WO2018092390A1 - 弁開閉時期制御装置 - Google Patents

弁開閉時期制御装置 Download PDF

Info

Publication number
WO2018092390A1
WO2018092390A1 PCT/JP2017/031686 JP2017031686W WO2018092390A1 WO 2018092390 A1 WO2018092390 A1 WO 2018092390A1 JP 2017031686 W JP2017031686 W JP 2017031686W WO 2018092390 A1 WO2018092390 A1 WO 2018092390A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
input gear
rotating body
disposed
eccentric
Prior art date
Application number
PCT/JP2017/031686
Other languages
English (en)
French (fr)
Inventor
宮地永治
向出仁樹
Original Assignee
アイシン精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017120329A external-priority patent/JP6838506B2/ja
Application filed by アイシン精機株式会社 filed Critical アイシン精機株式会社
Priority to CN201780066647.6A priority Critical patent/CN110023596B/zh
Priority to DE112017005833.3T priority patent/DE112017005833T5/de
Priority to US16/349,485 priority patent/US10626762B2/en
Publication of WO2018092390A1 publication Critical patent/WO2018092390A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/352Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/356Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear making the angular relationship oscillate, e.g. non-homokinetic drive

Definitions

  • the present invention relates to a valve opening / closing timing control device for setting a relative rotation phase between a driving side rotating body and a driven side rotating body by a driving force of an electric actuator.
  • the valve opening / closing timing control device disclosed in Patent Document 1 includes a sun gear on a drive side rotator, a planet carrier that is driven and rotated by an electric motor, and is externally fitted to an eccentric portion of the planet carrier via a bearing. And a structure for linking the planetary gear to the driven-side rotating body. As a result, a technique for setting the relative rotation posture of the driving side rotating body and the driven side rotating body with a large reduction ratio is disclosed.
  • the valve opening / closing timing control device of Patent Document 1 has a structure in which a planetary gear rotates around an eccentric shaft core that is disengaged from the rotation shaft core of a sun gear.
  • a transmission structure is provided in which an engaging hole into which the engaging protrusion is engaged is formed in the guide rotating body.
  • Patent Document 2 includes an inner gear that is rotatable on the outside of an eccentric ring via a bearing, and an inner ring type gear that meshes with a part of teeth of the inner gear is provided on a driven side rotating body. Discloses a valve opening / closing timing control device including an Oldham coupling that transmits the torque to the front case of the driving side rotating body.
  • valve opening / closing timing control devices of Patent Documents 1 and 2 are required to be miniaturized because they have large dimensions in the direction along the rotation axis. That is, in Patent Documents 1 and 2, a part of the valve opening / closing timing control device (a cover member in Document 1 and a front case in Document 2) disposed on the opposite side of the camshaft is inflated outward. The outer end side of the eccentric member (the planetary carrier in Reference 1 and the eccentric ring in Reference 2) is supported via a bearing at the portion inflated in this manner. This leads to an increase in the size of the valve opening / closing timing control device.
  • valve opening / closing timing control device for setting the relative rotational phase between the driving side rotating body and the driven side rotating body by the driving force of the electric actuator be smoothly operated and configured to be small.
  • a feature of the present invention is that a driving side rotating body that rotates synchronously with a crankshaft of an internal combustion engine around a rotation axis, A driven-side rotating body that is disposed on the inner side of the driving-side rotating body and coaxially with the rotating shaft core, and rotates integrally with a camshaft for opening and closing the valve of the internal combustion engine; A phase adjusting mechanism for setting a relative rotational phase of the driving side rotating body and the driven side rotating body by a driving force of an electric actuator, The phase adjusting mechanism is rotated by an output shaft provided on the driven side rotating body coaxially with the rotating shaft core and an eccentric shaft core in a posture parallel to the rotating shaft core and has a smaller number of teeth than the output gear.
  • An input gear disposed on the coaxial shaft and the coaxial shaft, and connected to the drive-side rotating body via an Oldham coupling, and the input gear is rotated around the eccentric shaft core inside the input gear.
  • the eccentric shaft core is revolved by the rotation of the eccentric member by the driving force of the electric actuator to change the meshing position of the output gear and the input gear.
  • a first bearing disposed between an inner periphery of the driven rotor and an outer periphery of the eccentric member; and the eccentricity on a side farther from the camshaft than the first bearing in a direction along the rotation axis.
  • a second bearing disposed between the outer periphery of the member and the inner periphery of the input gear; and the drive-side rotor on the side farther from the camshaft than the second bearing in a direction along the rotational axis.
  • a fixed front plate, and the Oldham coupling is disposed on the far side of the first bearing and the second bearing from the camshaft in a direction along the axis of rotation.
  • the thickness of the front plate can be reduced and the dimension in the direction along the rotation axis can be shortened.
  • the first bearing, the second bearing, the Oldham coupling, and the front plate can be disposed at relatively close positions in the direction along the rotation axis, the rotational moment is effectively received by the first bearing and the second bearing. Accordingly, the rotational postures of the eccentric member and the input gear are stabilized, and a smooth operation can be performed.
  • the Oldham coupling is arranged at a position that can contact the inner surface of the front plate on the side farther from the camshaft of the second bearing, it is not necessary to adopt a configuration for supporting the second bearing on the front plate.
  • valve opening / closing timing control device for setting the relative rotation phase between the driving side rotating body and the driven side rotating body by the driving force of the electric actuator is configured in a small size in a state where it is smoothly operated.
  • the Oldham coupling is disposed between the front plate and the second bearing, and the eccentric member is disposed in an internal space at an end portion farther from the camshaft in a direction along the rotation axis.
  • a lubricating oil groove that guides the lubricating oil supplied to the outside in the radial direction may be formed inside the front plate.
  • the lubricating oil supplied to the inner space of the eccentric member is sent outward from the lubricating oil groove of the eccentric member due to the centrifugal force accompanying the rotation of the valve timing control device, and the lubricating oil is finally discharged. Therefore, for example, dust or foreign matter generated inside can be discharged together with the lubricating oil.
  • the Oldham joint can be placed in contact with the front plate, and the lubricating oil groove is formed on the inner side of the front plate of the eccentric member, so the Oldham joint and the front plate are placed in contact with each other. Even so, lubricating oil is supplied between them to achieve smooth operation of the Oldham joint.
  • the Oldham coupling is disposed between the front plate and the second bearing, and is a cut-off that allows the lubricating oil to flow on the outer peripheral side of the drive-side rotating body where the Oldham coupling is engaged.
  • a notch-shaped discharge channel may be formed.
  • the Oldham joint and the front plate are arranged in contact with each other, lubricating oil is supplied between the front plate and the Oldham joint to achieve smooth operation of the Oldham joint.
  • the notch-shaped discharge flow path is formed in the drive side rotating body, the discharge flow path can be easily formed.
  • the lubricating oil remaining inside the valve timing control device when the internal combustion engine is started can be discharged by the discharge passage. For example, even when the internal combustion engine is in a low temperature state and the viscosity of the lubricating oil is high Lubricating oil is quickly discharged to enable smooth operation of the phase adjustment mechanism.
  • a biasing force is applied to the input gear so that a part of the input gear meshes with a part of the output gear between the outer peripheral side of the eccentric member and the inner peripheral side of the second bearing.
  • a second biasing member that biases toward the bearing may be provided.
  • the external force is applied from the internal gear of the output gear to the external gear of the input gear. Transmitted to the teeth.
  • the input gear to which the external force is transmitted moves within the gap in the direction along the rotation axis, and also in the direction against the urging force of the first urging member (the direction toward the rotation axis).
  • the second bearing also moves within the gap in the direction along the rotation axis and moves in a direction against the urging force of the first urging member (a direction toward the rotation axis).
  • the input gear and the second bearing may be inclined with respect to the direction along the rotation axis. Then, since the corners of the input gear and the second bearing come into contact with the peripheral members, the input gear, the second bearing, and the peripheral members may be worn.
  • a second urging member that urges the second bearing toward the first bearing is provided between the Oldham coupling and the second bearing.
  • the second bearing is biased toward the first bearing by the biasing member, so that the second bearing is held on the first bearing side and is difficult to move in the direction along the rotation axis.
  • position of the 2nd bearing in the direction along a rotating shaft core are stabilized. Since the input gear is supported by the second bearing whose position and posture are maintained, the posture is stabilized. Further, since the position and posture of the second bearing are stabilized, the frictional force between the inner peripheral surface of the second bearing and the outer peripheral surface of the eccentric member is increased.
  • a biasing force is applied to the input gear so that a part of the input gear meshes with a part of the output gear between the outer peripheral side of the eccentric member and the inner peripheral side of the second bearing.
  • a first urging member to be actuated wherein the Oldham coupling is disposed between the front plate and the second bearing, and the second bearing is disposed between the Oldham coupling and the second bearing.
  • a spacer may be provided that sets the distance of the gap movable in the direction along the core to a predetermined set value or less.
  • the movement of the second bearing in the direction along the rotation axis is limited to a distance equal to or less than a predetermined set value by the spacer provided between the Oldham coupling and the second bearing.
  • the position and posture of the second bearing in the direction along the rotation axis are stabilized. Since the input gear is supported by the second bearing with a small variation in position and posture in the direction along the rotation axis, the posture is stabilized. Further, since the position and posture of the second bearing are stabilized, the frictional force between the inner peripheral surface of the second bearing and the outer peripheral surface of the eccentric member is increased.
  • FIG. 2 is a sectional view taken along line II-II in FIG.
  • FIG. 3 is a sectional view taken along line III-III in FIG. 1.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 1.
  • It is a disassembled perspective view of a valve opening / closing timing control device.
  • It is sectional drawing of the valve opening / closing timing control apparatus of another embodiment.
  • It is a front view of the 2nd energizing member.
  • FIG. 8 is a cross-sectional view taken along arrow VIII-VIII in FIG. 7. It is sectional drawing of the valve opening / closing timing control apparatus of another embodiment.
  • FIG. 1 a driving side rotating body A that rotates synchronously with a crankshaft 1 of an engine E as an internal combustion engine, and a driven side rotating body B that rotates integrally with an intake camshaft 2 around a rotation axis X.
  • the valve opening / closing timing control device 100 includes a phase adjusting mechanism C that sets a relative rotational phase between the driving side rotating body A and the driven side rotating body B by the driving force of the phase control motor M (an example of an electric actuator).
  • the phase control motor M an example of an electric actuator
  • Engine E is configured as a four-cycle type in which pistons 4 are accommodated in a plurality of cylinders 3 formed in a cylinder block, and the pistons 4 are connected to a crankshaft 1 by connecting rods 5.
  • a timing chain 6 (or a timing belt or the like) is wound around the output sprocket 1S of the crankshaft 1 of the engine E and the drive sprocket 11S of the drive side rotator A.
  • the entire valve timing control device 100 rotates around the rotation axis X.
  • the driven-side rotator B can be displaced relative to the drive-side rotator A in the same direction as the rotation direction or in the opposite direction.
  • the relative rotation phase between the driving side rotating body A and the driven side rotating body B is set by the displacement of the phase adjusting mechanism C, and the opening / closing timing (opening / closing timing) of the intake valve 2B by the cam portion 2A of the intake camshaft 2 is controlled.
  • the operation in which the driven-side rotator B is displaced in the same direction as the rotation direction of the drive-side rotator A is referred to as an advance angle operation, and the intake air compression ratio is increased by the advance angle operation.
  • an operation in which the driven-side rotator B is displaced in the direction opposite to the drive-side rotator A is referred to as retarded angle operation, and the intake air compression ratio is reduced by this retarded angle operation.
  • the drive-side rotator A is configured by fastening an outer case 11 having a drive sprocket 11 ⁇ / b> S formed on the outer periphery and a front plate 12 with a plurality of fastening bolts 13. .
  • the outer case 11 is a bottomed cylindrical mold having an opening at the bottom.
  • the intermediate member 20 as the driven-side rotator B and the phase adjustment mechanism C having a hypocycloidal gear reduction mechanism are accommodated in the inner space of the outer case 11. Further, the phase adjustment mechanism C includes an Oldham coupling Cx that reflects the phase change in the driving side rotating body A and the driven side rotating body B.
  • the intermediate member 20 constituting the driven side rotating body B includes a support wall portion 21 connected to the intake camshaft 2 in a posture orthogonal to the rotation axis X, and a cylindrical intake camshaft 2 centered on the rotation axis X.
  • a cylindrical wall portion 22 that protrudes in a direction away from is integrally formed.
  • the intermediate member 20 is fitted so as to be relatively rotatable with the outer surface of the cylindrical wall portion 22 in contact with the inner surface of the outer case 11, and is connected to the intake camshaft 2 by a connecting bolt 23 inserted through the central through hole of the support wall portion 21. It is fixed to the end. In this fixed state, the outer end (the side farther from the intake camshaft 2) of the cylindrical wall portion 22 is configured to be positioned inside the front plate 12.
  • the phase control motor M (electric motor) is supported by the engine E by the support frame 7 so that the output shaft Ma is disposed coaxially with the rotary shaft X.
  • the output shaft Ma of the phase control motor M is formed with a pair of engaging pins 8 in a posture orthogonal to the rotation axis X.
  • the phase adjusting mechanism C includes an intermediate member 20, an output gear 25 formed on the inner peripheral surface of the cylindrical wall portion 22 of the intermediate member 20, an eccentric member 26, a first member A spring body 27 as an urging member, a first bearing 28, a second bearing 29, an input gear 30, a fixing ring 31, and an Oldham coupling Cx are provided. Ball bearings are used for the first bearing 28 and the second bearing 29, but bushes can also be used.
  • a support surface 22S centered on the rotation axis X is formed on the inner side (position adjacent to the support wall portion 21) in the direction along the rotation axis X.
  • An output gear 25 centering on the rotational axis X is integrally formed outside the support surface 22S (on the side farther from the intake camshaft 2).
  • the eccentric member 26 has a cylindrical shape, and a circumferential support surface 26S that is an outer peripheral surface centering on the rotation axis X is formed on the inner side in the direction along the rotation axis X (side closer to the intake camshaft 2).
  • An eccentric support surface 26E is formed on the outer peripheral surface centering on the eccentric shaft core Y that is eccentric in a posture parallel to the rotation shaft core X (on the side farther from the intake camshaft 2).
  • a spring body 27 is fitted into a recess 26F formed on the outer periphery of the eccentric support surface 26E.
  • a pair of engaging grooves 26 ⁇ / b> T that can be engaged with each of the pair of engaging pins 8 of the phase control motor M are formed in the inner periphery of the eccentric member 26 in a posture parallel to the rotational axis X. Further, a plurality of first lubricating oil grooves 26a having a posture along the radial direction are formed inside the eccentric member 26 (on the side of the support wall portion 21), and radially outward on the outer side (side far from the intake camshaft 2). A plurality of second lubricating oil grooves 26b are formed along the posture. In the eccentric member 26, only one of the first lubricating oil groove 26a and the second lubricating oil groove 26b may be formed. The number of the first lubricating oil grooves 26a and the second lubricating oil grooves 26b may be arbitrarily set.
  • the eccentric member 26 is configured such that the first bearing 28 is fitted on the circumferential support surface 26 ⁇ / b> S, and the first bearing 28 is fitted on the support surface 22 ⁇ / b> S of the cylindrical wall portion 22.
  • the intermediate member 20 is supported so as to be rotatable about the rotation axis X.
  • the input gear 30 is supported by the eccentric support surface 26 ⁇ / b> E of the eccentric member 26 via the second bearing 29 so as to be rotatable about the eccentric axis Y.
  • the number of teeth of the external tooth portion 30A of the input gear 30 is set to be one less than the number of teeth of the internal tooth portion 25A of the output gear 25.
  • a part of the external tooth portion 30 ⁇ / b> A of the input gear 30 meshes with a part of the internal tooth portion 25 ⁇ / b> A of the output gear 25.
  • the spring body 27 has a shape obtained by bending a spring plate material into a U-shape, and a part of the outer tooth part 30A of the input gear 30 is engaged with a part of the inner tooth part 25A of the output gear 25. A biasing force is applied to the input gear 30.
  • the fixing ring 31 prevents the second bearing 29 from coming off by being supported on the outer periphery of the eccentric member 26 in a fitted state.
  • the Oldham coupling Cx protrudes radially outward from the central annular portion 41 and the first portion (left-right direction in FIG. 4) from the annular portion 41.
  • a pair of external engagement arms 42 and an internal engagement arm 43 projecting radially outward along a direction (vertical direction in FIG. 4) perpendicular to the first direction from the annular portion 41 are formed in a plate shape.
  • a joint member 40 is used.
  • Each of the pair of internal engagement arms 43 is formed with an engagement recess 43 a that is continuous with the opening of the annular portion 41.
  • a pair of guide groove portions 11 a extending in the radial direction about the rotation axis X from the inner space to the outer space of the outer case 11 is formed in a through groove shape at the opening edge portion where the front plate 12 contacts. Is formed.
  • the groove width of the guide groove portion 11a is set to be slightly wider than the width of the external engagement arm 42, and a pair of discharge channels 11b are formed in each guide groove portion 11a. In addition, you may form the discharge flow path 11b so that lubricating oil may flow with respect to the front plate 12 to radial direction.
  • a pair of engaging projections 30T are integrally formed on the end face of the input gear 30 facing the front plate 12.
  • the engagement width of the engagement protrusion 30 ⁇ / b> T is set slightly narrower than the engagement width of the engagement recess 43 a of the internal engagement arm 43.
  • the Oldham joint Cx can be made to function by engaging the pair of engaging protrusions 30T of the input gear 30.
  • the joint member 40 can be displaced in the first direction (left-right direction in FIG. 4) in which the external engagement arm 42 extends with respect to the outer case 11, and the engagement concave portion of the internal engagement arm 43 with respect to the joint member 40.
  • the input gear 30 is displaceable in a second direction (vertical direction in FIG. 4) along the formation direction of 43a.
  • valve timing control device 100 In the assembled valve opening / closing timing control device 100, as shown in FIG. 1, the support wall portion 21 of the intermediate member 20 is connected to the end portion of the intake camshaft 2 by a connecting bolt 23, and these rotate integrally.
  • the eccentric member 26 is supported by the first bearing 28 so as to be rotatable relative to the intermediate member 20 about the rotation axis X.
  • the input gear 30 is supported by the eccentric support surface 26 ⁇ / b> E of the eccentric member 26 via the second bearing 29, and a part of the external gear portion 30 ⁇ / b> A of the input gear 30 is part of the output gear 25. It meshes with a part of the inner tooth portion 25A.
  • the external engagement arm 42 of the Oldham joint Cx engages with the pair of guide groove portions 11a of the outer case 11, and the input gear enters the engagement recess 43a of the internal engagement arm 43 of the Oldham joint Cx.
  • 30 engagement protrusions 30T are engaged.
  • the joint member 40 is orthogonal to the rotational axis X while being in contact with the inner surface of the front plate 12. It becomes possible to move in the direction to do.
  • the Oldham coupling Cx is disposed on the outer side (the side farther from the intake camshaft 2) than both the first bearing 28 and the second bearing 29 and on the inner side (the side closer to the intake camshaft 2) than the front plate 12.
  • phase control motor M is controlled by a control device configured as an ECU.
  • the engine E is provided with sensors capable of detecting the rotation speed (the number of rotations per unit time) of the crankshaft 1 and the intake camshaft 2 and the respective rotation phases, and the detection signals of these sensors are controlled. It is configured to input to the device.
  • the control device maintains the relative rotational phase by driving the phase control motor M at a speed equal to the rotational speed of the intake camshaft 2 when the engine E is in operation.
  • the advance operation is performed by reducing the rotation speed of the phase control motor M from the rotation speed of the intake camshaft 2, while the retard operation is performed by increasing the rotation speed.
  • the intake compression ratio increases by the advance operation, and the intake compression ratio decreases by the retard operation.
  • the eccentric shaft core Y revolves around the rotation shaft core X in the phase adjustment mechanism C by driving and rotating the output shaft Ma of the phase control motor M at a speed higher or lower than the rotation speed of the outer case 11. Due to this revolution, the meshing position of the external gear portion 30A of the input gear 30 with respect to the internal gear portion 25A of the output gear 25 is displaced along the inner periphery of the output gear 25, and a rotational force is exerted between the input gear 30 and the output gear 25.
  • a rotational force centered on the rotational axis X acts on the output gear 25, and a rotational force that attempts to rotate about the eccentric shaft core Y acts on the input gear 30.
  • the input gear 30 does not rotate with respect to the outer case 11 because its engaging projection 30T engages with the engaging recess 43a of the internal engaging arm 43 of the joint member 40, and the rotational force is output. Acts on the gear 25. Due to the action of the rotational force, the intermediate member 20 together with the output gear 25 rotates about the rotation axis X with respect to the outer case 11. As a result, the relative rotational phase between the driving side rotating body A and the driven side rotating body B is set, and the setting of the opening / closing timing by the intake camshaft 2 is realized.
  • the joint member 40 of the Oldham joint Cx is externally engaged with the outer case 11 as the input gear 30 is displaced.
  • the arm 42 is displaced in the extending direction (first direction), and the input gear 30 is displaced in the extending direction (second direction) of the internal engagement arm 43.
  • the eccentric shaft core Y of the input gear 30 rotates.
  • the output gear 25 rotates by one tooth, and a large deceleration is realized.
  • the intake camshaft 2 is formed with a lubricating oil passage 15 to which lubricating oil from an external oil pump P is supplied via an oil passage forming member 9.
  • An opening 21 a that guides oil into the eccentric member 26 is formed in a part of the surface of the support wall 21 of the intermediate member 20 that contacts the intake camshaft 2.
  • the eccentric member 26 has a plurality of first lubricant grooves 26a and a plurality of second lubricant grooves 26b (see FIGS. 1 and 5).
  • a lubricating recess 12 a that forms a slight gap along the radial direction is formed between the front plate 12 and the surface of the front plate 12 that faces the joint member 40.
  • the lubrication recess 12a is formed on the inner peripheral side of the front plate 12, it may be formed in a region reaching the outer periphery of the front plate 12.
  • the lubrication recess 12a is omitted and the front plate 12 and the joint member 40 are omitted.
  • the lubricating oil may be supplied to the gap between the two.
  • the guide groove 11a is formed with a pair of discharge channels 11b (see FIGS. 4 and 5). Furthermore, by making the opening diameter of the opening 12 b of the front plate 12 sufficiently larger than the inner diameter of the eccentric member 26, a step G is formed between the opening edge of the front plate 12 and the inner periphery of the eccentric member 26. .
  • the lubricating oil supplied from the oil pump P is supplied from the lubricating oil passage 15 of the intake camshaft 2 to the internal space of the eccentric member 26 through the opening 21 a of the support wall portion 21 of the intermediate member 20.
  • the lubricating oil supplied in this way is supplied to the first bearing 28 from the first lubricating oil groove 26a of the eccentric member 26 by centrifugal force, and operates the first bearing 28 smoothly.
  • the lubricating oil in the inner space of the eccentric member 26 is supplied from the second lubricating oil groove 26b to the joint member 40 by centrifugal force and also supplied to the second bearing 29, and the internal gear portion 25A of the output gear 25 and It is supplied between the external gear 30A of the input gear 30.
  • the lubricating oil from the second lubricating oil groove 26b is supplied between the front plate 12 and the joint member 40 by the lubricating recess 12a, and the external engagement arm 42 of the joint member 40. And the gap between the outer case 11 and the guide groove 11a. Thereby, the joint member 40 is operated smoothly.
  • the lubricating oil supplied to the joint member 40 is discharged to the outside through a gap between the external engagement arm 42 of the joint member 40 and the guide groove portion 11a of the outer case 11.
  • the step G is formed between the opening edge of the front plate 12 and the inner periphery of the eccentric member 26, when the engine E stops, the lubricating oil in the inner space of the eccentric member 26 is removed from the front plate 12.
  • the amount of lubricating oil discharged from the opening 12b and remaining inside can be reduced. If a large amount of lubricating oil remains in the valve timing control apparatus 100, the operation of the phase adjustment mechanism C is suppressed after the engine E is started in a cold environment due to the influence of the viscosity of the lubricating oil. However, by discharging the lubricating oil when the engine E is stopped, such inconvenience can be solved.
  • the discharge channel 11b is formed in the guide groove portion 11a, when starting the engine E that is stopped in a cold environment, the internal lubricating oil is removed by centrifugal force through the discharge channel 11b. Since the oil can be discharged quickly, the highly viscous lubricating oil is discharged in a short time, and the influence of the viscosity of the lubricating oil is eliminated to enable the phase adjustment mechanism C to operate quickly.
  • the first bearing 28 and the second bearing 29 can be disposed relatively close to each other in the intermediate member 20, and the joint member 40 of the Oldham joint Cx is formed of a plate material.
  • the control device 100 can be downsized in the direction along the rotation axis X.
  • the eccentric member 26 is supported by the first bearing 28 on the support surface 22S on the inner periphery of the intermediate member 20, and the input gear 30 is supported by the eccentric support surface 26E of the eccentric member 26 via the second bearing 29.
  • the biasing force of the spring body 27 acts in a direction that changes the posture of the eccentric member 26
  • the entire circumference of the outer circumferential surface 26 ⁇ / b> S of the eccentric member 26 is caused by the first bearing 28 to the inner circumference of the intermediate member 20. So that the positional relationship between the eccentric member 26 and the intermediate member 20 can be maintained.
  • the urging force of the spring body 27 acts only between the eccentric member 26 and the intermediate member 20, and does not act on an external member. For this reason, for example, it is not necessary to consider the deformation and displacement of an external member with respect to the urging force of the spring body 27, and the posture of the eccentric member 26 can be maintained with higher accuracy.
  • the Oldham joint Cx is smoothly operated, and the first bearing 28 and the first lubricating oil groove 26b are formed.
  • the smooth operation with the two bearings 29 is performed, the internal gear portion 25A of the output gear 25 and the external gear portion 30A of the input gear 30 are smoothly meshed, and the load acting on the phase control motor M is reduced.
  • the lubricating oil is supplied to the places where the lubricating oil is required, so the amount of lubricating oil is reduced without wasting the lubricating oil. Is also possible.
  • the joint member 40 can be operated smoothly, and the load acting on the phase control motor M can be reduced. Further reduction is possible.
  • the lubricating oil can be discharged by centrifugal force, so that not only dust and foreign matters can be discharged, but also when the engine E is stopped, the lubricating oil is positively discharged, so that dust and foreign matters etc. are discharged inside. It does not remain inside.
  • the gap L1 is formed between the input gear 30 and the first bearing 28, and the gap L2 is formed between the input gear 30 and the Oldham coupling Cx. Further, a gap is formed between the second bearing 29 and the fixing ring 31 on the Oldham coupling Cx side so that the second bearing 29 can move in the direction along the rotational axis X.
  • the input gear 30 to which the external force has been transmitted moves in the range of the gaps L1 and L2 in the direction along the rotation axis X, and also resists the biasing force of the spring body 27 (towards the rotation axis X).
  • the second bearing 29 also moves within the gap in the direction along the rotation axis X and also moves in a direction against the urging force of the spring body 27 (direction toward the rotation axis X).
  • the input gear 30 and the second bearing 29 may be inclined with respect to the direction along the rotation axis X.
  • peripheral members the spring body 27, the eccentric member 26, the output gear 25, etc.
  • a second urging member 51 that urges the second bearing 29 toward the first bearing 28 is provided between the Oldham coupling Cx and the second bearing 29.
  • the second urging member 51 is disposed between the fixed ring 31 and the inner ring of the second bearing 29.
  • the second urging member 51 has an annular shape and is configured by, for example, a wave washer shown in FIGS. 7 and 8.
  • the second urging member 51 is disposed at a position separated from the outer periphery of the spring body 27 so as not to restrict the movement of the spring body 27.
  • the wave washer is only an example of the second urging member 51.
  • the second urging member 51 may have another shape as long as the second urging member 51 is urged toward the first bearing 28.
  • the second bearing 29 is urged toward the first bearing 28 and is held on the first bearing 28 side. It becomes difficult to move in the direction along the rotation axis X. Thereby, the position and attitude
  • a spacer 52 may be provided between the Oldham coupling Cx and the second bearing 29 instead of the second urging member 51.
  • the spacer 52 sets the distance of the gap in which the second bearing 29 can move in the direction along the rotation axis X to a predetermined set value or less.
  • the distance below the predetermined set value is the total distance of the gaps L1 and L2 formed on both sides of the input gear 30, for example, in order to stabilize the position and posture of the second bearing 29 in the direction along the rotation axis X. A shorter distance is preferred.
  • the input gear 30 is supported by the second bearing 29 with a small variation in position and posture in the direction along the rotation axis X, the posture is stabilized. Further, since the position and posture of the second bearing 29 are stabilized, the frictional force between the inner peripheral surface of the second bearing 29 and the outer peripheral surface of the eccentric member 26 is increased. As a result, the input gear 30 and the second bearing 29 and the peripheral members come into surface contact with each other, and are less likely to be worn, so that durability is improved.
  • the present invention can be used for a valve opening / closing timing control device that sets a relative rotation phase between a driving side rotating body and a driven side rotating body by a driving force of an electric actuator.

Abstract

電動アクチュエータの駆動力により駆動側回転体と従動側回転体との相対回転位相を設定する弁開閉時期制御装置を小型に構成する。従動側回転体の内周と偏心部材との間に配置される第1軸受と、回転軸芯に沿う方向で第1軸受に対してカムシャフトより遠い側で偏心部材と入力ギヤとの間に配置される第2軸受と、第2軸受に対してカムシャフトより遠い側で駆動側回転体に固定されるフロントプレートとを備え、回転軸芯に沿う方向で第1軸受および第2軸受の双方のカムシャフトより遠い側にオルダム継手を配置した。

Description

弁開閉時期制御装置
 本発明は、電動アクチュエータの駆動力により駆動側回転体と従動側回転体との相対回転位相を設定する弁開閉時期制御装置に関する。
 特許文献1に開示された弁開閉時期制御装置は、駆動側回転体に太陽歯車を備え、電動モータにより駆動回転する遊星キャリアを備え、この遊星キャリアの偏心部に対してベアリングを介して外嵌する遊星歯車を備え、この遊星歯車を従動側回転体に連係する構造を備えている。これにより、大きい減速比で駆動側回転体と従動側回転体との相対回転姿勢を設定する技術が開示されている。
 特許文献1の弁開閉時期制御装置は、遊星歯車が、太陽歯車の回転軸芯から外れた偏心軸芯を中心に回転する構造であるため、遊星歯車に複数の係合突起を形成し、この係合突起が係入する係合孔を案内回転体に形成した伝動構造を備えている。
 また、特許文献2には、偏心リングの外側にベアリングを介して回転自在なインナギヤを備え、このインナギヤの一部の歯部と噛み合う内歯型のリングギヤを従動側回転体に備え、インナギヤの回転を駆動側回転体のフロントケースに伝えるオルダム継手を備えた弁開閉時期制御装置が開示されている。
特開2008‐248804号公報 特開2016‐44627号公報
 しかしながら、特許文献1及び2の弁開閉時期制御装置は、回転軸芯に沿う方向での寸法が大きいため小型化が求められる。つまり、特許文献1及び2では、弁開閉時期制御装置のうち、カムシャフトと反対側に配置される部材(文献1ではカバー部材、文献2ではフロントケース)の一部を外方に膨らませ、このように膨らませた部位に軸受を介して偏心部材(文献1では遊星キャリア、文献2では偏心リング)の外端側を支持している。これにより、弁開閉時期制御装置の大型化を招いている。
 また、特許文献2の弁開閉時期制御装置を例に挙げると、フロントケース側に軸受を配置しているので、フロントケースに作用する負荷が大きくなる。このため、フロントケースの強度を高める上で弁開閉時期制御装置の大型化を招いている。
 更に、特許文献1及び2の弁開閉時期制御装置では、ギヤに大きい負荷が作用するものであるため、円滑な作動を実現する目的に加えて、歯面等の摩耗を抑制し、内部の異物等を排出する観点から潤滑油の供給が望まれている。
 このような理由から、電動アクチュエータの駆動力により駆動側回転体と従動側回転体との相対回転位相を設定する弁開閉時期制御装置を円滑に作動させつつ小型に構成することが求められる。
 本発明の特徴は、回転軸芯を中心に内燃機関のクランクシャフトと同期回転する駆動側回転体と、
 前記回転軸芯と同軸芯で前記駆動側回転体の内側に配置され、前記内燃機関の弁開閉用のカムシャフトと一体回転する従動側回転体と、
 電動アクチュエータの駆動力により前記駆動側回転体および前記従動側回転体の相対回転位相を設定する位相調節機構と、を備え、
 前記位相調節機構が、前記回転軸芯と同軸芯で前記従動側回転体に設けられた出力ギヤと、前記回転軸芯と平行姿勢の偏心軸芯で回転し前記出力ギヤより歯数が少なく前記偏心軸芯と同軸芯上に配置され、オルダム継手を介して前記駆動側回転体に連結される入力ギヤと、前記入力ギヤの内側で前記入力ギヤを前記偏心軸芯を中心に回転させるように支持する筒状の偏心部材とを備えることにより、前記電動アクチュエータの駆動力による前記偏心部材の回転で前記偏心軸芯を公転させて前記出力ギヤと前記入力ギヤとの噛み合い位置を変化させるように構成され、
 前記従動側回転体の内周と前記偏心部材の外周との間に配置される第1軸受と、前記回転軸芯に沿う方向で前記第1軸受に対して前記カムシャフトより遠い側で前記偏心部材の外周と前記入力ギヤの内周との間に配置される第2軸受と、前記回転軸芯に沿う方向で前記第2軸受に対して前記カムシャフトより遠い側で前記駆動側回転体に固定されるフロントプレートとを備え、前記回転軸芯に沿う方向で前記第1軸受および前記第2軸受の双方の前記カムシャフトより遠い側に前記オルダム継手が配置されている点にある。
 この特徴構成によると、強度の高い従動側回転体に第1軸受を設けるため、フロントプレートの厚みを薄くでき回転軸芯に沿う方向での寸法を短縮できる。また、第1軸受と第2軸受とオルダム継手とフロントプレートとを回転軸芯に沿う方向で比較的近接する位置に配置できるため、第1軸受と第2軸受とで回転モーメントを効果的に受け止めることが可能となり、偏心部材や入力ギヤの回転姿勢が安定し、円滑な作動を行うことができる。更に、第2軸受の前記カムシャフトより遠い側でフロントプレートの内面に接触可能な位置にオルダム継手が配置されるため、第2軸受をフロントプレートに支持するための構成を採用しなくて済み、回転軸芯に沿う方向での寸法の一層の短縮が可能となる。
 従って、電動アクチュエータの駆動力により駆動側回転体と従動側回転体との相対回転位相を設定する弁開閉時期制御装置を円滑に作動させる状態で小型に構成された。
 他の構成として、前記オルダム継手が前記フロントプレートと前記第2軸受との間に配置され、前記偏心部材は、前記回転軸芯に沿う方向で前記カムシャフトより遠い側の端部において、内部空間に供給された潤滑油を径方向の外方に案内する潤滑油溝を前記フロントプレートより内側に形成しても良い。
 これによると、偏心部材の内部空間に供給された潤滑油を、弁開閉時期制御装置の回転に伴う遠心力により偏心部材の潤滑油溝から外方に送り、潤滑油は最終的に排出されるため、例えば内部で発生した塵埃や異物等を潤滑油とともに排出できる。また、オルダム継手をフロントプレートに接触して配置することが可能となり、潤滑油溝が偏心部材のフロントプレートより内側に形成されているため、オルダム継手とフロントプレートとを互いに接触する位置関係に配置しても、これらの間に潤滑油を供給してオルダム継手の円滑な作動を実現する。
 他の構成として、前記オルダム継手が前記フロントプレートと前記第2軸受との間に配置され、前記駆動側回転体において前記オルダム継手が係合する部位の外周側に潤滑油の流通を許容する切欠き状の排出流路が形成されても良い。
 オルダム継手とフロントプレートとを互いに接触する位置関係に配置しても、潤滑油をフロントプレートとオルダム継手との間に供給してオルダム継手の円滑な作動を実現する。また、駆動側回転体に切欠き状の排出流路を形成するため、排出流路の形成が容易となる。この構成では、内燃機関の始動時に弁開閉時期制御装置の内部に残留する潤滑油を排出流路によって排出が可能であり、例えば、内燃機関が低温状態にあり、潤滑油の粘性が高い場合でも潤滑油を迅速に排出して位相調節機構の円滑な作動を可能にする。
 他の構成として、前記偏心部材の外周側と前記第2軸受の内周側との間に、前記入力ギヤの一部を前記出力ギヤの一部に噛み合わせるように前記入力ギヤに付勢力を作用させる第1付勢部材を備え、前記オルダム継手が前記フロントプレートと前記第2軸受との間に配置され、前記オルダム継手と前記第2軸受との間に、前記第2軸受を前記第1軸受に向けて付勢する第2付勢部材が備えられても良い。
 本構成では、偏心部材の外周側と第2軸受の内周側との間には、駆動側回転体の側の入力ギヤの一部を従動側回転体の側の出力ギヤの一部に噛み合わせるように入力ギヤに付勢力を作用させる第1付勢部材を備えている。また、オルダム継手がフロントプレートと第2軸受との間に配置されている。弁開閉時期制御装置では、通常、部材の組付け易さの観点から、オルダム継手に対向する、入力ギヤ及び第2軸受は、回転軸芯に沿う方向において移動が許容される隙間を有して配置される。こうした構成において、例えば、内燃機関の作動時にトルク変動が与えられて、カムシャフトに接続された従動側回転体に外力が作用する場合には、その外力が出力ギヤの内歯から入力ギヤの外歯に伝達される。この場合、外力が伝達された入力ギヤは、回転軸芯に沿う方向に隙間の範囲内を移動すると共に、第1付勢部材の付勢力に抗する方向(回転軸芯に向かう方向)にも移動する。また、第2軸受についても、回転軸芯に沿う方向に隙間の範囲内で移動すると共に、第1付勢部材の付勢力に抗する方向(回転軸芯に向かう方向)に移動する。このように、入力ギヤ及び第2軸受は、従動側回転体の内部において2方向に移動するため、回転軸芯に沿う方向に対して傾斜姿勢になることがある。そうなると、入力ギヤ及び第2軸受は、それらの角部が周辺の部材に当接するようになるため、入力ギヤ及び第2軸受やそれらの周辺の部材が摩耗する虞がある。
 そこで、本構成では、オルダム継手と第2軸受との間に、第2軸受を第1軸受に向けて付勢する第2付勢部材が備えられている。第2軸受は、付勢部材によって第1軸受に向けて付勢されることで第1軸受の側に保持されるようになり回転軸芯に沿う方向に移動し難くなる。これにより、第2軸受は回転軸芯に沿う方向の位置及び姿勢が安定する。入力ギヤは、位置及び姿勢が保持された第2軸受によって支持されるので、姿勢が安定する。また、第2軸受の位置及び姿勢が安定することで、第2軸受の内周面と偏心部材の外周面との間の摩擦力が高まる。これにより、入力ギヤ及び第2軸受が第1付勢部材の付勢力に抗する方向(回転軸芯に向かう方向)に移動した場合に、第2軸受の内周側と偏心部材の外周面とが面接触するようになる。こうして、第2軸受の位置及び姿勢が安定することで、第2軸受に当接する他の部材の姿勢が安定する。その結果、入力ギヤ及び第2軸受と周辺の部材とは面接触するようになり、摩耗し難くなるので耐久性が向上する。
 他の構成として、前記偏心部材の外周側と前記第2軸受の内周側との間に、前記入力ギヤの一部を前記出力ギヤの一部に噛み合わせるように前記入力ギヤに付勢力を作用させる第1付勢部材を備え、前記オルダム継手が前記フロントプレートと前記第2軸受との間に配置され、前記オルダム継手と前記第2軸受との間に、前記第2軸受が前記回転軸芯に沿う方向に移動可能な隙間の距離を所定の設定値以下にするスペーサが備えられても良い。
 本構成では、オルダム継手と前記第2軸受との間に備えられたスペーサによって、回転軸芯に沿う方向における第2軸受の移動は所定の設定値以下の距離に制限される。これにより、第2軸受は回転軸芯に沿う方向における位置及び姿勢が安定する。入力ギヤは、回転軸芯に沿う方向における位置及び姿勢の変動が小さい第2軸受によって支持されるので、姿勢が安定する。また、第2軸受の位置及び姿勢が安定することで、第2軸受の内周面と偏心部材の外周面との間の摩擦力が高まる。これにより、本構成においても、入力ギヤ及び第2軸受とその周辺の部材とは面接触するようになり、摩耗し難くなるので耐久性が向上する。
弁開閉時期制御装置の断面図である。 図1のII-II線断面図である。 図1のIII-III線断面図である。 図1のIV-IV線断面図である。 弁開閉時期制御装置の分解斜視図である。 別実施形態の弁開閉時期制御装置の断面図である。 第2付勢部材の正面図である。 図7のVIII-VIII矢視断面図である。 別実施形態の弁開閉時期制御装置の断面図である。
 以下、本発明の実施形態を図面に基づいて説明する。
〔基本構成〕
 図1に示すように、内燃機関としてのエンジンEのクランクシャフト1と同期回転する駆動側回転体Aと、回転軸芯Xを中心にして吸気カムシャフト2と一体回転する従動側回転体Bと、位相制御モータM(電動アクチュエータの一例)の駆動力により駆動側回転体Aと従動側回転体Bとの相対回転位相を設定する位相調節機構Cとを備えて弁開閉時期制御装置100が構成されている。
 エンジンEは、シリンダブロックに形成された複数のシリンダ3にピストン4を収容し、ピストン4をコネクティングロッド5によりクランクシャフト1に連結した4サイクル型に構成されている。エンジンEのクランクシャフト1の出力スプロケット1Sと、駆動側回転体Aの駆動スプロケット11Sとに亘ってタイミングチェーン6(タイミングベルト等でも良い)が巻回されている。
 これにより、エンジンEの稼働時には、弁開閉時期制御装置100の全体が回転軸芯Xを中心に回転する。また、位相制御モータMの駆動力により位相調節機構Cを作動させることで、駆動側回転体Aに対して従動側回転体Bを回転方向と同方向又は逆方向に変位可能となる。位相調節機構Cでの変位により駆動側回転体Aと従動側回転体Bとの相対回転位相を設定し、吸気カムシャフト2のカム部2Aによる吸気バルブ2Bの開閉時期(開閉タイミング)の制御が実現する。
 尚、従動側回転体Bが駆動側回転体Aの回転方向と同方向に変位する作動を進角作動と称し、この進角作動により吸気圧縮比が増大する。また、従動側回転体Bが駆動側回転体Aと逆方向に変位する作動(前述と逆方向への作動)を遅角作動と称し、この遅角作動により吸気圧縮比が低減する。
〔弁開閉時期制御装置〕
 図1~図4に示すように、駆動側回転体Aは、外周に駆動スプロケット11Sが形成されたアウタケース11と、フロントプレート12と、を複数の締結ボルト13で締結して構成されている。アウタケース11は、底部に開口を有する有底筒状型である。
 アウタケース11の内部空間に従動側回転体Bとしての中間部材20と、ハイポサイクロイド型のギヤ減速機構を有した位相調節機構Cとが収容されている。また、位相調節機構Cは、位相変化を駆動側回転体Aおよび従動側回転体Bに反映するオルダム継手Cxを備えている。
 従動側回転体Bを構成する中間部材20は、回転軸芯Xに直交する姿勢で吸気カムシャフト2に連結する支持壁部21と、回転軸芯Xを中心とする筒状で吸気カムシャフト2から離間する方向に突出する筒状壁部22とが一体形成されている。
 中間部材20は、筒状壁部22の外面がアウタケース11の内面に接触する状態で相対回転自在に嵌め込まれ、支持壁部21の中央の貫通孔に挿通する連結ボルト23により吸気カムシャフト2の端部に固定される。このように固定された状態で筒状壁部22の外側(吸気カムシャフト2より遠い側)の端部がフロントプレート12より内側に位置するように構成されている。
 位相制御モータM(電動モータ)は、その出力軸Maを回転軸芯Xと同軸芯上に配置するように支持フレーム7によりエンジンEに支持されている。位相制御モータMの出力軸Maには、回転軸芯Xに対して直交する姿勢の一対の係合ピン8が形成されている。
〔位相調節機構〕
 図1~図5に示すように、位相調節機構Cは、中間部材20と、中間部材20の筒状壁部22の内周面に形成される出力ギヤ25と、偏心部材26と、第1付勢部材としてのバネ体27と、第1軸受28と、第2軸受29と、入力ギヤ30と、固定リング31と、オルダム継手Cxとを備えて構成されている。尚、第1軸受28及び第2軸受29にはボールベアリングが使用されるが、ブッシュを用いることも可能である。
 中間部材20の筒状壁部22の内周のうち、回転軸芯Xに沿う方向で内側(支持壁部21に隣接する位置)に回転軸芯Xを中心とする支持面22Sが形成され、支持面22Sより外側(吸気カムシャフト2より遠い側)に回転軸芯Xを中心とする出力ギヤ25が一体的に形成されている。
 偏心部材26は筒状であり、回転軸芯Xに沿う方向での内側(吸気カムシャフト2に近い側)に回転軸芯Xを中心とする外周面の円周支持面26Sが形成され、外側(吸気カムシャフト2より遠い側)には回転軸芯Xに平行となる姿勢で偏心する偏心軸芯Yを中心とする外周面の偏心支持面26Eが形成されている。偏心支持面26Eの外周に形成した凹部26Fにバネ体27が嵌め込まれている。
 偏心部材26の内周には、位相制御モータMの一対の係合ピン8の各々が係合可能な一対の係合溝26Tが回転軸芯Xと平行姿勢で形成されている。更に、偏心部材26の内側(支持壁部21の側)には径方向に沿う姿勢の複数の第1潤滑油溝26aが形成され、外側(吸気カムシャフト2より遠い側)には径方向に沿う姿勢の複数の第2潤滑油溝26bが形成されている。尚、偏心部材26には、第1潤滑油溝26aと第2潤滑油溝26bとの一方だけを形成しても良い。これら第1潤滑油溝26aと第2潤滑油溝26bの数は任意に設定しても良い。
 図1及び図2に示すように、偏心部材26は、円周支持面26Sに第1軸受28を外嵌し、第1軸受28を筒状壁部22の支持面22Sに嵌め込むことにより、中間部材20に対し回転軸芯Xを中心に回転自在に支持される。また、図1及び図3に示すように、入力ギヤ30は、偏心部材26の偏心支持面26Eに対し第2軸受29を介して偏心軸芯Yを中心に回転自在に支持される。
 位相調節機構Cでは、入力ギヤ30の外歯部30Aの歯数が、出力ギヤ25の内歯部25Aの歯数より1歯だけ少なく設定されている。そして、入力ギヤ30の外歯部30Aの一部が出力ギヤ25の内歯部25Aの一部に噛合する。
 バネ体27は、バネ板材をU字状に屈曲した形状を有しており、入力ギヤ30の外歯部30Aの一部を出力ギヤ25の内歯部25Aの一部に噛み合わせるように、入力ギヤ30に付勢力を作用させる。また、固定リング31は、偏心部材26の外周に嵌合状態で支持されることにより第2軸受29の抜け止めを行う。
〔位相調節機構:オルダム継手〕
 図1、図4、及び図5に示すように、オルダム継手Cxは、中央の環状部41と、環状部41から第1方向(図4では左右方向)に沿って径方向外方に突出する一対の外部係合アーム42と、環状部41から第1方向に直交する方向(図4では上下方向)に沿って径方向外方に突出する内部係合アーム43とを一体形成した板状の継手部材40で構成されている。一対の内部係合アーム43の各々には環状部41の開口に連なる係合凹部43aが形成されている。
 アウタケース11のうち、フロントプレート12が当接する開口縁部にはアウタケース11の内部空間から外部空間に亘り、回転軸芯Xを中心に半径方向に伸びる一対の案内溝部11aが貫通溝状に形成されている。案内溝部11aの溝幅が外部係合アーム42の幅より僅かに広く設定され、各々の案内溝部11aには一対の排出流路11bが切欠き形成されている。尚、排出流路11bを、フロントプレート12に対して径方向に潤滑油を流すように形成しても良い。
 また、入力ギヤ30のうちフロントプレート12に対向する端面には一対の係合突起30Tが一体形成されている。係合突起30Tの係合幅が内部係合アーム43の係合凹部43aの係合幅より僅かに狭く設定されている。
 このような構成から、継手部材40の一対の外部係合アーム42を、アウタケース11の一対の案内溝部11aに係合させ、継手部材40の一対の内部係合アーム43の係合凹部43aに、入力ギヤ30の一対の係合突起30Tを係合させることによりオルダム継手Cxを機能させることが可能となる。
 尚、継手部材40がアウタケース11に対して外部係合アーム42が伸びる第1方向(図4で左右方向)に変位可能となり、この継手部材40に対して内部係合アーム43の係合凹部43aの形成方向に沿う第2方向(図4では上下方向)に入力ギヤ30が変位自在となる。
〔弁開閉時期制御装置の各部の配置〕
 組み立て状態の弁開閉時期制御装置100は、図1に示すように、吸気カムシャフト2の端部に中間部材20の支持壁部21が連結ボルト23により連結しており、これらは一体回転する。偏心部材26は第1軸受28により中間部材20に対して回転軸芯Xを中心に相対回転自在に支持される。図1及び図2に示すように、偏心部材26の偏心支持面26Eに対し第2軸受29を介して入力ギヤ30が支持され、入力ギヤ30の外歯部30Aの一部が出力ギヤ25の内歯部25Aの一部に噛み合う。
 更に、図4に示すように、オルダム継手Cxの外部係合アーム42がアウタケース11の一対の案内溝部11aに係合し、オルダム継手Cxの内部係合アーム43の係合凹部43aに入力ギヤ30の係合突起30Tが係合する。図1に示すように、オルダム継手Cxの継手部材40の外方側にフロントプレート12が配置されるため、継手部材40はフロントプレート12の内面に接触する状態で回転軸芯Xに対して直交する方向に移動可能となる。この配置により、オルダム継手Cxは、第1軸受28および第2軸受29の双方より外側(吸気カムシャフト2より遠い側)で、フロントプレート12より内側(吸気カムシャフト2に近い側)に配置される。
 そして、図1~図3に示すように、位相制御モータMの出力軸Maに形成された一対の係合ピン8が、偏心部材26の係合溝26Tに係合する。
〔位相調節機構の作動形態〕
 図面には示していないが、位相制御モータMはECUとして構成される制御装置によって制御される。エンジンEには、クランクシャフト1と吸気カムシャフト2との回転速度(単位時間あたりの回転数)と、各々の回転位相とを検知可能なセンサを備えており、これらのセンサの検知信号が制御装置に入力するように構成されている。
 制御装置は、エンジンEの稼動時において位相制御モータMを吸気カムシャフト2の回転速度と等しい速度で駆動することで相対回転位相を維持する。これに対して位相制御モータMの回転速度を吸気カムシャフト2の回転速度より低減することにより進角作動が行われ、これとは逆に回転速度が増大することにより遅角作動が行われる。前述したように進角作動により吸気圧縮比が増大し、遅角作動により吸気圧縮比が低減する。
 位相制御モータMがアウタケース11と等速(吸気カムシャフト2と等速)で回転する場合には、出力ギヤ25の内歯部25Aに対する入力ギヤ30の外歯部30Aの噛み合い位置が変化しないため、駆動側回転体Aに対する従動側回転体Bの相対回転位相は維持される。
 これに対してアウタケース11の回転速度より高速又は低速で位相制御モータMの出力軸Maを駆動回転することにより、位相調節機構Cでは偏心軸芯Yが回転軸芯Xを中心に公転する。この公転により出力ギヤ25の内歯部25Aに対する入力ギヤ30の外歯部30Aの噛み合い位置が出力ギヤ25の内周に沿って変位し、入力ギヤ30と出力ギヤ25との間には回転力が作用する。つまり、出力ギヤ25には回転軸芯Xを中心とする回転力が作用し、入力ギヤ30には偏心軸芯Yを中心に自転させようとする回転力が作用する。
 前述したように入力ギヤ30は、その係合突起30Tが継手部材40の内部係合アーム43の係合凹部43aに係合するためアウタケース11に対して自転することはなく、回転力が出力ギヤ25に作用する。この回転力の作用により出力ギヤ25と共に中間部材20が、アウタケース11に対し回転軸芯Xを中心に回転する。その結果、駆動側回転体Aと従動側回転体Bとの相対回転位相を設定し、吸気カムシャフト2による開閉時期の設定を実現する。
 また、入力ギヤ30の偏心軸芯Yが回転軸芯Xを中心に公転する際には、入力ギヤ30の変位に伴い、オルダム継手Cxの継手部材40は、アウタケース11に対して外部係合アーム42が伸びる方向(第1方向)に変位し、入力ギヤ30は、内部係合アーム43が伸びる方向(第2方向)へ変位する。
 前述したように、入力ギヤ30の外歯部30Aの歯数が、出力ギヤ25の内歯部25Aの歯数より1歯だけ少なく設定されているため、入力ギヤ30の偏心軸芯Yが回転軸芯Xを中心に1回転だけ公転した場合には、1歯分だけ出力ギヤ25が回転することになり大きい減速を実現している。
〔位相調節機構の潤滑〕
 図1に示すように、吸気カムシャフト2には外部のオイルポンプPからの潤滑油が油路形成部材9を介して供給される潤滑油路15を形成している。中間部材20の支持壁部21のうち、吸気カムシャフト2に当接する面の一部には偏心部材26の内部にオイルを案内する開口部21aが形成されている。
 前述したように偏心部材26には複数の第1潤滑油溝26aと複数の第2潤滑油溝26bが形成されている(図1及び図5を参照)。また、フロントプレート12のうち継手部材40と対向する面には、継手部材40の表面との間に径方向に沿って僅かな隙間となる潤滑凹部12aが形成されている。尚、潤滑凹部12aはフロントプレート12の内周側に形成されているが、フロントプレート12の外周に達する領域に形成されるものでも良く、潤滑凹部12aを省略してフロントプレート12と継手部材40との隙間に潤滑油を供給するように構成しても良い。
 前述したように案内溝部11aには一対の排出流路11bが形成されている(図4及び図5を参照)。更に、フロントプレート12の開口12bの開口径を、偏心部材26の内径より充分に大きくすることにより、フロントプレート12の開口縁と偏心部材26の内周との間に段差Gが形成されている。
 この構成から、オイルポンプPから供給される潤滑油は、吸気カムシャフト2の潤滑油路15から、中間部材20の支持壁部21の開口部21aを介して偏心部材26の内部空間に供給される。このように供給された潤滑油は、遠心力により偏心部材26の第1潤滑油溝26aから第1軸受28に供給され第1軸受28を円滑に作動させる。
 これと同時に、偏心部材26の内部空間の潤滑油は遠心力により第2潤滑油溝26bから継手部材40に供給されると共に、第2軸受29に供給され、出力ギヤ25の内歯部25Aと入力ギヤ30の外歯部30Aとの間に供給される。
 また、図1に示すように、第2潤滑油溝26bからの潤滑油は、潤滑凹部12aによりフロントプレート12と継手部材40との間に供給されると共に、継手部材40の外部係合アーム42とアウタケース11の案内溝部11aとの間の隙間に供給される。これにより、継手部材40を円滑に作動させる。そして、継手部材40に供給された潤滑油は、継手部材40の外部係合アーム42とアウタケース11の案内溝部11aとの間の隙間から外部に排出される。
 特に、フロントプレート12の開口縁と偏心部材26の内周との間に段差Gが形成されているため、エンジンEが停止した場合には偏心部材26の内部空間の潤滑油をフロントプレート12の開口12bから排出し、内部に残留する潤滑油の油量を低減できる。尚、弁開閉時期制御装置100の内部に潤滑油が多く残留する場合には、寒冷の環境でエンジンEを始動した後に、潤滑油の粘性の影響により位相調節機構Cの作動が抑制されることになるが、エンジンEの停止時に潤滑油を排出することにより、このような不都合を解消できる。
 更に、案内溝部11aに排出流路11bが形成されているため、寒冷の環境で停止状態にあるエンジンEを始動する際には、遠心力によって内部の潤滑油を、排出流路11bを介して迅速に排出できるため、粘性の高い潤滑油を短時間のうちに排出し、潤滑油の粘性の影響を排除して位相調節機構Cの迅速な作動を可能にする。
〔実施形態の作用・効果〕
 この構成では、中間部材20の内部に第1軸受28と第2軸受29とを比較的近接する位置に配置でき、しかも、オルダム継手Cxの継手部材40が板材で構成されるため、弁開閉時期制御装置100において回転軸芯Xに沿う方向での小型化を実現することができる。
 また、偏心部材26を第1軸受28により中間部材20の内周の支持面22Sに支持し、偏心部材26の偏心支持面26Eに第2軸受29を介して入力ギヤ30を支持している。このため、バネ体27の付勢力が偏心部材26の姿勢を変化させる方向に作用しても、偏心部材26の円周支持面26S外面の全周が第1軸受28により中間部材20の内周に抱き込まれるように保持し、偏心部材26と中間部材20との位置関係を維持できる。
 特に、この構成では、バネ体27の付勢力が偏心部材26と中間部材20との間にだけ作用し、外部の部材に作用しない。このため、例えば、バネ体27の付勢力に対する外部の部材の変形や変位を考慮せずに済み、偏心部材26の姿勢維持を一層高い精度で行うことができる。
 また、偏心部材26の端部に潤滑油を流すための第1潤滑油溝26aと第2潤滑油溝26bとを形成することにより、オルダム継手Cxを円滑に作動させ、第1軸受28と第2軸受29との円滑な作動を行わせ、出力ギヤ25の内歯部25Aと入力ギヤ30の外歯部30Aと噛合を円滑に行わせ、位相制御モータMに作用する負荷を軽減する。このように第1潤滑油溝26aと第2潤滑油溝26bとを形成することで潤滑油が必要な箇所に潤滑油を供給するため、潤滑油を無駄にすることがなく潤滑油量の低減も可能となる。
 特に、オルダム継手Cxを構成する継手部材40とフロントプレート12との間に潤滑油を供給することで、継手部材40の作動を円滑に行わせることになり、位相制御モータMに作用する負荷の一層の軽減が可能となる。
 位相調節機構Cでは、出力ギヤ25の内歯部25Aと入力ギヤ30の外歯部30Aとの噛合部に強い力が作用するため、この部位で塵埃が発生することもある。しかしながら、潤滑油が流れる方向でこの噛合部より下流側に軸受が配置されていないため、塵埃等の影響を排除して軸受の傷みを抑制することも可能にする。
 特に、この構成では遠心力により潤滑油を排出できるため、塵埃や異物等の排出を行えるだけでなく、エンジンEの停止時にも潤滑油を積極的に排出するため、内部に塵埃や異物等を内部に残留させることもない。
〔別実施形態〕
(1)上記の実施形態では、偏心部材26の外周側と第2軸受29の内周側との間には、入力ギヤ30の外歯部30Aの一部を出力ギヤ25の内歯部25Aの一部に噛み合わせるように入力ギヤ30に付勢力を作用させるバネ体27が備えられている。また、オルダム継手Cxがフロントプレート12と第2軸受29との間に配置されている。弁開閉時期制御装置100では、通常、部材の組付け易さの観点から、図6に示すように、入力ギヤ30は回転軸芯Xに沿う方向において移動が許容される隙間(L1,L2)を有して配置される。隙間L1は入力ギヤ30と第1軸受28との間に形成され、隙間L2は入力ギヤ30とオルダム継手Cxとの間に形成されている。また、第2軸受29とオルダム継手Cxの側の固定リング31との間には、第2軸受29が回転軸芯Xに沿う方向において移動可能な隙間が形成されている。
 こうした構成において、例えば、エンジンEの作動時にトルク変動が与えられて、吸気カムシャフト2に接続された従動側回転体Bに外力が作用する場合には、その外力が出力ギヤ25の内歯部25Aから入力ギヤ30の外歯部30Aに伝達される。この場合、外力が伝達された入力ギヤ30は、回転軸芯Xに沿う方向に隙間L1,L2の範囲内を移動すると共に、バネ体27の付勢力に抗する方向(回転軸芯Xに向かう方向)にも移動する。また、第2軸受29についても、回転軸芯Xに沿う方向に隙間の範囲内で移動すると共に、バネ体27の付勢力に抗する方向(回転軸芯Xに向かう方向)にも移動する。このように、入力ギヤ30及び第2軸受29は、従動側回転体Bの内部において2方向に移動するため、回転軸芯Xに沿う方向に対して傾斜姿勢になることがある。そうなると、入力ギヤ30及び第2軸受29は、それらの角部が周辺の部材(バネ体27、偏心部材26、出力ギヤ25等)に当接するようになるため、入力ギヤ30及び第2軸受29や周辺の部材が摩耗する虞がある。
 そこで、図6に示す実施形態では、オルダム継手Cxと第2軸受29との間に、第2軸受29を第1軸受28に向けて付勢する第2付勢部材51が備えられている。本実施形態では、第2付勢部材51は固定リング31と第2軸受29の内輪との間に配置されている。第2付勢部材51は、環状であって、例えば、図7及び図8に示されるウェーブワッシャによって構成される。第2付勢部材51は、バネ体27の動きを規制しないよう、バネ体27の外周からは離間した位置に配置されている。なお、ウェーブワッシャは第2付勢部材51の一例に過ぎない。第2付勢部材51は、第2軸受29を第1軸受28に向けて付勢する形状であれば他の形状であってもよい。
 オルダム継手Cxと第2軸受29との間に第2付勢部材51が備えられることで、第2軸受29は第1軸受28に向けて付勢されて第1軸受28の側に保持されるようになり回転軸芯Xに沿う方向に移動し難くなる。これにより、第2軸受29は回転軸芯Xに沿う方向の位置及び姿勢が安定する。入力ギヤ30は、位置及び姿勢が保持された第2軸受29によって支持されるので、姿勢が安定する。また、第2軸受29の位置及び姿勢が安定することで、第2軸受29の内周面と偏心部材26の外周面との間の摩擦力が高まる。これにより、入力ギヤ30及び第2軸受29がバネ体27の付勢力に抗する方向(回転軸芯Xに向かう方向)に移動した場合に、第2軸受29の内周側と偏心部材26の外周面とが面接触するようになる。こうして、第2軸受29の位置及び姿勢が安定することで、第2軸受29に当接する他の部材の姿勢が安定する。その結果、入力ギヤ30及び第2軸受29と周辺の部材とは面接触するようになり、摩耗し難くなるので耐久性が向上する。
(2)図9に示すように、第2付勢部材51に代えて、オルダム継手Cxと第2軸受29との間に、スペーサ52が備えられてもよい。この場合、スペーサ52は、第2軸受29が回転軸芯Xに沿う方向に移動可能な隙間の距離を所定の設定値以下にする。オルダム継手Cxと第2軸受29との間にスペーサ52が備えられることで、回転軸芯Xに沿う方向において第2軸受29の移動は、所定の設定値以下の距離に制限される。これにより、第2軸受29は、回転軸芯Xに沿う方向における位置及び姿勢が安定する。ここで、所定の設定値以下の距離は、回転軸芯Xに沿う方向における第2軸受29の位置及び姿勢を安定させる上で例えば入力ギヤ30の両側に形成される隙間L1,L2の合計距離よりも短い距離が好ましい。
 入力ギヤ30は、回転軸芯Xに沿う方向における位置及び姿勢の変動が小さい第2軸受29によって支持されるので、姿勢が安定する。また、第2軸受29の位置及び姿勢が安定することで、第2軸受29の内周面と偏心部材26の外周面との間の摩擦力が高まる。これにより、入力ギヤ30及び第2軸受29とその周辺の部材とは面接触するようになり、摩耗し難くなるので耐久性が向上する。
 本発明は、電動アクチュエータの駆動力により駆動側回転体と従動側回転体との相対回転位相を設定する弁開閉時期制御装置に利用することができる。
1     クランクシャフト
2     吸気カムシャフト(カムシャフト)
11b   排出流路
12    フロントプレート
21    支持壁部
22    筒状壁部
25    出力ギヤ
26    偏心部材
26b   第2潤滑油溝(潤滑油溝)
27    バネ体(第1付勢部材)
28    第1軸受
29    第2軸受
30    入力ギヤ
51    第2付勢部材
52    スペーサ
A     駆動側回転体
B     従動側回転体
C     位相調節機構
Cx    オルダム継手
E     エンジン(内燃機関)
M     位相制御モータ(電動アクチュエータ)
X     回転軸芯
Y     偏心軸芯

Claims (5)

  1.  回転軸芯を中心に内燃機関のクランクシャフトと同期回転する駆動側回転体と、
     前記回転軸芯と同軸芯で前記駆動側回転体の内側に配置され、前記内燃機関の弁開閉用のカムシャフトと一体回転する従動側回転体と、
     電動アクチュエータの駆動力により前記駆動側回転体および前記従動側回転体の相対回転位相を設定する位相調節機構と、を備え、
     前記位相調節機構が、前記回転軸芯と同軸芯で前記従動側回転体に設けられた出力ギヤと、前記回転軸芯と平行姿勢の偏心軸芯で回転し前記出力ギヤより歯数が少なく前記偏心軸芯と同軸芯上に配置され、オルダム継手を介して前記駆動側回転体に連結される入力ギヤと、前記入力ギヤの内側で前記入力ギヤを前記偏心軸芯を中心に回転させるように支持する筒状の偏心部材とを備えることにより、前記電動アクチュエータの駆動力による前記偏心部材の回転で前記偏心軸芯を公転させて前記出力ギヤと前記入力ギヤとの噛み合い位置を変化させるように構成され、
     前記従動側回転体の内周と前記偏心部材の外周との間に配置される第1軸受と、前記回転軸芯に沿う方向で前記第1軸受に対して前記カムシャフトより遠い側で前記偏心部材の外周と前記入力ギヤの内周との間に配置される第2軸受と、前記回転軸芯に沿う方向で前記第2軸受に対して前記カムシャフトより遠い側で前記駆動側回転体に固定されるフロントプレートとを備え、前記回転軸芯に沿う方向で前記第1軸受および前記第2軸受の双方の前記カムシャフトより遠い側に前記オルダム継手が配置されている弁開閉時期制御装置。
  2.  前記オルダム継手が前記フロントプレートと前記第2軸受との間に配置され、
     前記偏心部材は、前記回転軸芯に沿う方向で前記カムシャフトより遠い側の端部において、内部空間に供給された潤滑油を径方向の外方に案内する潤滑油溝を前記フロントプレートより内側に形成している請求項1に記載の弁開閉時期制御装置。
  3.  前記オルダム継手が前記フロントプレートと前記第2軸受との間に配置され、
     前記駆動側回転体において前記オルダム継手が係合する部位の外周側に潤滑油の流通を許容する切欠き状の排出流路が形成されている請求項1又は2に記載の弁開閉時期制御装置。
  4.  前記偏心部材の外周側と前記第2軸受の内周側との間に、前記入力ギヤの一部を前記出力ギヤの一部に噛み合わせるように前記入力ギヤに付勢力を作用させる第1付勢部材を備え、
     前記オルダム継手が前記フロントプレートと前記第2軸受との間に配置され、
     前記オルダム継手と前記第2軸受との間に、前記第2軸受を前記第1軸受に向けて付勢する第2付勢部材が備えられている請求項1から3の何れか一項に記載の弁開閉時期制御装置。
  5.  前記偏心部材の外周側と前記第2軸受の内周側との間に、前記入力ギヤの一部を前記出力ギヤの一部に噛み合わせるように前記入力ギヤに付勢力を作用させる第1付勢部材を備え、
     前記オルダム継手が前記フロントプレートと前記第2軸受との間に配置され、
     前記オルダム継手と前記第2軸受との間に、前記第2軸受が前記回転軸芯に沿う方向に移動可能な隙間の距離を所定の設定値以下にするスペーサが備えられている請求項1から3の何れか一項に記載の弁開閉時期制御装置。
PCT/JP2017/031686 2016-11-18 2017-09-04 弁開閉時期制御装置 WO2018092390A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780066647.6A CN110023596B (zh) 2016-11-18 2017-09-04 阀正时控制装置
DE112017005833.3T DE112017005833T5 (de) 2016-11-18 2017-09-04 Ventilöffnungs-/ventilschliesszeitsteuervorrichtung
US16/349,485 US10626762B2 (en) 2016-11-18 2017-09-04 Valve opening/closing timing control device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016224831 2016-11-18
JP2016-224831 2016-11-18
JP2017-120329 2017-06-20
JP2017120329A JP6838506B2 (ja) 2016-11-18 2017-06-20 弁開閉時期制御装置

Publications (1)

Publication Number Publication Date
WO2018092390A1 true WO2018092390A1 (ja) 2018-05-24

Family

ID=62145521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031686 WO2018092390A1 (ja) 2016-11-18 2017-09-04 弁開閉時期制御装置

Country Status (1)

Country Link
WO (1) WO2018092390A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110374709A (zh) * 2019-09-03 2019-10-25 绵阳富临精工机械股份有限公司 一种电动相位调节器
JP2020020282A (ja) * 2018-07-31 2020-02-06 株式会社デンソー バルブタイミング調整装置
WO2020162016A1 (ja) * 2019-02-06 2020-08-13 日立オートモティブシステムズ株式会社 内燃機関のバルブタイミング制御装置
EP3767084A1 (en) * 2019-07-18 2021-01-20 Aisin Seiki Kabushiki Kaisha Valve opening-closing timing control apparatus
US11313256B2 (en) * 2019-07-18 2022-04-26 Aisin Corporation Valve opening-closing timing control apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248804A (ja) * 2007-03-30 2008-10-16 Denso Corp バルブタイミング調整装置
JP2016044627A (ja) * 2014-08-25 2016-04-04 アイシン精機株式会社 弁開閉時期制御装置
JP2016070161A (ja) * 2014-09-30 2016-05-09 ダイハツ工業株式会社 内燃機関の制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248804A (ja) * 2007-03-30 2008-10-16 Denso Corp バルブタイミング調整装置
JP2016044627A (ja) * 2014-08-25 2016-04-04 アイシン精機株式会社 弁開閉時期制御装置
JP2016070161A (ja) * 2014-09-30 2016-05-09 ダイハツ工業株式会社 内燃機関の制御装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020020282A (ja) * 2018-07-31 2020-02-06 株式会社デンソー バルブタイミング調整装置
WO2020162016A1 (ja) * 2019-02-06 2020-08-13 日立オートモティブシステムズ株式会社 内燃機関のバルブタイミング制御装置
JPWO2020162016A1 (ja) * 2019-02-06 2021-12-02 日立Astemo株式会社 内燃機関のバルブタイミング制御装置
EP3767084A1 (en) * 2019-07-18 2021-01-20 Aisin Seiki Kabushiki Kaisha Valve opening-closing timing control apparatus
JP2021017833A (ja) * 2019-07-18 2021-02-15 アイシン精機株式会社 弁開閉時期制御装置
US11143062B2 (en) 2019-07-18 2021-10-12 Aisin Corporation Valve opening-closing timing control apparatus
US11313256B2 (en) * 2019-07-18 2022-04-26 Aisin Corporation Valve opening-closing timing control apparatus
JP7400236B2 (ja) 2019-07-18 2023-12-19 株式会社アイシン 弁開閉時期制御装置
CN110374709A (zh) * 2019-09-03 2019-10-25 绵阳富临精工机械股份有限公司 一种电动相位调节器

Similar Documents

Publication Publication Date Title
JP6838506B2 (ja) 弁開閉時期制御装置
WO2018092390A1 (ja) 弁開閉時期制御装置
JP4442574B2 (ja) バルブタイミング調整装置
JP6790639B2 (ja) 弁開閉時期制御装置
JP6531641B2 (ja) 弁開閉時期制御装置
JP6911571B2 (ja) 弁開閉時期制御装置
JP7275635B2 (ja) 偏心揺動型減速装置
JP2018165531A (ja) ギヤ伝動装置
US8127729B2 (en) Valve timing control apparatus
JP2018165532A (ja) ギヤ減速装置
JP6394222B2 (ja) 弁開閉時期制御装置
JP7338289B2 (ja) 弁開閉時期制御装置
JP7400236B2 (ja) 弁開閉時期制御装置
JP2019157679A (ja) 弁開閉時期制御装置
JP2015102064A (ja) 弁開閉時期制御装置
CN113167140B (zh) 阀正时调整装置
JP7040283B2 (ja) 弁開閉時期制御装置
CN112539094A (zh) 气门正时调节装置
JP2023086586A (ja) 弁開閉時期制御装置
US11459916B2 (en) Valve timing adjustment device
US11441453B2 (en) Valve timing adjustment device
JP2023086583A (ja) 弁開閉時期制御装置
WO2024070373A1 (ja) 弁開閉時期制御装置
JP6925572B2 (ja) バルブタイミング調整装置
JP2023086584A (ja) 弁開閉時期制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871773

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17871773

Country of ref document: EP

Kind code of ref document: A1