WO2018088435A1 - 感圧センサー - Google Patents

感圧センサー Download PDF

Info

Publication number
WO2018088435A1
WO2018088435A1 PCT/JP2017/040291 JP2017040291W WO2018088435A1 WO 2018088435 A1 WO2018088435 A1 WO 2018088435A1 JP 2017040291 W JP2017040291 W JP 2017040291W WO 2018088435 A1 WO2018088435 A1 WO 2018088435A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
pressure
sensitive sensor
variable resistance
elastomer material
Prior art date
Application number
PCT/JP2017/040291
Other languages
English (en)
French (fr)
Inventor
一輝 山田
近藤 康雄
▲ろ▼ 趙
Original Assignee
北川工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北川工業株式会社 filed Critical 北川工業株式会社
Priority to US16/349,161 priority Critical patent/US10629337B2/en
Priority to CN201780069920.0A priority patent/CN110088582A/zh
Publication of WO2018088435A1 publication Critical patent/WO2018088435A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/10Adjustable resistors adjustable by mechanical pressure or force
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2206Special supports with preselected places to mount the resistance strain gauges; Mounting of supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/10Adjustable resistors adjustable by mechanical pressure or force
    • H01C10/106Adjustable resistors adjustable by mechanical pressure or force on resistive material dispersed in an elastic material

Definitions

  • This disclosure relates to a pressure sensitive sensor.
  • a pressure-sensitive sensor having a structure in which a pair of comb-shaped electrodes and a resistor layer are stacked is known (for example, see Patent Document 1).
  • a slight gap is provided between the comb electrode and the resistor layer.
  • the contact area between the comb electrode and the resistor layer increases as the load increases.
  • the electrical resistance decreases between the one comb-shaped electrode and the other comb-shaped electrode by an amount corresponding to an increase in the contact area between the comb-shaped electrode and the resistor layer. Therefore, the pressure acting on the pressure-sensitive sensor can be measured by reading the change in electrical resistance.
  • a pressure-sensitive sensor if a soft member is attached to the pressure-sensitive part, the pressure detection accuracy is lowered. Or if a soft member is attached to a pressure-sensitive part, the range from the lower limit which can detect a pressure to an upper limit will be narrowed. Further, in the case of the pressure sensitive sensor as described above, when pressure is applied from a direction inclined with respect to the stacking direction of the comb-shaped electrode and the resistor layer, the sensitivity to such pressure is low.
  • variable resistance portion is made of a conductive foamed elastomer material.
  • the conductive foamed elastomer material is a material imparted with conductivity by dispersing carbon fibers in the elastomer material.
  • the conductive foamed elastomer material is a material obtained by foaming an elastomer material.
  • the first electrode and the second electrode are each made of a conductive material. Each of the first electrode and the second electrode is in contact with the variable resistance portion. The first electrode and the second electrode are electrically connected via the variable resistance portion. The first electrode and the second electrode are in contact with the variable resistance portion at a place where an interval of 0.5 mm or more is provided.
  • variable resistance portion is formed of the conductive foamed elastomer material. Therefore, the surface of the pressure-sensitive portion can be made softer than a pressure-sensitive sensor configured using a non-foaming conductive material (for example, conductive rubber). Therefore, with such a pressure-sensitive sensor, it is possible to reduce the sensation of foreign matter even when the pressure sensor is installed on a part touched by a person.
  • a non-foaming conductive material for example, conductive rubber
  • the electric resistance of the variable resistance portion decreases as the amount of compression increases. Therefore, unlike a pressure-sensitive sensor configured such that the electrical resistance decreases as the contact area between the comb-shaped electrode and the resistor layer increases, the electrical resistance in the variable resistance section changes as the compression amount of the variable resistance section changes. Change. Therefore, even if the pressure acts from the direction inclined with respect to the stacking direction of the first electrode and the second electrode and the variable resistance portion, if the compression amount of the variable resistance portion is increased by such pressure, The pressure can be detected appropriately.
  • the first electrode and the second electrode are configured to contact the variable resistance portion at a location where an interval of 0.5 mm or more is provided. Therefore, unlike a pressure-sensitive sensor in which the distance between the electrodes is less than 0.5 mm, it is not necessary to perform fine processing when forming the electrodes. Therefore, the productivity of the pressure sensitive sensor can be improved.
  • FIG. 1A is a front view of a pressure-sensitive sensor.
  • FIG. 1B is a right side view of the pressure sensor.
  • FIG. 1C is an enlarged cross-sectional view of the cut surface indicated by the IC-IC line in FIG. 1A.
  • FIG. 2 is an explanatory view showing an essential part of the pressure-sensitive sensor in an exploded manner.
  • FIG. 3 is an explanatory diagram showing a schematic configuration of the test apparatus.
  • FIG. 4 is a graph showing pressure-sensitive characteristics of Examples and Comparative Examples.
  • FIG. 5 is a graph showing the pressure-sensitive characteristics according to the distance between the electrodes.
  • FIG. 6 is a graph showing the pressure-sensitive characteristics according to the electrode size.
  • SYMBOLS 1 Pressure-sensitive sensor, 3 ... Variable resistance part, 5A ... 1st electrode, 5B ... 2nd electrode, 7 ... Base material, 8 ... Adhesive layer, 9A ... 1st terminal, 9B ... 2nd terminal, 10 ... Foaming agent 11A, 11B ... lead wire, 20 ... compression tester, 21 ... pedestal, 23 ... indenter, 25 ... load cell, 27 ... low hardness member, 30 ... resistance meter.
  • the pressure-sensitive sensor 1 includes a variable resistor 3, a first electrode 5A, a second electrode 5B, a substrate 7, an adhesive layer 8, and a first terminal 9A. And the second terminal 9B.
  • the variable resistance portion 3 is made of a conductive foamed elastomer material.
  • the conductive foamed elastomer material is a material imparted with conductivity by dispersing carbon fibers in the elastomer material, and is a material obtained by foaming the elastomer material.
  • SEEPS styrene ethylene ethylene propylene styrene block copolymer
  • vapor-grown carbon fiber product name: VGCF (registered trademark) -H, average fiber diameter of 0.15 ⁇ m, fiber length of 10 to 20 ⁇ m, aspect ratio of 66.7 to 133.3, manufactured by Showa Denko KK
  • a commercially available foaming agent product name: Daifoam H850, manufactured by Dainichi Seika Kogyo Co., Ltd.
  • Daifoam H850 manufactured by Dainichi Seika Kogyo Co., Ltd.
  • these raw materials are mixed in a mixing ratio of 35 parts by mass of vapor-grown carbon fiber and 3 parts by mass of a blowing agent with respect to 100 parts by mass of the elastomer material.
  • a twin screw extruder By extruding the mixture with a twin screw extruder, as shown in FIG. 1C, a molded article of a conductive foamed elastomer material containing an infinite number of closed cells can be obtained.
  • the expansion ratio of the conductive foamed elastomer material is 2.01 times.
  • a planar variable resistance portion 3 is formed of such a conductive foamed elastomer material.
  • variable resistance portion 3 is a member that is compressed according to pressure when pressurized, and the electrical resistance decreases as the amount of compression increases.
  • the bubbles are schematically drawn.
  • FIG. 1C does not mean that the actual number and size of bubbles are as shown in FIG. 1C.
  • the first electrode 5A, the second electrode 5B, the first terminal 9A, and the second terminal 9B are each made of a conductive material.
  • the first electrode 5 ⁇ / b> A, the second electrode 5 ⁇ / b> B, the first terminal 9 ⁇ / b> A, and the second terminal 9 ⁇ / b> B are provided on one surface of the base material 7. More specifically, in the case of the first embodiment, the first electrode 5A, the second electrode 5B, the first terminal 9A, the second terminal 9B, and the base material 7 are configured using a glass epoxy substrate.
  • the first electrode 5A, the second electrode 5B, the first terminal 9A, and the second terminal 9B are configured by a copper foil included in the glass epoxy substrate and an electroless gold plating film provided on the surface of the copper foil. .
  • the first terminal 9A and the second terminal 9B can be connected to lead wires 11A and 11B (or a flexible flat cable or the like) having a desired length.
  • variable resistance part 3 and the base material 7 an adhesive layer 8 which is a thin layer of an acrylic adhesive is provided between the variable resistance part 3 and the base material 7.
  • the adhesive layer 8 is provided in a range that does not overlap the first electrode 5A and the second electrode 5B.
  • the variable resistance portion 3 is disposed so as to overlap one surface of the base material 7 (that is, the surface on which the first electrode 5A and the second electrode 5B are provided) with the adhesive layer 8 sandwiched between the variable resistance portion 3 and the base material 7. ing.
  • each of the first electrode 5A and the second electrode 5B is in contact with the variable resistance portion 3.
  • the first electrode 5 ⁇ / b> A and the second electrode 5 ⁇ / b> B are in a state of being electrically connected via the variable resistance portion 3.
  • the first electrode 5 ⁇ / b> A and the second electrode 5 ⁇ / b> B are provided in a line-symmetric shape on both sides of a virtual axis of symmetry A (see FIG. 2) on one surface of the substrate 7. ing.
  • each of the first electrode 5A and the second electrode 5B has an electrode width W of 5 mm and an electrode length L (that is, a dimension in a direction parallel to the above-described symmetry axis) of 10 mm.
  • the distance G between the first electrode 5A and the second electrode 5B is 10 mm.
  • the pressure-sensitive performance of the pressure-sensitive sensor 1 configured as described above was measured (Example).
  • two types of commercially available pressure sensors were prepared, and the pressure-sensitive performance was measured by the same method (Comparative Examples 1 and 2). Both of these two types of commercial products have a pair of comb-shaped electrodes, and the resistance value between the electrodes changes according to the contact area between the resistor layer and the comb-shaped electrode arranged adjacent to the comb-shaped electrodes. It is configured.
  • a compression tester 20 and an ohmmeter 30 as shown in a schematic configuration in FIG. 3 were used.
  • the compression tester 20 is a commercially available device including a pedestal 21, an indenter 23, a load cell 25, and the like.
  • the ohmmeter 30 is a commercially available multimeter capable of measuring voltage and current in addition to resistance.
  • a low hardness member 27 that compresses and deforms when pressed is attached to the lower surface of the indenter 23.
  • the low hardness member 27 is a member having a size of 40 mm ⁇ 40 mm ⁇ 3 mm.
  • the low hardness member 27 is a member whose hardness is Asker C and is compressed by about 4% when a load of 40 or 10 kPa is applied.
  • the low hardness member 27 is a member that is compressed by about 15% when a load of 50 kPa is applied.
  • a pressure-sensitive sensor is installed on the base 21 of the compression tester 20.
  • An ohmmeter 30 is attached to the terminal of the pressure sensor.
  • the compression load is changed by the compression tester 20, and the change in resistance value at that time is measured by the ohmmeter 30.
  • the stress [N] at the time of pressurization is acquired by the load cell 25.
  • the pressure [Pa] is calculated by dividing the stress by the pressing area. The measurement results are shown in FIG.
  • the electrical resistance of the pressure-sensitive sensor 1 of the example greatly changes when the pressure is changed as compared with the pressure-sensitive sensors of Comparative Examples 1 and 2.
  • the change in electric resistance becomes extremely small. Therefore, in the case of the comparative example 2, when the pressure is 70 kPa or more, it is difficult to accurately detect a slight change in the pressure.
  • the electric resistance of the pressure-sensitive sensor 1 according to the example greatly fluctuates even when the pressure becomes 70 kPa or more. Therefore, the pressure-sensitive sensor 1 of the embodiment has a high resolution when measuring pressure. Therefore, the pressure-sensitive sensor 1 of the embodiment can detect a slight change in pressure more accurately than the pressure-sensitive sensors of Comparative Examples 1 and 2.
  • the gap G between the first electrode 5A and the second electrode 5B was changed within a range from 0.5 mm to 100 mm, and the pressure-sensitive performance of the pressure-sensitive sensor 1 was measured.
  • the electrode length L was set to 30 mm
  • the electrode width W was set to 5 mm.
  • the measurement results are shown in FIG. As is apparent from the graph shown in FIG. 5, even if the gap G between the first electrode 5A and the second electrode 5B is changed within a range from 0.5 mm to 100 mm, the electric resistance changes according to the pressure.
  • the performance as a pressure-sensitive sensor can be sufficiently exhibited without setting the distance between the electrodes excessively narrow.
  • the distance G between the first electrode 5A and the second electrode 5B may exceed 100 mm.
  • the pressure sensitivity of the pressure sensor 1 was measured by changing the electrode length L of the first electrode 5A and the second electrode 5B within a range from 0.5 mm to 100 mm.
  • the gap G between the first electrode 5A and the second electrode 5B was set to 30 mm, and the electrode width W was set to 5 mm.
  • the measurement results are shown in FIG. As is apparent from the graph shown in FIG. 6, even if the electrode length L of the first electrode 5A and the second electrode 5B is changed within the range from 0.5 mm to 100 mm, the electrical resistance changes according to the pressure. I understand.
  • variable resistance portion 3 is made of the conductive foamed elastomer material as described above. Therefore, the surface of the pressure-sensitive portion can be made softer than a pressure-sensitive sensor configured using a non-foaming conductive material (for example, conductive rubber). Therefore, with such a pressure-sensitive sensor 1, it is possible to reduce the foreign object sensation even when the pressure sensor 1 is installed on a part touched by a person.
  • the pressure-sensitive sensor 1 can be incorporated in a chair and used as a sensor for managing the posture at the time of sitting.
  • the pressure-sensitive sensor 1 can be incorporated into shoes and used as a sensor for confirming the movement of the center of gravity during walking. If such a walking state can be managed, it can be used to prevent lifestyle-related diseases depending on how to walk.
  • the pressure-sensitive sensor 1 can be incorporated in a bed, and weight shift at bedtime can be recorded. Thereby, it can utilize for the improvement of the quality of sleep.
  • the electrical resistance of the variable resistor portion 3 decreases as the amount of compression increases. Therefore, unlike a pressure-sensitive sensor configured such that the electrical resistance decreases as the contact area between the comb-shaped electrode and the resistor layer increases, the electrical resistance in the variable resistance unit 3 changes as the compression amount of the variable resistance unit 3 changes. Resistance changes. Therefore, even when pressure is applied from a direction inclined with respect to the stacking direction of the first electrode 5A and the second electrode 5B and the variable resistance portion 3, the compression amount of the variable resistance portion 3 is reduced by such pressure. If it increases, the pressure can be detected appropriately.
  • the first electrode 5A and the second electrode 5B are configured to contact the variable resistance portion 3 at a location where an interval of 0.5 mm or more is provided. Therefore, unlike a pressure-sensitive sensor (for example, a pressure-sensitive sensor having a pair of comb-shaped electrodes) in which the distance between the electrodes is less than 0.5 mm, fine processing is not required when forming the electrodes. . Therefore, the productivity of the pressure sensitive sensor 1 can be improved.
  • the electric resistance is not changed by the change of the contact area.
  • a method is adopted in which the electric resistance changes according to the change in the compression amount of the variable resistance unit 3. Therefore, the shapes of the first electrode 5A and the second electrode 5B do not have to be comb-like. Regarding the shapes of the first electrode 5A and the second electrode 5B, it is not necessary to arrange fine comb teeth densely. Therefore, when providing the first electrode 5A and the second electrode 5B, a gap of 0.5 mm or more can be provided between the first electrode 5A and the second electrode 5B. Therefore, when processing the first electrode 5A and the second electrode 5B, it is not necessary to perform excessively fine processing. Therefore, the productivity of the pressure sensitive sensor 1 is improved.
  • the upper limit may be set as appropriate as long as it can be attached to the variable resistance portion 3. However, considering the balance between sensitivity and size, it is preferable that the gap G is 5 mm or more and 30 mm or less.
  • the pressure-sensitive sensor exemplified in the second embodiment is an example in which the conductive foamed elastomer material exemplified in the first embodiment is changed to another conductive foamed elastomer material. Since there is no difference between the first embodiment and the second embodiment except for the conductive foamed elastomer material, the description of the point where there is no difference is omitted.
  • silicone rubber two-pack type silicone gel composition, product name: CY52-276, manufactured by Toray Dow Corning Silicone Co., Ltd.
  • 100 parts by mass of silicone rubber is used.
  • a curing accelerator product name: RD-1, manufactured by Toray Dow Corning Silicone Co., Ltd.
  • a curing accelerator product name: RD-1, manufactured by Toray Dow Corning Silicone Co., Ltd.
  • vapor-grown carbon fiber product name: VGCF (registered trademark) -H, average fiber diameter of 0.15 ⁇ m, fiber length of 10 to 20 ⁇ m, aspect ratio of 66.7 to 133.3, manufactured by Showa Denko KK
  • a commercially available foaming agent product name: Daifoam H850, manufactured by Dainichi Seika Kogyo Co., Ltd. is blended.
  • variable resistance portion 3 is made of the conductive foamed elastomer material as described above. Therefore, the surface of the pressure-sensitive portion can be made softer than a pressure-sensitive sensor configured using a non-foaming conductive material (for example, conductive rubber). Therefore, with such a pressure-sensitive sensor, it is possible to reduce the sensation of foreign matter even when the pressure sensor is installed on a part touched by a person.
  • the electric resistance of the variable resistance section 3 decreases as the amount of compression increases. Therefore, unlike a pressure-sensitive sensor configured such that the electrical resistance decreases as the contact area between the comb-shaped electrode and the resistor layer increases, the electrical resistance in the variable resistance unit 3 changes as the compression amount of the variable resistance unit 3 changes. Resistance changes. Therefore, even when pressure is applied from a direction inclined with respect to the stacking direction of the first electrode 5A and the second electrode 5B and the variable resistance portion 3, the compression amount of the variable resistance portion 3 is reduced by such pressure. If it increases, the pressure can be detected appropriately.
  • the first electrode 5A and the second electrode 5B are configured to contact the variable resistance portion 3 at a place where an interval of 0.5 mm or more is provided. Yes. Therefore, unlike a pressure-sensitive sensor (for example, a pressure-sensitive sensor having a pair of comb-shaped electrodes) in which the distance between the electrodes is less than 0.5 mm, fine processing is not required when forming the electrodes. . Therefore, the productivity of the pressure sensitive sensor can be improved.
  • a pressure-sensitive sensor for example, a pressure-sensitive sensor having a pair of comb-shaped electrodes
  • the components and the mixing ratio of the conductive foamed elastomer material have been described with reference to two examples.
  • the components and the mixing ratio of the conductive foamed elastomer material are not limited to the above two examples.
  • a styrene elastomer in addition to the styrene ethylene ethylene propylene styrene block copolymer (SEEPS) described above, a styrene isoprene styrene block copolymer (SIS), a styrene butadiene styrene block copolymer ( SBS), styrene ethylene propylene block copolymer (SEP), styrene ethylene butylene styrene block copolymer (SEBS), styrene ethylene propylene styrene block copolymer (SEPS), or the like may be used.
  • SEPS styrene ethylene ethylene propylene styrene block copolymer
  • SEPS styrene ethylene propylene styrene block copolymer
  • SEPS styrene ethylene propylene sty
  • silicone rubber when silicone rubber is used as the elastomer material, vinyl methyl silicone rubber, methyl silicone rubber, phenylmethyl silicone rubber, fluorosilicone rubber, or the like can be used. These silicone rubbers may be used alone or in combination of two or more.
  • carbon fibers having a diameter of 0.01 ⁇ m or more and 0.2 ⁇ m or less, a fiber length of 1 ⁇ m or more and 500 ⁇ m or less, and an aspect ratio of 10 or more and 500 or less may be used.
  • Use of such a carbon fiber is variable as compared with the case of using a coarser carbon fiber (for example, PAN-based carbon fiber or pitch-based carbon fiber) or a conductive filler other than carbon fiber (for example, artificial graphite).
  • the pressure-sensitive characteristics of the resistance portion 3 can be improved.
  • the elastomer material is a styrene-based elastomer
  • desired conductivity can be imparted to the conductive foamed elastomer material by setting the blending amount of the carbon fiber to 20 parts by mass or more.
  • an elastomer material is a styrene-type elastomer, it can suppress that the hardness and brittleness of a conductive foamed elastomer material become excessively high by making the compounding quantity of carbon fiber into 50 mass parts or less.
  • the elastomer material is silicone rubber
  • desired conductivity can be imparted to the conductive foamed elastomer material by setting the blending amount of the carbon fiber to 5 parts by mass or more.
  • an elastomer material is silicone rubber, it can suppress that the hardness and brittleness of electroconductive foaming elastomer material become high too much by making the compounding quantity of carbon fiber into 30 mass parts or less.
  • the elastomer material is a styrene-based elastomer
  • the expansion ratio of the conductive foamed elastomer material is 1.45 times or more
  • a material having a favorable resistance value change with respect to the compression amount can be obtained.
  • it can suppress that the brittleness of an electroconductive foaming elastomer material becomes high too much by making the expansion ratio of an electroconductive foaming elastomer material 3.6 times or less.
  • a rubber, resin, or general-purpose foaming agent applicable to the styrene-based elastomer may be blended in the silicone rubber. The blending amount of the foaming agent may be adjusted so that the above expansion ratio can be achieved.
  • the elastomer material is silicone rubber
  • a material having a favorable resistance change with respect to the compression amount can be obtained by setting the expansion ratio of the conductive foamed elastomer material to 1.5 times or more. Moreover, it can suppress that the brittleness of an electroconductive foamed elastomer material becomes high too much by making the expansion ratio of an electroconductive foamed elastomer material into 4 times or less.
  • a rubber, resin, or general-purpose foaming agent applicable to the silicone rubber may be blended in the silicone rubber. The blending amount of the foaming agent may be adjusted so that the above expansion ratio can be achieved.
  • the pressure-sensitive sensor of the present disclosure may further include the following configurations.
  • the elastomer material may be silicone rubber.
  • the carbon fiber has a diameter of 0.01 ⁇ m or more and 0.2 ⁇ m or less, a fiber length of 1 ⁇ m or more and 500 ⁇ m or less, an aspect ratio of 10 or more and 500 or less, and a blending amount of 5 parts by mass or more with respect to 100 parts by mass of the elastomer material. And it may be 30 mass parts or less.
  • the conductive foamed elastomer material may have a foaming ratio of 1.5 times or more and 4 times or less.
  • the elastomer material may be a styrene-based elastomer.
  • the carbon fiber has a diameter of 0.01 ⁇ m or more and 0.2 ⁇ m or less, a fiber length of 1 ⁇ m or more and 500 ⁇ m or less, an aspect ratio of 10 or more and 500 or less, and a blending amount of 20 parts by mass or more with respect to 100 parts by mass of the elastomer material. And it may be 50 mass parts or less.
  • the conductive foamed elastomer material may have a foaming ratio of 1.45 times or more and 3.6 times or less.
  • the conductive foamed elastomer material is configured as described above. Therefore, it is possible to suppress a foreign object feeling when a person touches the pressure sensor, and it is possible to configure a pressure sensor with good sensitivity to pressure acting from an inclined direction.
  • the first electrode and the second electrode may be configured to contact the variable resistance portion at a location where an interval of 5 mm or more and 30 mm or less is provided.
  • the distance between the first electrode and the second electrode is 5 mm or more and 30 mm or less.
  • a pressure-sensitive sensor unlike a pressure-sensitive sensor having a pair of comb-shaped electrodes, a sufficient space can be provided between the first electrode and the second electrode. Therefore, it is not necessary to perform fine processing. Therefore, the productivity of the pressure sensitive sensor is improved.
  • the pressure-sensitive sensor of the present disclosure may have a base material configured in a planar shape, and the first electrode and the second electrode may be provided on one surface of the base material.
  • the variable resistance portion is configured in a planar shape, and is arranged so as to overlap one surface of the base material, so that the first electrode and the second electrode are sandwiched between the base material and the variable resistance portion. May be.
  • the first electrode and the second electrode may be provided in a line-symmetric shape on both sides of a virtual axis of symmetry on one surface of the substrate.
  • the dimensions of the first electrode and the second electrode in the direction parallel to the symmetry axis may be 0.5 mm or more and 100 mm or less.
  • the first electrode and the second electrode are arranged in parallel with an interval in a range extending from 0.5 mm to 100 mm. Therefore, with such a pressure-sensitive sensor, it is possible to sufficiently secure a region that can serve as a conductive path between the first electrode and the second electrode, and to improve the sensitivity of the pressure-sensitive sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

感圧センサーは、可変抵抗部と、第一電極及び第二電極とを備える。可変抵抗部は、導電性発泡エラストマー材料によって構成され、加圧された際には圧力に応じて圧縮されて、その圧縮量が増大するほど電気抵抗が低下する。第一電極及び第二電極は、は、0.5mm以上の間隔が空けられた箇所において、可変抵抗部に接触するように構成されることにより、可変抵抗部を介して電気的に接続される。

Description

感圧センサー 関連出願の相互参照
 本国際出願は、2016年11月11日に日本国特許庁に出願された日本国特許出願第2016-220696号に基づく優先権を主張するものであり、日本国特許出願第2016-220696号の全内容を参照により本国際出願に援用する。
 本開示は、感圧センサーに関する。
 一対の櫛形電極と、抵抗体層を積層した構造とされた感圧センサーが知られている(例えば、特許文献1参照。)。このような感圧センサーの場合、櫛形電極と抵抗体層との間には僅かな空隙が設けられている。櫛形電極と抵抗体層の積層方向に荷重がかかった際、その荷重が増大するほど、櫛形電極と抵抗体層との接触面積が増大する。これにより、感圧センサーにかかる荷重が増大すると、櫛形電極と抵抗体層との接触面積が増大する分だけ、一方の櫛形電極と他方の櫛形電極との間で電気抵抗が低下する。したがって、この電気抵抗の変化を読み取ることにより、感圧センサーに作用した圧力を測定することができる。
特開2010-230647号公報
 上述のような感圧センサーの多くは、感圧部分の表面が硬い。そのため、人が触れる部分に感圧センサーを設置すると異物感がある。そのため、そのような異物感を低減したいという要望がある。このような異物感を低減する方法として、感圧センサー以外の場合であれば、例えば硬い部分の表面にスポンジのような軟質部材を取り付けて異物感を緩和する、といった対策を施すことができる。
 しかし、感圧センサーの場合は、感圧部分に軟質部材を取り付けると、圧力の検出精度が低下してしまう。あるいは、感圧部分に軟質部材を取り付けると、圧力を検出可能な下限値から上限値までの範囲が狭まってしまう。また、上述のような感圧センサーの場合、櫛形電極と抵抗体層の積層方向に対して傾いた方向から圧力が作用した場合に、そのような圧力に対する感度が低い。
 本開示の一局面においては、異物感を抑制可能で、傾いた方向から作用する圧力に対する感度も良好な感圧センサーを提供することが望ましい。
 本開示の一態様は、感圧センサーであって、可変抵抗部、第一電極及び第二電極を含む。可変抵抗部は、導電性発泡エラストマー材料によって構成される。導電性発泡エラストマー材料は、エラストマー材料中に炭素繊維を分散させることによって導電性が付与された材料である。また、導電性発泡エラストマー材料は、エラストマー材料を発泡させた材料である。可変抵抗部は、加圧された際には圧力に応じて圧縮されて、その圧縮量が増大するほど電気抵抗が低下する。
 第一電極及び第二電極は、それぞれが導電性材料によって構成される。第一電極及び第二電極は、それぞれが可変抵抗部に接触する。第一電極及び第二電極は、可変抵抗部を介して電気的に接続される。第一電極及び第二電極は、0.5mm以上の間隔が空けられた箇所において、可変抵抗部に接触する。
 このように構成された感圧センサーによれば、可変抵抗部が導電性発泡エラストマー材料によって構成されている。そのため、非発泡性導電材料(例えば導電ゴムなど。)を利用して構成された感圧センサーに比べ、感圧部分の表面を柔らかくすることができる。したがって、このような感圧センサーであれば、人が触れる部分に設置した場合でも異物感を低減することができる。
 また、本開示の感圧センサーの場合、可変抵抗部は、圧縮量が増大するほど電気抵抗が低下する。そのため、櫛形電極と抵抗体層との接触面積が増大するほど電気抵抗が低下するように構成された感圧センサーとは異なり、可変抵抗部の圧縮量が変化すれば可変抵抗部における電気抵抗が変化する。したがって、第一電極及び第二電極と可変抵抗部との積層方向に対して傾いた方向から圧力が作用した場合であっても、そのような圧力によって可変抵抗部の圧縮量が増大すれば、その圧力を適切に検出することができる。
 さらに、本開示の感圧センサーの場合、第一電極及び第二電極は、0.5mm以上の間隔が空けられた箇所において、可変抵抗部に接触するように構成されている。そのため、電極間の間隔が0.5mm未満となるような感圧センサーとは異なり、電極を形成する際に微細な加工をしなくても済む。よって、感圧センサーの生産性を向上させることができる。
図1Aは感圧センサーの正面図である。図1Bは感圧センサーの右側面図である。図1Cは図1A中にIC-IC線で示した切断面を拡大して示す断面図である。 図2は感圧センサーの要部を分解して示す説明図である。 図3は試験装置の概略構成を示す説明図である。 図4は実施例及び比較例の感圧特性を示すグラフである。 図5は電極間距離に応じた感圧特性を示すグラフである。 図6は電極サイズに応じた感圧特性を示すグラフである。
 1…感圧センサー、3…可変抵抗部、5A…第一電極、5B…第二電極、7…基材、8…粘着層、9A…第一端子、9B…第二端子、10…発泡剤、11A,11B…リード線、20…圧縮試験機、21…台座、23…圧子、25…ロードセル、27…低硬度部材、30…抵抗計。
 次に、上述の感圧センサーについて、例示的な実施形態を挙げて説明する。
 (1)第一実施形態
 図1A及び図1Bに示すように、感圧センサー1は、可変抵抗部3、第一電極5A、第二電極5B、基材7、粘着層8、第一端子9A、及び第二端子9Bなどを有する。可変抵抗部3は、導電性発泡エラストマー材料によって構成されている。導電性発泡エラストマー材料は、エラストマー材料中に炭素繊維を分散させることによって導電性が付与された材料であり、かつエラストマー材料を発泡させた材料である。
 より詳しくは、第一実施形態の場合、エラストマー材料としては、スチレン系エラストマー(スチレンエチレンエチレンプロピレンスチレンブロック共重合体(SEEPS)、分子量:10万、スチレン含有率:30質量%、製品名:セプトン(登録商標)4033、株式会社クラレ製)に対し、軟化剤として炭化水素系プロセスオイル(パラフィン系プロセスオイル、40℃での動粘度:30.9mm/s、分子量:400、SP値7.4)を配合してなるエラストマー材料(配合比:SEEPS/炭化水素系プロセスオイル=22.8/77.2(質量部))を使用している。炭素繊維としては、気相成長炭素繊維(品名:VGCF(登録商標)-H、平均繊維径0.15μm、繊維長10~20μm、アスペクト比66.7~133.3、昭和電工株式会社製)を使用している。また、エラストマー材料を発泡させるために、市販の発泡剤(品名:ダイフォームH850、大日精化工業株式会社製)を配合している。
 第一実施形態の場合、これらの原料は、エラストマー材料100質量部に対して、気相成長炭素繊維35質量部、及び発泡剤3質量部の配合比で混合される。その混合物を二軸押出機で押し出すことにより、図1Cに示すように、無数の独立気泡を含む導電性発泡エラストマー材料の成形品を得ることができる。第一実施形態の場合、導電性発泡エラストマー材料の発泡倍率は2.01倍である。このような導電性発泡エラストマー材料で、面状の可変抵抗部3が構成されている。可変抵抗部3は、加圧された際には圧力に応じて圧縮されて、その圧縮量が増大するほど電気抵抗が低下する部材となる。なお、図1Cでは、気泡を模式的に描いてある。図1Cは、実際の気泡の数やサイズが図1Cに示した通りになっていることを意味する図ではない。
 第一電極5A、第二電極5B、第一端子9A、及び第二端子9Bは、それぞれが導電性材料によって構成される。第一電極5A、第二電極5B、第一端子9A、及び第二端子9Bは、基材7の一面に設けられている。より詳しくは、第一実施形態の場合、第一電極5A、第二電極5B、第一端子9A、第二端子9B、及び基材7は、ガラスエポキシ基板を利用して構成されている。第一電極5A、第二電極5B、第一端子9A、及び第二端子9Bは、ガラスエポキシ基板が有する銅箔、及びその銅箔の表面に設けられた無電解金めっき膜によって構成されている。なお、第一端子9A、及び第二端子9Bには、所望の長さのリード線11A,11B(あるいはフレキシブルフラットケーブルなど)を接続することができる。
 可変抵抗部3と基材7との間には、アクリル系接着剤の薄層である粘着層8が設けられている。これにより、粘着層8を介して可変抵抗部3と基材7が接着されている。粘着層8は、図2に示すように、第一電極5A及び第二電極5Bには重ならない範囲に設けられている。可変抵抗部3は、基材7との間に粘着層8を挟み込む状態で、基材7の一面(すなわち、第一電極5A及び第二電極5Bが設けられた面。)に重ねて配置されている。これにより、第一電極5A及び第二電極5Bは、それぞれが可変抵抗部3に接触する。第一電極5Aと第二電極5Bが可変抵抗部3を介して電気的に接続される状態にある。
 また、第一実施形態の場合、第一電極5A及び第二電極5Bは、基材7の一面上において仮想される対称軸A(図2参照。)を挟む両側に線対称な形状で設けられている。また、第一実施形態の場合、第一電極5A及び第二電極5Bは、それぞれの電極幅Wが5mm、電極長L(すなわち、上述の対称軸と平行な方向の寸法。)が10mmとされ、第一電極5Aと第二電極5Bとの間の間隔Gが10mmとされている。
 以上のように構成された感圧センサー1について、その感圧性能を測定した(実施例)。また、比較のため、市販の感圧センサーを2種類用意して、その感圧性能についても同じ方法で測定した(比較例1,2)。これら2種類の市販品は、いずれも一対の櫛形電極を有し、それら櫛形電極に隣接配置された抵抗体層と櫛形電極との接触面積に応じて、電極間の抵抗値が変化するように構成されている。
 試験装置としては、図3に概略的な構成を示すような圧縮試験機20及び抵抗計30を使用した。圧縮試験機20は、台座21、圧子23、及びロードセル25などを備える市販の機器である。抵抗計30は、抵抗の他に電圧や電流の測定が可能な市販のマルチメータである。また、第一実施形態において、圧子23の下面には、加圧時に圧縮変形する低硬度部材27を取り付けた。この低硬度部材27は、サイズが40mm×40mm×3mmの部材である。低硬度部材27は、硬さがアスカーCで40、10kPaの荷重をかけると約4%圧縮される部材である。低硬度部材27は、50kPaの荷重をかけると約15%圧縮される部材である。
 試験方法としては、圧縮試験機20の台座21上に感圧センサーを設置する。感圧センサーの端子には抵抗計30を取り付ける。圧縮試験機20によって圧縮荷重を変化させて、そのときの抵抗値の変化を抵抗計30によって測定する。感圧センサーにかかる圧力については、加圧時の応力[N]をロードセル25で取得する。その応力を加圧面積で除算して圧力[Pa]を算出する。測定結果を図4に示す。
 図4に示すグラフから明らかなように、実施例の感圧センサー1は、比較例1,2の感圧センサーに比べ、圧力を変化させた際に電気抵抗が大きく変化することがわかる。特に、比較例2の場合、圧力が70kPa以上になると電気抵抗の変化がきわめて小さくなる。そのため、比較例2の場合、圧力が70kPa以上になると圧力の僅かな変化を正確に検出することが難しくなる。これに対し、実施例の感圧センサー1は、圧力が70kPa以上になっても電気抵抗が大きく変動する。よって、実施例の感圧センサー1は、圧力測定時の分解能が高い。したがって、実施例の感圧センサー1は、圧力の僅かな変化を比較例1,2の感圧センサーよりも正確に検出することができる。
 次に、第一電極5Aと第二電極5Bとの間の間隔Gを0.5mmから100mmまでの範囲内で変更して、感圧センサー1の感圧性能を測定した。なお、本実験では、電極長Lは30mm、電極幅Wは5mmに設定した。測定結果を図5に示す。図5に示すグラフから明らかなように、第一電極5Aと第二電極5Bとの間の間隔Gを0.5mmから100mmまでの範囲内で変更しても、圧力に応じて電気抵抗が変化することがわかる。したがって、一対の櫛形電極を有する感圧センサーとは異なり、電極間距離を過剰に狭く設定しなくても、感圧センサーとしての性能を十分に発揮できることがわかる。なお、第一電極5Aと第二電極5Bとの間の間隔Gについては、100mmを超過してもよい。
 次に、第一電極5A及び第二電極5Bの電極長Lを0.5mmから100mmまでの範囲内で変更して、感圧センサー1の感圧性能を測定した。なお、本実験では、第一電極5Aと第二電極5Bとの間の間隔Gは30mm、電極幅Wは5mmに設定した。測定結果を図6に示す。図6に示すグラフから明らかなように、第一電極5A及び第二電極5Bの電極長Lを0.5mmから100mmまでの範囲内で変更しても、圧力に応じて電気抵抗が変化することがわかる。
 以上説明した感圧センサー1によれば、可変抵抗部3が上述のような導電性発泡エラストマー材料によって構成されている。そのため、非発泡性導電材料(例えば導電ゴムなど。)を利用して構成された感圧センサーに比べ、感圧部分の表面を柔らかくすることができる。したがって、このような感圧センサー1であれば、人が触れる部分に設置した場合でも異物感を低減することができる。
 よって、このような感圧センサー1であれば、例えば、感圧センサー1を椅子に組み込んで、着席時の姿勢管理をするためのセンサーとして利用することができる。あるいは、例えば、感圧センサー1を靴に組み込んで、歩行時の重心移動を確認するためのセンサーとして利用することができる。このような歩行状態の管理ができれば、歩き方による生活習慣病対策などに利用することができる。あるいは、例えば、感圧センサー1をベッドに組み込んで、就寝時の体重移動を記録することができる。これにより、睡眠の質の改善に利用することができる。
 また、上記感圧センサー1の場合、可変抵抗部3は、圧縮量が増大するほど電気抵抗が低下する。そのため、櫛形電極と抵抗体層との接触面積が増大するほど電気抵抗が低下するように構成された感圧センサーとは異なり、可変抵抗部3の圧縮量が変化すれば可変抵抗部3における電気抵抗が変化する。したがって、第一電極5A及び第二電極5Bと可変抵抗部3との積層方向に対して傾いた方向から圧力が作用した場合であっても、そのような圧力によって可変抵抗部3の圧縮量が増大すれば、その圧力を適切に検出することができる。
 さらに、上記感圧センサー1の場合、第一電極5A及び第二電極5Bは、0.5mm以上の間隔が空けられた箇所において、可変抵抗部3に接触するように構成されている。そのため、電極間の間隔が0.5mm未満となるような感圧センサー(例えば一対の櫛形電極を有する感圧センサー。)とは異なり、電極を形成する際に微細な加工をしなくても済む。よって、感圧センサー1の生産性を向上させることができる。
 例えば、一対の櫛形電極を有する感圧センサーの場合、櫛歯の数を減らすほど接触面積の変化を検出することが困難になる。そのため、感圧センサーを小型化する場合でも、櫛歯の数を減らすことはできない。よって、感圧センサーを小型化するには、櫛歯自体のサイズや櫛歯間の間隔を小さくせざるを得ない。このような理由から、既存の感圧センサーにおいて、櫛歯間の間隔は0.2mm程度に設定されているのが一般的である。しかし、このような微細な間隔を空けて櫛形電極を形成する場合、その加工には相応の手間がかかる。
 これに対し、上記感圧センサー1の場合は、接触面積の変化によって電気抵抗が変化する方式ではない。上記感圧センサー1の場合は、可変抵抗部3の圧縮量の変化によって電気抵抗が変化する方式を採用している。そのため、第一電極5A及び第二電極5Bの形状については、あえて櫛歯状にする必要はない。第一電極5A及び第二電極5Bの形状については、微細な櫛歯を密に配置する必要もない。したがって、第一電極5A及び第二電極5Bを設ける際には、第一電極5Aと第二電極5Bとの間に0.5mm以上の間隔を設けることができる。よって、第一電極5A及び第二電極5Bを加工する際には、過度に微細な加工をしなくても済む。よって、感圧センサー1の生産性が向上する。
 第一電極5Aと第二電極5Bとの間の間隔は0.5mm以上であれば、その上限は可変抵抗部3への取り付けが可能な範囲内で適宜設定されていればよい。ただし、感度とサイズのバランスを考慮すれば、間隔Gが5mm以上かつ30mm以下とされていると好ましい。
 (2)第二実施形態
 次に、第二実施形態について説明する。第二実施形態で例示する感圧センサーは、第一実施形態で例示した導電性発泡エラストマー材料を、別の導電性発泡エラストマー材料に変更した例である。導電性発泡エラストマー材料以外の点は、第一実施形態と第二実施形態とで差異がないので、差異がない点についての説明は省略する。
 第二実施形態の場合、エラストマー材料としては、シリコーンゴム(二液型のシリコーンゲル組成物、品名:CY52-276、東レ・ダウコーニング・シリコーン株式会社製)を使用し、シリコーンゴム100質量部に対し0.5質量部の硬化促進剤(品名:RD-1、東レ・ダウコーニング・シリコーン株式会社製)を配合して、母材となるエラストマー材料を構成した。炭素繊維としては、気相成長炭素繊維(品名:VGCF(登録商標)-H、平均繊維径0.15μm、繊維長10~20μm、アスペクト比66.7~133.3、昭和電工株式会社製)を使用している。また、エラストマー材料を発泡させるために、市販の発泡剤(品名:ダイフォームH850、大日精化工業株式会社製)を配合している。
 第二実施形態の場合、エラストマー材料100.5質量部(シリコーンゴム100質量部及び硬化促進剤0.5質量部)に対し、気相成長炭素繊維20質量部、及び発泡剤10質量部の配合比で、各材料が混合される。その混合物を第一実施形態と同様の方法で成形する。第二実施形態の場合、導電性発泡エラストマー材料の発泡倍率は2.62倍である。
 以上のような第二実施形態の感圧センサーについても、可変抵抗部3が上述のような導電性発泡エラストマー材料によって構成されている。そのため、非発泡性導電材料(例えば導電ゴムなど。)を利用して構成された感圧センサーに比べ、感圧部分の表面を柔らかくすることができる。したがって、このような感圧センサーであれば、人が触れる部分に設置した場合でも異物感を低減することができる。
 また、第二実施形態の感圧センサーの場合でも、可変抵抗部3は、圧縮量が増大するほど電気抵抗が低下する。そのため、櫛形電極と抵抗体層との接触面積が増大するほど電気抵抗が低下するように構成された感圧センサーとは異なり、可変抵抗部3の圧縮量が変化すれば可変抵抗部3における電気抵抗が変化する。したがって、第一電極5A及び第二電極5Bと可変抵抗部3との積層方向に対して傾いた方向から圧力が作用した場合であっても、そのような圧力によって可変抵抗部3の圧縮量が増大すれば、その圧力を適切に検出することができる。
 さらに、第二実施形態の感圧センサーの場合でも、第一電極5A及び第二電極5Bは、0.5mm以上の間隔が空けられた箇所において、可変抵抗部3に接触するように構成されている。そのため、電極間の間隔が0.5mm未満となるような感圧センサー(例えば一対の櫛形電極を有する感圧センサー。)とは異なり、電極を形成する際に微細な加工をしなくても済む。よって、感圧センサーの生産性を向上させることができる。
 (3)他の実施形態
 以上、感圧センサーについて、例示的な実施形態を挙げて説明したが、上述の実施形態は本開示の一態様として例示されるものに過ぎない。すなわち、本開示は、上述の例示的な実施形態に限定されるものではなく、本開示の技術的思想を逸脱しない範囲内において、様々な形態で実施することができる。
 例えば、上記実施形態では、導電性発泡エラストマー材料の成分及び配合比について、二つの例を挙げて説明したが、導電性発泡エラストマー材料の成分及び配合比は、上述の二例に限定されない。例えば、エラストマー材料としてスチレン系エラストマーを用いる場合は、上述したスチレンエチレンエチレンプロピレンスチレンブロック共重合体(SEEPS)の他に、スチレンイソプレンスチレンブロック共重合体(SIS)、スチレンブタジエンスチレンブロック共重合体(SBS)、スチレンエチレンプロピレンブロック共重合体(SEP)、スチレンエチレンブチレンスチレンブロック共重合体(SEBS)、スチレンエチレンプロピレンスチレンブロック共重合体(SEPS)などを用いてもよい。これらのスチレン系エラストマーは、一種を単独で用いてもよいし、二種以上を混合して用いてもよい。
 また、例えば、エラストマー材料としてシリコーンゴムを用いる場合には、ビニルメチルシリコーンゴム、メチルシリコーンゴム、フェニルメチルシリコーンゴム、フロロシリコーンゴムなどを利用することができる。これらのシリコーンゴムは、一種を単独で用いてもよいし、二種以上を混合して用いてもよい。
 炭素繊維については、直径が0.01μm以上かつ0.2μm以下、繊維長が1μm以上かつ500μm以下、アスペクト比が10以上かつ500以下の炭素繊維を用いるとよい。このような炭素繊維を用いると、より粗大な炭素繊維(例えばPAN系炭素繊維やピッチ系炭素繊維。)や炭素繊維以外の導電性フィラー(例えば人造黒鉛など。)を用いた場合に比べ、可変抵抗部3の感圧特性を良好にすることができる。
 エラストマー材料がスチレン系エラストマーである場合には、炭素繊維の配合量を20質量部以上とすることにより、導電性発泡エラストマー材料に対して所期の導電性を付与することができる。また、エラストマー材料がスチレン系エラストマーである場合、炭素繊維の配合量を50質量部以下とすることにより、導電性発泡エラストマー材料の硬度や脆性が過剰に高くなるのを抑制することができる。
 エラストマー材料がシリコーンゴムである場合には、炭素繊維の配合量を5質量部以上とすることにより、導電性発泡エラストマー材料に対して所期の導電性を付与することができる。また、エラストマー材料がシリコーンゴムである場合、炭素繊維の配合量を30質量部以下とすることにより、導電性発泡エラストマー材料の硬度や脆性が過剰に高くなるのを抑制することができる。
 エラストマー材料がスチレン系エラストマーである場合、導電性発泡エラストマー材料の発泡倍率については、1.45倍以上とすることによって圧縮量に対する抵抗値の変化が良好な材料を得ることができる。また、導電性発泡エラストマー材料の発泡倍率を3.6倍以下とすることにより、導電性発泡エラストマー材料の脆性が過剰に高くなるのを抑制することができる。スチレン系エラストマーを発泡させるには、スチレン系エラストマーに対して適用可能なゴム用、樹脂用、又は汎用の発泡剤をシリコーンゴム中に配合すればよい。発泡剤の配合量は、上述の発泡倍率を達成できるように調節されればよい。
 エラストマー材料がシリコーンゴムである場合、導電性発泡エラストマー材料の発泡倍率については、1.5倍以上とすることによって圧縮量に対する抵抗値の変化が良好な材料を得ることができる。また、導電性発泡エラストマー材料の発泡倍率を4倍以下とすることにより、導電性発泡エラストマー材料の脆性が過剰に高くなるのを抑制することができる。シリコーンゴムを発泡させるには、シリコーンゴムに対して適用可能なゴム用、樹脂用、又は汎用の発泡剤をシリコーンゴム中に配合すればよい。発泡剤の配合量は、上述の発泡倍率を達成できるように調節されればよい。
 また、上記各実施形態では、第一電極5A及び第二電極5Bについて特定の形状を例示したが、各電極の形状は任意に変更可能である。
 (4)補足
 なお、以上説明した例示的な実施形態から明らかなように、本開示の感圧センサーは、更に以下に挙げるような構成を備えていてもよい。
 まず、本開示の感圧センサーにおいて、エラストマー材料は、シリコーンゴムであってもよい。炭素繊維は、直径が0.01μm以上かつ0.2μm以下、繊維長が1μm以上かつ500μm以下、アスペクト比が10以上かつ500以下、配合量がエラストマー材料100質量部に対する質量比で5質量部以上かつ30質量部以下とされていてもよい。導電性発泡エラストマー材料は、発泡倍率が1.5倍以上かつ4倍以下とされていてもよい。
 あるいは、本開示の感圧センサーにおいて、エラストマー材料は、スチレン系エラストマーであってもよい。炭素繊維は、直径が0.01μm以上かつ0.2μm以下、繊維長が1μm以上かつ500μm以下、アスペクト比が10以上かつ500以下、配合量がエラストマー材料100質量部に対する質量比で20質量部以上かつ50質量部以下とされていてもよい。導電性発泡エラストマー材料は、発泡倍率が1.45倍以上かつ3.6倍以下とされていてもよい。
 このように構成された感圧センサーによれば、導電性発泡エラストマー材料が、上述の通りに構成されている。よって、人が感圧センサーに触れた場合の異物感を抑制することができ、傾いた方向から作用する圧力に対する感度も良好な感圧センサーを構成することができる。
 また、本開示の感圧センサーにおいて、第一電極及び第二電極は、5mm以上かつ30mm以下の間隔が空けられた箇所において、可変抵抗部に接触するように構成されていてもよい。
 このように構成された感圧センサーによれば、第一電極と第二電極との間の間隔が5mm以上かつ30mm以下とされている。このような感圧センサーであれば、一対の櫛形電極を有する感圧センサーとは異なり、第一電極と第二電極との間に十分な間隔を空けることができる。したがって、微細な加工をしなくても済む。よって、感圧センサーの生産性が向上する。
 また、本開示の感圧センサーにおいて、面状に構成された基材を有し、基材の一面に第一電極及び第二電極が設けられていてもよい。可変抵抗部は、面状に構成されて、基材の一面に重ねて配置されることにより、第一電極及び第二電極が基材と可変抵抗部との間に挟み込まれた構造になっていてもよい。第一電極及び第二電極は、基材の一面上において仮想される対称軸を挟む両側に線対称な形状で設けられていてもよい。第一電極及び第二電極は、対称軸と平行な方向の寸法が0.5mm以上かつ100mm以下にされていてもよい。
 このように構成された感圧センサーによれば、第一電極及び第二電極が、0.5mm以上かつ100mm以下にわたる範囲で間隔を空けて並列に配置される。よって、このような感圧センサーであれば、第一電極と第二電極との間で導電経路となり得る領域を十分に確保でき、感圧センサーの感度を良好にすることができる。

Claims (5)

  1.  感圧センサーであって、
     可変抵抗部、第一電極及び第二電極を含み、
     前記可変抵抗部は、導電性発泡エラストマー材料によって構成され、
     前記導電性発泡エラストマー材料は、エラストマー材料中に炭素繊維を分散させることによって導電性が付与された材料、かつ前記エラストマー材料を発泡させた材料であり、
     前記可変抵抗部は、加圧された際には圧力に応じて圧縮されて、その圧縮量が増大するほど電気抵抗が低下するように構成され、
     前記第一電極及び第二電極は、それぞれが導電性材料によって構成され、
     前記第一電極及び第二電極は、それぞれが前記可変抵抗部に接触することにより、前記可変抵抗部を介して電気的に接続され、
     前記第一電極及び前記第二電極は、0.5mm以上の間隔が空けられた箇所において、前記可変抵抗部に接触するように構成されている
     感圧センサー。
  2.  請求項1に記載の感圧センサーであって、
     前記エラストマー材料は、シリコーンゴムであり、
     前記炭素繊維は、直径が0.01μm以上かつ0.2μm以下、繊維長が1μm以上かつ500μm以下、アスペクト比が10以上かつ500以下、配合量が前記エラストマー材料100質量部に対する質量比で5質量部以上かつ30質量部以下とされ、
     前記導電性発泡エラストマー材料は、発泡倍率が1.5倍以上かつ4倍以下とされている
     感圧センサー。
  3.  請求項1に記載の感圧センサーであって、
     前記エラストマー材料は、スチレン系エラストマーであり、
     前記炭素繊維は、直径が0.01μm以上かつ0.2μm以下、繊維長が1μm以上かつ500μm以下、アスペクト比が10以上かつ500以下、配合量が前記エラストマー材料100質量部に対する質量比で20質量部以上かつ50質量部以下とされ、
     前記導電性発泡エラストマー材料は、発泡倍率が1.45倍以上かつ3.6倍以下とされている
     感圧センサー。
  4.  請求項1から請求項3までのいずれか一項に記載の感圧センサーであって、
     前記第一電極及び前記第二電極は、5mm以上かつ30mm以下の間隔が空けられた箇所において、前記可変抵抗部に接触するように構成されている
     感圧センサー。
  5.  請求項1から請求項4までのいずれか一項に記載の感圧センサーであって、
     面状に構成された基材を有し、前記基材の一面に前記第一電極及び前記第二電極が設けられており、
     前記可変抵抗部は、面状に構成されて、前記基材の一面に重ねて配置されることにより、前記第一電極及び前記第二電極が前記基材と前記可変抵抗部との間に挟み込まれた構造になっていて、
     前記第一電極及び前記第二電極は、前記基材の一面上において仮想される対称軸を挟む両側に線対称な形状で設けられ、前記対称軸と平行な方向の寸法が0.5mm以上かつ100mm以下にされている
     感圧センサー。
PCT/JP2017/040291 2016-11-11 2017-11-08 感圧センサー WO2018088435A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/349,161 US10629337B2 (en) 2016-11-11 2017-11-08 Pressure sensor
CN201780069920.0A CN110088582A (zh) 2016-11-11 2017-11-08 压敏传感器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016220696A JP2018077191A (ja) 2016-11-11 2016-11-11 感圧センサー
JP2016-220696 2016-11-11

Publications (1)

Publication Number Publication Date
WO2018088435A1 true WO2018088435A1 (ja) 2018-05-17

Family

ID=62109771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040291 WO2018088435A1 (ja) 2016-11-11 2017-11-08 感圧センサー

Country Status (4)

Country Link
US (1) US10629337B2 (ja)
JP (1) JP2018077191A (ja)
CN (1) CN110088582A (ja)
WO (1) WO2018088435A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6952645B2 (ja) * 2018-05-22 2021-10-20 ニッタ株式会社 感圧センサー
CN111735560A (zh) * 2020-07-22 2020-10-02 钛深科技(深圳)有限公司 一种柔性触觉压力传感器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55131707U (ja) * 1979-03-12 1980-09-18
JPH09159402A (ja) * 1995-12-11 1997-06-20 Toyo Polymer Kk 変形量検知装置
JPH1183644A (ja) * 1997-09-08 1999-03-26 Toyo Polymer Kk 感圧センサー
JP2009503867A (ja) * 2005-07-29 2009-01-29 スリーエム イノベイティブ プロパティズ カンパニー 櫛歯状の力スイッチ及びセンサー
US20120256720A1 (en) * 2011-04-08 2012-10-11 Samsung Electronics Co., Ltd. Bending sensor and method for fabricating the same

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3830991A (en) * 1973-07-24 1974-08-20 Essex International Inc Pressure sensitive mat switch construction
US4017697A (en) * 1975-09-15 1977-04-12 Globe-Union Inc. Keyboard membrane switch having threshold force structure
CN1024842C (zh) * 1989-08-25 1994-06-01 株式会社长野计器制作所 应变检测元件及使用它的压力变换器
JPH0779006B2 (ja) * 1989-09-04 1995-08-23 イナバゴム株式会社 感圧導電性エラストマー
JP2001133339A (ja) * 1999-11-01 2001-05-18 Matsushita Electric Ind Co Ltd 着座センサ及びこれを用いた検出装置
JP2003075271A (ja) * 2001-09-04 2003-03-12 Mitsumi Electric Co Ltd 感圧センサー
JP4260406B2 (ja) 2002-02-14 2009-04-30 富士通コンポーネント株式会社 押圧方向検出センサ及びこれを用いた入力装置
DE10218613A1 (de) * 2002-04-25 2003-12-04 Wet Automotive Systems Ag Vorrichtung zur Detektion mechanischer Kräfte
US7112755B2 (en) * 2003-05-21 2006-09-26 Nitta Corporation Pressure-sensitive sensor
US7211760B2 (en) * 2004-12-21 2007-05-01 Japan Aviation Electronics Industry Limited Membrane switch
US7528337B2 (en) * 2007-05-15 2009-05-05 Panasonic Corporation Pressure sensitive conductive sheet and panel switch using same
US7772960B2 (en) * 2007-11-27 2010-08-10 Interlink Electronics, Inc. Pre-loaded force sensing resistor and method
JP5114790B2 (ja) * 2008-03-21 2013-01-09 北川工業株式会社 感圧導電性材料
JP2010053250A (ja) * 2008-08-28 2010-03-11 Hyper Drive Corp 導電性ポリマー複合材料及びそれを用いた電場応答性高分子膜
KR101014263B1 (ko) 2008-09-04 2011-02-16 삼성전기주식회사 촉각 센서
JP4528878B1 (ja) 2009-03-06 2010-08-25 株式会社マルサン・ネーム 感圧センサ及びその製造方法
JP5263682B2 (ja) * 2009-07-30 2013-08-14 北川工業株式会社 感圧導電性材料
US8368505B2 (en) * 2010-03-12 2013-02-05 Almax Manufacturing Corporation Switch using variable resistance layer to control state
US9696223B2 (en) 2012-09-17 2017-07-04 Tk Holdings Inc. Single layer force sensor
JP6494523B2 (ja) * 2013-11-28 2019-04-03 バンドー化学株式会社 伸縮性電極、センサシート及び静電容量型センサ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55131707U (ja) * 1979-03-12 1980-09-18
JPH09159402A (ja) * 1995-12-11 1997-06-20 Toyo Polymer Kk 変形量検知装置
JPH1183644A (ja) * 1997-09-08 1999-03-26 Toyo Polymer Kk 感圧センサー
JP2009503867A (ja) * 2005-07-29 2009-01-29 スリーエム イノベイティブ プロパティズ カンパニー 櫛歯状の力スイッチ及びセンサー
US20120256720A1 (en) * 2011-04-08 2012-10-11 Samsung Electronics Co., Ltd. Bending sensor and method for fabricating the same

Also Published As

Publication number Publication date
US10629337B2 (en) 2020-04-21
US20190267163A1 (en) 2019-08-29
JP2018077191A (ja) 2018-05-17
CN110088582A (zh) 2019-08-02

Similar Documents

Publication Publication Date Title
Boland et al. Surface coatings of silver nanowires lead to effective, high conductivity, high-strain, ultrathin sensors
US20220196492A1 (en) Pressure sensor
CN110140036B (zh) 压敏传感器
WO2018088435A1 (ja) 感圧センサー
CN110966913A (zh) 基于液态金属的柔性大应变传感器及其制备方法
KR20150028125A (ko) 압저항(piezo-resistive) 전극을 구비한 저항성 압력 센서
KR101210937B1 (ko) 압력 감응 소자 및 이를 이용한 촉각 센서
US20110198222A1 (en) Electrolyte sensor using conductive elastomer
JP2008198407A (ja) 面状発熱体
WO2015040801A1 (ja) 感圧センサ用導電部材及び感圧センサ
JP7405337B2 (ja) 電気接続シート、及び端子付きガラス板構造
JP2018194387A (ja) センサユニット及びセンサ素子の製造方法
JP5263682B2 (ja) 感圧導電性材料
JP5114790B2 (ja) 感圧導電性材料
WO2019159747A1 (ja) 電極およびセンサ
US10527506B2 (en) Pressure sensor
US20220093928A1 (en) Sheet-shaped flexible electrode and method for producing the same
JPS61207939A (ja) 圧力センサ−
US20110198220A1 (en) Electrolyte sensor using conductive elastomer
WO2023080021A1 (ja) 触覚センサ及び触覚センサの製造方法
JP2009145119A (ja) 変形センサシステム
CN107110888A (zh) 连接连接器
Ridzuan et al. 6PM3-PMN-044 The Effects of Varying Fillers and Insulating Materials to Flexible Conductive Composites
Körmendy Characterization of a flexible nanocomposite material for tactile sensing
CN106338351A (zh) 一种负电阻效应的拉敏型传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17870100

Country of ref document: EP

Kind code of ref document: A1