092395A1 (ja) 2016-11-21 2017-09-12 電気脱イオン装置及び脱イオン水の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-226252 2016-11-21
JP2016226252 2016-11-21

Publications (1)

Publication Number Publication Date
WO2018092395A1 true WO2018092395A1 (ja) 2018-05-24

Family

ID=62146425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032787 WO2018092395A1 (ja) 2016-11-21 2017-09-12 電気脱イオン装置及び脱イオン水の製造方法

Country Status (3)

Country Link
JP (1) JPWO2018092395A1 (ja)
TW (1) TW201819032A (ja)
WO (1) WO2018092395A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021001124A (ja) * 2019-06-20 2021-01-07 オルガノ株式会社 非水溶媒の精製方法
WO2021131360A1 (ja) * 2019-12-25 2021-07-01 野村マイクロ・サイエンス株式会社 純水製造方法、純水製造システム、超純水製造方法及び超純水製造システム
WO2023062925A1 (ja) * 2021-10-14 2023-04-20 オルガノ株式会社 酸性溶液の精製方法
JP7477009B1 (ja) 2023-03-30 2024-05-01 栗田工業株式会社 電気脱イオン装置の運転方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03232528A (ja) * 1989-10-17 1991-10-16 Ebara Corp 懸濁性不純物除去用吸着剤および除去方法
JPH04151600A (ja) * 1990-10-15 1992-05-25 Toshiba Corp イオン交換樹脂およびこの樹脂を用いた復水脱塩塔ならびに復水浄化装置
JPH10503415A (ja) * 1994-04-25 1998-03-31 アイオニクス インコーポレイテッド 充填セル電気透析(電気脱イオン)を含む電気透析の改良
JP2001145885A (ja) * 1999-09-07 2001-05-29 Japan Organo Co Ltd 電気式脱イオン水製造装置
JP2003266077A (ja) * 2002-03-14 2003-09-24 Kurita Water Ind Ltd 電気脱イオン装置
JP2004034004A (ja) * 2002-07-08 2004-02-05 Kurita Water Ind Ltd 電気脱イオン装置
JP2016150304A (ja) * 2015-02-17 2016-08-22 栗田工業株式会社 電気脱イオン装置及び純水製造装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03232528A (ja) * 1989-10-17 1991-10-16 Ebara Corp 懸濁性不純物除去用吸着剤および除去方法
JPH04151600A (ja) * 1990-10-15 1992-05-25 Toshiba Corp イオン交換樹脂およびこの樹脂を用いた復水脱塩塔ならびに復水浄化装置
JPH10503415A (ja) * 1994-04-25 1998-03-31 アイオニクス インコーポレイテッド 充填セル電気透析(電気脱イオン)を含む電気透析の改良
JP2001145885A (ja) * 1999-09-07 2001-05-29 Japan Organo Co Ltd 電気式脱イオン水製造装置
JP2003266077A (ja) * 2002-03-14 2003-09-24 Kurita Water Ind Ltd 電気脱イオン装置
JP2004034004A (ja) * 2002-07-08 2004-02-05 Kurita Water Ind Ltd 電気脱イオン装置
JP2016150304A (ja) * 2015-02-17 2016-08-22 栗田工業株式会社 電気脱イオン装置及び純水製造装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021001124A (ja) * 2019-06-20 2021-01-07 オルガノ株式会社 非水溶媒の精製方法
JP7219174B2 (ja) 2019-06-20 2023-02-07 オルガノ株式会社 非水溶媒の精製方法
WO2021131360A1 (ja) * 2019-12-25 2021-07-01 野村マイクロ・サイエンス株式会社 純水製造方法、純水製造システム、超純水製造方法及び超純水製造システム
JP2021102200A (ja) * 2019-12-25 2021-07-15 野村マイクロ・サイエンス株式会社 純水製造方法、純水製造システム、超純水製造方法及び超純水製造システム
JP7129965B2 (ja) 2019-12-25 2022-09-02 野村マイクロ・サイエンス株式会社 純水製造方法、純水製造システム、超純水製造方法及び超純水製造システム
WO2023062925A1 (ja) * 2021-10-14 2023-04-20 オルガノ株式会社 酸性溶液の精製方法
JP7477009B1 (ja) 2023-03-30 2024-05-01 栗田工業株式会社 電気脱イオン装置の運転方法
WO2024202119A1 (ja) * 2023-03-30 2024-10-03 栗田工業株式会社 電気脱イオン装置の運転方法

Also Published As

Publication number Publication date
JPWO2018092395A1 (ja) 2019-10-10
TW201819032A (zh) 2018-06-01

Similar Documents

Publication Publication Date Title
JP3794268B2 (ja) 電気脱イオン装置及びその運転方法
WO2018092395A1 (ja) 電気脱イオン装置及び脱イオン水の製造方法
JP7275536B2 (ja) 電気脱イオン装置及びこれを用いた脱イオン水の製造方法
US7699968B2 (en) Water purifying system
KR102259712B1 (ko) 전기 탈이온 장치 및 순수 제조 장치
JP6728876B2 (ja) 電気脱イオン装置及び脱イオン水の製造方法
JP5617231B2 (ja) イオン交換樹脂の精製方法及び精製装置
TWI808053B (zh) 超純水製造系統及超純水製造方法
JP3969221B2 (ja) 脱イオン水の製造方法及び装置
JP6614266B2 (ja) 電気脱イオン装置及び脱イオン水の製造方法
JP6228471B2 (ja) 被処理水の処理装置、純水の製造装置および被処理水の処理方法
US20230182078A1 (en) Electrodialysis process and bipolar membrane electrodialysis devices for silica removal
JP2004000919A (ja) 脱塩水製造装置
JP4250922B2 (ja) 超純水製造システム
JP4552273B2 (ja) 電気脱イオン装置
JP6848231B2 (ja) 電気脱イオン装置及びその運転方法
JP3901107B2 (ja) 電気脱イオン装置及びその運転方法
JP3480661B2 (ja) 電気式脱イオン水製造装置の通水処理方法
JP2021037469A (ja) 電気脱イオン装置及び脱イオン水の製造方法
JP4453972B2 (ja) 電気脱イオン装置及び電気脱イオン装置の運転方法
WO2024171825A1 (ja) イオン交換樹脂塔及びホウ素除去方法
WO2022118522A1 (ja) 電気脱イオン装置及び脱イオン水の製造方法
JP2022114794A (ja) 電気脱イオン装置及び脱イオン水の製造方法
TW202339843A (zh) 去離子水的製造裝置及方法
JP2001170646A (ja) 電気式脱イオン水製造装置の通水方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017549109

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17871364

Country of ref document: EP

Kind code of ref document: A1