WO2018092210A1 - 回転電機の制御装置、およびその回転電機の制御装置を備えた電動パワーステアリング装置 - Google Patents

回転電機の制御装置、およびその回転電機の制御装置を備えた電動パワーステアリング装置 Download PDF

Info

Publication number
WO2018092210A1
WO2018092210A1 PCT/JP2016/083948 JP2016083948W WO2018092210A1 WO 2018092210 A1 WO2018092210 A1 WO 2018092210A1 JP 2016083948 W JP2016083948 W JP 2016083948W WO 2018092210 A1 WO2018092210 A1 WO 2018092210A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
armature winding
electrical machine
rotating electrical
output torque
Prior art date
Application number
PCT/JP2016/083948
Other languages
English (en)
French (fr)
Inventor
古川 晃
山本 宗法
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP16921711.4A priority Critical patent/EP3544174B1/en
Priority to US16/327,914 priority patent/US11005405B2/en
Priority to CN201680090740.6A priority patent/CN109964401B/zh
Priority to PCT/JP2016/083948 priority patent/WO2018092210A1/ja
Priority to JP2018550915A priority patent/JP6685427B2/ja
Publication of WO2018092210A1 publication Critical patent/WO2018092210A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0484Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures for reaction to failures, e.g. limp home
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0487Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures detecting motor faults
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • G01R31/42AC power supplies

Definitions

  • the present invention relates to a rotating electrical machine control device including a plurality of sets of armature windings, and an electric power steering device including the rotating electrical machine control device.
  • the switching element that drives the rotating electrical machine is driven at the time of startup, and the driving of the switching element is stopped by a cut-off signal output from the microcomputer for checking. Is confirmed using the terminal voltage of the rotating electrical machine.
  • the present invention has been made in order to solve the above-described problems in the conventional electric power steering apparatus.
  • the control apparatus for a rotating electrical machine in which the configuration required for confirming the switching function of the switching element is simplified, and the rotation thereof.
  • An object of the present invention is to provide an electric power steering device including an electric motor control device.
  • a control device for a rotating electrical machine includes A control device for a rotating electrical machine that controls a rotating electrical machine having at least a first armature winding and a second armature winding, A voltage application unit for converting a DC voltage from a DC power source into an AC voltage and applying a voltage to the first armature winding and the second armature winding; A voltage command calculation unit configured to calculate a voltage command based on a current command to the rotating electrical machine; A switching signal generation unit configured to output a switching signal for driving a switching element configuring the voltage application unit based on the voltage command calculated by the voltage command calculation unit; A switching element cutoff switching unit configured to switch the switching element from a driving state to a cutoff state; A switching element cutoff failure determination unit configured to determine a failure of the switching element cutoff switching unit; With When the switching element cutoff failure determination unit determines a failure of the switching element cutoff switching unit, An output torque generated based on the first armature winding in which the switching element is in a driving state
  • a control device for a rotating electrical machine includes: A control device for a rotating electrical machine that controls a rotating electrical machine having at least a first armature winding and a second armature winding, A voltage application unit for converting a DC voltage from a DC power source into an AC voltage and applying a voltage to the first armature winding and the second armature winding; A voltage command calculation unit configured to calculate a voltage command based on a current command to the rotating electrical machine; A switching signal generation unit configured to output a switching signal for driving a switching element configuring the voltage application unit based on the voltage command calculated by the voltage command calculation unit; A switching element cutoff switching unit configured to switch the switching element from a driving state to a cutoff state; A switching element cutoff failure determination unit configured to determine a failure of the switching element cutoff switching unit; With When the switching element cutoff failure determination unit determines a failure of the switching element cutoff switching unit, The output torque based on the first armature winding in which the switching element is in
  • the electric power steering apparatus is A rotating electrical machine control device that controls a rotating electrical machine having at least a first armature winding and a second armature winding, and an assist that is controlled by the rotating electrical machine control device and assists steering of a vehicle driver
  • a rotating electric machine that generates torque An electric power steering device
  • the control device for the rotating electrical machine includes: A voltage application unit for converting a DC voltage from a DC power source into an AC voltage and applying a voltage to the first armature winding and the second armature winding; A voltage command calculation unit configured to calculate a voltage command based on a current command to the rotating electrical machine; A switching signal generation unit configured to output a switching signal for driving a switching element configuring the voltage application unit based on the voltage command calculated by the voltage command calculation unit; A switching element cutoff switching unit configured to switch the switching element from a driving state to a cutoff state; A switching element cutoff failure determination unit configured to determine a failure of the switching element cutoff switching unit; With When the switching element cutoff failure
  • the electric power steering apparatus is A rotating electrical machine control device that controls a rotating electrical machine having at least a first armature winding and a second armature winding, and an assist that is controlled by the rotating electrical machine control device and assists steering of a vehicle driver
  • a rotating electric machine that generates torque An electric power steering device
  • the control device for the rotating electrical machine includes: A control device for a rotating electrical machine that controls a rotating electrical machine having at least a first armature winding and a second armature winding, A voltage application unit for converting a DC voltage from a DC power source into an AC voltage and applying a voltage to the first armature winding and the second armature winding; A voltage command calculation unit configured to calculate a voltage command based on a current command to the rotating electrical machine; A switching signal generation unit configured to output a switching signal for driving a switching element configuring the voltage application unit based on the voltage command calculated by the voltage command calculation unit; A switching element cutoff switching unit configured to switch the switching element from a driving state
  • the rotating electrical machine control apparatus controls a rotating electrical machine having at least a first armature winding and a second armature winding, and includes a DC voltage from a DC power supply.
  • a voltage application unit that converts the voltage into an AC voltage and applies a voltage to the first armature winding and the second armature winding, and a voltage command is calculated based on a current command to the rotating electrical machine
  • a voltage command calculation unit configured, and a switching signal generation unit configured to output a switching signal for driving a switching element configuring the voltage application unit based on the voltage command calculated by the voltage command calculation unit
  • a switching element cutoff switching unit configured to switch the switching element from a driving state to a cutoff state, and the switch
  • a switching element cutoff failure determination unit configured to determine a failure of the switching element cutoff switching unit, and when the switching element cutoff failure determination unit determines a failure of the switching element cutoff switching unit, the switching element The output torque generated based on the first armature winding in the driving state
  • the output torque is suppressed before determining the failure of the switching element cutoff switching unit. It is possible to state, there is an effect that the structure required for the confirmation of the blocking function of the switching element can be obtained a control apparatus for simplifying the rotary electric machine.
  • a control apparatus for a rotating electrical machine that controls a rotating electrical machine having at least a first armature winding and a second armature winding.
  • a voltage application unit that converts a DC voltage into an AC voltage and applies a voltage to the first armature winding and the second armature winding, and calculates a voltage command based on a current command to the rotating electrical machine
  • a voltage command calculation unit configured as described above, and a switching signal configured to output a switching signal for driving a switching element configuring the voltage application unit based on the voltage command calculated by the voltage command calculation unit
  • a generation unit, a switching element cutoff switching unit configured to switch the switching element from a driving state to a cutoff state, and
  • a switching element cutoff failure determination unit configured to determine a failure of the switching element cutoff switching unit, and when the switching element cutoff failure determination unit determines a failure of the switching element cutoff switching unit, the switching element is The output torque based on the first armature winding in the driving state is T1,
  • the driving state By reducing both the total output torque generated in step 1 and the total output torque generated in the shut-off state, even if a larger current is passed, it can be suppressed within the mechanical loss, and failure determination can be performed in a state in which behavior is difficult to occur.
  • the control device for the rotating electrical machine that controls the rotating electrical machine having at least the first armature winding and the second armature winding;
  • An electric power steering device that is controlled by the control device of the rotating electrical machine and generates an assist torque that assists the steering of a vehicle driver, wherein the control device of the rotating electrical machine includes a DC power supply.
  • a voltage application unit that converts a DC voltage from the AC voltage into an AC voltage and applies a voltage to the first armature winding and the second armature winding, and a voltage command based on a current command to the rotating electrical machine
  • a voltage command calculation unit configured to calculate, and a switch constituting the voltage application unit based on the voltage command calculated by the voltage command calculation unit
  • a switching signal generation unit configured to output a switching signal for driving a switching element, a switching element cutoff switching unit configured to switch the switching element from a driving state to a cutoff state, and the switching element cutoff switching unit
  • a switching element interruption failure determination unit configured to determine a failure of the switching element, and when the switching element interruption failure determination unit determines a failure of the switching element interruption switching unit, the switching element is in a driving state.
  • the output torque generated based on the first armature winding and the output torque generated based on the second armature winding are opposite to each other, or the switching element is in a cut-off state
  • the output torque can be suppressed before the failure determination, and the configuration required for confirming the switching function of the switching element can be simplified.
  • the control device for the rotating electrical machine includes a rotating electrical machine having at least a first armature winding and a second armature winding.
  • a control device for a rotating electrical machine to control a voltage application unit for converting a DC voltage from a DC power source into an AC voltage and applying a voltage to the first armature winding and the second armature winding;
  • a voltage command calculation unit configured to calculate a voltage command based on a current command to the rotating electrical machine, and a switching element configuring the voltage application unit based on the voltage command calculated by the voltage command calculation unit
  • a switching signal generating unit configured to output a switching signal that drives the switching element, and switching the switching element from the driving state to the cutoff state.
  • a switching element cutoff failure determination unit configured to determine a failure of the switching element cutoff switching unit, wherein the switching element cutoff failure determination unit includes the switching element cutoff failure determination unit.
  • FIG. FIG. 1 is a diagram showing the overall configuration of a rotating electrical machine control apparatus according to Embodiment 1 of the present invention.
  • the control device for a rotating electrical machine according to Embodiment 1 of the present invention is configured to control the rotating electrical machine 3 by the control unit 1 as described below.
  • the DC power supply 2 outputs the DC voltage Vdc to the first voltage application unit 7a and the second voltage application unit 7b, respectively.
  • the DC power supply 2 can be configured by any one of all devices that output a DC voltage, such as a battery, a DC-DC converter, a diode rectifier, and a PWM rectifier.
  • the rotating electrical machine 3 includes a first armature winding 31 including a U1-phase winding, a V1-phase winding, and a W1-phase winding, a U2-phase winding, a V2-phase winding, and a W2-phase winding.
  • the second armature winding 32 is composed of three-phase windings, each phase winding is coupled by star connection, and a stator (not shown) constituted by these three-phase windings is provided. ing.
  • the rotating electrical machine 3 includes a stator, a rotor (not shown), and a rotating shaft (not shown) fixed to the rotor.
  • the present invention will be described by taking as an example the case where the present invention is applied to a permanent magnet type synchronous AC rotating electric machine in which each armature winding has three phases and a permanent magnet is disposed on the rotor. It can be used for a rotating electrical machine that is rotationally driven by phase alternating current, and may be an induction machine or a field winding type synchronous machine.
  • the first armature winding 31 and the second armature winding 32 are each star-connected, but the same effect can be obtained even if they are configured by delta connection.
  • the voltage command calculation unit 6 calculates first voltage commands Vu1, Vv1, and Vw1 for driving the rotating electrical machine 3 and outputs them to the first switching signal generation unit 15a, and second voltage commands Vu2 and Vv2 , Vw2 is calculated and output to the second switching signal generation unit 15b.
  • a current feedback control method for calculating the first voltage commands Vu1, Vv1, and Vw1 by proportional-integral control is used.
  • the U1-phase current Iu1, the V1-phase current Iv1, and the W1-phase current Iw1 flowing through the three-phase windings of the first armature winding 31 are obtained using an existing current detection unit such as a shunt resistor described later. In feedforward control and control using an estimated value, it is not essential to input U1-phase current Iu1, V1-phase current Iv1, and W1-phase current Iw1 to voltage command calculation unit 6.
  • the current command and the U2-phase current Iu2, the V2-phase current Iv2, and the W2-phase current Iw2 that flow through the three-phase windings of the second armature winding 32 respectively.
  • a current feedback control method for calculating the second voltage commands Vu2, Vv2, and Vw2 by proportional-integral control is used.
  • the U2-phase current Iu2, the V2-phase current Iv2, and the W2-phase current Iw2 flowing through the three-phase winding of the second armature winding 32 are obtained by using an existing current detection unit such as a shunt resistor described later. In feedforward control or control using an estimated value, it is not essential to input U2-phase current Iu2, V2-phase current Iv2, and W2-phase current Iw2 to voltage command calculation unit 6.
  • the first switching signal generation unit 15a performs pulse width modulation (PWM modulation) on the basis of the first voltage commands Vu1, Vv1, and Vw1 output from the voltage command calculation unit 6, thereby performing the first voltage command Vu1,
  • the first switching signals Qup1, Qvp1, Qwp1, Qun1, Qvn1, and Qwn1 having pulse widths corresponding to Vv1 and Vw1 are output.
  • a known modulation method such as space vector modulation or two-phase modulation with respect to the first voltage commands Vu1, Vv1, and Vw1.
  • Qun1, Qvn1, and Qwn1 may be generated.
  • the first voltage application unit 7a includes a U-phase upper arm switching element 20aU, a V-phase upper arm switching element 20aV, and a W-phase upper arm switching element based on the first switching signals Qup1, Qvp1, Qwp1, Qun1, Qvn1, and Qwn1.
  • U-phase lower arm switching element 21aU, V-phase lower arm switching element 21aV, and W-phase lower arm switching element 21aW the DC voltage input from DC power supply 2 is converted into an AC voltage and rotated.
  • a voltage is applied to the three-phase windings U1, V1, W1 of the first armature winding 31 of the electric machine 3.
  • U phase upper arm switching element 20aU, V phase upper arm switching element 20aV, W phase upper arm switching element 20aW, U phase lower arm switching element 21aU, V phase lower arm switching element 21aV, and W phase lower arm switching element 21aW are:
  • a three-phase inverter circuit using a three-phase bridge circuit is configured.
  • U phase upper arm switching element 20aU, V phase upper arm switching element 20aV, W phase upper arm switching element 20aW, U phase lower arm switching element 21aU, V phase lower arm switching element 21aV, and W phase lower arm switching element 21aW are:
  • a power module in which switching elements such as IGBTs, bipolar transistors, and MOS power transistors and diodes are connected in antiparallel is used.
  • the first current detection units 22aU, 22aV, and 22aW are connected in series to the U-phase lower arm switching element 21aU, the V-phase lower arm switching element 21aV, and the W-phase lower arm switching element 21aW, respectively, of the first voltage application unit 7a.
  • the U1-phase current Iu1, the V1-phase current Iv1, and the W1-phase current Iw1 are detected based on the voltage between the terminals.
  • the second switching signal generation unit 15b performs pulse width modulation (PWM modulation) on the basis of the second voltage commands Vu2, Vv2, and Vw2 output from the voltage command calculation unit 6, thereby generating the second voltage command Vu2, Second switching signals Qup2, Qvp2, Qwp2, Qun2, Qvn2, and Qwn2 having pulse widths corresponding to Vv2 and Vw2 are output.
  • PWM modulation pulse width modulation
  • Second switching signals Qup2, Qvp2, Qwp2, Qun2, Qvn2, and Qwn2 having pulse widths corresponding to Vv2 and Vw2 are output.
  • the second switching signals Qup2, Qvp2, Qwp2 from the voltages Vu21, Vv21, Vw21 modulated by using a known modulation method such as space vector modulation or two-phase modulation with respect to the second voltage commands Vu2, Vv2, Vw2.
  • Qun2, Qvn2, and Qwn2 may be generated.
  • the second voltage application unit 7b includes a U-phase upper arm switching element 20bU, a V-phase upper arm switching element 20bV, and a W-phase upper arm switching element based on the second switching signals Qup2, Qvp2, Qwp2, Qun2, Qvn2, and Qwn2.
  • U-phase lower arm switching element 21 bU, V-phase lower arm switching element 21 bV, and W-phase lower arm switching element 21 bW the DC voltage input from DC power supply 2 is converted into an AC voltage and rotated.
  • a voltage is applied to the three-phase windings U2, V2, W2 of the second armature winding 32 of the electric machine 3.
  • U-phase upper arm switching element 20bU, V-phase upper arm switching element 20bV, W-phase upper arm switching element 20bW, U-phase lower arm switching element 21bU, V-phase lower arm switching element 21bV, and W-phase lower arm switching element 21bW are:
  • a three-phase inverter circuit using a three-phase bridge circuit is configured.
  • U-phase upper arm switching element 20bU, V-phase upper arm switching element 20bV, W-phase upper arm switching element 20bW, U-phase lower arm switching element 21bU, V-phase lower arm switching element 21bV, and W-phase lower arm switching element 21bW are:
  • a power module in which switching elements such as IGBTs, bipolar transistors, and MOS power transistors and diodes are connected in antiparallel is used.
  • the second current detection units 22bU, 22bV, and 22bW are connected in series to the U-phase lower arm switching element 21bU, the V-phase lower arm switching element 21bV, and the W-phase lower arm switching element 21bW, respectively, of the second voltage application unit 7b.
  • the U2-phase current Iu2, the V2-phase current Iv2, and the W2-phase current Iw2 are detected based on the voltage between the terminals.
  • the switching element cutoff switching unit 8 When the switching element cutoff switching unit 8 performs an initial check at startup or when an abnormality is detected from various input signals, the U-phase upper arm switching element 20bU, the V-phase upper arm switching element 20bV in the first voltage application unit 7a, W-phase upper arm switching element 20bW, U-phase lower arm switching element 21bU, V-phase lower arm switching element 21bV, W-phase lower arm switching element 21bW, U-phase upper arm switching element 20bU in the second voltage application unit 7b, Any one of V-phase upper arm switching element 20bV, W-phase upper arm switching element 20bW, U-phase lower arm switching element 21bU, V-phase lower arm switching element 21bV, and W-phase lower arm switching element 21bW is driven. Forcedly switched to the cutoff state from the state.
  • the switching element cutoff failure determination unit 9 determines a failure of the switching element cutoff switching unit 8 based on current or voltage, as will be described later.
  • the angle information detection unit 10 outputs angle information such as a rotation angle ⁇ , a rotation speed ⁇ , or a detection signal that changes according to the rotation angle of the rotor of the rotor of the rotating electrical machine 3 to the angle calculation unit 11 and the rotation speed calculation unit 12. To do.
  • a position detector such as a Hall element, a TMR element, a GMR element, or a resolver, or a rotation detector such as an electromagnetic, magnetoelectric, or photoelectric type can be used.
  • the angle calculation unit 11 calculates the rotation angle of the rotor based on the signal obtained by the angle information detection unit 10 and outputs it to the voltage command calculation unit 6. If the signal obtained by the angle information detection unit 10 is the rotational speed ⁇ , the rotational angle of the rotor may be calculated by integrating the rotational speed ⁇ .
  • the rotation speed calculation unit 12 calculates the rotation speed of the rotor based on the signal obtained by the angle information detection unit 10 and outputs it to the voltage command calculation unit 6. If the signal obtained by the angle information detection unit 10 is an angle, the rotational speed can be calculated by differentiating the angle ⁇ or using the difference between the current angle value and the previous angle value. If there is an error in the signal obtained by the angle information detection unit 10, the signal may be corrected by a known method.
  • FIG. 2 is an explanatory diagram showing a three-phase current flowing through the first armature winding in one electrical angle cycle of the control apparatus for a rotating electrical machine according to Embodiment 1 of the present invention, in which the vertical axis indicates the current, and the horizontal The axis is the electrical angle.
  • the d-axis current Id1 of the first armature winding 31 is “0” [A]
  • the q-axis current Iq1 is “10 ⁇ 3” [A].
  • the electrical angle is “360” [deg]
  • the U1-phase current Iu1, the V1-phase current Iv1, and the W1-phase current Iw1 are expressed as shown in FIG.
  • FIG. 3 is an explanatory diagram illustrating a voltage command for the first armature winding in one electrical angle cycle in the control apparatus for a rotating electrical machine according to Embodiment 1 of the present invention, where the vertical axis represents voltage and the horizontal axis represents Electrical angle.
  • the three-phase voltage commands Vu1, Vv1, and Vw1 obtained by the equation (1) are shown as in FIG.
  • the U1-phase winding is turned on.
  • the applied voltage becomes a neutral point voltage
  • the current flowing in the U1-phase winding flows from the W1-phase winding to the V1-phase winding
  • the U1-phase current Iu1off is “0” [A]
  • the V1-phase current Iv1off is “ ⁇ 15 / ⁇ 2 ”[A]
  • the W1-phase current Iw1off are“ 15 / ⁇ 2 ”[A].
  • a state in which the U-phase upper arm switching element 20aU of the first armature winding 31 is in a driving state is simply referred to as a “driving state”
  • the U-phase of the first armature winding 31 is A state in which the upper arm switching element 20aU is in the cut-off state is simply referred to as a “cut-off state”.
  • the output torque T1 when the first armature winding 31 is in the drive state is given by the following equation (4).
  • the equation (4) is an equation when there is no reluctance torque, but it goes without saying that the same effect can be obtained even when there is a reluctance torque.
  • the output torque Tall of the rotating electrical machine 3 when the first armature winding 31 and the second armature winding 32 are in the driving state is the output torque T1 of the first armature winding 31 and the second electrical machine. Since it is the sum of the output torque T2 of the child winding 32, the relationship between the output torque T1 by the first armature winding 31 and the output torque T2 by the second armature winding 32 is expressed by the following equation (9). When viewed, the output torque Tall of the rotating electrical machine 3 in the driving state becomes “0”.
  • FIG. 4 is an explanatory diagram showing an output torque at the time of switching from the drive state to the cutoff state at the electrical angle “210” [deg] in the control apparatus for the rotating electrical machine according to the first embodiment of the present invention.
  • the axis represents torque
  • the horizontal axis represents time.
  • the first armature winding 31 and the second armature winding during the period from time “0” to time “0.1”. Both are in a driving state, and the absolute value of the output torque T1 from the first armature winding 31 and the absolute value of the output torque T2 from the second armature winding 32 are set to be equal to each other.
  • the output torque Tall of the rotating electrical machine 3 that is the sum of the torque T1 and the output torque T2 is “0”.
  • the U-phase upper arm switching element 20aU of the first armature winding 31 is turned off, and the cut-off state continues for the subsequent period.
  • the output torque Tall_off of the rotating electrical machine 3 that is the sum of the output torque T1off from the first armature winding 31 and the output torque T2 from the second armature winding 32 is a value smaller than “0”. It becomes.
  • the output torque Tall, Tall_off as the rotating electrical machine 3 is used as the output torque T1 of the first armature winding 31 and the second armature winding.
  • the absolute value can be suppressed to a value smaller than 32 output torque T2. Therefore, by determining the current command or the voltage command so as to satisfy the above-described equation (9), the first armature winding 31 and the second armature winding 32 are in the driving state, and each armature A state in which the rotor of the rotating electrical machine 3 does not rotate despite the current flowing through the winding can be realized, and the drive state time before switching the first armature winding 31 to the cut-off state is sufficient. It is possible to obtain an effect that cannot be obtained by a conventional device, such that the current can be stably supplied.
  • the q-axis current command Iq1 * of the first armature winding 31 can be determined by dividing the output torque T1 by the first armature winding 31 by the torque constant Kt.
  • the q-axis current command Iq2 * of the second armature winding 32 can be determined by dividing the output torque T2 by the armature winding 32 by the torque constant Kt.
  • the same q-axis current can be supplied by supplying an equal current to the corresponding phase.
  • the state where the rotor does not rotate despite the current flowing in the driving state of the first armature winding 31 and the second armature winding 32 is obtained. It is possible to obtain an effect that cannot be achieved by a conventional device. Even when the phase difference between the arrangement of the first armature winding 31 and the second armature winding 32 is “60n” [deg] (n is a natural number), the same effect can be obtained by matching the corresponding phases. Obtainable.
  • the mechanical loss Tloss exists in the rotating electrical machine 3 and the mechanism attached to the output shaft of the rotating electrical machine 3 with a gear and a chain. If the following equation (14) is satisfied, the output torque of the rotating electrical machine 3 in the drive state of the first armature winding 31 and the second armature winding 32 is within the mechanical loss. Does not rotate.
  • the output torque of the rotating electrical machine 3 increases and the margin within the mechanical loss Tloss decreases, that is, the output torque of the rotating electrical machine 3 tends to exceed the mechanical loss Tloss.
  • the signs of the output torque T1 and the output torque T2 are different, the output torque of the rotating electrical machine 3 is reduced and the margin within the mechanical loss Tloss is increased, that is, the output torque of the rotating electrical machine 3 is difficult to exceed the mechanical loss Tloss. .
  • FIG. 5 is an explanatory diagram showing an output torque at the time of switching from the drive state to the cutoff state at the electrical angle “210” [deg] in the controller for the rotating electrical machine according to the first embodiment of the present invention.
  • the axis represents torque
  • the horizontal axis represents time.
  • the first armature winding 31 and the second armature winding during the period from the time “0” to the time “0.1”. Both are in a driving state, and the absolute value of the output torque T1 from the first armature winding 31 and the absolute value of the output torque T2 from the second armature winding 32 are set to be equal to each other.
  • the output torque Tall of the rotating electrical machine 3 that is the sum of the torque T1 and the output torque T2 is “0”.
  • the U-phase upper arm switching element 20aU of the first armature winding 31 is turned off, and the cut-off state continues for the subsequent period.
  • the output torque Tall_off of the rotating electrical machine 3 that is the sum of the output torque T1off from the first armature winding 31 and the output torque T2 from the second armature winding 32 is a value smaller than “0”. It becomes.
  • the mechanical loss Tloss always exists on the “+” side and the “ ⁇ ” side, but it can be seen that the output torque Tall in the driving state and the output torque Tall_off in the cutoff state are both equal to or less than the absolute value of the mechanical loss Tloss.
  • the output torques T1 and T1off by the first armature winding 31 and the output torque T2 by the second armature winding 32 have absolute values larger than the mechanical loss Tloss, respectively. Since the absolute values of the output torques Tall and Tall_off as the rotating electrical machine 3 that are the sum of the torques of the two armature windings are smaller than the absolute value of the mechanical loss Tloss, the rotor of the rotating electrical machine 3 does not rotate. In other words, by determining the current command or the voltage command so that the signs of the output torque T1 and the output torque T2 are reversed, it is possible to realize a state in which the current does not rotate despite the current flowing in the driving state. An effect not found in the apparatus can be obtained.
  • the relational expression for determining a current command in which the output torque of the rotating electrical machine 3 in the driving state is within the mechanical loss is the following formula (15).
  • the relational expression for determining the voltage command is the following expression (16).
  • the U-phase upper arm is switched by the switching element cutoff switching unit 8 in the driving state in which the U1-phase current Iu1 flows through the first armature winding 31.
  • switching element 20aU is switched from the drive state to the cutoff state, the U1-phase current stops flowing.
  • the current obtained by using the current detection unit configured by the shunt resistor 22aU changes, so that the failure of the switching element cutoff switching unit of the U-phase upper arm switching element 20aU can be determined.
  • the current flowing through the low potential side switching element that is, the lower arm switching element is detected by the current detection unit.
  • the current flows through the high potential side switching element, that is, the upper arm switching element.
  • the same effect can be obtained by detecting the current, or by detecting the current flowing through the armature winding.
  • the terminal voltage of the first armature winding 31 is given by the above-described formula (1) in the driving state and the above-described formula (2) in the cut-off state, the terminal voltage of the rotating electrical machine 3 is the first armature. It changes when the winding 31 is switched from the driving state to the cutoff state.
  • the switching element cutoff failure determination unit 9 can determine the failure of the switching element cutoff switching unit based on the terminal voltage of the rotating electrical machine 3, the sum of terminal voltages, the average value, or the neutral point voltage.
  • the voltage command is calculated by feeding back the detected current value in the voltage command calculation unit 6, the deviation from the current command is large and proportional.
  • integral control there is a concern that the voltage command grows to the maximum value. Therefore, by calculating the voltage command without feeding back the detected current value in the cut-off state, it is possible to prevent the influence of the current change due to the cut-off from appearing in the next voltage command.
  • the voltage command in the driving state before the switching instruction for switching to the cutoff state by the switching element cutoff switching unit 8 is retained after the switching instruction to the cutoff state is maintained, so that the influence of the current change due to the cutoff by the simple unit can be reduced. It is possible to prevent the next voltage command from being issued.
  • the U-phase upper arm switching element 20aU of the first voltage application unit 7a that supplies power to the first armature winding 31 is shut off, and the U-phase upper arm switching element 20aU fails.
  • all the other switching elements of the first voltage application unit 7a and all the switching elements of the second voltage application unit 7b for applying a voltage to the second armature winding 32 are described. In the same manner as described above, failures can be determined sequentially, for example.
  • an electric power steering that generates torque for assisting the steering torque can be configured.
  • the output torque generated by the electric power steering is transmitted to the steering shaft of the vehicle via a gear or a chain, which may cause an unpleasant operation such as torque ripple or rotation torque.
  • the output torque generated when the switching element cutoff switching unit gives an instruction to switch the switching element to the cutoff state.
  • a method of suppressing the behavior change of the rotating electrical machine by setting the output torque Tall of the rotating electrical machine 3 to “0” in the driving state before the switching element cutoff switching unit instructs to switch the switching element to the shut-off state will be described.
  • the control device for a rotating electrical machine according to Embodiment 2 of the present invention is configured to suppress the change in behavior of the rotating electrical machine by setting the output torque Tall of the rotating electrical machine 3 in the shut-off state to “0”.
  • Other configurations are the same as those in the first embodiment.
  • the count value of the counter that counts up when the failure condition is satisfied performs a failure determination operation multiple times in order to prevent erroneous determination, In many cases, the determination as a failure is confirmed when the threshold value is exceeded. Since the output torque Tall_off of the rotating electrical machine 3 in the shut-off state is the sum of the output torque T1_off of the first armature winding 31 and the output torque T2 of the second armature winding 32, the output torque T1_off and the output torque T2 When the relationship satisfies the following expression (19), the output torque Tall_off of the rotating electrical machine 3 in the driving state is “0”.
  • FIG. 6 is an explanatory diagram showing an output torque at the time of switching from the driving state to the cutoff state at the electrical angle “210” [deg] in the control apparatus for a rotating electrical machine according to Embodiment 2 of the present invention.
  • the axis represents torque, and the horizontal axis represents time.
  • the electrical angle “210” [deg] described above as shown in FIG. 6, the first armature winding 31 and the second armature winding during the period from the time “0” to the time “0.1”.
  • the U-phase upper arm switching element 20aU of the first armature winding 31 is turned off, and the cut-off state continues for the subsequent period.
  • the output torque Tall_off of the rotating electrical machine 3 that is the sum of the output torque T1off from the first armature winding 31 and the output torque T2 from the second armature winding 32 is “0”.
  • the output torque Tall, Tall_off as the rotating electric machine 3 is used as the output torque T1 of the first armature winding 31 and the second armature winding.
  • the absolute value can be suppressed to a value smaller than 32 output torque T2. Therefore, by determining the current command or the voltage command so as to satisfy the above equation (19), the first armature winding 31 is in the cut-off state and the second armature winding 32 is in the drive state. A state in which the rotor of the rotating electrical machine 3 does not rotate despite the current flowing through the respective armature windings can be realized, and the failure is determined after the first armature winding 31 is switched to the cut-off state. Thus, it is possible to obtain an effect not obtained by the conventional apparatus that a sufficient time can be secured.
  • the rotating electrical machine 3 does not rotate because the output torque of the rotating electrical machine 3 in the interrupted state is within the mechanical loss.
  • FIG. 7 is an explanatory diagram showing a relationship between output torque and mechanical loss at the time of switching from the drive state to the cutoff state at the electrical angle “210” [deg] in the control apparatus for the rotating electrical machine according to the first embodiment of the present invention.
  • the vertical axis represents torque and the horizontal axis represents time.
  • the first armature winding 31 and the second armature winding during the period from time “0” to time “0.1”. Both are in a driving state, and the absolute value of the output torque T1 from the first armature winding 31 and the absolute value of the output torque T2 from the second armature winding 32 are set to be equal to each other.
  • the output torque Tall of the rotating electrical machine 3 that is the sum of the torque T1 and the output torque T2 is “0”.
  • the U-phase upper arm switching element 20aU of the first armature winding 31 is turned off, and the cut-off state continues for the subsequent period.
  • the output torque Tall_off of the rotating electrical machine 3 that is the sum of the output torque T1off from the first armature winding 31 and the output torque T2 from the second armature winding 32 is “0”.
  • the mechanical loss Tloss always exists on the “+” side and the “ ⁇ ” side, but it can be seen that the output torque Tall in the driving state and the output torque Tall_off in the cutoff state are equal to or less than the absolute value of any mechanical loss Tloss.
  • the output torques T1, T1off and the output torque T2 have absolute values larger than the mechanical loss Tloss, respectively, the output torques Tall, Tall_off as the rotating electric machine 3 which is the sum of the torques by the two armature windings are both Since the absolute value is smaller than the absolute value of the mechanical loss Tloss, the rotor of the rotating electrical machine 3 does not rotate. In other words, by determining the current command or the voltage command so that the signs of the output torque T1off and the output torque T2 are reversed, it is possible to realize a non-rotating state in spite of the current flowing in the cutoff state. An effect not found in the apparatus can be obtained.
  • an electric power steering that generates torque for assisting the steering torque can be configured.
  • the output torque generated by the electric power steering is transmitted to the steering shaft of the vehicle via a gear or a chain, which may cause an unpleasant operation such as torque ripple or rotation torque.
  • the output torque generated when the switching element cutoff switching unit gives an instruction to switch the switching element to the cutoff state.
  • the switching element cut-off switching unit is configured to suppress the behavior change of the rotating electrical machine in the driving state before issuing the instruction to switch the switching element to the cut-off state.
  • the behavior change of the rotating electrical machine is suppressed.
  • the drive state and the cut-off state are configured. It is comprised so that the behavior change of the rotary electric machine in both may be suppressed.
  • Other configurations are the same as those in the first embodiment or the second embodiment.
  • the output torque Tall of the rotating electrical machine 3 in the driving state of the first armature winding 31 is given by the above-described equation (7), and the output torque Tall_off in the cutoff state is given by the above-described equation (8), and [Tall ⁇ Toff_all].
  • the absolute value of the output torque of the rotating electrical machine 3 is equal in both the driving state and the cutoff state of the first armature winding 31, that is, [
  • FIG. 8 is a diagram showing the relationship between the output torque and the mechanical loss at the time of switching from the drive state to the cutoff state at the electrical angle “210” [deg] in the control apparatus for a rotating electrical machine according to Embodiment 3 of the present invention.
  • the vertical axis represents torque and the horizontal axis represents time.
  • the first armature winding 31 and the second armature winding Both the lines 32 are in a driving state, and the output torque T1 from the first armature winding 31 and the output torque T2 from the second armature winding 32 are set so as to satisfy Expression (21).
  • the U-phase upper arm switching element 20aU of the first armature winding 31 is put into a cut-off state, and the cut-off state is continued for the subsequent period.
  • the output torque Tall_off of the rotating electrical machine 3 that is the sum of the output torque T1off from the first armature winding 31 and the output torque T2 from the second armature winding 32 is expressed by Expression (22). And its absolute value is equal to Tall.
  • the mechanical loss Tloss is always present on the “+” side and the “ ⁇ ” side, and the output torque T1, T1off and the output torque T2 have absolute values larger than the mechanical loss Tloss, respectively, but the output torque Tall and the cutoff in the driving state
  • the output torque Tall_off in the state becomes smaller than the absolute value of any mechanical loss Tloss, and the rotor of the rotating electrical machine 3 does not rotate.
  • the margin to the mechanical loss Tloss can be set equal in the driving state and the cutoff state, the absolute value of the output torques Tall and Tall_off until the mechanical loss Tloss reaches the mechanical loss Tloss.
  • the margin can be increased.
  • the output torque T2 is expressed as [ ⁇ T1] and [ ⁇ T1off]. It is also possible to reduce the behavior change of the rotating electrical machine 3 by setting the value between. In this case, the output torque T2 by the second armature winding 32 may satisfy the following expression (24) using a constant k that satisfies [0 ⁇ k ⁇ 1].
  • the output torque in the driving state of the first armature winding 31 is “0” [Nm]
  • the output torque in the driving state and the cutoff state is expressed as the following equation (25). It is possible to reduce the output torque of the rotating electrical machine 3 in the drive state and the shut-off state.
  • both the total output torque generated in the drive state and the total output torque generated in the shut-off state can be reduced, and even if a larger current flows, the output torque is suppressed to less than the mechanical loss.
  • an electric power steering that generates torque for assisting steering torque can be configured.
  • the output torque generated by the electric power steering is transmitted to the steering shaft of the vehicle via a gear or a chain, which may cause an unpleasant operation such as torque ripple or rotation torque.
  • the output torque generated when the switching element cutoff switching unit gives an instruction to switch the switching element to the cutoff state.
  • a control device for a rotating electrical machine that controls a rotating electrical machine having at least a first armature winding and a second armature winding, A voltage application unit for converting a DC voltage from a DC power source into an AC voltage and applying a voltage to the first armature winding and the second armature winding; A voltage command calculation unit configured to calculate a voltage command based on a current command to the rotating electrical machine; A switching signal generation unit configured to output a switching signal for driving a switching element configuring the voltage application unit based on the voltage command calculated by the voltage command calculation unit; A switching element cutoff switching unit configured to switch the switching element from a driving state to a cutoff state; A switching element cutoff failure determination unit configured to determine a failure of the switching element cutoff switching unit; With When the switching element cutoff failure determination unit determines
  • a control device for a rotating electrical machine According to the control device for a rotating electrical machine according to the present invention, it is possible to realize a state in which it is difficult to behave by making the output torque suppressed before the failure determination of the switching element cutoff switching unit.
  • a control device for a rotating electrical machine that controls a rotating electrical machine having at least a first armature winding and a second armature winding, A voltage application unit for converting a DC voltage from a DC power source into an AC voltage and applying a voltage to the first armature winding and the second armature winding; A voltage command calculation unit configured to calculate a voltage command based on a current command to the rotating electrical machine; A switching signal generation unit configured to output a switching signal for driving a switching element configuring the voltage application unit based on the voltage command calculated by the voltage command calculation unit; A switching element cutoff switching unit configured to switch the switching element from a driving state to a cutoff state; A switching element cutoff failure determination unit configured to determine a failure of the switching element cutoff switching unit; With When the switching element cutoff failure determination unit determines a failure of the switching element cutoff switching unit, The output torque based on the first armature winding in which the switching element is in a driving state is T1, the output torque based on the first armature
  • the current command or the voltage command is set, A control device for a rotating electrical machine.
  • a control apparatus for a rotating electrical machine according to the present invention, by reducing both the total output torque generated in the driving state and the total output torque generated in the shut-off state, it is possible to suppress the mechanical loss even when a larger current flows. Failure judgment can be performed in a state where it is difficult to behave.
  • T1 and T1off substantially satisfy [
  • T1 is an output torque based on the first armature winding in which the switching element is in a driving state
  • T1off is an output torque based on the first armature winding in which the switching element is in a cutoff state
  • Tloss When the output torque generated based on the second armature winding is T2, and the mechanical loss applied to the rotating shaft of the rotating electric machine is Tloss, T1, T1off, and T2 substantially satisfy [
  • control apparatus for a rotating electrical machine according to any one of (1) to (6) above, wherein: According to the control device for a rotating electrical machine according to the present invention, it is possible to maintain a state that does not appear in the behavior by suppressing the total output torque within the mechanical loss.
  • the switching element cutoff failure determination unit is configured to determine a failure of the switching element cutoff switching unit based on the detected terminal voltage.
  • the switching element cutoff failure determination unit is configured to determine a failure of the switching element cutoff switching unit based on the detected current value.
  • the control device for a rotating electrical machine according to any one of claims 1 to 7, wherein: A current detection unit for detecting a current flowing through the switching element; The switching element cutoff failure determination unit is configured to determine a failure of the switching element cutoff switching unit based on the detected current value.
  • the control apparatus for a rotating electrical machine according to any one of (1) to (7), wherein: According to the control apparatus for a rotating electrical machine according to the present invention, it is possible to reduce the cost without the necessity of providing an additional circuit by determining a failure using a shunt resistor used in normal control.
  • the switching element cutoff failure determination unit is configured to determine a failure of the switching element cutoff switching unit based on the detected current value.
  • the voltage command calculation unit is configured to calculate the voltage command without using the value of the current detected by the current detection unit.
  • the control apparatus for a rotating electrical machine according to the above (9) or (10), wherein According to the control apparatus for a rotating electrical machine of the present invention, by stopping the feedback of the detected current in the interruption state, it is possible to prevent the current change due to the interruption from affecting the voltage command.
  • the voltage command calculation unit is configured to use the voltage command in the driving state before the switching as the voltage command in the cutoff state.
  • the control apparatus for a rotating electrical machine according to any one of (1) to (10), wherein: According to the control apparatus for a rotating electrical machine according to the present invention, by holding the final value of the driving state, it is possible to prevent a change in current due to interruption from affecting the voltage command with a simple unit.
  • a rotating electrical machine control device that controls a rotating electrical machine having at least a first armature winding and a second armature winding; and a control device for the rotating electrical machine that controls the driver of the vehicle.
  • the control device for the rotating electrical machine includes: A voltage application unit for converting a DC voltage from a DC power source into an AC voltage and applying a voltage to the first armature winding and the second armature winding; A voltage command calculation unit configured to calculate a voltage command based on a current command to the rotating electrical machine; A switching signal generation unit configured to output a switching signal for driving a switching element configuring the voltage application unit based on the voltage command calculated by the voltage command calculation unit; A switching element cutoff switching unit configured to switch the switching element from a driving state to a cutoff state; A switching element cutoff failure determination unit configured to determine a failure of the switching element cutoff switching unit; With When the switching element cutoff failure determination unit determines a failure of the
  • the output torque generated based on the first armature winding in which the switching element is in the cut-off state and the output torque generated based on the second armature winding are opposite to each other. So that The current command or the voltage command is set, An electric power steering device. According to the electric power steering device of the present invention, the output torque can be suppressed before the failure determination of the switching element cutoff switching unit, and the configuration required for checking the switching element cutoff function can be simplified. There is an effect that can be done.
  • a rotating electrical machine control device that controls a rotating electrical machine having at least a first armature winding and a second armature winding; and a control device for the rotating electrical machine that controls the driver of the vehicle.
  • the control device for the rotating electrical machine includes: A control device for a rotating electrical machine that controls a rotating electrical machine having at least a first armature winding and a second armature winding, A voltage application unit for converting a DC voltage from a DC power source into an AC voltage and applying a voltage to the first armature winding and the second armature winding; A voltage command calculation unit configured to calculate a voltage command based on a current command to the rotating electrical machine; A switching signal generation unit configured to output a switching signal for driving a switching element configuring the voltage application unit based on the voltage command calculated by the voltage command calculation unit; A switching element cutoff switching unit configured to switch the switching element from a driving state to a cutoff state; A switching element
  • the current command or the voltage command is set, An electric power steering device.
  • the electric power steering device according to the present invention, by reducing both the total output torque generated in the driving state and the total output torque generated in the shut-off state, even if a larger current flows, the mechanical loss can be suppressed. Failure judgment can be performed in a state where it is difficult to behave.
  • the present invention is not limited to the rotating electrical machine control device according to the first to third embodiments, and the electric power steering device provided with the rotating electrical machine control device. It is possible to combine the configurations of Embodiments 1 and 3 as appropriate, to add some modifications to the configuration, or to partially omit the configuration without departing from the spirit.
  • the control device for a rotating electrical machine according to the present invention can be used in a control device for a rotating electrical machine such as a permanent magnet type synchronous AC rotating electrical machine, and in the field using the rotating electrical machine.
  • the electric power steering apparatus provided with the control device for the rotating electrical machine according to the present invention can be used in the field of vehicles such as automobiles using the electric power steering apparatus.

Abstract

スイッチング素子遮断故障判定ユニットが、スイッチング素子遮断切替ユニットの故障を判定するとき、第1の電機子巻線に基づいて発生される出力トルクと、第2の電機子巻線に基づいて発生される出力トルクとを互いに逆方向となるように発生するように構成される。

Description

回転電機の制御装置、およびその回転電機の制御装置を備えた電動パワーステアリング装置
 この発明は、複数組の電機子巻線を備えた回転電機の制御装置、およびその回転電機の制御装置を備えた電動パワーステアリング装置に関するものである。
 従来、アシストトルクを発生する回転電機を駆動するスイッチング素子の駆動停止機能の異常を監視して潜在的な故障を検出することにより、回転電機の異常動作を回避して安全性を向上させるように構成された電動パワーステアリング装置が存在する(例えば、特許文献1参照)。
 特許文献1に開示された従来の電動パワーステアリング装置においては、起動時に回転電機を駆動するスイッチング素子を駆動し、チェック用としてマイコンから出力された遮断信号により前述のスイッチング素子の駆動が停止することを、回転電機の端子電圧を用いて確認するように構成されていた。
特許第5496257号公報
 特許文献1に開示された従来の電動パワーステアリング制御装置によれば、起動時におけるスイッチング素子の駆動停止機能の異常の有無の確認中に、回転電機に出力トルクが発生してハンドルが自転することのないように、電力変換装置を構成するブリッジ回路のスイッチング素子を1個ずつ異常の有無を確認するようにしている。しかしながら、回転電機の出力トルクが生じないようにスイッチング素子を1個ずつ異常の有無を確認するようにしているので、スイッチング素子の遮断を判定するために回転電機の端子電圧を検出する端子電圧検出ユニットを設ける必要があった。
 この発明は、従来の電動パワーステアリング装置における前述のような課題を解決するためになされたものであり、スイッチング素子の遮断機能の確認に要する構成を簡素化した回転電機の制御装置、およびその回転電機の制御装置を備えた電動パワーステアリング装置を提供することを目的とする。
 この発明による回転電機の制御装置は、
 少なくとも第1の電機子巻線および第2の電機子巻線を有する回転電機を制御する回転電機の制御装置であって、
 直流電源からの直流電圧を交流電圧に変換して前記第1の電機子巻線と前記第2の電機子巻線に電圧を印加する電圧印加ユニットと、
 前記回転電機に対する電流指令に基づいて電圧指令を演算するように構成された電圧指令演算ユニットと、
 電圧指令演算ユニットにより演算された前記電圧指令に基づいて、前記電圧印加ユニットを構成するスイッチング素子を駆動するスイッチング信号を出力するように構成されたスイッチング信号生成ユニットと、
 前記スイッチング素子を駆動状態から遮断状態に切り替えるように構成されたスイッチング素子遮断切替ユニットと、
 前記スイッチング素子遮断切替ユニットの故障を判定するように構成されたスイッチング素子遮断故障判定ユニットと、
を備え、
 前記スイッチング素子遮断故障判定ユニットが、前記スイッチング素子遮断切替ユニットの故障を判定するとき、
 前記スイッチング素子が駆動状態にある前記第1の電機子巻線に基づいて発生される出力トルクと、前記第2の電機子巻線に基づいて発生される出力トルクとは、互いに逆方向となる、または
 前記スイッチング素子が遮断状態にある前記第1の電機子巻線に基づいて発生される出力トルクと、前記第2の電機子巻線に基づいて発生される出力トルクとは、互いに逆方向となるように、
前記電流指令または前記電圧指令が設定される、
ことを特徴とする。
 また、この発明による回転電機の制御装置は、
 少なくとも第1の電機子巻線および第2の電機子巻線を有する回転電機を制御する回転電機の制御装置であって、
 直流電源からの直流電圧を交流電圧に変換して前記第1の電機子巻線と前記第2の電機子巻線に電圧を印加する電圧印加ユニットと、
 前記回転電機に対する電流指令に基づいて電圧指令を演算するように構成された電圧指令演算ユニットと、
 電圧指令演算ユニットにより演算された前記電圧指令に基づいて、前記電圧印加ユニットを構成するスイッチング素子を駆動するスイッチング信号を出力するように構成されたスイッチング信号生成ユニットと、
 前記スイッチング素子を駆動状態から遮断状態に切り替えるように構成されたスイッチング素子遮断切替ユニットと、
 前記スイッチング素子遮断切替ユニットの故障を判定するように構成されたスイッチング素子遮断故障判定ユニットと、
を備え、
 前記スイッチング素子遮断故障判定ユニットが前記スイッチング素子遮断切替ユニットの故障を判定するとき、
 前記スイッチング素子が駆動状態にある前記第1の電機子巻線に基づく出力トルクをT1、前記スイッチング素子が遮断状態にある前記第1の電機子巻線に基づく出力トルクをT1off、前記第2の電機子巻線に基づいて発生される出力トルクをT2としたとき、
 前記T2は、[-T1]より大きく[-T1off]未満である、または[-T1off]より大きく[-T1]未満であるように、
前記電流指令または前記電圧指令が設定される、
ことを特徴とする。
 更に、この発明による電動パワーステアリング装置は、
 少なくとも第1の電機子巻線および第2の電機子巻線を有する回転電機を制御する回転電機の制御装置と、前記回転電機の制御装置により制御され、車両の運転者の操舵を補助するアシストトルクを発生する回転電機と、を備えた、
電動パワーステアリング装置であって、
 前記回転電機の制御装置は、
 直流電源からの直流電圧を交流電圧に変換して前記第1の電機子巻線と前記第2の電機子巻線に電圧を印加する電圧印加ユニットと、
 前記回転電機に対する電流指令に基づいて電圧指令を演算するように構成された電圧指令演算ユニットと、
 電圧指令演算ユニットにより演算された前記電圧指令に基づいて、前記電圧印加ユニットを構成するスイッチング素子を駆動するスイッチング信号を出力するように構成されたスイッチング信号生成ユニットと、
 前記スイッチング素子を駆動状態から遮断状態に切り替えるように構成されたスイッチング素子遮断切替ユニットと、
 前記スイッチング素子遮断切替ユニットの故障を判定するように構成されたスイッチング素子遮断故障判定ユニットと、
を備え、
 前記スイッチング素子遮断故障判定ユニットが、前記スイッチング素子遮断切替ユニットの故障を判定するとき、
 前記スイッチング素子が駆動状態にある前記第1の電機子巻線に基づいて発生される出力トルクと、前記第2の電機子巻線に基づいて発生される出力トルクとは、互いに逆方向となる、または
 前記スイッチング素子が遮断状態にある前記第1の電機子巻線に基づいて発生される出力トルクと、前記第2の電機子巻線に基づいて発生される出力トルクとは、互いに逆方向となるように、
前記電流指令または前記電圧指令が設定される、
ことを特徴とする。
 また、この発明による電動パワーステアリング装置は、
 少なくとも第1の電機子巻線および第2の電機子巻線を有する回転電機を制御する回転電機の制御装置と、前記回転電機の制御装置により制御され、車両の運転者の操舵を補助するアシストトルクを発生する回転電機と、を備えた、
電動パワーステアリング装置であって、
 前記回転電機の制御装置は、
 少なくとも第1の電機子巻線および第2の電機子巻線を有する回転電機を制御する回転電機の制御装置であって、
 直流電源からの直流電圧を交流電圧に変換して前記第1の電機子巻線と前記第2の電機子巻線に電圧を印加する電圧印加ユニットと、
 前記回転電機に対する電流指令に基づいて電圧指令を演算するように構成された電圧指令演算ユニットと、
 電圧指令演算ユニットにより演算された前記電圧指令に基づいて、前記電圧印加ユニットを構成するスイッチング素子を駆動するスイッチング信号を出力するように構成されたスイッチング信号生成ユニットと、
 前記スイッチング素子を駆動状態から遮断状態に切り替えるように構成されたスイッチング素子遮断切替ユニットと、
 前記スイッチング素子遮断切替ユニットの故障を判定するように構成されたスイッチング素子遮断故障判定ユニットと、
を備え、
 前記スイッチング素子遮断故障判定ユニットが前記スイッチング素子遮断切替ユニットの故障を判定するとき、
 前記スイッチング素子が駆動状態にある前記第1の電機子巻線に基づく出力トルクをT1、前記スイッチング素子が遮断状態にある前記第1の電機子巻線に基づく出力トルクをT1off、前記第2の電機子巻線に基づいて発生される出力トルクをT2としたとき、
 前記T2は、[-T1]より大きく[-T1off]未満である、または[-T1off]より大きく[-T1]未満であるように、
前記電流指令または前記電圧指令が設定される、
ことを特徴とする。
 この発明による回転電機の制御装置によれば、少なくとも第1の電機子巻線および第2の電機子巻線を有する回転電機を制御する回転電機の制御装置であって、直流電源からの直流電圧を交流電圧に変換して前記第1の電機子巻線と前記第2の電機子巻線に電圧を印加する電圧印加ユニットと、前記回転電機に対する電流指令に基づいて電圧指令を演算するように構成された電圧指令演算ユニットと、電圧指令演算ユニットにより演算された前記電圧指令に基づいて、前記電圧印加ユニットを構成するスイッチング素子を駆動するスイッチング信号を出力するように構成されたスイッチング信号生成ユニットと、前記スイッチング素子を駆動状態から遮断状態に切り替えるように構成されたスイッチング素子遮断切替ユニットと、前記スイッチング素子遮断切替ユニットの故障を判定するように構成されたスイッチング素子遮断故障判定ユニットとを備え、前記スイッチング素子遮断故障判定ユニットが、前記スイッチング素子遮断切替ユニットの故障を判定するとき、前記スイッチング素子が駆動状態にある前記第1の電機子巻線に基づいて発生される出力トルクと、前記第2の電機子巻線に基づいて発生される出力トルクとは、互いに逆方向となる、または前記スイッチング素子が遮断状態にある前記第1の電機子巻線に基づいて発生される出力トルクと、前記第2の電機子巻線に基づいて発生される出力トルクとは、互いに逆方向となるように、前記電流指令または前記電圧指令が設定されるので、スイッチング素子遮断切替ユニットの故障判定前に出力トルクを抑制した状態にすることができるとともに、スイッチング素子の遮断機能の確認に要する構成を簡素化した回転電機の制御装置を得ることができるという効果がある。
 また、この発明による回転電機の制御装置によれば、少なくとも第1の電機子巻線および第2の電機子巻線を有する回転電機を制御する回転電機の制御装置であって、直流電源からの直流電圧を交流電圧に変換して前記第1の電機子巻線と前記第2の電機子巻線に電圧を印加する電圧印加ユニットと、前記回転電機に対する電流指令に基づいて電圧指令を演算するように構成された電圧指令演算ユニットと、電圧指令演算ユニットにより演算された前記電圧指令に基づいて、前記電圧印加ユニットを構成するスイッチング素子を駆動するスイッチング信号を出力するように構成されたスイッチング信号生成ユニットと、前記スイッチング素子を駆動状態から遮断状態に切り替えるように構成されたスイッチング素子遮断切替ユニットと、前記スイッチング素子遮断切替ユニットの故障を判定するように構成されたスイッチング素子遮断故障判定ユニットとを備え、前記スイッチング素子遮断故障判定ユニットが前記スイッチング素子遮断切替ユニットの故障を判定するとき、前記スイッチング素子が駆動状態にある前記第1の電機子巻線に基づく出力トルクをT1、前記スイッチング素子が遮断状態にある前記第1の電機子巻線に基づく出力トルクをT1off、前記第2の電機子巻線に基づいて発生される出力トルクをT2としたとき、
 前記T2は、[-T1]より大きく[-T1off]未満である、または[-T1off]より大きく[-T1]未満であるように、前記電流指令または前記電圧指令が設定されるので、駆動状態で生じる出力トルクの合計と遮断状態で生じる出力トルクの合計のいずれも低減することで、より大きな電流を流してもメカニカルロス内に抑制でき、挙動に出にくい状態で故障判定ができる。
 更に、この発明による回転電機の制御装置を備えた電動パワーステアリング装置によれば、少なくとも第1の電機子巻線および第2の電機子巻線を有する回転電機を制御する回転電機の制御装置と、前記回転電機の制御装置により制御され、車両の運転者の操舵を補助するアシストトルクを発生する回転電機と、を備えた電動パワーステアリング装置であって、前記回転電機の制御装置は、直流電源からの直流電圧を交流電圧に変換して前記第1の電機子巻線と前記第2の電機子巻線に電圧を印加する電圧印加ユニットと、前記回転電機に対する電流指令に基づいて電圧指令を演算するように構成された電圧指令演算ユニットと、電圧指令演算ユニットにより演算された前記電圧指令に基づいて、前記電圧印加ユニットを構成するスイッチング素子を駆動するスイッチング信号を出力するように構成されたスイッチング信号生成ユニットと、前記スイッチング素子を駆動状態から遮断状態に切り替えるように構成されたスイッチング素子遮断切替ユニットと、前記スイッチング素子遮断切替ユニットの故障を判定するように構成されたスイッチング素子遮断故障判定ユニットとを備え、前記スイッチング素子遮断故障判定ユニットが、前記スイッチング素子遮断切替ユニットの故障を判定するとき、前記スイッチング素子が駆動状態にある前記第1の電機子巻線に基づいて発生される出力トルクと、前記第2の電機子巻線に基づいて発生される出力トルクとは、互いに逆方向となる、または前記スイッチング素子が遮断状態にある前記第1の電機子巻線に基づいて発生される出力トルクと、前記第2の電機子巻線に基づいて発生される出力トルクとは、互いに逆方向となるように、前記電流指令または前記電圧指令が設定されているので、スイッチング素子遮断切替ユニットの故障判定前に出力トルクを抑制した状態にすることができるとともに、スイッチング素子の遮断機能の確認に要する構成を簡素化することができるという効果を奏する。
 また、この発明による回転電機の制御装置を備えた電動パワーステアリング装置によれば、前記回転電機の制御装置は、少なくとも第1の電機子巻線および第2の電機子巻線を有する回転電機を制御する回転電機の制御装置であって、直流電源からの直流電圧を交流電圧に変換して前記第1の電機子巻線と前記第2の電機子巻線に電圧を印加する電圧印加ユニットと、前記回転電機に対する電流指令に基づいて電圧指令を演算するように構成された電圧指令演算ユニットと、電圧指令演算ユニットにより演算された前記電圧指令に基づいて、前記電圧印加ユニットを構成するスイッチング素子を駆動するスイッチング信号を出力するように構成されたスイッチング信号生成ユニットと、前記スイッチング素子を駆動状態から遮断状態に切り替えるように構成されたスイッチング素子遮断切替ユニットと、前記スイッチング素子遮断切替ユニットの故障を判定するように構成されたスイッチング素子遮断故障判定ユニットとを備え、前記スイッチング素子遮断故障判定ユニットが前記スイッチング素子遮断切替ユニットの故障を判定するとき、前記スイッチング素子が駆動状態にある前記第1の電機子巻線に基づく出力トルクをT1、前記スイッチング素子が遮断状態にある前記第1の電機子巻線に基づく出力トルクをT1off、前記第2の電機子巻線に基づいて発生される出力トルクをT2としたとき、前記T2は、[-T1]より大きく[-T1off]未満である、または[-T1off]より大きく[-T1]未満であるように、前記電流指令または前記電圧指令が設定されるので、駆動状態で生じる出力トルクの合計と遮断状態で生じる出力トルクの合計のいずれも低減することで、より大きな電流を流してもメカニカルロス内に抑制でき、挙動に出にくい状態で故障判定ができる。
この発明の実施の形態1による回転電機の制御装置を示す全体構成図である。 この発明の実施の形態1による回転電機の制御装置の、電気角1周期における第1の電機子巻線を流れる3相電流を示す説明図である。 この発明の実施の形態1による回転電機の制御装置における、電気角1周期における第1の電機子巻線に対する電圧指令を示す説明図である。 この発明の実施の形態1による回転電機の制御装置における、電気角「210」[deg]にて駆動状態から遮断状態への切り替え時の出力トルクを示す説明図である。 この発明の実施の形態1による回転電機の制御装置における、電気角「210」[deg]にて駆動状態から遮断状態への切り替え時の出力トルクとメカニカルロスの関係を示す説明図である。 この発明の実施の形態2による回転電機の制御装置における、電気角「210」[deg]にて駆動状態から遮断状態への切り替え時の出力トルクを示す説明図である。 この発明の実施の形態2による回転電機の制御装置における、電気角「210」[deg]にて駆動状態から遮断状態への切り替え時の出力トルクとメカニカルロスの関係を示す説明図である。 この発明の実施の形態3による回転電機の制御装置における、電気角「210」[deg]にて駆動状態から遮断状態への切り替え時の出力トルクとメカニカルロスの関係を示す図である。
実施の形態1.
 図1は、この発明の実施の形態1による回転電機の制御装置の全体構成を示す図である。図1において、この発明の実施の形態1による回転電機の制御装置は、以下述べるように制御ユニット1により回転電機3を制御するように構成されている。
 直流電源2は、第1の電圧印加ユニット7aおよび第2の電圧印加ユニット7bに、それぞれ直流電圧Vdcを出力する。直流電源2は、バッテリー、DC-DCコンバータ、ダイオード整流器、PWM整流器等の、直流電圧を出力する全ての機器のうちのいずれかの機器により構成され得る。
 回転電機3は、U1相巻線、V1相巻線、W1相巻線の3相巻線からなる第1の電機子巻線31と、U2相巻線、V2相巻線、W2相巻線の3相巻線からなる第2の電機子巻線32を備えており、それぞれスター結線により各相巻線が結合され、これらの3相巻線により構成されたステータ(図示せず)を備えている。回転電機3は、ステータと、ロータ(図示せず)と、ロータに固定された回転軸(図示せず)により構成されている。
 なお、以下の説明ではこの発明を、各電機子巻線が3相で、ロータに永久磁石を配置した永久磁石型同期交流回転電機に適用した場合を例に説明するが、この発明は、多相交流により回転駆動する回転電機に対して使用することができるものであり、誘導機や界磁巻線型同期機であっても良い。また、ここでは第1の電機子巻線31、第2の電機子巻線32をそれぞれスター結線としたが、デルタ結線にして構成しても同様の効果が得られる。
 電圧指令演算ユニット6は、回転電機3を駆動するための第1の電圧指令Vu1、Vv1、Vw1を演算して第1のスイッチング信号生成ユニット15aへ出力するとともに、第2の電圧指令Vu2、Vv2、Vw2を演算して第2のスイッチング信号生成ユニット15bへ出力する。
 第1の電圧指令Vu1、Vv1、Vw1の演算方法としては、電流指令と、第1の電機子巻線31の3相巻線をそれぞれ流れるU1相電流Iu1、V1相電流Iv1、W1相電流Iw1との偏差を零とすべく、比例積分制御によって第1の電圧指令Vu1、Vv1、Vw1を演算する電流フィードバック制御方式などを使用する。第1の電機子巻線31の3相巻線を流れるU1相電流Iu1、V1相電流Iv1、W1相電流Iw1は、例えば後述するシャント抵抗など既存の電流検出ユニットを用いて得られる。なお、フィードフォワード制御や推定値を用いた制御では、電圧指令演算ユニット6へのU1相電流Iu1、V1相電流Iv1、W1相電流Iw1の入力は必須ではない。
 第2の電圧指令Vu2、Vv2、Vw2の演算方法としては、電流指令と、第2の電機子巻線32の3相巻線をそれぞれ流れるU2相電流Iu2、V2相電流Iv2、W2相電流Iw2との偏差を零とすべく、比例積分制御によって第2の電圧指令Vu2、Vv2、Vw2を演算する電流フィードバック制御方式などを使用する。第2の電機子巻線32の3相巻線を流れるU2相電流Iu2、V2相電流Iv2、W2相電流Iw2は、例えば後述するシャント抵抗など既存の電流検出ユニットを用いて得られる。なお、フィードフォワード制御や推定値を用いた制御では、電圧指令演算ユニット6へのU2相電流Iu2、V2相電流Iv2、W2相電流Iw2の入力は必須ではない。
 第1のスイッチング信号生成ユニット15aは、電圧指令演算ユニット6から出力された第1の電圧指令Vu1、Vv1、Vw1に基づいて、パルス幅変調(PWM変調)することによって第1の電圧指令Vu1、Vv1、Vw1に応じたパルス幅を持つ第1のスイッチング信号Qup1、Qvp1、Qwp1、Qun1、Qvn1、Qwn1を出力する。なお、第1の電圧指令Vu1、Vv1、Vw1に対して空間ベクトル変調や2相変調などの周知の変調方法を用いて変調した電圧Vu11、Vv11、Vw11から第1のスイッチング信号Qup1、Qvp1、Qwp1、Qun1、Qvn1、Qwn1を生成してもよいことはいうまでも無い。
 第1の電圧印加ユニット7aは、第1のスイッチング信号Qup1、Qvp1、Qwp1、Qun1、Qvn1、Qwn1に基づき、U相上アームスイッチング素子20aU、V相上アームスイッチング素子20aV、W相上アームスイッチング素子20aW、およびU相下アームスイッチング素子21aU、V相下アームスイッチング素子21aV、W相下アームスイッチング素子21aWをオン/オフすることによって、直流電源2から入力した直流電圧を交流電圧に変換して回転電機3の第1の電機子巻線31の3相巻線U1、V1、W1に電圧を印加する。U相上アームスイッチング素子20aU、V相上アームスイッチング素子20aV、W相上アームスイッチング素子20aW、およびU相下アームスイッチング素子21aU、V相下アームスイッチング素子21aV、W相下アームスイッチング素子21aWは、3相ブリッジ回路による3相インバータ回路を構成している。
 U相上アームスイッチング素子20aU、V相上アームスイッチング素子20aV、W相上アームスイッチング素子20aW、およびU相下アームスイッチング素子21aU、V相下アームスイッチング素子21aV、W相下アームスイッチング素子21aWは、例えば、IGBT、バイポーラトランジスタ、MOSパワートランジスタ等のスイッチング素子とダイオードを逆並列に接続したパワーモジュールが用いられる。
 第1の電流検出ユニット22aU、22aV、22aWは、それぞれ第1の電圧印加ユニット7aのU相下アームスイッチング素子21aU、V相下アームスイッチング素子21aV、W相下アームスイッチング素子21aWにそれぞれ直列接続されたシャント抵抗により構成され、その端子間電圧に基づいてU1相電流Iu1、V1相電流Iv1、W1相電流Iw1を検出する。
 第2のスイッチング信号生成ユニット15bは、電圧指令演算ユニット6から出力された第2の電圧指令Vu2、Vv2、Vw2に基づいて、パルス幅変調(PWM変調)することによって第2の電圧指令Vu2、Vv2、Vw2に応じたパルス幅を持つ第2のスイッチング信号Qup2、Qvp2、Qwp2、Qun2、Qvn2、Qwn2を出力する。なお、第2の電圧指令Vu2、Vv2、Vw2に対して空間ベクトル変調や2相変調などの周知の変調方法を用いて変調した電圧Vu21、Vv21、Vw21から第2のスイッチング信号Qup2、Qvp2、Qwp2、Qun2、Qvn2、Qwn2を生成してもよいことはいうまでも無い。
 第2の電圧印加ユニット7bは、第2のスイッチング信号Qup2、Qvp2、Qwp2、Qun2、Qvn2、Qwn2に基づき、U相上アームスイッチング素子20bU、V相上アームスイッチング素子20bV、W相上アームスイッチング素子20bW、およびU相下アームスイッチング素子21bU、V相下アームスイッチング素子21bV、W相下アームスイッチング素子21bWをオン/オフすることによって、直流電源2から入力した直流電圧を交流電圧に変換して回転電機3の第2の電機子巻線32の3相巻線U2、V2、W2に電圧を印加する。
 U相上アームスイッチング素子20bU、V相上アームスイッチング素子20bV、W相上アームスイッチング素子20bW、およびU相下アームスイッチング素子21bU、V相下アームスイッチング素子21bV、W相下アームスイッチング素子21bWは、3相ブリッジ回路による3相インバータ回路を構成している。
 U相上アームスイッチング素子20bU、V相上アームスイッチング素子20bV、W相上アームスイッチング素子20bW、およびU相下アームスイッチング素子21bU、V相下アームスイッチング素子21bV、W相下アームスイッチング素子21bWは、例えば、IGBT、バイポーラトランジスタ、MOSパワートランジスタ等のスイッチング素子とダイオードを逆並列に接続したパワーモジュールが用いられる。
 第2の電流検出ユニット22bU、22bV、22bWは、それぞれ第2の電圧印加ユニット7bのU相下アームスイッチング素子21bU、V相下アームスイッチング素子21bV、W相下アームスイッチング素子21bWにそれぞれ直列接続されたシャント抵抗により構成され、その端子間電圧に基づいてU2相電流Iu2、V2相電流Iv2、W2相電流Iw2を検出する。
 スイッチング素子遮断切替ユニット8は、起動時の初期チェックあるいは各種入力信号から異常を検出したときなどに、第1の電圧印加ユニット7aにおけるU相上アームスイッチング素子20bU、V相上アームスイッチング素子20bV、W相上アームスイッチング素子20bW、およびU相下アームスイッチング素子21bU、V相下アームスイッチング素子21bV、W相下アームスイッチング素子21bWと、第2の電圧印加ユニット7bにおけるU相上アームスイッチング素子20bU、V相上アームスイッチング素子20bV、W相上アームスイッチング素子20bW、およびU相下アームスイッチング素子21bU、V相下アームスイッチング素子21bV、W相下アームスイッチング素子21bWと、のいずれかを駆動状態から強制的に遮断状態に切り替える。
 スイッチング素子遮断故障判定ユニット9は、後述するように、電流あるいは電圧に基づいてスイッチング素子遮断切替ユニット8の故障を判定する。
 角度情報検出ユニット10は、回転電機3の回転子のロータの回転角度θ、回転速度ω、あるいは回転角度によって変化する検出信号などの、角度情報を角度演算ユニット11および回転速度演算ユニット12へ出力する。
 角度情報検出ユニット10としては、例えばホール素子、TMR素子、GMR素子、レゾルバなどの位置検出器や電磁式、磁電式、光電式などの回転検出器などを用いることができる。角度演算ユニット11は、角度情報検出ユニット10で得られた信号に基づいてロータの回転角度を演算し、電圧指令演算ユニット6へ出力する。角度情報検出ユニット10によって得られる信号が回転速度ωであれば、回転速度ωを積分するなどによりロータの回転角度を演算すればよい。
 回転速度演算ユニット12は、角度情報検出ユニット10で得られた信号に基づいてロータの回転速度を演算し、電圧指令演算ユニット6へ出力する。角度情報検出ユニット10で得られる信号が角度であれば、角度θを微分する、あるいは今回の角度の値と前回の角度の値の差分を用いるなどして回転速度を算出すれことができる。なお、角度情報検出ユニット10で得られた信号に誤差がある場合には、周知の方法でその信号を補正するようにしてもよい。
 次に、スイッチング素子遮断切替ユニット8の故障の有無を、電気角「210」[deg]にてスイッチング素子遮断故障判定ユニット9により判定する仕方について説明する。
 図2は、この発明の実施の形態1による回転電機の制御装置の、電気角1周期における第1の電機子巻線を流れる3相電流を示す説明図であって、縦軸は電流、横軸は電気角である。d軸とq軸からなる回転2軸座標系において、第1の電機子巻線31のd軸電流Id1が「0」[A]、q軸電流Iq1が「10√3」[A]であるとき、電気角「360」[deg]の間における、U1相電流Iu1、V1相電流Iv1、W1相電流Iw1は、図2のように示される。図2において、電気角「210」[deg]では、U1相電流Iu1およびW1相電流Iw1は「5√2」[A]、V1相電流Iv1は「-10√2」[A]である。また、ロータの微小回転では電圧と電流の位相はほとんど差が無いため、3相巻線の抵抗値をRとすると3相電圧指令Vu1、Vv1、Vw1は下記の式(1)で与えられる。
Figure JPOXMLDOC01-appb-M000001
 図3は、この発明の実施の形態1による回転電機の制御装置における、電気角1周期における第1の電機子巻線に対する電圧指令を示す説明図であって、縦軸は電圧、横軸は電気角である。式(1)により得られた3相電圧指令Vu1、Vv1、Vw1は、図3のように示される。
 前述の、U1相電流Iu1、V1相電流Iv1、W1相電流Iw1が流れている駆動状態において、U相上アームスイッチング素子20aUをスイッチング素子遮断切替ユニット8により遮断状態にすると、U1相巻線への印加電圧は中性点電圧となり、U1相巻線に流れていた電流はW1相巻線からV1相巻線に流れ、U1相電流Iu1offは「0」[A]、V1相電流Iv1offは「-15/√2」[A]、およびW1相電流Iw1offは「15/√2」[A]となる。
 なお、以下の説明では、第1の電機子巻線31のU相上アームスイッチング素子20aUを駆動状態にした状態を、単に「駆動状態」と称し、第1の電機子巻線31のU相上アームスイッチング素子20aUを遮断状態にした状態を、単に「遮断状態」と称する。
 遮断状態のとき各相巻線への印加電圧Vu1offVv1off、Vw1offは、下記の式(2)で示すことができる。
Figure JPOXMLDOC01-appb-M000002
 
 dq軸電流と3相電流の間では、下記の式(3)が成り立つので、遮断状態におけるd軸電流Id1offは「15/2」[A]、q軸電流Iq1offは「15√3/2」[A]となる。
Figure JPOXMLDOC01-appb-M000003
 
 ここで、極対数をP、磁束をφ、トルク定数をKtとすると、第1の電機子巻線31が駆動状態である場合の出力トルクT1は下記の式(4)で与えられる。ここでは説明を簡単にするため、式(4)はリラクタンストルクが無い場合の式としたが、リラクタンストルクがある場合であっても同様の効果が得られることはいうまでもない。
Figure JPOXMLDOC01-appb-M000004
 
 第1の電機子巻線31が遮断状態である場合の出力トルクT1offは下記の式(5)で与えられる。
Figure JPOXMLDOC01-appb-M000005
 
 一方、第2の電機子巻線32のd軸電流をId2、q軸電流をIq2とすると、第2の電機子巻線32が駆動状態である場合の出力トルクT2は下記の式(6)で与えられる。
Figure JPOXMLDOC01-appb-M000006
 
 このとき、第1の電機子巻線31と第2の電機子巻線32が駆動状態である場合における回転電機3の出力トルクTallは、下記の式(7)で与えられる。
Figure JPOXMLDOC01-appb-M000007
 
 そして、第1の電機子巻線31が遮断状態で、第2の電機子巻線32が駆動状態である場合における回転電機3の出力トルクTall_offは、下記の式(8)で与えられる。
Figure JPOXMLDOC01-appb-M000008
 
 第1の電機子巻線31と第2の電機子巻線32が駆動状態である場合における回転電機3の出力トルクTallは、第1の電機子巻線31の出力トルクT1と第2の電機子巻線32の出力トルクT2の和であるので、第1の電機子巻線31による出力トルクT1と、第2の電機子巻線32による出力トルクT2の関係が下記の式(9)をみたすとき、駆動状態における回転電機3の出力トルクTallが「0」となる。
Figure JPOXMLDOC01-appb-M000009
 
 図4は、この発明の実施の形態1による回転電機の制御装置における、電気角「210」[deg]にて駆動状態から遮断状態への切り替え時の出力トルクを示す説明図であって、縦軸はトルク、横軸は時刻を示す。前述の電気角「210」[deg]の場合、図4に示すように、時刻「0」から時刻「0.1」の期間では第1の電機子巻線31と第2の電機子巻線32はともに駆動状態にあり、第1の電機子巻線31による出力トルクT1の絶対値と第2の電機子巻線32による出力トルクT2の絶対値は等しくなるように設定されており、出力トルクT1と出力トルクT2との和である回転電機3の出力トルクTallは、「0」となる。
 時刻「0.1」において第1の電機子巻線31のU相上アームスイッチング素子20aUを遮断状態とし、以降の期間はその遮断状態が継続される。その遮断状態において、第1の電機子巻線31による出力トルクT1offと第2の電機子巻線32による出力トルクT2との和である回転電機3の出力トルクTall_offは、「0」より小さな値となる。
 図4に示すように、スイッチング素子遮断切替ユニット8の故障判定時には、回転電機3としての出力トルクTall、Tall_offを、第1の電機子巻線31の出力トルクT1および第2の電機子巻線32の出力トルクT2よりも絶対値の小さい値に抑制することができる。従って、前述の式(9)を満たすように電流指令または電圧指令を決定することで、第1の電機子巻線31および第2の電機子巻線32が駆動状態にあってそれぞれの電機子巻線に電流を流しているにもかかわらず、回転電機3のロータが回転しない状態を実現することができ、第1の電機子巻線31を遮断状態へ切り替える前の駆動状態の時間を十分確保でき、電流を安定的に通電できるという従来の装置にない効果を得ることができる。
 なお、第1の電機子巻線31による出力トルクT1を、トルク定数Ktにより除算することで第1の電機子巻線31のq軸電流指令Iq1*を決定することができまた、第2の電機子巻線32による出力トルクT2をトルク定数Ktにより除算することで第2の電機子巻線32のq軸電流指令Iq2*を決定することができる。
 第1の電機子巻線31のq軸電流指令Iq1*と第2の電機子巻線32のq軸電流指令Iq2*の関係が下記の式(10)を満たすとき、回転電機3の出力トルクTallが「0」となる。式(10)をみたす電流指令にすることで、駆動状態において電流を流しているにも拘らず回転しない状態を実現できるという従来の装置にはない効果を得ることができる。
Figure JPOXMLDOC01-appb-M000010
 
 また、回転電機3のロータが微小回転の場合には、電流と電圧はほぼ比例関係にあるため、下記の式(11)を満たす電圧指令にすることでも、第1の電機子巻線31と第2の電機子巻線32が駆動状態にあって電流を流しているにもかかわらずロータの回転しない状態を実現できるという従来にはない効果を得ることができる。
Figure JPOXMLDOC01-appb-M000011
 
 第1の電機子巻線31と第2の電機子巻線32の配置に位相差が無い場合には、等しいq軸電流を流すためには対応する相に等しい電流を流せばよいので、下記の式(12)を満たす電圧指令にすることで、第1の電機子巻線31と第2の電機子巻線32の駆動状態において電流を流しているにもかかわらずロータの回転しない状態を実現することができる、という従来の装置にない効果を得ることができる。第1の電機子巻線31と第2の電機子巻線32の配置の位相差が「60n」[deg](nは自然数)の場合にも、対応する相を合わせることで同様の効果を得ることができる。
Figure JPOXMLDOC01-appb-M000012
 
 第1の電機子巻線31と第2の電機子巻線32の配置に「30」[deg]の位相差がある場合には、その位相がずれている分だけ補正した下記の式(13)に示す関係式を満たす電圧指令とすることで、第1の電機子巻線31と第2の電機子巻線32の駆動状態において電流を流しているにもかかわらずロータの回転しない状態を実現できる、という従来の装置にない効果を得ることができる。第1の電機子巻線31と第2の電機子巻線32の配置の位相差が「30+60n」[deg](nは自然数)の場合にも、対応する相を合わせることで同様の効果を得ることができる。
Figure JPOXMLDOC01-appb-M000013
 
 一方、回転電機3および回転電機3の出力軸にギヤおよびチェーンなどで取り付けられた機構にはメカニカルロスTlossが存在する。下記の式(14)を満たせば、第1の電機子巻線31と第2の電機子巻線32の駆動状態における回転電機3の出力トルクがメカニカルロス以内となるため、回転電機3のロータは回転しない。
Figure JPOXMLDOC01-appb-M000014
 
 出力トルクT1と出力トルクT2の符号が同じであれば、回転電機3の出力トルクが大きくなりメカニカルロスTloss以内となる余裕が少なくなる、つまり回転電機3の出力トルクがメカニカルロスTlossを超えやすくなるが、出力トルクT1と出力トルクT2の符号が異なれば、回転電機3の出力トルクが小さくなりメカニカルロスTloss以内となる余裕が大きくなる、つまり回転電機3の出力トルクがメカニカルロスTlossを超え難くなる。
 図5は、この発明の実施の形態1による回転電機の制御装置における、電気角「210」[deg]にて駆動状態から遮断状態への切り替え時の出力トルクを示す説明図であって、縦軸はトルク、横軸は時刻を示す。前述の電気角「210」[deg]の場合、図5に示すように、時刻「0」から時刻「0.1」の期間では第1の電機子巻線31と第2の電機子巻線32はともに駆動状態にあり、第1の電機子巻線31による出力トルクT1の絶対値と第2の電機子巻線32による出力トルクT2の絶対値は等しくなるように設定されており、出力トルクT1と出力トルクT2との和である回転電機3の出力トルクTallは、「0」となる。
 時刻「0.1」において第1の電機子巻線31のU相上アームスイッチング素子20aUを遮断状態とし、以降の期間はその遮断状態が継続される。その遮断状態において、第1の電機子巻線31による出力トルクT1offと第2の電機子巻線32による出力トルクT2との和である回転電機3の出力トルクTall_offは、「0」より小さな値となる。メカニカルロスTlossは、「+」側と「-」側に常時存在するが、駆動状態における出力トルクTallおよび遮断状態における出力トルクTall_offは、いずれもメカニカルロスTlossの絶対値以下となることがわかる。
 図5から明らかなように、第1の電機子巻線31による出力トルクT1、T1off、および第2の電機子巻線32による出力トルクT2は、それぞれ絶対値がメカニカルロスTlossよりも大きいが、2つの電機子巻線によるトルクの和である回転電機3としての出力トルクTall、Tall_offは、ともに絶対値がメカニカルロスTlossの絶対値より小さくなるため、回転電機3のロータは回転しない。つまり、出力トルクT1と出力トルクT2の符号が逆になるように電流指令または電圧指令を決定することで、駆動状態において電流を流しているにも拘らず回転しない状態を実現できるという、従来の装置にない効果を得ることができる。
 前述の式(10)および式(11)と同様の考え方で、駆動状態における回転電機3の出力トルクがメカニカルロス以内となる電流指令を決定するための関係式は下記の式(15)となり、電圧指令を決定するための関係式は下記の式(16)となる。
Figure JPOXMLDOC01-appb-M000015
 
Figure JPOXMLDOC01-appb-M000016
 
 前述の電気角「210」[deg]の例で示したように、第1の電機子巻線31にU1相電流Iu1が流れている駆動状態において、スイッチング素子遮断切替ユニット8によりU相上アームスイッチング素子20aUを駆動状態から遮断状態へ切り替えると、U1相電流が流れなくなる。その結果、シャント抵抗22aUにより構成された電流検出ユニットを用いて得られる電流が変化するため、U相上アームスイッチング素子20aUのスイッチング素子遮断切替ユニットの故障を判定することができる。
 なお、実施の形態1では、低電位側のスイッチング素子、つまり下アームスイッチング素子、に流れる電流を電流検出ユニットにより検出するようにしたが、高電位側のスイッチング素子、つまり上アームスイッチング素子に流れる電流を検出するようにしてもよく、さらに、電機子巻線を流れる電流を検出するようにしても同様の効果が得られることはいうまでもない。
 第1の電機子巻線31の端子電圧は、駆動状態では前述の式(1)、遮断状態では前述の式(2)で与えられるので、回転電機3の端子電圧は、第1の電機子巻線31が駆動状態から遮断状態に切り替わったときに変化する。
 駆動状態にある第1の電機子巻線31の各相の端子電圧の和は、下記の式(17)で与えられる。
Figure JPOXMLDOC01-appb-M000017
 
 遮断状態にある第1の電機子巻線31の各相の端子電圧の和は、下記の式(18)で与えられる。
Figure JPOXMLDOC01-appb-M000018
 
 したがって、スイッチング素子遮断故障判定ユニット9は、回転電機3の端子電圧、端子電圧の和、平均値、または中性点電圧に基づいて、スイッチング素子遮断切替ユニットの故障を判定することができる。
 なお、遮断状態での3相電流は駆動状態での3相電流から変化するため、電圧指令演算ユニット6において検出電流値をフィードバックして電圧指令を演算すると、電流指令との偏差が大きいため比例積分制御をすると電圧指令が最大値まで成長する懸念がある。そこで、遮断状態では検出電流値をフィードバックせずに電圧指令を演算することで、遮断による電流変化の影響が次の電圧指令に出ないようにすることができる。
 また、スイッチング素子遮断切替ユニット8により遮断状態に切り替え指示をする前の駆動状態の電圧指令を、遮断状態に切り替えを指示した後も保持することで、簡単なユニットで遮断による電流変化の影響が次の電圧指令に出ないようにすることできる。
 なお、以上の説明は、第1の電機子巻線31に電力を供給する第1の電圧印加ユニット7aのU相上アームスイッチング素子20aUを遮断状態にして、U相上アームスイッチング素子20aUの故障を判定する場合について述べたが、第1の電圧印加ユニット7aの他のすべてのスイッチング素子、および第2の電機子巻線32に電圧を印加する第2の電圧印加ユニット7bのすべてのスイッチング素子についても、前述と同様に、例えば順次に、故障を判定することができる。
 以上述べたこの発明の実施の形態1による回転電機の制御装置を用いて、操舵トルクを補助するトルクを発生させる電動パワーステアリングを構成することができる。周知のように、電動パワーステアリングが発生する出力トルクは、ギヤあるいはチェーンなどを介して車両のハンドル軸上に伝達され、トルクリップルあるいは自転トルクなどユーザに不快感を与える動作となることがある。これに対してこの発明の実施の形態1による回転電機の制御装置を搭載した電動パワーステアリング装置によれば、スイッチング素子遮断切替ユニットがスイッチング素子を遮断状態に切り替える指示をしたときに発生する出力トルクをメカニカルロス以内とすることで、ユーザの不快感を低減できるという従来に無い効果を得ることができる。
実施の形態2.
 次に、この発明の実施の形態2による回転電機の制御装置、およびその回転電機の制御装置を備えた電動パワーステアリング装置について説明する。実施の形態1では、スイッチング素子遮断切替ユニットがスイッチング素子を遮断状態に切り替え指示する前の駆動状態において、回転電機3の出力トルクTallを「0」として回転電機の挙動変化を抑制する方法について述べたが、この発明の実施の形態2による回転電機の制御装置では、遮断状態における回転電機3の出力トルクTallを「0」として回転電機の挙動変化を抑制するように構成されている。その他の構成は、実施の形態1の場合と同様である。
 遮断状態に切り替えた後でスイッチング素子遮断切替ユニットの故障を判定する場合、誤判定を防止するために、複数回故障の判定動作を行ない、故障条件の成立時にカウントアップするカウンタのカウント値が、所定のしきい値以上になると故障としての判定を確定させることが多い。遮断状態における回転電機3の出力トルクTall_offは、第1の電機子巻線31の出力トルクT1_offと第2の電機子巻線32の出力トルクT2の和であるので、出力トルクT1_offと出力トルクT2の関係が下記の式(19)を満たすとき、駆動状態における回転電機3の出力トルクTall_offは「0」となる。
Figure JPOXMLDOC01-appb-M000019
 
 図6は、この発明の実施の形態2による回転電機の制御装置における、電気角「210」[deg]にて駆動状態から遮断状態への切り替え時の出力トルクを示す説明図であって、縦軸はトルク、横軸は時刻を示す。前述の電気角「210」[deg]の場合、図6に示すように、時刻「0」から時刻「0.1」の期間では第1の電機子巻線31と第2の電機子巻線32はともに駆動状態にあり、第1の電機子巻線31による出力トルクT1の絶対値は、第2の電機子巻線32による出力トルクT2の絶対値より大きくなるように設定されており、出力トルクT1と出力トルクT2との和である回転電機3の出力トルクTallは、「0」より大きくなっている。
 時刻「0.1」において第1の電機子巻線31のU相上アームスイッチング素子20aUを遮断状態とし、以降の期間はその遮断状態が継続される。その遮断状態において、第1の電機子巻線31による出力トルクT1offと第2の電機子巻線32による出力トルクT2との和である回転電機3の出力トルクTall_offは、「0」となる。
 図6に示すように、スイッチング素子遮断切替ユニット8の故障判定時には、回転電機3としての出力トルクTall、Tall_offを、第1の電機子巻線31の出力トルクT1および第2の電機子巻線32の出力トルクT2よりも絶対値の小さい値に抑制することができる。従って、前述の式(19)を満たすように電流指令または電圧指令を決定することで、第1の電機子巻線31が遮断状態にあって第2の電機子巻線32が駆動状態にありそれぞれの電機子巻線に電流を流しているにもかかわらず、回転電機3のロータが回転しない状態を実現することができ、第1の電機子巻線31を遮断状態へ切り替えた後に故障確定までの時間を十分に確保できるという従来の装置にない効果を得ることができる。
 一方、下記の式(20)を満たせば、遮断状態における回転電機3の出力トルクがメカニカルロス以内となるため回転電機3は回転しない。
Figure JPOXMLDOC01-appb-M000020
 
 図7は、この発明の実施の形態1による回転電機の制御装置における、電気角「210」[deg]にて駆動状態から遮断状態への切り替え時の出力トルクとメカニカルロスの関係を示す説明図であって、縦軸はトルク、横軸は時刻を示す。前述の電気角「210」[deg]の場合、図7に示すように、時刻「0」から時刻「0.1」の期間では第1の電機子巻線31と第2の電機子巻線32はともに駆動状態にあり、第1の電機子巻線31による出力トルクT1の絶対値と第2の電機子巻線32による出力トルクT2の絶対値は等しくなるように設定されており、出力トルクT1と出力トルクT2との和である回転電機3の出力トルクTallは、「0」となる。
 時刻「0.1」において第1の電機子巻線31のU相上アームスイッチング素子20aUを遮断状態とし、以降の期間はその遮断状態が継続される。その遮断状態において、第1の電機子巻線31による出力トルクT1offと第2の電機子巻線32による出力トルクT2との和である回転電機3の出力トルクTall_offは、「0」となる。メカニカルロスTlossは、「+」側と「-」側に常時存在するが、駆動状態における出力トルクTallおよび遮断状態における出力トルクTall_offは、いずれものメカニカルロスTlossの絶対値以下となることがわかる。
 したがって、出力トルクT1、T1offおよび出力トルクT2は、それぞれ絶対値がメカニカルロスTlossよりも大きいが、2つの電機子巻線によるトルクの和である回転電機3としての出力トルクTall、Tall_offは、ともに絶対値がメカニカルロスTlossの絶対値より小さくなるため、回転電機3のロータは回転しない。つまり、出力トルクT1offと出力トルクT2の符号が逆になるように電流指令または電圧指令を決定することで、遮断状態において電流を流しているにも拘らず回転しない状態を実現できるという、従来の装置にない効果を得ることができる。
 以上述べたこの発明の実施の形態2による回転電機の制御装置を用いて、操舵トルクを補助するトルクを発生させる電動パワーステアリングを構成することができる。周知のように、電動パワーステアリングが発生する出力トルクは、ギヤあるいはチェーンなどを介して車両のハンドル軸上に伝達され、トルクリップルあるいは自転トルクなどユーザに不快感を与える動作となることがある。これに対してこの発明の実施の形態1による回転電機の制御装置を搭載した電動パワーステアリング装置によれば、スイッチング素子遮断切替ユニットがスイッチング素子を遮断状態に切り替える指示をしたときに発生する出力トルクをメカニカルロス以内とすることで、ユーザの不快感を低減できるという従来に無い効果を得ることができる。
実施の形態3.
 次に、この発明の実施の形態3による回転電機の制御装置、およびその回転電機の制御装置を備えた電動パワーステアリング装置について説明する。実施の形態1では、スイッチング素子遮断切替ユニットがスイッチング素子を遮断状態に切り替える指示を行う前の駆動状態において、回転電機の挙動変化を抑制するように構成され、また、実施の形態2ではスイッチング素子遮断切替ユニットがスイッチング素子を遮断状態に切り替える指示をした後の遮断状態において、回転電機の挙動変化を抑制するように構成されていたが、この発明の実施の形態3では、駆動状態および遮断状態の双方における回転電機の挙動変化を抑制するように構成されている。その他の構成は、実施の形態1または実施の形態2の場合と同様である。
 第1の電機子巻線31の駆動状態における回転電機3の出力トルクTallは前述の式(7)で与えられ、遮断状態における出力トルクTall_offは前述の式(8)で与えられ、[Tall≠Toff_all]である。これに対して、第1の電機子巻線31の駆動状態と遮断状態のいずれの場合においても回転電機3の出力トルクの絶対値が等しくなる、つまり[|Tall|=|Toff_all|]となるようにするためには、下記の式(21)を満たすようにすればよい。
Figure JPOXMLDOC01-appb-M000021
 
 このとき、駆動状態における出力トルクTallおよび遮断状態における出力トルクTall_offは式(22)で与えられる。
Figure JPOXMLDOC01-appb-M000022
 
 図8は、この発明の実施の形態3による回転電機の制御装置における、電気角「210」[deg]にて駆動状態から遮断状態への切り替え時の出力トルクとメカニカルロスの関係を示す図であって、縦軸はトルク、横軸は時刻を示す。前述の電気角「210」[deg]の場合、図8に示すように、時刻「0」から時刻「0.1」の期間では、第1の電機子巻線31と第2の電機子巻線32はともに駆動状態にあり、第1の電機子巻線31による出力トルクT1と第2の電機子巻線32による出力トルクT2は、式(21)を満足するように設定されている。
 したがって、式(22)にも示すとおり、第1の電機子巻線31による出力トルクT1と第2の電機子巻線32による出力トルクT2との和である回転電機3の出力トルクTall、Tall_offの絶対値がひとしくなり、[Tall=Toff_all]である。
 次に、時刻「0.1」において第1の電機子巻線31のU相上アームスイッチング素子20aUを遮断状態とし、以降の期間はその遮断状態が継続される。その遮断状態において、第1の電機子巻線31による出力トルクT1offと第2の電機子巻線32による出力トルクT2との和である回転電機3の出力トルクTall_offは、式(22)に示す値となり、その絶対値はTallに等しい。
 メカニカルロスTlossは、「+」側と「-」側に常時存在し、出力トルクT1、T1offおよび出力トルクT2は、それぞれ絶対値がメカニカルロスTlossよりも大きいが、駆動状態における出力トルクTallおよび遮断状態における出力トルクTall_offは、いずれものメカニカルロスTlossの絶対値より小さくなり、回転電機3のロータは回転しない。このように、メカニカルロスTlossまでの余裕代を駆動状態と遮断状態で等しく設定できるため、前述の図5および図7と比較すると、メカニカルロスTlossに出力トルクTall、Tall_offの絶対値が達するまでの余裕を大きくすることができる。
 前述のように、駆動状態と遮断状態における出力トルクの絶対値が等しいため、下記の式(23)をみたすことで駆動状態と遮断状態のいずれの場合にも回転電機3の挙動変化を抑制できる、という従来の装置にない効果を得ることができる。
Figure JPOXMLDOC01-appb-M000023
 
 なお、式(21)では、[Tall=-Toff_all]となるように第2の電機子巻線32による出力トルクT2を決定したが、この出力トルクT2を[-T1]と[-T1off]との間の値とすることでも、回転電機3の挙動変化を低減することが可能である。この場合には第2の電機子巻線32による出力トルクT2は[0<k<1]を満たす定数kを用いて下記の式(24)を満たすようにすればよい。
Figure JPOXMLDOC01-appb-M000024
 
 例えば、第1の電機子巻線31の駆動状態の出力トルクT1が「0」[Nm]の場合であれば、駆動状態と遮断状態における出力トルクは下記の式(25)のように表すことができ、駆動状態および遮断状態での回転電機3の出力トルクを低減することができる。
Figure JPOXMLDOC01-appb-M000025
 
 また、例えば、第1の電機子巻線31の遮断状態の出力トルクT1offが「0」[Nm]の場合であれば、駆動状態と遮断状態における出力トルクは下記の式(26)のようにも表わすことができ、駆動状態および遮断状態での回転電機3の出力トルクを低減することができる。
Figure JPOXMLDOC01-appb-M000026
 
 つまり、第2の電機子巻線32による出力トルクT2が[-T1]より大きく[-T1off]未満である、または[-T1off]より大きく[-T1]未満である、となるように電流指令または電圧指令を決定することで、駆動状態で生じる出力トルクの合計と遮断状態で生じる出力トルクの合計のいずれも低減することができ、より大きな電流を流してもメカニカルロスより小さい出力トルクに抑制することが可能となり、電流を流しているにもかかわらず、ロータが回転しない状態を実現することができる、という従来の装置にない効果を得ることができる。
 以上述べたこの発明の実施の形態3による回転電機の制御装置を用いて、操舵トルクを補助するトルクを発生させる電動パワーステアリングを構成することができる。周知のように、電動パワーステアリングが発生する出力トルクは、ギヤあるいはチェーンなどを介して車両のハンドル軸上に伝達され、トルクリップルあるいは自転トルクなどユーザに不快感を与える動作となることがある。これに対してこの発明の実施の形態1による回転電機の制御装置を搭載した電動パワーステアリング装置によれば、スイッチング素子遮断切替ユニットがスイッチング素子を遮断状態に切り替える指示をしたときに発生する出力トルクをメカニカルロス以内とすることで、ユーザの不快感を低減できるという従来に無い効果を得ることができる。
 以上述べたこの発明の実施の形態1から3による回転電機の制御装置、およびその回転電機の制御装置を備えた電動パワーステアリング装置は、下記の発明のうち少なくとも一つを具体化したものである。
(1)少なくとも第1の電機子巻線および第2の電機子巻線を有する回転電機を制御する回転電機の制御装置であって、
 直流電源からの直流電圧を交流電圧に変換して前記第1の電機子巻線と前記第2の電機子巻線に電圧を印加する電圧印加ユニットと、
 前記回転電機に対する電流指令に基づいて電圧指令を演算するように構成された電圧指令演算ユニットと、
 電圧指令演算ユニットにより演算された前記電圧指令に基づいて、前記電圧印加ユニットを構成するスイッチング素子を駆動するスイッチング信号を出力するように構成されたスイッチング信号生成ユニットと、
 前記スイッチング素子を駆動状態から遮断状態に切り替えるように構成されたスイッチング素子遮断切替ユニットと、
 前記スイッチング素子遮断切替ユニットの故障を判定するように構成されたスイッチング素子遮断故障判定ユニットと、
を備え、
 前記スイッチング素子遮断故障判定ユニットが、前記スイッチング素子遮断切替ユニットの故障を判定するとき、
 前記スイッチング素子が駆動状態にある前記第1の電機子巻線に基づいて発生される出力トルクと、前記第2の電機子巻線に基づいて発生される出力トルクとは、互いに逆方向となる、または
 前記スイッチング素子が遮断状態にある前記第1の電機子巻線に基づいて発生される出力トルクと、前記第2の電機子巻線に基づいて発生される出力トルクとは、互いに逆方向となるように、
前記電流指令または前記電圧指令が設定される、
ことを特徴とする回転電機の制御装置。
 この発明による回転電機の制御装置によれば、スイッチング素子遮断切替ユニットの故障判定前に出力トルクを抑制した状態にすることで挙動に出にくい状態を実現できる。
(2)前記スイッチング素子が駆動状態にある前記第1の電機子巻線に基づく出力トルクをT1、前記第2の電機子巻線に基づいて発生される出力トルクをT2としたとき、
 前記T1と前記T2は、実質的に[T1+T2=0]を満たすように発生される、
ことを特徴とする上記(1)に記載の回転電機の制御装置。
 この発明による回転電機の制御装置によれば、スイッチング素子遮断切替ユニットの故障判定前に出力トルクを相殺した状態にすることで挙動に出ない状態を実現できる。
(3)前記スイッチング素子が遮断状態にある前記第1の電機子巻線に基づく出力トルクをT1off、前記第2の電機子巻線に基づいて発生される出力トルクをT2としたとき、
 前記T1offと前記T2は、実質的に[T1off+T2=0]を満たすように発生される、
ことを特徴とする上記(1)に記載の回転電機の制御装置。
 この発明による回転電機の制御装置によれば、スイッチング素子遮断切替ユニットの故障判定前に出力トルクを相殺した状態にすることで挙動に出ない状態を実現できる。
(4)少なくとも第1の電機子巻線および第2の電機子巻線を有する回転電機を制御する回転電機の制御装置であって、
 直流電源からの直流電圧を交流電圧に変換して前記第1の電機子巻線と前記第2の電機子巻線に電圧を印加する電圧印加ユニットと、
 前記回転電機に対する電流指令に基づいて電圧指令を演算するように構成された電圧指令演算ユニットと、
 電圧指令演算ユニットにより演算された前記電圧指令に基づいて、前記電圧印加ユニットを構成するスイッチング素子を駆動するスイッチング信号を出力するように構成されたスイッチング信号生成ユニットと、
 前記スイッチング素子を駆動状態から遮断状態に切り替えるように構成されたスイッチング素子遮断切替ユニットと、
 前記スイッチング素子遮断切替ユニットの故障を判定するように構成されたスイッチング素子遮断故障判定ユニットと、
を備え、
 前記スイッチング素子遮断故障判定ユニットが前記スイッチング素子遮断切替ユニットの故障を判定するとき、
 前記スイッチング素子が駆動状態にある前記第1の電機子巻線に基づく出力トルクをT1、前記スイッチング素子が遮断状態にある前記第1の電機子巻線に基づく出力トルクをT1off、前記第2の電機子巻線に基づいて発生される出力トルクをT2としたとき、
 前記T2は、[-T1]より大きく[-T1off]未満である、または[-T1off]より大きく[-T1]未満であるように、
前記電流指令または前記電圧指令が設定される、
ことを特徴とする回転電機の制御装置。
 この発明による回転電機の制御装置によれば、駆動状態で生じる出力トルクの合計と遮断状態で生じる出力トルクの合計のいずれも低減することで、より大きな電流を流してもメカニカルロス内に抑制でき、挙動に出にくい状態で故障判定ができる。
(5)前記T1と前記T1offと前記T2は、実質的に[T2=-(T1+T1off)/2]を満たす、
ことを特徴とする上記(4)に記載の回転電機の制御装置。
 この発明による回転電機の制御装置によれば、駆動状態で生じる出力トルクの合計と遮断状態で生じる出力トルクの合計の符号を逆にすることで、より大きな電流を流してもメカニカルロス内に抑制でき、挙動に出ない状態で故障判定ができる。
(6)前記回転電機の回転軸に加わるメカニカルロスをTlossとしたとき、
 前記T1と前記T1offは、実質的に[|T1-T1off|/2<Tloss]を満たす、
ことを特徴とする上記(5)に記載の回転電機の制御装置。
 この発明による回転電機の制御装置によれば、出力トルクの合計をメカニカルロス内に抑制することで挙動に出ない状態を保つことができる。
(7)前記スイッチング素子が駆動状態にある前記第1の電機子巻線に基づく出力トルクをT1、前記スイッチング素子が遮断状態にある前記第1の電機子巻線に基づく出力トルクをT1off、前記第2の電機子巻線に基づいて発生される出力トルクをT2、前記回転電機の回転軸に加わるメカニカルロスをTlossとしたとき、
 前記T1と、前記T1offと前記T2は、実質的に[|T1+T2|<Tloss]または[|T1off+T2|<Tloss]を満たす、
ことを特徴とする上記(1)から(6)のうちのいずれか一つに記載の回転電機の制御装置。
 この発明による回転電機の制御装置によれば、出力トルクの合計をメカニカルロス内に抑制することで挙動に出ない状態を保つことができる。
(8)前記第1の電機子巻線および前記第2の電機子巻線に印加された端子電圧を検出する電圧検出ユニットを有し、
 前記スイッチング素子遮断故障判定ユニットは、前記検出された端子電圧に基づいて前記スイッチング素子遮断切替ユニットの故障を判定するように構成されている、
ことを特徴とする上記(1)から(7)のうちのいずれか一つに記載の回転電機の制御装置。
 この発明による回転電機の制御装置によれば、通常制御で使用する電圧検出器を用いて故障を判定することで、追加回路を設ける必要がなくコスト低減が可能である。
(9)前記スイッチング素子を流れる電流を検出する電流検出ユニットを有し、
 スイッチング素子遮断故障判定ユニットは、前記検出された電流の値に基づいて前記スイッチング素子遮断切替ユニットの故障を判定するように構成されている、
ことを特徴とする請求項1から7のうちのいずれか一つに記載の回転電機の制御装置。
前記スイッチング素子を流れる電流を検出する電流検出ユニットを有し、
 スイッチング素子遮断故障判定ユニットは、前記検出された電流の値に基づいて前記スイッチング素子遮断切替ユニットの故障を判定するように構成されている、
ことを特徴とする上記(1)から(7)のうちのいずれか一つに記載の回転電機の制御装置。
 この発明による回転電機の制御装置によれば、通常制御で使用するシャント抵抗を用いて故障を判定することで、追加回路を設ける必要が無くコスト低減が可能である。
(10)前記第1の電機子巻線および前記第2の電機子巻線を流れる電流を検出する電流検出ユニットを有し、
 スイッチング素子遮断故障判定ユニットは、前記検出された電流の値に基づいて前記スイッチング素子遮断切替ユニットの故障を判定するように構成されている、
ことを特徴とする上記(1)から(7)のうちのいずれか一つに記載の回転電機の制御装置。
 この発明による回転電機の制御装置によれば、通常制御で使用する電流検出器を用いて故障を判定することで、追加回路を設ける必要が無くコスト低減が可能である。
(11)前記スイッチング素子遮断切替ユニットが、前記スイッチング素子を前記駆動状態から前記遮断状態に切り替えるとき、
 前記電圧指令演算ユニットは、前記電流検出ユニットにより検出された前記電流の値を用いずに前記電圧指令を演算するように構成されている、
ことを特徴とする上記(9)または(10)に記載の回転電機の制御装置。
 この発明による回転電機の制御装置によれば、遮断状態では検出電流のフィードバックを停止することで、遮断による電流変化が電圧指令に影響を及ぼさないようにできる。
(12)前記スイッチング素子遮断切替ユニットが、前記スイッチング素子を前記駆動状態から前記遮断状態に切り替えるとき、
 前記電圧指令演算ユニットは、前記遮断状態における前記電圧指令として、前記切り替え前の前記駆動状態における前記電圧指令を用いるように構成されている、
ことを特徴とする上記(1)から(10)のうちのいずれか一つに記載の回転電機の制御装置。
 この発明による回転電機の制御装置によれば、駆動状態の最終値を保持することで、簡単なユニットで遮断による電流変化が電圧指令に影響を及ぼさないようにできる。
(13)少なくとも第1の電機子巻線および第2の電機子巻線を有する回転電機を制御する回転電機の制御装置と、前記回転電機の制御装置により制御され、車両の運転者の操舵を補助するアシストトルクを発生する回転電機と、を備えた、
電動パワーステアリング装置であって、
 前記回転電機の制御装置は、
 直流電源からの直流電圧を交流電圧に変換して前記第1の電機子巻線と前記第2の電機子巻線に電圧を印加する電圧印加ユニットと、
 前記回転電機に対する電流指令に基づいて電圧指令を演算するように構成された電圧指令演算ユニットと、
 電圧指令演算ユニットにより演算された前記電圧指令に基づいて、前記電圧印加ユニットを構成するスイッチング素子を駆動するスイッチング信号を出力するように構成されたスイッチング信号生成ユニットと、
 前記スイッチング素子を駆動状態から遮断状態に切り替えるように構成されたスイッチング素子遮断切替ユニットと、
 前記スイッチング素子遮断切替ユニットの故障を判定するように構成されたスイッチング素子遮断故障判定ユニットと、
を備え、
 前記スイッチング素子遮断故障判定ユニットが、前記スイッチング素子遮断切替ユニットの故障を判定するとき、
 前記スイッチング素子が駆動状態にある前記第1の電機子巻線に基づいて発生される出力トルクと、前記第2の電機子巻線に基づいて発生される出力トルクとは、互いに逆方向となる、または
 前記スイッチング素子が遮断状態にある前記第1の電機子巻線に基づいて発生される出力トルクと、前記第2の電機子巻線に基づいて発生される出力トルクとは、互いに逆方向となるように、
前記電流指令または前記電圧指令が設定される、
ことを特徴とする電動パワーステアリング装置。
 この発明による電動パワーステアリング装置によれば、スイッチング素子遮断切替ユニットの故障判定前に出力トルクを抑制した状態にすることができるとともに、スイッチング素子の遮断機能の確認に要する構成を簡素化することができるという効果を奏する。
(14)少なくとも第1の電機子巻線および第2の電機子巻線を有する回転電機を制御する回転電機の制御装置と、前記回転電機の制御装置により制御され、車両の運転者の操舵を補助するアシストトルクを発生する回転電機と、を備えた、
電動パワーステアリング装置であって、
 前記回転電機の制御装置は、
 少なくとも第1の電機子巻線および第2の電機子巻線を有する回転電機を制御する回転電機の制御装置であって、
 直流電源からの直流電圧を交流電圧に変換して前記第1の電機子巻線と前記第2の電機子巻線に電圧を印加する電圧印加ユニットと、
 前記回転電機に対する電流指令に基づいて電圧指令を演算するように構成された電圧指令演算ユニットと、
 電圧指令演算ユニットにより演算された前記電圧指令に基づいて、前記電圧印加ユニットを構成するスイッチング素子を駆動するスイッチング信号を出力するように構成されたスイッチング信号生成ユニットと、
 前記スイッチング素子を駆動状態から遮断状態に切り替えるように構成されたスイッチング素子遮断切替ユニットと、
 前記スイッチング素子遮断切替ユニットの故障を判定するように構成されたスイッチング素子遮断故障判定ユニットと、
を備え、
 前記スイッチング素子遮断故障判定ユニットが前記スイッチング素子遮断切替ユニットの故障を判定するとき、
 前記スイッチング素子が駆動状態にある前記第1の電機子巻線に基づく出力トルクをT1、前記スイッチング素子が遮断状態にある前記第1の電機子巻線に基づく出力トルクをT1off、前記第2の電機子巻線に基づいて発生される出力トルクをT2としたとき、
 前記T2は、[-T1]より大きく[-T1off]未満である、または[-T1off]より大きく[-T1]未満であるように、
前記電流指令または前記電圧指令が設定される、
ことを特徴とする電動パワーステアリング装置。
 この発明による電動パワーステアリング装置によれば、駆動状態で生じる出力トルクの合計と遮断状態で生じる出力トルクの合計のいずれも低減することで、より大きな電流を流してもメカニカルロス内に抑制でき、挙動に出にくい状態で故障判定ができる。
 尚、この発明は、前述の実施の形態1から実施の形態3による回転電機の制御装置、およびその回転電機の制御装置を備えた電動パワー^ステアリング装置に限定されるものではなく、この発明の趣旨を逸脱しない範囲において、実施の形態1、および3の構成を適宜組み合わせたり、その構成に一部変形を加えたり、構成を一部省略することが可能である。
 この発明による回転電機の制御装置は、永久磁石型同期交流回転電機等の回転電機の御御装置、ひいては、その回転電機を用いる分野に利用することができる。また、この発明による回転電機の制御装置を備えた電動パワーステアリング装置は、その電動パワーステアリング装置を用いる自動車等の車両の分野に利用することができる。
1 制御ユニット、2 直流電源、3 回転電機、6 電圧指令演算ユニット、7a 第1の電圧印加ユニット、7b 第2の電圧印加ユニット、8 スイッチング素子遮断切替ユニット、9 スイッチング素子遮断故障判定ユニット、10 角度情報検出ユニット、11 角度演算ユニット、12 回転速度演算ユニット、15a 第1のスイッチング信号生成ユニット、15b 第2のスイッチング信号生成ユニット、31 第1の電機子巻線、32 第2の電機子巻線。
 

Claims (13)

  1.  少なくとも第1の電機子巻線および第2の電機子巻線を有する回転電機を制御する回転電機の制御装置であって、
     直流電源からの直流電圧を交流電圧に変換して前記第1の電機子巻線と前記第2の電機子巻線に電圧を印加する電圧印加ユニットと、
     前記回転電機に対する電流指令に基づいて電圧指令を演算するように構成された電圧指令演算ユニットと、
     電圧指令演算ユニットにより演算された前記電圧指令に基づいて、前記電圧印加ユニットを構成するスイッチング素子を駆動するスイッチング信号を出力するように構成されたスイッチング信号生成ユニットと、
     前記スイッチング素子を駆動状態から遮断状態に切り替えるように構成されたスイッチング素子遮断切替ユニットと、
     前記スイッチング素子遮断切替ユニットの故障を判定するように構成されたスイッチング素子遮断故障判定ユニットと、
    を備え、
     前記スイッチング素子遮断故障判定ユニットが、前記スイッチング素子遮断切替ユニットの故障を判定するとき、
     前記スイッチング素子が駆動状態にある前記第1の電機子巻線に基づいて発生される出力トルクと、前記第2の電機子巻線に基づいて発生される出力トルクとは、互いに逆方向となる、または
     前記スイッチング素子が遮断状態にある前記第1の電機子巻線に基づいて発生される出力トルクと、前記第2の電機子巻線に基づいて発生される出力トルクとは、互いに逆方向となるように、
    前記電流指令または前記電圧指令が設定される、
    ことを特徴とする回転電機の制御装置。
  2.  前記スイッチング素子が駆動状態にある前記第1の電機子巻線に基づく出力トルクをT1、前記第2の電機子巻線に基づいて発生される出力トルクをT2としたとき、
     前記T1と前記T2は、実質的に[T1+T2=0]を満たすように発生される、
    ことを特徴とする請求項1に記載の回転電機の制御装置。
  3.  前記スイッチング素子が遮断状態にある前記第1の電機子巻線に基づく出力トルクをT1off、前記第2の電機子巻線に基づいて発生される出力トルクをT2としたとき、
     前記T1offと前記T2は、実質的に[T1off+T2=0]を満たすように発生される、
    ことを特徴とする請求項1に記載の回転電機の制御装置。
  4.  少なくとも第1の電機子巻線および第2の電機子巻線を有する回転電機を制御する回転電機の制御装置であって、
     直流電源からの直流電圧を交流電圧に変換して前記第1の電機子巻線と前記第2の電機子巻線に電圧を印加する電圧印加ユニットと、
     前記回転電機に対する電流指令に基づいて電圧指令を演算するように構成された電圧指令演算ユニットと、
     電圧指令演算ユニットにより演算された前記電圧指令に基づいて、前記電圧印加ユニットを構成するスイッチング素子を駆動するスイッチング信号を出力するように構成されたスイッチング信号生成ユニットと、
     前記スイッチング素子を駆動状態から遮断状態に切り替えるように構成されたスイッチング素子遮断切替ユニットと、
     前記スイッチング素子遮断切替ユニットの故障を判定するように構成されたスイッチング素子遮断故障判定ユニットと、
    を備え、
     前記スイッチング素子遮断故障判定ユニットが前記スイッチング素子遮断切替ユニットの故障を判定するとき、
     前記スイッチング素子が駆動状態にある前記第1の電機子巻線に基づく出力トルクをT1、前記スイッチング素子が遮断状態にある前記第1の電機子巻線に基づく出力トルクをT1off、前記第2の電機子巻線に基づいて発生される出力トルクをT2としたとき、
     前記T2は、[-T1]より大きく[-T1off]未満である、または[-T1off]より大きく[-T1]未満であるように、
    前記電流指令または前記電圧指令が設定される、
    ことを特徴とする回転電機の制御装置。
  5.  前記T1と前記T1offと前記T2は、実質的に[T2=-(T1+T1off)/2]を満たすように発生される、
    ことを特徴とする請求項4に記載の回転電機の制御装置。
  6.  前記回転電機の回転軸に加わるメカニカルロスをTlossとしたとき、
     前記T1と前記T1offは、実質的に[|T1-T1off|/2<Tloss]を満たすように発生される、
    ことを特徴とする請求項5に記載の回転電機の制御装置。
  7.  前記スイッチング素子が駆動状態にある前記第1の電機子巻線に基づく出力トルクをT1、前記スイッチング素子が遮断状態にある前記第1の電機子巻線に基づく出力トルクをT1off、前記第2の電機子巻線に基づいて発生される出力トルクをT2、前記回転電機の回転軸に加わるメカニカルロスをTlossとしたとき、
     前記T1と、前記T1offと前記T2は、実質的に[|T1+T2|<Tloss]または[|T1off+T2|<Tloss]を満たすように発生される、
    ことを特徴とする請求項1から6のうちのいずれか一項に記載の回転電機の制御装置。
  8.  前記第1の電機子巻線および前記第2の電機子巻線に印加された端子電圧を検出する電圧検出ユニットを有し、
     前記スイッチング素子遮断故障判定ユニットは、前記検出された端子電圧に基づいて前記スイッチング素子遮断切替ユニットの故障を判定するように構成されている、
    ことを特徴とする請求項1から7のうちのいずれか一項に記載の回転電機の制御装置。
  9.  前記スイッチング素子を流れる電流を検出する電流検出ユニットを有し、
     スイッチング素子遮断故障判定ユニットは、前記検出された電流の値に基づいて前記スイッチング素子遮断切替ユニットの故障を判定するように構成されている、
    ことを特徴とする請求項1から7のうちのいずれか一項に記載の回転電機の制御装置。
  10.  前記第1の電機子巻線および前記第2の電機子巻線を流れる電流を検出する電流検出ユニットを有し、
     スイッチング素子遮断故障判定ユニットは、前記検出された電流の値に基づいて前記スイッチング素子遮断切替ユニットの故障を判定するように構成されている、
    ことを特徴とする請求項1から7のうちのいずれか一項に記載の回転電機の制御装置。
  11.  前記スイッチング素子遮断切替ユニットが、前記スイッチング素子を前記駆動状態から前記遮断状態に切り替えるとき、
     前記電圧指令演算ユニットは、前記電流検出ユニットにより検出された前記電流の値を用いずに前記電圧指令を演算するように構成されている、
    ことを特徴とする請求項9または10に記載の回転電機の制御装置。
  12.  前記スイッチング素子遮断切替ユニットが、前記スイッチング素子を前記駆動状態から前記遮断状態に切り替えるとき、
     前記電圧指令演算ユニットは、前記遮断状態における前記電圧指令として、前記切り替え前の前記駆動状態における前記電圧指令を用いるように構成されている、
    ことを特徴とする請求項1から10のうちのいずれか一項に記載の回転電機の制御装置。
  13.  請求項1から12のうちのいずれか一項に記載の回転電機の制御装置と、前記回転電機の制御装置により制御され、車両の運転者の操舵を補助するアシストトルクを発生する回転電機と、を備えた、
    ことを特徴とする電動パワーステアリング装置。
PCT/JP2016/083948 2016-11-16 2016-11-16 回転電機の制御装置、およびその回転電機の制御装置を備えた電動パワーステアリング装置 WO2018092210A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16921711.4A EP3544174B1 (en) 2016-11-16 2016-11-16 Rotating electric-machine-control apparatus and electric power steering apparatus equipped with said rotating-electric-machine control apparatus
US16/327,914 US11005405B2 (en) 2016-11-16 2016-11-16 Rotating-electric-machine control apparatus and electric power steering control apparatus equipped with the rotating-electric-machine control apparatus
CN201680090740.6A CN109964401B (zh) 2016-11-16 2016-11-16 旋转电机的控制装置及具备该旋转电机的控制装置的电动助力转向装置
PCT/JP2016/083948 WO2018092210A1 (ja) 2016-11-16 2016-11-16 回転電機の制御装置、およびその回転電機の制御装置を備えた電動パワーステアリング装置
JP2018550915A JP6685427B2 (ja) 2016-11-16 2016-11-16 回転電機の制御装置、およびその回転電機の制御装置を備えた電動パワーステアリング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/083948 WO2018092210A1 (ja) 2016-11-16 2016-11-16 回転電機の制御装置、およびその回転電機の制御装置を備えた電動パワーステアリング装置

Publications (1)

Publication Number Publication Date
WO2018092210A1 true WO2018092210A1 (ja) 2018-05-24

Family

ID=62145492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083948 WO2018092210A1 (ja) 2016-11-16 2016-11-16 回転電機の制御装置、およびその回転電機の制御装置を備えた電動パワーステアリング装置

Country Status (5)

Country Link
US (1) US11005405B2 (ja)
EP (1) EP3544174B1 (ja)
JP (1) JP6685427B2 (ja)
CN (1) CN109964401B (ja)
WO (1) WO2018092210A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022153453A1 (ja) * 2021-01-14 2022-07-21

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6756243B2 (ja) * 2016-11-11 2020-09-16 株式会社デンソー 回転電機制御装置、および、これを用いた電動パワーステアリング装置
EP3544174B1 (en) * 2016-11-16 2021-08-25 Mitsubishi Electric Corporation Rotating electric-machine-control apparatus and electric power steering apparatus equipped with said rotating-electric-machine control apparatus
EP3811481B1 (en) * 2018-12-21 2023-05-17 Siemens Gamesa Renewable Energy A/S Method for determination of a location of a short circuit fault in a generator arrangement, generator arrangement, wind turbine, computer program and electronically readable medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002199507A (ja) * 2000-12-27 2002-07-12 Aisin Aw Co Ltd 電動車両及びその制御方法
JP2006042575A (ja) * 2004-07-30 2006-02-09 Nissan Motor Co Ltd 車両用電動機制御装置
JP2006060906A (ja) * 2004-08-19 2006-03-02 Honda Motor Co Ltd モータ制御装置
JP2011078230A (ja) * 2009-09-30 2011-04-14 Denso Corp 多相回転機の制御装置、および、これを用いた電動パワーステアリング装置
JP5496257B2 (ja) 2012-06-11 2014-05-21 三菱電機株式会社 電動パワーステアリング制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040264075A1 (en) * 2003-06-30 2004-12-30 Valeo Electrical Systems, Inc. Steering assist system
JP4406453B2 (ja) * 2007-10-03 2010-01-27 トヨタ自動車株式会社 シフト切替装置
US8207698B2 (en) * 2009-02-24 2012-06-26 Ford Global Technologies, Llc Electric drive system for an automotive vehicle
US8310272B2 (en) * 2009-07-29 2012-11-13 GM Global Technology Operations LLC Method and system for testing electric automotive drive systems
CN105720865A (zh) 2014-12-04 2016-06-29 德昌电机(深圳)有限公司 直流无刷电机及其控制方法、以及电动助力转向系统
EP3544174B1 (en) * 2016-11-16 2021-08-25 Mitsubishi Electric Corporation Rotating electric-machine-control apparatus and electric power steering apparatus equipped with said rotating-electric-machine control apparatus
DE112017007550T5 (de) * 2017-05-17 2020-03-26 Mitsubishi Electric Corporation Multigruppen-Multiphasen-Elektro-Rotationsmaschinen-Betriebsvorrichtung
JP6844492B2 (ja) * 2017-10-10 2021-03-17 株式会社デンソー シフトレンジ制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002199507A (ja) * 2000-12-27 2002-07-12 Aisin Aw Co Ltd 電動車両及びその制御方法
JP2006042575A (ja) * 2004-07-30 2006-02-09 Nissan Motor Co Ltd 車両用電動機制御装置
JP2006060906A (ja) * 2004-08-19 2006-03-02 Honda Motor Co Ltd モータ制御装置
JP2011078230A (ja) * 2009-09-30 2011-04-14 Denso Corp 多相回転機の制御装置、および、これを用いた電動パワーステアリング装置
JP5496257B2 (ja) 2012-06-11 2014-05-21 三菱電機株式会社 電動パワーステアリング制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3544174A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022153453A1 (ja) * 2021-01-14 2022-07-21
WO2022153453A1 (ja) * 2021-01-14 2022-07-21 日産自動車株式会社 3相交流モータの診断方法及び診断装置
US11841385B2 (en) 2021-01-14 2023-12-12 Nissan Motor Co., Ltd. Diagnostic method and diagnostic device of three-phase alternating current motor

Also Published As

Publication number Publication date
EP3544174A1 (en) 2019-09-25
US20190267925A1 (en) 2019-08-29
US11005405B2 (en) 2021-05-11
EP3544174A4 (en) 2019-09-25
JP6685427B2 (ja) 2020-04-22
JPWO2018092210A1 (ja) 2019-06-24
EP3544174B1 (en) 2021-08-25
CN109964401B (zh) 2022-06-14
CN109964401A (zh) 2019-07-02

Similar Documents

Publication Publication Date Title
JP5590076B2 (ja) 多相回転機の制御装置
JP5760830B2 (ja) 3相回転機の制御装置
JP5826292B2 (ja) モータ制御装置および電動パワーステアリング装置
JP6287756B2 (ja) モータ制御装置
JP4998836B2 (ja) 多相回転機の制御装置、および、これを用いた電動パワーステアリング装置
JP5672278B2 (ja) 3相回転機の制御装置
US8853981B2 (en) Driving apparatus for multiplex-winding motor
JP6651782B2 (ja) 回転電機制御装置、および、これを用いた電動パワーステアリング装置
JP6194113B2 (ja) モータ駆動装置
JP6630539B2 (ja) 電力変換装置及び電動パワーステアリング装置
JP5554376B2 (ja) 交流回転機の制御装置、及びその制御装置を備えた電動パワーステアリング装置
WO2018092210A1 (ja) 回転電機の制御装置、およびその回転電機の制御装置を備えた電動パワーステアリング装置
JP6625225B2 (ja) 回転機の制御装置及び電動パワーステアリングの制御装置
JP2018074880A (ja) 回転電機システム
JP5971087B2 (ja) 回転機駆動システム
JP7092257B2 (ja) 回転電機制御システム
JP6381662B2 (ja) 電力変換装置およびその制御方法、電動パワーステアリングの制御装置
JP2019068642A (ja) 多相回転機の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921711

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018550915

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016921711

Country of ref document: EP

Effective date: 20190617