WO2018090802A1 - 一种玻纤增强无卤阻燃聚丙烯材料及其制备方法与应用 - Google Patents
一种玻纤增强无卤阻燃聚丙烯材料及其制备方法与应用 Download PDFInfo
- Publication number
- WO2018090802A1 WO2018090802A1 PCT/CN2017/107753 CN2017107753W WO2018090802A1 WO 2018090802 A1 WO2018090802 A1 WO 2018090802A1 CN 2017107753 W CN2017107753 W CN 2017107753W WO 2018090802 A1 WO2018090802 A1 WO 2018090802A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass fiber
- polypropylene material
- halogen
- fiber reinforced
- free
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
- C08L23/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K13/00—Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
- C08K13/04—Ingredients characterised by their shape and organic or inorganic ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
- C08K3/26—Carbonates; Bicarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/09—Carboxylic acids; Metal salts thereof; Anhydrides thereof
- C08K5/098—Metal salts of carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3467—Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
- C08K5/3477—Six-membered rings
- C08K5/3492—Triazines
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/14—Glass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/12—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08L27/18—Homopolymers or copolymers or tetrafluoroethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/02—Flame or fire retardant/resistant
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/08—Stabilised against heat, light or radiation or oxydation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/14—Gas barrier composition
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/22—Halogen free composition
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
- C08L2205/035—Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
Definitions
- the invention relates to the technical field of polymer material modification, in particular to a glass fiber reinforced halogen-free flame-retardant polypropylene material.
- the plastic building formwork is an energy-saving green environmental protection product which is formed by molding a polymer modified material in a molten state through an injection molding/extrusion process.
- the production process is simple, and the production process has no waste water, waste gas and waste residue discharge.
- Another new generation of bamboo-wood glued formwork and combined steel formwork Since the 1980s, China's plastic formwork industry has developed over the past 30 years. Many excellent companies have developed PVC templates, wood-plastic templates, glass-reinforced polypropylene templates and other products successfully applied to the market.
- the glass fiber reinforced polypropylene building formwork is highly concerned by the market because of its light weight, moderate strength, easy demoulding, smooth and beautiful surface, excellent corrosion resistance, low water absorption, many turnover times, convenient construction and low price. It is the most common and mature material used in plastic building templates.
- Non-flame-retardant glass fiber reinforced polypropylene template is easy to be ignited in the event of fire, accompanied by melting and dripping in the combustion process, releasing a large amount of heat, and the fire spreads relatively quickly; the poisonous gas and black smoke generated by the thermal decomposition of the material People's lives are even more threatening and harmful. With the continuous development of society, people have higher and higher requirements for their own and property safety. Relevant regulations have clarified the requirements for flame retardant properties of materials in various application fields. Therefore, more and more manufacturers have put flame retardant on plastic templates. Claim.
- Flame-retardant polypropylene materials can be classified into halogen-based flame retardant and halogen-free flame retardant according to the properties of flame retardant.
- the halogen-based flame retardant has good compatibility with the polypropylene matrix and has little influence on the performance of the material, but a large amount of toxic gas such as hydrogen halide is generated when burning, which causes harm to human beings and their environment.
- Chinese patent 201410000587.6 discloses a weather-resistant polyvinyl chloride building plastic formwork and a preparation method thereof. Since the polyvinyl chloride itself is hard to burn, the requirements for the burning performance of the building formwork are satisfied. However, this type of template has high density, is not resistant to falling, has poor heat resistance, is prone to generate HCl harmful gas in the production process, corrodes the mold, and has poor mechanical properties such as tensile strength, bending strength and notched impact strength of the cantilever wall; Chinese patent 201010606685.6 Disclosed is a polypropylene material, a preparation method and an application thereof, the patent invention material meets the performance requirements of the engineering plastic building template for the material and indicates that the invention material is mainly used as an engineering plastic building formwork, but the complex material used in the invention material
- the flame retardant is a mixture of decabromodiphenylethane and antimony trioxide in a ratio of 3:1.
- the mixture is melted and dripped during combustion, and contains a large amount of toxic gas such as hydrogen bromide. poor effect.
- a large amount of smoke and toxic gases hinder people’s escape and fire fighting in the event of a fire. It has caused great harm to human beings and their environment, and gradually entered the ranks of elimination, which limited its application in the field of building templates.
- the object of the present invention is to provide a glass fiber which has good tensile strength, bending strength, cantilever notched impact strength and the like, and has excellent flame retardant and smoke suppressing functions, and does not generate smoke and harmful gases during combustion. Fiber-reinforced halogen-free flame retardant polypropylene material.
- a glass fiber reinforced halogen-free flame-retardant polypropylene material comprising, by weight, the following components:
- the weight of the calcium element is from 50 ppm to 660 ppm based on the total weight of the glass fiber reinforced halogen-free flame-retardant polypropylene material.
- the content of the calcium element is determined by the following method: 0.1 ⁇ 0.005g of glass fiber reinforced halogen-free flame-retardant polypropylene material sample is placed in a microwave digestion tank, and then 5.0 ml of nitric acid and 0.5 ml of perchloric acid are added to microwave digestion.
- the weight content of the calcium element is from 130 ppm to 300 ppm, preferably from 180 ppm to 250 ppm, based on the total weight of the glass fiber reinforced halogen-free flame-retardant polypropylene material.
- the calcium element is derived from a calcium-containing compound selected from one or a mixture of calcium oxide, calcium carbonate, calcium stearate or calcium sulfate whiskers.
- the melamine phosphate and piperazine diphosphate are weighed in a ratio of 1-2:1 by mass ratio, placed in a reaction kettle, stirred and uniformly mixed, and controlled under vacuum or inert gas, at a temperature of 200-350 ° C. Dehydration condensation reaction for 2-3h, after cooling, the above materials are poured into a high-speed mixer, and 100 parts of the above materials are added, and then 1-10 parts of nano-oxide, 1 part - 2 parts of anti-drip agent and 0.1 are added. Part 2 parts of silicone oil is stirred and mixed uniformly to obtain the phosphorus-nitrogen halogen-free intumescent flame retardant.
- the glass fibers are alkali-free glass fibers.
- a glass fiber reinforced halogen-free flame-retardant polypropylene material further comprising 5-10 parts of a graft compatibilizer and 1-10 parts of a toughening agent
- the graft compatibilizer is a graft polymer of a polar monomer and a polypropylene, wherein the polar monomer is selected from a mixture of one or more of maleic anhydride, acrylic acid and acrylate derivatives,
- the toughening agent is selected from a mixture of one or more of POE, EPDM, LLDPE, LDPE or HDPE.
- a glass fiber reinforced halogen-free flame-retardant polypropylene material which further comprises 0.2-1 parts of an antioxidant, 0.2-0.5 parts of a lubricant and 0.3-1 parts of a light stabilizer, and the antioxidant is selected from a hindered amine, a hindered phenol or a mixture of one or more of a phosphite, a calixarene, and a thioester, the lubricant being selected from the group consisting of one or more of an amide, a metal soap, and a low molecular ester, a light stabilizer
- a mixture of the ultraviolet light absorber and the hindered amine light stabilizer is compounded in a ratio of 1-2:1 by mass.
- a method for preparing a glass fiber reinforced halogen-free flame-retardant polypropylene material comprising the following steps:
- the present invention has the following advantages:
- the present inventors have found that when the content of calcium element in the glass fiber reinforced halogen-free flame-retardant polypropylene material of the present invention is from 50 ppm to 660 ppm, the glass fiber reinforced halogen-free flame-retardant polypropylene material is subjected to When heated or burned, the surface can form a uniform porous carbon foam layer, which can play the role of heat insulation, oxygen barrier, smoke suppression and anti-melting. It is halogen-free, environmentally friendly, low-smoke, low-toxic and non-corrosive. Producing gas, with good flame retardant and smoke suppressing functions, meets the requirements of people for flame retardant plastic building formwork, can effectively reduce the generation of poisonous gas and toxic smoke in the event of fire, reduce the speed of fire spread, and strive for valuable for people. Escape time
- the invention improves the strength and heat resistance of the polypropylene material by adding the glass fiber, and can resist the deformation of the plastic template due to the heat of the cement during use; adding the light stabilizer significantly improves the weather resistance of the material of the invention. Extend the service life of the building formwork; increase the toughness of the product by adding toughening agent to achieve a good balance of toughness and toughness, and the drop resistance of the formwork is good, which increases the number of turnovers of the formwork during use.
- Piperazine diphosphate selected from Blonde Technology Co., Ltd.;
- Nano zinc oxide produced from Zhuzhou Zexiang Industrial Co., Ltd.;
- Polytetrafluoroethylene produced by Guangzhou Entropic Energy New Materials Co., Ltd.;
- Polypropylene Select PP N-Z30S from Maoming Petrochemical
- E-glass fiber ESC13-4.5-T438H selected from Taishan glass fiber
- Toughener POE DF610 from Mitsui Chemicals
- the light stabilizer is composed of ultraviolet light absorber and hindered amine light stabilizer in a ratio of 1-2:1: ultraviolet light absorber, UV-531, produced from Cytec Engineering Materials (Shanghai) Co., Ltd.; Agent; UV-3808PP5, produced from Cytec Engineering Materials (Shanghai) Co., Ltd.;
- Silicone oil dimethyl polysiloxane, produced by Dow Corning.
- the melamine phosphate and piperazine diphosphate are weighed in a ratio of 1-2:1 by mass ratio, placed in a reaction kettle, stirred and uniformly mixed, and the temperature of the reaction kettle is controlled at 200-350 ° C, and the dehydration condensation reaction under vacuum conditions is 2 - 3h; cooling, pouring and placing in a high-speed mixer, adding 1-10 parts of nano zinc oxide, 1 part - 2 parts of polytetrafluoroethylene and 0.1 part - 2 parts of silicone oil, stirring and mixing uniformly, to obtain the use of the present invention Phosphorus and nitrogen halogen-free intumescent flame retardant.
- the content of calcium in the glass fiber reinforced halogen-free flame-retardant polypropylene material can be controlled by changing the quality of the calcium-containing compound: calcium stearate, calcium carbonate or calcium oxide.
- the glass fiber reinforced halogen-free flame-retardant polypropylene material obtained in the above examples and comparative examples was injection molded into an ISO standard mechanical spline and a 100*100*3 mm square plate by an injection molding machine, and the temperature of the injection molding machine was controlled at 200-230 °C.
- the tensile strength is tested according to the ISO 527 standard, the sample is a type I sample, and the test equipment is a tensile testing machine Z020 of Zwick, Germany;
- the bending strength and flexural modulus are tested according to ISO 178, the sample size is 80*10*4mm, and the test equipment is the bending test machine Z005 of Zwick Roell Company of Germany;
- Cantilever beam notched impact strength according to ISO 180 method, 4mm thick specimen, A-type injection gap, the test equipment is Zwick Roell's impact tester HIT5.5P;
- the combustion performance of the material was judged by the average heat release rate, total smoke generation and ignition time obtained by the cone calorimeter method (heater power: 5 kw);
- the weather resistance of the material is judged according to the surface pulverization time obtained by aging the xenon lamp.
- the prepared glass fiber reinforced halogen-free flame-retardant polypropylene material has significantly improved flame retardant and smoke suppressing functions, and It can maintain good mechanical properties and excellent overall performance.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
本发明公开了一种玻纤增强无卤阻燃聚丙烯材料及其制备方法与应用。本发明材料由包含以下重量份的组分制成:聚丙烯20-50份,磷氮类无卤膨胀型阻燃剂5-30份,玻璃纤维30-50份,其中,基于玻纤增强无卤阻燃聚丙烯材料总重量,钙元素的重量含量为50ppm-660ppm,优选为130ppm-300ppm,更优选为180ppm-250ppm。惊讶的发现,本发明通过在玻纤增强无卤阻燃聚丙烯材料中添加微量的钙元素,将所述聚丙烯材料中的钙元素含量控制在50ppm-660ppm范围内,所述聚丙烯材料将具有明显改善的阻燃和抑烟功能,优异的耐候性能,优良的耐热性、耐水耐腐蚀性等特点,是工程塑料建筑模板最合适的塑胶材料。本发明所述玻纤增强无卤阻燃聚丙烯材料可以广泛应用于塑胶建筑模板,具有很高的应用价值和广阔的应用前景。
Description
本发明涉及高分子材料改性技术领域,具体涉及一种玻纤增强无卤阻燃聚丙烯材料。
塑料建筑模板是一种由高分子改性材料在熔融状态下通过注塑/挤出工艺一次成型的节能型绿色环保产品,生产工序简便,生产过程无废水、废气和废渣排放,是继木模板、竹木胶合模板和组合钢模板之后的又一新型换代产品。我国塑料模板产业从上世纪80年代开始,历经30多年的发展,先后有许多优秀的企业研制了PVC模板、木塑模板、玻纤增强聚丙烯模板等产品并成功应用于市场。其中,玻纤增强聚丙烯建筑模板由于其质轻,强度适中,易脱模,表面光滑美观,耐腐蚀性能优异,吸水率低,周转次数多,施工方便,价格便宜等优势而备受市场关注,是目前塑料建筑模板中应用最常见、最成熟的材料。
但是,由于非阻燃的玻纤增强聚丙烯材料氧指数仅17.4-18.5,UL阻燃级别为HB级;按GB 8624-2012《建筑材料及制品燃烧性能分级及相应测试方法》仅被列为E级,属于易燃材料。非阻燃的玻纤增强聚丙烯模板在发生火灾时容易被点燃,在燃烧过程中伴随有熔融滴落蔓延,释放大量的热,火势蔓延相对较快;材料受热分解产生的毒气、黑烟对人们的生命安全更是造成巨大的威胁与伤害。随着社会的不断发展,人们对自身及财产安全要求越来越高,相关法规明确了各应用领域对材料阻燃性能的要求,因此,越来越多的厂家对塑料模板提出了阻燃的要求。
阻燃聚丙烯材料按阻燃剂属性分可分为有卤阻燃和无卤阻燃。有卤系阻燃剂与聚丙烯基体相容性好、对材料的性能影响小,但是燃烧时发烟量大、产生卤化氢等大量的有毒气体,对人类自身及其环境产生危害。
中国专利201410000587.6公开了耐候性聚氯乙烯建筑塑料模板及制备方法,由于聚氯乙烯本身难燃,满足了对建筑模板燃烧性能的要求。但该类型模板密度大,不耐跌落,耐热性差,生产过程中容易产生HCl有害气体,腐蚀模具,且模板拉伸强度、弯曲强度、悬梁壁缺口冲击强度等力学性能较差;中国专利201010606685.6公开了一种聚丙烯材料、制备方法及其应用,该专利发明材料符合工程塑料建筑模板对材料的性能要求并指出该发明材料主要用作工程塑料建筑模板的用途,但该发明材料所用的复配阻燃剂为十溴二苯乙烷和三氧化二锑按3:1比例复配组成的混合物,在燃烧时熔融滴落蔓延,浓烟、产生溴化氢等大量的有毒气体,阻燃效果差。大量的烟和有毒气体在火灾发生时阻碍了人们的逃生和灭火行
动,对人类自身及其环境产生很大的危害,逐渐进入淘汰行列,限制了其在建筑模板领域的应用。
发明内容
本发明的目的在于提供一种具有良好的拉伸强度、弯曲强度、悬臂梁缺口冲击强度等力学性能,阻燃和抑烟功能优秀,在燃烧时不会产生浓烟和有害气体的一种玻纤增强无卤阻燃聚丙烯材料。
为了实现该目的,采用以下技术方案:
一种玻纤增强无卤阻燃聚丙烯材料,按重量份计,包括以下组分:
聚丙烯 20-50份
磷氮类无卤膨胀型阻燃剂 5-30份
玻璃纤维 30-50份。
基于玻纤增强无卤阻燃聚丙烯材料总重量,钙元素的重量含量为50ppm-660ppm。
所述钙元素的含量是采用如下方法测定:取0.1±0.005g玻纤增强无卤阻燃聚丙烯材料样品,放入微波消解罐中,再加入硝酸5.0ml和高氯酸0.5ml于微波消解罐中,使其完全浸没样品,再慢慢滴入过氧化氢1.0ml,使样品与硝酸、高氯酸和过氧化氢的混合物反应1-2min,盖上盖子,密封微波消解罐,放入微波消解炉中进行消解,消解完成后,冷至室温,将微波消解罐中的溶液用0.45um的过滤膜转移至容量瓶中,用适量蒸馏水多次冲洗微波消解罐并将冲洗液转移至容量瓶中,再用蒸馏水稀释至刻度线50mL,摇匀,然后使用ICP-OES测定溶液中钙元素的浓度。
基于玻纤增强无卤阻燃聚丙烯材料的总重,钙元素的重量含量为130ppm-300ppm,优选为180ppm-250ppm。
所述的钙元素来自含钙化合物,所述含钙化合物选自氧化钙、碳酸钙、硬脂酸钙或硫酸钙晶须中的一种或几种的混合物。
将磷酸三聚氰胺、二磷酸哌嗪按质量比为1-2:1的比例称量后置于反应釜中,搅拌混合均匀,在真空或惰性气体保护下,控制反应釜温度在200-350℃,脱水缩合反应2-3h,冷却后将上述物料倒出置于高速混合机中,以上述物料为100份计,再加入1-10份纳米氧化物,1份-2份抗滴落剂和0.1份-2份硅油,搅拌混合均匀,得到所述磷氮类无卤膨胀型阻燃剂。
所述玻璃纤维为无碱玻璃纤维。
一种玻纤增强无卤阻燃聚丙烯材料,还包括接枝相容剂5-10份和增韧剂1-10份,所
述接枝相容剂为极性单体与聚丙烯的接枝聚合物,其中极性单体选自马来酸酐、丙烯酸和丙烯酸酯类衍生物中的一种或几种的混合物,所述增韧剂选自POE、EPDM、LLDPE、LDPE或HDPE中的一种或几种的混合物。
一种玻纤增强无卤阻燃聚丙烯材料,还包括抗氧剂0.2-1份、润滑剂0.2-0.5份和光稳定剂0.3-1份,抗氧剂选自受阻胺类、受阻酚类或亚磷酸酯类、杯芳烃类和硫代酯中的一种或几种的混合物,润滑剂选自酰胺类、金属皂类和低分子酯类中的一种或几种的混合物,光稳定剂为紫外光吸收剂和受阻胺光稳定剂按质量比为1-2:1的比例复配组成的混合物。
一种玻纤增强无卤阻燃聚丙烯材料的制备方法,包括如下步骤:
按配比称取聚丙烯、磷氮类无卤膨胀型阻燃剂、接枝相容剂、增韧剂、含钙化合物、抗氧剂、光稳定剂、润滑剂置于高速混合机中,在常温下混合均匀后倒入双螺杆挤出机的主喂料口;玻璃纤维倒入双螺杆挤出机后端的侧喂料口,控制挤出机加工温度为190~230℃,挤出切粒得到所需玻纤增强无卤阻燃聚丙烯材料。
玻纤增强无卤阻燃聚丙烯材料在工程塑料建筑模板中的应用。
相比现有技术,本发明具有以下好处:
1)通过大量实验,本发明发现,当本发明中的玻纤增强无卤阻燃聚丙烯材料中的钙元素的含量为50ppm-660ppm,所述玻纤增强无卤阻燃聚丙烯材料在受强热或燃烧时,表面可生成一层均匀的多孔炭质泡沫层,能起到隔热、隔氧、抑烟、防熔滴的作用,且无卤环保、低烟、低毒、无腐蚀性气体产生,具有良好的阻燃和抑烟功能,满足了人们对塑胶建筑模板阻燃化的要求,在发生火灾时能有效降低毒气、毒烟产生,降低火势蔓延速度,为人们争取宝贵的逃生时间;
2)本发明通过加入玻璃纤维提高了聚丙烯材料的强度和耐热性,可以抵抗塑料模板在使用过程中由于水泥发热导致的变形;添加光稳定剂,显著提升了本发明材料的耐候性能,延长建筑模板的使用寿命;通过添加增韧剂提升产品的韧性,实现良好的刚韧平衡,模板的耐跌落性好,增加了模板在使用过程中的周转次数。
下面通过具体实施方式来进一步说明本发明,以下实施例为本发明较佳的实施方式,但本发明的实施方式并不受下述实施例的限制。
以下是实施例和对比例所用到的原料,但实施该发明不限于以下原料:
磷酸三聚氰胺:四川精细化工研究设计院;
二磷酸哌嗪:选自金发科技股份有限公司;
纳米氧化锌:产自株洲泽湘实业有限公司;
硬脂酸钙:中山华明泰化工股份有限公司;
碳酸钙:东莞梅立泰化工有限公司;
氧化钙:东莞市汇意化工材料有限公司;
聚四氟乙烯:产自广州熵能新材料股份有限公司;
聚丙烯:选用茂名石化的PP N-Z30S;
无碱玻璃纤维:选用泰山玻纤的ESC13-4.5-T438H;
接枝相容剂:选用南海柏晨公司的PC-1;
增韧剂:选用三井化学的POE DF610;
抗氧剂选用受阻酚类抗氧剂1010和亚磷酸酯类抗氧剂168,产自天津利安隆新材料股份有限公司;
润滑剂:选用中山华明泰化工股份有限公司的EBS P400;
光稳定剂为紫外光吸收剂和受阻胺光稳定剂按1-2:1比例复配组成:紫外光吸收剂,UV-531,产自氰特工程材料(上海)有限公司;受阻胺光稳定剂;UV-3808PP5,产自氰特工程材料(上海)有限公司;
硅油,二甲基聚硅氧烷,产自陶氏道康宁。
磷氮类无卤膨胀型阻燃剂的制备:
将磷酸三聚氰胺、二磷酸哌嗪按质量比为1-2:1比例称量后置于反应釜中,搅拌混合均匀,控制反应釜温度在200-350℃,在真空条件下脱水缩合反应2-3h;冷却,倒出置于高速混合机中,加入1-10份纳米氧化锌,1份-2份聚四氟乙烯和0.1份-2份硅油,搅拌混合均匀,得到本发明所需要用到磷氮类无卤膨胀型阻燃剂。
玻纤增强无卤阻燃聚丙烯材料的制备:
按表1配比称取聚丙烯、磷氮类无卤膨胀型阻燃剂、接枝相容剂、增韧剂、含钙化合物、抗氧剂、光稳定剂、润滑剂置于高速混合机中,在常温下混合均匀后倒入双螺杆挤出机的主喂料口;玻璃纤维倒入双螺杆挤出机后端的侧喂料口,控制挤出机加工温度为190~230℃,挤出切粒得到所需玻纤增强无卤阻燃聚丙烯材料。
通过改变加入含钙化合物:硬脂酸钙、碳酸钙或氧化钙的质量,可以控制上述玻纤增强无卤阻燃聚丙烯材料中钙元素的含量。将上述实施例和对比例所得到的玻纤增强无卤阻燃聚丙烯材料通过注塑机注塑成ISO标准力学样条和100*100*3mm方板,注塑机温度控制在200-230℃。
性能测试:
玻纤增强无卤阻燃聚丙烯材料的综合力学性能通过测试所得的拉伸强度、弯曲强度、弯曲模量、悬臂梁缺口冲击强度进行判断:
拉伸强度按ISO 527标准进行测试,试样为Ⅰ型试样,测试设备为德国Zwick公司的拉伸试验机Z020;
弯曲强度和弯曲模量按ISO 178标准进行测试,试样尺寸为80*10*4mm,测试设备为德国Zwick Roell公司的弯曲试验机Z005;
密度:按ISO 1183-1:2004标准的浸渍法,温度为23℃,浸渍液为H2O;
悬臂梁缺口冲击强度:按ISO 180方法,4mm厚的试样,A型注塑缺口,测试设备为德国Zwick Roell公司的冲击测试机HIT5.5P;
材料的燃烧性能通过锥形量热法(CONE Calorimeter Method,加热器功率:5kw)测试所得的平均热释放速率、总烟生成和引燃时间来进行判断;
材料的耐候性能根据氙灯老化所得的表面粉化时间进行判断,测试标准:ISO 4892-2;
钙元素含量分析:
取0.1±0.005g玻纤增强无卤阻燃改性聚丙烯材料样品,放入微波消解罐中,再加入硝酸5.0ml和高氯酸0.5ml于微波消解罐中,使其完全浸没样品,再慢慢滴入过氧化氢1.0ml,使样品与硝酸、高氯酸和过氧化氢的混合物反应1-2min,盖上盖子,密封微波消解罐,放入微波消解炉中进行消解,消解完成后,冷至室温,将微波消解罐中的溶液用0.45um的过滤膜转移至容量瓶中,用适量蒸馏水多次冲洗微波消解罐并将冲洗液转移至容量瓶中,再用蒸馏水稀释至刻度线50mL,摇匀,然后使用ICP-OES测定溶液中钙元素的浓度。
表1 实施例1-12及对比例1-2的各组分配比(重量份)及各性能测试结果
续表1
由表1可知,当本发明中玻纤增强无卤阻燃聚丙烯材料中的钙元素的重量含量为50ppm-660ppm,优选为130ppm-300ppm时,玻纤增强无卤阻燃聚丙烯材料的阻燃和抑烟功能较好,且力学性能优良。对比例1-2中,当玻纤增强无卤阻燃聚丙烯材料中钙元素的含量小于50ppm或大于660ppm时,玻纤增强无卤阻燃聚丙烯材料的平均热释放速率、总烟生成明显
高于实施例。由此可以看出,通过控制玻纤增强无卤阻燃聚丙烯材料中的钙元素的含量,制备得到的玻纤增强无卤阻燃聚丙烯材料具有明显改善的阻燃和抑烟功能,还能够保持良好的力学性能,综合性能优异。
Claims (11)
- 一种玻纤增强无卤阻燃聚丙烯材料,其特征在于,按重量份计,包括以下组分:聚丙烯 20-50份磷氮类无卤膨胀型阻燃剂 5-30份玻璃纤维 30-50份。
- 根据权利要求1所述的一种玻纤增强无卤阻燃聚丙烯材料,其特征在于,其中,基于玻纤增强无卤阻燃聚丙烯材料总重量钙元素的重量含量为50ppm-660ppm。
- 根据权利要求2所述的一种玻纤增强无卤阻燃聚丙烯材料,其特征在于,所述钙元素的含量是采用如下方法测定:取0.1±0.005g玻纤增强无卤阻燃聚丙烯材料样品,放入微波消解罐中,再加入硝酸5.0ml和高氯酸0.5ml于微波消解罐中,使其完全浸没样品,再慢慢滴入过氧化氢1.0ml,使样品与硝酸、高氯酸和过氧化氢的混合物反应1-2min,盖上盖子,密封微波消解罐,放入微波消解炉中进行消解,消解完成后,冷至室温,将微波消解罐中的溶液用0.45um的过滤膜转移至容量瓶中,用适量蒸馏水多次冲洗微波消解罐并将冲洗液转移至容量瓶中,再用蒸馏水稀释至刻度线50mL,摇匀,然后使用ICP-OES测定溶液中钙元素的浓度。
- 根据权利要求2玻纤增强无卤阻燃聚丙烯材料,其特征在于,基于玻纤增强无卤阻燃聚丙烯材料的总重,钙元素的重量含量为130ppm-300ppm,优选为180ppm-250ppm。
- 根据权利要求2所述的一种玻纤增强无卤阻燃聚丙烯材料,其特征在于,所述的钙元素来自含钙化合物,所述含钙化合物选自氧化钙、碳酸钙、硬脂酸钙或硫酸钙晶须中的一种或几种的混合物。
- 根据权利要求1所述的一种玻纤增强无卤阻燃聚丙烯材料,其特征在于,将磷酸三聚氰胺、二磷酸哌嗪按质量比为1-2:1的比例称量后置于反应釜中,搅拌混合均匀,在真空或惰性气体保护下,控制反应釜温度在200-350℃,脱水缩合反应2-3h,冷却后将上述物料倒出置于高速混合机中,以上述物料为100份计,再加入1-10份纳米氧化物,1份-2份抗滴落剂和0.1份-2份硅油,搅拌混合均匀,得到所述磷氮类无卤膨胀型阻燃剂。
- 根据权利要求1所述的一种玻纤增强无卤阻燃聚丙烯材料,其特征在于,所述玻璃纤维为无碱玻璃纤维。
- 根据权利要求1所述的一种玻纤增强无卤阻燃聚丙烯材料,其特征在于,还包括接枝相容剂5-10份和增韧剂1-10份,所述接枝相容剂为极性单体与聚丙烯的接枝聚合物,其中极性单体选自马来酸酐、丙烯酸和丙烯酸酯类衍生物中的一种或几种的混合物,所述增韧剂选自POE、EPDM、LLDPE、LDPE或HDPE中的一种或几种的混合物。
- 根据权利要求1所述的一种玻纤增强无卤阻燃聚丙烯材料,其特征在于,还包括抗氧剂0.2-1份、润滑剂0.2-0.5份和光稳定剂0.3-1份,抗氧剂选自受阻胺类、受阻酚类或亚磷酸酯类、杯芳烃类和硫代酯中的一种或几种的混合物,润滑剂选自酰胺类、金属皂类和低分子酯类中的一种或几种的混合物,光稳定剂为紫外光吸收剂和受阻胺光稳定剂按质量比为1-2:1的比例复配组成的混合物。
- 权利要求1-9任一项所述一种玻纤增强无卤阻燃聚丙烯材料的制备方法,其特征在于,所述方法包括如下步骤:按配比称取聚丙烯、磷氮类无卤膨胀型阻燃剂、接枝相容剂、增韧剂、含钙化合物、抗氧剂、光稳定剂、润滑剂置于高速混合机中,在常温下混合均匀后倒入双螺杆挤出机的主喂料口;玻璃纤维倒入双螺杆挤出机后端的侧喂料口,控制挤出机加工温度为190~230℃,挤出切粒得到所需玻纤增强无卤阻燃聚丙烯材料。
- 权利要求1-9任一项所述一种玻纤增强无卤阻燃聚丙烯材料在工程塑料建筑模板中的应用。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611006255.4A CN108070143B (zh) | 2016-11-16 | 2016-11-16 | 一种玻纤增强无卤阻燃聚丙烯材料及其制备方法与应用 |
CN201611006255.4 | 2016-11-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018090802A1 true WO2018090802A1 (zh) | 2018-05-24 |
Family
ID=62146156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/107753 WO2018090802A1 (zh) | 2016-11-16 | 2017-10-26 | 一种玻纤增强无卤阻燃聚丙烯材料及其制备方法与应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108070143B (zh) |
WO (1) | WO2018090802A1 (zh) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108707305A (zh) * | 2018-06-01 | 2018-10-26 | 山东冬瑞高新技术开发有限公司 | 一种建筑模板材料及其制备方法 |
CN111057339A (zh) * | 2019-12-30 | 2020-04-24 | 金旸(厦门)新材料科技有限公司 | 一种低气味低voc聚丙烯复合材料及其制备方法 |
CN111925589A (zh) * | 2020-07-09 | 2020-11-13 | 柏力开米复合塑料(昆山)有限公司 | 一种永久抗静电抗菌的pp玻纤增强材料 |
CN112143082A (zh) * | 2020-10-10 | 2020-12-29 | 刘小龙 | 一种高强度阻燃pe材料及其制备方法 |
CN112159549A (zh) * | 2020-08-31 | 2021-01-01 | 浙江工业大学 | 一种阻燃剂及其应用 |
CN113337041A (zh) * | 2021-07-16 | 2021-09-03 | 安庆市悦发管业有限公司 | 一种具有高绝缘性的电力电缆护套管 |
CN114085504A (zh) * | 2021-12-24 | 2022-02-25 | 惠州市同益尖端新材料科技有限公司 | Pp/pbt复合材料及其制备方法 |
CN114854077A (zh) * | 2022-04-27 | 2022-08-05 | 惠州市长园特发科技有限公司 | 一种低烟无卤阻燃聚丙烯发泡材料及其制备方法 |
CN114907666A (zh) * | 2022-06-02 | 2022-08-16 | 安徽粟米塑业有限公司 | 一种阻燃高强度abs塑料 |
CN115073849A (zh) * | 2022-07-29 | 2022-09-20 | 苏州旭光聚合物有限公司 | 一种汽车前大灯壳体用玻纤增强聚丙烯材料及其制备方法 |
CN115216090A (zh) * | 2022-08-25 | 2022-10-21 | 佛山市湘聚新材料有限公司 | 一种建筑模板材料及其制备方法 |
CN115368716A (zh) * | 2022-10-08 | 2022-11-22 | 深圳市宝御顺实业有限公司 | 一种高效阻燃的塑料制备方法 |
CN115433411A (zh) * | 2022-09-28 | 2022-12-06 | 山东巨嘉电气有限公司 | 一种抗高温耐外压的mpp管材及其制作方法 |
CN116041846A (zh) * | 2022-12-28 | 2023-05-02 | 上海日之升科技有限公司 | 一种高频振动环境使用的低蠕变紫外阻燃材料 |
CN116239841A (zh) * | 2023-02-28 | 2023-06-09 | 深圳市金志成塑胶科技有限公司 | 阻燃聚丙烯复合材料 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109113324A (zh) * | 2018-10-17 | 2019-01-01 | 青岛兴泰塑业有限公司 | 纳米杂化复合共挤新型中空建筑模板 |
CN112552584A (zh) * | 2019-09-26 | 2021-03-26 | 合肥杰事杰新材料股份有限公司 | 一种新型可陶瓷化阻燃聚丙烯复合材料及其制备方法 |
CN116376154B (zh) * | 2022-12-26 | 2024-05-10 | 爱丽家居科技股份有限公司 | 一种无卤阻燃pp硬质地板及其制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101139455A (zh) * | 2007-10-17 | 2008-03-12 | 深圳市科聚新材料有限公司 | 一种阻燃增强聚丙烯材料及其制备方法 |
CN101412830A (zh) * | 2008-12-02 | 2009-04-22 | 上海金发科技发展有限公司 | 无卤阻燃聚丙烯复合材料及其制备方法 |
WO2009063732A1 (ja) * | 2007-11-14 | 2009-05-22 | Adeka Corporation | 加工性の改善された難燃剤組成物、難燃性合成樹脂組成物及びその成形品 |
CN102604202A (zh) * | 2011-12-26 | 2012-07-25 | 上海金发科技发展有限公司 | 一种玻纤增强无卤阻燃聚丙烯复合材料及其制备方法 |
CN102643478A (zh) * | 2012-04-16 | 2012-08-22 | 上海金发科技发展有限公司 | 一种无卤阻燃长玻璃纤维增强聚丙烯材料及其制备方法 |
CN103589052A (zh) * | 2012-08-14 | 2014-02-19 | 滁州格美特科技有限公司 | 一种耐水阻燃聚丙烯复合材料及其制备方法 |
CN104098836A (zh) * | 2014-06-27 | 2014-10-15 | 广东威林工程塑料有限公司 | 一种含聚酰胺成炭剂的无卤阻燃增强聚丙烯材料及其制备方法 |
CN105017563A (zh) * | 2015-07-09 | 2015-11-04 | 金发科技股份有限公司 | 一种无卤阻燃剂组合物的制备方法和由其组成的阻燃聚烯烃组合物 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102417661A (zh) * | 2011-11-24 | 2012-04-18 | 上海日之升新技术发展有限公司 | 玻纤增强无卤阻燃聚丙烯复合材料及其制备方法 |
CN103589103B (zh) * | 2012-08-14 | 2018-07-13 | 合肥杰事杰新材料股份有限公司 | 一种长玻纤增强聚丙烯复合材料、制备方法及其应用 |
JP5860910B2 (ja) * | 2014-02-14 | 2016-02-16 | 株式会社フジクラ | 難燃性樹脂組成物、及び、これを用いた成形体 |
-
2016
- 2016-11-16 CN CN201611006255.4A patent/CN108070143B/zh active Active
-
2017
- 2017-10-26 WO PCT/CN2017/107753 patent/WO2018090802A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101139455A (zh) * | 2007-10-17 | 2008-03-12 | 深圳市科聚新材料有限公司 | 一种阻燃增强聚丙烯材料及其制备方法 |
WO2009063732A1 (ja) * | 2007-11-14 | 2009-05-22 | Adeka Corporation | 加工性の改善された難燃剤組成物、難燃性合成樹脂組成物及びその成形品 |
CN101412830A (zh) * | 2008-12-02 | 2009-04-22 | 上海金发科技发展有限公司 | 无卤阻燃聚丙烯复合材料及其制备方法 |
CN102604202A (zh) * | 2011-12-26 | 2012-07-25 | 上海金发科技发展有限公司 | 一种玻纤增强无卤阻燃聚丙烯复合材料及其制备方法 |
CN102643478A (zh) * | 2012-04-16 | 2012-08-22 | 上海金发科技发展有限公司 | 一种无卤阻燃长玻璃纤维增强聚丙烯材料及其制备方法 |
CN103589052A (zh) * | 2012-08-14 | 2014-02-19 | 滁州格美特科技有限公司 | 一种耐水阻燃聚丙烯复合材料及其制备方法 |
CN104098836A (zh) * | 2014-06-27 | 2014-10-15 | 广东威林工程塑料有限公司 | 一种含聚酰胺成炭剂的无卤阻燃增强聚丙烯材料及其制备方法 |
CN105017563A (zh) * | 2015-07-09 | 2015-11-04 | 金发科技股份有限公司 | 一种无卤阻燃剂组合物的制备方法和由其组成的阻燃聚烯烃组合物 |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108707305A (zh) * | 2018-06-01 | 2018-10-26 | 山东冬瑞高新技术开发有限公司 | 一种建筑模板材料及其制备方法 |
CN108707305B (zh) * | 2018-06-01 | 2020-08-28 | 青州市第一建筑工程有限公司 | 一种建筑模板材料及其制备方法 |
CN111057339A (zh) * | 2019-12-30 | 2020-04-24 | 金旸(厦门)新材料科技有限公司 | 一种低气味低voc聚丙烯复合材料及其制备方法 |
CN111057339B (zh) * | 2019-12-30 | 2022-07-08 | 金旸(厦门)新材料科技有限公司 | 一种低气味低voc聚丙烯复合材料及其制备方法 |
CN111925589A (zh) * | 2020-07-09 | 2020-11-13 | 柏力开米复合塑料(昆山)有限公司 | 一种永久抗静电抗菌的pp玻纤增强材料 |
CN112159549A (zh) * | 2020-08-31 | 2021-01-01 | 浙江工业大学 | 一种阻燃剂及其应用 |
CN112143082A (zh) * | 2020-10-10 | 2020-12-29 | 刘小龙 | 一种高强度阻燃pe材料及其制备方法 |
CN113337041A (zh) * | 2021-07-16 | 2021-09-03 | 安庆市悦发管业有限公司 | 一种具有高绝缘性的电力电缆护套管 |
CN114085504A (zh) * | 2021-12-24 | 2022-02-25 | 惠州市同益尖端新材料科技有限公司 | Pp/pbt复合材料及其制备方法 |
CN114854077A (zh) * | 2022-04-27 | 2022-08-05 | 惠州市长园特发科技有限公司 | 一种低烟无卤阻燃聚丙烯发泡材料及其制备方法 |
CN114907666A (zh) * | 2022-06-02 | 2022-08-16 | 安徽粟米塑业有限公司 | 一种阻燃高强度abs塑料 |
CN114907666B (zh) * | 2022-06-02 | 2023-05-30 | 安徽粟米塑业有限公司 | 一种阻燃高强度abs塑料 |
CN115073849A (zh) * | 2022-07-29 | 2022-09-20 | 苏州旭光聚合物有限公司 | 一种汽车前大灯壳体用玻纤增强聚丙烯材料及其制备方法 |
CN115216090A (zh) * | 2022-08-25 | 2022-10-21 | 佛山市湘聚新材料有限公司 | 一种建筑模板材料及其制备方法 |
CN115433411A (zh) * | 2022-09-28 | 2022-12-06 | 山东巨嘉电气有限公司 | 一种抗高温耐外压的mpp管材及其制作方法 |
CN115368716A (zh) * | 2022-10-08 | 2022-11-22 | 深圳市宝御顺实业有限公司 | 一种高效阻燃的塑料制备方法 |
CN115368716B (zh) * | 2022-10-08 | 2023-08-15 | 东莞市帝泰新材料有限公司 | 一种高效阻燃的塑料制备方法 |
CN116041846A (zh) * | 2022-12-28 | 2023-05-02 | 上海日之升科技有限公司 | 一种高频振动环境使用的低蠕变紫外阻燃材料 |
CN116041846B (zh) * | 2022-12-28 | 2024-02-23 | 上海日之升科技有限公司 | 一种高频振动环境使用的低蠕变紫外阻燃材料 |
CN116239841A (zh) * | 2023-02-28 | 2023-06-09 | 深圳市金志成塑胶科技有限公司 | 阻燃聚丙烯复合材料 |
Also Published As
Publication number | Publication date |
---|---|
CN108070143B (zh) | 2020-06-23 |
CN108070143A (zh) | 2018-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018090802A1 (zh) | 一种玻纤增强无卤阻燃聚丙烯材料及其制备方法与应用 | |
CN104231575B (zh) | 一种无卤无膦pbt增强复合材料及其制备方法 | |
CN102585378B (zh) | 一种高耐热玻纤增强无卤阻燃聚丙烯及其生产方法 | |
CN101659779B (zh) | 一种无卤阻燃abs树脂及其制备方法 | |
CN109880248B (zh) | 一种甲基八溴醚阻燃聚苯乙烯复合材料及其制备方法 | |
CN109749463B (zh) | 高分子防火防潮封堵剂及其制备方法和应用 | |
CN100467530C (zh) | 环保阻燃abs专用料及其制备方法 | |
CN104592707A (zh) | 基于abs塑料的a级防火材料 | |
CN112745571B (zh) | 一种无锑阻燃陶瓷化聚烯烃组合物及其制备方法和应用 | |
CN102477184A (zh) | 一种高光泽阻燃聚丙烯复合材料及其制备方法 | |
CN102643469A (zh) | 一种ldpe/eva阻燃复合材料及其制备方法 | |
CN102101932A (zh) | 高光阻燃耐热abs合金及其制备方法 | |
CN110511554A (zh) | 无卤阻燃氮磷硅改性石墨烯/聚碳酸酯/abs合金材料及其制备方法 | |
CN107141659B (zh) | 一种聚氯乙烯耐热防火复合材料及其制备方法 | |
NO314358B1 (no) | Lavtemperaturbestandig halogenfritt, harpiksmateriale, samt anvendelse av samme | |
CN105778268A (zh) | 一种聚丙烯无卤纳米蒙脱土阻燃复合材料及其制备方法 | |
CN107383525A (zh) | 环保阻燃pe材料及其制备方法和用途 | |
CN101704982B (zh) | 一种阻燃高抗冲聚苯乙烯复合物及其制备方法 | |
CN108384178A (zh) | 一种无卤阻燃abs复合材料及其制备方法 | |
CN103360739B (zh) | 一种磷系协效阻燃pc/abs合金材料及其制备方法 | |
CN112080037A (zh) | 一种阻燃剂及其制备方法、阻燃材料及其制备方法 | |
CN104311967A (zh) | 一种用于高密度聚乙烯的阻燃剂 | |
CN110819058A (zh) | 一种核壳结构纳米凹凸棒土/氢氧化镁掺杂abs复合材料 | |
CN110903546B (zh) | 一种阻燃型高分子材料及其制备方法和应用 | |
CN109705411A (zh) | 一种阻燃橡胶母粒 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17870961 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17870961 Country of ref document: EP Kind code of ref document: A1 |