WO2018084133A1 - 紫外線処理装置 - Google Patents

紫外線処理装置 Download PDF

Info

Publication number
WO2018084133A1
WO2018084133A1 PCT/JP2017/039275 JP2017039275W WO2018084133A1 WO 2018084133 A1 WO2018084133 A1 WO 2018084133A1 JP 2017039275 W JP2017039275 W JP 2017039275W WO 2018084133 A1 WO2018084133 A1 WO 2018084133A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultraviolet
processing
light
processed
light shielding
Prior art date
Application number
PCT/JP2017/039275
Other languages
English (en)
French (fr)
Inventor
啓太 吉原
山森 賢治
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Priority to JP2018549007A priority Critical patent/JP6508433B2/ja
Publication of WO2018084133A1 publication Critical patent/WO2018084133A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting

Definitions

  • the light cleaning process is performed by the action of the ultraviolet rays that reach the surface Wa to be processed and the action of the generated ozone.
  • residues such as a photocurable resin attached to the surface of the nanoimprint template, specifically, the stamp portion (pattern portion) are removed.
  • the gas supply port is configured to open to the peripheral wall portion of the light shielding member, or the gas supply port faces the object to be processed of the light shielding member. It can be set as the structure formed so that it might open to a surface.
  • the gas supply port is configured to open to the surface of the light shielding member facing the object to be processed, the object to be processed is disposed between the gas supply port and the object to be processed. It is preferable that a gas flow control plate is provided so as to face the treatment-prohibited area on the surface of the object.
  • the processing atmosphere gas is preferably the same type of gas as the purge gas, and an inert gas can be used as the processing atmosphere gas and the purge gas. Furthermore, a gas that generates ozone when irradiated with light from the ultraviolet lamp can be used as the processing atmosphere gas.
  • the light shielding member having a shape corresponding to the shape of the processing prohibited area in the object to be processed is provided so as to be separated from the object to be processed and face the processing prohibited area. Further, it is possible to prevent the light from the ultraviolet lamp from being irradiated to the processing prohibited area.
  • the light shielding member is provided with a purge gas supply port. For this reason, in the gap between the light shielding member and the object to be processed, the gas supplied from the gas supply port overflows from the gap, so that the gas constituting the ambient atmosphere of the light shielding member with respect to the gap Inflow can be prevented.
  • FIG. 1 is an explanatory sectional view showing an outline of an example of the configuration of the first ultraviolet processing apparatus of the present invention together with an object to be processed
  • FIG. 2 is a diagram of a processing chamber in the first ultraviolet processing apparatus of FIG.
  • FIG. 3 is an explanatory plan view showing the configuration
  • FIG. 3 is an explanatory perspective view showing the configuration of the light shielding member in the first ultraviolet processing apparatus of FIG.
  • FIG. 4 is an explanatory view schematically showing the configuration of an object to be processed which is processed by the ultraviolet processing apparatus of FIG.
  • the workpiece W has a vertical and horizontal dimension smaller than the vertical and horizontal dimensions of the reticle W1, for example, in the central region of the surface of the square flat reticle W1.
  • a rectangular flat thin film-like pellicle W2 elongated in one direction is provided, and has a rectangular flat thin film-like convex portion Wb formed by the pellicle W2.
  • the one direction is referred to as a “longitudinal direction”
  • a direction orthogonal to the one direction in a plane along the surface of the reticle W1 is referred to as a “width direction”.
  • the longitudinal direction includes a region where the pellicle W2 is formed on the surface of the workpiece W and a rectangular thin annular region on the surface of the reticle W1 surrounding the periphery of the formation region of the pellicle W2.
  • a rectangular area extending in a straight line is a process prohibited area T1.
  • each of the rectangular belt-like regions located on both sides in the width direction of the processing prohibition region T1 on the surface of the reticle W1 is a processing region T2 (processing surface Wa).
  • the two rectangular band-shaped regions constituting the processing target region T2 are regions including side edges extending in the longitudinal direction of the processing target object W.
  • the first ultraviolet ray treatment apparatus 10 includes a lamp chamber housing 11 having a rectangular parallelepiped box shape, one of which is open (upward in FIG. 1) and elongated in one direction orthogonal to the opening direction.
  • the opening direction of the lamp chamber housing 11 is defined as the upward direction
  • the one direction is defined as the longitudinal direction
  • the direction perpendicular to the one direction is defined as the width direction on a plane perpendicular to the opening direction.
  • a rectangular flat plate-shaped partition wall 13 is airtightly provided at the opening end face of the lamp chamber housing 11 so as to close the opening.
  • a loading / unloading port (not shown) for loading and unloading the workpiece W into and from the processing chamber S1 is provided.
  • a shutter (not shown) is provided at the carry-in / out port.
  • the internal space of the lamp chamber housing 11 is airtightly divided into three spaces arranged in the width direction by two partition walls 17A and 17B.
  • the one partition wall 17A is arranged so as to extend in the longitudinal direction in parallel with the one side wall 12A of the lamp chamber housing 11 at a position on the inner side in the width direction from the position where the one ultraviolet light transmitting window member 15A is disposed. It is installed.
  • the other partition wall 17B extends in the longitudinal direction in parallel with the other side wall 12B of the lamp chamber housing 11 at a position on the inner side in the width direction from the position where the other ultraviolet light transmitting window member 15B is disposed. It is arranged.
  • the space located in the center in the width direction is the irradiation distance adjusting mechanism accommodating chamber S4, and the spaces located on both sides in the width direction are the lamp chambers S2, S3, respectively. Has been.
  • each of the lamp chambers S2 and S3 circular bar-shaped ultraviolet lamps 40A and 40B face the corresponding ultraviolet-transmissive window members 15A and 15B, respectively, with the lamp shaft (center axis) extending horizontally in the longitudinal direction.
  • Each of the lamp chambers S2 and S3 is provided with an inert gas purge means (not shown) for purging the lamp chambers S2 and S3 with an inert gas such as nitrogen gas.
  • the ultraviolet lamps 40A and 40B in the example of this figure are of the same type and shape. Further, the ultraviolet lamps 40A and 40B are arranged so that the distances from the corresponding ultraviolet transmissive window members 15A and 15B are the same.
  • the irradiation distance adjusting mechanism accommodating chamber S4 is provided with a shaft drive source 19 that constitutes an irradiation distance adjusting mechanism, which will be described later.
  • the object W is moved by the irradiation distance adjusting mechanism in the vertical direction.
  • the separation distance (the irradiation distance of the ultraviolet rays with respect to the workpiece W) between the processing surface Wa of the workpiece W and the light emitting surfaces of the ultraviolet transmissive window members 15A and 15B is adjusted.
  • the processing chamber casing 21 is provided with a processing atmosphere gas supply port 28 for supplying a processing atmosphere gas required for processing the workpiece W into the processing chamber S1.
  • the processing atmosphere gas supply port 28 is configured by a through hole formed in the other end wall 22 ⁇ / b> C extending in the width direction and positioned on the other end side in the longitudinal direction of the processing chamber casing 21.
  • the processing atmosphere gas supply port 28 is formed at a position closer to the one side wall 22B than the center position in the width direction.
  • the processing atmosphere gas supply port 28 is connected to processing atmosphere gas supply means (not shown) provided outside the processing chamber S1.
  • the processing chamber S1 is provided with an exhaust pipe 27 for exhausting ozone generated in the process of processing the workpiece W so as to extend along the other side wall 22D of the processing chamber casing 21. ing.
  • the exhaust pipe 27 is provided outside the processing chamber S1 through an exhaust port 29 formed of a through hole formed at a position close to the other side wall 22D of the other end wall 22C of the processing chamber casing 21. It is connected to ozone exhaust means (not shown).
  • the processing atmosphere gas an appropriate one is used according to the type of the workpiece W or the like.
  • a gas ozone generation source gas
  • the processing atmosphere gas an inert gas such as nitrogen gas is used when the action of ozone is not used for processing the workpiece W.
  • processing atmosphere gas supply means an appropriate one is used according to the type of the processing atmosphere gas.
  • the supply conditions of the processing atmosphere gas by the processing atmosphere gas supply means are the kind of the processing atmosphere gas, the processing atmosphere conditions required in the processing chamber S1, the volume of the processing chamber S1, and the ultraviolet light transmissive window members 15A and 15B. It is determined appropriately in consideration of the distance between the workpiece and the workpiece W.
  • a processing object holding member that holds the processing object W in a state of being vertically separated from the ultraviolet transmissive window members 15A and 15B is disposed.
  • the workpiece holding member in this example is composed of four mounting tables 25 respectively arranged at positions on the outer sides in the longitudinal direction at both ends of the ultraviolet transmissive window members 15A and 15B.
  • Each mounting table 25 has an L-shaped appearance, and a mounting surface 25A is formed by a flat upper surface of a prismatic support portion extending in the longitudinal direction.
  • the mounting surface 25A of each mounting table 25 is located on the same horizontal plane.
  • the workpiece W is supported by the mounting surfaces 25A of the four mounting tables 25, so that the workpiece W becomes a light emitting surface of the ultraviolet light transmissive window members 15A and 15B corresponding to the workpiece surfaces Wa, respectively.
  • the ultraviolet transmissive window members 15A and 15B are arranged with a gap therebetween.
  • the mounting table 25 is fixed to each of both ends of the upper surface of each mounting table fixing member 26 in such a posture that the mounting surface 25A faces upward.
  • One end of a columnar shaft 34 is fixed at a substantially central position on the lower surface of each mounting table fixing member 26.
  • Each shaft 34 is provided to extend in the vertical direction through a shaft through hole (not shown) formed in the partition wall 13.
  • Each shaft 34 is driven in the vertical direction by a shaft drive source 19 disposed in the irradiation distance adjusting mechanism accommodation chamber S4. In this irradiation distance adjustment mechanism, each shaft 34 is moved in a synchronized state, so that the surface Wa of the object W to be processed and the ultraviolet rays are maintained while the posture of the object W is maintained.
  • the separation distance from the light exit surface of the transmissive window members 15A and 15B is adjusted.
  • the light shielding member 30 having a substantially rectangular plate shape that shields the light from the ultraviolet lamps 40A and 40B is disposed in the processing chamber S1, and the light shielding member 30, the partition wall 13, and the like.
  • a light shielding mechanism is configured to prevent the light from the ultraviolet lamps 40A and 40B from being irradiated to the processing prohibited area T1.
  • the light shielding member 30 may have a rectangular planar shape corresponding to the shape of the process prohibited area T1 of the workpiece W.
  • a flat main light-shielding plate portion 31 positioned so as to face T1 and an outer peripheral edge position on the upper surface of the main light-shielding plate portion 31 so as to extend over the entire circumference of the outer peripheral edge of the main light-shielding plate portion 31.
  • the frame-shaped peripheral wall portion 32 protrudes toward the workpiece W.
  • the light blocking member 30 is formed in a rectangular region (hereinafter also referred to as “inter-window member region”) between the two ultraviolet light transmissive window members 15A and 15B on the upper surface of the partition wall 13.
  • the peripheral wall portion 32 is positioned so as to protrude upward from the upper surface of the partition wall 13 and is opposed to the processing inhibition region T1 on the surface of the workpiece W while being separated from the surface of the workpiece W. Has been placed. Accordingly, since the light shielding member 30 has the peripheral wall portion 32, the peripheral wall portion 32 can surround the periphery of the convex portion Wb of the workpiece W included in the processing prohibited area T ⁇ b> 1. Thus, an excellent light shielding function can be obtained. Moreover, the freedom degree of design of the 1st ultraviolet processing device 10 becomes large.
  • the degree of freedom of the arrangement position of the purge gas supply port 33 described later can be increased, and the distance between the main light shielding plate portion 31 and the workpiece W can be increased.
  • the main light-shielding plate portion 31 has the same vertical and horizontal dimensions as the vertical and horizontal dimensions of the process prohibited area T1.
  • the height of the peripheral wall portion 32 in the light shielding member 30 is appropriately determined according to the protruding height of the pellicle W2 relative to the surface of the reticle W1 (the thickness of the pellicle W2), the position where a purge gas supply port 33 described later is disposed, and the like. .
  • the height of the peripheral wall portion 32 is, for example, 4.5 mm.
  • the light shielding member 30 is made of a material having a light shielding property against light from the ultraviolet lamps 40A and 40B and having an ultraviolet resistance and, if necessary, an ozone resistance.
  • a specific example of the material of the light shielding member 30 is stainless steel (SUS).
  • SUS stainless steel
  • the thickness of the main light shielding plate portion 31 and the peripheral wall portion 32 is, for example, 0.5 to 1.5 mm.
  • the peripheral wall portion 32 of the light shielding member 30 has a gap (hereinafter referred to as “purge space”) formed between the main light shielding plate portion 31 of the light shielding member 30 and the workpiece W.
  • a purge gas supply port 33 for supplying a purge gas is also formed.
  • the purge gas supply port 33 is configured by a rectangular cutout portion, and is formed in the other end wall portion 32 ⁇ / b> C extending in the width direction and positioned on the other end side in the longitudinal direction of the peripheral wall portion 32. ing.
  • the purge gas supply port 33 is located at the center position in the width direction of the other end wall portion 32C. It is formed at a position closer to one side wall portion 32B.
  • the purge gas supply pipe 38 is piped so as not to interfere with the mounting table fixing member 26 arranged on the other end side in the longitudinal direction (upper side in FIG. 2) of the irradiation distance adjusting mechanism.
  • one end of the purge gas supply pipe 38 is located in the purge gas supply port 33, and the other end is provided in the through hole 24 formed in the other end wall 22 ⁇ / b> C of the processing chamber casing 21. It is connected to one end of the pipe coupling member 39.
  • a gas pipe (not shown) connected to a purge gas supply means (not shown) is connected to the other end of the pipe coupling member 39.
  • the purge gas an appropriate one can be used in consideration of the type of the processing atmosphere gas depending on the type of the workpiece W, but basically, as the purge gas, from the viewpoint of processing efficiency, It is preferable to use the same type of gas as that constituting the processing atmosphere gas.
  • an oxygen generating gas such as oxygen gas and CDA exemplified as the processing atmosphere gas
  • an inert gas such as nitrogen gas, or a mixed gas thereof can be used.
  • the purge gas supply means an appropriate one is used according to the type of the purge gas.
  • the purge gas supply condition by the purge gas supply means is that, in the purge space Sp, the purge gas is overflowed from the gap between the opening end surface of the peripheral wall portion 32 and the surface of the workpiece W, and the purge gas supply port 33 as a whole.
  • the distance between the upper surface of the main light-shielding plate portion 31 and the surface of the workpiece W and the opening end surface of the peripheral wall portion 32 and the object to be processed are such that they can flow in the longitudinal direction from one end wall portion 32A to the other. It is determined appropriately in consideration of the size of the separation distance from the surface of the workpiece W and the supply conditions of the processing atmosphere gas.
  • the flow direction (overall flow direction) of the purge gas supplied from the purge gas supply port 33 is indicated by an arrow.
  • the ultraviolet lamps 40A and 40B various known lamps can be used as long as they emit ultraviolet rays, and appropriate lamps are used depending on the type of the workpiece W and the type of processing atmosphere gas. It is done.
  • Specific examples of the ultraviolet lamps 40A and 40B include a mercury lamp, a xenon excimer lamp (Xe 2 excimer lamp) that emits light (vacuum ultraviolet light) having a peak wavelength (center wavelength) of 172 nm, and a peak wavelength (center wavelength).
  • excimer lamps such as krypton chloride excimer lamps (KrCl excimer lamps) that emit 222 nm light (ultraviolet rays).
  • rod-shaped xenon excimer lamps that emit light having a peak wavelength of 172 nm are used as the ultraviolet lamps 40A and 40B.
  • the workpiece W is held by the four mounting table members 25.
  • the object W to be processed is placed in the purge prohibited area Sp in the state where the convex portion Wb formed by the pellicle W2 on the surface thereof is positioned in the purge space Sp surrounded by the peripheral wall portion 32 of the light shielding member 30.
  • a rectangular narrow annular region on the surface of the reticle W ⁇ b> 1 that constitutes the portion is disposed with a gap between the opening end surface of the peripheral wall portion 32 of the light shielding member 30.
  • the separation distance between the workpiece W and the ultraviolet transmissive window members 15A and 15B is appropriately determined according to the type of the ultraviolet lamps 40A and 40B and the type of the processing atmosphere gas.
  • the separation distance between the surface Wa to be processed W and the light exit surfaces of the corresponding ultraviolet light transmissive window members 15A and 15B is, for example, 2 mm.
  • the light emission surface of one ultraviolet light transmissive window member 15A and the light emission surface of the other ultraviolet light transmissive window member 15B are located at the same level position.
  • the separation distance between the rectangular thin annular region on the surface of the workpiece W and the opening end face of the peripheral wall portion 32 is preferably 0.5 to 1.5 mm, and the surface of the convex portion Wb of the workpiece W ( The distance between the surface of the pellicle W2) and the upper surface of the main light shielding plate portion 31 is preferably 1 to 2.5 mm.
  • the workpiece W is placed at an intended position in the processing chamber S ⁇ b> 1 by a loading / unloading robot. Specifically, first, the loading / unloading shutter in the processing chamber S1 is opened, and the workpiece W is loaded into the processing chamber S1 from the loading / unloading port by the loading / unloading robot. Is placed on each placement surface 25A. Next, each of the mounting table fixing members 26 is moved upward by the irradiation distance adjusting mechanism, and the mounting table fixing member 26 is raised to the uppermost position. Then, after the loading / unloading robot is retracted from the processing chamber S1, the shutter is closed.
  • each of the mounting table fixing members 26 is moved downward by the irradiation distance adjusting mechanism, and each of the mounting table fixing members 26 is lowered to an intended position.
  • the irradiation distance to the workpiece W is, for example, 2 mm.
  • nitrogen gas is supplied through the processing atmosphere gas supply port 28 and nitrogen gas is supplied through the purge gas supply port 33.
  • a nitrogen purge is performed so that the oxygen concentration in the processing chamber S1 becomes 1 to 10 vol% O 2 .
  • the flow rate of the nitrogen gas supplied from the processing atmosphere gas supply port 28 is, for example, 15 L / min
  • the flow rate of the nitrogen gas supplied through the purge gas supply port 33 is, for example, 5 L / min.
  • the ultraviolet lamps 40A and 40B have, for example, a radiant divergence of 10 mW / in the ultraviolet transmissive window members 15A and 15B. Lights all at once under the condition of cm 2 .
  • the light (ultraviolet light) from the ultraviolet lamps 40A and 40B is irradiated onto the surface Wa of the workpiece W through the ultraviolet transmissive window members 15A and 15B, thereby processing the workpiece W.
  • the ultraviolet irradiation conditions are such that the irradiation time is, for example, 5 to 600 seconds and the integrated light quantity is 50 to 6000 mJ / cm 2 .
  • the ultraviolet light is applied to the processing prohibited area T1. It is possible to prevent light from the lamps 40A and 40B from being irradiated.
  • the purge gas (shown by solid arrows in FIG. 5) supplied from the purge gas supply port 33 in the purge space Sp is applied to the opening end surface of the peripheral wall portion 32 and the surface of the workpiece W. By overflowing from the purge space Sp through the gap between the rectangular thin annular regions, it is possible to prevent the processing atmosphere gas constituting the ambient atmosphere of the light shielding member 30 from flowing into the purge space Sp. .
  • the processing atmosphere gas is irradiated with ultraviolet rays (indicated by white arrows in FIG. 5) from the ultraviolet lamps 40A and 40B.
  • the generated ozone can be prevented from flowing into the purge space Sp. Therefore, according to the first ultraviolet treatment apparatus 10, ultraviolet rays are not irradiated to the treatment prohibition region T1 on the surface Wa of the workpiece W, and the generated ozone contacts the treatment prohibition region T1. Therefore, it is possible to avoid an undesired surface treatment on the processing prohibited area T1. That is, since the intended surface treatment can be performed only on the treated region T2 on the surface of the workpiece W, the surface of the workpiece W can be partially processed with high reliability.
  • the light shielding member 30 since the light shielding member 30 includes the main light shielding plate portion 31 and the peripheral wall portion 32, the light shielding member 30 can have an excellent light shielding function. Further, the first ultraviolet processing apparatus 10 is assumed to have a large degree of design freedom.
  • FIG. 6 is an explanatory view showing a main part of another example of the configuration of the ultraviolet ray processing apparatus of the present invention together with an object to be processed.
  • 6A is a plan view for explaining the positional relationship between the light shielding member and the gas flow control plate, as viewed from the lower surface side of the light shielding member
  • FIG. 6B is a cross section perpendicular to the longitudinal direction.
  • This second ultraviolet ray processing apparatus is different from the first ultraviolet ray processing apparatus according to FIG. 1 except that the arrangement position of the purge gas supply port 53 in the light shielding member 50 is different and the gas flow control plate 55 is provided in the purge space Sp.
  • the second ultraviolet processing apparatus uses the reticle with a pellicle (photomask with a protective protective film) as an object to be processed W, and partially processes the surface of the reticle with a pellicle.
  • the second ultraviolet ray processing apparatus has a rectangular region extending in the longitudinal direction (left-right direction in FIG. 6A) provided with at least the pellicle W2 on the surface of the reticle with pellicle that is the workpiece W. Is used for selectively dry-cleaning each of the rectangular strip-shaped target regions T2 positioned on both sides in the width direction of the processing-prohibited region T1 on the exposed surface of the reticle W1. It is done.
  • the light shielding member 50 in the second ultraviolet processing apparatus has the same configuration as the light shielding member 30 in the first ultraviolet processing apparatus 10, and has a flat main light shielding plate portion 51 and upper surfaces of the main light shielding plate portion 31. And a frame-shaped peripheral wall portion 52 that protrudes toward the workpiece W and is formed so as to extend over the entire periphery of the outer peripheral edge of the main light-shielding plate portion 51.
  • the main light shielding plate 51 has a rectangular shape corresponding to the shape of the process prohibition region T1 in the workpiece W, and is provided at a position facing the process prohibition region T1 in the workpiece W.
  • the purge gas supply port 53 is configured.
  • the through-hole constituting the purge gas supply port 53 is, for example, circular, and is formed at the center position of the main light shielding plate portion 51.
  • the gas flow control plate 55 for controlling the flow direction of the purge gas supplied from the purge gas supply port 53 is provided in the purge space Sp. Specifically, the gas flow control plate 55 is for preventing the purge gas supplied from the purge gas supply port 53 from being directly blown onto the processing prohibited area in the workpiece W.
  • the gas flow control plate 55 is supported by spacers 56 disposed at the four corners of the main light shielding plate portion 51, and extends in parallel with the main light shielding plate portion 51 in the purge space Sp.
  • the upper surface of 51 is disposed through a gap.
  • a gap through which purge gas flows is formed between the side peripheral surface of the gas flow control plate 55 and the inner surface of the peripheral wall portion 52 of the light shielding member 50.
  • the workpiece W is positioned such that the convex portion Wb on the surface thereof is positioned via the gap with the gas flow control plate 55 at a position immediately above the gas flow control plate 55 in the purge space Sp. Has been placed.
  • the gas flow control plate 55 is formed of a rectangular flat body having vertical and horizontal dimensions equivalent to the vertical and horizontal dimensions of the surface of the pellicle W2 in the workpiece W, and the surface of the pellicle W2 is formed by the gas flow control plate 55. The whole of is covered.
  • the gas flow control plate 55 is made of a metal such as stainless steel (SUS) and aluminum, and has a thickness of 0.5 to 1.5 mm, for example.
  • the separation distance between the upper surface of the main light shielding plate 51 and the lower surface of the gas flow control plate 55 in the light shielding member 50 is, for example, 1 to 2.5 mm, and the upper surface of the gas flow control plate 55 and the workpiece W
  • the distance from the surface of the convex portion Wb (the surface of the pellicle W2) is, for example, 1 to 1.5 mm.
  • the workpiece W is placed at an intended position in the processing chamber by a loading / unloading robot, and in the processing chamber, a light cleaning process is performed. Then, the processed workpiece W is unloaded by the loading / unloading robot.
  • the light shielding member 50 since the light shielding member 50 is provided, it is possible to prevent the light from the ultraviolet lamp from being irradiated to the processing prohibited area in the workpiece W. Further, the purge gas supplied from the purge gas supply port 53 into the purge space Sp is purged through a gap between the opening end surface of the peripheral wall portion 52 and the region where the pellicle W1 is exposed on the surface of the workpiece W. By overflowing from Sp, it is possible to prevent the processing atmosphere gas constituting the ambient atmosphere of the light shielding member 30 from flowing into the purge space Sp.
  • the second ultraviolet treatment apparatus ultraviolet rays are not irradiated to the treatment prohibited area T1 on the surface of the workpiece W, and the generated ozone may come into contact with the treatment prohibited area T1. Therefore, it is possible to avoid an undesired surface treatment on the processing prohibited area T1. That is, since the intended surface treatment can be performed only on the treated region T2 on the surface of the workpiece W, the surface of the workpiece W can be partially processed with high reliability.
  • the gas flow control plate 55 is interposed between the main light shielding plate portion 51 of the light shielding member 50 and the workpiece W in the purge space Sp. For this reason, the purge gas supplied from the purge gas supply port 53 provided in the main light-shielding plate portion 51 is not directly blown against the processing prohibited area T1 of the workpiece W. In addition, since the purge gas supply port 53 is provided in the main light shielding plate portion 51, the processing atmosphere gas constituting the ambient atmosphere of the light shielding member 50 is more reliably prevented from flowing into the purge space Sp. can do. Specifically, in the first ultraviolet irradiation apparatus 10 according to FIG.
  • the purge gas is entirely formed in the other end wall portion 32 ⁇ / b> C of the peripheral wall portion 32 in the purge space Sp. It flows in the longitudinal direction from the supply port 33 toward one end wall portion 32A. For this reason, due to the flow of the purge gas, there is a possibility that the processing atmosphere gas is entrained from the gap between the opening end surface of the peripheral wall portion 32 and the workpiece W, and the generated ozone flows into the purge space Sp. .
  • the purge gas supplied from the purge gas supply port 53 is as shown in FIGS. 6A and 6B by the white arrow indicating the flow direction of the purge gas.
  • the gas flows radially toward the peripheral wall 52 along the gas flow control plate 55. Therefore, it is possible to reliably prevent the processing atmosphere gas containing the generated ozone from being entrained by the purge gas flow and flowing into the purge space Sp.
  • FIG. 7 is an explanatory view showing a main part of still another example of the configuration of the ultraviolet ray processing apparatus of the present invention.
  • (a) is a plan view for explanation showing the positional relationship between the light shielding member and the object to be processed, as viewed from the lower surface side of the light shielding member, and
  • (b) is a cross section perpendicular to the longitudinal direction. It is an enlarged view shown.
  • the third ultraviolet processing apparatus has the same configuration as that of the first ultraviolet processing apparatus 10 according to FIG. 1 except that the configuration of the light shielding member is different and the arrangement position of the purge gas supply port in the light shielding member is different.
  • the third ultraviolet processing apparatus is used for partially processing the surface of the workpiece W made of a plate-like body having a flat surface, for example.
  • a long rectangular central region extending in the longitudinal direction (left-right direction in FIG. 7A) on the surface of the workpiece W is set as the processing prohibited region T1.
  • a rectangular band-shaped region located on both sides in the width direction of the prohibited region T1 is set as a processing region T2.
  • the light shielding member 60 in the third ultraviolet processing apparatus is made of a flat plate having a rectangular shape corresponding to the shape of the processing prohibited area T1 in the workpiece W.
  • a surface facing the workpiece W of the light shielding member 60 that is, a through hole opened on the upper surface is formed so as to extend in the thickness direction, thereby forming a purge gas supply port 63.
  • the through-hole constituting the purge gas supply port 63 is, for example, circular, and is formed at the center position of the light shielding member 60.
  • the thickness of the light shielding member 60 is 0.5 to 1.5 mm.
  • the workpiece W is placed at an intended position in the processing chamber by the loading / unloading robot, and in the processing chamber, the light cleaning process is performed. Then, the processed workpiece W is unloaded by the loading / unloading robot.
  • the workpiece W is disposed such that the distance between the surface of the workpiece W and the upper surface of the light shielding member 60 is, for example, 0.5 to 1.5 mm.
  • the light shielding member 60 since the light shielding member 60 is provided, it is possible to prevent the light from the ultraviolet lamp from being applied to the processing prohibited area T1 in the workpiece W. .
  • the purge gas supplied from the purge gas supply port 63 into the purge space Sp flows along the upper surface of the light shielding member 60 and overflows from the purge space Sp, so that the processing atmosphere gas flows into the purge space Sp. Can be prevented. Therefore, in the processing chamber, even when ozone is generated as the processing atmosphere gas is irradiated with light from the ultraviolet lamp, it is possible to prevent ozone from flowing into the purge space Sp. it can.
  • ultraviolet rays are not irradiated to the treatment prohibited area T1 on the surface of the workpiece W, and the generated ozone may come into contact with the treatment prohibited area T1. Therefore, it is possible to avoid an undesired surface treatment on the processing prohibited area T1. That is, since the intended surface treatment can be performed only on the treated region T2 on the surface of the workpiece W, the surface of the workpiece W can be partially processed with high reliability.
  • the purge gas supply port 63 is formed at a substantially central position of the light shielding member 60. For this reason, the purge gas supplied from the purge gas supply port 63 is directed toward the outer peripheral edge of the light shielding member 60 in the purge space Sp, as indicated by arrows in FIGS. 7A and 7B. And flow radially. Therefore, it is possible to more reliably prevent the processing atmosphere gas containing the generated ozone from being entrained by the purge gas flow and flowing into the purge space Sp.
  • the structure of the entire ultraviolet processing apparatus is not limited to that shown in FIGS. 1 to 7, and various structures can be adopted.
  • the first ultraviolet treatment apparatus and the second ultraviolet treatment apparatus are not limited to a reticle with a pellicle (photomask with a protective protective film), and can be applied to various types that require ultraviolet irradiation treatment. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Cleaning In General (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

本発明は、高い信頼性をもって被処理物の被処理面を部分的に処理することのできる紫外線処理装置を提供することを目的とする。 紫外線を放射する紫外線ランプと、紫外線透過性窓部材とを備えており、当該紫外線ランプからの紫外線が、当該紫外線透過性窓部材を介して、当該紫外線透過性窓部材と離間して対向配置された被処理物の被処理領域に照射される紫外線処理装置であって、前記被処理物における前記被処理領域以外の処理禁止領域の形状に対応する形状を有する、前記紫外線ランプからの光を遮光する遮光部材が、当該処理禁止領域と対向し、かつ当該被処理物と離間するように設けられており、前記遮光部材には、当該遮光部材と前記被処理物との間の間隙にパージガスを供給するパージガス供給口が設けられていることを特徴とする。

Description

紫外線処理装置
 本発明は、紫外線処理装置に関し、更に詳しくは紫外線によって被処理物の表面を部分的に処理するために好適に用いられる紫外線処理装置に関する。
 従来、紫外線処理装置は、種々の分野において用いられており、具体的には、例えば、ナノインプリント用テンプレートの表面を光洗浄処理(ドライ洗浄処理)する光処理装置として用いられている。
 光処理装置として利用される紫外線処理装置の或る種のものは、図8に示すように、上壁71Aに石英ガラスよりなる紫外線透過性窓部材73が設けられた筐体71を備えており、この筐体71の内部に、紫外線ランプ80が配設された構成とされている(例えば、特許文献1参照。)。紫外線透過性窓部材73は、筐体71の上壁71Aに形成された開口部を塞ぐように設けられており、周縁部が枠状の固定板78によって固定されている。筐体71の内部には、冷却用ガスが流通されるガス流路形成部材75が設けられている。この紫外線処理装置においては、2つの矩形筒状のガス流路形成部材75が筐体71における上壁71Aの内面および筐体71における両側壁71B,71Cの内面に接する状態で、設けられている。各々のガス流路形成部材75の内部空間は、筐体71の上面における紫外線透過性窓部材73の周囲に開口するガス供給口74に連続している。
 この紫外線処理装置においては、被処理物Wであるナノインプリント用テンプレートが、テンプレート保持機構79によって保持されることにより、被処理物Wが紫外線透過性窓部材73と離間した状態で紫外線透過性窓部材73と対向するように配置される。そして、被処理物Wの被処理面Wa(具体的には、ナノインプリント用テンプレートの表面)に対して、紫外線ランプ80からの光(紫外線)が紫外線透過性窓部材73を介して照射される。また、被処理物Wの被処理面Waに対して紫外線ランプ80からの光が照射されている間、すなわち光洗浄処理中には、冷却用ガスが被処理物Wと紫外線透過性窓部材73との間の間隙に供給される。冷却用ガスは、図示しないガス供給源より各々のガス流路形成部材75の内部に導入される。ガス流路形成部材75の内部に導入された冷却用ガスは、ガス供給口74を介して被処理物Wと紫外線透過性窓部材73との間の間隙に供給される。そして、冷却用ガスが当該間隙を流通されることにより、被処理物Wおよび紫外線透過性窓部材73が冷却される。特に、冷却用ガスとして、紫外線が照射されることによってオゾンが生成されるガス(以下、「オゾン生成源ガス」ともいう。)を用いた場合においては、冷却用ガスに紫外線が照射されることによってオゾンが生成される。その結果、被処理面Waにおいては、当該被処理面Waに到達する紫外線の作用、および生成されたオゾンの作用により、光洗浄処理が行われる。
 このようにして光洗浄処理が行われることにより、ナノインプリント用テンプレートの表面、具体的にはスタンプ部(パターン部分)に付着していた光硬化性樹脂などの残渣が除去される。
特開2011-155160号公報
 タッチパネルの製造工程、バイオチップの製造工程および半導体の製造工程などにおいては、被処理物の表面の一部のみを選択的に処理する必要がある。
 具体的に説明すると、タッチパネルの製造工程およびバイオチップの製造工程においては、被処理物の表面に、親水性を有する親水性領域(活性化領域)と疎水性を有する疎水性領域(非活性化領域)とを形成する必要がある。すなわち、被処理物の表面に、洗浄処理を必要とする被処理領域と、洗浄処理が不要な処理禁止領域とが存在する。また、半導体の製造工程における、ペリクル付きレチクル(防護保護膜付きフォトマスク)を洗浄処理する場合においても、被処理物の表面に、洗浄処理を必要とする被処理領域と、洗浄処理が不要な処理禁止領域とが存在する。
 このように被処理物の表面の一部のみを選択的に処理することが必要な場合において、被処理物の表面の全面に紫外線ランプからの光(紫外線)が照射されてしまうと、処理禁止領域においても処理が行われてしまう、という問題がある。
 また、処理禁止領域に対して紫外線ランプからの光(紫外線)が照射されることのないように遮光部材を設けた場合においても、被処理領域上(被処理領域上の空間)において紫外線ランプからの光により発生したオゾンが処理禁止領域上に拡散する。このため、当該処理禁止領域においても不所望な処理が行われてしまう、という問題もある。このような問題は、冷却用ガスとしてオゾン生成源ガスを用いる場合において顕著である。
 本発明は、以上のような事情に基づいてなされたものであって、その目的は、高い信頼性をもって被処理物の表面を部分的に処理することのできる紫外線処理装置を提供することにある。
 本発明の紫外線処理装置は、紫外線を放射する紫外線ランプと、紫外線透過性窓部材とを備えており、当該紫外線ランプからの紫外線が、当該紫外線透過性窓部材を介して、当該紫外線透過性窓部材と離間して対向配置された被処理物の被処理領域に照射される紫外線処理装置であって、
 前記被処理物における前記被処理領域以外の処理禁止領域の形状に対応する形状を有する、前記紫外線ランプからの光を遮光する遮光部材が、当該処理禁止領域と対向し、かつ当該被処理物と離間するように設けられており、
 前記遮光部材には、当該遮光部材と前記被処理物との間の間隙にパージガスを供給するパージガス供給口が設けられていることを特徴とする。
 本発明の紫外線処理装置においては、前記遮光部材は、前記処理禁止領域の形状に対応する形状を有する主遮光板部と、当該主遮光板部の前記処理禁止領域に対向する面における外周縁位置において当該主遮光板部の外周縁の全周にわたって伸びるように形成された、前記被処理物に向かって突出する枠状の周壁部とを有していることが好ましい。
 本発明の紫外線処理装置においては、前記ガス供給口が、前記遮光部材における周壁部に開口するように形成された構成、もしくは、前記ガス供給口が、前記遮光部材の前記被処理物に対向する面に開口するよう形成された構成とすることができる。
 前記ガス供給口が、前記遮光部材の前記被処理物に対向する面に開口するよう形成された構成とされている場合には、前記ガス供給口と被処理物との間に、当該被処理物の表面における処理禁止領域に対向してガス流制御板が設けられていることが好ましい。
 本発明の紫外線処理装置においては、前記被処理物は、表面に凸部分を有する板状のものであって、当該被処理物の表面における凸部分形成領域を含む領域が処理禁止領域とされており、
 当該被処理物は、前記凸部分が前記遮光部材における周壁部によって囲まれた空間内に位置された状態で、当該周壁部の開口端面と間隙を介して配置されることが好ましい。
 このような構成のものにおいては、前記紫外線ランプが配置されたランプ室と、前記被処理物が配置される処理室とが、前記紫外線ランプと対向する位置に前記紫外線透過性窓部材が設けられた隔壁によって区画されており、
 前記遮光部材は、処理室内において前記隔壁の表面上の前記紫外線透過性窓部材に近接した位置に設けられており、
 前記処理室を画成する処理室筐体には、処理用雰囲気ガスを当該処理室内に供給するための処理用雰囲気ガス供給口が設けられていることが好ましい。
 また、前記処理用雰囲気ガスが前記パージガスと同一種類のガスであることが好ましく、前記処理用雰囲気ガスおよび前記パージガスとしては、不活性ガスを用いることができる。
 さらにまた、前記処理用雰囲気ガスとして、前記紫外線ランプからの光が照射されることによりオゾンが生成されるガスを用いることができる。
 本発明の紫外線処理装置においては、被処理物における処理禁止領域の形状に対応する形状を有する遮光部材が、被処理物と離間して当該処理禁止領域と対向するように設けられていることから、当該処理禁止領域に対して紫外線ランプからの光が照射されることを防止することができる。また、前記遮光部材には、パージガス供給口が設けられている。このため、当該遮光部材と被処理物との間の間隙において、当該ガス供給口から供給されたガスを当該間隙から溢流させることにより、当該間隙に対する、遮光部材の周囲雰囲気を構成するガスの流入を防止することができる。これにより、遮光部材の周囲雰囲気中において紫外線ランプからの光(紫外線)の作用によって生じたオゾンが、遮光部材と被処理物との間の間隙に流入することを防止することができる。
 従って、本発明の紫外線処理装置によれば、被処理物の表面における処理禁止領域に対して紫外線が照射されることがなく、かつ生成されたオゾンが処理禁止領域に接触することもないため、当該処理禁止領域に対する不所望な表面処理が行われることを回避することができる。すなわち、被処理物の表面における被処理領域に対してのみ所期の表面処理を行うことができるため、高い信頼性をもって被処理物の表面を部分的に処理することができる。
本発明の第1の紫外線処理装置の構成の一例の概略を、被処理物と共に示す説明用断面図である。 図1の第1の紫外線処理装置における処理室の構成を示す説明用平面図である。 図1の第1の紫外線処理装置における遮光部材の構成を示す説明用斜視図である。 図1の紫外線処理装置によって処理される被処理物の構成の概略を示す(a)平面図、(b)(a)におけるA-A線断面図である。 図1の紫外線処理装置におけるパージガスの流れを示す説明図である。 本発明の紫外線処理装置の構成の他の例の要部を、被処理物と共に示す説明図である。 本発明の紫外線処理装置の構成の更に他の例の要部を、被処理物と共に示す説明図である。 従来の紫外線処理装置の構成の一例を、被処理物と共に示す説明用断面図である。
 以下、本発明の実施の形態について詳細に説明する。
(第1の紫外線処理装置)
 図1は、本発明の第1の紫外線処理装置の構成の一例の概略を、被処理物と共に示す説明用断面図であり、図2は、図1の第1の紫外線処理装置における処理室の構成を示す説明用平面図であり、図3は、図1の第1の紫外線処理装置における遮光部材の構成を示す説明用斜視図である。また、図4は、図1の紫外線処理装置によって処理される被処理物の構成を概略的に示す説明図である。
 第1の紫外線処理装置10は、例えばペリクル付きレチクル(防護保護膜付きフォトマスク)を被処理物Wとし、ペリクル付きレチクルの表面を部分的に処理するために用いられる。具体的には、第1の紫外線処理装置10は、ペリクル付きレチクルの表面における少なくともペリクルが設けられた領域を処理禁止領域とし、当該処理禁止領域以外の領域を選択的にドライ洗浄処理するために用いられる。
 被処理物Wは、図4(a)、(b)に示されているように、例えば正方形平板状のレチクルW1の表面における中央領域に、当該レチクルW1の縦横寸法よりも小さい縦横寸法を有する一方向に長尺な矩形平薄膜状のペリクルW2が設けられて構成されており、ペリクルW2により構成された矩形平薄膜状の凸部分Wbを表面に有する。以下、当該一方向を「長手方向」、レチクルW1の表面に沿った平面における当該一方向に直交する方向を「幅方向」という。
 この例の被処理物Wにおいては、当該被処理物Wの表面におけるペリクルW2が形成された領域と、ペリクルW2の形成領域の周囲を囲むレチクルW1の表面における矩形細環状領域とを含む長手方向に伸びる矩形状の領域が、処理禁止領域T1とされている。また、レチクルW1の表面における処理禁止領域T1の幅方向両側に位置された矩形帯状の領域の各々が、被処理領域T2(被処理面Wa)とされている。被処理領域T2を構成する2つの矩形帯状の領域は、被処理物Wの長手方向に伸びる側縁を含む領域である。図4において、処理禁止領域T1は、一点鎖線で囲まれた領域を示し、被処理領域T2は、二点鎖線で囲まれた領域を示す。
 被処理物Wの一構成例を示すと、レチクルW1の縦横寸法は、例えば152mm×152mmであり、被処理領域T2の幅方向(図4(a)における左右方向)の寸法が例えば15mmであって、被処理領域T2の長手方向(図4(a)における上下方向)の寸法が例えば136mmである。
 第1の紫外線処理装置10は、一方(図1における上方)が開口する、開口方向に直交する一方向に長尺な直方体箱型形状のランプ室筐体11を備えている。以下においては、便宜上、ランプ室筐体11の開口方向を上方向とし、当該一方向を長手方向、開口方向に対して垂直な平面において当該一方向に直交する方向を幅方向と定義する。
 ランプ室筐体11の開口端面には、当該開口を塞ぐように矩形平板状の隔壁13が気密に設けられている。
 隔壁13の上面には、上方開口が矩形平板状の蓋部材23によって閉塞された矩形枠状の処理室筐体21が配置されており、これにより、被処理物Wが配置される処理室S1が形成されている。この例における処理室筐体21は、長手方向の寸法がランプ室筐体11の長手方向の寸法より小さく、幅方向の寸法は、ランプ室筐体11の幅方向の寸法と同一の大きさとされている。この処理室筐体21は、長手方向一端側に位置された幅方向に伸びる一方の端壁22Aの外面の位置が、ランプ室筐体11における長手方向一端側に位置された幅方向に伸びる一方の端壁の外面の位置と一致した状態で、配置されている。また、長手方向に伸びる一対の側壁22B,22Dの各々の外面の位置が、ランプ室筐体11の長手方向に伸びる一対の側壁12A,12Bの各々の外面の位置と一致した状態とされている。
 処理室筐体21の一方の端壁22Aには、被処理物Wを処理室S1に搬入および搬出するための搬入搬出口(図示省略)が設けられている。この搬入搬出口には、シャッター(図示省略)が設けられている。
 隔壁13には、処理室S1を画成する部分における処理室筐体21の側壁22B,22Dの各々に近接した位置に、例えば石英ガラスよりなる矩形平板状の長尺な2つの紫外線透過性窓部材15A,15Bが、その光入射面および光出射面が長手方向に水平に伸びる姿勢で設けられている。また、各々の紫外線透過性窓部材15A,15Bは、処理室S1の長手方向中央位置より処理室筐体21の一方の端壁22Aに接近した位置に設けられている。
 ランプ室筐体11の内部空間は、2つの区隔壁17A,17Bによって、幅方向に並ぶ3つの空間に気密に区画されている。一方の区隔壁17Aは、一方の紫外線透過性窓部材15Aの配設位置より幅方向内方側の位置において、ランプ室筐体11の一方の側壁12Aと互いに平行に長手方向に伸びるように配設されている。また、他方の区隔壁17Bは、他方の紫外線透過性窓部材15Bの配設位置より幅方向内方側の位置において、ランプ室筐体11の他方の側壁12Bと互いに平行に長手方向に伸びるように配設されている。そして、この第1の紫外線処理装置10においては、幅方向中央に位置される空間が照射距離調整機構収容室S4とされており、幅方向両側に位置される空間がそれぞれランプ室S2,S3とされている。
 各々のランプ室S2,S3内には、円形棒状の紫外線ランプ40A,40Bが、ランプ軸(中心軸)が長手方向に水平に伸びる姿勢で、それぞれ対応する紫外線透過性窓部材15A,15Bと対向して配置されている。
 また、各々のランプ室S2,S3には、当該ランプ室S2,S3内を例えば窒素ガスなどの不活性ガスによってパージする不活性ガスパージ手段(図示省略)が設けられている。
 この図の例における紫外線ランプ40A,40Bは、互いに同一種類かつ同一形状のものである。また、紫外線ランプ40A,40Bは、それぞれ対応する紫外線透過性窓部材15A,15Bとの離間距離が同等の大きさとなるように配置されている。
 照射距離調整機構収容室S4には、後述する照射距離調整機構を構成するシャフト駆動源19が配設されており、照射距離調整機構によって、被処理物Wが上下方向に移動されることにより被処理物Wの被処理面Waと紫外線透過性窓部材15A,15Bの光出射面との離間距離(被処理物Wに対する紫外線の照射距離)が調整される。
 処理室筐体21には、被処理物Wを処理するために必要とされる処理用雰囲気ガスを処理室S1内に供給するための処理用雰囲気ガス供給口28が設けられている。処理用雰囲気ガス供給口28は、処理室筐体21の長手方向他端側に位置された幅方向に伸びる他方の端壁22Cに形成された貫通孔によって構成されている。処理用雰囲気ガス供給口28は、幅方向中心位置より一方の側壁22Bに接近した位置に形成されている。
 そして、処理用雰囲気ガス供給口28には、処理室S1の外部に設けられた処理用雰囲気ガス供給手段(図示省略)が接続されている。
 この図の例において、処理室S1には、被処理物Wを処理する過程において発生したオゾンを排気する排気管27が、処理室筐体21の他方の側壁22Dに沿って伸びるように設けられている。この排気管27は、処理室筐体21の他方の端壁22Cにおける他方の側壁22Dに接近した位置に形成された貫通孔よりなる排気口29を介して、処理室S1の外部に設けられたオゾン排気手段(図示省略)に接続されている。
 処理用雰囲気ガスとしては、被処理物Wの種類などに応じて適宜のものが用いられる。
 例えば、被処理物Wの処理にオゾンの作用を利用する場合には、処理用雰囲気ガスとして紫外線が照射されることによってオゾンが生成されるガス(オゾン生成源ガス)が用いられる。ここに、オゾン生成源ガスの具体例としては、例えば酸素ガスおよびCDA(Clean Dry Air)などを例示することができる。また、処理用雰囲気ガスとしては、被処理物Wの処理にオゾンの作用を利用しない場合には、窒素ガスなどの不活性ガスが用いられる。処理用雰囲気ガスとして不活性ガスが用いられることにより、紫外線ランプ40A,40Bからの光に含まれる紫外線(真空紫外線)が酸素に吸収されることに起因して被処理物Wに対する紫外線照射量が低下することを抑制することができる。
 また、処理用雰囲気ガスとしては、酸素ガス、CDAおよび不活性ガスの少なくとも2種の混合ガスを用いることもできる。
 処理用雰囲気ガス供給手段としては、処理用雰囲気ガスの種類などに応じて適宜のものが用いられる。
 処理用雰囲気ガス供給手段による処理用雰囲気ガスの供給条件は、処理用雰囲気ガスの種類、処理室S1において必要とされる処理用雰囲気条件、処理室S1の容積および紫外線透過性窓部材15A,15Bと被処理物Wとの離間距離などを考慮して適宜に定められる。
 また、処理室S1内には、被処理物Wを紫外線透過性窓部材15A,15Bと上下方向に離間した状態に保持する被処理物保持部材が配置されている。
 この例における被処理物保持部材は、紫外線透過性窓部材15A,15Bの両端の長手方向外方側の位置にそれぞれ配置された4つの載置台25により構成されている。各々の載置台25は、L字状の外観形状を有しており、長手方向に伸びる角柱状の支持部の平坦な上面によって載置面25Aが形成されている。各々の載置台25の載置面25Aは、同一水平面上に位置されている。よって、被処理物Wが4つの載置台25の載置面25Aによって支持されることにより、被処理物Wが、被処理面Waがそれぞれ対応する紫外線透過性窓部材15A,15Bの光出射面と互いに対向して平行に伸びる姿勢で、紫外線透過性窓部材15A,15Bと間隙を介して配置される。
 この紫外線処理装置10においては、被処理物保持部材が照射距離調整機構によって上下方向に移動自在に配置されている。
 照射距離調整機構は、例えばリフターにより構成されており、処理室S1内における紫外線透過性窓部材15A,15Bの両端の各々の長手方向外方側の位置において、互いに対向して幅方向に伸びるように配置された2つの長尺な矩形柱状の載置台固定部材26を備えている。各々の載置台固定部材26の一端部は、一方の紫外線透過性窓部材15Aが配設された幅方向位置に位置されており、他端部は、他方の紫外線透過性窓部材15Bが配設された幅方向位置に位置されている。各々の載置台固定部材26の上面における両端の各々に、載置台25が載置面25Aが上方を向く姿勢で固定されている。
 各々の載置台固定部材26の下面における略中央位置には、柱状のシャフト34の一端が固定されている。各々のシャフト34は、隔壁13に形成されたシャフト用貫通孔(図示省略)を挿通して上下方向に伸びるよう設けられている。各々のシャフト34は、照射距離調整機構収容室S4内に配設されたシャフト駆動源19によって、上下方向に駆動される。
 この照射距離調整機構においては、各々のシャフト34が互いに同期がとられた状態で移動されることにより、被処理物Wの姿勢が維持されたまま、被処理物Wの被処理面Waと紫外線透過性窓部材15A,15Bの光出射面との離間距離が調整される。
 各々のシャフト34には、伸縮性をもつステンレス製のベローズ(図示省略)が外装されている。ベローズの一端は載置台固定部材26の下面に気密に接合され、他端は隔壁13の上面に気密に接合されている。これにより、処理室S1内の雰囲気を構成するガス(処理用雰囲気ガス)がシャフト用貫通孔を介して照射距離調整機構収容室S4内に流出すること、もしくは照射距離調整機構収容室S4内の雰囲気を構成するガスがシャフト用貫通孔を介して処理室S1内に流入することを回避することができる。
 而して、上記の紫外線処理装置においては、処理室S1内に、紫外線ランプ40A,40Bからの光を遮光する略矩形板状の遮光部材30が配置されており、遮光部材30と隔壁13とにより、紫外線ランプ40A,40Bからの光が処理禁止領域T1に照射されることを防止する遮光機構が構成されている。
 遮光部材30は、図1~図3に示されているように、被処理物Wにおける処理禁止領域T1の形状に対応する矩形状の平面形状を有するものであればよいが、当該処理禁止領域T1に対向するように位置される平板状の主遮光板部31と、当該主遮光板部31の上面における外周縁位置において主遮光板部31の外周縁の全周にわたって伸びるように形成された、被処理物Wに向かって突出する枠状の周壁部32とを有する構成とされていることが好ましい。
 この図の例においては、遮光部材30は、隔壁13の上面における2つの紫外線透過性窓部材15A,15Bの間の矩形状の領域(以下、「窓部材間領域」ともいう。)に形成された凹所内に、周壁部32が隔壁13の上面より上方に突出する状態で位置され、被処理物Wの表面と離間した状態で、被処理物Wの表面における処理禁止領域T1と対向して配置されている。
 従って、遮光部材30が周壁部32を有するものであることにより、処理禁止領域T1に含まれる被処理物Wにおける凸部分Wbの周囲を周壁部32によって包囲することができるため、当該遮光部材30により優れた遮光機能が得られる。また、第1の紫外線処理装置10の設計の自由度が大きくなる。具体的には、後述するパージガス供給口33の配設位置の自由度が大きくなり、また、主遮光板部31と被処理物Wとの離間距離を大きくすることができる。
 この図の例において、主遮光板部31は、処理禁止領域T1の縦横寸法と同等の縦横寸法を有している。
 また、遮光部材30における周壁部32の高さは、レチクルW1の表面に対するペリクルW2の突出高さ(ペリクルW2の厚み)および後述するパージガス供給口33の配設位置などに応じて適宜に定められる。周壁部32の高さは、例えば4.5mmである。
 遮光部材30は、紫外線ランプ40A,40Bからの光に対する遮光性を有すると共に、耐紫外線性および必要に応じて耐オゾン性を有する材料により構成されている。
 遮光部材30の材質の具体例としては、ステンレス鋼材(SUS)などが挙げられる。
 また、遮光部材30がステンレス鋼(SUS)よりなる場合には、主遮光板部31および周壁部32の厚みは、例えば0.5~1.5mmである。
 また、図3に示されているように、遮光部材30における周壁部32には、遮光部材30における主遮光板部31と被処理物Wとの間に形成される間隙(以下、「パージ空間Sp」ともいう。)に対してパージガスを供給するためのパージガス供給口33が形成されている。
 この図の例において、パージガス供給口33は、矩形状の切り欠き部によって構成されており、周壁部32の長手方向他端側に位置された幅方向に伸びる他方の端壁部分32Cに形成されている。具体的には、処理室S1内に配管されるパージガス供給管38と、照射距離調整機構におけるシャフト34との干渉を避けるため、パージガス供給口33は、他方の端壁部分32Cにおける幅方向中心位置より一方の側壁部分32Bに接近した位置に形成されている。パージガス供給管38は、照射距離調整機構における長手方向他端側(図2における上方側)に配置された載置台固定部材26と干渉しないように配管されている。この図の例では、パージガス供給管38の一端部がパージガス供給口33内に位置されており、他端部が処理室筐体21における他方の端壁22Cに形成された貫通孔24に設けられた管結合部材39の一端部に接続されている。管結合部材39の他端部には、パージガス供給手段(図示省略)に接続されたガス管((図示省略))が接続されている。
 パージガスとしては、被処理物Wの種類などに応じて、処理用雰囲気ガスの種類を考慮して適宜のものを用いることができるが、基本的には、パージガスとしては、処理効率の観点から、処理用雰囲気ガスを構成するガスと同種のガスが用いられることが好ましい。
 パージガスとしては、処理用雰囲気ガスとして例示した、酸素ガスおよびCDAなどのオゾン生成ガス、もしくは窒素ガスなどの不活性ガス、もしくは、これらの混合ガスを用いることができる。
 パージガス供給手段としては、パージガスの種類などに応じて適宜のものが用いられる。
 パージガス供給手段によるパージガスの供給条件は、パージ空間Spにおいて、パージガスを、周壁部32の開口端面と被処理物Wの表面との間の間隙から溢流させながら、全体的にはパージガス供給口33から一方の端壁部分32Aに向かって長手方向に流動させることができるよう、主遮光板部31の上面と被処理物Wの表面との離間距離の大きさ、周壁部32の開口端面と被処理物Wの表面との離間距離の大きさおよび処理用雰囲気ガスの供給条件などを考慮して適宜に定められる。図3においては、パージガス供給口33から供給されたパージガスの流動方向(全体的な流動方向)が矢印によって示されている。
 紫外線ランプ40A,40Bとしては、紫外線を放射するものであれば、公知の種々のランプを用いることができ、被処理物Wの種類および処理用雰囲気ガスの種類などに応じて適宜のものが用いられる。
 紫外線ランプ40A,40Bの具体例としては、水銀ランプ、並びに、ピーク波長(中心波長)が172nmの光(真空紫外線)を放射するキセノンエキシマランプ(Xeエキシマランプ)およびピーク波長(中心波長)が222nmの光(紫外線)を放射するクリプトンクロライドエキシマランプ(KrClエキシマランプ)等のエキシマランプなどが挙げられる。
 この図の例において、紫外線ランプ40A,40Bとしては、ピーク波長が172nmの光を放射する、棒状のキセノンエキシマランプが用いられている。
 上述したように、第1の紫外線処理装置10においては、被処理物Wが4つの載置台部材25によって保持される。これにより、被処理物Wが、その表面におけるペリクルW2により構成された凸部分Wbが遮光部材30の周壁部32によって囲まれたパージ空間Sp内に位置された状態で、処理禁止領域T1の一部を構成するレチクルW1の表面における矩形細環状領域が遮光部材30の周壁部32の開口端面と間隙を介して配置される。
 被処理物Wと紫外線透過性窓部材15A,15Bとの離間距離は、紫外線ランプ40A,40Bの種類、および処理用雰囲気ガスの種類に応じて適宜に定められる。
 被処理物Wの被処理面Waと、それぞれ対応する紫外線透過性窓部材15A,15Bの光出射面との離間距離は、例えば2mmである。ここに、一方の紫外線透過性窓部材15Aの光出射面と他方の紫外線透過性窓部材15Bの光出射面とは、互いに同一のレベル位置に位置されている。
 また、被処理物Wの表面における矩形細環状領域と周壁部32の開口端面との離間距離は、0.5~1.5mmであることが好ましく、被処理物Wにおける凸部分Wbの表面(ペリクルW2の表面)と主遮光板部31の上面との離間距離は、1~2.5mmであることが好ましい。
 この第1の紫外線処理装置10においては、被処理物Wは、搬入搬出用ロボットによって処理室S1内における所期の位置に配置される。具体的には、先ず、処理室S1における搬入搬出口のシャッターが開かれ、搬入搬出用ロボットにより、被処理物Wが当該搬入搬出口から当該処理室S1に搬入され、4つの載置台部材25の各々の載置面25A上に載置される。次いで、照射距離調整機構によって載置台固定部材26の各々が上方に移動されて載置台固定部材26が最上位置まで上昇した状態とされる。そして、搬入搬出用ロボットが処理室S1から退避された後、シャッターが閉められる。次いで、照射距離調整機構によって載置台固定部材26の各々が下方に移動されて載置台固定部材26の各々が所期の位置まで下降される。具体的には例えば、被処理物Wに対する照射距離が例えば2mmとなる状態とされる。
 このようにして被処理物Wが配置された処理室S1においては、処理用雰囲気ガス供給口28を介して窒素ガスが供給されると共に、パージガス供給口33を介して窒素ガスが供給されることにより、処理室S1における酸素濃度が1~10vol%O2となるように窒素パージが行われる。ここに、処理用雰囲気ガス供給口28から供給される窒素ガスの流量は、例えば15L/minであり、パージガス供給口33を介して供給される窒素ガスの流量は、例えば5L/minである。
 その後、処理用雰囲気ガス供給口28およびパージガス供給口33からの窒素ガスの供給が継続された状態で、紫外線ランプ40A,40Bが、例えば紫外線透過性窓部材15A,15Bにおける放射発散度が10mW/cmとなる条件で一斉に点灯される。このようにして、紫外線ランプ40A,40Bからの光(紫外線)が紫外線透過性窓部材15A,15Bを介して被処理物Wの被処理面Waに照射されることにより、被処理物Wの処理が行われる。ここに、紫外線照射条件は、照射時間が例えば5~600秒間、積算光量が50~6000mJ/cmとなる条件とされる。
 紫外線照射処理が終了されると、照射距離調整機構によって載置台固定部材26の各々が上方に移動されて載置台固定部材26の各々が最上位置まで上昇した状態とされると共に、オゾン排気手段によって、処理室S1の雰囲気を構成するガス(被処理物Wを処理する過程において発生したオゾンを含む処理用雰囲気ガス)が排気管27を介して排気される。その後、処理室S1における搬入搬出口のシャッターが開かれ、処理済みの被処理物Wが搬入搬出用ロボットにより当該搬入搬出口から当該処理室S1から搬出される。
 而して、第1の紫外線処理装置10においては、被処理物Wにおける処理禁止領域T1の形状に対応する形状を有する遮光部材30が設けられていることから、処理禁止領域T1に対して紫外線ランプ40A,40Bからの光が照射されることを防止することができる。また、図5に示すように、パージ空間Spにおいて、パージガス供給口33から供給されたパージガス(図5において塗りつぶした矢印で示す。)を、周壁部32の開口端面と被処理物Wの表面における矩形細環状領域との間の間隙を介して、パージ空間Spから溢流させることにより、当該パージ空間Spに対する、遮光部材30の周囲雰囲気を構成する処理用雰囲気ガスの流入を防止することができる。そのため、処理用雰囲気ガスとしてオゾン生成ガスが用いられる場合であっても、紫外線ランプ40A,40Bからの紫外線(図5において白抜きの矢印で示す。)が処理用雰囲気ガスに照射されることによって生成されたオゾンがパージ空間Sp内に流入することを防止することができる。
 従って、第1の紫外線処理装置10によれば、被処理物Wの表面Waにおける処理禁止領域T1に対して紫外線が照射されることがなく、かつ生成されたオゾンが処理禁止領域T1に接触することもないため、処理禁止領域T1に対する不所望な表面処理が行われることを回避することができる。すなわち、被処理物Wの表面における被処理領域T2に対してのみ所期の表面処理を行うことができるため、高い信頼性をもって被処理物Wの表面を部分的に処理することができる。
 また、第1の紫外線処理装置10においては、遮光部材30が、主遮光板部31と周壁部32とを有していることから、当該遮光部材30には優れた遮光機能が得られる。また、第1の紫外線処理装置10は、大きな設計の自由度を有するものとされている。
(第2の紫外線処理装置)
 図6は、本発明の紫外線処理装置の構成の他の例の要部を、被処理物と共に示す説明図である。この図6において、(a)は、遮光部材とガス流制御板との位置関係を示す、遮光部材の下面側から見た説明用平面図であり、(b)は、長手方向に垂直な断面を示す拡大図である。
 この第2の紫外線処理装置は、遮光部材50におけるパージガス供給口53の配置位置が異なること、および、パージ空間Spにガス流制御板55が設けられていること以外は、図1に係る第1の紫外線処理装置10と同様の構成を有する。そして、第2の紫外線処理装置は、第1の紫外線処理装置10と同様に、ペリクル付きレチクル(防護保護膜付きフォトマスク)を被処理物Wとし、ペリクル付きレチクルの表面を部分的に処理するために用いられる。具体的には、第2の紫外線処理装置は、被処理物Wであるペリクル付きレチクルの表面における少なくともペリクルW2が設けられた長手方向(図6(a)において左右方向)に伸びる矩形状の領域を処理禁止領域T1とし、露出された状態のレチクルW1の表面における当該処理禁止領域T1の幅方向両側に位置された矩形帯状の被処理領域T2の各々を選択的にドライ洗浄処理するために用いられる。
 第2の紫外線処理装置における遮光部材50は、第1の紫外線処理装置10における遮光部材30と同様の構成を有しており、平板状の主遮光板部51と、主遮光板部31の上面における外周縁位置において主遮光板部51の外周縁の全周にわたって伸びるように形成された、被処理物Wに向かって突出する枠状の周壁部52とを有する。主遮光板部51は、被処理物Wにおける処理禁止領域T1の形状に対応する矩形形状を有しており、被処理物Wにおける処理禁止領域T1に対向する位置に設けられている。
 この遮光部材50においては、遮光部材50の被処理物Wに対向する面、すなわち主遮光板部51の上面に開口する貫通孔が主遮光板部51の厚み方向に伸びるよう形成されており、これにより、パージガス供給口53が構成されている。この図の例においては、パージガス供給口53を構成する貫通孔は例えば円形状であって、主遮光板部51の中央位置に形成されている。
 上述したように、第2の紫外線処理装置においては、パージガス供給口53から供給されるパージガスの流動方向を制御するガス流制御板55がパージ空間Sp内に設けられている。ガス流制御板55は、具体的には、パージガス供給口53から供給されるパージガスが被処理物Wにおける処理禁止領域に直接的に吹き付けられることを防止するためのものである。
 ガス流制御板55は、主遮光板部51の四隅に配設されたスペーサ56によって支持されており、パージ空間Sp内において、主遮光板部51と互いに平行に伸びるように、主遮光板部51の上面と間隙を介して配設されている。そして、ガス流制御板55の側周面と、遮光部材50の周壁部52の内面との間には、パージガスが流通される間隙が形成されている。
 この図の例においては、被処理物Wは、その表面における凸部分Wbがパージ空間Sp内におけるガス流制御板55の直上の位置においてガス流制御板55と間隙を介して位置されるよう、配置されている。そして、ガス流制御板55は、被処理物WにおけるペリクルW2の表面の縦横寸法と同等の縦横寸法を有する矩形平板状体により構成されており、当該ガス流制御板55によって、ペリクルW2の表面の全体が覆われている。
 ガス流制御板55は、例えばステンレス鋼材(SUS)およびアルミニウムなどの金属により構成されており、厚みは、例えば0.5~1.5mmである。
 また、遮光部材50における主遮光板部51の上面とガス流制御板55の下面との離間距離は、例えば1~2.5mmとされており、ガス流制御板55の上面と被処理物Wにおける凸部分Wbの表面(ペリクルW2の表面)との離間距離は、例えば1~1.5mmとされている。
 この第2の紫外線処理装置においては、第1の紫外線処理装置10と同様に、被処理物Wは、搬入搬出用ロボットによって処理室における所期の位置に配置され、その処理室において光洗浄処理が行われ、その後、処理済みの被処理物Wが搬入搬出用ロボットによって搬出される。
 而して、第2の紫外線処理装置においては、遮光部材50が設けられていることから、紫外線ランプからの光が被処理物Wにおける処理禁止領域に照射されることを防止することができる。また、パージガス供給口53からパージ空間Sp内に供給されたパージガスを、周壁部52の開口端面と被処理物Wの表面におけるペリクルW1が露出された領域との間の間隙を介して、パージ空間Spから溢流させることにより、遮光部材30の周囲雰囲気を構成する処理用雰囲気ガスがパージ空間Sp内に流入することを防止することができる。そのため、処理室において、紫外線ランプからの光が処理用雰囲気ガスに照射されることに伴ってオゾンが生成された場合であっても、オゾンがパージ空間Sp内に流入することを防止することができる。
 従って、第2の紫外線処理装置によれば、被処理物Wの表面における処理禁止領域T1に対して紫外線が照射されることがなく、かつ生成されたオゾンが処理禁止領域T1に接触することもないため、処理禁止領域T1に対する不所望な表面処理が行われることを回避することができる。すなわち、被処理物Wの表面における被処理領域T2に対してのみ所期の表面処理を行うことができるため、高い信頼性をもって被処理物Wの表面を部分的に処理することができる。
 また、第2の紫外線処理装置においては、パージ空間Sp内において、ガス流制御板55が遮光部材50の主遮光板部51と被処理物Wとの間に介挿されて設けられている。このため、主遮光板部51に設けられたパージガス供給口53から供給されたパージガスが、被処理物Wの処理禁止領域T1に対して直接的に吹き付けられることがない。そして、パージガス供給口53が主遮光板部51に設けられていることによれば、遮光部材50の周囲雰囲気を構成する処理用雰囲気ガスがパージ空間Sp内に流入することをより一層確実に防止することができる。
 具体的に説明すると、図1に係る第1の紫外線照射装置10においては、パージ空間Sp内においては、パージガスが、全体的には、周壁部32における他方の端壁部分32Cに形成されたパージガス供給口33から一方の端壁部分32Aに向かって長手方向に流動される。このため、パージガスの流れにより、周壁部32の開口端面と被処理物Wとの間の間隙から処理用雰囲気ガスが巻き込まれて、生成されたオゾンがパージ空間Sp内に流入されるおそれがある。而して、第2の紫外線処理装置においては、図6(a)、(b)においてパージガスの流動方向を白抜きの矢印によって示しているように、パージガス供給口53から供給されたパージガスは、パージ空間Sp内において、ガス流制御板55に沿って周壁部52に向かって放射状に流動される。従って、生成されたオゾンを含む処理用雰囲気ガスがパージガスの流れによって巻き込まれてパージ空間Sp内に流入することを確実に防止することができる。
(第3の紫外線処理装置)
 図7は、本発明の紫外線処理装置の構成の更に他の例の要部を示す説明図である。この図7において、(a)は、遮光部材と被処理物との位置関係を示す、遮光部材の下面側から見た説明用平面図であり、(b)は、長手方向に垂直な断面を示す拡大図である。
 この第3の紫外線処理装置は、遮光部材の構成が異なり、当該遮光部材におけるパージガス供給口の配置位置が異なること以外は、図1に係る第1の紫外線処理装置10と同様の構成を有する。
 この第3の紫外線処理装置は、例えば表面が平坦な板状体よりなる被処理物Wの表面を部分的に処理するために用いられる。この図の例における被処理物Wにおいては、被処理物Wの表面における長手方向(図7(a)において左右方向)に伸びる長尺な矩形状の中央領域が処理禁止領域T1とされ、処理禁止領域T1の幅方向両側に位置された矩形帯状の領域が被処理領域T2とされる。
 第3の紫外線処理装置における遮光部材60は、被処理物Wにおける処理禁止領域T1の形状に対応する矩形形状を有する平板状体よりなる。
 この遮光部材60においては、遮光部材60の被処理物Wに対向する面、すなわち上面に開口する貫通孔が厚み方向に伸びるよう形成されており、これにより、パージガス供給口63が構成されている。この図の例においては、パージガス供給口63を構成する貫通孔は例えば円形状であって、遮光部材60の中央位置に形成されている。
 遮光部材60の厚みは、0.5~1.5mmである。
 この第3の紫外線処理装置においては、第1の紫外線処理装置10と同様に、被処理物Wは、搬入搬出用ロボットによって処理室における所期の位置に配置され、その処理室において光洗浄処理が行われ、その後、処理済みの被処理物Wが搬入搬出用ロボットによって搬出される。ここに、被処理物Wは、その表面と遮光部材60の上面との離間距離が例えば0.5~1.5mmとなるように配置される。
 而して、第3の紫外線処理装置においては、遮光部材60が設けられていることから、紫外線ランプからの光が被処理物Wにおける処理禁止領域T1に照射されることを防止することができる。また、パージガス供給口63からパージ空間Sp内に供給されたパージガスを、遮光部材60の上面に沿って流動させてパージ空間Spから溢流させることにより、処理用雰囲気ガスがパージ空間Sp内に流入することを防止することができる。そのため、処理室において、紫外線ランプからの光が処理用雰囲気ガスに照射されることに伴ってオゾンが生成された場合であっても、オゾンがパージ空間Sp内に流入することを防止することができる。
 従って、第3の紫外線処理装置によれば、被処理物Wの表面における処理禁止領域T1に対して紫外線が照射されることがなく、かつ生成されたオゾンが処理禁止領域T1に接触することもないため、処理禁止領域T1に対する不所望な表面処理が行われることを回避することができる。すなわち、被処理物Wの表面における被処理領域T2に対してのみ所期の表面処理を行うことができるため、高い信頼性をもって被処理物Wの表面を部分的に処理することができる。
 また、第3の紫外線処理装置においては、パージガス供給口63が遮光部材60の略中央位置に形成されている。このため、図7(a)、(b)においてパージガスの流動方向を矢印によって示しているように、パージガス供給口63から供給されたパージガスは、パージ空間Sp内において遮光部材60の外周縁に向かって放射状に流動される。従って、生成されたオゾンを含む処理用雰囲気ガスがパージガスの流れによって巻き込まれてパージ空間Sp内に流入することをより一層確実に防止することができる。
 以上、本発明の実施の形態を説明したが、本発明は上記の実施の形態に限定されず、種々の変更を加えることができる。
 例えば、紫外線処理装置全体の構造は、図1~図7に示すものに限定されず、種々の構造を採用することができる。
 また、第1の紫外線処理装置および第2の紫外線処理装置は、ペリクル付きレチクル(防護保護膜付きフォトマスク)に限定されず、紫外線照射処理が必要とされる種々のものに適用することができる。
10  第1の紫外線処理装置
11  ランプ室筐体
12A,12B  側壁
13  隔壁
15A,15B  紫外線透過性窓部材
17A,17B  区隔壁
19  シャフト駆動源
21  処理室筐体
22A,22C  端壁
22B,22D  側壁
23  蓋部材
24  貫通孔
25  載置台
25A  載置面
26  載置台固定部材
27  排気管
28  処理用雰囲気ガス供給口
29  排気口
30  遮光部材
31  主遮光板部
32  周壁部
32A,32C  端壁部分
32B  側壁部分
33  パージガス供給口
34  シャフト
38  パージガス供給管
39  管結合部材
40A,40B  紫外線ランプ
50  遮光部材
51  主遮光板部
52  周壁部
53  パージガス供給口
55  ガス流制御板
56  スペーサ
60  遮光部材
63  パージガス供給口
71  筐体
71A  上壁
71B,71C  側壁
73  紫外線透過性窓部材
74  ガス供給口
75  ガス流路形成部材
78  固定板
79  テンプレート保持機構
80  紫外線ランプ
W  被処理物
Wa  被処理面
Wb  凸部分
W1  レチクル
W2  ペリクル
T1  処理禁止領域
T2  被処理領域
S1  処理室
S2,S3  ランプ室
S4  照射距離調整機構収容室
Sp  パージ空間
                                                                                

Claims (10)

  1.  紫外線を放射する紫外線ランプと、紫外線透過性窓部材とを備えており、当該紫外線ランプからの紫外線が、当該紫外線透過性窓部材を介して、当該紫外線透過性窓部材と離間して対向配置された被処理物の被処理領域に照射される紫外線処理装置であって、
     前記被処理物における前記被処理領域以外の処理禁止領域の形状に対応する形状を有する、前記紫外線ランプからの光を遮光する遮光部材が、当該処理禁止領域と対向し、かつ当該被処理物と離間するように設けられており、
     前記遮光部材には、当該遮光部材と前記被処理物との間の間隙にパージガスを供給するパージガス供給口が設けられていることを特徴とする紫外線処理装置。
  2.  前記遮光部材は、前記処理禁止領域の形状に対応する形状を有する主遮光板部と、当該主遮光板部の前記処理禁止領域に対向する面における外周縁位置において当該主遮光板部の外周縁の全周にわたって伸びるように形成された、前記被処理物に向かって突出する枠状の周壁部とを有していることを特徴とする請求項1に記載の紫外線処理装置。
  3.  前記ガス供給口が、前記遮光部材における周壁部に開口するように形成されていることを特徴とする請求項2に記載の紫外線処理装置。
  4.  前記ガス供給口が、前記遮光部材の前記被処理物に対向する面に開口するよう形成されていることを特徴とする請求項1または請求項2に記載の紫外線処理装置。
  5.  前記ガス供給口と被処理物との間に、当該被処理物の表面における処理禁止領域に対向してガス流制御板が設けられていることを特徴とする請求項4に記載の紫外線処理装置。
  6.  前記被処理物は、表面に凸部分を有する板状のものであって、当該被処理物の表面における凸部分形成領域を含む領域が処理禁止領域とされており、
     当該被処理物は、前記凸部分が前記遮光部材における周壁部によって囲まれた空間内に位置された状態で、当該周壁部の開口端面と間隙を介して配置されることを特徴とする請求項2に記載の紫外線処理装置。
  7.  前記紫外線ランプが配置されたランプ室と、前記被処理物が配置される処理室とが、前記紫外線ランプと対向する位置に前記紫外線透過性窓部材が設けられた隔壁によって区画されており、
     前記遮光部材は、処理室内において前記隔壁の表面上の前記紫外線透過性窓部材に近接した位置に設けられており、
     前記処理室を画成する処理室筐体には、処理用雰囲気ガスを当該処理室内に供給するための処理用雰囲気ガス供給口が設けられていることを特徴とする請求項1に記載の紫外線処理装置。
  8.  前記処理用雰囲気ガスが前記パージガスと同一種類のガスであることを特徴とする請求項7に記載の紫外線処理装置。
  9.  前記処理用雰囲気ガスおよび前記パージガスが、不活性ガスであることを特徴とする請求項8に記載の紫外線処理装置。
  10.  前記処理用雰囲気ガスが、前記紫外線ランプからの光が照射されることによりオゾンが生成されるガスであることを特徴とする請求項7または請求項8に記載の紫外線処理装置。
                                                                                    
PCT/JP2017/039275 2016-11-02 2017-10-31 紫外線処理装置 WO2018084133A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018549007A JP6508433B2 (ja) 2016-11-02 2017-10-31 紫外線処理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-215051 2016-11-02
JP2016215051 2016-11-02

Publications (1)

Publication Number Publication Date
WO2018084133A1 true WO2018084133A1 (ja) 2018-05-11

Family

ID=62076141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039275 WO2018084133A1 (ja) 2016-11-02 2017-10-31 紫外線処理装置

Country Status (2)

Country Link
JP (1) JP6508433B2 (ja)
WO (1) WO2018084133A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210232050A1 (en) * 2020-01-24 2021-07-29 Tokyo Electron Limited Substrate processing apparatus and substrate processing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005156279A (ja) * 2003-11-25 2005-06-16 Aida Eng Ltd 選択的な表面改質・洗浄方法
JP2011155160A (ja) * 2010-01-28 2011-08-11 Ushio Inc 光処理装置および光処理方法
WO2015037573A1 (ja) * 2013-09-13 2015-03-19 ウシオ電機株式会社 光照射装置
US20160228928A1 (en) * 2014-05-21 2016-08-11 Shenzhen China Star Optoelectronics Technology Co. Ltd. Method of cleaning substrate by ultraviolet rays with adjustable radiation energy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005156279A (ja) * 2003-11-25 2005-06-16 Aida Eng Ltd 選択的な表面改質・洗浄方法
JP2011155160A (ja) * 2010-01-28 2011-08-11 Ushio Inc 光処理装置および光処理方法
WO2015037573A1 (ja) * 2013-09-13 2015-03-19 ウシオ電機株式会社 光照射装置
US20160228928A1 (en) * 2014-05-21 2016-08-11 Shenzhen China Star Optoelectronics Technology Co. Ltd. Method of cleaning substrate by ultraviolet rays with adjustable radiation energy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210232050A1 (en) * 2020-01-24 2021-07-29 Tokyo Electron Limited Substrate processing apparatus and substrate processing method

Also Published As

Publication number Publication date
JPWO2018084133A1 (ja) 2019-06-24
JP6508433B2 (ja) 2019-05-08

Similar Documents

Publication Publication Date Title
JP5861696B2 (ja) 光照射装置
JP3166065B2 (ja) 処理装置及び処理方法
TWI480681B (zh) Light processing device and light processing method
JP5765504B1 (ja) 光照射装置
WO2015098345A1 (ja) 光照射装置
WO2018084133A1 (ja) 紫外線処理装置
JP5987815B2 (ja) アッシング方法およびアッシング装置
JP2019203943A (ja) 基板処理装置
KR102654154B1 (ko) 기판 처리 방법 및 기판 처리 장치
JP2015119127A (ja) 光照射装置
TWI735692B (zh) 臭氧處理裝置及臭氧處理方法
TW202117455A (zh) 光照射裝置、光照射方法及記憶媒體
JPH0855792A (ja) 素子製造方法
JP6733274B2 (ja) 紫外線処理装置
JP2015103545A (ja) 光源装置およびデスミア処理装置
TWI574337B (zh) 基板處理裝置
TWI566033B (zh) Mask dustproof frame structure
JP6586827B2 (ja) 紫外線処理装置
JP6123649B2 (ja) アッシング装置および被処理物保持構造体
TWI739982B (zh) 紫外線照射裝置及紫外線照射方法
JP2016219656A (ja) 光処理装置および光処理方法
KR20170016286A (ko) 자외선 조사 장치 및 자외선 조사 방법
JP6459578B2 (ja) 光処理装置および光処理方法
WO2016125433A1 (ja) 光処理装置および光処理方法
JP2702699B2 (ja) 処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17867045

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018549007

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17867045

Country of ref document: EP

Kind code of ref document: A1