WO2018084220A1 - 固体高分子膜電極 - Google Patents

固体高分子膜電極 Download PDF

Info

Publication number
WO2018084220A1
WO2018084220A1 PCT/JP2017/039639 JP2017039639W WO2018084220A1 WO 2018084220 A1 WO2018084220 A1 WO 2018084220A1 JP 2017039639 W JP2017039639 W JP 2017039639W WO 2018084220 A1 WO2018084220 A1 WO 2018084220A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid polymer
polymer membrane
water
membrane electrode
electrolyzed water
Prior art date
Application number
PCT/JP2017/039639
Other languages
English (en)
French (fr)
Inventor
悠平 山内
大治 雨森
福田 憲二
吉江 清敬
松岡 功
佐 有本
上田 哲也
今井 順一
佐藤 智和
Original Assignee
株式会社日本トリム
株式会社アストム
田中貴金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本トリム, 株式会社アストム, 田中貴金属工業株式会社 filed Critical 株式会社日本トリム
Priority to KR1020197011977A priority Critical patent/KR20190055206A/ko
Priority to CN201780067864.7A priority patent/CN109923242B/zh
Priority to EP17866786.1A priority patent/EP3536824B1/en
Priority to US16/344,349 priority patent/US20200048781A1/en
Priority to TW107114947A priority patent/TWI728245B/zh
Publication of WO2018084220A1 publication Critical patent/WO2018084220A1/ja
Priority to US17/684,972 priority patent/US20220195611A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/468Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/08Ion-exchange resins
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F1/46114Electrodes in particulate form or with conductive and/or non conductive particles between them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4676Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/081Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the element being a noble metal
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a solid polymer membrane electrode for generating electrolyzed water, an electrolyzed water generating device using the same, a method for generating electrolyzed water, and a solid polymer for a solid polymer membrane electrode for generating electrolyzed water Relates to the membrane.
  • Electrolyzed water obtained by electrolyzing water is roughly classified into acidic electrolyzed water produced on the anode side and alkaline electrolyzed water produced on the cathode side.
  • the alkaline electrolyzed water produced on the cathode side is also called electrolyzed hydrogen water, and since it has reducibility, it is expected to be advantageous for various abnormalities and diseases that can be caused by the oxidative state in the living body.
  • electrolyzed hydrogen water since it has reducibility, it is expected to be advantageous for various abnormalities and diseases that can be caused by the oxidative state in the living body.
  • various gastrointestinal symptoms such as chronic diarrhea, excessive gastric acid, antacid, indigestion, and abnormal gastrointestinal fermentation have been recognized.
  • electrolytic hydrogen water can be easily generated mainly using tap water.
  • Patent Document 1 an apparatus having a cathode chamber including a cathode and an anode chamber including an anode separated by a diaphragm is known (Patent Document 1).
  • this type of apparatus incorporates an electrolytic cell 3 a divided into two chambers of a cathode chamber 4 having a cathode 7 and an anode chamber 10 having an anode 9 by a diaphragm 8.
  • the present inventors sought a method that can suppress an increase in pH of electrolytic hydrogen water even when electrolysis is performed.
  • a method for electrolyzing water a method using a solid polymer membrane electrode has been known so far.
  • the solid polymer membrane electrode refers to an electrode having a structure in which catalyst layers 14a and 14b serving as water electrolysis catalysts are provided on a solid polymer membrane 13 such as a cation exchange membrane.
  • the cathode reaction proceeds mainly .
  • the solid polymer membrane electrode 15 is used for electrolysis of tap water or the like, unlike the conventional electrolyzed water generating device including the electrolyzer 3 a using the diaphragm 8, the electrolytic hydrogen water is obtained. In the cathode chamber 4 to be produced, it was considered that generation of OH ⁇ could be suppressed.
  • the present inventors have used a cation exchange membrane having an ion exchange capacity in a specific range as the solid polymer membrane 13 used for the solid polymer membrane electrode 15.
  • the present inventors have found that an increase in the pH of the generated electrolytic hydrogen water can be suppressed and completed the present invention.
  • a solid polymer membrane electrode for generating electrolyzed water The solid polymer membrane electrode has a solid polymer membrane and a catalyst layer containing a platinum group metal provided on the front and back of the solid polymer membrane, The solid polymer membrane, a hydrocarbon-based cation exchange membrane, and ion-exchange capacity per unit area is 0.002 mmol / cm 2 or more 0.030 mmol / cm 2 or less, the solid polymer membrane electrode. 2.
  • the hydrocarbon-based cation exchange membrane comprises sulfonated poly (arylene ether ether ketone) (“SPEEK”), sulfonated poly (ether ether ketone ketone) (“SPEEKK”), sulfonated poly (arylene ether sulfone) (“ SPES “), sulfonated poly (arylene etherbenzonitrile), sulfonated polyimide (“ SPI "), sulfonated poly (styrene), sulfonated poly (styrene-b-isobutylene-b-styrene) (“ S-SIBS ”) And at least one hydrocarbon polymer selected from the group consisting of sulfonated poly (styrene-divinylbenzene).
  • SPEEK sulfonated poly (arylene ether ketone)
  • SPEEKK sulfonated poly (arylene ether sulfone)
  • SPES sulf
  • An electrolytic cell comprising the solid polymer membrane electrode according to 1 and an anode feeder and a cathode feeder disposed to face each other via the solid polymer membrane electrode; Means for passing electrolyzed water through the electrolytic cell; Means for applying a voltage to the water to be electrolyzed in the electrolytic cell to flow current; An electrolyzed water generating device provided with at least. 10. 10. The electrolyzed water generating device according to 9 above, further comprising means for switching polarity of a voltage applied to the anode feeder and the cathode feeder in the solid polymer membrane electrode in the electrolytic cell. 11.
  • a solid polymer membrane for a solid polymer membrane electrode for generating electrolyzed water which is used by providing a catalyst layer containing a platinum group metal on the front and back of the membrane,
  • the solid polymer membrane is a hydrocarbon-based cation exchange membrane, and ion-exchange capacity per unit area is 0.002 mmol / cm 2 or more 0.030 mmol / cm 2 or less, the solid polymer membrane.
  • the solid polymer membrane electrode of the present invention uses a solid polymer membrane having an ion exchange capacity per unit area within a specific range, it is possible to suppress an increase in pH of electrolytic hydrogen water during electrolysis. Thereby, for example, when electrolysis is performed using tap water, electrolytic hydrogen water having an increased amount of dissolved hydrogen can be obtained while suppressing an increase in pH.
  • electrolysis is performed using electrolyzed hydrogen water having a pH of 9 or more (less than pH 10) as the electrolyzed water
  • the increase in pH can be suppressed, so that the pH acceptable for drinking water (less than pH 10) is maintained.
  • the amount of dissolved hydrogen can be increased, and electrolytic hydrogen water having a sufficient amount of dissolved hydrogen can be obtained.
  • FIG. 1 is a cross-sectional view of a conventional electrolytic cell separated by a diaphragm.
  • FIG. 2 is a cross-sectional view of an electrolytic cell using the solid polymer membrane electrode of the present invention.
  • FIG. 3 is a diagram showing an outline of an electrolyzed water generating apparatus using the solid polymer membrane electrode of the present invention.
  • electrolyzed water means electrolyzed hydrogen water produced on the cathode side unless otherwise specified.
  • the solid polymer membrane electrode 15 in the present invention has a solid polymer membrane 13 and catalyst layers 14 a and 14 b provided on the front and back of the solid polymer membrane 13.
  • the catalyst layer 14a corresponds to the anode side
  • the catalyst layer 14b corresponds to the cathode side.
  • the anode-side catalyst layer 14a and the cathode-side catalyst layer 14b contain a platinum group metal as a material.
  • the platinum group metal include platinum, iridium, platinum oxide, and iridium oxide.
  • the said catalyst layer may contain these metals independently and may contain multiple types.
  • the platinum group metal is preferably at least one metal selected from the group consisting of platinum, iridium, platinum oxide, and iridium oxide. From the viewpoint of high durability and high efficiency in generating dissolved hydrogen, the catalyst layer more preferably contains platinum.
  • the film thicknesses of the anode-side catalyst layer 14a and the cathode-side catalyst layer 14b are each preferably 0.30 ⁇ m or less. Even if the film thickness of the catalyst layer is not more than the predetermined value, an increase in pH of the electrolytic hydrogen water during electrolysis can be suppressed by satisfying the condition of ion exchange capacity of the cation exchange membrane described later. Moreover, since the usage-amount of a platinum group metal can be reduced, it is economical.
  • the film thickness of the catalyst layer is more preferably 0.010 ⁇ m or more and 0.30 ⁇ m or less, and further preferably 0.050 ⁇ m or more and 0.20 ⁇ m or less. By being in the above range, suitable durability can be obtained, the overvoltage is low, and the amount of dissolved hydrogen generated can be obtained with high efficiency.
  • the method of providing the anode-side catalyst layer 14a and the cathode-side catalyst layer 14b on the front and back of the solid polymer film is not particularly limited.
  • the method of electroless plating the material of the catalyst layer on the solid polymer film examples thereof include a plating method and a method in which the powder of the catalyst layer material is adhered by hot pressing. A specific method will be described later in Examples.
  • the solid polymer membrane in the present invention is used for a solid polymer membrane electrode for generating electrolyzed water, and has a role of moving hydrogen ions (H + ) generated on the anode side by electrolysis to the cathode side.
  • the solid polymer membrane electrode of the present invention since the ion exchange capacity per unit area of the solid polymer membrane to be used is in a specific range, an increase in pH is suppressed, and electrolyzed water having a sufficient amount of dissolved hydrogen is obtained. be able to. That is, the solid polymer membrane in the present invention has an ion exchange capacity per unit area of 0.030 mmol / cm 2 or less. When the ion exchange capacity per unit area is 0.030 mmol / cm 2 or less, an increase in pH of the electrolyzed water can be suppressed to a low level.
  • Ion exchange capacity per unit area of the polymer film is preferably 0.025 mmol / cm 2 or less, more preferably 0.020 mmol / cm 2 or less, more preferably 0.010 mmol / cm 2 or less is there.
  • the lower limit of the ion exchange capacity per unit area is 0.002 mmol / cm 2 .
  • the solid polymer membrane electrode of the present invention can provide electrolyzed water that suppresses an increase in pH and has a sufficient amount of dissolved hydrogen if the thickness of the solid polymer membrane to be used is in a specific range. Therefore, it is preferable. That is, the solid polymer film in the present invention preferably has a film thickness of 10 ⁇ m or more and 170 ⁇ m or less. When the film thickness of the solid polymer film is in the above range, an increase in pH of the electrolyzed water can be suppressed to a low level.
  • the film thickness of the solid polymer film is preferably 10 ⁇ m or more and 160 ⁇ m or less, more preferably 15 ⁇ m or more and 150 ⁇ m or less, further preferably 20 ⁇ m or more and 130 ⁇ m or less, and particularly preferably 20 ⁇ m or more and 80 ⁇ m or less.
  • the film thickness is not less than the above lower limit value, the mechanical strength necessary for the support film can be imparted. Further, when the film thickness is not more than the above upper limit value, the film resistance can be kept low.
  • the film thickness of the solid polymer membrane is in the above-mentioned range.
  • the release of cations such as Ca ions ion-exchanged in the membrane is slow, and not only ion exchange but also taken as a side ion. This is probably because the number of cations such as Ca ions increases, and the increase in pH of the electrolyzed water can be suppressed by the above-described action mechanism.
  • solid polymer membrane for example, among those conventionally used in the fields of electrodialysis and fuel cells, those having an ion exchange capacity per unit area in the above range can be used.
  • a hydrocarbon cation exchange membrane or a cation exchange membrane made of a fluoropolymer is preferably used. More preferred is a hydrocarbon-based cation exchange membrane.
  • Hydrocarbon cation exchange membranes are less distorted and have a low expansion / contraction rate when they swell and dry with moisture. Generation
  • the contact between the membrane and the power feeder is maintained, the amount of dissolved hydrogen generated in the electrolytic water can be stabilized. Moreover, even if membrane elution into electrolyzed water occurs due to trouble or the like, there is no adverse effect on the human body and it is suitable for drinking.
  • a cation exchange membrane made of a fluoropolymer can be suitably used from the viewpoint of electrolytic durability and durability to high temperatures.
  • the hydrocarbon cation exchange membrane refers to a cation exchange membrane in which a base material portion excluding an ion exchange group is composed of a hydrocarbon polymer.
  • the hydrocarbon-based polymer substantially does not contain a carbon-fluorine bond, and most of the skeleton bonds of the main chain and side chain constituting the polymer are carbon-carbon bonds. Refers to coalescence. A small amount of other atoms such as oxygen, nitrogen, silicon, sulfur, boron, and phosphorus due to ether bonds, ester bonds, amide bonds, siloxane bonds, etc. between the carbon-carbon bonds constituting the main chain and side chain. It may be interposed.
  • the atoms bonded to the main chain and the side chain need not be all hydrogen atoms, and if the amount is small, other atoms such as chlorine, bromine, fluorine and iodine, or substituents containing other atoms May be substituted.
  • the cation exchange group possessed by the hydrocarbon cation exchange membrane is not particularly limited as long as it is a functional group having a negative charge and a proton (hydrogen ion) conduction function.
  • Specific examples include a sulfonic acid group, a carboxylic acid group, and a phosphonic acid group.
  • sulfonic acid groups which are strongly acidic groups, are particularly preferred from the viewpoint that the electrical resistance of the membrane is low even if the exchange capacity is small.
  • SPEEK sulfonated poly (arylene ether ether ketone)
  • the hydrocarbon cation exchange membrane in the present invention may be of any structure and manufacturing method as long as the ion exchange capacity per unit area satisfies the specific value described above, but at the expense of electrical resistance and the like.
  • a porous membrane such as a porous film, a nonwoven fabric, or a woven fabric is preferably used as the reinforcing substrate.
  • the above-described hydrocarbon polymer having a cation exchange group is dissolved in an organic solvent, and the solution is cast on a film-shaped reinforcing substrate such as a porous membrane.
  • a film-shaped reinforcing substrate such as a porous membrane.
  • photo / thermal polymerization is performed as necessary. What introduce
  • transduced the cation exchange group can be used.
  • additives such as monomers capable of introducing ion exchange groups such as styrene, crosslinkable monomers such as divinylbenzene, polymerization initiators such as organic peroxides, and additives for ion exchange membranes.
  • a film-shaped reinforcing substrate such as a porous membrane
  • thermal polymerization is performed, and a sulfonic acid group is introduced into the obtained film-like product.
  • Ion exchange membranes are particularly preferred in that the electrical resistance can be lowered without impairing the mechanical strength and swelling resistance.
  • cation exchange membranes are used in the process of thermal polymerization of monomers, such as adjusting the amount of cation exchange groups introduced into a hydrocarbon polymer having a cation exchange group in the case of casting.
  • a method that mixes monomers and polymer additives that cannot introduce ion exchange groups into the polymerizable monomer composition and a method that adjusts the thickness of the porous membrane that is the reinforcing substrate. By appropriately combining them, the ion exchange capacity and the film thickness per unit area can be set to the above-described values.
  • cation exchange membranes are, for example, Japanese Unexamined Patent Publication No. 2006-206632, Japanese Unexamined Patent Publication No. 2008-45068, Japanese Unexamined Patent Publication No. 2005-5171, and Japanese Unexamined Patent Publication No. 2016-22454. It can produce by the method as described in above.
  • a cation exchange membrane made of fluoropolymer is one in which a base material portion excluding ion-exchange groups is composed of a fluorine-based polymer described later.
  • a sulfonic acid group is preferably used.
  • This fluorinated polymer having a sulfonic acid group is widely known as a perfluorocarbon sulfonic acid polymer, and is a single molded product of the polymer or a composite with a porous film or a filler made of a fluorinated polymer.
  • a cation exchange membrane is obtained.
  • fluorinated polymer in the cation exchange membrane made of a fluorinated polymer examples include polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), and tetrafluoroethylene perfluoroalkyl vinyl ether copolymer (PFA).
  • PTFE polytetrafluoroethylene
  • PCTFE polychlorotrifluoroethylene
  • PFA tetrafluoroethylene perfluoroalkyl vinyl ether copolymer
  • FEP Perfluoroethylene-propylene copolymer
  • TFE / PDD tetrafluoroethylene-perfluorodioxole copolymer
  • ETFE ethylene-tetrafluoroethylene copolymer
  • PCTFE polychlorotrifluoroethylene
  • ECTFE Ethylene-chlorotrifluoroethylene copolymer
  • PVDF polyvinylidene fluoride
  • PVF polyvinyl fluoride
  • PTFE polytetrafluoroethylene
  • PCTFE polychlorotrifluoroethylene
  • PFA tetrafluoroethylene perfluoroalkyl vinyl ether copolymer
  • FEP perfluoroethylene-propylene copolymer
  • FEP tetrafluoroethylene-perfluorodioxole copolymer
  • TFE / PDD tetrafluoroethylene-perfluorodioxole copolymer
  • the fluoropolymer may have an arbitrary substituent, and specific examples include a sulfonic acid group, a carboxylic acid group, and a phosphonic acid group.
  • the electrolyzed water that can be used for the production of electrolyzed water using the solid polymer membrane electrode of the present invention is not particularly limited, and examples thereof include tap water, pure water, salt water, well water, and hot spring water. Can be used. Tap water can be preferably used from the viewpoint of availability. According to the solid polymer membrane electrode of the present invention, even when tap water or the like is used as the electrolyzed water, the electrolytic hydrogen water having a sufficient amount of dissolved hydrogen is suppressed while suppressing an increase in the pH of the generated electrolytic hydrogen water. Obtainable.
  • the cation-containing aqueous solution includes a cation content. Is preferably 5 mg / L or more, more preferably 10 mg / L or more, since the problem of an increase in pH is prominent. On the other hand, if the cation content is too high, the effect of suppressing the increase in pH itself is reduced, so that it is preferable to suppress it to 5000 mg / L or less, more preferably 300 mg / L or less.
  • aqueous solution containing a cation examples include an aqueous solution containing a cation such as Ca 2+ , Mg 2+ , Na + , K + , and specifically, tap water, well water, hot spring water, and the like. Is applicable. As is obvious from the above-described mechanism for suppressing the increase in pH, the cation does not contain H + ions.
  • Examples of the use of electrolyzed water obtained using the solid polymer membrane electrode of the present invention include beverages, hemodialysis, and agriculture.
  • the electrolytic cell 3 b in the present invention has an anode chamber 10 and a cathode chamber 4 separated by a solid polymer membrane electrode 15.
  • An anode feeder 16a and a cathode feeder 16b are provided on the anode-side catalyst layer 14a and the cathode-side catalyst layer 14b of the solid polymer membrane electrode 15, respectively. That is, the electrolytic cell 3 b includes the solid polymer membrane electrode 15 and the anode power supply body 16 a and the cathode power supply body 16 b that are disposed to face each other with the solid polymer film electrode 15 interposed therebetween.
  • the type of the power feeder is not particularly limited, and a conventionally known one can be used.
  • the electrolytic cell 3b when the electrolytic cell 3b is incorporated into an electrolyzed water generating apparatus to be described later, the electrolytic cell 3b is supplied to the cathode chamber inlet 5 or the cathode chamber 4 to which electrolyzed water such as tap water is supplied as shown in FIG.
  • the cathode chamber outlet 6 from which the electrolyzed water produced in step 1 is discharged may be provided.
  • an anode chamber inlet 11 to which electrolyzed water such as tap water is supplied and an anode chamber outlet 12 from which acidic water generated in the anode chamber 10 is discharged may be provided.
  • the present invention also provides an electrolyzed water generating device having the solid polymer membrane electrode.
  • the electrolyzed water generating device of the present invention includes an electrolytic cell having the above-described solid polymer membrane electrode, and an anode feeder and a cathode feeder arranged to face each other via the solid polymer membrane electrode, There are provided at least means for passing the electrolyzed water through the tank and means for applying a voltage to the electrolyzed water in the electrolyzer to flow current.
  • the above electrolytic cell can be used.
  • the means for passing the electrolyzed water to the electrolytic cell and the means for applying a voltage to the electrolyzed water in the electrolytic cell to flow the current are not particularly limited, and a conventionally known method Can be applied arbitrarily.
  • FIG. 3 shows a schematic configuration of one embodiment of the electrolyzed water generating apparatus of the present embodiment.
  • the electrolyzed water generating device 1 a home electrolyzed water generating device used for generating home drinking water is exemplarily shown.
  • generating the electrolytic hydrogen water for drinks is shown.
  • the electrolyzed water generating apparatus 1 includes a water purification cartridge 2 that purifies electrolyzed water such as tap water, an electrolysis tank 3b that is supplied with purified water, and a control unit 19 that controls each part of the electrolyzed water generating apparatus 1. I have.
  • electrolyzed water generating apparatus of the present invention even when the water purification cartridge 2 is not provided, as described above, electrolyzed tap water or the like is electrolyzed, and an increase in pH is suppressed, and electrolyzed water having a sufficient amount of dissolved hydrogen. It can be generated.
  • the electrolyzed water is directly passed through the electrolytic cell 3b.
  • Electrolyzed water passed through the electrolytic cell 3b is electrolyzed there.
  • a means for passing the electrolyzed water through the electrolytic cell 3b will be described later.
  • the electrolytic cell 3b has an anode power supply body 16a and a cathode power supply body 16b arranged opposite to each other, and a solid polymer film 13 disposed between the anode power supply body 16a and the cathode power supply body 16b.
  • a molecular film electrode 15 is provided.
  • the solid polymer membrane electrode 15 divides the electrolytic cell 3 b into a cathode chamber 4 and an anode chamber 10.
  • the solid polymer membrane electrode 15 allows cations generated by electrolysis of electrolyzed water to pass from the anode chamber 10 to the cathode chamber 4, and the cathode 7 and the anode 9 are electrically connected via the solid polymer membrane electrode 15. Connected to.
  • a voltage is applied between the cathode 7 and the anode 9
  • the electrolyzed water is electrolyzed in the electrolytic cell 3b to obtain electrolyzed water. That is, electrolytic hydrogen water is generated in the cathode chamber 4 and acidic water is generated in the anode chamber 10.
  • the polarity of the cathode 7 and the anode 9 and the voltage applied to the electrolyzed water in the electrolytic cell 3 b are controlled by the control unit 19.
  • the electrolyzed water generating device of the present invention preferably further includes means for switching the polarity of the voltage applied to the anode feeder and the cathode feeder in the solid polymer membrane electrode in the electrolytic cell.
  • the control unit 19 may be provided with a polarity switching circuit (not shown) for switching the polarity of the cathode 7 and the anode 9.
  • the electrolyzed water generating apparatus 1 may include a polarity switching means for a voltage applied to the anode power supply body 16a and the cathode power supply body 16b in the solid polymer membrane electrode 15 in the electrolytic cell 3b.
  • a first flow path switching valve 18 is provided on the upstream side of the electrolytic bath 3b into which the water to be electrolyzed flows.
  • the first flow path switching valve 18 is provided in the water supply path 17 that communicates the water purification cartridge 2 and the electrolytic cell 3b.
  • the water purified by the water purification cartridge 2 flows into the first flow path switching valve 18 via the first water supply path 17 a and the second water supply path 17 b of the water supply path 17 and is supplied to the anode chamber 10 or the cathode chamber 4. .
  • Electrolyzed hydrogen water generated in the cathode chamber 4 is passed through the first channel 31 from the cathode chamber outlet 6 and is collected from the water outlet 31 b via the channel switching valve 22.
  • the acidic water generated in the anode chamber 10 is passed from the anode chamber outlet 12 to the second flow path 32 and discharged from the drain port 32a via the flow path switching valve 22.
  • the present invention also provides a method for producing electrolyzed water using the solid polymer membrane electrode.
  • the method for producing electrolyzed water of the present invention comprises the steps of preparing an electrolytic cell isolated by the solid polymer membrane electrode into an anode chamber containing an anode and a cathode chamber containing a cathode; A step of passing water through each of the above, a step of applying a voltage between the cathode and the anode to pass a current through the water to be electrolyzed to generate electrolyzed water, and a step of taking out the electrolyzed water generated in the cathode chamber .
  • the method for generating electrolyzed water described above can be implemented, for example, by using the electrolyzed water generating device described above.
  • the pH is increased. Is suppressed, and electrolyzed water having a sufficient amount of dissolved hydrogen is obtained. Further, an increase in cell voltage during electrolysis can be suppressed, and the cell voltage is stabilized. A rise in water temperature can be suppressed by stabilizing the cell voltage during electrolysis.
  • the electrolyzed water obtained by the method for producing electrolyzed water of the present invention has a pH of about 7 when the current is passed under the condition of a current amount of 6 A / (L / min) per unit water intake (water supply) It is preferable that the maximum value of pH during electrolysis of the electrolyzed water generated in the cathode chamber is 8.5 or less.
  • the maximum pH during electrolysis is more preferably 8.3 or less, and even more preferably 8.0 or less.
  • the amount of dissolved hydrogen in the electrolyzed water produced in the cathode chamber 100 seconds after the start of electrolysis is preferably 500 ppb or more, and 650 ppb or more. More preferably, it is more preferably 700 ppb or more, still more preferably 800 ppb or more, and particularly preferably 950 ppb or more.
  • the amount of dissolved hydrogen can be controlled within the above range.
  • the cell voltage after 100 seconds from the start of electrolysis is preferably 9.0 V or less, more preferably 7.0 V or less, It is more preferably 0.0 V or less, even more preferably 5.0 V or less, and particularly preferably 4.0 V or less.
  • the cell voltage can be set within the above range.
  • the method for measuring the pH, the amount of dissolved hydrogen, and the cell voltage are not particularly limited, and conventionally known measuring means can be appropriately employed. Specifically, the measuring means described in the examples can be employed.
  • the solid polymer membrane electrode of the present invention was produced by the following procedure. (1) Each cation exchange membrane described in Table 1 below, which is a solid polymer membrane, was cut into a size of 250 mm ⁇ 80 mm with a cutter knife. (2) For cleaning, the cut membrane was immersed in pure water at 50 ° C. for 10 minutes. (3) As a pretreatment, the membrane was immersed in 5% hydrochloric acid at 50 ° C. for 10 minutes. (4) In order not to attach Pt outside the plating range, the film was masked with a PEEK jig.
  • the film was immersed in an aqueous solution containing 1 to 10 wt% Pt ions at room temperature for 3 hours, and Pt ions were adsorbed (ion exchange) on the film.
  • the film was immersed in an aqueous solution in which 1 wt% SBH (sodium borohydride) was dissolved at 50 ° C., and Pt ions ion-exchanged on the film surface were reduced.
  • the membrane was immersed in pure water at 50 ° C. for 10 minutes for cleaning.
  • the PEEK jig that had been masked from the membrane was removed.
  • the membrane was immersed in 5% hydrochloric acid at 50 ° C. for 10 minutes.
  • the membrane was immersed in pure water at 50 ° C. for 10 minutes for cleaning.
  • the cation exchange membrane was immersed in a 1 mol / L-HCl aqueous solution for 10 hours or more and thoroughly washed with ion exchange water. Next, the cation exchange membrane was cut into a rectangle with a cutter knife, and the lengths in the vertical and horizontal directions were measured to determine the area of the cation exchange membrane for measurement (Acm 2 ).
  • the cation exchange membrane is replaced with a 1 mol / L-NaCl aqueous solution and the counter ion of the ion exchange group is replaced with a sodium ion from a hydrogen ion, and the liberated hydrogen ion is converted into a potentiometric titrator (COMMITITE- 900, manufactured by Hiranuma Sangyo Co., Ltd.) (Bmol).
  • a potentiometric titrator COMMITITE- 900, manufactured by Hiranuma Sangyo Co., Ltd.
  • the film thickness (Pt film thickness) of the catalyst layer of the solid polymer membrane electrode produced above was measured with a fluorescent X-ray analyzer (6000 VX, manufactured by Hitachi High-Tech Science).
  • Electrolysis test The prepared solid polymer membrane electrode was sandwiched by a power feeder obtained by plating titanium expanded metal with platinum to produce an electrolytic cell. Using this electrolytic cell, tap water (pH 7.0) was electrolyzed under the following electrolysis conditions.
  • Table 1 shows the results of measuring the voltage after 100 seconds of electrolysis, the amount of dissolved hydrogen, and the maximum pH during electrolysis.
  • the electrolytic hydrogen produced is equivalent to or more than the conventional fluorine-based polymer cation exchange membrane. It has been found that the increase in the pH of water can be suppressed, and it is suitably used for electrolytic production.
  • the hydrocarbon cation exchange membrane had a smaller area change rate than the fluoropolymer cation exchange membrane. This result indicates that the hydrocarbon-based cation exchange membrane has a lower expansion / contraction ratio when it contains water and swells and when it dries than the fluoropolymer cation-exchange membrane. It was also found that the hydrocarbon-based cation exchange membrane is superior in terms of the occurrence rate of defects when used in the present invention.

Abstract

本発明は、pHの上昇が抑えられ、かつ十分な溶存水素量を有する電解水素水を得ることのできる固体高分子膜電極を提供することを課題とする。本発明は、電解水を生成するための固体高分子膜電極であって、前記固体高分子膜電極は、固体高分子膜と、前記固体高分子膜の表裏に設けられた白金族金属を含有する触媒層とを有しており、前記固体高分子膜が、炭化水素系陽イオン交換膜であり、かつ単位面積あたりのイオン交換容量が0.002mmol/cm以上0.030mmol/cm以下である、固体高分子膜電極に関する。

Description

固体高分子膜電極
 本発明は、電解水を生成するための固体高分子膜電極、それを用いた電解水生成装置、電解水の生成方法、及び電解水を生成するための固体高分子膜電極用の固体高分子膜に関する。
 水を電気分解することによって得られる電解水は、陽極側で生成される酸性電解水と陰極側で生成されるアルカリ性電解水に大別される。このうち、陰極側で生成されるアルカリ性電解水は電解水素水ともいわれ、還元性を有することから、生体内の酸化的状態から引き起こされ得る種々の異常や疾患に有利に作用し得ることが期待されている。たとえば、電解水素水を飲用することにより、慢性下痢、胃酸過多、制酸、消化不良、及び胃腸内異常醗酵等の種々胃腸症状の改善効果が認められている。
 電解水素水を家庭で手軽に生成するために、現在までに種々の電解水生成装置が知られている。これらの装置によれば、主に水道水を用いて手軽に電解水素水を生成することができる。
 このような電解水生成装置としては、隔膜により分離された、陰極を含む陰極室と陽極を含む陽極室とを有する装置が知られている(特許文献1)。この種の装置には、例えば、図1に示すように、隔膜8によって陰極7を有する陰極室4と陽極9を有する陽極室10の二室に分けられた電解槽3aが組み込まれている。
 上記電解水生成装置を用いて水道水等を電気分解した場合、陽極室10における陽極9、および陰極室4における陰極7では、以下の電気分解反応が生じており、陰極室4から電解水素水が得られる。
 陽極:2HO → O + 4H + 4e
 陰極:4HO + 4e → 2H2 + 4OH
日本国特開平09-077672号公報
 この電解様式では、上記反応式に示されるように陰極でOHが発生するため、被電解水の電気分解が進むにつれ、生成される電解水素水のpHは上昇することになる。したがって、被電解水の電気分解を続けると、やがて電解水素水のpHは、飲料水として許容されるpHを超えてしまうため、被電解水の電解時間や電解電流値を限定的にせざるを得ず、その結果得られる電解水素水における溶存水素量は十分なものではなかった。
 そこで本発明者らは、電気分解を行っても電解水素水のpHの上昇を抑えることができる方法を模索した。水を電気分解する方法の一つとして、これまでに、固体高分子膜電極を用いる方法も知られている。固体高分子膜電極とは、図2に示すように、カチオン交換膜などの固体高分子膜13に水の電気分解触媒となる触媒層14a、14bが設けられた構造の電極をいう。
 本発明者らは、固体高分子膜電極15を用いて水道水等を電気分解する場合、陽極室10における陽極9、および陰極室4における陰極7では、以下のような電気分解反応が起こることに着目した。
 陽極: HO → 1/2O + 2H + 2e
 陰極: 2H + 2e → H
 カチオン交換膜を固体高分子膜に用いた場合、通電に伴いHが陽極から陰極へと供給され、HOに比べてHが電解還元されやすいため、上記陰極反応が主に進行する。上記式からわかるように、水道水等の電気分解に固体高分子膜電極15を用いた場合、従来の隔膜8を用いた電解槽3aを備える電解水生成装置とは異なり、電解水素水の得られる陰極室4において、OHの発生を抑えることができると考えられた。
 しかしながら、上記固体高分子膜電極を用いて電気分解を行っても、電解初期に陰極室側の電解水素水のpHが上昇してしまうという問題が発生することが新たに判明した。本発明者らはこの原因について検討したところ、通電待機時に液中のCaイオンなどの陽イオンが、イオン交換膜に多く取り込まれることにより、電解時(電解開始時)には、膜中のHに加えてCaイオンなどの陽イオンの陰極への移動が多くなり、陰極へのHの供給が妨げられることで、2H + 2e → Hの反応量が低減し、代わって、陰極側で4HO + 4e → 2H2 + 4OHの反応が副次的に起こることがpH上昇の原因であると考えた。
 そこで本発明者らは上記問題を解消する手段について鋭意研究した結果、上記固体高分子膜電極15に用いる固体高分子膜13として、イオン交換容量が特定範囲である陽イオン交換膜を用いることによって、生成される電解水素水のpHの上昇を抑えることができることを見出し、本発明を完成させた。
 すなわち本発明は以下の通りである。
1.電解水を生成するための固体高分子膜電極であって、
 前記固体高分子膜電極は、固体高分子膜と、前記固体高分子膜の表裏に設けられた白金族金属を含有する触媒層とを有しており、
 前記固体高分子膜が、炭化水素系陽イオン交換膜であり、かつ単位面積あたりのイオン交換容量が0.002mmol/cm以上0.030mmol/cm以下である、固体高分子膜電極。
2.膜厚が10μm以上170μm以下である、前記1に記載の固体高分子膜電極。
3.前記炭化水素系陽イオン交換膜が、スルホン化ポリ(アリーレンエーテルエーテルケトン)(「SPEEK」)、スルホン化ポリ(エーテルエーテルケトンケトン)(「SPEEKK」)、スルホン化ポリ(アリーレンエーテルスルホン)(「SPES」)、スルホン化ポリ(アリーレンエーテルベンゾニトリル)、スルホン化ポリイミド(「SPI」)、スルホン化ポリ(スチレン)、スルホン化ポリ(スチレン-b-イソブチレン-b-スチレン)(「S-SIBS」)、及びスルホン化ポリ(スチレン-ジビニルベンゼン)からなる群より選択される少なくとも1種の炭化水素系重合体を含む、前記1に記載の固体高分子膜電極。
4.前記触媒層の膜厚が0.30μm以下である、前記1に記載の固体高分子膜電極。
5.前記白金族金属が、白金、イリジウム、酸化白金、及び酸化イリジウムからなる群より選択される少なくとも1の金属である、前記1に記載の固体高分子膜電極。
6.陽イオンを含有する水溶液を使用して電解水を生成するための、前記1に記載の固体高分子膜電極。
7.前記陽イオンを含有する水溶液が水道水である、前記6に記載の固体高分子膜電極。
8.飲料用の電解水を生成するための、前記1に記載の固体高分子膜電極。
9.前記1に記載の固体高分子膜電極と前記固体高分子膜電極を介して互いに対向して配置された陽極給電体及び陰極給電体とを有する電解槽と、
 前記電解槽に被電解水を通水する手段と、
 前記電解槽内の被電解水に電圧を印加して電流を流す手段と、
 を少なくとも設ける、電解水生成装置。
10.さらに、前記電解槽内の固体高分子膜電極における陽極給電体及び陰極給電体に印加する電圧の極性切り替え手段を設ける、前記9に記載の電解水生成装置。
11.前記1に記載の固体高分子膜電極により陽極を含む陽極室と陰極を含む陰極室とに隔離された電解槽を準備する工程と、被電解水を陰極室および陽極室のそれぞれに通水する工程と、陰極と陽極との間に電圧を印加して被電解水に電流を流し電解水を生成する工程と、陰極室内で生成された前記電解水を取出す工程とを備える、電解水の生成方法。
12.膜の表裏に白金族金属を含有する触媒層を設けて使用される、電解水を生成するための固体高分子膜電極用の固体高分子膜であって、
 前記固体高分子膜が炭化水素系陽イオン交換膜であり、かつ単位面積当たりのイオン交換容量が0.002mmol/cm以上0.030mmol/cm以下である、固体高分子膜。
 本発明の固体高分子膜電極は、単位面積あたりのイオン交換容量が特定範囲である固体高分子膜を用いるため、電気分解時における電解水素水のpHの上昇を抑えることができる。これにより、例えば、水道水を用いて電気分解を行う場合に、pHの上昇を抑えつつ、溶存水素量が増加した電解水素水を得ることができる。
 また、例えばpH9以上(pH10未満)の電解水素水を被電解水としてさらに電気分解を行ったとしても、pHの上昇を抑えることができるので、飲料水として許容されるpH(pH10未満)を維持しつつ、溶存水素量のみを増加させることができ、かつ十分な溶存水素量を有する電解水素水を得ることができる。
図1は、隔膜により分離された従来の電解槽の断面図を示す図である。 図2は、本発明の固体高分子膜電極を用いた電解槽の断面図を示す図である。 図3は、本発明の固体高分子膜電極を用いた電解水生成装置の概略を示す図である。
 以下、本発明の電極の実施形態を、図を参照して詳細に説明する。
 なお、本明細書において電解水とは、特段の記載のない限り、陰極側で生成される電解水素水を意味するものとする。
[固体高分子膜電極]
 本発明における固体高分子膜電極15は、図2に示すように、固体高分子膜13と、固体高分子膜13の表裏に設けられた触媒層14a、14bを有する。触媒層14aは陽極側、触媒層14bは陰極側にそれぞれ対応する。
(触媒層)
 陽極側の触媒層14a及び陰極側の触媒層14bは、材料として白金族金属を含有する。白金族金属としては、例えば、白金、イリジウム、酸化白金、及び酸化イリジウム等が挙げられる。上記触媒層はこれらの金属を単独で含有してもよいし、複数種類含有してもよい。
 中でも、上記白金族金属は、白金、イリジウム、酸化白金、及び酸化イリジウムからなる群より選択される少なくとも1の金属であることが好ましい。高耐久性及び溶存水素が高効率に発生する観点から、触媒層は、白金を含有することがより好ましい。
 陽極側の触媒層14a及び陰極側の触媒層14bの膜厚は、それぞれ0.30μm以下であることが好ましい。上記触媒層の膜厚が上記一定値以下であっても、後述する陽イオン交換膜のイオン交換容量の条件を満たすことにより、電気分解時における電解水素水のpHの上昇を抑えることができる。また、白金族金属の使用量を低減できるため経済的である。
 触媒層の膜厚は0.010μm以上0.30μm以下であることがより好ましく、0.050μm以上0.20μm以下であることがさらに好ましい。上記範囲であることによって適当な耐久性が得られ、過電圧が低く、溶存水素の発生量が高効率で得られる。
 陽極側の触媒層14a及び陰極側の触媒層14bを、固体高分子膜の表裏に設ける方法は特に制限されないが、例えば、固体高分子膜に上記触媒層の材料を無電解めっきする方法、電気めっきする方法、及び上記触媒層の材料の粉末をホットプレスにより密着させる方法等が挙げられる。具体的な方法については、実施例にて後述する。
(固体高分子膜)
 本発明における固体高分子膜は、電解水を生成するための固体高分子膜電極に用いられるものであり、電気分解により陽極側で発生した水素イオン(H)を陰極側へと移動させる役割を有する陽イオン交換膜である。
 本発明の固体高分子膜電極は、使用する固体高分子膜の単位面積あたりのイオン交換容量が特定範囲であるため、pHの上昇が抑えられ、かつ十分な溶存水素量を有する電解水を得ることができる。すなわち、本発明における固体高分子膜は、単位面積あたりのイオン交換容量が、0.030mmol/cm以下である。単位面積あたりのイオン交換容量が、0.030mmol/cm以下であることで、電解水のpHの上昇を低く抑えることができる。
 固体高分子膜の単位面積あたりのイオン交換容量は、好ましくは0.025mmol/cm以下であり、より好ましくは0.020mmol/cm以下であり、さらに好ましくは0.010mmol/cm以下である。また、単位面積あたりのイオン交換容量の下限値は0.002mmol/cmである。
 また、本発明の固体高分子膜電極は、使用する固体高分子膜の膜厚が特定範囲であれば、pHの上昇が抑えられ、かつ十分な溶存水素量を有する電解水を得ることができるため好ましい。すなわち、本発明における固体高分子膜は、膜厚が、10μm以上170μm以下であることが好ましい。固体高分子膜の膜厚が上記範囲であることで、電解水のpHの上昇を低く抑えることができる。
 固体高分子膜の膜厚は、好ましくは10μm以上160μm以下であり、より好ましくは15μm以上150μm以下であり、さらに好ましくは20μm以上130μm以下であり、特に好ましくは20μm以上80μm以下である。
 また、膜厚が上記下限値以上であることによって支持膜として必要な機械的強度を付与することができる。また、膜厚が上記上限値以下であることによって膜抵抗を低く抑えることができる。
 固体高分子膜のイオン交換容量が上記範囲であることによって電解水のpHの上昇を低く抑えられる理由は定かではないが、以下のように推定される。すなわち、イオン交換容量が上記範囲を超える膜においては、通電待機時に液中のCaイオンなどの陽イオンが、イオン交換膜に多く取り込まれることになる。このため電解時(電解開始時)には、膜中のHに加えて上記Caイオンなどの陽イオンの陰極への移動が多くなり、かつこれらの陽イオンの放出も遅くなる。これにより、陰極へのHの供給が妨げられる結果、2H + 2e → Hの反応量が低減し、代わって、陰極側で4HO + 4e → 2H2 + 4OHの反応が副次的に起こるためと推測される。
 また、固体高分子膜の膜厚が上記範囲であることが好ましいのは、膜内にイオン交換されたCaイオンなどの陽イオンの放出が遅くなり、かつイオン交換だけでなく副イオンとして取り込まれるCaイオンなどの陽イオンが多くなることになり、上述した作用機序によって、電解水のpHの上昇を低く抑えられるからであると考えられる。
 固体高分子膜としては、例えば、電気透析や燃料電池の分野において従来から用いられているもののうち、単位面積あたりのイオン交換容量が上記範囲であるものを用いることができる。具体的には、炭化水素系陽イオン交換膜、又はフッ素系重合体からなる陽イオン交換膜が好適に用いられる。より好ましくは炭化水素系陽イオン交換膜である。
 炭化水素系陽イオン交換膜は、歪みの発生が少なく、また、水分を含み膨潤した場合と乾燥した場合とで伸縮率が小さいため、電解水生成装置内で水の有無による破損や治具の間に隙間が空く等の不具合の発生を抑制することができる。また、膜と給電体との接触が保たれるため、電解水中の溶存水素の発生量を安定させることができる。また、トラブル等により電解水への膜溶出が発生したとしても、人体への悪影響が無く、飲用に向いている。
 フッ素系重合体からなる陽イオン交換膜は、電解耐久性や高い温度への耐久性の観点から好適に使用できる。
(炭化水素系陽イオン交換膜)
 炭化水素系陽イオン交換膜とは、イオン交換基を除く母材部分が、炭化水素系重合体で構成されている陽イオン交換膜をいう。ここで、炭化水素系重合体は、実質的に、炭素-フッ素結合を含まず、重合体を構成する主鎖及び側鎖の骨格結合の大部分が、炭素-炭素結合で構成されている重合体を指す。上記主鎖及び側鎖を構成する炭素-炭素結合の合間に、エーテル結合、エステル結合、アミド結合、及びシロキサン結合等により酸素、窒素、珪素、硫黄、ホウ素、及びリン等の他の原子が少量介在していてもよい。
 また、上記主鎖及び側鎖に結合する原子は、その全てが水素原子である必要はなく少量であれば塩素、臭素、フッ素、及びヨウ素等の他の原子、または他の原子を含む置換基により置換されていてもよい。
 炭化水素系陽イオン交換膜が有する陽イオン交換基は、負の電荷を持ち、プロトン(水素イオン)の伝導機能を持つ官能基であれば、特に限定されない。具体的には、スルホン酸基、カルボン酸基、及びホスホン酸基等が挙げられる。このうち、交換容量が小さくとも膜の電気抵抗が低くなる点から強酸性基であるスルホン酸基が特に好ましい。
 本発明の炭化水素系陽イオン交換膜に用いることのできる、陽イオン交換基を有する炭化水素系重合体としては、具体的には、スルホン化ポリ(アリーレンエーテルエーテルケトン)(「SPEEK」)、スルホン化ポリ(エーテルエーテルケトンケトン)(「SPEEKK」)、スルホン化ポリ(アリーレンエーテルスルホン)(「SPES」)、スルホン化ポリ(アリーレンエーテルベンゾニトリル)、スルホン化ポリイミド(「SPI」)、スルホン化ポリ(スチレン)、スルホン化ポリ(スチレン-b-イソブチレン-b-スチレン)(「S-SIBS」)、及びスルホン化ポリ(スチレン-ジビニルベンゼン)からなる群より選択される少なくとも1種の炭化水素系重合体を用いることができる。
 本発明における炭化水素系陽イオン交換膜は、単位面積当たりのイオン交換容量が上述した特定値を満足する限り、いかなる構造や、製造方法によるものであってもよいが、電気抵抗などを犠牲にすることなく陽イオン交換膜の物理的強度を高めることができる点で、多孔質フィルムや不織布、織布などの多孔質膜を補強基材として用いたものが好ましい。
 即ち、上述した陽イオン交換基を有する炭化水素系重合体を有機溶剤などに溶解し、該溶液を多孔質膜などのフィルム形状の補強基材上にキャスト製膜したものや、イオン交換基を有する単量体あるいはイオン交換基を導入可能な官能基を有する単量体を、多孔質膜などのフィルム形状の補強基材の空隙部に充填した後に、光・熱重合し、必要に応じて陽イオン交換基を導入したものを用いることができる。
 中でも、スチレンなどのイオン交換基導入可能な単量体、ジビニルベンゼンなどの架橋性単量体、有機過酸化物などの重合開始剤、およびイオン交換膜の添加剤として従来公知の各種添加剤を混合した重合性単量体組成物を、多孔質膜などのフィルム形状の補強基材の空隙に充填した後に、熱重合し、得られた膜状物にスルホン酸基を導入して得られる陽イオン交換膜が、機械的強度や耐膨潤性を損なうことなく電気抵抗を低くすることができる点で、特に好ましい。
 これらの陽イオン交換膜は、キャスト製膜の場合には陽イオン交換基を有する炭化水素系重合体の陽イオン交換基導入量を調整することなど、単量体を熱重合する製法の場合には重合性単量体組成物にイオン交換基が導入できない単量体や高分子添加剤を混合することなどの手法と、さらに、補強基材である多孔質膜の膜厚を調整する手法を適宜組み合わせることで、単位面積あたりのイオン交換容量や膜厚を上述した値の範囲とすることができる。
 これらの陽イオン交換膜は、例えば、日本国特開2006-206632号公報、日本国特開2008-45068号公報、日本国特開2005-5171号公報、及び日本国特開2016-22454号公報等に記載の方法によって作製することができる。
(フッ素系重合体からなる陽イオン交換膜)
 フッ素系重合体からなる陽イオン交換膜とは、イオン交換基を除く母材部分が、後述のフッ素系重合体で構成されているものである。陽イオン交換基としてはスルホン酸基が好適に用いられる。この、スルホン酸基を有するフッ素系重合体は、パーフルオロカーボンスルホン酸ポリマーとして広く知られるものであり、該重合体の単独成形体、あるいは多孔質膜やフッ素系重合体からなるフィラーとの複合体にして陽イオン交換膜とされる。
 フッ素系重合体からなる陽イオン交換膜におけるフッ素系重合体は、例えば、ポリテトラフルオロエチレン(PTFE)、ポリクロロトリフルオロエチレン(PCTFE)、テトラフルオロエチレンパーフルオロアルキルビニールエーテル共重合体(PFA)、パーフルオロエチレンープロピレン共重合体(FEP)、テトラフルオロエチレンーパーフルオロジオキソール共重合体(TFE/PDD)、エチレンーテトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレンークロロトリフルオロエチレン共重合体(ECTFE)、ポリビニリデンフルオライド(PVDF)、及びポリビニルフルオライド(PVF)等が挙げられる。
 中でも、化学的耐久性の点から、ポリテトラフルオロエチレン(PTFE)、ポリクロロトリフルオロエチレン(PCTFE)、テトラフルオロエチレンパーフルオロアルキルビニールエーテル共重合体(PFA)、パーフルオロエチレンープロピレン共重合体(FEP)、及びテトラフルオロエチレンーパーフルオロジオキソール共重合体(TFE/PDD)等のパーフルオロカーボン重合体が好ましい。
 フッ素系重合体は、任意の置換基を有してもよく、具体的には、例えば、スルホン酸基、カルボン酸基、及びホスホン酸基等が挙げられる。
 本発明の固体高分子膜電極を用いた電解水の生成に使用できる被電解水としては、特に制限されるものではなく、例えば、水道水、純水、食塩水、井戸水、及び温泉水等を使用できる。入手容易性の観点から水道水を好ましく使用できる。本発明の固体高分子膜電極によれば、被電解水として水道水等を用いたとしても、生成される電解水素水のpHの上昇を抑えつつ、十分な溶存水素量を有する電解水素水を得ることができる。
 上述の通り、被電解水中の陽イオンが固体高分子膜に取り込まれると、膜を通したHの陰極への供給を妨げ、電解水素水のpHを上昇させることになる。本発明では、固体高分子膜の単位面積当たりのイオン交換容量を特定範囲とすることで、上記した推定機構によるpH上昇を抑制できるが、陽イオンを含有する水溶液としては、陽イオンの含有量が5mg/L以上、より好適には10mg/L以上のものは、pHの上昇の問題が顕著に生じるため、本発明の効果が顕著であり好ましい。他方、陽イオンの含有量があまり高すぎるとpH上昇の抑制効果そのものが小さくなるため、5000mg/L以下、より好適には300mg/L以下に抑えるのが好ましい。
 陽イオンを含有する水溶液としては、典型的には、Ca2+、Mg2+、Na、K等の陽イオンを含有する水溶液が挙げられ、具体的には水道水、井戸水、及び温泉水等が該当する。なお、上述のpH上昇の抑制機構から自明の通り、上記陽イオンにはHイオンは含まれない。
 本発明の固体高分子膜電極を用いて得られる電解水の用途としては、例えば、飲料用、血液透析用、及び農業用等が挙げられる。
[電解槽]
 図2に示すように、本発明における電解槽3bは、固体高分子膜電極15により隔離された陽極室10と陰極室4とを有している。固体高分子膜電極15の陽極側の触媒層14a上及び陰極側の触媒層14b上には、それぞれ陽極給電体16a、陰極給電体16bが設けられている。すなわち、電解槽3bは、上記の固体高分子膜電極15と、固体高分子膜電極15を介して互いに対向して配置された陽極給電体16a及び陰極給電体16bとを有する。給電体の種類は特に制限されず、従来公知のものを使用できる。
 また、電解槽3bを後述する電解水生成装置に組み込んで使用する場合は、図3に示すように、電解槽3bは水道水等の被電解水が供給される陰極室入口5や陰極室4で生成される電解水が排出される陰極室出口6を備えてもよい。その他、水道水等の被電解水が供給される陽極室入口11や陽極室10で生成される酸性水が排出される陽極室出口12を備えてもよい。
[電解水生成装置]
 本発明はまた、上記固体高分子膜電極を有する電解水生成装置を提供する。本発明の電解水生成装置は、上記の固体高分子膜電極と、該固体高分子膜電極を介して互いに対向して配置された陽極給電体及び陰極給電体とを有する電解槽と、該電解槽に被電解水を通水する手段と、該電解槽内の被電解水に電圧を印加して電流を流す手段とを少なくとも設けている。
 本発明の電解水生成装置において、電解槽は上記したものを使用できる。また、電解槽に被電解水を通水する手段、及び電解槽内の被電解水に電圧を印加して電流を流す手段については、その手段が特に制限されるものではなく、従来公知の方法を任意に適用できる。
 以下、本発明の電解水生成装置の一実施形態を図に示して説明するが、本発明の電解水生成装置は下記例に制限されるものではない。
 図3は、本実施形態の電解水生成装置の一実施形態の概略構成を示している。本実施形態では、電解水生成装置1として、家庭の飲料用水の生成に用いられる家庭用電解水生成装置を例示的に示している。図3では、飲料用の電解水素水を生成している状態の電解水生成装置1を示している。
 電解水生成装置1は、水道水等の被電解水を浄化する浄水カートリッジ2と、浄化された水が供給される電解槽3bと、電解水生成装置1各部の制御を司る制御部19とを備えている。なお、本発明の電解水生成装置においては浄水カートリッジ2を有していない場合でも、上述したように、水道水等を電気分解し、pH上昇が抑えられ十分な溶存水素量を有する電解水の生成が可能である。浄水カートリッジ2を有しない場合は、被電解水は電解槽3bに直接通水される。
 電解槽3bに通水された被電解水は、そこで電気分解される。被電解水を電解槽3bに通水する手段については、後述する。電解槽3bには、互いに対向して配置された陽極給電体16a及び陰極給電体16bと、陽極給電体16a及び陰極給電体16bとの間に配された固体高分子膜13とを有する固体高分子膜電極15を備えている。
 固体高分子膜電極15は、電解槽3bを陰極室4と陽極室10とに区分する。固体高分子膜電極15は、被電解水の電気分解により生じた陽イオンを陽極室10から陰極室4へと通過させ、固体高分子膜電極15を介して陰極7と陽極9とが電気的に接続される。陰極7と陽極9との間に電圧が印加されると、電解槽3b内で被電解水が電気分解され、電解水が得られる。すなわち、陰極室4では電解水素水が、陽極室10では酸性水がそれぞれ生成される。
 陰極7及び陽極9の極性及び電解槽3bの被電解水に印加される電圧は、制御部19によって制御される。
 また、本発明の電解水生成装置は、さらに、電解槽内の固体高分子膜電極における陽極給電体及び陰極給電体に印加する電圧の極性切り替え手段を設けることが好ましい。例えば、制御部19に、陰極7及び陽極9の極性を切り替えるための極性切替回路(図示せず)が設けられていてもよい。すなわち、電解水生成装置1は、電解槽3b内の固体高分子膜電極15における陽極給電体16a及び陰極給電体16bに印加する電圧の極性切り替え手段を備えてもよい。電圧の極性切り替え手段を設けることにより、水道水等の被電解水を用いて電気分解を行った際の固体高分子膜電極へのスケールの付着を抑制することができる。
 電解槽3bに被電解水を通水する手段の一例について説明する。被電解水が流入する電解槽3bの上流側には、第1流路切替弁18が設けられている。第1流路切替弁18は、浄水カートリッジ2と電解槽3bとを連通する給水路17に設けられている。浄水カートリッジ2によって浄化された水は、給水路17の第1給水路17a及び第2給水路17bを介して第1流路切替弁18に流入し、陽極室10又は陰極室4に供給される。
 陰極室4で生成された電解水素水は、陰極室出口6から第1流路31に通水され、流路切替弁22を介して吐水口31bから回収される。なお、陽極室10で生成された酸性水は、陽極室出口12から第2流路32に通水され、流路切替弁22を介して排水口32aから排出される。
[電解水の生成方法]
 本発明はまた、上記固体高分子膜電極を用いた電解水の生成方法を提供する。本発明の電解水の生成方法は、上記固体高分子膜電極により陽極を含む陽極室と陰極を含む陰極室とに隔離された電解槽を準備する工程と、被電解水を陰極室および陽極室のそれぞれに通水する工程と、陰極と陽極との間に電圧を印加して被電解水に電流を流し電解水を生成する工程と、陰極室内で生成された電解水を取出す工程とを備える。
 上記の電解水の生成方法は、例えば、上記の電解水生成装置を用いることにより実施することが可能である。
 本発明の電解水の生成方法によれば、単位面積あたりのイオン交換容量が特定範囲である固体高分子膜を有する固体高分子膜電極を用いて被電解水の電気分解を行うため、pH上昇が抑制され、十分な溶存水素量を有する電解水が得られる。また、電気分解中におけるセル電圧の上昇も抑制でき、セル電圧が安定する。電気分解中のセル電圧が安定することにより、水温の上昇を抑えることができる。
 イオン交換容量が特定範囲にある固体高分子膜を用いることでセル電圧の上昇が抑制できる理由は、上述したように、無電解時のCaイオンなどの陽イオンの膜への取り込みが少ないためと考えられる。
 本発明の電解水の生成方法により得られる電解水は、単位取水量あたりの電流量6A/(L/min)という条件で電流を流した際に、原水のpHが7付近である場合(水道水など)に、陰極室内で生成される電解水の、電解中のpHの最大値が8.5以下であることが好ましい。電解中のpHの最大値は、8.3以下であることがより好ましく、8.0以下であることがさらに好ましい。本発明の固体高分子膜電極を用いて電解水を生成することにより、pHを上記範囲とすることが可能となる。
 また上記と同条件にて被電解水の電気分解を行った場合、陰極室内で生成される電解水の、電気分解開始100秒後における溶存水素量が500ppb以上であることが好ましく、650ppb以上であることがより好ましく、700ppb以上であることがさらに好ましく、800ppb以上であることがよりさらに好ましく、950ppb以上であることが特に好ましい。本発明の固体高分子膜電極を用いて電解水を生成することにより、溶存水素量を上記範囲とすることが可能となる。
 また上記と同条件にて被電解水の電気分解を行った場合、電気分解開始100秒後におけるセル電圧が9.0V以下であることが好ましく、7.0V以下であることがより好ましく、6.0V以下であることがさらに好ましく、5.0V以下であることがよりさらに好ましく、4.0V以下であることが特に好ましい。本発明の固体高分子膜電極を用いて電解水を生成することにより、セル電圧を上記範囲とすることが可能となる。
 上記pHの測定、溶存水素量、及びセル電圧の測定方法は特に限定されず、従来公知の測定手段を適宜採用できる。具体的には実施例に記載の測定手段を採用できる。
(固体高分子膜電極の製造)
 本発明の固体高分子膜電極を以下の手順で製造した。
(1)固体高分子膜である下記表1に記載の各陽イオン交換膜をカッターナイフにて250mm×80mmのサイズに切断した。
(2)洗浄のため、切断した膜を50℃の純水にて、10分間浸漬した。
(3)前処理として、上記膜を50℃の5%塩酸に10分間浸漬した。
(4)めっき範囲以外にPtを付着させないため、PEEK製治具により膜をマスキングした。
(5)室温、3時間にて、1~10wt%Ptイオンを含む水溶液に膜を浸漬させ、膜へPtイオンを吸着(イオン交換)させた。
(6)50℃、1wt%のSBH(ナトリウムボロハイドライド)を溶かした水溶液に、上記膜を浸漬させ、膜表面にイオン交換したPtイオンを還元した。
(7)洗浄のため、膜を50℃の純水にて、10分間浸漬した。
(8)膜からマスキングを行っていたPEEK製治具を外した。
(9)後処理として、膜を50℃の5%塩酸に10分間浸漬した。
(10)洗浄のため、膜を50℃の純水にて、10分間浸漬した。
(陽イオン交換膜の単位面積あたりのイオン交換容量の測定)
 陽イオン交換膜を1mol/L-HCl水溶液に10時間以上浸漬し、イオン交換水で十分に洗浄した。次いで、カッターナイフで陽イオン交換膜を矩形に切り出し、縦横の長さを測定して、測定用陽イオン交換膜の面積を求めた(Acm)。
 その後、上記陽イオン交換膜を1mol/L-NaCl水溶液でイオン交換基の対イオンを水素イオンからナトリウムイオンに置換させ、遊離した水素イオンを、水酸化ナトリウム水溶液を用いて電位差滴定装置(COMTITE-900、平沼産業株式会社製)で定量した(Bmol)。
 上記測定値に基づいて、陽イオン交換膜の単位面積当たりのイオン交換容量を次式により求めた。
 単位面積あたりのイオン交換容量=B×1000/A[mmol/cm
(陽イオン交換膜の膜厚測定)
 陽イオン交換膜を0.5mol/L-NaCl溶液に4時間以上浸漬した後、ティッシュペーパーで膜の表面の水分を拭き取り、マイクロメ-タ MED-25PJ(株式会社ミツトヨ社製)を用いて測定した。
(陽イオン交換膜の面積変化率測定)
 陽イオン交換膜を0.5mol/L-NaCl溶液に4時間以上浸漬し、イオン交換水で十分に洗浄した後、200mm×200mmに裁断した。これを25℃±2℃、相対湿度55%±10%の室中に24時間以上放置した後、縦横の長さを測定し、乾燥面積S1を求めた。次いで、上記乾燥状態のサンプルをイオン交換水中に液温25℃±2℃で24時間浸漬して湿潤させ、同様にして湿潤状態の陽イオン交換膜の面積S2を求め、これらの値を基に下式により面積変化率を算出した。
 面積変化率=(S2-S1)/S1×100[%]
(触媒層の膜厚の測定)
 上記で作製した固体高分子膜電極の触媒層の膜厚(Pt膜厚)を蛍光X線分析装置(6000VX、日立ハイテクサイエンス製)により測定した。
(電解試験)
 上記作成した固体高分子膜電極を、チタニウムエキスパンドメタルに白金でめっきをした給電体で挟み込み、電解槽を作製した。この電解槽を用いて下記電解条件にて、水道水(pH7.0)の電気分解を行った。
〈電解条件〉
 単位取水量あたりの電流量:6A/(L/min)
〈測定〉
・セル電圧の測定
 富士通社安定化電源 ePS240WLを6Aの定電流を流した際の電圧を記録した。
・溶存水素量の測定
 東亜DKK社ポータブル水素計 DH-35Aを用いて、溶存水素量を測定した。
・pHの測定
 東亜DKK社ポータブルpH計ION/pH METERIM-22Pを用いて、pHを記録した。
〈評価〉
 電解100秒後の電圧と溶存水素量、及び電解中におけるpHの最大値を測定した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 以上の結果より、本発明のイオン交換容量が0.002mmol/cm以上0.030mmol/cm以下である実施例の固体高分子膜(炭化水素系陽イオン交換膜)を用いた電極を用いて電気分解を行うことにより、pHの上昇が抑えられた結果、pHの最大値が8付近に保たれ、溶存水素量も500ppb以上となる電解水素水が得られることがわかった。
 一方、イオン交換容量が0.030mmol/cmを超える比較例の固体高分子膜を用いた電極を用いて電気分解を行うと、pHの最大値が9前後にまで上昇する結果となった。
 この結果から、本発明の特定範囲のイオン交換容量を有する炭化水素系陽イオン交換膜を用いることによって、従来用いられてきたフッ素系重合体陽イオン交換膜と同等以上に、生成される電解水素水のpHの上昇を抑えることができ、電解生成用として好適に用いられることがわかった。
 また、炭化水素系陽イオン交換膜はフッ素系重合体陽イオン交換膜と比較して面積変化率が小さい結果となった。この結果は、炭化水素系陽イオン交換膜はフッ素系重合体陽イオン交換膜よりも、水分を含み膨潤した場合と乾燥した場合とで伸縮率が小さいことを示すものであり、電解水生成装置に用いた場合の不具合発生率の点においても、炭化水素系陽イオン交換膜は優れていることがわかった。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更及び変形が可能であることは、当業者にとって明らかである。なお本出願は、2016年11月4日付で出願された日本特許出願(特願2016-216376)に基づいており、その全体が引用により援用される。
1 電解水生成装置
2 浄水カートリッジ
3a,3b 電解槽
4 陰極室
5 陰極室入口
6 陰極室出口
7 陰極
8 隔膜
9 陽極
10 陽極室
11 陽極室入口
12 陽極室出口
13 固体高分子膜
14a,14b 触媒層
15 固体高分子膜電極
16a 陽極給電体
16b 陰極給電体
17 給水路
17a 第1給水路
17b 第2給水路
18 第1流路切替弁
19 制御部
22 流路切替弁
31 第1流路
31b 吐水口
32 第2流路
32a 排水口

Claims (12)

  1.  電解水を生成するための固体高分子膜電極であって、
     前記固体高分子膜電極は、固体高分子膜と、前記固体高分子膜の表裏に設けられた白金族金属を含有する触媒層とを有しており、
     前記固体高分子膜が、炭化水素系陽イオン交換膜であり、かつ単位面積あたりのイオン交換容量が0.002mmol/cm以上0.030mmol/cm以下である、固体高分子膜電極。
  2.  膜厚が10μm以上170μm以下である、請求項1に記載の固体高分子膜電極。
  3.  前記炭化水素系陽イオン交換膜が、スルホン化ポリ(アリーレンエーテルエーテルケトン)(「SPEEK」)、スルホン化ポリ(エーテルエーテルケトンケトン)(「SPEEKK」)、スルホン化ポリ(アリーレンエーテルスルホン)(「SPES」)、スルホン化ポリ(アリーレンエーテルベンゾニトリル)、スルホン化ポリイミド(「SPI」)、スルホン化ポリ(スチレン)、スルホン化ポリ(スチレン-b-イソブチレン-b-スチレン)(「S-SIBS」)、及びスルホン化ポリ(スチレン-ジビニルベンゼン)からなる群より選択される少なくとも1種の炭化水素系重合体を含む、請求項1に記載の固体高分子膜電極。
  4.  前記触媒層の膜厚が0.30μm以下である、請求項1に記載の固体高分子膜電極。
  5.  前記白金族金属が、白金、イリジウム、酸化白金、及び酸化イリジウムからなる群より選択される少なくとも1の金属である、請求項1に記載の固体高分子膜電極。
  6.  陽イオンを含有する水溶液を使用して電解水を生成するための、請求項1に記載の固体高分子膜電極。
  7.  前記陽イオンを含有する水溶液が水道水である、請求項6に記載の固体高分子膜電極。
  8.  飲料用の電解水を生成するための、請求項1に記載の固体高分子膜電極。
  9.  請求項1に記載の固体高分子膜電極と前記固体高分子膜電極を介して互いに対向して配置された陽極給電体及び陰極給電体とを有する電解槽と、
     前記電解槽に被電解水を通水する手段と、
     前記電解槽内の被電解水に電圧を印加して電流を流す手段と、
     を少なくとも設ける、電解水生成装置。
  10.  さらに、前記電解槽内の固体高分子膜電極における陽極給電体及び陰極給電体に印加する電圧の極性切り替え手段を設ける、請求項9に記載の電解水生成装置。
  11.  請求項1に記載の固体高分子膜電極により陽極を含む陽極室と陰極を含む陰極室とに隔離された電解槽を準備する工程と、被電解水を陰極室および陽極室のそれぞれに通水する工程と、陰極と陽極との間に電圧を印加して被電解水に電流を流し電解水を生成する工程と、陰極室内で生成された前記電解水を取出す工程とを備える、電解水の生成方法。
  12.  膜の表裏に白金族金属を含有する触媒層を設けて使用される、電解水を生成するための固体高分子膜電極用の固体高分子膜であって、
     前記固体高分子膜が炭化水素系陽イオン交換膜であり、かつ単位面積当たりのイオン交換容量が0.002mmol/cm以上0.030mmol/cm以下である、固体高分子膜。
PCT/JP2017/039639 2016-11-04 2017-11-01 固体高分子膜電極 WO2018084220A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020197011977A KR20190055206A (ko) 2016-11-04 2017-11-01 고체 고분자막 전극
CN201780067864.7A CN109923242B (zh) 2016-11-04 2017-11-01 固体高分子膜电极
EP17866786.1A EP3536824B1 (en) 2016-11-04 2017-11-01 Solid polymer film electrode
US16/344,349 US20200048781A1 (en) 2016-11-04 2017-11-01 Solid polymer membrane electrode
TW107114947A TWI728245B (zh) 2016-11-04 2018-05-02 固體高分子膜電極
US17/684,972 US20220195611A1 (en) 2016-11-04 2022-03-02 Solid polymer membrane electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016216376 2016-11-04
JP2016-216376 2016-11-04

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/344,349 A-371-Of-International US20200048781A1 (en) 2016-11-04 2017-11-01 Solid polymer membrane electrode
US17/684,972 Division US20220195611A1 (en) 2016-11-04 2022-03-02 Solid polymer membrane electrode

Publications (1)

Publication Number Publication Date
WO2018084220A1 true WO2018084220A1 (ja) 2018-05-11

Family

ID=62076729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039639 WO2018084220A1 (ja) 2016-11-04 2017-11-01 固体高分子膜電極

Country Status (7)

Country Link
US (2) US20200048781A1 (ja)
EP (1) EP3536824B1 (ja)
JP (1) JP6416359B2 (ja)
KR (1) KR20190055206A (ja)
CN (1) CN109923242B (ja)
TW (1) TWI728245B (ja)
WO (1) WO2018084220A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7427880B2 (ja) 2018-07-31 2024-02-06 東レ株式会社 白金担持高分子電解質膜の製造方法および白金担持高分子電解質膜

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021074977A1 (ja) * 2019-10-15 2021-04-22 ヴィータ株式会社 整水用電解槽及びこれを組み込んだ家庭用整水器
CN111229331A (zh) * 2020-03-16 2020-06-05 佛山市云米电器科技有限公司 用于液流处理的离子交换系统
CN112798669B (zh) * 2020-12-28 2022-04-22 浙江大学 一种可在S2-环境下定量检测pH的金属氧化铱电极及其制备方法和应用
CN114277386A (zh) * 2021-08-06 2022-04-05 嘉庚创新实验室 一种电化学还原四氯化锡的方法及反应装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693114A (ja) * 1992-06-13 1994-04-05 Hoechst Ag 高分子電解質膜およびその製造方法
JPH06296964A (ja) * 1993-04-16 1994-10-25 Asahi Glass Eng Kk アルカリイオン水製造用隔膜
JPH09165689A (ja) * 1995-12-13 1997-06-24 Tanaka Kikinzoku Kogyo Kk 電解用電極膜接合体の製造方法
JPH10286571A (ja) * 1997-04-16 1998-10-27 Permelec Electrode Ltd 酸性水及びアルカリ水製造用電解槽
JP2005133146A (ja) * 2003-10-30 2005-05-26 Toyobo Co Ltd 固体高分子型電解膜
WO2016140102A1 (ja) * 2015-03-02 2016-09-09 株式会社日本トリム 電解水生成装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131376A (en) * 1981-02-06 1982-08-14 Japan Atom Energy Res Inst Electrolyzing method for water
JP3193295B2 (ja) 1995-07-07 2001-07-30 株式会社日本トリム 透析装置
JP3785219B2 (ja) * 1996-03-27 2006-06-14 ペルメレック電極株式会社 酸性水及びアルカリ性水の製造方法
KR101082859B1 (ko) * 2003-10-29 2011-11-11 우미코레 아게 운트 코 카게 물 가수분해를 위한 귀금속 산화물 촉매
JP5176261B2 (ja) * 2004-11-10 2013-04-03 東洋紡株式会社 ダイレクトメタノール型燃料電池
DE102005038612A1 (de) * 2005-08-16 2007-02-22 Basf Ag Verfahren zur Herstellung von beidseitig katalysatorbeschichteten Membranen
JP2008108673A (ja) * 2006-10-27 2008-05-08 Hitachi Ltd 炭化水素系固体高分子電解質膜、膜/電極接合体、その製造方法並びに燃料電池電源、燃料電池電源システム及び電子機器
AU2011204324A1 (en) * 2010-01-07 2012-07-26 Diversey, Inc. Modular cartridge system for apparatus producing cleaning and/or sanitizing solutions
CN102838746A (zh) * 2012-08-29 2012-12-26 南京理工大学 磺化聚芳醚砜聚合物及磺化聚芳醚砜类阳离子交换膜的制备方法及其应用
WO2014157389A1 (ja) * 2013-03-28 2014-10-02 Jsr株式会社 電解質膜用組成物、固体高分子電解質膜、該電解質膜の製造方法、膜-電極接合体、固体高分子型燃料電池、水電解セルおよび水電解装置
EP3419093B1 (en) * 2016-02-18 2023-05-10 Toray Industries, Inc. Composite polymer electrolytic membrane, and membrane electrode composite and solid polymer fuel cell using same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693114A (ja) * 1992-06-13 1994-04-05 Hoechst Ag 高分子電解質膜およびその製造方法
JPH06296964A (ja) * 1993-04-16 1994-10-25 Asahi Glass Eng Kk アルカリイオン水製造用隔膜
JPH09165689A (ja) * 1995-12-13 1997-06-24 Tanaka Kikinzoku Kogyo Kk 電解用電極膜接合体の製造方法
JPH10286571A (ja) * 1997-04-16 1998-10-27 Permelec Electrode Ltd 酸性水及びアルカリ水製造用電解槽
JP2005133146A (ja) * 2003-10-30 2005-05-26 Toyobo Co Ltd 固体高分子型電解膜
WO2016140102A1 (ja) * 2015-03-02 2016-09-09 株式会社日本トリム 電解水生成装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3536824A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7427880B2 (ja) 2018-07-31 2024-02-06 東レ株式会社 白金担持高分子電解質膜の製造方法および白金担持高分子電解質膜

Also Published As

Publication number Publication date
EP3536824A1 (en) 2019-09-11
TW201918458A (zh) 2019-05-16
CN109923242B (zh) 2021-10-29
KR20190055206A (ko) 2019-05-22
EP3536824B1 (en) 2021-04-21
EP3536824A4 (en) 2019-11-20
JP2018090905A (ja) 2018-06-14
US20200048781A1 (en) 2020-02-13
JP6416359B2 (ja) 2018-10-31
CN109923242A (zh) 2019-06-21
TWI728245B (zh) 2021-05-21
US20220195611A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
JP6416359B2 (ja) 固体高分子膜電極
JP6005065B2 (ja) レドックスフロー二次電池及びレドックスフロー二次電池用電解質膜
JP4928705B2 (ja) 多孔質の親水性膜
EP3065209B1 (en) Polymer electrolyte film
JP6034200B2 (ja) レドックスフロー二次電池
US20050130006A1 (en) Membrane electrode assembly for polymer electrolyte fuel cell
EP1806371B1 (en) Electrolyte membrane and membrane electrode assembly for solid polymer fuel cell
JPWO2014077257A1 (ja) レドックスフロー二次電池用隔膜及びそれを用いたレドックスフロー二次電池
JP2013194321A (ja) 酸素消費電極を用いるアルカリ金属塩化物の電気分解法
WO2019088299A1 (ja) 固体高分子電解質膜、膜電極接合体および水電解装置
JP6131051B2 (ja) レドックスフロー二次電池用電解質膜及びそれを用いたレドックスフロー二次電池
JP6315885B2 (ja) 酸素消費電極をマイクロギャップ配置において用いるアルカリ金属塩化物の電気分解法
WO2018139609A1 (ja) 複極式電解セル、複極式電解槽、水素製造方法
JP5164149B2 (ja) 陽イオン交換膜およびその製造方法
CA2154465C (en) Membrane-electrode structure for electrochemical cells
EP4060777B1 (en) Polymer electrolyte membrane, method for preparing the membrane and fuel cell comprising the membrane
JPS63310985A (ja) 水酸化アルカリの製造方法
JP2008280458A (ja) 陽イオン交換膜、電極触媒層、高分子電解質膜及び固体高分子型燃料電池
JPS5846550B2 (ja) 塩化アルカリ水溶液の電解方法
JPS6130034B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866786

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197011977

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017866786

Country of ref document: EP

Effective date: 20190604