WO2018086211A1 - 柔性tft基板及其制作方法 - Google Patents

柔性tft基板及其制作方法 Download PDF

Info

Publication number
WO2018086211A1
WO2018086211A1 PCT/CN2016/112259 CN2016112259W WO2018086211A1 WO 2018086211 A1 WO2018086211 A1 WO 2018086211A1 CN 2016112259 W CN2016112259 W CN 2016112259W WO 2018086211 A1 WO2018086211 A1 WO 2018086211A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
organic layer
grooves
layer
flexible
Prior art date
Application number
PCT/CN2016/112259
Other languages
English (en)
French (fr)
Inventor
邓金全
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/329,240 priority Critical patent/US10541366B2/en
Publication of WO2018086211A1 publication Critical patent/WO2018086211A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • H01L27/1266Multistep manufacturing methods with a particular formation, treatment or coating of the substrate the substrate on which the devices are formed not being the final device substrate, e.g. using a temporary substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a flexible TFT substrate and a method of fabricating the same.
  • a liquid crystal display panel comprises a CF (Color Filter) substrate, a thin film transistor (TFT) substrate, a liquid crystal (LC) sandwiched between the color filter substrate and the thin film transistor substrate, and a sealant frame ( Sealant),
  • the molding process generally includes: front array (Array) process (film, yellow, etching and stripping), middle cell (Cell) process (TFT substrate and CF substrate bonding) and rear module assembly Process (drive IC and printed circuit board is pressed).
  • the front Array process mainly forms a TFT substrate to control the movement of liquid crystal molecules;
  • the middle Cell process mainly adds liquid crystal between the TFT substrate and the CF substrate;
  • the rear module assembly process is mainly to drive the IC to press and print the circuit.
  • the integration of the plates drives the liquid crystal molecules to rotate and display images.
  • OLED Organic Light-Emitting Diode
  • OLED Organic Light-Emitting Diode
  • the working temperature has wide adaptability, light volume, fast response, easy to realize color display and large screen display, easy to realize integration with integrated circuit driver, easy to realize flexible display, and the like, and thus has broad application prospects.
  • the OLED generally includes a substrate, an anode provided on the substrate, a hole injection layer provided on the anode, a hole transport layer provided on the hole injection layer, a light-emitting layer provided on the hole transport layer, and a light-emitting layer.
  • the principle of illumination of OLED display devices is semiconductor materials and organic light-emitting materials. Under the electric field drive, luminescence is caused by carrier injection and recombination.
  • an OLED display device generally employs an ITO pixel electrode and a metal electrode as anodes and cathodes of the device, respectively.
  • electrons and holes are injected from the cathode and the anode to the electron transport layer and the hole transport layer, respectively.
  • the holes migrate to the light-emitting layer through the electron transport layer and the hole transport layer, respectively, and meet in the light-emitting layer to form excitons and excite the light-emitting molecules, and the latter emits visible light through radiation relaxation.
  • OLED can be divided into two types: passive matrix OLED (PMOLED) and active matrix OLED (AMOLED), namely direct addressing and thin film transistor matrix addressing.
  • PMOLED passive matrix OLED
  • AMOLED active matrix OLED
  • the AMOLED has pixels arranged in an array, belongs to an active display type, has high luminous efficiency, and is generally used as a high-definition large-sized display device.
  • Thin film transistors are the main driving components in current liquid crystal display devices and active matrix driven organic electroluminescent display devices, and are directly related to the development direction of high performance flat panel display devices.
  • the flexible TFT substrate has wider application than the traditional TFT substrate, especially in smart devices.
  • the traditional TFT substrate fabrication method is directly applied to the fabrication method of the flexible TFT substrate, and the obtained flexible TFT substrate is easy. Problems such as wire breakage, peeling of TFT devices, and light leakage occur.
  • An object of the present invention is to provide a method for fabricating a flexible TFT substrate, which can prevent problems such as disconnection, TFT device peeling and light leakage during bending of the flexible TFT substrate, improve the quality of the flexible TFT substrate, and prolong the service life of the flexible TFT substrate. .
  • Another object of the present invention is to provide a flexible TFT substrate which does not have problems such as wire breakage, peeling of TFT device and light leakage during bending, and has good quality and long service life.
  • the present invention provides a method for fabricating a flexible TFT substrate, comprising the following steps:
  • Step 1 providing a rigid substrate, coating a first organic material on the rigid substrate to form a flexible substrate;
  • Step 3 forming a scan line in the first recess while forming a gate in the third recess a gate connected to the scan line;
  • Step 4 coating a third organic material on the first organic layer to form a second organic layer;
  • Step 5 Stripping the flexible substrate from the rigid substrate to obtain a flexible TFT substrate.
  • the step 2 further includes: forming a plurality of fifth grooves on the first organic layer, the fifth grooves and the first grooves, the second grooves, and the third grooves One or more of the fourth grooves are connected or not connected, and the groove bottom of the fifth groove is located in the first organic layer or on the flexible substrate to be in contact with the first organic layer
  • the fifth groove is the same depth as the one or more of the first groove, the second groove, the third groove and the fourth groove, or with the first groove, The depths of the second groove, the third groove, and the fourth groove are all different.
  • the first organic material, the second organic material, and the third organic material respectively include polycarbonate, polyethylene glycol terephthalate, polyethylene naphthalate, polyether sulfone resin, and poly At least one of the imides;
  • the first organic material is the same as the second organic material, and the coating process of the first organic material in the step 1 and the coating process of the second organic material in the step 2 are combined into The same coating process.
  • the step 4 further comprises: patterning the second organic layer by using a semi-transmissive film mask, forming a sixth groove on the second organic layer corresponding to the pixel electrode, thin The thickness of the second organic layer above the pixel electrode is formed.
  • the present invention also provides a flexible TFT substrate comprising a flexible substrate, a first organic layer disposed on the flexible substrate, and a second organic layer disposed on the first organic layer;
  • the first organic layer is provided with a plurality of first grooves, a plurality of second grooves, and a plurality of third grooves. And a plurality of fourth grooves, wherein the first groove intersects the second groove, and the third groove communicates with the first groove and the second groove, respectively Four grooves are in communication with the third groove;
  • the third recess is provided with a gate, a gate insulating layer, an active layer, a source and a drain, and a passivation layer which are sequentially stacked from bottom to top, and the active layer corresponds to the gate Provided above the pole, the source and the drain are respectively in contact with both sides of the active layer;
  • the first recess is provided with a scan line and a gate insulating layer which are sequentially stacked from bottom to top, and the scan line is connected to the gate;
  • the second recess is provided with a data line and a passivation layer which are sequentially stacked from bottom to top, and the data line is connected to the source;
  • the fourth recess is provided with a passivation layer and a pixel electrode which are sequentially stacked from bottom to top;
  • a first via hole corresponding to the drain is disposed on the passivation layer, and the pixel electrode is in contact with the drain via the first via hole.
  • the groove bottoms of the first groove, the second groove, the third groove and the fourth groove are located in the first organic layer or on a surface of the flexible substrate that intersects the first organic layer
  • the depths of the first groove, the second groove, the third groove, and the fourth groove are the same or different.
  • the first organic layer is further provided with a plurality of fifth grooves, and the fifth groove and one of the first groove, the second groove, the third groove and the fourth groove Or a plurality of connected or non-connected, the groove bottom of the fifth groove is located in the first organic layer or on a surface of the flexible substrate that intersects the first organic layer, the first The five grooves are the same depth as the one or more of the first groove, the second groove, the third groove and the fourth groove, or with the first groove, the second groove, and the third The depths of the groove and the fourth groove are all different.
  • a sixth groove is disposed on the second organic layer corresponding to the pixel electrode.
  • the material of the flexible substrate, the material of the first organic layer, and the material of the second organic layer respectively include polycarbonate, polyethylene terephthalate, polyethylene naphthalate, polyether At least one of a sulfone resin, and a polyimide; and the material of the flexible substrate is the same as the material of the first organic layer.
  • the invention also provides a method for manufacturing a flexible TFT substrate, comprising the following steps:
  • Step 1 providing a rigid substrate, coating a first organic material on the rigid substrate to form a flexible substrate;
  • Step 2 coating a second organic material on the flexible substrate to form a first organic layer, and patterning the first organic layer by using a semi-transmissive film mask to form on the first organic layer a plurality of first grooves, a plurality of second grooves, a plurality of third grooves, and a plurality of fourth grooves, wherein the first grooves intersect the second grooves, the Three grooves are respectively connected to the first a groove and a second groove, wherein the fourth groove is in communication with the third groove;
  • Step 3 forming a scan line in the first recess, and forming a gate in the third recess, the gate being connected to the scan line;
  • Step 4 coating a third organic material on the first organic layer to form a second organic layer;
  • Step 5 peeling the flexible substrate from the rigid substrate to obtain a flexible TFT substrate
  • groove bottoms of the first groove, the second groove, the third groove and the fourth groove are located in the first organic layer or the flexible substrate is in contact with the first organic layer Surfaces, the depths of the first groove, the second groove, the third groove, and the fourth groove are the same or different;
  • the step 2 further includes: forming a plurality of fifth grooves on the first organic layer, the fifth grooves and the first grooves, the second grooves, the third grooves, and the One or more of the four grooves are connected or not connected, and the groove bottom of the fifth groove is located in the first organic layer or the flexible substrate is in contact with the first organic layer Surfacely, the fifth groove has the same depth as one or more of the first groove, the second groove, the third groove, and the fourth groove, or with the first groove, The depths of the two grooves, the third groove and the fourth groove are all different.
  • the present invention provides a method for fabricating a flexible TFT substrate. First, a flexible substrate and a first organic layer are sequentially formed on a rigid substrate, and a plurality of grooves are disposed on the first organic layer. Forming a TFT device in the plurality of recesses, then forming a second organic layer on the first organic layer, and finally peeling the flexible substrate from the rigid substrate to obtain a flexible TFT substrate.
  • the first organic layer is provided with a plurality of grooves, a plurality of concave structures and a plurality of convex structures are formed on the first organic layer, so that the second organic layer Interlocking with the first organic layer, tightly bonding, and forming protection for the TFT device sandwiched between the two, preventing the flexible TFT substrate from being broken during the bending process, peeling off the TFT device, and leaking light, thereby improving flexibility
  • the quality of the TFT substrate prolongs the service life of the flexible TFT substrate.
  • FIG. 1 is a flow chart of a method of fabricating a flexible TFT substrate of the present invention
  • step 1 is a schematic view of step 1 of a method for fabricating a flexible TFT substrate of the present invention
  • FIG. 3 and FIG. 4 are schematic diagrams showing the second step of the method for fabricating the flexible TFT substrate of the present invention, and FIG. 4 is a cross-sectional view along line C-C of FIG. 3;
  • FIG. 5 and FIG. 6 are schematic diagrams of step 3 of the method for fabricating a flexible TFT substrate of the present invention, and FIG. 6 is a cross-sectional view taken along line C-C of FIG. 5;
  • FIG. 7 and FIG. 8 are schematic diagrams showing the step 4 of the method for fabricating the flexible TFT substrate of the present invention.
  • FIG. 9 is a schematic view showing the step 5 of the method for fabricating the flexible TFT substrate of the present invention and a schematic structural view of the flexible TFT substrate of the present invention.
  • the present invention first provides a method for fabricating a flexible TFT substrate, including the following steps:
  • Step 1 As shown in FIG. 2, a rigid substrate 10 is provided, and a first organic material is coated on the rigid substrate 10 to form a flexible substrate 11.
  • the rigid substrate 10 is a glass substrate.
  • the first organic material comprises polycarbonate (PC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyether sulfone resin (PES). And at least one of polyimide (PI).
  • the first organic material comprises polyimide (PI).
  • Step 2 as shown in FIG. 3 and FIG. 4, coating a second organic material on the flexible substrate 11 to form a first organic layer 20, using a halftone mask (not shown)
  • the first organic layer 20 is patterned, and a plurality of first grooves 21, a plurality of second grooves 22, a plurality of third grooves 23, and a plurality of fourth portions are formed on the first organic layer 20.
  • first groove 21 and the second groove 22 are both strip-shaped, and the first groove 21 and the second groove 22 intersect perpendicularly.
  • the shape of the third groove 23 and the fourth groove 24 may be a circle, a triangle or a polygon.
  • the first recess 21 and the second recess 22 are respectively used for subsequently depositing the scan line 31 and the data line 51; the third recess 23 is used for subsequently depositing the gate 32, the active layer 41, and The source 52 and the drain 53 are used for subsequently depositing the pixel electrode 70.
  • the groove bottoms of the first groove 21, the second groove 22, the third groove 23, and the fourth groove 24 are located in the first organic layer 20 or the flexible substrate 11 and the The depths of the first groove 21, the second groove 22, the third groove 23, and the fourth groove 24 may be the same or different on the surface where the first organic layer 20 is intersected.
  • the first groove 21 has the same depth as the third groove 23 and is larger than the depth of the second groove 22 and the fourth groove 24.
  • the step 2 further includes: forming a plurality of fifth recesses 25 on the first organic layer 20 to increase the number of recessed structures and raised structures on the first organic layer 20, thereby enabling subsequent After the second organic layer 80 is formed on the first organic layer 20, the bite between the first organic layer 20 and the second organic layer 80 is closer.
  • the fifth groove 25 may communicate with or not communicate with one or more of the first groove 21, the second groove 22, the third groove 23, and the fourth groove 24.
  • the groove bottom of the fifth groove 25 may be located on the surface of the first organic layer 20 or the flexible substrate 11 that is in contact with the first organic layer 20.
  • the fifth groove 25 may have the same depth as one or more of the first groove 21, the second groove 22, the third groove 23, and the fourth groove 24, or may be The depths of the first groove 21, the second groove 22, the third groove 23, and the fourth groove 24 are all different.
  • the shape of the fifth groove 25 may be a circle, a triangle or a polygon.
  • the second organic material comprises polycarbonate (PC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyether sulfone resin (PES). And at least one of polyimide (PI).
  • the second organic material comprises polyimide.
  • the first organic material is the same as the second organic material, and the coating process of the first organic material in the step 1 is combined with the coating process of the second organic material in the step 2 A coating process to save process time.
  • Step 3 as shown in FIG. 5 and FIG. 6, forming a scan line 31 in the first recess 21, while forming a gate 32 in the third recess 23, the gate 32 and the scan Line 31 is connected;
  • An active layer 41 is formed on the gate insulating layer 40 corresponding to the gate 32;
  • a data line 51 is formed in the second recess 22, and a source 52 and a drain 53 are formed in the third recess 23, and the source 52 is connected to the data line 51, the source 52 and the drain 53 are respectively in contact with both sides of the active layer 41;
  • Forming a passivation layer 60 on the bottom of the data line 51, the source 52, the drain 53, the active layer 41, and the fourth recess 24, and the passivation layer 60 is provided with a corresponding layer a first through hole 61 above the drain 53;
  • the total height of each structural layer formed in each groove is smaller than the depth of the corresponding groove .
  • Step 4 As shown in FIG. 7, a third organic material is coated on the first organic layer 20 to form a second organic layer 80.
  • the third organic material comprises polycarbonate (PC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyether sulfone resin (PES). And at least one of polyimide (PI).
  • the third organic material comprises polyimide.
  • the area of the first organic layer 20 on which the plurality of grooves are provided corresponds to a plurality of recessed structures
  • the area of the first organic layer 20 between the plurality of grooves corresponds to a plurality of raised structures.
  • the second organic layer 80 respectively forms a plurality of convex structures and a plurality of concave structures corresponding to the positions of the plurality of concave structures and the plurality of convex structures of the first organic layer 20, so that the first organic layer 20 and the second organic layer
  • the layers 80 are engaged with each other and tightly combined, and the first organic layer 20 and the second organic layer 80 which are mutually engaged form an effective protection against the TFT device interposed therebetween, preventing the flexible TFT substrate from being broken during the bending process. Problems such as peeling and light leakage of the TFT device, improving the quality of the flexible TFT substrate and prolonging the service life of the flexible TFT substrate.
  • the step 4 further comprises: patterning the second organic layer 80 by using a halftone mask (not shown), in the second organic layer.
  • a sixth recess 86 is formed on the upper surface of the pixel electrode 70 to thin the thickness of the second organic layer 80 above the pixel electrode 70, so that when the flexible TFT substrate of the present invention is applied to a liquid crystal display panel, The intensity of the electric field above the pixel electrode 70 can be increased, and the deflection of the liquid crystal molecules can be effectively controlled.
  • Step 5 as shown in FIG. 9, the flexible substrate 11 is peeled off from the rigid substrate 10, A flexible TFT substrate 100 is produced.
  • the flexible substrate 11 is peeled off from the rigid substrate 10 by a laser lift-off technique (LLO).
  • LLO laser lift-off technique
  • a flexible substrate 11 and a first organic layer 20 are sequentially formed on a rigid substrate, and a plurality of grooves are formed on the first organic layer 20, and then a TFT device is fabricated in the a plurality of grooves, then forming a second organic layer 80 on the first organic layer 20, and finally peeling the flexible substrate 11 from the rigid substrate 10 to obtain a flexible TFT substrate 100
  • the flexible TFT substrate 100 since the first organic layer 20 is provided with a plurality of grooves, a plurality of concave structures and a plurality of convex structures are formed on the first organic layer 20, so that the second organic layer 80 and the first organic layer 20 are engaged with each other, and the bonding is tight, and the TFT device sandwiched between the two forms a protection to prevent the disconnection of the flexible TFT substrate during the bending process, the peeling of the TFT device, and the light leakage.
  • the present invention further provides a flexible TFT substrate 100 including a flexible substrate 11 , a first organic layer 20 disposed on the flexible substrate 11 , and a photo-based TFT substrate. a second organic layer 80 on the first organic layer 20;
  • the first organic layer 20 is provided with a plurality of first grooves 21, a plurality of second grooves 22, a plurality of third grooves 23, and a plurality of fourth grooves 24, wherein the first grooves 21 intersecting the second groove 22, the third groove 23 communicating with the first groove 21 and the second groove 22, respectively, the fourth groove 24 and the third groove 23 connected;
  • the third recess 23 is provided with a gate electrode 32, a gate insulating layer 40, an active layer 41, a source 52 and a drain electrode 53, and a passivation layer 60 which are sequentially stacked from bottom to top.
  • the source layer 41 is disposed above the gate 32, and the source 52 and the drain 53 are respectively in contact with both sides of the active layer 41;
  • the first recess 21 is provided with a scan line 31 and a gate insulating layer 40 which are sequentially stacked from bottom to top, and the scan line 31 is connected to the gate 32;
  • the second recess 22 is provided with a data line 51 and a passivation layer 60 which are sequentially stacked from bottom to top, and the data line 51 is connected to the source 52;
  • the fourth recess 24 is provided with a passivation layer 60 and a pixel electrode 70 stacked in this order from bottom to top;
  • a first via hole 61 corresponding to the upper surface of the drain electrode 53 is disposed on the passivation layer 60, and the pixel electrode 70 is in contact with the drain electrode 53 via the first via hole 61.
  • first groove 21 and the second groove 22 are both strip-shaped, and the first groove 21 and the second groove 22 intersect perpendicularly.
  • the groove bottoms of the first groove 21, the second groove 22, the third groove 23, and the fourth groove 24 are located in the first organic layer 20 or the flexible substrate 11 and the The depths of the first groove 21, the second groove 22, the third groove 23, and the fourth groove 24 may be the same or different on the surface where the first organic layer 20 is intersected.
  • the first groove 21 has the same depth as the third groove 23 and is larger than the depth of the second groove 22 and the fourth groove 24.
  • the total height of each structural layer disposed in each groove is smaller than the depth of the corresponding groove .
  • the first organic layer 20 may further be provided with a plurality of fifth grooves 25 to increase the number of concave structures and convex structures on the first organic layer 20.
  • the fifth groove 25 may communicate with or not communicate with one or more of the first groove 21, the second groove 22, the third groove 23, and the fourth groove 24.
  • the groove bottom of the fifth groove 25 may be located on the surface of the first organic layer 20 or the flexible substrate 11 that is in contact with the first organic layer 20.
  • the fifth groove 25 may have the same depth as one or more of the first groove 21, the second groove 22, the third groove 23, and the fourth groove 24, or may be The depths of the first groove 21, the second groove 22, the third groove 23, and the fourth groove 24 are all different.
  • the shape of the fifth groove 25 may be a circle, a triangle or a polygon.
  • the material of the flexible substrate 11, the material of the first organic layer 20, and the material of the second organic layer 80 include polycarbonate (PC) and polyethylene terephthalate (PET), respectively. At least one of polyethylene naphthalate (PEN), polyether sulfone resin (PES), and polyimide (PI).
  • PC polycarbonate
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyether sulfone resin
  • PI polyimide
  • the material of the flexible substrate 11, the material of the first organic layer 20, and the material of the material of the second organic layer 80 all include polyimide (PI).
  • the material of the flexible substrate 11 is the same as the material of the first organic layer 20, so that the flexible substrate 11 and the first organic layer 20 can be combined and fabricated in the same process to save Process time.
  • the flexible TFT substrate includes a flexible substrate 11, a first organic layer 20 disposed on the flexible substrate 11, and a second organic layer 80 disposed on the first organic layer 20, the first organic
  • the layer 20 is provided with a plurality of grooves, wherein the plurality of grooves are provided with TFT devices, and the second organic layer 80 covering the first organic layer 20 and the TFT device, wherein a plurality of recesses and a plurality of bump structures are formed on the first organic layer 20 because the first organic layer 20 is provided with a plurality of grooves.
  • the second organic layer 80 and the first organic layer 20 are engaged with each other, and the bonding is tight, and the TFT device sandwiched between the two is formed to protect the flexible TFT substrate from being broken during the bending process, and the TFT is prevented from being broken. Problems such as device peeling and light leakage improve the quality of the flexible TFT substrate and prolong the service life of the flexible TFT substrate.
  • the present invention provides a flexible TFT substrate and a method of fabricating the same.
  • a flexible substrate and a first organic layer are sequentially formed on a rigid substrate, and a plurality of grooves are formed on the first organic layer, and then the TFT device is fabricated in the number And forming a second organic layer on the first organic layer, and finally peeling the flexible substrate from the rigid substrate to obtain a flexible TFT substrate, wherein the flexible TFT substrate
  • the first organic layer is provided with a plurality of grooves, so as to form a plurality of concave structures and a plurality of convex structures on the first organic layer, so that the second organic layer and the first organic layer are engaged with each other
  • the combination is tight, and the TFT device sandwiched between the two forms a protection to prevent the disconnection of the flexible TFT substrate during the bending process, the peeling of the TFT device, and the light leakage, thereby improving the quality of the flexible TFT substrate and extending

Abstract

一种柔性TFT基板及其制作方法,所述制作方法包括,步骤1、提供一刚性基板,在所述刚性基板上涂布第一有机材料,形成一柔性衬底(1);步骤2、在所述柔性衬底上涂布第二有机材料,形成第一有机层,采用半透膜光罩对所述第一有机层进行图形化处理,在所述第一有机层上形成数个凹槽(2);步骤3、在所述数个凹槽中形成TFT器件(3);步骤4、在所述第一有机层上涂布第三有机材料,形成第二有机层(4);步骤5、将所述柔性衬底从所述刚性基板上剥离,制得一柔性TFT基板(5)。延长了柔性TFT基板的使用寿命。

Description

柔性TFT基板及其制作方法 技术领域
本发明涉及显示技术领域,尤其涉及一种柔性TFT基板及其制作方法。
背景技术
随着显示技术的发展,液晶显示器(Liquid Crystal Display,LCD)等平面显示装置因具有高画质、省电、机身薄及应用范围广等优点,而被广泛的应用于手机、电视、个人数字助理、数字相机、笔记本电脑、台式计算机等各种消费性电子产品,成为显示装置中的主流。
现有市场上的液晶显示装置大部分为背光型液晶显示器,其包括液晶显示面板及背光模组(backlight module)。液晶显示面板的工作原理是在两片平行的玻璃基板当中放置液晶分子,两片玻璃基板中间有许多垂直和水平的细小电线,通过通电与否来控制液晶分子改变方向,将背光模组的光线折射出来产生画面。
通常液晶显示面板由彩膜(CF,Color Filter)基板、薄膜晶体管(TFT,Thin Film Transistor)基板、夹于彩膜基板与薄膜晶体管基板之间的液晶(LC,Liquid Crystal)及密封胶框(Sealant)组成,其成型工艺一般包括:前段阵列(Array)制程(薄膜、黄光、蚀刻及剥膜)、中段成盒(Cell)制程(TFT基板与CF基板贴合)及后段模组组装制程(驱动IC与印刷电路板压合)。其中,前段Array制程主要是形成TFT基板,以便于控制液晶分子的运动;中段Cell制程主要是在TFT基板与CF基板之间添加液晶;后段模组组装制程主要是驱动IC压合与印刷电路板的整合,进而驱动液晶分子转动,显示图像。
有机发光二极管(Organic Light-Emitting Diode,OLED)显示器,也称为有机电致发光显示器,是一种新兴的平板显示装置,由于其具有制备工艺简单、成本低、功耗低、发光亮度高、工作温度适应范围广、体积轻薄、响应速度快,而且易于实现彩色显示和大屏幕显示、易于实现和集成电路驱动器相匹配、易于实现柔性显示等优点,因而具有广阔的应用前景。
OLED通常包括:基板、设于基板上的阳极、设于阳极上的空穴注入层、设于空穴注入层上的空穴传输层、设于空穴传输层上的发光层、设于发光层上的电子传输层、设于电子传输层上的电子注入层、及设于电子注入层上的阴极。OLED显示器件的发光原理为半导体材料和有机发光材料 在电场驱动下,通过载流子注入和复合导致发光。具体的,OLED显示器件通常采用ITO像素电极和金属电极分别作为器件的阳极和阴极,在一定电压驱动下,电子和空穴分别从阴极和阳极注入到电子传输层和空穴传输层,电子和空穴分别经过电子传输层和空穴传输层迁移到发光层,并在发光层中相遇,形成激子并使发光分子激发,后者经过辐射弛豫而发出可见光。
OLED按照驱动方式可以分为无源矩阵型OLED(Passive Matrix OLED,PMOLED)和有源矩阵型OLED(Active Matrix OLED,AMOLED)两大类,即直接寻址和薄膜晶体管矩阵寻址两类。其中,AMOLED具有呈阵列式排布的像素,属于主动显示类型,发光效能高,通常用作高清晰度的大尺寸显示装置。
薄膜晶体管是目前液晶显示装置和有源矩阵驱动式有机电致发光显示装置中的主要驱动元件,直接关系到高性能平板显示装置的发展方向。柔性TFT基板较传统TFT基板有着更加广泛的用途,尤其在智能设备中有着广泛的应用前景,但是将传统TFT基板的制作方法直接应用在柔性TFT基板的制作方法中,制得的柔性TFT基板容易出现断线、TFT器件剥落(peeling)及漏光等问题。
发明内容
本发明的目的在于提供一种柔性TFT基板的制作方法,能够防止柔性TFT基板在弯曲过程中出现断线、TFT器件剥落及漏光等问题,提升柔性TFT基板的品质,延长柔性TFT基板的使用寿命。
本发明的目的还在于提供一种柔性TFT基板,在弯曲过程中不会出现断线、TFT器件剥落及漏光等问题,具有较好的品质与较长的使用寿命。
为实现上述目的,本发明提供一种柔性TFT基板的制作方法,包括如下步骤:
步骤1、提供一刚性基板,在所述刚性基板上涂布第一有机材料,形成一柔性衬底;
步骤2、在所述柔性衬底上涂布第二有机材料,形成第一有机层,采用半透膜光罩对所述第一有机层进行图形化处理,在所述第一有机层上形成数个第一凹槽、数个第二凹槽、数个第三凹槽、及数个第四凹槽,其中,所述第一凹槽与所述第二凹槽相交叉,所述第三凹槽分别连通至所述第一凹槽与第二凹槽,所述第四凹槽与所述第三凹槽相连通;
步骤3、在所述第一凹槽中形成扫描线,同时在所述第三凹槽中形成栅 极,所述栅极与所述扫描线相连;
在所述扫描线与栅极上形成栅极绝缘层;
在所述栅极绝缘层上对应于所述栅极的上方形成有源层;
在所述第二凹槽中形成数据线,同时在所述第三凹槽中形成源极与漏极,所述源极与所述数据线相连,所述源极与漏极分别与所述有源层的两侧相接触;
在所述数据线、源极、漏极、有源层、及所述第四凹槽的槽底上形成钝化层,所述钝化层上设有对应于所述漏极上方的第一通孔;
在所述钝化层上对应于所述第四凹槽的槽底上方的区域形成像素电极,所述像素电极经由所述第一通孔与所述漏极相接触;
步骤4、在所述第一有机层上涂布第三有机材料,形成第二有机层;
步骤5、将所述柔性衬底从所述刚性基板上剥离,制得一柔性TFT基板。
所述第一凹槽、第二凹槽、第三凹槽及第四凹槽的槽底位于所述第一有机层中或者所述柔性衬底与所述第一有机层相交接的表面上,所述第一凹槽、第二凹槽、第三凹槽及第四凹槽的深度相同或不同。
优选的,所述步骤2还包括:在所述第一有机层上形成数个第五凹槽,所述第五凹槽与所述第一凹槽、第二凹槽、第三凹槽及第四凹槽中的一个或多个相连通或者均不连通,所述第五凹槽的槽底位于所述第一有机层中或者所述柔性衬底上与所述第一有机层相交接的表面上,所述第五凹槽与所述第一凹槽、第二凹槽、第三凹槽及第四凹槽中的一个或多个深度相同,或者与所述第一凹槽、第二凹槽、第三凹槽及第四凹槽的深度均不相同。
所述第一有机材料、第二有机材料、及第三有机材料分别包括聚碳酸酯、聚乙二醇对苯二甲酸酯、聚萘二甲酸乙二醇酯、聚醚砜树脂、及聚酰亚胺中的至少一种;
并且,所述第一有机材料与所述第二有机材料相同,所述步骤1中所述第一有机材料的涂布制程与所述步骤2中所述第二有机材料的涂布制程合并为同一个涂布制程。
优选的,所述步骤4还包括:采用半透膜光罩对所述第二有机层进行图形化处理,在所述第二有机层上对应所述像素电极的上方形成第六凹槽,薄化位于所述像素电极上方的第二有机层的厚度。
本发明还提供一种柔性TFT基板,包括柔性衬底、设于所述柔性衬底上的第一有机层、及设于所述第一有机层上的第二有机层;
所述第一有机层上设有数个第一凹槽、数个第二凹槽、数个第三凹槽、 及数个第四凹槽,其中,所述第一凹槽与所述第二凹槽相交叉,所述第三凹槽分别连通至所述第一凹槽与第二凹槽,所述第四凹槽与所述第三凹槽相连通;
所述第三凹槽中设有从下到上依次层叠设置的栅极、栅极绝缘层、有源层、源极与漏极、及钝化层,所述有源层对应于所述栅极的上方设置,所述源极与漏极分别与所述有源层的两侧相接触;
所述第一凹槽中设有从下到上依次层叠设置的扫描线与栅极绝缘层,所述扫描线与所述栅极相连;
所述第二凹槽中设有从下到上依次层叠设置的数据线与钝化层,所述数据线与所述源极相连;
所述第四凹槽中设有从下到上依次层叠设置的钝化层与像素电极;
所述钝化层上设有对应于所述漏极上方的第一通孔,所述像素电极经由所述第一通孔与所述漏极相接触。
所述第一凹槽、第二凹槽、第三凹槽及第四凹槽的槽底位于所述第一有机层中或者所述柔性衬底与所述第一有机层相交接的表面上,所述第一凹槽、第二凹槽、第三凹槽及第四凹槽的深度相同或不同。
优选的,所述第一有机层上还设有数个第五凹槽,所述第五凹槽与所述第一凹槽、第二凹槽、第三凹槽及第四凹槽中的一个或多个相连通或者均不连通,所述第五凹槽的槽底位于所述第一有机层中或者所述柔性衬底上与所述第一有机层相交接的表面上,所述第五凹槽与所述第一凹槽、第二凹槽、第三凹槽及第四凹槽中的一个或多个深度相同,或者与所述第一凹槽、第二凹槽、第三凹槽及第四凹槽的深度均不相同。
优选的,所述第二有机层上对应所述像素电极的上方设有第六凹槽。
所述柔性衬底的材料、第一有机层的材料、及第二有机层的材料分别包括聚碳酸酯、聚乙二醇对苯二甲酸酯、聚萘二甲酸乙二醇酯、聚醚砜树脂、及聚酰亚胺中的至少一种;并且所述柔性衬底的材料与所述第一有机层的材料相同。
本发明还提供一种柔性TFT基板的制作方法,包括如下步骤:
步骤1、提供一刚性基板,在所述刚性基板上涂布第一有机材料,形成一柔性衬底;
步骤2、在所述柔性衬底上涂布第二有机材料,形成第一有机层,采用半透膜光罩对所述第一有机层进行图形化处理,在所述第一有机层上形成数个第一凹槽、数个第二凹槽、数个第三凹槽、及数个第四凹槽,其中,所述第一凹槽与所述第二凹槽相交叉,所述第三凹槽分别连通至所述第一 凹槽与第二凹槽,所述第四凹槽与所述第三凹槽相连通;
步骤3、在所述第一凹槽中形成扫描线,同时在所述第三凹槽中形成栅极,所述栅极与所述扫描线相连;
在所述扫描线与栅极上形成栅极绝缘层;
在所述栅极绝缘层上对应于所述栅极的上方形成有源层;
在所述第二凹槽中形成数据线,同时在所述第三凹槽中形成源极与漏极,所述源极与所述数据线相连,所述源极与漏极分别与所述有源层的两侧相接触;
在所述数据线、源极、漏极、有源层、及所述第四凹槽的槽底上形成钝化层,所述钝化层上设有对应于所述漏极上方的第一通孔;
在所述钝化层上对应于所述第四凹槽的槽底上方的区域形成像素电极,所述像素电极经由所述第一通孔与所述漏极相接触;
步骤4、在所述第一有机层上涂布第三有机材料,形成第二有机层;
步骤5、将所述柔性衬底从所述刚性基板上剥离,制得一柔性TFT基板;
其中,所述第一凹槽、第二凹槽、第三凹槽及第四凹槽的槽底位于所述第一有机层中或者所述柔性衬底与所述第一有机层相交接的表面上,所述第一凹槽、第二凹槽、第三凹槽及第四凹槽的深度相同或不同;
其中,所述步骤2还包括:在所述第一有机层上形成数个第五凹槽,所述第五凹槽与所述第一凹槽、第二凹槽、第三凹槽及第四凹槽中的一个或多个相连通或者均不连通,所述第五凹槽的槽底位于所述第一有机层中或者所述柔性衬底上与所述第一有机层相交接的表面上,所述第五凹槽与所述第一凹槽、第二凹槽、第三凹槽及第四凹槽中的一个或多个深度相同,或者与所述第一凹槽、第二凹槽、第三凹槽及第四凹槽的深度均不相同。
本发明的有益效果:本发明提供的一种柔性TFT基板的制作方法,首先在刚性基板上依次形成柔性衬底与第一有机层,并且在所述第一有机层上设置数个凹槽,之后将TFT器件制作于所述数个凹槽中,然后在所述第一有机层上形成第二有机层,最后将所述柔性衬底从所述刚性基板上剥离,制得一柔性TFT基板,所述柔性TFT基板中,由于所述第一有机层上设有数个凹槽,从而在所述第一有机层上形成多个凹陷结构与多个凸起结构,使得所述第二有机层与所述第一有机层相互咬合,结合紧密,并且对夹设于二者之间的TFT器件形成保护,防止柔性TFT基板在弯曲过程中出现断线、TFT器件剥落及漏光等问题,提升柔性TFT基板的品质,延长柔性TFT基板的使用寿命。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
附图中,
图1为本发明的柔性TFT基板的制作方法的流程图;
图2为本发明的柔性TFT基板的制作方法的步骤1的示意图;
图3与图4为本发明的柔性TFT基板的制作方法的步骤2的示意图且图4为图3沿C-C线的剖视示意图;
图5与图6为本发明的柔性TFT基板的制作方法的步骤3的示意图且图6为图5沿C-C线的剖视示意图;
图7与图8为本发明的柔性TFT基板的制作方法的步骤4的示意图;
图9为本发明的柔性TFT基板的制作方法的步骤5的示意图暨本发明的柔性TFT基板的结构示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图1,本发明首先提供一种柔性TFT基板的制作方法,包括如下步骤:
步骤1、如图2所示,提供一刚性基板10,在所述刚性基板10上涂布第一有机材料,形成一柔性衬底11。
具体的,所述刚性基板10为玻璃基板。
具体的,所述第一有机材料包括聚碳酸酯(PC)、聚乙二醇对苯二甲酸酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚醚砜树脂(PES)、及聚酰亚胺(PI)中的至少一种。优选的,所述第一有机材料包括聚酰亚胺(PI)。
步骤2、如图3与图4所示,在所述柔性衬底11上涂布第二有机材料,形成第一有机层20,采用半透膜(halftone)光罩(未图示)对所述第一有机层20进行图形化处理,在所述第一有机层20上形成数个第一凹槽21、数个第二凹槽22、数个第三凹槽23、及数个第四凹槽24,其中,所述第一凹槽21与所述第二凹槽22相交叉,所述第三凹槽23分别连通至所述第一 凹槽21与第二凹槽22,所述第四凹槽24与所述第三凹槽23相连通。
具体的,所述第一凹槽21与第二凹槽22均为条形,且所述第一凹槽21与所述第二凹槽22垂直相交叉。
具体的,所述第三凹槽23与第四凹槽24的形状可以为圆形、三角形或多边形。
具体的,所述第一凹槽21与第二凹槽22分别用于后续沉积扫描线31与数据线51;所述第三凹槽23用于后续沉积栅极32、有源层41、及源极52与漏极53;所述第四凹槽24用于后续沉积像素电极70。
具体的,所述第一凹槽21、第二凹槽22、第三凹槽23及第四凹槽24的槽底位于所述第一有机层20中或者所述柔性衬底11与所述第一有机层20相交接的表面上,所述第一凹槽21、第二凹槽22、第三凹槽23及第四凹槽24的深度可以相同或不同。
优选的,所述第一凹槽21与所述第三凹槽23的深度相同,且大于所述第二凹槽22与第四凹槽24的深度。
具体的,所述步骤2还包括:在所述第一有机层20上形成数个第五凹槽25,以增加所述第一有机层20上凹陷结构与凸起结构的数量,从而使得后续在所述第一有机层20上形成第二有机层80后,所述第一有机层20与所述第二有机层80之间的咬合更紧密。
具体的,所述第五凹槽25可以与所述第一凹槽21、第二凹槽22、第三凹槽23及第四凹槽24中的一个或多个相连通或者均不连通,所述第五凹槽25的槽底可以位于所述第一有机层20中或者所述柔性衬底11上与所述第一有机层20相交接的表面上。
具体的,所述第五凹槽25可以与所述第一凹槽21、第二凹槽22、第三凹槽23及第四凹槽24中的一个或多个深度相同,也可以与所述第一凹槽21、第二凹槽22、第三凹槽23及第四凹槽24的深度均不相同。
具体的,所述第五凹槽25的形状可以为圆形、三角形或多边形。
具体的,所述第二有机材料包括聚碳酸酯(PC)、聚乙二醇对苯二甲酸酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚醚砜树脂(PES)、及聚酰亚胺(PI)中的至少一种。优选的,所述第二有机材料包括聚酰亚胺。
优选的,所述第一有机材料与第二有机材料相同,所述步骤1中所述第一有机材料的涂布制程与所述步骤2中所述第二有机材料的涂布制程合并为同一个涂布制程,以节约制程时间。
步骤3、如图5与图6所示,在所述第一凹槽21中形成扫描线31,同时在所述第三凹槽23中形成栅极32,所述栅极32与所述扫描线31相连;
在所述扫描线31与栅极32上形成栅极绝缘层40;
在所述栅极绝缘层40上对应于所述栅极32的上方形成有源层41;
在所述第二凹槽22中形成数据线51,同时在所述第三凹槽23中形成源极52与漏极53,所述源极52与所述数据线51相连,所述源极52与漏极53分别与所述有源层41的两侧相接触;
在所述数据线51、源极52、漏极53、有源层41、及所述第四凹槽24的槽底上形成钝化层60,所述钝化层60上设有对应于所述漏极53上方的第一通孔61;
在所述钝化层60上对应于所述第四凹槽24的槽底上方的区域形成像素电极70,所述像素电极70经由所述第一通孔61与所述漏极53相接触。
具体的,所述第一凹槽21、第二凹槽22、第三凹槽23及第四凹槽24中,每个凹槽内制作的各结构层的总高度小于对应的凹槽的深度。
步骤4、如图7所示,在所述第一有机层20上涂布第三有机材料,形成第二有机层80。
具体的,所述第三有机材料包括聚碳酸酯(PC)、聚乙二醇对苯二甲酸酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚醚砜树脂(PES)、及聚酰亚胺(PI)中的至少一种。优选的,所述第三有机材料包括聚酰亚胺。
具体的,所述第一有机层20上设有数个凹槽的区域相当于多个凹陷结构,所述第一有机层20上位于数个凹槽之间的区域相当于多个凸起结构,从而在所述第一有机层20上形成多个凹陷结构与多个凸起结构,因此采用涂布的方法在所述第一有机层20上形成所述第二有机层80之后,得到的所述第二有机层80分别对应所述第一有机层20的多个凹陷结构与多个凸起结构的位置形成多个凸起结构与多个凹陷结构,使得第一有机层20与第二有机层80相互咬合,结合紧密,所述相互咬合的第一有机层20与第二有机层80对夹设于二者之间的TFT器件形成有效保护,防止柔性TFT基板在弯曲过程中出现断线、TFT器件剥落及漏光等问题,提升柔性TFT基板的品质,延长柔性TFT基板的使用寿命。
优选的,如图8所示,所述步骤4还包括:采用半透膜(halftone)光罩(未图示)对所述第二有机层80进行图形化处理,在所述第二有机层80上对应所述像素电极70的上方形成第六凹槽86,薄化位于所述像素电极70上方的第二有机层80的厚度,使得本发明的柔性TFT基板应用于液晶显示面板中时,可提高所述像素电极70上方的电场强度,有效控制液晶分子偏转。
步骤5、如图9所示,将所述柔性衬底11从所述刚性基板10上剥离, 制得一柔性TFT基板100。
优选的,所述步骤5中,采用激光剥离技术(LLO)将所述柔性衬底11从所述刚性基板10上剥离。
上述柔性TFT基板的制作方法,首先在刚性基板上依次形成柔性衬底11与第一有机层20,并且在所述第一有机层20上设置数个凹槽,之后将TFT器件制作于所述数个凹槽中,然后在所述第一有机层20上形成第二有机层80,最后将所述柔性衬底11从所述刚性基板10上剥离,制得一柔性TFT基板100,所述柔性TFT基板100中,由于所述第一有机层20上设有数个凹槽,从而在所述第一有机层20上形成多个凹陷结构与多个凸起结构,使得所述第二有机层80与所述第一有机层20相互咬合,结合紧密,并且对夹设于二者之间的TFT器件形成保护,防止柔性TFT基板在弯曲过程中出现断线、TFT器件剥落及漏光等问题,提升柔性TFT基板的品质,延长柔性TFT基板的使用寿命。
请参阅图9,基于上述柔性TFT基板的制作方法,本发明还提供一种柔性TFT基板100,包括柔性衬底11、设于所述柔性衬底11上的第一有机层20、及设于所述第一有机层20上的第二有机层80;
所述第一有机层20上设有数个第一凹槽21、数个第二凹槽22、数个第三凹槽23、及数个第四凹槽24,其中,所述第一凹槽21与所述第二凹槽22相交叉,所述第三凹槽23分别连通至所述第一凹槽21与第二凹槽22,所述第四凹槽24与所述第三凹槽23相连通;
所述第三凹槽23中设有从下到上依次层叠设置的栅极32、栅极绝缘层40、有源层41、源极52与漏极53、及钝化层60,所述有源层41对应于所述栅极32的上方设置,所述源极52与漏极53分别与所述有源层41的两侧相接触;
所述第一凹槽21中设有从下到上依次层叠设置的扫描线31与栅极绝缘层40,所述扫描线31与所述栅极32相连;
所述第二凹槽22中设有从下到上依次层叠设置的数据线51与钝化层60,所述数据线51与所述源极52相连;
所述第四凹槽24中设有从下到上依次层叠设置的钝化层60与像素电极70;
所述钝化层60上设有对应于所述漏极53上方的第一通孔61,所述像素电极70经由所述第一通孔61与所述漏极53相接触。
具体的,所述第一凹槽21与第二凹槽22均为条形,且所述第一凹槽21与所述第二凹槽22垂直相交叉。
具体的,所述第三凹槽23与第四凹槽24的形状可以为圆形、三角形或多边形。
具体的,所述第一凹槽21、第二凹槽22、第三凹槽23及第四凹槽24的槽底位于所述第一有机层20中或者所述柔性衬底11与所述第一有机层20相交接的表面上,所述第一凹槽21、第二凹槽22、第三凹槽23及第四凹槽24的深度可以相同或不同。
优选的,所述第一凹槽21与所述第三凹槽23的深度相同,且大于所述第二凹槽22与第四凹槽24的深度。
具体的,所述第一凹槽21、第二凹槽22、第三凹槽23及第四凹槽24中,每个凹槽内设置的各结构层的总高度小于对应的凹槽的深度。
具体的,所述第一有机层20上还可以设有数个第五凹槽25,以增加所述第一有机层20上凹陷结构与凸起结构的数量。
具体的,所述第五凹槽25可以与所述第一凹槽21、第二凹槽22、第三凹槽23及第四凹槽24中的一个或多个相连通或者均不连通,所述第五凹槽25的槽底可以位于所述第一有机层20中或者所述柔性衬底11上与所述第一有机层20相交接的表面上。
具体的,所述第五凹槽25可以与所述第一凹槽21、第二凹槽22、第三凹槽23及第四凹槽24中的一个或多个深度相同,也可以与所述第一凹槽21、第二凹槽22、第三凹槽23及第四凹槽24的深度均不相同。
具体的,所述第五凹槽25的形状可以为圆形、三角形或多边形。
优选的,所述第二有机层80上对应所述像素电极70的上方设有第六凹槽86。
具体的,所述柔性衬底11的材料、第一有机层20的材料、及第二有机层80的材料分别包括聚碳酸酯(PC)、聚乙二醇对苯二甲酸酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚醚砜树脂(PES)、及聚酰亚胺(PI)中的至少一种。
优选的,所述柔性衬底11的材料、第一有机层20的材料、及第二有机层80的材料的材料均包括聚酰亚胺(PI)。
优选的,所述柔性衬底11的材料与所述第一有机层20的材料相同,从而可以将所述柔性衬底11与所述第一有机层20合并在同一个制程中制作,以节约制程时间。
上述柔性TFT基板,包括柔性衬底11、设于所述柔性衬底11上的第一有机层20、及设于所述第一有机层20上的第二有机层80,所述第一有机层20上设有数个凹槽,所述数个凹槽中设有TFT器件,所述第二有机层 80覆盖所述第一有机层20与TFT器件,由于所述第一有机层20上设有数个凹槽,从而在所述第一有机层20上形成多个凹陷结构与多个凸起结构,使得所述第二有机层80与所述第一有机层20相互咬合,结合紧密,并且对夹设于二者之间的TFT器件形成保护,防止柔性TFT基板在弯曲过程中出现断线、TFT器件剥落及漏光等问题,提升柔性TFT基板的品质,延长柔性TFT基板的使用寿命。
综上所述,本发明提供一种柔性TFT基板及其制作方法。本发明的柔性TFT基板的制作方法,首先在刚性基板上依次形成柔性衬底与第一有机层,并且在所述第一有机层上设置数个凹槽,之后将TFT器件制作于所述数个凹槽中,然后在所述第一有机层上形成第二有机层,最后将所述柔性衬底从所述刚性基板上剥离,制得一柔性TFT基板,所述柔性TFT基板中,由于所述第一有机层上设有数个凹槽,从而在所述第一有机层上形成多个凹陷结构与多个凸起结构,使得所述第二有机层与所述第一有机层相互咬合,结合紧密,并且对夹设于二者之间的TFT器件形成保护,防止柔性TFT基板在弯曲过程中出现断线、TFT器件剥落及漏光等问题,提升柔性TFT基板的品质,延长柔性TFT基板的使用寿命。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (13)

  1. 一种柔性TFT基板的制作方法,包括如下步骤:
    步骤1、提供一刚性基板,在所述刚性基板上涂布第一有机材料,形成一柔性衬底;
    步骤2、在所述柔性衬底上涂布第二有机材料,形成第一有机层,采用半透膜光罩对所述第一有机层进行图形化处理,在所述第一有机层上形成数个第一凹槽、数个第二凹槽、数个第三凹槽、及数个第四凹槽,其中,所述第一凹槽与所述第二凹槽相交叉,所述第三凹槽分别连通至所述第一凹槽与第二凹槽,所述第四凹槽与所述第三凹槽相连通;
    步骤3、在所述第一凹槽中形成扫描线,同时在所述第三凹槽中形成栅极,所述栅极与所述扫描线相连;
    在所述扫描线与栅极上形成栅极绝缘层;
    在所述栅极绝缘层上对应于所述栅极的上方形成有源层;
    在所述第二凹槽中形成数据线,同时在所述第三凹槽中形成源极与漏极,所述源极与所述数据线相连,所述源极与漏极分别与所述有源层的两侧相接触;
    在所述数据线、源极、漏极、有源层、及所述第四凹槽的槽底上形成钝化层,所述钝化层上设有对应于所述漏极上方的第一通孔;
    在所述钝化层上对应于所述第四凹槽的槽底上方的区域形成像素电极,所述像素电极经由所述第一通孔与所述漏极相接触;
    步骤4、在所述第一有机层上涂布第三有机材料,形成第二有机层;
    步骤5、将所述柔性衬底从所述刚性基板上剥离,制得一柔性TFT基板。
  2. 如权利要求1所述的柔性TFT基板的制作方法,其中,所述第一凹槽、第二凹槽、第三凹槽及第四凹槽的槽底位于所述第一有机层中或者所述柔性衬底与所述第一有机层相交接的表面上,所述第一凹槽、第二凹槽、第三凹槽及第四凹槽的深度相同或不同。
  3. 如权利要求1所述的柔性TFT基板的制作方法,其中,所述步骤2还包括:在所述第一有机层上形成数个第五凹槽,所述第五凹槽与所述第一凹槽、第二凹槽、第三凹槽及第四凹槽中的一个或多个相连通或者均不连通,所述第五凹槽的槽底位于所述第一有机层中或者所述柔性衬底上与所述第一有机层相交接的表面上,所述第五凹槽与所述第一凹槽、第二凹 槽、第三凹槽及第四凹槽中的一个或多个深度相同,或者与所述第一凹槽、第二凹槽、第三凹槽及第四凹槽的深度均不相同。
  4. 如权利要求1所述的柔性TFT基板的制作方法,其中,所述第一有机材料、第二有机材料、及第三有机材料分别包括聚碳酸酯、聚乙二醇对苯二甲酸酯、聚萘二甲酸乙二醇酯、聚醚砜树脂、及聚酰亚胺中的至少一种;
    并且,所述第一有机材料与所述第二有机材料相同,所述步骤1中所述第一有机材料的涂布制程与所述步骤2中所述第二有机材料的涂布制程合并为同一个涂布制程。
  5. 如权利要求1所述的柔性TFT基板的制作方法,其中,所述步骤4还包括:采用半透膜光罩对所述第二有机层进行图形化处理,在所述第二有机层上对应所述像素电极的上方形成第六凹槽,薄化位于所述像素电极上方的第二有机层的厚度。
  6. 一种柔性TFT基板,包括柔性衬底、设于所述柔性衬底上的第一有机层、及设于所述第一有机层上的第二有机层;
    所述第一有机层上设有数个第一凹槽、数个第二凹槽、数个第三凹槽、及数个第四凹槽,其中,所述第一凹槽与所述第二凹槽相交叉,所述第三凹槽分别连通至所述第一凹槽与第二凹槽,所述第四凹槽与所述第三凹槽相连通;
    所述第三凹槽中设有从下到上依次层叠设置的栅极、栅极绝缘层、有源层、源极与漏极、及钝化层,所述有源层对应于所述栅极的上方设置,所述源极与漏极分别与所述有源层的两侧相接触;
    所述第一凹槽中设有从下到上依次层叠设置的扫描线与栅极绝缘层,所述扫描线与所述栅极相连;
    所述第二凹槽中设有从下到上依次层叠设置的数据线与钝化层,所述数据线与所述源极相连;
    所述第四凹槽中设有从下到上依次层叠设置的钝化层与像素电极;
    所述钝化层上设有对应于所述漏极上方的第一通孔,所述像素电极经由所述第一通孔与所述漏极相接触。
  7. 如权利要求6所述的柔性TFT基板,其中,所述第一凹槽、第二凹槽、第三凹槽及第四凹槽的槽底位于所述第一有机层中或者所述柔性衬底与所述第一有机层相交接的表面上,所述第一凹槽、第二凹槽、第三凹槽及第四凹槽的深度相同或不同。
  8. 如权利要求6所述的柔性TFT基板,其中,所述第一有机层上还设 有数个第五凹槽,所述第五凹槽与所述第一凹槽、第二凹槽、第三凹槽及第四凹槽中的一个或多个相连通或者均不连通,所述第五凹槽的槽底位于所述第一有机层中或者所述柔性衬底上与所述第一有机层相交接的表面上,所述第五凹槽与所述第一凹槽、第二凹槽、第三凹槽及第四凹槽中的一个或多个深度相同,或者与所述第一凹槽、第二凹槽、第三凹槽及第四凹槽的深度均不相同。
  9. 如权利要求6所述的柔性TFT基板,其中,所述第二有机层上对应所述像素电极的上方设有第六凹槽。
  10. 如权利要求6所述的柔性TFT基板,其中,所述柔性衬底的材料、第一有机层的材料、及第二有机层的材料分别包括聚碳酸酯、聚乙二醇对苯二甲酸酯、聚萘二甲酸乙二醇酯、聚醚砜树脂、及聚酰亚胺中的至少一种;并且所述柔性衬底的材料与所述第一有机层的材料相同。
  11. 一种柔性TFT基板的制作方法,包括如下步骤:
    步骤1、提供一刚性基板,在所述刚性基板上涂布第一有机材料,形成一柔性衬底;
    步骤2、在所述柔性衬底上涂布第二有机材料,形成第一有机层,采用半透膜光罩对所述第一有机层进行图形化处理,在所述第一有机层上形成数个第一凹槽、数个第二凹槽、数个第三凹槽、及数个第四凹槽,其中,所述第一凹槽与所述第二凹槽相交叉,所述第三凹槽分别连通至所述第一凹槽与第二凹槽,所述第四凹槽与所述第三凹槽相连通;
    步骤3、在所述第一凹槽中形成扫描线,同时在所述第三凹槽中形成栅极,所述栅极与所述扫描线相连;
    在所述扫描线与栅极上形成栅极绝缘层;
    在所述栅极绝缘层上对应于所述栅极的上方形成有源层;
    在所述第二凹槽中形成数据线,同时在所述第三凹槽中形成源极与漏极,所述源极与所述数据线相连,所述源极与漏极分别与所述有源层的两侧相接触;
    在所述数据线、源极、漏极、有源层、及所述第四凹槽的槽底上形成钝化层,所述钝化层上设有对应于所述漏极上方的第一通孔;
    在所述钝化层上对应于所述第四凹槽的槽底上方的区域形成像素电极,所述像素电极经由所述第一通孔与所述漏极相接触;
    步骤4、在所述第一有机层上涂布第三有机材料,形成第二有机层;
    步骤5、将所述柔性衬底从所述刚性基板上剥离,制得一柔性TFT基板;
    其中,所述第一凹槽、第二凹槽、第三凹槽及第四凹槽的槽底位于所述第一有机层中或者所述柔性衬底与所述第一有机层相交接的表面上,所述第一凹槽、第二凹槽、第三凹槽及第四凹槽的深度相同或不同;
    其中,所述步骤2还包括:在所述第一有机层上形成数个第五凹槽,所述第五凹槽与所述第一凹槽、第二凹槽、第三凹槽及第四凹槽中的一个或多个相连通或者均不连通,所述第五凹槽的槽底位于所述第一有机层中或者所述柔性衬底上与所述第一有机层相交接的表面上,所述第五凹槽与所述第一凹槽、第二凹槽、第三凹槽及第四凹槽中的一个或多个深度相同,或者与所述第一凹槽、第二凹槽、第三凹槽及第四凹槽的深度均不相同。
  12. 如权利要求11所述的柔性TFT基板的制作方法,其中,所述第一有机材料、第二有机材料、及第三有机材料分别包括聚碳酸酯、聚乙二醇对苯二甲酸酯、聚萘二甲酸乙二醇酯、聚醚砜树脂、及聚酰亚胺中的至少一种;
    并且,所述第一有机材料与所述第二有机材料相同,所述步骤1中所述第一有机材料的涂布制程与所述步骤2中所述第二有机材料的涂布制程合并为同一个涂布制程。
  13. 如权利要求11所述的柔性TFT基板的制作方法,其中,所述步骤4还包括:采用半透膜光罩对所述第二有机层进行图形化处理,在所述第二有机层上对应所述像素电极的上方形成第六凹槽,薄化位于所述像素电极上方的第二有机层的厚度。
PCT/CN2016/112259 2016-11-11 2016-12-27 柔性tft基板及其制作方法 WO2018086211A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/329,240 US10541366B2 (en) 2016-11-11 2016-12-27 Flexible TFT substrate having a plurality of grooves in organic material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611005581.3 2016-11-11
CN201611005581.3A CN106356380B (zh) 2016-11-11 2016-11-11 柔性tft基板及其制作方法

Publications (1)

Publication Number Publication Date
WO2018086211A1 true WO2018086211A1 (zh) 2018-05-17

Family

ID=57862463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112259 WO2018086211A1 (zh) 2016-11-11 2016-12-27 柔性tft基板及其制作方法

Country Status (3)

Country Link
US (2) US10541366B2 (zh)
CN (1) CN106356380B (zh)
WO (1) WO2018086211A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106356380B (zh) * 2016-11-11 2019-05-31 深圳市华星光电技术有限公司 柔性tft基板及其制作方法
CN107424957B (zh) * 2017-06-16 2020-01-31 武汉华星光电半导体显示技术有限公司 柔性tft基板的制作方法
US10249652B2 (en) 2017-06-16 2019-04-02 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Manufacturing method of flexible TFT substrate
CN107767775B (zh) * 2017-11-30 2020-05-19 广州国显科技有限公司 柔性显示模组
CN108666265B (zh) * 2018-04-17 2021-01-15 Tcl华星光电技术有限公司 一种薄膜晶体管基板及其制备方法
CN108538898A (zh) * 2018-04-28 2018-09-14 武汉华星光电半导体显示技术有限公司 柔性显示面板及其制作方法
CN109326633B (zh) * 2018-09-30 2022-01-28 厦门天马微电子有限公司 一种显示面板及显示装置
CN109410760B (zh) * 2018-09-30 2021-09-28 广州国显科技有限公司 柔性显示面板及其制作方法、柔性显示装置
CN109980123A (zh) 2019-03-19 2019-07-05 武汉华星光电半导体显示技术有限公司 刚性oled显示面板的制备方法及显示面板
CN110047995A (zh) * 2019-03-26 2019-07-23 武汉华星光电半导体显示技术有限公司 一种柔性显示面板及其制备方法
US11088234B2 (en) 2019-04-29 2021-08-10 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Array substrate and manufacturing method thereof, and display panel
CN110112142B (zh) * 2019-04-29 2021-05-07 武汉华星光电半导体显示技术有限公司 阵列基板及其制造方法、显示面板及电子装置
CN110246849A (zh) * 2019-05-17 2019-09-17 武汉华星光电半导体显示技术有限公司 阵列基板
CN110429064B (zh) * 2019-08-01 2020-11-10 武汉华星光电半导体显示技术有限公司 缓冲结构、显示面板及缓冲结构的制作方法
CN110634886A (zh) * 2019-08-21 2019-12-31 武汉华星光电半导体显示技术有限公司 显示面板及其制备方法
CN111312722A (zh) * 2019-11-13 2020-06-19 武汉华星光电半导体显示技术有限公司 显示面板及其制造方法
CN113451411A (zh) * 2020-03-26 2021-09-28 深圳市柔宇科技有限公司 薄膜晶体管及其制作方法、显示面板及电子设备
CN112599542A (zh) * 2020-12-16 2021-04-02 武汉华星光电半导体显示技术有限公司 阵列基板及柔性显示面板
CN112701129B (zh) * 2021-01-07 2023-10-31 深圳市华星光电半导体显示技术有限公司 显示面板及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1534727A (zh) * 2003-04-01 2004-10-06 ������������ʽ���� 薄膜图形形成方法及器件制造方法、光电装置及电子设备
CN103855171A (zh) * 2014-02-28 2014-06-11 京东方科技集团股份有限公司 一种柔性显示基板母板及柔性显示基板的制造方法
CN104183797A (zh) * 2014-07-25 2014-12-03 京东方科技集团股份有限公司 一种透明导电电极及其制备方法、oled显示器件
CN104716138A (zh) * 2015-03-20 2015-06-17 上海集成电路研发中心有限公司 柔性碳纳米管薄膜场效应晶体管及其制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4315172B2 (ja) * 2006-07-12 2009-08-19 セイコーエプソン株式会社 電気光学装置用基板の製造方法
KR101775726B1 (ko) * 2010-11-26 2017-09-07 엘지디스플레이 주식회사 액정표시장치 제조방법
CN102655154A (zh) * 2012-02-27 2012-09-05 京东方科技集团股份有限公司 一种otft阵列基板、显示装置及制作方法
KR102012046B1 (ko) * 2013-01-02 2019-10-24 삼성디스플레이 주식회사 유기발광 표시장치 및 그의 제조방법
CN103887446A (zh) * 2014-03-10 2014-06-25 京东方科技集团股份有限公司 一种oled器件的封装结构及其封装方法、发光器件
CN203883009U (zh) * 2014-05-29 2014-10-15 京东方科技集团股份有限公司 Oled显示面板
CN104216186B (zh) * 2014-08-15 2018-01-26 京东方科技集团股份有限公司 阵列基板及其制造方法、显示装置
CN104934446B (zh) * 2015-06-24 2018-09-04 深圳市华星光电技术有限公司 薄膜晶体管阵列基板及其制作方法
CN105206763B (zh) * 2015-10-21 2018-01-23 京东方科技集团股份有限公司 柔性显示器及其制造方法
CN105702624A (zh) * 2016-03-30 2016-06-22 武汉华星光电技术有限公司 叠层柔性基板及制作方法
CN106057864B (zh) * 2016-08-23 2019-11-05 武汉华星光电技术有限公司 一种柔性显示面板及其制备方法
CN106356380B (zh) * 2016-11-11 2019-05-31 深圳市华星光电技术有限公司 柔性tft基板及其制作方法
US10268094B1 (en) * 2017-11-17 2019-04-23 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Array substrate, display panel and method of manufacturing array substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1534727A (zh) * 2003-04-01 2004-10-06 ������������ʽ���� 薄膜图形形成方法及器件制造方法、光电装置及电子设备
CN103855171A (zh) * 2014-02-28 2014-06-11 京东方科技集团股份有限公司 一种柔性显示基板母板及柔性显示基板的制造方法
CN104183797A (zh) * 2014-07-25 2014-12-03 京东方科技集团股份有限公司 一种透明导电电极及其制备方法、oled显示器件
CN104716138A (zh) * 2015-03-20 2015-06-17 上海集成电路研发中心有限公司 柔性碳纳米管薄膜场效应晶体管及其制备方法

Also Published As

Publication number Publication date
US20200111959A1 (en) 2020-04-09
CN106356380A (zh) 2017-01-25
US10541366B2 (en) 2020-01-21
CN106356380B (zh) 2019-05-31
US20180337332A1 (en) 2018-11-22
US10811479B2 (en) 2020-10-20

Similar Documents

Publication Publication Date Title
WO2018086211A1 (zh) 柔性tft基板及其制作方法
US10504934B2 (en) Array substrate, method for manufacturing array substrate, and display panel
US10424625B2 (en) Organic light emitting diode display panel and organic light emitting diode display device containing the same
US9590212B2 (en) Organic EL display device and method for manufacturing the organic EL display device
KR100460210B1 (ko) 듀얼패널타입 유기전계발광 소자 및 그의 제조방법
US11050969B2 (en) Panel device and manufacturing method thereof
CN108400154B (zh) Oled面板
US9379350B2 (en) Dual mode display apparatus and method of manufacturing the same
KR20050107840A (ko) 유기전계발광 소자 및 그 제조방법
CN103700685A (zh) 一种显示面板、显示装置
US20230099140A1 (en) Color filter substrate and display panel
US11165038B2 (en) Display module and electronic device with auxiliary electrode layer on cathode layer
US20150084019A1 (en) Array substrate and oled display device
KR20030094656A (ko) 액티브 매트릭스 유기 전계 발광 소자
JP2022539621A (ja) ディスプレイパネル及びその製造方法、表示装置
TW201814880A (zh) 頂部發光型微發光二極體顯示器與底部發光型微發光二極體顯示器及其形成方法
TW201637538A (zh) 顯示面板
WO2020103349A1 (zh) Oled显示装置及其制作方法
US7348605B2 (en) Organic electroluminescent display device
KR100581099B1 (ko) 유기전계발광 소자 및 그 제조방법
KR101192017B1 (ko) 유기 전계 발광 표시 장치 및 이의 제조 방법
KR20080062308A (ko) 유기 전계발광소자 및 그 제조방법
US10777618B2 (en) Transparent display panel, fabricating method for the same, and display device
JP2015118761A (ja) 有機el表示装置及びその製造方法
KR100761131B1 (ko) 양면 발광형 전계 발광 표시장치 및 그 제조방법, 그에내장된 이동통신 단말기

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15329240

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16921377

Country of ref document: EP

Kind code of ref document: A1