WO2018090957A1 - 基于离合器目标扭矩的重型卡车自动变速箱蠕行控制系统 - Google Patents

基于离合器目标扭矩的重型卡车自动变速箱蠕行控制系统 Download PDF

Info

Publication number
WO2018090957A1
WO2018090957A1 PCT/CN2017/111401 CN2017111401W WO2018090957A1 WO 2018090957 A1 WO2018090957 A1 WO 2018090957A1 CN 2017111401 W CN2017111401 W CN 2017111401W WO 2018090957 A1 WO2018090957 A1 WO 2018090957A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
state
creep control
vehicle
tcu
Prior art date
Application number
PCT/CN2017/111401
Other languages
English (en)
French (fr)
Inventor
滕昱棠
Original Assignee
威伯科汽车控制系统(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 威伯科汽车控制系统(中国)有限公司 filed Critical 威伯科汽车控制系统(中国)有限公司
Priority to EP17872404.3A priority Critical patent/EP3543080B1/en
Publication of WO2018090957A1 publication Critical patent/WO2018090957A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18063Creeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/184Preventing damage resulting from overload or excessive wear of the driveline
    • B60W30/186Preventing damage resulting from overload or excessive wear of the driveline excessive wear or burn out of friction elements, e.g. clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0008Feedback, closed loop systems or details of feedback error signal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/143Alarm means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/12Trucks; Load vehicles
    • B60W2300/125Heavy duty trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0208Clutch engagement state, e.g. engaged or disengaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0208Clutch engagement state, e.g. engaged or disengaged
    • B60W2510/0225Clutch actuator position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0241Clutch slip, i.e. difference between input and output speeds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0275Clutch torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0291Clutch temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1015Input shaft speed, e.g. turbine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/104Output speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/06Direction of travel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/027Clutch torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/11Application
    • F16D2500/1107Vehicles
    • F16D2500/1112Heavy vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/302Signal inputs from the actuator
    • F16D2500/3026Stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/306Signal inputs from the engine
    • F16D2500/3067Speed of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/308Signal inputs from the transmission
    • F16D2500/3082Signal inputs from the transmission from the output shaft
    • F16D2500/30825Speed of the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/31Signal inputs from the vehicle
    • F16D2500/3102Vehicle direction of travel, i.e. forward/reverse
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/314Signal inputs from the user
    • F16D2500/31406Signal inputs from the user input from pedals
    • F16D2500/31426Brake pedal position
    • F16D2500/31433Brake pedal position threshold, e.g. switch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/314Signal inputs from the user
    • F16D2500/31406Signal inputs from the user input from pedals
    • F16D2500/3144Accelerator pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/502Relating the clutch
    • F16D2500/50206Creep control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/508Relating driving conditions
    • F16D2500/5085Coasting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70402Actuator parameters
    • F16D2500/70408Torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70422Clutch parameters
    • F16D2500/70438From the output shaft
    • F16D2500/7044Output shaft torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/706Strategy of control
    • F16D2500/7061Feed-back
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • F16H2061/0232Selecting ratios for bringing engine into a particular state, e.g. for fast warming up or for reducing exhaust emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1208Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures with diagnostic check cycles; Monitoring of failures
    • F16H2061/1216Display or indication of detected failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1256Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
    • F16H2061/1276Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is a friction device, e.g. clutches or brakes
    • F16H2061/128Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is a friction device, e.g. clutches or brakes the main clutch
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect

Definitions

  • the invention belongs to the technical field of automobile transmission control, and particularly relates to a heavy truck automatic transmission (AMT) creep control system based on clutch target torque.
  • AMT heavy truck automatic transmission
  • the conventional engine-clutch control mode of the automatic transmission AMT is a relatively independent control of the clutch and the engine, and the coordinated control between the clutch position control and the engine torque cannot be achieved, and the torque of the clutch at different positions is not considered. Sensitivity, and the driver can not give enough time for reminder and overheating before the clutch overheat protection, so the above requirements cannot be met at the same time.
  • the present invention provides a heavy-duty truck automatic transmission creep control system based on clutch target torque, which aims to achieve different engine clutch control through different vehicle states.
  • a heavy-duty truck automatic transmission creep control system based on clutch target torque comprising an internal combustion engine controlled by an engine controller ECU having a closed-loop speed control function, a clutch assist cylinder controlled by a transmission controller TCU, and a shifting a tank actuator and a vehicle rotation system;
  • the engine controller ECU collects an accelerator pedal position signal AP, a brake switch signal BK, and a current engine speed ES
  • the transmission controller TCU collects a clutch position signal ACP, a transmission input shaft speed IS, gearbox output shaft speed OS and vehicle travel direction
  • ECU and TCU are connected by data communication bus, ECU sends measured valve pedal position signal AP, brake switch signal BK and TCU to TCU through data communication bus a current engine speed ES;
  • a target torque calculation module and a rate-of-change limit module are added to the transmission controller TCU;
  • a clutch synchronization check sub-module, a vehicle slip check sub-module, and a clutch overheat checker are added to the transmission controller T
  • the creep control mode and the creep control mode in the synchronous state, the switching between the various control modes is determined by the current vehicle state; the TCU obtains the engine target speed under different vehicle states by the creep control of the vehicle.
  • Clutch target position ICP regulates clutch transmission torque applied to the engine flywheel .
  • the clutch synchronization check sub-module checks the synchronization state Sync of the engine and the clutch in real time according to the current engine speed ES, the input shaft speed IS, the current clutch position signal ACP, and the clutch half-join point position KP; when the engine is synchronized with the clutch, the clutch is synchronously checked.
  • a clutch temperature estimation module for estimating a current clutch temperature is provided in the TCU, wherein the clutch temperature estimation module is provided with an alarm temperature threshold and a protection temperature threshold, and the clutch overheat check submodule compares the estimation obtained from the clutch temperature estimation module.
  • the thermal state of the clutch can be switched to the warning state when the estimated temperature drops below the warning temperature threshold; when the clutch is in the warning state, if the estimated temperature drops and the estimated temperature drops below 60 ° C,
  • An alarm module is further disposed in the TCU, and the alarm module is connected to the clutch overheat check submodule.
  • the alarm module includes a buzzer alarm.
  • the buzzer frequency of the buzzer alarm is matched with the clutch temperature, and the clutch temperature is higher. The higher the buzzer frequency; when the thermal state of the clutch is in the warning state, the TCU can still implement the creep control of the clutch under the creep control mode under the mixed throttle state, but the TCU will send a buzzer alarm to prompt the driver.
  • the clutch is about to overheat and from the warning temperature threshold to the protection temperature threshold, the higher the temperature, the higher the beep frequency.
  • the default TCU creep control of the vehicle enters the creep mode under the waiting state; when the TCU's creep control of the vehicle is in the creep mode under the waiting state, if the vehicle is inspected
  • the sub-module output signal Ovrn 1, that is, when the vehicle is in the rolling state, the TCU's creep control for the vehicle is preferentially switched from the creep control mode in the waiting state to the creep control mode in the forced combination state.
  • the TCU's creep control of the vehicle When in the normal state, the TCU's creep control of the vehicle is switched from the creep control mode in the waiting state to the creep control mode in the mixed throttle state.
  • the TCU's creep control of the vehicle is switched to the corresponding state, that is, if the ES-
  • the target position, ICP[n-1] is the clutch target position of the previous calculation step temporarily stored in the TCU
  • CP_stp is the position of the clutch engagement of each step in the forced combination state
  • the engine target speed TS is maintained at the entry.
  • the clutch target position ICP freezes the clutch position ICP[Sync0] when entering the synchronous state and remains unchanged, and the target speed TS of the engine is as follows Make adjustments:
  • the TCU records the engine target speed value TS[Sync0] and the throttle position AP[Sync0] when entering the synchronous state, and calculates the engine target speed in the synchronous state according to the following formula:
  • TS Max ((1600 - TS [Sync0]) / (100 - AP [Sync0]) ⁇ (AP - AP [Sync0]), 600) and the driver adjusts the engine speed through the throttle to vary from 600 rpm to 1600 rpm.
  • the engine target speed TS and the clutch target position ICP are dynamically adjusted as follows:
  • Step 1 the target torque calculation module calculates the driver target clutch torque ItdCltTrq according to the accelerator pedal position
  • Step 2 the engine speed controller calculates a corresponding engine target speed TS according to the driver target clutch torque ItdCltTrq;
  • Step 3 The rate-of-change limiting module calculates the allowable clutch torque change rate according to the difference between the engine target speed TS and the current engine speed ES calculated in step 2, that is, the allowable clutch torque change difference per unit step, and calculates the current The driver's target clutch torque is limited, and the resulting clutch target torque is ItdCltTrqLmt;
  • step 4 the TCU calculates the clutch target position ICP according to the limited clutch target torque ItdCltTrqLmt according to the clutch transmission twist line interpolation.
  • the heavy-duty truck automatic transmission creep control system based on the clutch target torque in the present invention can make the increase of the engine speed slightly ahead of the increase of the clutch transmission torque, and the two are always in a state of coordinated control, ensuring When the clutch load is small, the engine speed can be lower, which reduces the clutch slip amount. When the clutch load is large, the engine speed can be increased in advance to avoid the engine power shortage.
  • the control system of the present invention controls the clutch position according to the clutch transmission twist line, and considers the difference between the transmission torque change rates of the clutch and the position. It ensures that the driver can control the clutch torque and the vehicle speed in a stable linear manner.
  • Figure 1 shows the basic structure of a complete vehicle power train including an automatic transmission suitable for use in the present invention.
  • Figure 2 illustrates the overall control structure of the present invention, including the relationships between controllers, controllers, and controlled objects.
  • Fig. 3 shows a logical model of the state of the creep control state machine of the TCU to the vehicle in the present invention.
  • FIG. 4 is a flow chart showing the control of the clutch target position and the engine target speed when the TCU controls the creep control of the vehicle in the mixed throttle state.
  • Figure 5 illustrates a plot of the present invention for calculating a driver's target clutch torque based on the accelerator pedal position.
  • Figure 6 shows a plot of the present invention for calculating the clutch target position based on the filtered driver target clutch torque.
  • Fig. 7 is a block diagram showing the input and output of the clutch synchronization check sub-module of the present invention.
  • Fig. 8 is a block diagram showing the input and output of the vehicle rolling inspection sub-module of the present invention.
  • Figure 9 is a block diagram showing the input and output of the clutch overheat check sub-module of the present invention.
  • Fig. 10 is a diagram showing the entry and exit logic of the clutch normal state, the warning state, and the protection state in the present invention.
  • Figure 11 shows a logic block diagram of dynamically limiting the clutch engagement speed based on the difference between the engine target speed and the current engine speed.
  • FIG. 12 shows a graph of calculating an engine target speed based on a target clutch torque.
  • Figure 13 is a graph showing the state of change of the driver's target clutch torque before the throttle position exceeds the trigger position TriggerAP and reaches the inflection point SwitchAP.
  • Figure 14 is a graph showing the state of change of the driver's target clutch torque before the throttle position exceeds the inflection point SwitchAP and reaches the throttle position of 100%.
  • Fig. 15 is a graph showing a state of change of the engine target speed with the driver's target clutch torque.
  • FIG. 16 is a graph showing a change state between the engine target speed TS, the current engine speed ES, the clutch transmission torque change amount Step, the limited target clutch torque, and the driver target clutch torque ItdCltTrq.
  • Fig. 17 is a graph showing changes in clutch torque and engine speed in a throttle quick-release and fast-release operation.
  • Figure 18 is a graph showing changes in clutch torque and engine speed under throttle-stabilized creep conditions in accordance with the control method of the present invention.
  • the automatic transmission system of the vehicle to which the control system is applied shall have the powertrain structure as shown in Figure 1:
  • the engine controller ECU 2 having the speed closed loop control function controls the internal combustion engine 1, and the transmission assist cylinder 8, the transmission actuator 7, and the remaining vehicle rotation system 11 including the transmission shaft are controlled by the transmission controller TCU9.
  • the TCU controls the position of the dry friction clutch through the clutch boost cylinder 8 to control the torque transmitted by the engine to the transmission 7.
  • the control system adds an accelerator pedal sensor 12 to measure the accelerator pedal position signal AP at the accelerator pedal position, a rotational speed sensor 3 at the engine flywheel 5 to measure the current engine speed ES, and a brake pedal switch 14 at the brake pedal to measure the brake switch.
  • Signal BK the clutch position sensor 10 is added at the clutch position to measure the current clutch position signal ACP
  • the input shaft speed sensor 6 is added to the transmission input shaft to measure the input shaft speed IS
  • the output shaft speed sensor 13 is added to the output shaft of the transmission.
  • the ECU and the TCU are connected by a data communication bus, and the ECU transmits the measured accelerator pedal position signal AP, the brake switch signal BK, and the current engine speed ES to the TCU through the data communication bus.
  • the TCU transmits an engine target speed TS to the ECU via a data communication bus.
  • the data communication bus can be any network protocol bus that conforms to the standard definition, such as J1922, J1939 or ISO11898.
  • the TCU transmits an engine target speed TS to the ECU through a data communication bus, and the ECU controls the fuel injection amount according to the received engine target speed TS and the current engine speed ES to achieve closed-loop control of the engine speed.
  • the TCU regulates the torque transmitted to the clutch on the engine flywheel by the clutch target position ICP.
  • the engine target speed TS and the clutch target position ICP are obtained by creep control of the vehicle by the TCU described below.
  • the control system adds a target torque calculation module and a change rate limit module in the TCU; the control system adds a clutch synchronization check submodule for real-time detection of the vehicle state, a vehicle slip check submodule, and a clutch overheat checker in the TCU. Module.
  • the TCU realizes the creep control of the vehicle according to the output signals of each sub-module.
  • the TCU's creep control for the vehicle includes the creep control mode in the waiting state, the creep control mode in the mixed throttle state, and the creep in the forced combination state.
  • the line control mode and the creep control mode in the synchronous state, the switching between the various control modes is determined by the current vehicle state; the TCU obtains the engine target speed TS and the engine state under different vehicle states by the creep control of the vehicle. Clutch target position ICP.
  • a clutch temperature estimation module for estimating a current clutch temperature is disposed in the TCU.
  • An alarm module is further disposed in the TCU, and the alarm module is connected to the clutch overheat check submodule.
  • the alarm module includes a buzzer alarm.
  • the buzzer frequency of the buzzer alarm is matched with the clutch temperature, and the clutch temperature is higher. The higher the buzzer frequency; when the thermal state of the clutch is in the warning state, the TCU can still implement the creep control of the clutch under the creep control mode under the mixed throttle state, but the TCU will send a buzzer alarm to prompt the driver.
  • the clutch is about to overheat and from the warning temperature threshold to the protection temperature threshold, the higher the temperature, the higher the beep frequency.
  • the TCU's creep control of the car will enter different states, and in different states, the TCU uses different control methods to control the engine target speed TS and the clutch target position ICP.
  • the switching logic between the states in the TCU's creep control mode for the vehicle is:
  • the default TCU creep control of the vehicle enters the creep mode under the waiting state; when the TCU's creep control of the vehicle is in the creep mode under the waiting state, if the vehicle is inspected
  • the sub-module output signal Ovrn 1, that is, when the vehicle is in the rolling state, the TCU's creep control for the vehicle is preferentially switched from the creep control mode in the waiting state to the creep control mode in the forced combination state.
  • the state is in a normal state, the TCU's creep control of the vehicle is switched from the creep control mode in the waiting state to the creep control mode in the mixed throttle state.
  • control system of the clutch target position ICP and the engine target speed TS is:
  • the engine target speed TS is maintained at the engine target speed setting before entering the forced engagement state.
  • the clutch target position ICP freezes the clutch position ICP[Sync0] when entering the synchronous state and remains unchanged, and the target speed TS of the engine is as follows Make adjustments:
  • the TCU records the engine target speed value TS[Sync0] and the throttle position AP[Sync0] when entering the synchronous state, and calculates the engine target speed in the synchronous state according to the following formula:
  • TS Max ((1600 - TS [Sync0]) / (100 - AP [Sync0]) ⁇ (AP - AP [Sync0]), 600) and the driver adjusts the engine speed through the throttle to vary from 600 rpm to 1600 rpm.
  • the engine target speed TS and the clutch target position ICP are dynamically adjusted as follows:
  • the target torque calculation module calculates the driver's target clutch according to the accelerator pedal position according to the curve shown in FIG.
  • the torque Tord IttCltTrq Figure 5 shows a curve of the driver's target clutch torque calculated from the accelerator pedal position, which is determined by experimental calibration to achieve different system sensitivity responses at different throttle opening.
  • the driver depresses the throttle position beyond the trigger position TriggerAP 5% throttle stroke
  • the driver's target clutch torque increases slowly with the throttle stroke.
  • Figure 13 shows that before the throttle position exceeds the trigger position TriggerAP and reaches the inflection point SwitchAP (the throttle stroke is 65%), the driver target clutch torque ItdCltTrq is calculated according to the curve shown in Fig.
  • the driver target clutch torque ItdCltTrq is at 0% - A proportional change in the 35% engine rated torque range.
  • the driver's target clutch torque increases rapidly with the throttle stroke.
  • Figure 14 shows that the driver's target clutch torque ItdCltTrq is calculated according to the curve of Figure 5 when the throttle position exceeds the inflection point SwitchAP (the throttle stroke is 65%) and reaches the throttle position of 100%.
  • the driver's target clutch torque ItdCltTrq is between 35% and 50%.
  • the ratio of the engine's rated torque range varies. When the throttle position reaches 100%, the driver's target clutch torque reaches the corresponding available torque at the engine transient optimum speed.
  • the engine transient optimum speed and its corresponding available torque are calibrated according to the engine test.
  • the heavy-duty supercharged diesel engine is affected by the combination of external characteristics and smoke limit.
  • the maximum torque that the engine can reach at different speeds is different.
  • the instantaneous maximum available torque will be limited by external characteristics; at higher speeds, the instantaneous maximum available torque will be limited by smoke control.
  • the instantaneous available torque can reach a maximum. Therefore, in a creeping condition requiring a quick response of the engine, the maximum value of the target clutch torque curve will be set to the corresponding available torque at the transient optimal speed.
  • Step 2 the engine speed controller calculates a corresponding engine target speed TS from the driver target clutch torque ItdCltTrq by a curve as shown in FIG. 12 which is previously calibrated;
  • FIG. 12 shows a curve of calculating the engine target speed based on the target clutch torque, The curve is calibrated based on the performance test of the engine speed controller.
  • the curve basically corresponds to the required rotational speed difference of the torque required by the engine speed controller output under the proportional control link. As shown in FIG. 12 and FIG.
  • the engine target speed is maintained at the idle speed; as the target clutch torque increases, the engine target speed gradually increases until the clutch target torque reaches the saturation torque SaturateTrq At the time, the engine target speed reaches the saturation speed SaturateSpd. Specifically, for every 10% increase in the driver's target clutch torque, the engine target speed TS is increased by 100 rpm.
  • the starting torque StartTrq, the saturation torque SaturateTrq, and the saturation speed SatuateSpd are all determined by calibration according to the engine speed controller performance.
  • Step 3 The rate-of-change limiting module calculates the allowable clutch torque change rate according to the difference between the engine target speed TS and the current engine speed ES calculated in step 2, that is, the allowable clutch torque change difference per unit step, and calculates the current The driver's target clutch torque is limited.
  • the clutch target torque obtained after the limitation is ItdCltTrqLmt; in FIG. 11, TS[n] is the engine target speed of the current calculation step, and ES[n] is the current calculation step.
  • FIG. 16 is a graph showing a change state between the engine target speed TS, the current engine speed ES, the clutch transmission torque change amount Step, the limited target clutch torque, and the driver target clutch torque ItdCltTrq.
  • the rate-of-change limiting module calculates the allowable clutch transmission torque change amount Step according to the difference between the TS and the ES, and the limited clutch target torque cannot be changed under each calculation step.
  • the allowable torque change amount Step is exceeded when the corresponding calculation point is exceeded.
  • Step 4 the transmission controller TCU calculates the clutch target position ICP according to the limited clutch target torque ItdCltTrqLmt according to the clutch transmission distortion line interpolation as shown in FIG. 6; the TCU directly controls the intake pressure of the clutch assist cylinder to achieve the clutch target position. control.
  • Figure 6 shows a curve for calculating the clutch target position based on the filtered driver target clutch torque, which represents the change in the maximum transmittable torque of the clutch at different strokes, and the curve is passed during normal start and travel of the vehicle.
  • the automatic transmission AMT software algorithm is self-identifying.
  • the clutch does not transmit torque; from the clutch half-join point KP position, the clutch maximum transmittable torque gradually increases, and the deeper the clutch is engaged, the maximum transmittable torque of the clutch changes with position. The greater the rate.
  • Fig. 17 is a graph showing changes in clutch torque and engine speed in a throttle quick-release and fast-release operation.
  • Figure 18 is a graph showing changes in clutch torque and engine speed under throttle-stabilized creep conditions in accordance with the control method of the present invention. From the comparison of Figs. 17 and 18, it can be found that the clutch transmission twist line control clutch position according to the present invention can ensure the driver's stable linear control of the clutch torque and the vehicle speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

一种基于离合器目标扭矩的重型卡车自动变速箱蠕行控制系统,其包括在TCU(9)内增设的离合器同步检查子模块、车辆溜车检查子模块、离合器过热检查子模块,TCU(9)根据各子模块的输出信号,实现对车辆的蠕行控制,TCU(9)对车辆的蠕行控制包括等待状态下的蠕行控制方式、混合油门状态下的蠕行控制方式、强制结合状态下的蠕行控制方式及同步状态下的蠕行控制方式,各种不同控制方式间的切换,由当前车辆状态决定;TCU(9)通过对车辆的蠕行控制,得到不同车辆状态下的发动机目标转速TS和离合器目标位置ICP。其中控制方法可满足各种车辆工况下的蠕行控制需求,在尽量保护离合器的同时,给予司机最大程度的车辆蠕行可控性。

Description

基于离合器目标扭矩的重型卡车自动变速箱蠕行控制系统 技术领域
本发明属于汽车变速器控制技术领域,尤其涉及一种基于离合器目标扭矩的重型卡车自动变速箱(AMT)蠕行控制系统。
背景技术
对于重型卡车而言,经常会碰到需要低速蠕行的工况(车速<5km/h),例如对接平台/挂车,移车入库等工况。这些工况条件下,发动机扭矩和离合器位置控制需要良好地协调匹配,以满足下述目标:
(1)稳定直接地离合器半结合控制,以达到灵敏可控的车辆速度控制性能
(2)能够与离合器负载配合的发动机扭矩控制以满足车辆大负载下的动力需求
(3)能够应对各种路况,并保证车辆的安全性
(4)能够允许司机有一定的车速控制范围(例如0-10km/h)
(5)能够尽量减少离合器不必要的滑磨,且在离合器过热时,及时进行相应的保护,并在进行保护动作前应给予司机足够的提示和应对时间;
现有技术中,自动变速箱AMT常规的发动机-离合器控制模式都是相对独立的控制离合器和发动机,离合器位置控制和发动机扭矩之间无法实现协调控制,也没有考虑到离合器在不同位置下的扭矩灵敏度,且在离合器过热保护前也无法给予司机足够的提示时间和过热程度信息,因此无法同时满足以上要求。
由此可见,现有技术有待于进一步的改进和提高。
发明内容
本发明为避免上述现有技术存在的不足之处,提供了一种基于离合器目标扭矩的重型卡车自动变速箱蠕行控制系统,旨在通过不同的车辆状态实现不同的发动机离合器控制。
本发明所采用的技术方案为:
一种基于离合器目标扭矩的重型卡车自动变速箱蠕行控制系统,所述控制系统包括具备转速闭环控制功能的发动机控制器ECU控制的内燃发动机、由变速箱控制器TCU控制的离合器助力缸、变速箱执行机构和车辆转动系统;所述发动机控制器ECU采集油门踏板位置信号AP、制动开关信号BK和当前发动机转速ES,所述变速箱控制器TCU收集离合器位置信号ACP、变速箱输入轴转速IS、变速箱输出轴转速OS和车辆行驶方向;ECU和TCU通过数据通信总线连接,ECU通过数据通信总线向TCU发送测量到的油门踏板位置信号AP、制动开关信号BK和 当前发动机转速ES;所述变速箱控制器TCU内增设目标扭矩计算模块和变化率限制模块;所述变速箱控制器TCU内增设离合器同步检查子模块、车辆溜车检查子模块、离合器过热检查子模块,TCU根据各子模块的输出信号,实现对车辆的蠕行控制;TCU对车辆的蠕行控制包括等待状态下的蠕行控制方式、混合油门状态下的蠕行控制方式、强制结合状态下的蠕行控制方式及同步状态下的蠕行控制方式,所述各种不同控制方式间的切换,由当前车辆状态决定;TCU通过对车辆的蠕行控制,得到不同车辆状态下的发动机目标转速TS和离合器目标位置ICP;TCU通过数据通信总线向ECU发送发动机目标转速TS,ECU根据接收到的发动机目标转速TS和当前发动机转速ES,控制喷油量以实现对发动机转速的闭环控制;TCU通过离合器目标位置ICP调节施加到发动机飞轮上的离合器传递扭矩。
所述离合器同步检查子模块根据当前发动机转速ES、输入轴转速IS、当前离合器位置信号ACP及离合器半结合点位置KP实时检查发动机与离合器的同步状态Sync;当发动机与离合器同步时,离合器同步检查子模块输出信号Sync=1;当发动机与离合器失去同步时,离合器同步检查子模块输出信号Sync=0。
所述车辆溜车检查子模块根据当前发动机转速ES、输入轴转速IS、当前档位及车辆行驶方向实时检查车辆是否处于溜车状态Ovrn;车辆溜车时,车辆溜车检查子模块输出信号Ovrn=1;车辆未溜车时,车辆溜车检查子模块输出信号Ovrn=0。
所述TCU中设置有用于估算当前离合器温度的离合器温度估算模块,该离合器温度估算模块中设置有警示温度阈值和保护温度阈值,所述离合器过热检查子模块通过对比从离合器温度估算模块得到的估算温度、警示温度阈值和保护温度阈值判断离合器的热状态OH;当估算温度超过设定的警示温度阈值时,离合器从正常状态切换到警示状态,此时离合器过热检查子模块输出信号OH=1;当离合器处于警示状态时,如果估算温度继续上升超过保护温度阈值,离合器的热状态从警示状态切换到保护状态,此时离合器过热检查子模块输出信号OH=2;当离合器处于保护状态时,如果估算温度下降,则当估算温度下降到警示温度阈值以下时,离合器的热状态才能切换至警示状态;当离合器处于警示状态,如果估算温度下降且估算温度下降至60℃以下时,离合器的热状态才能切换到正常状态,此时离合器过热检查子模块输出信号OH=0。
所述TCU中还设置有警报模块,警报模块与上述离合器过热检查子模块相连,警报模块包括蜂鸣警报器,该蜂鸣警报器的蜂鸣频率设置与离合器温度相配合,离合器温度越高,蜂鸣频率越高;当离合器的热状态处于警示状态时,在混合油门状态下的蠕行控制方式下,TCU仍能实现对离合器的蠕行控制,但TCU会发送蜂鸣警报,提示驾驶员离合器即将过热,且从警示温度阈值到保护温度阈值,温度越高,蜂鸣频率越高。
当车辆进入蠕行模式后,默认TCU对车辆的蠕行控制进入等待状态下的蠕行控制方式;当TCU对车辆的蠕行控制处于等待状态下的蠕行控制方式时,若车辆溜车检查子模块输出信号Ovrn=1,即车辆处于溜车状态时,则TCU对车辆的蠕行控制从等待状态下的蠕行控制方式优先切换至强制结合状态下的蠕行控制方式。
当TCU对车辆的蠕行控制处于等待状态下的蠕行控制方式时,当驾驶员踩下油门的位置超过油门的触发位置,且离合器过热检查子模块输出信号OH=0,即离合器的热状态处于正常状态时,TCU对车辆的蠕行控制从等待状态下的蠕行控制方式切换至混合油门状态下的蠕行控制方式。
当TCU对车辆的蠕行控制处于混合油门状态下的蠕行控制方式时,若车辆溜车检查子模块输出信号Ovrn=1,即车辆处于溜车状态时,则TCU对车辆的蠕行控制从混合油门状态下的蠕行控制方式优先切换至强制结合状态下的蠕行控制方式。
当TCU对车辆的蠕行控制处于混合油门状态下的蠕行控制方式时,若离合器过热检查子模块输出信号OH=2,即离合器的热状态处于保护状态时,根据当前发动机转速ES和输入轴转速IS两者的转速差的情况,TCU对车辆的蠕行控制切换到相应状态,即若ES-IS<200rpm,则TCU对车辆的蠕行控制从混合油门状态下的蠕行控制方式切换到强制结合状态下的蠕行控制方式,若ES-IS>200rpm,则TCU对车辆的蠕行控制从混合油门状态下的蠕行控制方式切换到等待状态下的蠕行控制方式。
当TCU对车辆的蠕行控制处于混合油门状态下的蠕行控制方式时,若离合器同步检查子模块输出信号Sync=1,即发动机与离合器同步时,则TCU对车辆的蠕行控制从混合油门状态下的蠕行控制方式切换到同步状态下的蠕行控制方式。
当TCU对车辆的蠕行控制处于强制结合状态下的蠕行控制方式时,若离合器同步检查子模块输出信号Sync=1,则TCU对车辆的蠕行控制从强制结合状态下的蠕行控制方式切换至同步状态下的蠕行控制方式。
当TCU对车辆的蠕行控制处于同步状态下的蠕行控制方式时,若离合器同步检查子模块输出信号Sync=0,即发动机与离合器失去同步,或者驾驶员踩下制动踏板,则TCU对车辆的蠕行控制从同步状态下的蠕行控制方式切换至混合油门状态下的蠕行控制方式。
当TCU对车辆的蠕行控制在等待状态下的蠕行控制方式时,离合器目标位置ICP恒定设置在离合器半结合点位置,即ICP=KP,发动机目标转速TS恒定设置在怠速转速,即TS=发动机怠速转速。
当TCU对车辆的蠕行控制在强制结合状态下的蠕行控制方式时,离合器目标位置ICP按固定速度强制结合,即ICP[n]=ICP[n-1]-CP_stp,其中,ICP[n]为当前计算步的离合器目 标位置,ICP[n-1]为TCU中暂存的上一计算步的离合器目标位置,CP_stp为标定好的强制结合状态下,每个步长离合器接合的位置;发动机目标转速TS维持在进入强制结合状态前的发动机目标转速设置。
当TCU对车辆的蠕行控制在同步状态下的蠕行控制方式时,离合器目标位置ICP冻结在进入同步状态下时的离合器位置ICP[Sync0]并维持不变,发动机的目标转速TS按如下方式进行调节:
TCU记录下进入同步状态时发动机目标转速值TS[Sync0]及油门位置AP[Sync0],并按如下公式计算同步状态下的发动机目标转速:
TS=Max((1600-TS[Sync0])/(100-AP[Sync0])×(AP-AP[Sync0]),600)且驾驶员通过油门调节发动机转速在600rpm-1600rpm的范围内变化。
当TCU对车辆的蠕行控制在混合油门状态下的蠕行控制方式时,按照如下步骤动态调节发动机目标转速TS和离合器目标位置ICP:
步骤1,目标扭矩计算模块根据油门踏板位置计算驾驶员目标离合器扭矩ItdCltTrq;
步骤2,发动机转速控制器根据驾驶员目标离合器扭矩ItdCltTrq计算对应的发动机目标转速TS;
步骤3,变化率限制模块根据步骤2中计算所得的发动机目标转速TS和当前发动机转速ES之差计算允许的离合器扭矩变化率,即单位步长下允许的离合器扭矩变化差值,并对当前计算出的驾驶员目标离合器扭矩进行限制,限制后得到的离合器目标扭矩为ItdCltTrqLmt;
步骤4,TCU根据限制后的离合器目标扭矩ItdCltTrqLmt按离合器传扭曲线插值计算离合器目标位置ICP。
由于采用了上述技术方案,本发明所取得的有益效果为:
1、通过本发明中的基于离合器目标扭矩的重型卡车自动变速箱蠕行控制系统,可以使发动机转速的增加始终略微提前于离合器传递扭矩的增加,两者始终处于相互协调控制的状态,确保了离合器负载小时,发动机转速可以较低,降低了离合器滑磨量,而离合器负载大时,发动机转速可以提前增加,避免了发动机动力不足。
2、当TCU对车辆的蠕行控制处于混合油门状态下的蠕行控制方式时,本发明中的控制系统根据离合器传扭曲线控制离合器位置,考虑了离合器各传递扭矩变化率随位置的差异,保证了驾驶员能稳定线性的控制离合器扭矩和车速。
附图说明
图1示出了适用于本发明的包括自动变速箱的整车动力链基本结构。
图2示出了本发明的总体控制结构,包括各控制器之间、控制器与被控对象之间的关系。
图3示出了本发明中TCU对车辆的蠕行控制状态机逻辑模型。
图4示出了TCU对车辆的蠕行控制处于混合油门状态下的控制方式时,离合器目标位置和发动机目标转速的控制流程图。
图5示出了本发明根据油门踏板位置计算驾驶员目标离合器扭矩的曲线。
图6示出了本发明根据过滤后的驾驶员目标离合器扭矩计算离合器目标位置的曲线。
图7示出了本发明中离合器同步检查子模块的输入输出框图。
图8示出了本发明中车辆溜车检查子模块的输入输出框图。
图9示出了本发明中离合器过热检查子模块的输入输出框图。
图10示出了本发明中离合器正常状态、警示状态、保护状态的进入推出逻辑图。
图11示出了根据发动机目标转速和当前发动机转速之差对离合器结合速度进行动态限制的逻辑框图。
图12示出了根据目标离合器扭矩计算发动机目标转速的曲线。
图13示出了当油门位置超过触发位置TriggerAP并达到拐点位置SwitchAP前,驾驶员目标离合器扭矩的变化状态曲线图。
图14示出了当油门位置超过拐点位置SwitchAP并达到油门位置100%前,驾驶员目标离合器扭矩的变化状态曲线图。
图15示出了发动机目标转速随驾驶员目标离合器扭矩的变化状态曲线图。
图16示出了发动机目标转速TS、当前发动机转速ES、离合器传递扭矩变化量Step、被限制后的目标离合器扭矩以及驾驶员目标离合器扭矩ItdCltTrq之间的变化状态曲线图。
图17示出了一种油门快踩快放工况下的离合器扭矩和发动机转速的变化状态曲线图。
图18示出了根据本发明所述的控制方法实现油门稳定蠕行工况下的离合器扭矩和发动机转速的变化状态曲线图。
其中,
1、内燃发动机 2、发动机控制器ECU 3、转速传感器 5、飞轮 6、输入轴转速传感器 7、变速箱执行机构 8、离合器助力缸 9、变速箱控制器TCU 10、离合器位置传感器 11、车辆转动系统 12、油门踏板传感器 13、输出轴转速传感器 14、制动踏板开关
具体实施方式
下面结合附图和具体的实施例对本发明作进一步的详细说明,但本发明并不限于这些实施例。
一种基于离合器目标扭矩的重型卡车自动变速箱蠕行控制系统,
适用该控制系统的车辆自动变速箱系统应具备如图1所示的动力总成结构:
即具备转速闭环控制功能的发动机控制器ECU2控制内燃发动机1,由变速箱控制器TCU9控制离合器助力缸8、变速箱执行机构7和包括传动轴在内的其余车辆转动系统11。TCU通过离合器助力缸8控制干式摩擦离合器的位置,以控制发动机传递给变速箱7的扭矩。
该控制系统在油门踏板位置处增设油门踏板传感器12测量油门踏板位置信号AP、在发动机飞轮5处增设转速传感器3测量当前发动机转速ES、在制动踏板处增设制动踏板开关14测量制动开关信号BK、在离合器位置处增设离合器位置传感器10测量当前离合器位置信号ACP、在变速箱输入轴上增设输入轴转速传感器6测量输入轴转速IS、在变速箱输出轴上增设输出轴转速传感器13测量输出轴转速OS和车辆行驶方向。ECU和TCU通过数据通信总线连接,ECU通过数据通信总线向TCU发送测量到的油门踏板位置信号AP、制动开关信号BK和当前发动机转速ES。TCU通过数据通信总线向ECU发送发动机目标转速TS。所述数据通信总线可以是任何一种符合标准定义的网络协议总线,如J1922、J1939或者ISO11898等。
如图2所示,TCU通过数据通信总线向ECU发送发动机目标转速TS,ECU根据接收到的发动机目标转速TS和当前发动机转速ES,控制喷油量以实现对发动机转速的闭环控制。TCU通过离合器目标位置ICP调节施加到发动机飞轮上的离合器传递扭矩。
发动机目标转速TS、离合器目标位置ICP通过下述的TCU对车辆的蠕行控制获得。
所述控制系统在TCU内增设目标扭矩计算模块和变化率限制模块;所述控制系统在TCU内增设有用于实时检测车辆状态的离合器同步检查子模块、车辆溜车检查子模块及离合器过热检查子模块。TCU根据各子模块的输出信号,实现对车辆的蠕行控制,TCU对车辆的蠕行控制包括等待状态下的蠕行控制方式、混合油门状态下的蠕行控制方式、强制结合状态下的蠕行控制方式及同步状态下的蠕行控制方式,所述各种不同控制方式间的切换,由当前车辆状态决定;TCU通过对车辆的蠕行控制,得到不同车辆状态下的发动机目标转速TS和离合器目标位置ICP。
如图7所示,所述离合器同步检查子模块根据当前发动机转速ES、输入轴转速IS、当前离合器位置信号ACP及离合器半结合点位置KP实时检查发动机与离合器的同步状态Sync;当发动机与离合器同步时,离合器同步检查子模块输出信号Sync=1;当发动机与离合器失去同步时,离合器同步检查子模块输出信号Sync=0。
如图8所示,所述车辆溜车检查子模块根据当前发动机转速ES、输入轴转速IS、当前档位及车辆行驶方向实时检查车辆是否处于溜车状态Ovrn;车辆溜车时,车辆溜车检查子模块输出信号Ovrn=1;车辆未溜车时,车辆溜车检查子模块输出信号Ovrn=0。
如图9和图10所示,所述TCU中设置有用于估算当前离合器温度的离合器温度估算模块, 该离合器温度估算模块中设置有警示温度阈值和保护温度阈值,所述离合器过热检查子模块通过对比从离合器温度估算模块得到的估算温度、警示温度阈值和保护温度阈值判断离合器的热状态OH;当估算温度超过设定的警示温度阈值时,离合器从正常状态切换到警示状态,此时离合器过热检查子模块输出信号OH=1;当离合器处于警示状态时,如果估算温度继续上升超过保护温度阈值,离合器的热状态从警示状态切换到保护状态,此时离合器过热检查子模块输出信号OH=2;当离合器处于保护状态时,如果估算温度下降,则当估算温度下降到警示温度阈值以下时,离合器的热状态才能切换至警示状态;当离合器处于警示状态,如果估算温度下降且估算温度下降至60℃以下时,离合器的热状态才能切换到正常状态,此时离合器过热检查子模块输出信号OH=0。
所述TCU中还设置有警报模块,警报模块与上述离合器过热检查子模块相连,警报模块包括蜂鸣警报器,该蜂鸣警报器的蜂鸣频率设置与离合器温度相配合,离合器温度越高,蜂鸣频率越高;当离合器的热状态处于警示状态时,在混合油门状态下的蠕行控制方式下,TCU仍能实现对离合器的蠕行控制,但TCU会发送蜂鸣警报,提示驾驶员离合器即将过热,且从警示温度阈值到保护温度阈值,温度越高,蜂鸣频率越高。
根据当前车辆的状态,TCU对汽车的蠕行控制将进入不同的状态,而在不同的状态下,TCU使用不同的控制方式控制发动机目标转速TS和离合器目标位置ICP。
如图3所示,TCU对车辆的蠕行控制模式中各状态之间的切换逻辑为:
当车辆进入蠕行模式后,默认TCU对车辆的蠕行控制进入等待状态下的蠕行控制方式;当TCU对车辆的蠕行控制处于等待状态下的蠕行控制方式时,若车辆溜车检查子模块输出信号Ovrn=1,即车辆处于溜车状态时,则TCU对车辆的蠕行控制从等待状态下的蠕行控制方式优先切换至强制结合状态下的蠕行控制方式。
当TCU对车辆的蠕行控制处于等待状态下的蠕行控制方式时,当驾驶员踩下油门的位置超过油门的触发位置TriggerAP,且离合器过热检查子模块输出信号OH=0,即离合器的热状态处于正常状态时,TCU对车辆的蠕行控制从等待状态下的蠕行控制方式切换至混合油门状态下的蠕行控制方式。
当TCU对车辆的蠕行控制处于混合油门状态下的蠕行控制方式时,若车辆溜车检查子模块输出信号Ovrn=1,即车辆处于溜车状态时,则TCU对车辆的蠕行控制从混合油门状态下的蠕行控制方式优先切换至强制结合状态下的蠕行控制方式。
当TCU对车辆的蠕行控制处于混合油门状态下的蠕行控制方式时,若离合器过热检查子模块输出信号OH=2,即离合器的热状态处于保护状态时,根据当前发动机转速ES和输入轴转速IS两者的转速差的情况,TCU对车辆的蠕行控制切换到相应状态,即若ES-IS<200rpm, 则TCU对车辆的蠕行控制从混合油门状态下的蠕行控制方式切换到强制结合状态下的蠕行控制方式,若ES-IS>200rpm,则TCU对车辆的蠕行控制从混合油门状态下的蠕行控制方式切换到等待状态下的蠕行控制方式。
当TCU对车辆的蠕行控制处于混合油门状态下的蠕行控制方式时,若离合器同步检查子模块输出信号Sync=1,即发动机与离合器同步时,则TCU对车辆的蠕行控制从混合油门状态下的蠕行控制方式切换到同步状态下的蠕行控制方式。
当TCU对车辆的蠕行控制处于强制结合状态下的蠕行控制方式时,若离合器同步检查子模块输出信号Sync=1,则TCU对车辆的蠕行控制从强制结合状态下的蠕行控制方式切换至同步状态下的蠕行控制方式。
当TCU对车辆的蠕行控制处于同步状态下的蠕行控制方式时,若离合器同步检查子模块输出信号Sync=0,即发动机与离合器失去同步,或者驾驶员踩下制动踏板BK=1,则TCU对车辆的蠕行控制从同步状态下的蠕行控制方式切换至混合油门状态下的蠕行控制方式。
不同状态下,离合器目标位置ICP和发动机目标转速TS的控制系统为:
当TCU对车辆的蠕行控制在等待状态下的蠕行控制方式时,离合器目标位置ICP恒定设置在离合器半结合点位置,即ICP=KP,发动机目标转速TS恒定设置在怠速转速,即TS=发动机怠速转速。
当TCU对车辆的蠕行控制在强制结合状态下的蠕行控制方式时,离合器目标位置ICP按固定速度强制结合,即ICP[n]=ICP[n-1]-CP_stp,其中,ICP[n]为当前计算步的离合器目标位置,ICP[n-1]为TCU中暂存的上一计算步的离合器目标位置,CP_stp为标定好的强制结合状态下,每个步长离合器接合的位置;发动机目标转速TS维持在进入强制结合状态前的发动机目标转速设置。
当TCU对车辆的蠕行控制在同步状态下的蠕行控制方式时,离合器目标位置ICP冻结在进入同步状态下时的离合器位置ICP[Sync0]并维持不变,发动机的目标转速TS按如下方式进行调节:
TCU记录下进入同步状态时发动机目标转速值TS[Sync0]及油门位置AP[Sync0],并按如下公式计算同步状态下的发动机目标转速:
TS=Max((1600-TS[Sync0])/(100-AP[Sync0])×(AP-AP[Sync0]),600)且驾驶员通过油门调节发动机转速在600rpm-1600rpm的范围内变化。
如图4所示,当TCU对车辆的蠕行控制在混合油门状态下的蠕行控制方式时,按照如下步骤动态调节发动机目标转速TS和离合器目标位置ICP:
步骤1,目标扭矩计算模块按照图5所示的曲线根据油门踏板位置计算驾驶员目标离合 器扭矩ItdCltTrq;图5示出了根据油门踏板位置计算驾驶员目标离合器扭矩的曲线,该曲线通过实验标定确定,以实现不同的油门开度下,不同的系统敏感度响应。当驾驶员踩下油门位置超过触发位置TriggerAP(油门行程5%)时,驾驶员目标离合器扭矩随油门行程缓慢增加。图13示出了当油门位置超过触发位置TriggerAP并达到拐点位置SwitchAP(油门行程65%)前,驾驶员目标离合器扭矩ItdCltTrq根据图5所示的曲线计算,驾驶员目标离合器扭矩ItdCltTrq在0%-35%的发动机额定扭矩范围内比例变化。当油门位置达到拐点位置SwitchAP时,驾驶员目标离合器扭矩随油门行程迅速增加。图14示出了当油门位置超过拐点位置SwitchAP(油门行程65%)并达到油门位置100%前,驾驶员目标离合器扭矩ItdCltTrq根据图5曲线计算,驾驶员目标离合器扭矩ItdCltTrq在35%-50%的发动机额定扭矩范围内比例变化。当油门位置达到100%时,驾驶员目标离合器扭矩达到发动机瞬态最优转速下对应的可用扭矩。发动机瞬态最优转速及其对应的可用扭矩为根据发动机实验标定得到。重型增压柴油发动机受到外特性限制和烟度限制的共同影响,发动机在不同转速下瞬间能够达到的最大扭矩是不同的。转速较低时,瞬时最大可用扭矩将受到外特性的限制;转速较高时,瞬时最大可用扭矩将受到烟度控制的限制。在瞬态最优转速下,则瞬时可用扭矩可达到最大值。因此在需要发动机迅速响应的蠕行工况下,目标离合器扭矩曲线的最大值将设置为瞬态最优转速下对应的可用扭矩。
步骤2,发动机转速控制器由事先标定好的如图12所示的曲线根据驾驶员目标离合器扭矩ItdCltTrq计算对应的发动机目标转速TS;图12示出了根据目标离合器扭矩计算发动机目标转速的曲线,该曲线根据发动机转速控制器的性能实验进行标定得到。该曲线基本对应了发动机转速控制器输出需要的扭矩在比例控制环节下所需要的转速差。如图12和图15所示,当目标离合器扭矩小于起始扭矩StartTrq时,发动机目标转速维持在怠速转速;随着目标离合器扭矩的增加,发动机目标转速逐渐增加,直至离合器目标扭矩达到饱和扭矩SaturateTrq时,发动机目标转速达到饱和转速SaturateSpd。具体地说,驾驶员目标离合器扭矩每增加10%,发动机目标转速TS增加100rpm。其中,起始扭矩StartTrq、饱和扭矩SaturateTrq、饱和转速SaturateSpd均为根据发动机转速控制器性能通过标定确定。
步骤3,变化率限制模块根据步骤2中计算所得的发动机目标转速TS和当前发动机转速ES之差计算允许的离合器扭矩变化率,即单位步长下允许的离合器扭矩变化差值,并对当前计算出的驾驶员目标离合器扭矩进行限制,如图11所示,限制后得到的离合器目标扭矩为ItdCltTrqLmt;图11中TS[n]为当前计算步的发动机目标转速,ES[n]为当前计算步的实际发动机转速,ItdCltTrq[n]为当前计算步下的目标离合器扭矩,ItdCltTrqLmt[n-1]为上一计算步的经过限制后的目标离合器扭矩,ItdCltTrqLmt[n]为最终计算得到的当前计算步下经过 限制后的目标离合器扭矩,Step[n]为当前计算步下允许的离合器传递扭矩变化量,Min代表对两个输入信号求最小值,1/Z代表对最上一步的计算结果进行暂存。图16示出了发动机目标转速TS、当前发动机转速ES、离合器传递扭矩变化量Step、被限制后的目标离合器扭矩以及驾驶员目标离合器扭矩ItdCltTrq之间的变化状态曲线图。从图16可以看出,变化率限制模块根据TS和ES之间的差值计算对应计算点下允许的离合器传递扭矩变化量Step,被限制后的离合器目标扭矩每个计算步下的变化量不能超过对应计算点时允许扭矩变化量Step。
步骤4,变速箱控制器TCU根据限制后的离合器目标扭矩ItdCltTrqLmt按如图6所示的离合器传扭曲线插值计算离合器目标位置ICP;TCU直接控制离合器助力缸的进气压力以实现对离合器目标位置的控制。图6示出了根据过滤后的驾驶员目标离合器扭矩计算离合器目标位置的曲线,该曲线体现了不同行程下离合器最大可传递扭矩的变化,且该曲线是在车辆正常起步和行驶过程中,通过自动变速箱AMT软件算法自识别得到的。在离合器位置到达离合器半结合点KP之前,离合器不传扭;从离合器半结合点KP位置往后,离合器最大可传递扭矩逐渐增加,且离合器结合的越深,离合器最大可传递扭矩随位置的变化率越大。
图17示出了一种油门快踩快放工况下的离合器扭矩和发动机转速的变化状态曲线图。图18示出了根据本发明所述的控制方法实现油门稳定蠕行工况下的离合器扭矩和发动机转速的变化状态曲线图。通过图17和图18的对比,可以发现根据本发明所述的离合器传扭曲线控制离合器位置,能够保证驾驶员稳定线性的控制离合器扭矩和车速。
本发明中未述及的部分采用或借鉴已有技术即可实现。
本文中所描述的具体实施例仅仅是对本发明的精神所作的举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (16)

  1. 一种基于离合器目标扭矩的重型卡车自动变速箱蠕行控制系统,其特征在于,
    所述控制系统包括具备转速闭环控制功能的发动机控制器ECU控制的内燃发动机、由变速箱控制器TCU控制的离合器助力缸、变速箱执行机构和车辆转动系统;
    所述发动机控制器ECU采集油门踏板位置信号AP、制动开关信号BK和当前发动机转速ES,所述变速箱控制器TCU收集离合器位置信号ACP、变速箱输入轴转速IS、变速箱输出轴转速OS和车辆行驶方向;ECU和TCU通过数据通信总线连接,ECU通过数据通信总线向TCU发送测量到的油门踏板位置信号AP、制动开关信号BK和当前发动机转速ES;
    所述变速箱控制器TCU内增设目标扭矩计算模块和变化率限制模块;
    所述变速箱控制器TCU内增设离合器同步检查子模块、车辆溜车检查子模块、离合器过热检查子模块,TCU根据各子模块的输出信号,实现对车辆的蠕行控制;TCU对车辆的蠕行控制包括等待状态下的蠕行控制方式、混合油门状态下的蠕行控制方式、强制结合状态下的蠕行控制方式及同步状态下的蠕行控制方式,所述各种不同控制方式间的切换,由当前车辆状态决定;TCU通过对车辆的蠕行控制,得到不同车辆状态下的发动机目标转速TS和离合器目标位置ICP;
    TCU通过数据通信总线向ECU发送发动机目标转速TS,ECU根据接收到的发动机目标转速TS和当前发动机转速ES,控制喷油量以实现对发动机转速的闭环控制;TCU通过离合器目标位置ICP调节施加到发动机飞轮上的离合器传递扭矩。
  2. 根据权利要求1所述的一种基于离合器目标扭矩的重型卡车自动变速箱蠕行控制系统,其特征在于,
    所述离合器同步检查子模块根据当前发动机转速ES、输入轴转速IS、当前离合器位置信号ACP及离合器半结合点位置KP实时检查发动机与离合器的同步状态Sync;
    当发动机与离合器同步时,离合器同步检查子模块输出信号Sync=1;当发动机与离合器失去同步时,离合器同步检查子模块输出信号Sync=0。
  3. 根据权利要求2所述的一种基于离合器目标扭矩的重型卡车自动变速箱蠕行控制系统,其特征在于,
    所述车辆溜车检查子模块根据当前发动机转速ES、输入轴转速IS、当前档位及车辆行驶方向实时检查车辆是否处于溜车状态Ovrn;
    车辆溜车时,车辆溜车检查子模块输出信号Ovrn=1;车辆未溜车时,车辆溜车检查子模块输出信号Ovrn=0。
  4. 根据权利要求3所述的一种基于离合器目标扭矩的重型卡车自动变速箱蠕行控制系统,其特征在于,
    所述TCU中设置有用于估算当前离合器温度的离合器温度估算模块,该离合器温度估算模块中设置有警示温度阈值和保护温度阈值,所述离合器过热检查子模块通过对比从离合器温度估算模块得到的估算温度、警示温度阈值和保护温度阈值判断离合器的热状态OH;
    当估算温度超过设定的警示温度阈值时,离合器从正常状态切换到警示状态,此时离合器过热检查子模块输出信号OH=1;
    当离合器处于警示状态时,如果估算温度继续上升超过保护温度阈值,离合器的热状态从警示状态切换到保护状态,此时离合器过热检查子模块输出信号OH=2;
    当离合器处于保护状态时,如果估算温度下降,则当估算温度下降到警示温度阈值以下时,离合器的热状态才能切换至警示状态;
    当离合器处于警示状态,如果估算温度下降且估算温度下降至60℃以下时,离合器的热状态才能切换到正常状态,此时离合器过热检查子模块输出信号OH=0。
  5. 根据权利要求4所述的一种基于离合器目标扭矩的重型卡车自动变速箱蠕行控制系统,其特征在于,
    所述TCU中还设置有警报模块,警报模块与上述离合器过热检查子模块相连,警报模块包括蜂鸣警报器,该蜂鸣警报器的蜂鸣频率设置与离合器温度相配合,离合器温度越高,蜂鸣频率越高;
    当离合器的热状态处于警示状态时,在混合油门状态下的蠕行控制方式下,TCU仍能实现对离合器的蠕行控制,但TCU会发送蜂鸣警报,提示驾驶员离合器即将过热,且从警示温度阈值到保护温度阈值,温度越高,蜂鸣频率越高。
  6. 根据权利要求3所述的一种基于离合器目标扭矩的重型卡车自动变速箱蠕行控制系统,其特征在于,
    当车辆进入蠕行模式后,默认TCU对车辆的蠕行控制进入等待状态下的蠕行控制方式;
    当TCU对车辆的蠕行控制处于等待状态下的蠕行控制方式时,若车辆溜车检查子模块输出信号Ovrn=1,即车辆处于溜车状态时,则TCU对车辆的蠕行控制从等待状态下的蠕行控制方式优先切换至强制结合状态下的蠕行控制方式。
  7. 根据权利要求4所述的一种基于离合器目标扭矩的重型卡车自动变速箱蠕行控制系统,其特征在于,
    当TCU对车辆的蠕行控制处于等待状态下的蠕行控制方式时,当驾驶员踩下油门的位置超过油门的设定位置,且离合器过热检查子模块输出信号OH=0,即离合器的热状态处于正常状态时,TCU对车辆的蠕行控制从等待状态下的蠕行控制方式切换至混合油门状态下的蠕行控制方式。
  8. 根据权利要求3所述的一种基于离合器目标扭矩的重型卡车自动变速箱蠕行控制系统,其特征在于,
    当TCU对车辆的蠕行控制处于混合油门状态下的蠕行控制方式时,若车辆溜车检查子模块输出信号Ovrn=1,即车辆处于溜车状态时,则TCU对车辆的蠕行控制从混合油门状态下的蠕行控制方式优先切换至强制结合状态下的蠕行控制方式。
  9. 根据权利要求4所述的一种基于离合器目标扭矩的重型卡车自动变速箱蠕行控制系统,其特征在于,
    当TCU对车辆的蠕行控制处于混合油门状态下的蠕行控制方式时,若离合器过热检查子模块输出信号OH=2,即离合器的热状态处于保护状态时,根据当前发动机转速ES和输入轴转速IS两者的转速差的情况,TCU对车辆的蠕行控制切换到相应状态,即若ES-IS<200rpm,则TCU对车辆的蠕行控制从混合油门状态下的蠕行控制方式切换到强制结合状态下的蠕行控制方式,若ES-IS>200rpm,则TCU对车辆的蠕行控制从混合油门状态下的蠕行控制方式切换到等待状态下的蠕行控制方式。
  10. 根据权利要求2所述的一种基于离合器目标扭矩的重型卡车自动变速箱蠕行控制系统,其特征在于,
    当TCU对车辆的蠕行控制处于混合油门状态下的蠕行控制方式时,若离合器同步检查子模块输出信号Sync=1,即发动机与离合器同步时,则TCU对车辆的蠕行控制从混合油门状态下的蠕行控制方式切换到同步状态下的蠕行控制方式。
  11. 根据权利要求2所述的一种基于离合器目标扭矩的重型卡车自动变速箱蠕行控制系统,其特征在于,
    当TCU对车辆的蠕行控制处于强制结合状态下的蠕行控制方式时,若离合器同步检查子模块输出信号Sync=1,则TCU对车辆的蠕行控制从强制结合状态下的蠕行控制方式切换至同步状态下的蠕行控制方式。
  12. 根据权利要求2所述的一种基于离合器目标扭矩的重型卡车自动变速箱蠕行控制系统,其特征在于,
    当TCU对车辆的蠕行控制处于同步状态下的蠕行控制方式时,若离合器同步检查子模块输出信号Sync=0,即发动机与离合器失去同步,或者驾驶员踩下制动踏板,则TCU对车辆的蠕行控制从同步状态下的蠕行控制方式切换至混合油门状态下的蠕行控制方式。
  13. 根据权利要求1至12任一项权利要求所述的一种基于离合器目标扭矩的重型卡车自动变速箱蠕行控制系统,其特征在于,
    当TCU对车辆的蠕行控制在等待状态下的蠕行控制方式时,离合器目标位置ICP恒定设 置在离合器半结合点位置,即ICP=KP,发动机目标转速TS恒定设置在怠速转速,即TS=发动机怠速转速。
  14. 根据权利要求1至12任一项权利要求所述的一种基于离合器目标扭矩的重型卡车自动变速箱蠕行控制系统,其特征在于,
    当TCU对车辆的蠕行控制在强制结合状态下的蠕行控制方式时,离合器目标位置ICP按固定速度强制结合,即ICP[n]=ICP[n-1]-CP_stp,其中,ICP[n]为当前计算步的离合器目标位置,ICP[n-1]为TCU中暂存的上一计算步的离合器目标位置,CP_stp为标定好的强制结合状态下,每个步长离合器接合的位置;发动机目标转速TS维持在进入强制结合状态前的发动机目标转速设置。
  15. 根据权利要求2至12任一项权利要求所述的一种基于离合器目标扭矩的重型卡车自动变速箱蠕行控制系统,其特征在于,
    当TCU对车辆的蠕行控制在同步状态下的蠕行控制方式时,离合器目标位置ICP冻结在进入同步状态下时的离合器位置ICP[Sync0]并维持不变,发动机的目标转速TS按如下方式进行调节:
    TCU记录下进入同步状态时发动机目标转速值TS[Sync0]及油门位置AP[Sync0],并按如下公式计算同步状态下的发动机目标转速:
    TS=Max((1600-TS[Sync0])/(100-AP[Sync0])×(AP-AP[Sync0]),600)且驾驶员通过油门调节发动机转速在600rpm-1600rpm的范围内变化。
  16. 根据权利要求1至12任一项权利要求所述的一种基于离合器目标扭矩的重型卡车自动变速箱蠕行控制系统,其特征在于,
    当TCU对车辆的蠕行控制在混合油门状态下的蠕行控制方式时,按照如下步骤动态调节发动机目标转速TS和离合器目标位置ICP:
    步骤1,目标扭矩计算模块根据油门踏板位置计算驾驶员目标离合器扭矩ItdCltTrq;
    步骤2,发动机转速控制器根据驾驶员目标离合器扭矩ItdCltTrq计算对应的发动机目标转速TS;
    步骤3,变化率限制模块根据步骤2中计算所得的发动机目标转速TS和当前发动机转速ES之差计算允许的离合器扭矩变化率,即单位步长下允许的离合器扭矩变化差值,并对当前计算出的驾驶员目标离合器扭矩进行限制,限制后得到的离合器目标扭矩为ItdCltTrqLmt;
    步骤4,TCU根据限制后的离合器目标扭矩ItdCltTrqLmt按离合器传扭曲线插值计算离合器目标位置ICP。
PCT/CN2017/111401 2016-11-17 2017-11-16 基于离合器目标扭矩的重型卡车自动变速箱蠕行控制系统 WO2018090957A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17872404.3A EP3543080B1 (en) 2016-11-17 2017-11-16 Target clutch torque-based creep control system for automatic transmission of heavy truck

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611011110.3 2016-11-17
CN201611011110.3A CN106696964B (zh) 2016-11-17 2016-11-17 基于离合器目标扭矩的重型卡车自动变速箱蠕行控制系统

Publications (1)

Publication Number Publication Date
WO2018090957A1 true WO2018090957A1 (zh) 2018-05-24

Family

ID=58940483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111401 WO2018090957A1 (zh) 2016-11-17 2017-11-16 基于离合器目标扭矩的重型卡车自动变速箱蠕行控制系统

Country Status (3)

Country Link
EP (1) EP3543080B1 (zh)
CN (1) CN106696964B (zh)
WO (1) WO2018090957A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113022550A (zh) * 2019-12-24 2021-06-25 北京宝沃汽车股份有限公司 混合动力车辆的离合器控制方法、装置、存储介质和车辆
CN114291091A (zh) * 2022-01-24 2022-04-08 一汽解放汽车有限公司 一种车辆的蠕动模式的控制方法
CN114992258A (zh) * 2022-05-31 2022-09-02 中国第一汽车股份有限公司 离合器半结合点位置标定方法、装置、设备及存储介质
CN115451122A (zh) * 2022-09-22 2022-12-09 陕西法士特齿轮有限责任公司 一种amt离合器高温预警保护装置、保护方法及汽车

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106696964B (zh) * 2016-11-17 2018-12-04 威伯科汽车控制系统(中国)有限公司 基于离合器目标扭矩的重型卡车自动变速箱蠕行控制系统
CN108583367B (zh) * 2018-04-04 2020-03-13 威马智慧出行科技(上海)有限公司 电动汽车用电机蠕行工况切换协调控制方法及系统
CN109263642B (zh) * 2018-09-12 2020-06-23 安徽江淮汽车集团股份有限公司 车辆蠕动保护方法
CN110174911A (zh) * 2019-04-12 2019-08-27 汉腾汽车有限公司 一种前轴自动变速箱控制单元的标定方法
CN110926389A (zh) * 2019-12-05 2020-03-27 武汉理工大学 一种重型商用车amt离合器滑磨点位置测量系统及方法
FR3106107B1 (fr) * 2020-01-09 2022-10-14 Psa Automobiles Sa Procede pour optimiser un regime de moteur thermique d’un vehicule a boite de vitesse automotisee notamment lors d’un accostage.
CN111638645B (zh) * 2020-05-28 2022-04-19 西安法士特汽车传动有限公司 一种大功率拖拉机后置pto的闭环控制系统及方法
CN113404855B (zh) * 2021-06-16 2023-04-21 徐工集团工程机械股份有限公司道路机械分公司 一种带蠕动行走功能直接换挡系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030171186A1 (en) * 2002-03-07 2003-09-11 Hitachi, Ltd. Method and system for controlling creep in automatic transmission
JP2007024094A (ja) * 2005-07-13 2007-02-01 Mitsubishi Fuso Truck & Bus Corp クラッチ制御装置
CN102050119A (zh) * 2009-10-29 2011-05-11 上海通用汽车有限公司 在装备自控手动变速箱的车辆上实现at缓行模式的方法
CN103029708A (zh) * 2013-01-07 2013-04-10 上海汽车变速器有限公司 基于发动机启停的控制方法及其系统
CN103359104A (zh) * 2013-07-23 2013-10-23 安徽江淮汽车股份有限公司 汽车蠕动控制方法及系统
CN104925049A (zh) * 2015-07-06 2015-09-23 安徽江淮汽车股份有限公司 一种双离合自动变速器汽车的蠕动交互控制方法和系统
CN106696964A (zh) * 2016-11-17 2017-05-24 威伯科汽车控制系统(中国)有限公司 基于离合器目标扭矩的重型卡车自动变速箱蠕行控制系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9504681D0 (en) * 1995-03-08 1995-04-26 Eaton Corp Improvements in vehicle control
US8775044B2 (en) * 2011-06-08 2014-07-08 Ford Global Technologies, Llc Clutch torque trajectory correction to provide torque hole filling during a ratio upshift
WO2013000449A1 (de) * 2011-06-30 2013-01-03 Schaeffler Technologies AG & Co. KG Verfahren zur vermeidung oder verminderung von rupfschwingungen
US8825319B2 (en) * 2012-05-21 2014-09-02 GM Global Technology Operations LLC Automatic transmission input clutch control
CN103557319B (zh) * 2013-10-31 2016-02-24 长城汽车股份有限公司 一种自动档汽车低速蠕行控制方法
CN105673832B (zh) * 2016-01-15 2017-10-31 上海汽车变速器有限公司 双离合器自动变速器半结合点工况控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030171186A1 (en) * 2002-03-07 2003-09-11 Hitachi, Ltd. Method and system for controlling creep in automatic transmission
JP2007024094A (ja) * 2005-07-13 2007-02-01 Mitsubishi Fuso Truck & Bus Corp クラッチ制御装置
CN102050119A (zh) * 2009-10-29 2011-05-11 上海通用汽车有限公司 在装备自控手动变速箱的车辆上实现at缓行模式的方法
CN103029708A (zh) * 2013-01-07 2013-04-10 上海汽车变速器有限公司 基于发动机启停的控制方法及其系统
CN103359104A (zh) * 2013-07-23 2013-10-23 安徽江淮汽车股份有限公司 汽车蠕动控制方法及系统
CN104925049A (zh) * 2015-07-06 2015-09-23 安徽江淮汽车股份有限公司 一种双离合自动变速器汽车的蠕动交互控制方法和系统
CN106696964A (zh) * 2016-11-17 2017-05-24 威伯科汽车控制系统(中国)有限公司 基于离合器目标扭矩的重型卡车自动变速箱蠕行控制系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3543080A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113022550A (zh) * 2019-12-24 2021-06-25 北京宝沃汽车股份有限公司 混合动力车辆的离合器控制方法、装置、存储介质和车辆
CN114291091A (zh) * 2022-01-24 2022-04-08 一汽解放汽车有限公司 一种车辆的蠕动模式的控制方法
CN114291091B (zh) * 2022-01-24 2023-07-25 一汽解放汽车有限公司 一种车辆的蠕动模式的控制方法
CN114992258A (zh) * 2022-05-31 2022-09-02 中国第一汽车股份有限公司 离合器半结合点位置标定方法、装置、设备及存储介质
CN114992258B (zh) * 2022-05-31 2024-03-26 中国第一汽车股份有限公司 离合器半结合点位置标定方法、装置、设备及存储介质
CN115451122A (zh) * 2022-09-22 2022-12-09 陕西法士特齿轮有限责任公司 一种amt离合器高温预警保护装置、保护方法及汽车
CN115451122B (zh) * 2022-09-22 2023-11-07 陕西法士特齿轮有限责任公司 一种amt离合器高温预警保护装置、保护方法及汽车

Also Published As

Publication number Publication date
EP3543080A1 (en) 2019-09-25
CN106696964B (zh) 2018-12-04
EP3543080B1 (en) 2022-04-13
CN106696964A (zh) 2017-05-24
EP3543080A4 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
WO2018090957A1 (zh) 基于离合器目标扭矩的重型卡车自动变速箱蠕行控制系统
WO2018090958A1 (zh) 一种基于离合器传扭曲线的离合器目标位置控制方法
US8825319B2 (en) Automatic transmission input clutch control
US8731751B2 (en) Method and system for controlling a hybrid vehicle
CN102748154B (zh) 用于操作机动车辆的自动启动/停止系统的方法
US20090308674A1 (en) Hybrid powertrain auto start control system with engine pulse cancellation
US9352744B2 (en) Hybrid vehicle braking limit determination system and method
CN101676541B (zh) 用于协同转矩控制系统的冷起动减排策略
EP3044063B1 (en) Vehicle controller and method
US8437938B2 (en) Axle torque based cruise control
CN102463975B (zh) 用于车辆制动的真空助力
US10457285B2 (en) Vehicle control device for controlling inertia operation of vehicle
US9150218B2 (en) Hybrid vehicle
US20030060328A1 (en) Shift control strategy for use with an automated manual transmission coupled to a turbocharged internal combustion engine
EP3107788B1 (en) Vehicle control system and method
US8489303B2 (en) Powertrain control system and methods with ECM-to-TCM parameter transfer protocols for TCM based control
US9458811B2 (en) Hybrid vehicle engine start
US20160252180A1 (en) Shift control apparatus and shift control method
US9238995B2 (en) Energy control systems and methods for a powertrain of a vehicle
WO2015087159A1 (en) Controller and control method for internal combustion engine
JP5287780B2 (ja) ハイブリッド車両の制御装置
JP2018523056A (ja) セーリング運転の終了時に車両の内燃機関の再始動を制御する方法および装置
JP5407541B2 (ja) 惰行制御装置
JP2014101997A (ja) 自動変速機車両のダンパークラッチ制御装置及び方法
US20130196819A1 (en) Method of controlling a speed of an engine relative to a turbine speed of a torque converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872404

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017872404

Country of ref document: EP

Effective date: 20190617