WO2018090958A1 - 一种基于离合器传扭曲线的离合器目标位置控制方法 - Google Patents

一种基于离合器传扭曲线的离合器目标位置控制方法 Download PDF

Info

Publication number
WO2018090958A1
WO2018090958A1 PCT/CN2017/111424 CN2017111424W WO2018090958A1 WO 2018090958 A1 WO2018090958 A1 WO 2018090958A1 CN 2017111424 W CN2017111424 W CN 2017111424W WO 2018090958 A1 WO2018090958 A1 WO 2018090958A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
target
torque
control method
engine
Prior art date
Application number
PCT/CN2017/111424
Other languages
English (en)
French (fr)
Inventor
滕昱棠
Original Assignee
威伯科汽车控制系统(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 威伯科汽车控制系统(中国)有限公司 filed Critical 威伯科汽车控制系统(中国)有限公司
Priority to EP17871440.8A priority Critical patent/EP3543079B1/en
Publication of WO2018090958A1 publication Critical patent/WO2018090958A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10406Clutch position
    • F16D2500/10412Transmission line of a vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10443Clutch type
    • F16D2500/1045Friction clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/11Application
    • F16D2500/1107Vehicles
    • F16D2500/1112Heavy vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/3042Signal inputs from the clutch from the output shaft
    • F16D2500/30421Torque of the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/306Signal inputs from the engine
    • F16D2500/3067Speed of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/314Signal inputs from the user
    • F16D2500/31406Signal inputs from the user input from pedals
    • F16D2500/3144Accelerator pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70402Actuator parameters
    • F16D2500/7041Position

Definitions

  • the invention belongs to the technical field of automobile transmission control, and particularly relates to a clutch target position control method based on a clutch transmission twist line.
  • the application of the patent application No. 201510992443.8 discloses an AMT vehicle starting control method, which comprises: detecting the engine speed, the engine torque, the current position of the clutch and the opening of the accelerator pedal after detecting the starting signal; The rotational speed and the torque of the engine acquire a change step of the clutch position, obtain the target position of the clutch and the displacement speed of the clutch according to the current position and the change step of the clutch; obtain the set speed of the engine according to the opening degree of the accelerator pedal; according to the target of the clutch The position, the displacement speed of the clutch, and the set speed of the engine are used to initiate control of the AMT vehicle.
  • the method uses a fixed clutch to combine the speed limit under all strokes of the clutch.
  • the clutch engagement speed limit By setting the clutch engagement speed limit to be very small, the clutch transmission is early in the clutch engagement stroke (0-50% stroke). The torque is not sensitive to the increase of the stroke. This small clutch combined with the speed limit will cause the driver to step on the throttle and can not feel the reaction of the vehicle in a short time. If the clutch combination speed limit is large by the above method, then At the end of the clutch engagement stroke (50-70% of the stroke), the clutch transmission torque is very sensitive to the increase in stroke. This large clutch combined with the speed limit does not slow down the clutch torque increase speed and gain time for the engine reaction.
  • the present invention provides a clutch target position control method based on a clutch transmission twist line, which takes into account the difference in torque transmission sensitivity of the clutch at different positions, and ensures driving. Linearly stable vehicle control.
  • a clutch target position control method based on a clutch transmission twist line wherein the control method adds a target torque calculation module and a change rate limit module in a vehicle transmission controller TCU, and the control method includes the following steps:
  • Step 1 the target torque calculation module calculates the driver target clutch torque ItdCltTrq according to the accelerator pedal position
  • Step 2 the engine speed controller calculates a corresponding engine target speed TS according to the driver target clutch torque ItdCltTrq;
  • Step 3 The rate-of-change limiting module calculates the allowable clutch torque change rate according to the difference between the engine target speed TS and the current engine speed ES calculated in step 2, that is, the allowable clutch torque change difference per unit step, and calculates the current The driver's target clutch torque is limited, and the resulting clutch target torque is ItdCltTrqLmt;
  • step 4 the transmission controller TCU calculates the clutch target position ICP according to the clutch transmission target torque ItdCltTrqLmt according to the clutch transmission distortion line interpolation.
  • the control method collects the accelerator pedal position signal AP and the current engine speed signal ES through the engine controller ECU, and the engine controller ECU is connected to the transmission controller TCU through the data communication bus, and the engine controller ECU transmits the gearbox to the transmission through the data communication bus.
  • the controller TCU sends the measured accelerator pedal position signal AP and the current engine speed ES; the TCU directly controls the intake pressure of the clutch boost cylinder to achieve control of the clutch target position.
  • the control method measures an accelerator pedal position signal AP by adding an accelerator pedal sensor at a position of the accelerator pedal, the accelerator pedal sensor being coupled to an engine controller ECU of the vehicle.
  • the control method adds a rotational speed sensor at the engine flywheel to measure the current engine speed ES, which is coupled to the engine controller ECU of the vehicle.
  • the control method in the present invention controls the clutch position according to the clutch transmission twist line, and takes into account the difference in the transmission torque change rate of the clutch with the position, thereby ensuring that the driver can stably control the clutch torque and the vehicle speed in a linear manner.
  • Figure 1 shows a graph of the present invention for calculating a driver's target clutch torque based on the accelerator pedal position.
  • Figure 2 is a graph showing the state of change of the driver's target clutch torque before the throttle position exceeds the trigger position TriggerAP and reaches the inflection point SwitchAP.
  • Figure 3 is a graph showing the state of change of the driver's target clutch torque before the throttle position exceeds the inflection point SwitchAP and reaches the throttle position of 100%.
  • FIG. 4 shows a curve for calculating an engine target speed based on a driver target clutch torque.
  • Fig. 5 is a graph showing a state of change of the engine target speed with the driver's target clutch torque.
  • Figure 6 shows a logic block diagram that dynamically limits clutch engagement speed based on the difference between the engine target speed and the current engine speed.
  • FIG. 7 is a graph showing a change state between the engine target speed TS, the current engine speed ES, the clutch transmission torque change amount Step, the limited target clutch torque, and the driver target clutch torque ItdCltTrq.
  • Figure 8 shows a graph of the present invention for calculating the clutch target position based on the filtered driver target clutch torque.
  • FIG. 9 is a graph showing changes in clutch torque and engine speed in a throttle quick-release and fast-release operation.
  • FIG. 10 is a graph showing a state of change of clutch torque and engine speed in a throttle stable creeping condition according to the control method of the present invention.
  • a clutch target position control method based on a clutch transmission twist line, the control method adds an accelerator pedal sensor to measure an accelerator pedal position signal AP at an accelerator pedal position, and a rotational speed sensor is added at an engine flywheel.
  • Measuring a current engine speed ES the accelerator pedal sensor and the speed sensor are both connected to an engine controller ECU of the vehicle, and the engine controller ECU is configured to collect the accelerator pedal position signal AP and the current engine speed signal ES, and through the data communication bus Connected to the transmission controller TCU, the engine controller ECU transmits the measured accelerator pedal position signal AP and the current engine speed ES to the transmission controller TCU via the data communication bus.
  • the TCU sends an engine control request message including the engine target speed TS to the engine ECU through the data communication bus to realize the control of the engine speed.
  • the data communication bus can be any network protocol bus that conforms to the standard definition, such as J1922, J1939 or ISO11898.
  • the control method adds a target torque calculation module and a rate of change restriction module to the vehicle transmission controller TCU.
  • the control method includes the following steps:
  • Step 1 the target torque calculation module calculates the driver target clutch torque ItdCltTrq according to the accelerator pedal position according to the curve shown in FIG. 1;
  • FIG. 1 shows a curve for calculating the driver target clutch torque according to the accelerator pedal position, the curve is determined by experimental calibration. To achieve different throttle sensitivity, different system sensitivity responses. When the driver depresses the throttle position beyond the trigger position TriggerAP (5% throttle stroke), the driver's target clutch torque increases slowly with the throttle stroke. 2 shows that the driver target clutch torque ItdCltTrq is calculated according to the curve shown in FIG.
  • the driver's target clutch torque reaches the corresponding available torque at the engine transient optimum speed.
  • the engine transient optimum speed and its corresponding available torque are calibrated according to the engine test. Heavy-duty supercharged diesel engines are affected by external characteristics and smoke limits, and the engine can be reached instantaneously at different speeds. The maximum torque is different. At lower speeds, the instantaneous maximum available torque will be limited by external characteristics; at higher speeds, the instantaneous maximum available torque will be limited by smoke control. At transient optimum speeds, the instantaneous available torque can reach a maximum. Therefore, in a creeping condition requiring a quick response of the engine, the maximum value of the target clutch torque curve will be set to the corresponding available torque at the transient optimal speed.
  • Step 2 the engine speed controller calculates a corresponding engine target speed TS from the driver target clutch torque ItdCltTrq by a curve as shown in FIG. 4 which is previously calibrated;
  • FIG. 4 shows a curve of calculating the engine target speed according to the target clutch torque, The curve is calibrated based on the performance test of the engine speed controller.
  • the curve basically corresponds to the required rotational speed difference of the torque required by the engine speed controller output under the proportional control link. As shown in FIG. 4 and FIG.
  • the engine target speed is maintained at the idle speed; as the target clutch torque increases, the engine target speed gradually increases until the clutch target torque reaches the saturation torque SaturateTrq At the time, the engine target speed reaches the saturation speed SaturateSpd. Specifically, for every 10% increase in the driver's target clutch torque, the engine target speed TS is increased by 100 rpm.
  • the starting torque StartTrq, the saturation torque SaturateTrq, and the saturation speed SatuateSpd are all determined by calibration according to the engine speed controller performance.
  • Step 3 The rate-of-change limiting module calculates the allowable clutch torque change rate according to the difference between the engine target speed TS and the current engine speed ES calculated in step 2, that is, the allowable clutch torque change difference per unit step, and calculates the current The driver's target clutch torque is limited.
  • the clutch target torque obtained after the limit is ItdCltTrqLmt; in FIG. 6, TS[n] is the engine target speed of the current calculation step, and ES[n] is the current calculation step.
  • FIG. 7 is a graph showing a change state between the engine target speed TS, the current engine speed ES, the clutch transmission torque change amount Step, the limited target clutch torque, and the driver target clutch torque ItdCltTrq.
  • the rate-of-change limiting module calculates the allowable clutch transmission torque change amount Step according to the difference between the TS and the ES, and the limited clutch target torque cannot be changed under each calculation step.
  • the allowable torque change amount Step is exceeded when the corresponding calculation point is exceeded.
  • Step 4 the transmission controller TCU calculates the clutch target position ICP according to the limited clutch target torque ItdCltTrqLmt according to the clutch transmission distortion line interpolation as shown in FIG. 8; the TCU directly controls the intake pressure of the clutch assist cylinder to achieve the clutch target position. control.
  • Figure 8 shows a curve for calculating the clutch target position based on the filtered driver target clutch torque, which represents the change in the maximum transmittable torque of the clutch at different strokes, and the curve is passed during normal start and travel of the vehicle.
  • the automatic transmission AMT software algorithm is self-identifying.
  • the clutch does not transmit the torque; from the clutch half-join point KP position, the clutch can transmit the maximum torque The moment is gradually increased, and the deeper the clutch is combined, the greater the rate of change of the clutch's maximum transmittable torque with position.
  • FIG. 9 is a graph showing changes in clutch torque and engine speed in a throttle quick-release and fast-release operation.
  • FIG. 10 is a graph showing a state of change of clutch torque and engine speed in a throttle stable creeping condition according to the control method of the present invention. From the comparison of Figs. 9 and 10, it can be found that the clutch transmission twist line control clutch position according to the present invention can ensure the driver's stable linear control of the clutch torque and the vehicle speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

一种基于离合器传扭曲线的离合器目标位置控制方法,包括如下步骤:目标扭矩计算模块根据油门踏板位置计算驾驶员目标离合器扭矩;发动机转速控制器根据驾驶员目标离合器扭矩计算对应的发动机目标转速;变化率限制模块根据计算所得的发动机目标转速和当前发动机转速之差计算允许的离合器扭矩变化率,并对当前计算出的驾驶员目标离合器扭矩进行限制,限制后得到的离合器目标扭矩;变速箱控制器根据限制后的离合器目标扭矩按离合器传扭曲线插值计算离合器目标位置。该控制方法根据驾驶员需求的扭矩估算离合器目标位置,该方法考虑了离合器在不同位置上的扭矩传递敏感度差别,确保了驾驶员线性稳定的车辆控制感。

Description

一种基于离合器传扭曲线的离合器目标位置控制方法 技术领域
本发明属于汽车变速器控制技术领域,尤其涉及一种基于离合器传扭曲线的离合器目标位置控制方法。
背景技术
对于重型卡车而言,经常会碰到需要低速蠕行的工况(车速<5km/h),例如对接平台/挂车,移车入库等工况,在这类工况下,需要稳定直接地控制离合器的位置,以达到灵敏可控的车辆速度控制性能。
专利申请号为201510992443.8的申请公开了一种AMT车辆起步控制方法,该方法包括:监测到起步信号后,检测发动机的转速、发动机的扭矩、离合器的当前位置和油门踏板的开度;根据发动机的转速和发动机的扭矩获取离合器位置的变化步长,根据离合器的当前位置和变化步长获取离合器的目标位置和离合器的位移速度;根据油门踏板的开度获取发动机的设定转速;根据离合器的目标位置、离合器的位移速度和发动机的设定转速对AMT车辆进行起步控制。该方法虽然能够实现对离合器目标位置的控制,但是并没有考虑到离合器在不同位置下的扭矩灵敏度,无法满足在不同行程下,离合器传扭特性变化对离合器结合速度的不同要求。该方法在离合器的所有行程下,都是用固定的离合器结合速度限制,通过该方法若把离合器结合速度限制设的非常小,那么在离合器接合行程的早期(0-50%行程),离合器传递扭矩随行程增加并不敏感,这种很小的离合器结合速度限制会造成司机踩下油门,短时间内无法感觉到车辆的反应;通过上述方法若把离合器结合速度限制放的很大,那么在离合器接合行程的后期(50-70%的行程),离合器传递扭矩对行程增加非常敏感,这种很大的离合器结合速度限制起不到减慢离合器扭矩增加速度、为发动机反应赢得时间的作用。
由此可见,现有技术有待于进一步的改进和提高。
发明内容
本发明为避免上述现有技术存在的不足之处,提供了一种基于离合器传扭曲线的离合器目标位置控制方法,该方法考虑了离合器在不同位置上的扭矩传递敏感度的差别,确保了驾驶员线性稳定的车辆控制感。
本发明所采用的技术方案为:
一种基于离合器传扭曲线的离合器目标位置控制方法,所述控制方法在车辆变速箱控制器TCU内增设目标扭矩计算模块和变化率限制模块,所述控制方法包括如下步骤:
步骤1,目标扭矩计算模块根据油门踏板位置计算驾驶员目标离合器扭矩ItdCltTrq;
步骤2,发动机转速控制器根据驾驶员目标离合器扭矩ItdCltTrq计算对应的发动机目标转速TS;
步骤3,变化率限制模块根据步骤2中计算所得的发动机目标转速TS和当前发动机转速ES之差计算允许的离合器扭矩变化率,即单位步长下允许的离合器扭矩变化差值,并对当前计算出的驾驶员目标离合器扭矩进行限制,限制后得到的离合器目标扭矩为ItdCltTrqLmt;
步骤4,变速箱控制器TCU根据限制后的离合器目标扭矩ItdCltTrqLmt按离合器传扭曲线插值计算离合器目标位置ICP。
所述控制方法通过发动机控制器ECU收集油门踏板位置信号AP和当前发动机转速信号ES,且发动机控制器ECU通过数据通信总线与变速箱控制器TCU相连,发动机控制器ECU通过数据通信总线向变速箱控制器TCU发送测量到的油门踏板位置信号AP和当前发动机转速ES;TCU直接控制离合器助力缸的进气压力以实现对离合器目标位置的控制。
所述控制方法通过在油门踏板位置处增设油门踏板传感器测量油门踏板位置信号AP,所述油门踏板传感器与车辆的发动机控制器ECU相连。
所述控制方法在发动机飞轮处增设转速传感器测量当前发动机转速ES,所述转速传感器与车辆的发动机控制器ECU相连。
由于采用了上述技术方案,本发明所取得的有益效果为:
本发明中的控制方法根据离合器传扭曲线控制离合器位置,考虑了离合器各传递扭矩变化率随位置的差异,保证了驾驶员能稳定线性的控制离合器扭矩和车速。
附图说明
图1示出了本发明根据油门踏板位置计算驾驶员目标离合器扭矩的曲线。
图2示出了当油门位置超过触发位置TriggerAP并达到拐点位置SwitchAP前,驾驶员目标离合器扭矩的变化状态曲线图。
图3示出了当油门位置超过拐点位置SwitchAP并达到油门位置100%前,驾驶员目标离合器扭矩的变化状态曲线图。
图4示出了根据驾驶员目标离合器扭矩计算发动机目标转速的曲线。
图5示出了发动机目标转速随驾驶员目标离合器扭矩的变化状态曲线图。
图6示出了根据发动机目标转速和当前发动机转速之差对离合器结合速度进行动态限制的逻辑框图。
图7示出了发动机目标转速TS、当前发动机转速ES、离合器传递扭矩变化量Step、被限制后的目标离合器扭矩以及驾驶员目标离合器扭矩ItdCltTrq之间的变化状态曲线图。
图8示出了本发明根据过滤后的驾驶员目标离合器扭矩计算离合器目标位置的曲线。
图9示出了一种油门快踩快放工况下的离合器扭矩和发动机转速的变化状态曲线图。
图10示出了根据本发明所述的控制方法实现油门稳定蠕行工况下的离合器扭矩和发动机转速的变化状态曲线图。
具体实施方式
下面结合附图和具体的实施例对本发明作进一步的详细说明,但本发明并不限于这些实施例。
如图1至图4所示,一种基于离合器传扭曲线的离合器目标位置控制方法,所述控制方法在油门踏板位置处增设油门踏板传感器测量油门踏板位置信号AP,在发动机飞轮处增设转速传感器测量当前发动机转速ES,所述油门踏板传感器与转速传感器均与车辆的发动机控制器ECU相连,发动机控制器ECU用于收集所述油门踏板位置信号AP和当前发动机转速信号ES,并通过数据通信总线与变速箱控制器TCU相连,发动机控制器ECU通过数据通信总线向变速箱控制器TCU发送测量到的油门踏板位置信号AP和当前发动机转速ES。同时TCU通过数据通信总线向发动机ECU发送包含发动机目标转速TS的发动机控制请求报文,以实现对发动机转速的控制。所述数据通信总线可以是任何一种符合标准定义的网络协议总线,如J1922、J1939或者ISO11898等。
所述控制方法在车辆变速箱控制器TCU内增设目标扭矩计算模块和变化率限制模块。
所述控制方法包括如下步骤:
步骤1,目标扭矩计算模块按照图1所示的曲线根据油门踏板位置计算驾驶员目标离合器扭矩ItdCltTrq;图1示出了根据油门踏板位置计算驾驶员目标离合器扭矩的曲线,该曲线通过实验标定确定,以实现不同的油门开度下,不同的系统敏感度响应。当驾驶员踩下油门位置超过触发位置TriggerAP(油门行程5%)时,驾驶员目标离合器扭矩随油门行程缓慢增加。图2示出了当油门位置超过触发位置TriggerAP并达到拐点位置SwitchAP(油门行程65%)前,驾驶员目标离合器扭矩ItdCltTrq根据图1所示的曲线计算,驾驶员目标离合器扭矩ItdCltTrq在0%-35%的发动机额定扭矩范围内比例变化。当油门位置达到拐点位置SwitchAP时,驾驶员目标离合器扭矩随油门行程迅速增加。图3示出了当油门位置超过拐点位置SwitchAP(油门行程65%)并达到油门位置100%前,驾驶员目标离合器扭矩ItdCltTrq根据图1曲线计算,驾驶员目标离合器扭矩ItdCltTrq在35%-50%的发动机额定扭矩范围内比例变化。当油门位置达到100%时,驾驶员目标离合器扭矩达到发动机瞬态最优转速下对应的可用扭矩。发动机瞬态最优转速及其对应的可用扭矩为根据发动机实验标定得到。重型增压柴油发动机受到外特性限制和烟度限制的共同影响,发动机在不同转速下瞬间能够达到的 最大扭矩是不同的。转速较低时,瞬时最大可用扭矩将受到外特性的限制;转速较高时,瞬时最大可用扭矩将受到烟度控制的限制。在瞬态最优转速下,则瞬时可用扭矩可达到最大值。因此在需要发动机迅速响应的蠕行工况下,目标离合器扭矩曲线的最大值将设置为瞬态最优转速下对应的可用扭矩。
步骤2,发动机转速控制器由事先标定好的如图4所示的曲线根据驾驶员目标离合器扭矩ItdCltTrq计算对应的发动机目标转速TS;图4示出了根据目标离合器扭矩计算发动机目标转速的曲线,该曲线根据发动机转速控制器的性能实验进行标定得到。该曲线基本对应了发动机转速控制器输出需要的扭矩在比例控制环节下所需要的转速差。如图4和图5所示,当目标离合器扭矩小于起始扭矩StartTrq时,发动机目标转速维持在怠速转速;随着目标离合器扭矩的增加,发动机目标转速逐渐增加,直至离合器目标扭矩达到饱和扭矩SaturateTrq时,发动机目标转速达到饱和转速SaturateSpd。具体地说,驾驶员目标离合器扭矩每增加10%,发动机目标转速TS增加100rpm。其中,起始扭矩StartTrq、饱和扭矩SaturateTrq、饱和转速SaturateSpd均为根据发动机转速控制器性能通过标定确定。
步骤3,变化率限制模块根据步骤2中计算所得的发动机目标转速TS和当前发动机转速ES之差计算允许的离合器扭矩变化率,即单位步长下允许的离合器扭矩变化差值,并对当前计算出的驾驶员目标离合器扭矩进行限制,如图6所示,限制后得到的离合器目标扭矩为ItdCltTrqLmt;图6中TS[n]为当前计算步的发动机目标转速,ES[n]为当前计算步的实际发动机转速,ItdCltTrq[n]为当前计算步下的目标离合器扭矩,ItdCltTrqLmt[n-1]为上一计算步的经过限制后的目标离合器扭矩,ItdCltTrqLmt[n]为最终计算得到的当前计算步下经过限制后的目标离合器扭矩,Step[n]为当前计算步下允许的离合器传递扭矩变化量,Min代表对两个输入信号求最小值,1/Z代表对最上一步的计算结果进行暂存。图7示出了发动机目标转速TS、当前发动机转速ES、离合器传递扭矩变化量Step、被限制后的目标离合器扭矩以及驾驶员目标离合器扭矩ItdCltTrq之间的变化状态曲线图。从图7可以看出,变化率限制模块根据TS和ES之间的差值计算对应计算点下允许的离合器传递扭矩变化量Step,被限制后的离合器目标扭矩每个计算步下的变化量不能超过对应计算点时允许扭矩变化量Step。
步骤4,变速箱控制器TCU根据限制后的离合器目标扭矩ItdCltTrqLmt按如图8所示的离合器传扭曲线插值计算离合器目标位置ICP;TCU直接控制离合器助力缸的进气压力以实现对离合器目标位置的控制。图8示出了根据过滤后的驾驶员目标离合器扭矩计算离合器目标位置的曲线,该曲线体现了不同行程下离合器最大可传递扭矩的变化,且该曲线是在车辆正常起步和行驶过程中,通过自动变速箱AMT软件算法自识别得到的。在离合器位置到达离合器半结合点KP之前,离合器不传扭;从离合器半结合点KP位置往后,离合器最大可传递扭 矩逐渐增加,且离合器结合的越深,离合器最大可传递扭矩随位置的变化率越大。
图9示出了一种油门快踩快放工况下的离合器扭矩和发动机转速的变化状态曲线图。图10示出了根据本发明所述的控制方法实现油门稳定蠕行工况下的离合器扭矩和发动机转速的变化状态曲线图。通过图9和图10的对比,可以发现根据本发明所述的离合器传扭曲线控制离合器位置,能够保证驾驶员稳定线性的控制离合器扭矩和车速。
本发明中中未述及的部分采用或借鉴已有技术即可实现。
本文中所描述的具体实施例仅仅是对本发明的精神所作的举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (4)

  1. 一种基于离合器传扭曲线的离合器目标位置控制方法,其特征在于,
    所述控制方法在车辆变速箱控制器TCU内增设目标扭矩计算模块和变化率限制模块,所述控制方法包括如下步骤:
    步骤1,目标扭矩计算模块根据油门踏板位置计算驾驶员目标离合器扭矩ItdCltTrq;
    步骤2,发动机转速控制器根据驾驶员目标离合器扭矩ItdCltTrq计算对应的发动机目标转速TS;
    步骤3,变化率限制模块根据步骤2中计算所得的发动机目标转速TS和当前发动机转速ES之差计算允许的离合器扭矩变化率,即单位步长下允许的离合器扭矩变化差值,并对当前计算出的驾驶员目标离合器扭矩进行限制,限制后得到的离合器目标扭矩为ItdCltTrqLmt;
    步骤4,变速箱控制器TCU根据限制后的离合器目标扭矩ItdCltTrqLmt按离合器传扭曲线插值计算离合器目标位置ICP。
  2. 根据权利要求1所述的一种基于离合器传扭曲线的离合器目标位置控制方法,其特征在于,
    所述控制方法通过发动机控制器ECU收集油门踏板位置信号AP和当前发动机转速信号ES,且发动机控制器ECU通过数据通信总线与变速箱控制器TCU相连,发动机控制器ECU通过数据通信总线向变速箱控制器TCU发送测量到的油门踏板位置信号AP和当前发动机转速ES;TCU直接控制离合器助力缸的进气压力以实现对离合器目标位置的控制。
  3. 根据权利要求2所述的一种基于离合器传扭曲线的离合器目标位置控制方法,其特征在于,
    所述控制方法通过在油门踏板位置处增设油门踏板传感器测量油门踏板位置信号AP,所述油门踏板传感器与车辆的发动机控制器ECU相连。
  4. 根据权利要求2所述的一种基于离合器传扭曲线的离合器目标位置控制方法,其特征在于,
    所述控制方法在发动机飞轮处增设转速传感器测量当前发动机转速ES,所述转速传感器与车辆的发动机控制器ECU相连。
PCT/CN2017/111424 2016-11-17 2017-11-16 一种基于离合器传扭曲线的离合器目标位置控制方法 WO2018090958A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17871440.8A EP3543079B1 (en) 2016-11-17 2017-11-16 Target clutch position control method based on clutch torque transmission curve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611011131.5 2016-11-17
CN201611011131.5A CN106402202B (zh) 2016-11-17 2016-11-17 一种基于离合器传扭曲线的离合器目标位置控制方法

Publications (1)

Publication Number Publication Date
WO2018090958A1 true WO2018090958A1 (zh) 2018-05-24

Family

ID=58068854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111424 WO2018090958A1 (zh) 2016-11-17 2017-11-16 一种基于离合器传扭曲线的离合器目标位置控制方法

Country Status (3)

Country Link
EP (1) EP3543079B1 (zh)
CN (1) CN106402202B (zh)
WO (1) WO2018090958A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106402202B (zh) * 2016-11-17 2019-04-30 威伯科汽车控制系统(中国)有限公司 一种基于离合器传扭曲线的离合器目标位置控制方法
CN109099149B (zh) * 2017-06-20 2020-06-05 上海汽车集团股份有限公司 一种双离合变速器扭矩传递特性自适应方法及装置
CN111306291B (zh) * 2020-04-07 2021-08-10 株洲齿轮有限责任公司 一种离合器变速器起步过程控制方法
CN113944702B (zh) * 2020-07-17 2023-07-04 上海汽车集团股份有限公司 一种离合器扭矩的调整方法及装置
CN112161049B (zh) * 2020-09-17 2022-08-02 潍柴动力股份有限公司 离合器实时自学习的控制方法及装置
CN114263734B (zh) * 2021-12-29 2023-05-23 潍柴动力股份有限公司 一种车辆发动机输出扭矩的控制方法及装置
CN114962493B (zh) * 2022-06-01 2024-03-19 潍柴动力股份有限公司 Pto离合器的控制方法及设备、计算机程序产品
CN115045928B (zh) * 2022-06-14 2024-03-26 中国第一汽车股份有限公司 一种离合器传扭异常检测方法、装置、介质以及电子设备
CN115574021B (zh) * 2022-12-09 2023-03-21 潍柴动力股份有限公司 一种离合器结合控制方法、装置、车辆及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012171521A1 (de) * 2011-06-16 2012-12-20 Schaeffler Technologies AG & Co. KG Verfahren zur steuerung einer automatisierten reibungskupplung in einem antriebsstrang eines kraftfahrzeugs während eines anfahrvorgangs
CN102841542A (zh) * 2011-08-10 2012-12-26 同济大学 干式双离合器自动变速器电控单元硬件在环仿真试验台
WO2013000450A1 (de) * 2011-06-30 2013-01-03 Schaeffler Technologies AG & Co. KG Verfahren zur steuerung einer doppelkupplung in einem doppelkupplungsgetriebe
CN103244663A (zh) * 2012-08-24 2013-08-14 重庆青山工业有限责任公司 一种控制湿式双离合变速器档位接合的方法
CN104847811A (zh) * 2014-07-30 2015-08-19 北汽福田汽车股份有限公司 混合动力车用离合器控制方法
CN105697585A (zh) * 2014-09-15 2016-06-22 奥特润株式会社 离合器的接触点探测方法及装置
CN106402202A (zh) * 2016-11-17 2017-02-15 威伯科汽车控制系统(中国)有限公司 一种基于离合器传扭曲线的离合器目标位置控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2085517C (en) * 1992-01-02 1999-04-13 Chia-Hsiang Liu Touch point identification for automatic clutch controller
DE4434111A1 (de) * 1994-09-23 1996-03-28 Kongsberg Automotive Technolog Steuerung für eine automatisch betätigte Kupplung
US6071211A (en) * 1998-11-18 2000-06-06 Eaton Corporation Idle drive torque control for automated vehicle master clutch
JP4605686B2 (ja) * 2001-03-29 2011-01-05 株式会社小松製作所 インチング用油圧クラッチの制御装置
CN103359104B (zh) * 2013-07-23 2015-12-02 安徽江淮汽车股份有限公司 汽车蠕动控制方法及系统
CN105644561B (zh) * 2015-12-25 2018-04-03 潍柴动力股份有限公司 一种amt车辆起步控制方法及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012171521A1 (de) * 2011-06-16 2012-12-20 Schaeffler Technologies AG & Co. KG Verfahren zur steuerung einer automatisierten reibungskupplung in einem antriebsstrang eines kraftfahrzeugs während eines anfahrvorgangs
WO2013000450A1 (de) * 2011-06-30 2013-01-03 Schaeffler Technologies AG & Co. KG Verfahren zur steuerung einer doppelkupplung in einem doppelkupplungsgetriebe
CN102841542A (zh) * 2011-08-10 2012-12-26 同济大学 干式双离合器自动变速器电控单元硬件在环仿真试验台
CN103244663A (zh) * 2012-08-24 2013-08-14 重庆青山工业有限责任公司 一种控制湿式双离合变速器档位接合的方法
CN104847811A (zh) * 2014-07-30 2015-08-19 北汽福田汽车股份有限公司 混合动力车用离合器控制方法
CN105697585A (zh) * 2014-09-15 2016-06-22 奥特润株式会社 离合器的接触点探测方法及装置
CN106402202A (zh) * 2016-11-17 2017-02-15 威伯科汽车控制系统(中国)有限公司 一种基于离合器传扭曲线的离合器目标位置控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3543079A4

Also Published As

Publication number Publication date
EP3543079B1 (en) 2022-01-05
EP3543079A1 (en) 2019-09-25
CN106402202A (zh) 2017-02-15
CN106402202B (zh) 2019-04-30
EP3543079A4 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
WO2018090958A1 (zh) 一种基于离合器传扭曲线的离合器目标位置控制方法
WO2018090957A1 (zh) 基于离合器目标扭矩的重型卡车自动变速箱蠕行控制系统
US7878175B2 (en) Torque reserve and emission control system for coordinated torque control
US8437938B2 (en) Axle torque based cruise control
US8112217B2 (en) Exhaust brakes
US20090037073A1 (en) Power enrichment scheduling for coordinated torque control system
CN101676541B (zh) 用于协同转矩控制系统的冷起动减排策略
US20090327821A1 (en) Accumulated error time monitoring diagnostic control system
US8489303B2 (en) Powertrain control system and methods with ECM-to-TCM parameter transfer protocols for TCM based control
US9719443B2 (en) Vehicle control system and vehicle control method
US7457702B2 (en) Estimated torque calculation device of internal combustion engine and method thereof
US9850833B2 (en) Diagnosis device for internal combustion engine, and diagnosis method for internal combustion engine
CN101545410A (zh) 用于贫当量比请求的储备扭矩
US20110231071A1 (en) Powertrain control systems and methods with parameter transfer between an ecm and a tcm for ecm and tcm based control
JP2003120341A (ja) 運転者に車両制御を行わせる方法及びシステム
US20160252180A1 (en) Shift control apparatus and shift control method
US20190277215A1 (en) Controller for internal combustion engine and method for controlling internal combustion engine
JP4665790B2 (ja) 車両の振動低減制御装置
US6725659B1 (en) Apparatus and method for limiting turbocharger speed
JP2010024870A (ja) ディーゼル機関の燃料のアンチノック性指標値検出装置
JP2001020803A (ja) 車両駆動ユニットの制御方法および装置
CN104179588A (zh) 基于方向盘转角传感器的怠速转向扭矩补偿法、系统和车
JP2007056698A (ja) 内燃機関の制御装置
US20090164107A1 (en) Method for operating an internal combustion engine for a motor vehicle, and control or regulating device for an internal combustion engine for a motor vehicle
FR2936478A1 (fr) Procede d&#39;estimation de l&#39;acceleration longitudinale atteignable sur le rapport superieur au rapport actuel, pour un vehicule equipe d&#39;une boite de vitesse a rapports discrets.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017871440

Country of ref document: EP

Effective date: 20190617