WO2018080164A1 - 다층 기판을 이용한 적층형 스테이터와 이를 이용한 인카 센서 - Google Patents

다층 기판을 이용한 적층형 스테이터와 이를 이용한 인카 센서 Download PDF

Info

Publication number
WO2018080164A1
WO2018080164A1 PCT/KR2017/011842 KR2017011842W WO2018080164A1 WO 2018080164 A1 WO2018080164 A1 WO 2018080164A1 KR 2017011842 W KR2017011842 W KR 2017011842W WO 2018080164 A1 WO2018080164 A1 WO 2018080164A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
coil
pattern
stator
radial
Prior art date
Application number
PCT/KR2017/011842
Other languages
English (en)
French (fr)
Inventor
김병수
김진관
이홍근
Original Assignee
주식회사 아모텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160140112A external-priority patent/KR101817601B1/ko
Priority claimed from KR1020160176586A external-priority patent/KR102563692B1/ko
Application filed by 주식회사 아모텍 filed Critical 주식회사 아모텍
Priority to CN201780066256.4A priority Critical patent/CN109891708B/zh
Priority to US16/345,004 priority patent/US10778071B2/en
Publication of WO2018080164A1 publication Critical patent/WO2018080164A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/26Windings characterised by the conductor shape, form or construction, e.g. with bar conductors consisting of printed conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/50Fastening of winding heads, equalising connectors, or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/25Devices for sensing temperature, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/03Machines characterised by the wiring boards, i.e. printed circuit boards or similar structures for connecting the winding terminations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2211/00Specific aspects not provided for in the other groups of this subclass relating to measuring or protective devices or electric components
    • H02K2211/03Machines characterised by circuit boards, e.g. pcb

Definitions

  • the present invention relates to a stacked stator using a multilayer printed circuit board (PCB) in which torque generation can be obtained to the opposite rotor to the maximum, and an in-car sensor using the same.
  • PCB printed circuit board
  • a vehicle has a built-in air conditioning unit for heating or cooling the room.
  • the air conditioner of the vehicle is being converted to an automation device to improve the convenience of the driver.
  • an in-car sensor for automatically measuring the room temperature of the car is essentially included in the air conditioner.
  • In-Car Sensor is installed on the back of the car's grill or instrument panel, etc., and sucks the air inside the car by an aspirator method or a blowing method to discharge the air outside or inside the car,
  • the temperature sensor installed in the airflow senses the temperature of the car's cabin air.
  • the in-car sensor of the aspirator type uses an aspiration motor in which an impeller is integrally formed in the rotor to suck in the vehicle interior air to measure the interior temperature of the vehicle.
  • BLDC motors are synchronous motors with fast dynamic response, low rotor inertia, and easy speed control.
  • the aspiration motor has a simple structure and a controllable brushless direct current (BLDC) motor is used for coordination with the air conditioner.
  • the structure is an axial gap disc type with an air gap in the axial direction for thinning.
  • BLDC motor is adopted.
  • a single-phase motor having a single coil is used.
  • a single stator coil is wound in a coreless / tribular coreless / bobbinless type and mounted on a printed circuit board (PCB).
  • the torque (i.e., rotation moment) for rotating the rotor is expressed as the vector product of the force vector occurring in the conducting wire in the magnetic field and the distance vector between the center of rotation and the point of action of the force.
  • the conventional triangular stator coil has a small torque in order to rotate the rotor because the total area of the straight portion of the coil (wound) and the magnet opposing the stator coil (wound) is small when the rotor rotates. There is a problem that is small.
  • such a single-phase motor is used as a single stator coil wound in a coreless or triangular coreless / bobbinless type and attached to an adhesive on a printed circuit board (PCB), which is difficult to manufacture at low cost and may result in poor assembly. It has a thick film structure.
  • PCB printed circuit board
  • Patent Document 1 a bobbin is integrally formed on a bearing holder to improve a process of attaching a coil wound in a conventional coreless / bobbinless type onto a printed circuit board (PCB). And a coil wound around the bobbin.
  • PCB printed circuit board
  • Patent Document 1 has a problem of having a thick film structure, low coil winding productivity, and employing a separate control PCB to provide a motor driving circuit.
  • BLDC brushless direct current
  • a method of using an auxiliary magnet such that the hall element is outside the magnetic pole boundary (ie, the neutral point) of the rotor a method of installing a magnetic screw in the coil excretion, and the shape of the stator yoke are special. There is a way to design and use.
  • the present invention has been made to solve the above problems, the object of which is a laminated stator using a multi-layer printed circuit board that can implement a slim stator using a multi-layer printed circuit board (PCB), each coil pattern is formed And to provide an in-car sensor using the same.
  • PCB printed circuit board
  • the coil pattern of each layer includes a radially oriented radial pattern portion capable of maximizing torque generating efficiency, so that the torque generation can be obtained to the maximum, thereby achieving a motor efficiency increase.
  • the present invention provides a stator and an in-car sensor using the same.
  • Another object of the present invention is to increase the torque by increasing the density of the turn constituting the coil to the maximum as possible, the connecting pattern portion is a stacked stator and the in-car sensor using the same by minimizing the resistance by integrating (that is, short-circuit) individual turns To provide.
  • Still another object of the present invention is to provide a stacked stator capable of implementing a sensorless motor driving circuit inexpensively and simply by simultaneously placing a sensing coil pattern for detecting a rotor position on a printed circuit board on a top layer facing the rotor. It is to provide a slim in-car sensor using the same.
  • the present invention is a multi-layer substrate; A plurality of coil patterns spirally formed and interconnected through conductive through holes to form a plurality of turns on each substrate of the multilayer substrate; A Hall sensor disposed on the multilayer substrate and disposed at a position biased from an interface of the rotor poles when the rotor is in an initial state to detect the poles of the rotor; And a dead point prevention yoke for setting the position of the rotor such that the hall sensor is positioned at a position biased from the magnet boundary of the rotor when the rotor is in an initial state, wherein the spiral coil patterns each have a radial direction.
  • a plurality of radial pattern portions arranged along and generating a torque for rotating the rotor and a plurality of inner and outer connection pattern portions interconnecting the plurality of radial pattern portions, wherein the coil pattern forms a stator coil for a single phase motor.
  • a laminated stator is provided.
  • the hall sensor may be disposed at a position overlapped with one of the radial pattern portions while being positioned at a position biased from the magnetic pole boundary of the rotor positioned by the dead point prevention yoke when the rotor is in an initial state.
  • the spiral coil pattern may have a pattern in which the protrusion and the recess are repeated on the outer circumference of the through hole formed in the center of the multilayer substrate.
  • the multilayer substrate may include a plurality of substrates on which a plurality of coil patterns are formed; And a lowermost substrate on which a motor driving circuit for applying a driving current to the plurality of coil patterns is mounted.
  • the plurality of radial pattern portions of the plurality of coil patterns are connected to each other so that current flows in the same direction, and may generate a tangential rotational force to the rotor according to the current flow.
  • the plurality of coil patterns formed on the substrates of the multilayer substrate may each have the same shape at the same position or may have the same shape, and the coil patterns arranged in the even layer may be formed by centering the through holes in the coil patterns disposed in the odd layer. It can be arranged in a position rotated by (360 ° / number of radial pattern portion) as a reference.
  • the start portion and the end portion of the coil pattern may be wider than the portion forming the coil, and at least one through hole and soldering land surrounding the through hole may be disposed.
  • the dead point prevention yoke is disposed in the lower part of the stator, the outer periphery forms a polygonal shape of (number of stimulation) / N (where N is a divisor of the number of magnetic poles), the inner peripheral surface is circular, the Hall sensor is the It may be installed at a position biased by a quarter pole width from the interface or the center of the pole.
  • the present invention is a multi-layer substrate; And a plurality of coil patterns that are spirally patterned and interconnected through through holes to form a plurality of reference turns on each substrate of the multilayer substrate, wherein the plurality of coil patterns are arranged at intervals along the radial direction, respectively. And a plurality of radial pattern portions for generating torque for rotating the rotor, and a plurality of connection pattern portions for interconnecting inner and outer ends of the adjacent radial pattern portions, respectively, wherein each of the plurality of connection pattern portions is a reference.
  • the turns are integrated to provide a stacked stator having at least one integrated turn.
  • the integrated turn has a wider width than the reference turn, and the integrated turn may include two to three reference turns.
  • each of the plurality of connection pattern parts may be formed of one integrated turn.
  • the coil pattern may have a zigzag pattern in which protrusions and grooves are repeated on an outer circumference of a through hole formed in a central portion of the multilayer substrate.
  • the plurality of coil patterns formed on each substrate of the multilayer substrate may be formed in the same shape.
  • the stacked stator according to the present invention may further include a jumper wire for interconnecting a plurality of coil patterns formed on each substrate of the multilayer substrate.
  • the number of the radial pattern portion may be set to any one of the same number as the number of rotor poles, one-half multiple of the number of rotor poles and two times the number of rotor poles.
  • the present invention is a rotating shaft; A rotor in which the rotating shaft is supported at the center portion and a plurality of N pole magnets and S pole magnets are alternately arranged; An impeller fixed to one end of the rotor and rotating together with the rotor; A bearing rotatably supporting the rotating shaft; A bearing holder for receiving and fixing the bearing; A laminated stator having a through hole through which the bearing holder passes in the center; A lower housing supporting the stacked stator therein; An upper housing disposed to face the lower case and having a plurality of through holes through which the indoor air of the vehicle is introduced from the distal end portion when the impeller is rotated, and the air introduced into the portion facing the impeller is discharged; And a temperature sensor disposed in the airflow path through which the air of the upper housing is introduced to measure the temperature of the sucked air.
  • Inca sensor according to the present invention may further include a sensing coil pattern formed in one of the plurality of grooves of the coil pattern for detecting the rotor rotation position.
  • the motor driving circuit includes a rotor position signal generator for generating a rotor position signal corresponding to the rotor stimulus when the sensing coil formed by the sensing coil pattern generates an induced electromotive force corresponding to the magnetic pole of the opposite rotor; And a switching circuit for switching a direction of a driving current applied to the stator coil in response to the rotor position signal generated in response to the magnetic pole of the rotor opposed from the rotor position signal generator.
  • the sensing coil pattern may be positioned at a position offset by 1/4 pole width from the pole boundary of the rotor positioned by the dead point prevention yoke or 1/4 pole width from the center of the pole when the rotor is in an initial state.
  • the sensing coil pattern may be positioned at a position offset from the magnetic pole boundary of the rotor positioned by the dead point prevention yoke when the rotor is in an initial state and may be disposed at a position overlapping with one of the radial pattern portions.
  • the bearing holder is disposed in the lower portion of the stator, the base plate in which the dead point prevention yoke is embedded; And a boss protruding upward from the base plate through a through hole of the stacked stator, and receiving and supporting the bearing at a central portion thereof.
  • the base plate may be integrally formed with the lower housing.
  • the rotor is formed in a ring shape, the width of the ring is formed at least larger than the length of the radial pattern portion, it may be arranged to face the radial pattern portion.
  • a sensing coil pattern formed on one of a plurality of recesses of the coil pattern for detecting a rotor rotation position is provided on the uppermost surface of the multilayer board, and a motor driving circuit for applying a driving current to the coil pattern is multilayered. It can be provided in the lowermost surface of a board
  • the plurality of radial pattern portions of the coil pattern disposed on each layer of the multilayer substrate may be set to be disposed at the same position and to flow a current in the same direction.
  • the plurality of coil patterns may be connected in series connection, parallel connection, or mixed series and parallel connection.
  • the stator coil for rotating the rotor is rotated by using a conductive pattern coil formed on a multilayer PCB and implemented in a stacked type to realize a slim single phase motor capable of improving productivity and reducing costs.
  • a slim aspiration motor for in-car sensors can be provided.
  • the coil pattern of each layer includes a radially oriented radial pattern portion capable of maximizing torque generating efficiency, so that torque generation can be attained to the maximum, thereby increasing the motor efficiency. That is, the torque pattern can be increased by designing a coil pattern that increases the total area of the radial pattern portion of the stator coil (winding) and the portion where the magnet opposes when the rotor rotates.
  • the present invention by generating the coil patterns of each layer to have a zigzag pattern in which a plurality of connecting pattern portions and radial pattern portions are alternately connected, maximum torque generation can be obtained in the opposite rotors. That is, the radial pattern portion is oriented in the radial direction so that a tangential force is generated when the stator coil is energized to obtain an effective torque.
  • the Hall sensor is positioned at a position displaced from the magnetic pole boundary of the rotor positioned by the dead point prevention yoke when the rotor is in an initial state and at the same time overlapped with one of the radial pattern portions, it is generated from the magnet. Since the magnetic flux is the maximum, the Hall element can generate the rotor position detection signal with the best sensitivity, and the stator has one of the radial pattern parts superimposed on the rotor position that generates the maximum magnetic flux. Interacting with the flux will give the optimum conditions for starting the rotor.
  • the axial type structure is adopted by using the thin film stator, so that the space in which the core type stator used in the radial type motor is removed and the coil terminal connection part can be omitted.
  • the diameter of the sleeve bearing supporting the rotating shaft of the rotor can be expanded to contain sufficient oil, thereby improving reliability and durability.
  • the multilayer coil structure may be connected in series or parallel connection, series and parallel mixed connection without using a plurality of wiring pattern PCBs and stacked in a slim shape. Can be.
  • the radial pattern portion generates torque by maintaining a predetermined number of reference turns, and the connection pattern portions are patterned to have a wide width by integrating (ie, short-circuit) the reference turns by a plurality of resistances of the coil.
  • the coil temperature can be reduced and the efficiency can be increased by reducing the resistance and the copper loss and the copper loss.
  • the radial pattern portion may increase torque by increasing the density of the turns constituting the coil to the maximum, and the connection pattern portion may minimize the resistance of each turn by integrating (ie, shorting) individual turns.
  • the plurality of inner and outer connection pattern portions are each composed of one integrated turn, it is possible to form a minimum space inside and outside the radial pattern portion, so that the length of the radial pattern portion can be formed to be long. Do. As a result, the total area of the radial pattern portion facing the magnet of the rotor can be maximized, so that torque generation can be attained to the maximum.
  • the plurality of inner and outer connecting pattern portions are disposed along the circumferential direction at intervals between the inner and outer circumferences arranged concentrically, respectively, and the inner ends of the adjacent radial pattern portions are limited by arranging as close as possible. It can be configured to have a large number of coil turns in the area, as a result can be configured a single-phase motor having a high RPM, high torque value.
  • a sensorless motor driving circuit is inexpensively and simply by disposing a sensing coil pattern together in an empty space in which the pattern coil is not formed in the uppermost PCB facing the rotor without using the rotor element for detecting the rotor position. Can be implemented.
  • FIG. 2 is a plan view showing a stacked stator for a single phase motor according to a first embodiment of the present invention.
  • FIG 3 is an exploded view showing a coil pattern for each layer of the stacked stator according to the first embodiment of the present invention.
  • 4A and 4B are plan views illustrating soldering patterns of the first and fourth PCBs, respectively.
  • FIG. 5 is an explanatory diagram for explaining the operation of the single-phase motor using the stacked stator according to the present invention, which is an explanatory diagram showing the direction of the current when the rotor is in the initial position.
  • 6A to 6D are explanatory views showing directions of currents for respective rotation positions of the rotor.
  • FIG. 7 is a developed view showing coil patterns for respective layers of the stacked stator for a single phase motor according to the second embodiment of the present invention.
  • FIG. 8 is an explanatory diagram for explaining the arrangement relationship between the dead point prevention yoke for the magnetic starting and the hall element in the single-phase motor according to the present invention.
  • FIG. 9 is a pattern diagram of a first PCB in which a sensing coil pattern necessary for implementing a sensorless motor driving circuit according to the present invention is disposed together with a coil pattern.
  • FIG. 10 is a circuit diagram of a sensorless motor driving circuit for driving a sensorless single-phase motor according to the present invention.
  • Fig. 11 is a plan view showing a stacked stator for a single phase motor according to a third embodiment of the present invention.
  • FIG. 12 is a development view illustrating coil patterns for respective layers of the stacked stator according to the third exemplary embodiment of the present invention.
  • FIG. 13 is a partially enlarged view of FIG. 11.
  • FIG. 14 is an explanatory diagram for explaining an arrangement relationship between a dead point prevention yoke for a magnetic start and a hall element in a single phase motor according to the present invention.
  • FIG. 15 is a development diagram illustrating coil patterns for respective layers of the stacked stator for a single phase motor according to the fourth embodiment of the present invention.
  • 16 is a perspective view showing a slim single-phase motor implemented using a stacked stator according to the present invention.
  • 17 and 18 are axial cross-sectional views showing a slim in-car sensor implemented using the slim single-phase motor of the present invention, respectively.
  • a single-phase motor applied to a conventional aspiration motor or the like is provided with a triangular coreless / bobbinless stator coil 1 mounted on a support bracket 5, and a stator coil 1.
  • the rotor in which the N pole and the S pole magnets 3 are alternately arranged to face each other at intervals of) is rotatably supported by the rotation shaft 9.
  • reference numeral 7 designates a sleeve support boss
  • 8 designates a sleeve bearing.
  • the torque (Torque) ⁇ (that is, the rotation moment) for rotating the rotor may be expressed as a vector product as shown in Equation 1 below.
  • the stator coil 1 is composed of a triangular stator coil having three straight portions 1a and three vertices 1b connecting the three straight portions.
  • the portion 1c (hatched area) facing the magnet 3 corresponds to an area for forming a magnetic field required for torque generation.
  • a force F is generated in a direction perpendicular to the straight portion 1a of the stator coil 1.
  • the torque ⁇ for rotating the rotor is obtained as Frsin ⁇ (scalar value).
  • the angle ⁇ formed between the force F and the distance vector r is 90 °, that is, when the straight portion 1a of the stator coil 1 is toward the center. It can be seen that the force F is generated in the direction perpendicular to the straight portion 1a, that is, the tangential direction, so that a rotational force for rotating the rotor (magnet) of the largest value is obtained.
  • the torque ⁇ generated in the conventional stator coil 1 is rotated with the straight portion 1a of the stator coil 1 (winding) except for the vertex 1b portion of the stator coil 1 (winding).
  • the magnets 3 are generated in proportion to the opposing portions 1c, and are obtained by obtaining the sum of the areas of the stator coils that meet the magnets 3 while rotating the magnets 3.
  • the conventional triangular stator coil 1 has a small rotor because the total area of the straight portion 1a of the coil 1 (the winding) and the portion 1c of the magnet 3 opposing each other when the rotor rotates is small.
  • the torque for rotating is small, so that the stator coil 1 of the triangular shape does not have a coil pattern for effectively generating torque.
  • a single-phase motor having a single coil is also used for the aspiration motor applied to the in-car sensor according to the present invention, and a multilayer stator using a multi-layer printed circuit board is adopted to maximize the torque generation efficiency and to increase the motor efficiency. .
  • a multi-layered stator for a single phase motor comprises a plurality of substrates 10 are integrally formed by stacking a plurality of layers and made of an insulating material; A plurality of coil patterns 21 to 25 made of a spiral conductive pattern obtained by patterning copper foil laminated on the respective substrates so as to form a plurality of turns necessary for forming a stator coil; And a plurality of through holes T1 to T7 which are plated in the through holes formed through the plurality of substrates 10 and connect the plurality of coil patterns 21 to 25.
  • the plurality of coil patterns 21 to 25 may include a plurality of inner and outer connection pattern parts 20a-20f disposed along the circumferential direction at intervals between the inner and outer circumferences, respectively; And a plurality of radial pattern parts 20g-20l which interconnect the adjacent inner connection pattern parts and the outer connection pattern parts and are disposed along a radial direction from a center thereof.
  • the laminated stator 110 may be configured using a multilayer substrate 10a made of a copper clad laminate (CCL) in which copper foil is laminated on a substrate 10 of each layer, and after patterning and laminating copper foil of each layer substrate, It can be configured by forming a conductive through hole.
  • CCL copper clad laminate
  • a multi-layer substrate is used to form a coil pattern by patterning a copper-clad laminate as an example, but it is also possible to form a coil pattern by printing silver or paste on a general substrate without using the copper-clad laminate. In this case, it should also be regarded as falling within the scope of the present invention.
  • the substrate 10 may be made of an insulating resin such as FR-4 or CEM-3, for example, in which the substrate material is made of glass epoxy laminate.
  • the multilayer board 10a has a structure in which copper foil is laminated on the boards 10 of each layer, and any insulating resin can be used as the material of the board as long as it can form a multilayer PCB. It can be set in the range of 1 to 10 layers in proportion to the desired RPM implemented by. In order to obtain a high RPM, since the number of coil turns is required to obtain a high torque value, it is necessary to increase the number of PCBs laminated to use the plurality of coil patterns 21 to 25.
  • a printed wiring 17 for interconnecting the coil pattern and the electronic component is formed on the bottom of the lowermost PCB, and the various electronic components 16 are printed wiring ( It is mounted on the 17) to form the motor driving circuit 30, the driving power supply (Vcc) is connected to the power supply terminal of the printed wiring 17 and the ground pattern (GND).
  • the multi-phase stator 110 for a single phase motor may be configured by using a double-sided substrate in which copper foils are laminated on both sides of the substrate 10, and in this case, The coil pattern 21 may be formed on one surface thereof, and the motor driving circuit 30 may be mounted on the rear surface thereof.
  • the multilayer substrate 10a is a stack of first to fourth PCBs 11 to 14 having a four-layer structure as an example.
  • first to third coil patterns 21 to 23 having a star shape are formed on an upper surface of the substrate 10, and the fourth layer of the lowermost layer is formed.
  • the fourth and fifth coil patterns 24 and 25 having a fan shape are separately formed on the layer PCB 14, for example, by finely patterning a conductive metal such as copper foil Cu.
  • a conductive metal such as copper foil Cu.
  • Each of the PCBs 11 to 14 may be selected and used, for example, having various thicknesses such as 0.4 mm and 0.8 mm, and the coil patterns 21 to 25 applied to the present embodiment may be, for example, patterns.
  • the width is 0.12 mm and the spacing between adjacent patterns is patterned to 0.13 mm.
  • the gap between the width of the coil pattern and the pattern may increase or decrease as necessary.
  • the first and third coil patterns 21 and 23 and the fourth coil pattern 24 are formed so as to have a spiral shape in a clockwise direction CW from the inside to the outside, respectively, and the three protrusions are formed to have a substantially star shape when viewed in large scale. And a zigzag shape to have a recess, and the second coil pattern 22 and the fifth coil pattern 25 are each formed to have a spiral shape in a counterclockwise direction (CCW) from the inner side to the outer side. It has a zigzag shape to have three protrusions and grooves to form a star shape.
  • each of the first to third coil patterns 21 to 23 may have a spiral shape, and may face from the inside to the outside or the outside to the inside, depending on the connection method of the coil pattern using the through hole, and clockwise (CW) or half. It may be configured by combining a pattern facing in the clockwise direction (CCW), it may have a zigzag form to have two or more projections and grooves.
  • the first to third coil patterns 21 to 23 each include three outer and inner connection pattern portions 20a to 20c and 20d to 20f, and the outer connection pattern portions 20a to 20c and inner connection pattern portions, respectively.
  • Six radial pattern portions 20g to 20l connecting 20d to 20f are alternately connected to form a star shape as a whole.
  • the outer and inner connection pattern portions 20a to 20c and 20d to 20f are arranged along the circumferential direction at intervals on the outer circumference and the inner circumference, respectively, and the six radial pattern portions 20g to 20l are respectively formed on the substrate (
  • the inner end portion has a pattern shape in which the intervals are narrowed from each other so as to be set in a direction radiating from the center of 10).
  • the first and third coil patterns 21 and 23 of the first and third PCBs 11 and 13 have the same shape, and the second coil pattern 22 of the second PCB 12 is formed of the first and third coils 22 and 13. It consists of the same shape as the 3 coil patterns 21 and 23, but is biased with a 60 degree phase difference.
  • the six radial pattern parts 20g to 20l are arranged at the same position in the first to third coil patterns 21 to 23.
  • the radial pattern portions 20g to 20l each have a position where the coil patterns stacked in three layers face the magnets of the rotor at the same time and the current flow direction is changed. The same set can produce a combined torque.
  • the stator 110 forms a stator coil by interconnecting the first to fifth coil patterns 21 to 25 formed on the multilayer PCB, and the number of radial pattern portions 20g to 20l in the stator coil is It has any one of the same number as the number of rotor poles, one-half multiple of the rotor poles, and two times the rotor poles, and at the same time the angle between adjacent radial pattern portions 20g to 20l is 360 / n (where , n is determined by any one of the same number as the number of rotor poles, one-half multiple of the rotor poles and two times the rotor poles.
  • the angle between adjacent radial pattern portions 20g to 20l is 60 °, and the magnetic pole of the rotor rotated by being coupled thereto to form a single phase motor.
  • the number of (N pole magnet and S pole magnet) is configured to have six poles.
  • printed wirings 17 necessary for mounting and connecting various electronic components 16 are formed in a conductive pattern so as to form the driving circuit 30 necessary for driving the single-phase motor.
  • the fourth PCB 14 may be configured to form fourth and fifth coil patterns 24 and 25 added to the first to third coil patterns 21 to 23 by utilizing the remaining space after mounting the driving circuit components.
  • the fourth and fifth coil patterns 24 and 25 may be omitted according to torque values required to rotate the rotor.
  • the fourth PCB 14 shown in the figure shows a transparent state, and various patterns, that is, the fourth and fifth coil patterns 24 and 25, the printed wirings 17, and the electronic components 16 mounted thereon are formed of a substrate ( It is located on the back of 10).
  • the fourth coil pattern 24 is a pattern formed in a fan shape so as to have a spiral shape in the clockwise direction CW from the outside to the inside
  • the fifth coil pattern 25 is the counterclockwise direction CCW from the inside to the outside. It is a pattern formed in a fan shape to have a spiral shape.
  • the first to fifth coil patterns 21 to 25 may be connected in series or in parallel through the first to seventh through holes T1 to T7. When interconnected, they form one stator coil. In the first to seventh through holes T1 to T7, the inside of the hole is plated or filled with a conductive material.
  • the fourth layer PCB 14 forms a driving circuit layer on which the motor driving circuit 30 is mounted.
  • seven through holes T1 to T7 are formed at the same positions of the first to fourth PCBs 11 to 14 as shown in FIG. 4A, and the soldering land 18 is conductive as shown in FIG. 4B. It is formed in a pattern. As shown in FIG. 1, the start parts S1 to S5 and the end parts E1 to E4 of the first to fifth coil patterns 21 to 25 are wider than the parts forming the coil (winding), for example. For example, it is formed in the form of a tear drop, and soldering lands 18 surrounding the through holes T1 to T7 and the through holes T1 to T7 are disposed.
  • the start portions S1 to S5 and the end portions E1 to E4 are designed to be wider than the portions forming the coils (winding) by adjusting the thickness of each layer coil pattern 21 to 25 in the stacked stator. Therefore, the reliability of the connection can be increased.
  • the start part and the end part of the coil pattern are formed in the form of a tear drop, and the coil patterns are interconnected or connected to the wiring patterns by arranging soldering lands surrounding the through holes and the through holes. Easy and reliable connection.
  • At least one through hole (T1 to T7) connecting the start portion and the end portion in each layer may be formed in plural, thereby preventing a decrease in reliability due to disconnection or defective through holes.
  • the second PCB 12 has a through hole T3 and a through hole T4 for connecting the fourth coil pattern 24 and the fifth coil pattern 25 formed separately from the upper side and the lower side of the fourth PCB 14.
  • the first jumper wire pattern J1 is formed on the outer side of the second coil pattern 22, and the third PCB 13 has an outer side of the fifth coil pattern 25 on the fourth PCB 14.
  • the second jumper wire pattern J2 is formed outside the third coil pattern 23 to connect the fourth through hole T4 and the fifth through hole T5 to connect the start portion S5 therein. It is.
  • the first to fifth coil patterns 21 to 25 may include through holes T1 to T7 and first and second jumper wire patterns J1, Interconnected via J2) to form one stator coil.
  • an end portion E1 of the first coil pattern 21 of the second coil pattern 22 of the second PCB 12 may be formed through the second through hole T2. S2), the end portion E2 of the second coil pattern 22 is connected to the start portion S3 of the third coil pattern 23 of the third PCB 13 through the sixth through hole T6. Connected.
  • the end portion E3 of the third coil pattern 23 is connected to the start portion S3 of the fourth coil pattern 24 of the fourth PCB 14 through the first through hole T1.
  • the end portion E4 of the fourth coil pattern 24 and the start portion S5 of the fifth coil pattern 25 may have a first jumper wire pattern J1 connecting the through hole T3 and the through hole T4.
  • the interconnection is made through a jumper wire pattern J2 connecting the through hole T4 and the through hole T5.
  • one end of the stator coil that is, the end portion of the fifth coil pattern 25 is connected to the first output terminal Out1 of the motor driving circuit, and the other end of the stator coil, that is, the start of the first coil pattern 21.
  • the part S1 is connected to the second output terminal Out2 of the motor driving circuit through the sixth through hole T6.
  • the present invention between the inner circumferential portion of the outer connecting pattern portions 20a to 20c of the first and third coil patterns 21 and 23 and the outer circumferential portion of the inner connecting pattern portion of the second coil pattern 22 and the first and third coils.
  • the widths of the first to fifth coil patterns 21 to 25 are set to be present, and the first to seventh through holes T1 to T7 have six through hole regions R1 to R6 and the first to fifth R6. It arrange
  • one of the six through hole regions R1 to R6 is connected when the start or end terminal disposed inside the fifth coil patterns 21 to 25 in the first layer is connected to the coil pattern of the other layer.
  • Through holes T2, T3, T5 to T7 formed by using the same can be used.
  • the through-holes (R1 ⁇ R6) and the outer space (R10) is appropriately used to arrange the through holes (T1 ⁇ T7) by using a separate wiring pattern PCB without using a separate wiring pattern PCB in series or Can be connected by parallel connection.
  • the motor driving circuit 30 for driving the single-phase motor is mounted on the fourth PCB 14, but the motor driving circuit may be configured separately. That is, when sufficient space is not secured between the stator and the support on which the stator is mounted, only the minimum driving circuit components may be mounted on the rear surface of the fourth PCB 14.
  • FIGS. 5 to 6D a single phase motor using a stacked stator according to a first embodiment of the present invention will be described with reference to FIGS. 5 to 6D.
  • the current flow for each rotational position of the rotor is based on the first coil pattern 21 of the first PCB 11 and the second to fifth coil patterns 22 of the second to fourth PCBs 12-14. Since the current flow to ⁇ 25 is the same, only the first coil pattern 21 of the first layer PCB 11 will be described.
  • the illustrated single phase motor 40 has a structure in which the stator 110 and the rotor 120 having a 6-slot-6 pole structure are arranged opposite to each other in an axial type as a single phase motor. It is expressed.
  • the motor driving circuit 30 for the single phase motor detects a magnetic pole of the magnet from the hall sensor H1 and generates a pair of first rotor position detection signals having opposite polarities, and thus the first and second switching transistors. One of which is turned on and the other of which is turned off, determines the flow direction of the current flowing through the stator coil connected between the first and second switching transistors.
  • the Hall sensor H1 is provided at a position shifted by 15 ° from the interface 121fg between the N-pole magnet 121e and the S-pole magnet 121f.
  • the installation position of the hall sensor H1 will be described in detail with reference to FIG. 8.
  • the hall sensor H1 is an S pole magnet of the rotor 120. Recognizing 121f and generating a pair of first rotor position detection signals containing the rotational direction of the rotor (i.e., counterclockwise CCW), the two first and second switching transistors of the motor driving circuit 30 are generated. When applied to the first switching transistor is turned on and the second switching transistor is turned off to determine the current flow direction of the drive current for the stator coils, that is, the first to fifth coil patterns 21 to 25.
  • the first to fifth coil patterns 21 to 25 are connected to each other through the through holes T1 to T7 and the jumper wire patterns T1 and J2 so that the flow directions of the driving currents flowing through the radial pattern portions at the same positions are the same. The connection is made.
  • the radial direction pattern portions 20g and 20h of the first coil pattern 21 may correspond to the radial direction pattern portions 22g and 22h of the second coil pattern 22 and the radial direction of the third coil pattern 23.
  • the current flow direction is set in the same direction as both the pattern portions 23g and 23h and the radial pattern portions 24g and 24h of the fourth coil pattern 24.
  • the radial pattern portions 20g to 20l are oriented in the radial direction (i.e., the normal direction) perpendicular to the rotational direction (circumferential direction) of the rotor 120, and thus counterclockwise (CCW) according to Fleming's left hand law. ),
  • the tangential force F is generated.
  • the outer and inner connection pattern portions 20a to 20c and 20d to 20f of the first to fifth coil patterns 21 to 25 merely serve as paths through which current flows, and six radial pattern portions 20g to 20l. Force F is generated in the tangential direction from the rotation of the rotor 120 is made.
  • the direction of the current flowing through the coil between the adjacent radial pattern portions 20g to 20l is set to be reversed, and the magnetic poles of the magnets of the rotor 120 are also reversed, so that the magnets of the rotor are all in the same direction.
  • the pushing or pulling force is generated to rotate the rotor counterclockwise (CCW).
  • the radial pattern portions 20g to 20l are connected to each other so that current flows in the same direction, and tangential to the rotor according to the current flow. Rotational force in the direction can be generated.
  • the outer and inner connection pattern portions 20a to 20c and 20d to 20f of the first to fifth coil patterns 21 to 25 are connected to each other so that current flows in opposite directions to each layer, but in a concentric manner. Since the direction of the force (F) generated according to Fleming's left hand law is directed in the radial direction, it does not affect the torque.
  • FIG. 6A a case in which the rotor 120 is rotated by 15 ° (electric angle 45 °) at the machine angle is shown in FIG. 6A
  • FIG. 6B a case in which the rotor 120 is rotated 30 ° (90 ° electric angle) at the machine angle is shown in FIG. 6B
  • FIG. 6C the case of rotation by 45 ° (electric angle 135 °) at the machine angle is shown.
  • the hall sensor H1 is positioned at the boundary surface 121g of the N pole magnet 121a and the S pole magnet 121f, and thus does not recognize the magnetic pole, and the flow of current. Can't decide direction
  • FIG. 6D The case where the rotor 120 continues to rotate by rotational inertia and rotates by 60 degrees (electric angle 180 degrees) at the machine angle is shown in FIG. 6D.
  • the hall sensor H1 recognizes the N pole magnet 121a.
  • the Hall sensor H1 generates a pair of second rotor position detection signal outputs of opposite polarity to the first rotor position detection signal and applies it to the first and second switching transistors.
  • the second switching transistor is turned off and the second switching transistor is turned on, the current flow direction of the driving current for the stator coils, that is, the first to fifth coil patterns 21 to 25 is set in reverse as shown in FIG. 6D.
  • the motor driving circuit 30 detects the magnetic pole of the rotor whenever the Hall sensor H1 rotates by 60 degrees (electric angle 180 degrees) at the machine angle, thereby detecting the first rotor position detection signal and the second rotor position detection signal.
  • the first and second switching transistors are turned on and off alternately to change the current flow direction of the drive current for the first to fifth coil patterns (21 to 25).
  • the stacked stator 110 uses the conductive pattern coils 21 to 25 formed on the multilayer PCB to implement a stacked type, and thus, a slim type stator capable of improving productivity and reducing costs. Can be implemented.
  • the stacked stator according to the present invention includes a radial pattern portion (20g ⁇ 20l) oriented in the radial direction so that the coil pattern of each layer to maximize the torque generation efficiency, the stator when the rotor 120 rotates It is designed to maximize the total area of the portions in which the radial pattern portions 20g to 20l and the magnets 121a to 121f of the coil (winding) face each other.
  • the rotor 120 forms a magnet in a ring shape as shown in FIGS. 12 and 13, and the width of the ring is formed at least larger than the length of the radial pattern portions 20g to 20l to form the radial pattern portion.
  • the total area of the portions where the radial pattern portions 20g to 20l and the magnets 121a to 121f oppose can be maximized, so that torque generation can be maximized.
  • the stacked stator 110 has a spiral shape in the clockwise direction CW of the first and third coil patterns 21 and 23 and the fourth coil pattern 24, respectively.
  • the second coil pattern 22 and the fifth coil pattern 25 are formed to have a spiral shape in the counterclockwise direction CCW, respectively. That is, in the first embodiment, the coil pattern of the odd layer PCB is formed to have a spiral shape in the clockwise direction (CW), and the coil pattern of the even layer is formed to have a spiral shape in the counterclockwise direction (CCW).
  • all of the first to fourth coil patterns 21 to 24 are formed to have a spiral shape in the clockwise direction CW, and only the fifth coil pattern 25 is provided. Only counterclockwise (CCW) is formed to have a spiral shape.
  • the coil patterns 21 to 23 of the first to third PCBs 11 to 13 are formed in the same shape and are formed to have a spiral shape in the clockwise direction CW. It is different from the embodiment. However, since the fourth and fifth coil patterns 24 and 25 of the fourth PCB 14 are arranged at positions facing each other in a line symmetrical structure, the fourth coil patterns 24 may be formed in both the first and second embodiments. Winding in a clockwise direction CW, the fifth coil pattern 25 has a pattern wound in a counterclockwise direction CCW.
  • the first and the first layers of the odd layer PCBs 11 and 13 are formed.
  • start parts S1 and S3 are disposed at an inner side
  • end parts E1 and E3 are disposed at an outer side
  • the second coil pattern 22 of the even-numbered PCB 12 is disposed.
  • the start part S2 is arrange
  • the end part E2 is arrange
  • the eleventh to 18th Interconnection is made through the through holes T11 to T18, and the third PCB 13 is connected to the fourth coil pattern 24 and the fifth coil pattern 25 to connect the third coil 13 to the third PCB 13.
  • fourth jumper wire patterns J11 and J12, and a fifth jumper wire pattern J13 is formed on the fourth PCB 14.
  • the coil patterns of each layer are interconnected as compared with the first embodiment. This allows more room for placing the through holes used to make them.
  • the remaining portions may include the eleventh through 18 th through holes T11 through T18. It becomes the through-hole area
  • a part of the left and right grooves and the inner region of the upper protrusions of the first to third coil patterns 21 to 23, and the inner and groove portions of the lower protrusions A part corresponds to through hole regions R11 to R16.
  • the eleventh through eighteenth through holes T11 through T18 are disposed in the through hole regions R11 through R16 and the first through fifth coil patterns are formed by using the third through fifth jumper wire patterns J11 through J13 ( 21 to 25), one stator coil is formed.
  • end portion E3 of the third coil pattern 23 is connected to the start portion S4 of the fourth coil pattern 24 of the fourth PCB 14 through the eleventh through hole T11.
  • the end portion E4 of the four coil pattern 24 and the start portion S5 of the fifth coil pattern 25 are interconnected through the third to fifth jumper wire patterns J11 to J13.
  • one end of the stator coil that is, the end portion E5 of the fifth coil pattern 25 is connected to the first output terminal Out1 of the motor driving circuit 30, and the other end of the stator coil, that is, the first coil.
  • the start portion S1 of the pattern 21 is connected to the second output terminal Out2 of the motor driving circuit 30 through the eighteenth through hole T18.
  • a part of the motor driving circuit 30 mounted on the fourth PCB 14 is disposed on the left side, and a part of the stator is distributed on the right side.
  • the stacked stator according to the second embodiment rotates the opposite rotor in the same manner as the first embodiment.
  • the stacked stator according to the second exemplary embodiment six radial pattern parts of the first to third coil patterns 21 to 23 of the first to third PCBs 11 to 13 are disposed at the same position and stacked.
  • the coil pattern has a position opposite to the magnet of the rotor at the same time, when the driving power supply (Vcc) is supplied, the combined torque can be generated as the current flow direction is set in the same direction between the coil patterns stacked in the same position have.
  • the single-phase motor using the stacked stator according to the present invention is one hall sensor (H1) is disposed on the PCB to form the stator for the rotor position detection, a dead point made of iron plate or silicon steel as a self-starting method ) Yoke can be adopted.
  • the dead point prevention yoke By using the dead point prevention yoke, the initial position of the rotor can be set to stop at a preset position. If the Hall sensor is installed in a position where dead point can be prevented in consideration of the initial position of the rotor, the self-starting phenomenon can be avoided. have.
  • FIG. 8 is an explanatory diagram for explaining the arrangement relationship between the dead point prevention yoke for the magnetic starting and the hall element in the single-phase motor according to the present invention.
  • the dead point prevention yoke 170 is the number of magnetic poles of the rotor.
  • the outer circumferential surface has a hexagonal shape, and the inner circumferential surface of the through hole is formed of a circular plate.
  • the dead point prevention yoke 170 preferably uses a soft magnetic material having a low coercive force such as silicon steel or pure iron so as to act as a yoke.
  • the center of each magnet is dead dead prevention yoke (Fig. 8) due to the magnetic phenomenon between the magnet 121 of the rotor 120 and the dead point prevention yoke 170.
  • the effective area width of 170 is located opposite the widest point (ie, the corner).
  • the Hall element H1 is preferably provided at a position shifted by 1/4 magnetic pole width (15 degrees in the case of a 6-pole rotor) or 3/4 magnetic pole width from the boundary surface 121g of the magnetic pole.
  • the reason why the Hall element H1 is provided at a position shifted by a quarter magnetic pole width from the boundary of the magnetic pole is that the magnetic flux generated from the magnet is the maximum at this point, so that the Hall element H1 has the highest sensitivity of the rotor position detection signal. Because it may occur.
  • the hole element H1 is disposed at the point of 1/4 pole width from the boundary surface 121g of the magnetic pole in the first to third coil patterns 21 to 23 of the stator, and at the same time, the radial pattern portion is disposed. Set so that one of (20g ⁇ 20l) is located.
  • the radial pattern portion 20l coincides with the Hall element H1 and becomes a quarter magnetic pole width from the boundary of the magnetic pole.
  • the rotor position detection signal having the best sensitivity can be obtained from the hall element H1
  • the magnetic flux generated from the magnet 121f is Since the radial pattern portion 20l is opposite to the maximum point, the magnetic starting is more easily performed.
  • the Hall element H1 is provided at a quarter pole width counterclockwise from the hexagonal corner of the dead point prevention yoke 170.
  • the Hall element H1 is installed at the 1/4 magnetic pole width point clockwise from the hexagonal corner of the dead point prevention yoke 170 to avoid the self-starting phenomenon. Will be.
  • the sensing coil pattern 26 for detecting the rotor position is disposed on the first PCB 11 together with the coil pattern 21 in order to implement a sensorless motor driving circuit according to the present invention.
  • the variant formed is shown.
  • the sensing coil pattern 26 should be selected from a space not overlapping with the first coil pattern 21 of the first PCB 11, that is, three grooves located between three protrusions forming a star shape.
  • a pair of through holes T8 and T9 for drawing both ends of the sensing coil pattern 26 to the fourth PCB 14 in a space not overlapping with the fifth coil patterns 21 to 25 should be disposed. It is necessary to consider the connection relationship with the motor drive circuit 30 formed in the fourth PCB (14).
  • the sensing coil pattern 26 is disposed in the groove of the first PCB 11 in consideration of the above matters, and has a fan shape as a whole and is formed in a spiral shape in a clockwise direction from the inside to the outside (CW). It consists of a pattern.
  • the sensing coil pattern 26 constituting the sensing coil Ls is disposed on the first layer PCB 11 of the stator 110, and preferably, the middle of the sensing coil pattern 26 is the boundary surface of the magnetic pole ( 121g) in a position shifted by 1/4 magnetic pole width.
  • the reason why the sensing coil pattern 26 is installed at this position is that when the initial state of the rotor 120 is considered, this point avoids the dead point and at the same time the magnetic flux generated from the magnet 121 is the maximum. 26) can generate the rotor position detection signal with the best sensitivity.
  • the sensing coil pattern 26 has a 1/4 magnetic pole width (15 degrees in the case of a 6-pole rotor) or 1/4 magnetic pole from the center of the magnetic poles from the boundary surface 121g of the magnetic poles. It is installed in the stator 110 in a position shifted by the width (15 degrees in the case of a 6-pole rotor).
  • the sensing coil pattern 26 is 1/4 magnetic pole width (15 degrees in the case of a 6-pole rotor) from the boundary surface 121g of the magnetic pole or 1/4 magnetic pole width (in the case of a 6-pole rotor) from the center of the magnetic pole. 15 °), when the driving power is applied to the motor driving circuit to start the rotor, the sensing coil pattern 26 moves away from the magnetic pole boundary (ie, the neutral point) of the rotor and the magnet 121b. Since the sensing coil pattern 26 is opposite to the point where the magnetic flux generated from the maximum is, the magnetic starting is easily performed.
  • the sensing coil pattern 26 is positioned at a position biased from the magnetic pole boundary surface 121g of the rotor positioned by the dead point prevention yoke 170 when the rotor is in an initial state and at the same time overlaps with one of the radial pattern portions.
  • the sensing coil pattern 26 can generate the rotor position detection signal with the best sensitivity, and the stator has a radial pattern at the rotor position that generates the maximum magnetic flux.
  • One of the parts is superimposed so that the largest magnetic field can interact with the maximum magnetic flux to achieve the optimum conditions needed to start the rotor.
  • the sensing coil pattern 26 is formed on the first PCB 11 facing the rotor, when the magnet is close to the sensing coil pattern 26 when the rotor rotates, the sensing coil pattern 26 is removed from the sensing coil pattern 26.
  • Induction electromotive force is generated by electromagnetic induction, and the motor driving circuit 30 changes the direction of the current flowing through the stator coil by turning on the switching element using this induction electromotive force.
  • the present invention it is possible to form the coil pattern for the stator coil by simultaneously patterning the copper foil of the PCB substrate by the arrangement process as shown in FIG. 9, so that the sensing coil pattern 26 can also be formed together, thereby increasing the manufacturing cost.
  • the sensorless motor driving circuit 30 is connected to a constant voltage circuit 90 that generates a constant driving power supply Vdd provided to a comparator at a later stage when an external power supply Vcc is applied to one side thereof.
  • the sensorless motor driving circuit 30 includes a first comparator OP1 configured using an operational amplifier and outputs a rotor position signal in which the high level H and the low level L are repeated periodically as the rotor rotates.
  • a rotor position signal generator 31 which is generated;
  • a second comparator (OP2) configured using an operational amplifier and switching the direction of the current flowing to the stator coil L1 according to the output level of the rotor position signal input from the rotor position signal generator 31.
  • Circuit 32 is
  • the rotor position signal generator 31 has a voltage divider circuit formed by a resistor R3 and a resistor R6 connected in parallel between the output terminal of the constant voltage circuit 90 and ground, so that the resistor R3 and the resistor (
  • the first reference voltage Vref1 constant from the connection point of R6 is applied to the non-inverting input terminal (+) of the first comparator OP1 through the resistor R4, and the inverting input terminal of the first comparator OP1 ( ⁇ ).
  • the sensing coil is connected to the first reference voltage Vref1 through a rotor position detecting sensing coil Ls constituted by the sensing coil pattern 26 shown in FIG. 9 from a connection point of the resistor R3 and the resistor R6. Induced electromotive force is applied in addition to Ls.
  • the resistor R7 connected between the non-inverting input terminal (+) and the output terminal of the first comparator OP1 is used to positively return the output of the first comparator OP1.
  • the output of the first comparator OP1 is a square wave. Output in the form
  • the rotor position signal generated from the rotor position signal generator 31 is applied to the inverting input terminal ( ⁇ ), and the resistance R3 and the resistance ( A second reference voltage Vref2 constant from the connection point of R6 is applied via the resistor R5.
  • the resistor R9 connected between the non-inverting input terminal (+) and the output terminal of the second comparator OP2 is used to positively return the output of the second comparator OP2, and the output of the second comparator OP2 is a square wave.
  • stator coil L1 constituted by the first to fifth coil patterns 21 to 25 and the resistor R8 are connected in parallel.
  • FG signal output unit 34 is connected to an output of the second comparator OP2, and the FG signal output unit 34 uses a resistor R10 to control the speed of the motor.
  • the FG signal output terminal is provided for receiving the feedback of the motor speed.
  • Unexplained reference numeral C1 is used to bypass high frequency noise included in the FG signal.
  • the rotor 120 in which the N pole and the S pole magnets are alternately rotated is first rotated N.
  • induction electromotive force i.e., back EMF
  • the direction of the current flowing along the sensing coil (Ls) is determined by the Enfer right hand law. do.
  • the change of the magnetic field flux (magnetic field strength) applied to the sensing coil Ls according to the rotation of the opposite N-pole magnet is generated in the form of a sine wave, and thus the induced electromotive force induced by the sensing coil Ls also changes with the magnetic field flux. Changes occur in the form of sinusoids with a phase difference of 1/4 (90 degrees).
  • the induced electromotive force induced in the sensing coil Ls is added to the first reference voltage Vref1 and input to the inverting input terminal ( ⁇ ) of the first comparator OP1.
  • the first comparator OP1 since the voltage of the inverting input terminal (-) is greater than the first reference voltage Vref1 applied to the non-inverting input terminal (+), the first comparator OP1 has a low level at the output of the first comparator OP1. A rotor position signal of level L is generated.
  • the second comparator OP2 has a larger second reference voltage Vref2 applied to the non-inverting input terminal (+) than the low position L applied to the inverting input terminal (-).
  • the output of the two comparator OP2 is at the high level H. Accordingly, in the stator coil L1, current flows from the output side of the second comparator OP2 toward the inverting input terminal ( ⁇ ) of the second comparator OP2.
  • induced electromotive force i.e., back EMF
  • the direction is determined by Enper's right-hand rule as opposed to the case where the N-pole magnets face each other.
  • the induced electromotive force induced by the sensing coil Ls is subtracted from the first reference voltage Vref1 and input to the inverting input terminal ( ⁇ ) of the first comparator OP1.
  • the first comparator OP1 since the voltage of the inverting input terminal (-) is smaller than the first reference voltage Vref1 applied to the non-inverting input terminal (+), the first comparator OP1 has a high output voltage. A rotor position signal of level H is generated.
  • the second comparator OP2 since the second comparator OP2 has a smaller second reference voltage Vref2 applied to the non-inverting input terminal (+) than the rotor position signal of the high level H applied to the inverting input terminal ( ⁇ ), The output of the two comparator OP2 is at the low level (L). Therefore, in the stator coil L1, current flows from the inverting input terminal (-) of the second comparator OP2 toward the output side of the second comparator OP2.
  • the direction of the current flowing through the stator coil L1 is periodically changed by the induced electromotive force (that is, back EMF) induced in the sensing coil Ls, and thus the hall (Hall) It is possible to periodically change the direction of the current flowing in the stator coil (L1) in the motor driving circuit 30 without using an expensive rotor position detection sensor such as a sensor. As a result, the rotor continues to rotate in the same direction as the rotating direction.
  • the sensorless single-phase motor 40 using the sensing coil Ls determines the rotation direction of the rotor in one of a clockwise direction (CW) and a counterclockwise direction (CCW) in advance to drive the rotation. Can not.
  • the stator coil periodically whenever the polarity of the rotor is changed.
  • the outer and inner connection pattern portions 20a to 20c and 20d to 20f of the first to fifth coil patterns 21 to 25 merely serve as paths through which current flows, and six radial pattern portions 20g to 20l. Force is generated in the tangential direction from the rotor 120 is made to rotate.
  • the direction of the current flowing through the coil between the adjacent radial pattern portions 20g to 20l is set to be reversed, and the magnetic poles of the magnets of the rotor 120 are also reversed, so that the magnets of the rotor are all in the same direction.
  • the pushing or pulling force is generated to rotate the rotor counterclockwise (CCW).
  • the rotor position signal generator 31 of the motor drive circuit 30 detects the magnetic pole of the rotor every time the rotor 120 rotates by 60 degrees (electric angle 180 degrees) with the machine angle to detect the high level (H) and the like. As the rotor position detection signal of the low level L is alternately generated, the switching circuit 32 changes the current flow direction of the driving current with respect to the first to fifth coil patterns 21 to 25.
  • the third embodiment of the present invention provides a structure in which the resistance of the stator coil is minimized for the stacked stator according to the first and second embodiments, thereby reducing the coil resistance and increasing the coil temperature and increasing the efficiency. It demonstrates through an example.
  • the stacked stator 110 according to the third embodiment of the present invention has the same basic structure as the stacked stator according to the first and second embodiments, and the difference is a plurality of coil patterns. (21-25).
  • Multi-layered stator 110 is a multi-layer substrate (10a) made of an insulating material is integrated with a plurality of layers are stacked; A plurality of coil patterns 21 to 25 made of a spiral conductive pattern obtained by patterning copper foil laminated on each of the multilayer substrates so as to form a plurality of turns necessary for forming a stator coil; And a plurality of through holes T21 to T27 which are plated in the through holes formed through the multilayer substrate 10a and connect the plurality of coil patterns 21 to 25.
  • the plurality of coil patterns 21 to 25 are patterned to have a spiral shape, and when viewed in large, a plurality of coil patterns 21 to 25 are annularly arranged in a circular substrate so as to alternately have three protrusions and grooves at 120-degree intervals. It has a form.
  • the plurality of coil patterns 21 to 25 are disposed along the circumferential direction at intervals on the inner circumference and the outer circumference, respectively, and include a plurality of inner and outer connection pattern portions 20a-20f having a curved shape; And a plurality of radial pattern portions 20g-20l which are connected to the adjacent outer connection pattern portions 20a-20c and the inner connection pattern portions 20d-20f and are disposed along the radial direction from the center.
  • the laminated stator 110 may be configured using a multilayer substrate 10a made of copper clad laminate (CCL) having copper foil laminated on each substrate 10, and after patterning and laminating copper foil of each substrate, conductive through It may be configured by forming the holes (T21 ⁇ T27).
  • CCL copper clad laminate
  • the multilayer substrate 10a is described by stacking the first to fourth PCBs 11 to 14 having a four-layer structure as an example.
  • the first to third PCBs 11 to 13 are annularly arranged on a circular substrate so as to have three protrusions and grooves alternately at intervals of 120 degrees on the upper surface of the substrate 10, respectively.
  • the third coil patterns 21 to 23 are formed, respectively, and for example, the fourth and fifth coil patterns 24 and 25 having a fan shape are separated and formed on the lowermost fourth layer PCB 14. For example, it is formed by finely patterning a conductive metal such as copper foil (Cu).
  • the first to third coil patterns 21 to 23 are formed in the same manner so as to have a spiral shape in the clockwise direction CW from the inside to the outside, respectively, and the fourth coil pattern 24 is the counterclockwise direction from the inside to the outside ( CCW) is formed to have a spiral shape, and the fifth coil pattern 25 is formed to have a spiral shape in a clockwise direction CW from the outside to the inside.
  • the first to third coil patterns 21 to 23 each include three outer and inner connection pattern portions 20a to 20c and 20d to 20f, and the outer connection pattern portions 20a to 20c and inner connection pattern portions, respectively.
  • Six radial pattern portions 20g to 20l connecting 20d to 20f are alternately connected to form a zigzag shape as a whole.
  • outer and inner connection pattern portions 20a to 20c and 20d to 20f are disposed along the circumferential direction at intervals on the outer circumference and the inner circumference, respectively, and the six radial pattern portions 20g to 20l are each as a whole.
  • the inner end portions have a pattern shape in which the intervals are narrowed by two so as to be set in a direction radiating from the center of the substrate 10.
  • the first to third coil patterns 21 to 23 may be formed of spiral coils having 24 turns 401 to 424, respectively, as shown in FIG. 13.
  • the radial pattern portions 20g to 20l of the first to third coil patterns 21 to 23 respectively generate torque by maintaining the 24 reference turns 401 to 424 set in advance, and the connection pattern portion ( 20a to 20c and 20d to 20f integrate twenty-four reference turns 401 to 424, for example, two by one (i.e., short circuit) to form twelve integrated turns 431 to 442 having a wide width.
  • the number of reference turns 401 to 424 integrated in the connection pattern parts 20a to 20c and 20d to 20f may be two to three, or the entire reference turns 401 to 424 may be integrated as in the fourth embodiment. It is also possible.
  • the resistance R is proportional to the length l and inversely proportional to the cross-sectional area S. Therefore, when the width of the integrated turns 431 to 442 is twice the reference turns 401 to 424, that is, when the width of the integrated turns 431 to 442 is 1/2, the 24 references of the connection pattern parts 20a to 20c and 20d to 20f are used. In the case of designing 12 integrated turns 431 to 442 by integrating two turns 401 to 424, the total resistance of the stator coils composed of the first to third coil patterns 21 to 23 may be integrated. Compared to the previous one, it is reduced to about one quarter.
  • the coil temperature can be lowered by reducing the energy loss by greatly reducing the resistance and copper loss, and as a result, the motor efficiency can be increased.
  • the radial pattern portions 20g to 20l are disposed at the same position in the first to third coil patterns 21 to 23. Has a structure. Therefore, as will be described later, in the case where three PCBs are stacked, the radial pattern portions 20g to 20l each have a position where the coil patterns stacked in three layers face the magnets of the rotor at the same time and the current flow direction is changed. The same set can produce a combined torque.
  • the stator 110 forms a stator coil by interconnecting the first to fifth coil patterns 21 to 25 formed on the multi-layer substrate 10a, and the radial pattern portions 20g to 20l in the stator coil.
  • the number of has the same value as the number of rotor poles, one half of the number of rotor poles and two times the number of rotor poles, and at the same time the angle between adjacent radial pattern portion (20g ⁇ 20l) is 360 / n is determined by any one of the same number as the number of rotor poles, one-half multiple of the rotor poles, and two times the number of rotor poles.
  • the angle between adjacent radial pattern portions 20g to 20l is 60 °, and the magnetic pole of the rotor rotated by being coupled thereto to form a single phase motor.
  • the number of (N pole magnet and S pole magnet) is configured to have six poles.
  • printed wirings 17 necessary for mounting and connecting various electronic components 16 are formed in a conductive pattern so as to integrally form the drive circuit 30 necessary for driving the single-phase motor.
  • the fourth PCB 14 may be configured to form fourth and fifth coil patterns 24 and 25 added to the first to third coil patterns 21 to 23 by utilizing the remaining space after mounting the driving circuit components.
  • the fourth and fifth coil patterns 24 and 25 may be omitted according to torque values required to rotate the rotor.
  • the fourth PCB 14 shown is a perspective view, and various patterns, that is, the fourth and fifth coil patterns 24 and 25, the printed wirings 17, and the electronic components 16 mounted thereon, are multi-layered substrates. It shows what is located in the back of (10a).
  • the fourth coil pattern 24 is a pattern formed in a fan shape so as to have a spiral shape in the clockwise direction CW from the outside to the inside
  • the fifth coil pattern 25 is the counterclockwise direction CCW from the inside to the outside. It is a pattern formed in a fan shape to have a spiral shape.
  • the first to fifth coil patterns 21 to 25 may include the first to seventh through holes T21 to T27 in the third embodiment.
  • the 12 interconnection turns 431 to 442 are integrated by combining (ie, shorting) 24 reference turns 401 to 424 for the connection pattern parts 20a to 20c and 20d to 20f. Patterned to form one stator coil.
  • the inside of the hole is plated or filled with a conductive material.
  • the first to third layer PCBs 11 to 13, in which the first to third coil patterns 21 to 23 are formed on the upper surface of the substrate 10, respectively, are coil pattern layers.
  • the fourth layer PCB 14 forms a driving circuit layer on which the motor driving circuit 30 is mounted.
  • the third PCB 13 has a through hole T23 and a through hole T24 for connecting the fourth coil pattern 24 and the fifth coil pattern 25 which are formed separately on the upper side and the lower side of the fourth PCB 14.
  • the seventh jumper wire pattern J22 connecting the through hole T25 and the through hole T26 is formed, and the fourth PCB 14 connects the through hole T24 and the through hole T25.
  • An eight jumper line pattern J23 is formed along the periphery of the fifth coil pattern 25.
  • the first to fifth coil patterns 21 to 25 may include through holes T21 to T27 and sixth to eighth jumper wire patterns J21 to. J23) are interconnected to form one stator coil.
  • the end portion E1 of the first coil pattern 21 of the first PCB 11 has the start portion S2 of the second coil pattern 22 of the second PCB 12 through the through hole T22.
  • the end portion E2 of the second coil pattern 22 is connected to the start portion S3 of the third coil pattern 23 of the third PCB 13 through the through hole T27.
  • the end portion E3 of the third coil pattern 23 is connected to the start portion S3 of the fourth coil pattern 24 of the fourth PCB 14 through the through hole T21 and the fourth coil.
  • the end portion E4 of the pattern 24 and the start portion S5 of the fifth coil pattern 25 may include a sixth jumper wire pattern J21 connecting the through hole T23 and the through hole T24; Interconnected through an eighth jumper pattern J23 connecting the through hole T24 and the through hole T25 and a seventh jumper pattern J22 connecting the through hole T25 and the through hole T26. This is done.
  • one end of the stator coil that is, the end portion of the fifth coil pattern 25 is connected to the first output terminal Out1 of the motor driving circuit 30, and the other end of the stator coil, that is, the first coil pattern 21.
  • the start portion S1 of) is connected to the second output terminal Out2 of the motor driving circuit through the through hole T27.
  • the first to the fifth coil pattern (the first to the fifth coil pattern 21 to 23 so that there is a region where the coil pattern does not overlap each other in the inner peripheral portion and the outer peripheral portion of the outer connection pattern portions 20a to 20c
  • the width of 21-25 is set and the through-holes T21-T27 are arrange
  • the motor driving circuit 30 for driving the single-phase motor is mounted on the fourth PCB 14, but the motor driving circuit may be configured separately. That is, when sufficient space is not secured between the stator and the support on which the stator is mounted, only the minimum driving circuit components may be mounted on the rear surface of the fourth PCB 14.
  • the current flow according to the rotational position of the rotor may include the first coil pattern 21 of the first PCB 11 and the second to fifth coil patterns of the second to fourth PCBs 12-14. Since the current flows to 22 to 25 are the same, only the first coil pattern 21 of the first layer PCB 11 will be described.
  • the illustrated single phase motor 40 has a structure in which the stator 110 and the rotor 120 having a 6-slot-6 pole structure are arranged opposite to each other in an axial type as a single phase motor. It is expressed.
  • the motor driving circuit 30 for the single phase motor detects a magnetic pole of the magnet from the hall sensor H1 and generates a pair of first rotor position detection signals having opposite polarities, and thus the first and second switching transistors. One of which is turned on and the other of which is turned off, determines the flow direction of the current flowing through the stator coil connected between the first and second switching transistors.
  • the Hall sensor H1 is provided at a position shifted by 15 ° from the boundary surface 121g between the N-pole magnet 121e and the S-pole magnet 121f.
  • the hall sensor H1 When the rotor 120 is in the initial position (that is, 0 °), if the driving power supply Vcc is supplied to the motor driving circuit 30, the hall sensor H1 will turn the S pole magnet 121f of the rotor 120. Recognizing and generating a pair of first rotor position detection signals containing the rotational direction of the rotor (i.e., counterclockwise CCW) and applying them to the two first and second switching transistors of the motor driving circuit 30, As the first switching transistor is turned on and the second switching transistor is turned off, the current flow direction of the driving current for the stator coils, that is, the first to fifth coil patterns 21 to 25 is determined.
  • Each of the first to fifth coil patterns 21 to 25 has through-holes T21 to T27 and jumper wire patterns J21 to the same flow direction of driving current flowing through the radial pattern portions 20g to 20l at the same positions. Interconnection is achieved through J23).
  • the radial pattern portions 20g to 20l are oriented in the radial direction (i.e., the normal direction) perpendicular to the rotational direction (circumferential direction) of the rotor 120, and thus counterclockwise (CCW) according to Fleming's left hand law. ),
  • the tangential force F is generated.
  • the outer and inner connection pattern portions 20a to 20c and 20d to 20f of the first to fifth coil patterns 21 to 25 merely serve as paths through which current flows, and six radial pattern portions 20g to 20l. Force F is generated in the tangential direction from the rotation of the rotor 120 is made.
  • the direction of the current flowing through the coil between the adjacent radial pattern portions 20g to 20l is set to be reversed, and the magnetic poles of the magnets of the rotor 120 are also reversed, so that the magnets of the rotor are all in the same direction.
  • the pushing or pulling force is generated to rotate the rotor counterclockwise (CCW).
  • the radial pattern portions 20g to 20l are connected to each other so that current flows in the same direction, and tangential to the rotor according to the current flow. Rotational force in the direction can be generated.
  • the Hall sensor H1 is positioned at the boundary surface 121g of the N pole magnet 121a and the S pole magnet 121f. It does not recognize the stimulus and cannot determine the direction of current flow.
  • the Hall sensor H1 When the rotor 120 is continuously rotated by rotational inertia and rotates 60 ° (180 ° electric angle) at the machine angle beyond 45 ° (electric angle 135 °) at the machine angle, the Hall sensor H1 becomes an N-pole magnet ( 121a). In this case, the Hall sensor H1 generates a pair of second rotor position detection signal outputs of opposite polarity to the first rotor position detection signal and applies it to the first and second switching transistors. When turned off and the second switching transistor is turned on, the current flow direction of the driving current for the stator coils, that is, the first to fifth coil patterns 21 to 25 is reversed.
  • the motor driving circuit 30 detects the magnetic pole of the rotor whenever the Hall sensor H1 rotates by 60 degrees (electric angle 180 degrees) at the machine angle, thereby detecting the first rotor position detection signal and the second rotor position detection signal.
  • the first and second switching transistors are turned on and off alternately to change the current flow direction of the drive current for the first to fifth coil patterns (21 to 25).
  • the stacked stator 110 uses the conductive pattern coils 21 to 25 formed on the multilayer PCB and implements the stacked type in a stacked type, thereby improving productivity and reducing cost. Can be implemented.
  • the stacked stator according to the present invention includes a radial pattern portion (20g ⁇ 20l) oriented in the radial direction so that the coil pattern of each layer to maximize the torque generation efficiency, the stator when the rotor 120 rotates It is designed to maximize the total area of the portions in which the radial pattern portions 20g to 20l and the magnets 121a to 121f of the coil (winding) face each other.
  • the rotor 120 forms a magnet in a ring shape as shown in FIG. 17, and the width of the ring is formed at least larger than the length of the radial pattern portions 20g-20l to form the radial pattern portions 20g-.
  • the total area of the portion where the radial pattern portions 20g to 20l and the magnets 121a to 121f face each other can be maximized, so that torque generation can be maximized.
  • FIG. 14 is an explanatory diagram for explaining an arrangement relationship between a dead point prevention yoke for a magnetic start and a hall element in a single-phase motor using the stacked stator 110 according to the third embodiment.
  • the dead point prevention yoke 170 is shown in FIG. 14.
  • the outer circumferential surface is formed in a hexagonal shape, and the inner circumferential surface of the through hole is formed of a flat plate having a circular shape.
  • the center of each magnet is dead point as shown in FIG. 14 due to magnetic phenomenon between the magnet 121 of the rotor 120 and the dead point prevention yoke 170.
  • the effective area width of the prevention yoke 170 is positioned opposite the widest point (ie, the corner).
  • the Hall element H1 is preferably provided at a position shifted by 1/4 magnetic pole width (15 degrees in the case of a 6-pole rotor) or 3/4 magnetic pole width from the boundary surface 121g of the magnetic pole.
  • the reason why the Hall element H1 is installed at a position shifted by a quarter pole width from the magnetic pole boundary 121g is that the magnetic element generated from the magnet is the maximum, so that the Hall element H1 is the rotor having the best sensitivity. This is because the position detection signal can be generated.
  • the hole element H1 is disposed at the point of 1/4 pole width from the boundary surface 121g of the magnetic pole in the first to third coil patterns 21 to 23 of the stator, and at the same time, the radial pattern portion is disposed. Set so that one of (20g ⁇ 20l) is located.
  • one of the radial pattern portions 20g to 20l coincides with the Hall element H1, and a quarter magnetic pole width is increased from the boundary surface 121g of the magnetic pole.
  • the driving power is applied to the motor driving circuit 30 and the rotor is started in the state where it is disposed, the rotor position detection signal having the best sensitivity can be obtained from the hall element H1 and the magnet 121f. Since the radial pattern portion 20l is opposed to the point where the magnetic flux generated from the maximum is the maximum, magnetic starting is more easily performed.
  • the Hall element H1 is provided at a quarter pole width counterclockwise from the hexagonal corner of the dead point prevention yoke 170.
  • the Hall element H1 is installed at the 1/4 magnetic pole width point clockwise from the hexagonal corner of the dead point prevention yoke 170 to avoid the self-starting phenomenon. Will be.
  • the stacked stator 110 is formed such that the first to third coil patterns 21 to 23 each have a spiral shape in a clockwise direction CW.
  • the radial pattern portions 20g to 20l hold 24 reference turns 401 to 424, and the 24 reference turns 401 to 424 of the connection pattern portions 20a to 20c and 20d to 20f are integrated by two. Designed with 12 integrated turns (431-442).
  • the first to third coil patterns 21 to 23, and the radial pattern parts 20 g to 20 l maintain 24 reference turns 401 to 424, and the connection pattern part (
  • the 24 reference turns 401-424 of 20a-20c, 20d-20f are all the same structure except that they are integrated into one.
  • all of the 24 reference turns 401-424 of the connection pattern portions 20a-20c, 20d-20f have four to six times wider widths than the reference turns 401-424.
  • the overall resistance of the stator coils composed of the first to third coil patterns 21 to 23 is greatly reduced to 1/4 or less as compared with before the integration is performed. .
  • the laminated stator according to the fourth embodiment can lower the coil temperature by reducing the energy loss by greatly reducing the resistance and copper loss than the third embodiment, and as a result, the motor efficiency can be increased.
  • all of the first to fourth coil patterns 21 to 24 are formed to have a spiral shape in the clockwise direction CW, and only the fourth coil pattern 24 is formed. Only five radial pattern portions 20g to 20k are formed, and one radial pattern portion 20l is omitted and the motor driving circuit 30 is disposed in place.
  • the coil patterns 21 to 23 of the first to third PCBs 11 to 13 are formed in the same shape and are formed to have a spiral shape in the clockwise direction CW. Same as the third embodiment.
  • the first to fourth coil patterns 21 to 24 are disposed at the same position in the same shape, and the first to the second stators are formed through the through holes T31 to T34. When the four coil patterns 21 to 24 are connected, one stator coil is formed.
  • the winding of the first coil pattern 21 of the first PCB 11 in the clockwise direction at the start portion S11 is followed by the end portion E11 of the through hole T32.
  • the start portion S12 of the second coil pattern 22 of the second PCB 12 is connected to the third PCB through the through hole T33. It is connected to the start part S13 of the 3rd coil pattern 23 of (13).
  • end portion E13 of the third coil pattern 23 is connected to the start portion S14 of the fourth coil pattern 24 of the fourth PCB 14 through the through hole T34 and the fourth coil.
  • the end portion of the pattern 24 is connected to the extension wiring.
  • one end of the stator coil that is, the end portion of the fourth coil pattern 24 is connected to the first output terminal Out1 of the motor driving circuit 30 through the extension wiring, and the other end of the stator coil, that is, the first portion of the stator coil.
  • the start part S11 of the coil pattern 21 is connected to the second output terminal Out2 of the motor driving circuit 30 through the through hole T31.
  • all of the motor driving circuits 30 mounted on the fourth PCB 14 are disposed on the left side.
  • the stacked stator according to the fourth embodiment rotates the opposite rotor in the same manner as the first embodiment.
  • the stacked stator according to the fourth embodiment six radial pattern parts of the first to fourth coil patterns 21 to 24 of the first to fourth PCBs 11 to 14 are disposed at the same position and stacked.
  • the coil pattern has a position opposite to the magnet of the rotor at the same time, when the driving power supply (Vcc) is supplied, the combined torque can be generated as the current flow direction is set in the same direction between the coil patterns stacked in the same position have.
  • the sensing coil pattern 26 is formed on the first PCB 11 facing the rotor, in the third and fourth embodiments, when the magnet is close to the sensing coil pattern when the rotor is rotated.
  • Induction electromotive force is generated by the electromagnetic induction from the sensing coil pattern, and the motor driving circuit 30 may change the direction of the current flowing through the stator coil by turning on the switching element using the induction electromotive force.
  • Figure 16 shows a slim single-phase motor implemented using a stacked stator according to the present invention
  • Figure 17 shows a slim in-car sensor using a slim single-phase motor according to the present invention.
  • the slim in-car sensor 100 according to the present invention is implemented using the stacked stator 110 according to the present invention inside the cylindrical housing 200.
  • Single-phase motor 40 is housed.
  • the single phase motor 40 constitutes an inspiration sensor aspiration motor.
  • the housing 200 has an inlet 211 through which air is sucked on one side, and an upper housing 210 having a cylindrical shape, and an upper end snapped to a lower portion of the upper housing 210 and forming a space therein. And a lower housing 220 for sealing.
  • the single phase motor 40 includes a stacked stator 110, a rotor 120, a rotation shaft 140, a sleeve bearing 180, and a bearing holder 300.
  • the terminal assembly 160 applies a driving power (Vcc) or the like from a climate control module (CCM) inside the vehicle to the motor driving circuit 30 formed integrally with the stacked stator 110, and a frequency generator (FG).
  • Vcc driving power
  • CCM climate control module
  • FG frequency generator
  • a plurality of terminal pins 162 are integrated by the terminal supporter 161, the lower end portion is fixed to the lower housing 220 and extends into the terminal guide 221, and the upper end portion is integrally formed with the stacked stator 110. It is electrically connected to the formed motor driving circuit 30 and is physically fixed while penetrating the multilayer board 10a. An external connector connected to the air conditioning control device (CCM) is inserted into the terminal guide 221 to be connected to the terminal pin 162.
  • CCM air conditioning control device
  • the rotor 120 is disposed to face the axial gap with a predetermined gap, and a plurality of magnets 121 in which the N pole and the S pole are alternately disposed on the bottom thereof are annularly arranged.
  • the annular back yoke 122 is disposed on the magnet 121 to form a magnetic circuit path, and the plurality of magnets 121 and the back yoke 122 are annularly integrated by the rotor support 123.
  • a plurality of blades protrude from the upper surface of the rotor support 123, the impeller 130 is integrally formed, and the upper end of the rotating shaft 140 is inserted in the center and integrally formed.
  • the rotor 120 and the impeller 130 are integrally formed by arranging the back yoke 122 and the magnet 121 in an annular shape in the mold, and arranging the rotation shaft 140 vertically in the center to perform insert injection molding.
  • the back yoke 122, the magnet 121, and the rotation shaft 140 are integrally formed with the rotor support 123, and an impeller (circumferential direction) is formed on the upper surface of the rotor support 123. 130 is integrally formed.
  • the central portion of the rotor support 123 is formed with a groove 124 upward in the bottom surface, the groove 124 in the through hole of the laminated stator 110 from the base plate 310 of the bearing holder 300 (
  • a cylindrical boss 330 is provided which protrudes from the bottom through the top 15 and has a groove 331 from the top to the bottom in order to receive the sleeve bearing 180 in the center.
  • the sleeve bearing 180 is inserted into the recess 331 of the cylindrical boss 330 to be compressed, and the rotation shaft 140 is rotatably coupled to the through hole of the sleeve bearing 180.
  • the upper portion of the cylindrical boss 330 is coupled to the anti-scattered oil cap 340 for blocking the leakage of the oil filled in the groove 331 in accordance with the rotation of the rotary shaft 140.
  • the base plate 310 of the bearing holder 300 is disposed in a direction perpendicular to the cylindrical boss 330, and a thrust plate for supporting the rotating shaft 140 of the rotor 120 at the center portion of the base plate 310.
  • plate (or bearing seat) 320 is disposed, and a dead point prevention yoke 170 (see FIG. 8) is disposed outside the thrust plate 320.
  • the thrust plate 320 and the dead point prevention yoke 170 may be integrally integrated with an insert molding method when injection molding the base plate 310 and the boss 330 of the bearing holder 300.
  • the lower side 217 of the upper housing 210 is formed with a plurality of through holes for discharging the air introduced through the inlet 211 in the lateral direction, the impeller 130 formed integrally with the rotor 120 is It is arranged.
  • the upper housing 210 has a bridge 212 for installing the temperature sensor 150 in the middle of the upper portion 216 and the lower portion 217, the suction port 211 in the center of the bridge 212
  • the temperature sensor 150 is connected to a circuit portion formed at one end of the lead wire 151 in the stacked stator 110 and drawn out to the upper portion 216 of the upper housing 210 through the through hole 214 formed in one wall. After that, it extends to the inlet 211 along the bridge 212 and the temperature sensor support 213 so that the temperature sensor 150 is located at the inlet 211.
  • the temperature sensor 150 more accurately measures the temperature of the air introduced when the air in the vehicle is sucked through the inlet 211 of the upper housing 210 as the impeller 130 rotates together with the rotor 120.
  • the measured temperature value is transmitted to the air conditioning control device (CCM) through the terminal pin 160 to be used for controlling the indoor temperature of the vehicle.
  • CCM air conditioning control device
  • the upper portion 216 of the upper housing 210 is configured to have a smaller diameter than the lower portion 217, and the inca sensor 100 is used as a boundary between the upper portion 216 and the lower portion 217, for example.
  • a shock absorbing pad 218 is disposed to block noise generated by the operation of the aspiration motor 40 from entering the room through the grill or the instrument panel when installed and used on the rear surface of the grill or the instrument panel of the vehicle. It is.
  • a slim inca sensor showing a modified embodiment according to the present invention is identical except for some parts when compared with the embodiment shown in FIG. 17. Accordingly, the same parts are assigned the same part numbers, and detailed description thereof will be omitted.
  • the modified embodiment is different from the embodiment housing of FIG. 17 in that the lower housing 220a is integrally formed with the bearing holder 300 by injection molding.
  • the embodiment housing 200 of FIG. 17 has a space in which the lower housing 220 accommodates the bearing holder 300 and the terminal assembly 160, while the lower housing 220a of the variant embodiment of FIG. 18 is merely a terminal assembly. It has a space for accommodating 160.
  • FIG. 18 is the same as the embodiment of FIG. 17 except that the number of parts to be managed is reduced by one.
  • the temperature sensor 150 accurately measures the temperature of the introduced air, and the measured temperature value is transmitted to the air conditioning control device (CCM) through the terminal pin 160.
  • CCM air conditioning control device
  • the stacked stator 110 can produce a plurality of batches at a time by a batch process, the productivity is high, the price competitiveness is high, and a motor driving circuit can be embedded, so that an additional control PCB can be reduced. have.
  • the stacked stator 110 includes radial pattern parts 20g to 20l oriented in the radial direction so that the coil pattern of each layer maximizes the torque generation efficiency, so that torque generation is maximized. Can be obtained. As a result, the suction amount of the air sucked from the inside of the vehicle by the aspiration motor can be increased to achieve more precise temperature sensing.
  • the present invention provides a laminated stator which can be implemented in a slim type by using a multilayer printed circuit board (PCB) having a coil pattern in which torque generation can be obtained to the opposite rotor, a single-phase motor, an aspiration motor, and an in-car using the same. Applicable to the sensor.
  • PCB printed circuit board

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Windings For Motors And Generators (AREA)
  • Brushless Motors (AREA)

Abstract

본 발명은 대향한 로터에 토크 발생이 최대로 얻어질 수 있는 다층 기판을 이용한 적층형 스테이터, 이를 이용한 인카 센서에 관한 것이다. 본 발명의 적층형 스테이터는 다층 기판; 상기 다층 기판의 각 기판 위에 복수의 턴을 형성하도록 나선형상으로 패터닝되고 스루홀을 통하여 상호 연결된 복수의 코일 패턴; 상기 다층 기판에 배치되며, 로터가 초기상태일 때, 로터 자극의 경계면으로부터 편위된 위치에 배치되어 로터의 자극을 검출하는 홀센서; 및 상기 로터가 초기상태일 때 상기 홀센서가 로터의 자석 경계면으로부터 편위된 위치에 위치설정되게 상기 로터의 위치를 설정하는 데드 포인트 방지 요크;를 포함하며, 상기 나선형상의 코일 패턴은 각각 방사방향을 따라 배치되는 복수의 방사방향패턴부와 상기 복수의 방사방향패턴부를 상호 연결하는 복수의 내측 및 외측 연결패턴부를 포함하며, 상기 코일 패턴은 단상 모터용 스테이터 코일을 형성하는 것을 특징으로 한다.

Description

다층 기판을 이용한 적층형 스테이터와 이를 이용한 인카 센서
본 발명은 대향한 로터에 토크 발생이 최대로 얻어질 수 있는 다층 인쇄회로기판(PCB)을 이용한 적층형 스테이터와 이를 이용한 인카 센서에 관한 것이다.
일반적으로 자동차는 실내의 난방 또는 냉방을 위한 공조장치가 내장되어 있다.
자동차의 공조장치는 운전자의 편리성을 향상시키기 위하여 자동화 장치로 전환되고 있고, 이를 위해 자동차 실내 온도를 자동으로 측정하기 위한 인카 센서(In-Car sensor)가 필수적으로 공조장치에 포함된다.
인카 센서(In-Car Sensor)는 자동차의 그릴 또는 인스트루먼트 패널 등의 배면에 설치되며, 어스피레이터(aspirator) 방식 또는 송풍 방식에 의해 자동차 실내 공기를 흡입하여 자동차 외부 또는 실내로 공기를 배출시키고, 공기의 흐름 내에 설치된 온도 센서로 자동차 실내 공기의 온도를 감지한다.
여기서, 어스피레이터 방식의 인카 센서는 자동차의 실내 온도를 측정하기 위하여 자동차 실내 공기를 흡입하기 위하여 로터에 임펠러가 일체로 형성된 어스피레이션 모터(Aspiration Motor)를 사용한다.
BLDC 모터는 동적 반응이 빠르고, 낮은 로터 관성을 가지고 있으며, 속도 제어가 용이한 동기 전동기이다.
어스피레이션 모터는 구조가 간단하고, 공조장치와의 공조를 위해 제어성이 좋은 브러시레스 직류(BLDC) 모터가 사용되며, 그 구조는 박형화를 위해 축방향에 공극을 갖는 액셜 갭 구조의 디스크형 BLDC 모터를 채용하고 있다.
한편, 어스피레이션 모터는 크기를 줄이고, 원가 부담을 고려하여 단일 코일을 갖는 단상 모터가 사용되고 있다. 단상 모터에서 단일의 스테이터 코일은 4각형 또는 3각형의 코어레스/보빈레스 타입으로 권선되어 PCB(인쇄회로기판) 위에 실장되어 사용되고 있다.
이러한 단상 모터에서 로터를 회전시키는 토크(Torque)(즉, 회전 모멘트)는 자기장 속에 놓인 전류가 흐르는 도선에 발생하는 힘 벡터와 회전 중심과 힘의 작용점 사이의 거리 백터의 백터 곱으로 표현된다.
따라서, 종래의 3각형 형상의 스테이터 코일은 로터가 회전할 때 스테이터 코일(권선)의 꼭지점 부분을 제외한 코일(권선)의 직선부와 자석이 대향하는 부분의 총면적이 작기 때문에 로터를 회전시키기 위한 토크가 작게 발생되는 문제가 있다.
또한 이러한 단상 모터는 단일의 스테이터 코일이 4각형 또는 3각형의 코어레스/보빈레스 타입으로 권선되어 PCB(인쇄회로기판) 위에 접착제로 부착하여 사용되므로, 저렴한 비용으로 제조하기 어렵고 조립불량이 발생할 수 있으며, 후막 구조를 갖는다.
한국 등록특허공보 제10-1491051호(특허문헌 1)에는 종래의 코어레스/보빈레스 타입으로 권선된 코일을 PCB(인쇄회로기판) 위에 부착하는 공정을 개선하기 위하여 베어링 홀더에 일체로 보빈을 형성하고 보빈에 코일을 권선한 구조를 제안하고 있다. 그러나 특허문헌 1의 구조는 후막 구조이고, 코일권선 생산성이 낮으며, 모터구동회로를 구비하기 위해 별도의 제어용 PCB를 채용하여야 하는 문제가 있다.
한편, 단상 모터로서 종래의 브러시레스 직류(BLDC) 모터는 로터의 자극을 검출하여 스테이터 코일에 대한 구동전류의 절환신호를 발생하기 위한 홀(Hall)소자가 필요하며, 홀소자는 고가이므로 1개만을 사용한 구동회로를 사용하고 있다.
1개의 홀소자를 사용하는 경우는 홀소자가 로터 자극의 경계면에 위치할 때 홀소자의 자극검출이 이루어지지 않아 스테이터 코일에 대한 전류공급이 이루어지지 못하므로 자기기동이 이루어지지 못하는 데드 포인트(Dead Point)가 존재한다.
이러한 단일 홀소자 방식에서는 자기기동 방안으로서 스테이터에 홀소자가 로터의 자극 경계면(즉, 중성점)을 벗어나도록 보조자석을 사용하는 방법, 코일배설부에 자성체 나사를 설치하는 방법, 스테이터 요크의 형상을 특수하게 설계하여 사용하는 방법이 있다.
상기 홀소자를 사용하는 경우는 고가의 홀소자 사용과 동시에 자기기동을 위해 추가적인 부품을 장착하여야 하는 원가 증가요인이 발생하므로, 홀소자를 사용하지 않고 원가 증가요인을 최소화하면서 로터위치검출신호를 발생하는 방안이 요구되고 있으며, 홀소자를 사용하지 않고 로터위치검출신호를 검출하는 다양한 센서레스 모터구동방식이 제안되고 있다.
한편, 종래에 스테이터 코일을 병렬로 연결하려면 2개 코일의 스타트와 엔드 부분을 묶어서 2개의 와이어를 동시에 권선하여야 하는 어려움이 있어 단상 모터에서는 스테이터 코일을 병렬로 구성하기 어렵다.
그러나, 높은 구동 RPM과 구동 토크가 필요한 단상 모터는 스테이터 코일을 병렬로 연결하면서도 생산성과 효율이 높은 방식으로 설계되는 것이 요구된다.
따라서, 본 발명은, 상기와 같은 문제점을 해결하기 위해 안출된 것으로, 그 목적은 각각 코일 패턴이 형성된 다층 인쇄회로기판(PCB)을 이용하여 슬림형 스테이터를 구현할 수 있는 다층 인쇄회로기판을 이용한 적층형 스테이터와 이를 이용한 인카 센서를 제공하는 데 있다.
본 발명의 다른 목적은 각 층의 코일 패턴이 토크 발생 효율을 극대화할 수 있는 방사방향으로 배향된 방사방향패턴부를 포함하여, 토크 발생이 최대로 얻어질 수 있어 모터 효율 상승을 도모할 수 있는 적층형 스테이터와 이를 이용한 인카 센서를 제공하는 데 있다.
본 발명의 또 다른 목적은 방사방향패턴부는 미리 설정된 수의 기준 턴을 유지하여 토크를 발생시키고, 연결패턴부는 복수 개씩 기준 턴을 통합(즉, 단락(short-circuit))시켜서 넓은 폭을 갖도록 패터닝하여 코일의 저항을 최소화함에 의해 저항(resistance)과 동손(coil loss)을 줄여서 코일 온도를 낮추고 효율은 증대시킬 수 있는 적층형 스테이터와 이를 이용한 인카 센서를 제공하는 데 있다.
본 발명의 다른 목적은 방사방향패턴부는 코일을 구성하는 턴의 밀도를 최대한 높게 하여 토크를 증대시키고, 연결패턴부는 개별 턴을 통합(즉, 단락)시켜서 저항을 최소화한 적층형 스테이터와 이를 이용한 인카 센서를 제공하는 데 있다.
본 발명의 또 다른 목적은 로터와 대향한 최상층의 인쇄회로기판에 로터위치를 검출하기 위한 센싱 코일 패턴을 동시에 배치함에 의해 저렴하고 간단하게 센서레스(sensorless) 모터구동회로를 구현할 수 있는 적층형 스테이터 및 이를 이용한 슬림형 인카 센서를 제공하는 데 있다.
본 발명의 제1특징에 따르면, 본 발명은 다층 기판; 상기 다층 기판의 각 기판 위에 복수의 턴을 형성하도록 나선형상으로 형성되고 도전성 스루홀을 통하여 상호 연결된 복수의 코일 패턴; 상기 다층 기판에 배치되며, 로터가 초기상태일 때, 로터 자극의 경계면으로부터 편위된 위치에 배치되어 로터의 자극을 검출하는 홀센서; 및 상기 로터가 초기상태일 때 상기 홀센서가 로터의 자석 경계면으로부터 편위된 위치에 위치설정되게 상기 로터의 위치를 설정하는 데드 포인트 방지 요크;를 포함하며, 상기 나선형상의 코일 패턴은 각각 방사방향을 따라 배치되어 로터를 회전시키는 토크를 발생하는 복수의 방사방향패턴부와 상기 복수의 방사방향패턴부를 상호 연결하는 복수의 내측 및 외측 연결패턴부를 포함하며, 상기 코일 패턴은 단상 모터용 스테이터 코일을 형성하는 적층형 스테이터를 제공한다.
상기 홀센서는 로터가 초기상태일 때 데드 포인트 방지 요크에 의해 위치설정된 로터의 자극 경계면으로부터 편위된 위치에 위치설정됨과 동시에 상기 방사방향패턴부 중 하나와 중첩된 위치에 배치될 수 있다.
또한, 상기 나선형상의 코일 패턴은 상기 다층 기판의 중앙부에 형성된 관통구멍의 외주에 돌기부와 요홈부가 반복되는 패턴을 가질 수 있다.
더욱이, 상기 다층 기판은 복수의 코일 패턴이 각각 형성되는 복수의 기판; 및 상기 복수의 코일 패턴에 구동전류를 인가하기 위한 모터구동회로가 실장된 최하층 기판;을 포함할 수 있다.
상기 복수의 코일 패턴의 복수의 방사방향패턴부는 동일한 방향으로 전류가 흐르도록 결선이 이루어지며, 전류 흐름에 따라 로터에 접선방향의 회전력을 발생할 수 있다.
상기 다층 기판의 각 기판 위에 형성된 복수의 코일 패턴은 각각 동일한 위치에 동일한 형상으로 이루어지거나, 동일한 형상으로 이루어지고, 짝수층에 배치된 코일 패턴은 홀수층에 배치된 코일 패턴에서 관통구멍의 중심을 기준으로 (360°/방사방향패턴부의 수) 만큼 회전된 위치에 배치될 수 있다.
상기 코일 패턴의 스타트 부분과 엔드 부분은 코일을 형성하는 부분보다 더 넓게 형성되며, 적어도 하나의 스루홀과 상기 스루홀을 둘러싸는 솔더링 랜드가 배치될 수 있다.
상기 데드 포인트 방지 요크는 스테이터의 하부에 적층 배치되며, 외주가 (자극 수)/N(여기서 N은 자극 수의 약수)개의 다각형 형상을 이루며, 내주면이 원형으로 이루어지고, 상기 홀센서는 자극의 경계면 또는 자극의 센터로부터 1/4 자극폭 만큼 편위된 위치에 설치될 수 있다.
본 발명의 제2특징에 따르면, 본 발명은 다층 기판; 및 상기 다층 기판의 각 기판 위에 복수의 기준 턴을 형성하도록 나선형상으로 패터닝되고 스루홀을 통하여 상호 연결된 복수의 코일 패턴;을 포함하며, 상기 복수의 코일 패턴은 각각 방사방향을 따라 간격을 두고 배치되어 로터를 회전시키는 토크를 발생하는 복수의 방사방향패턴부와 상기 인접한 방사방향패턴부의 내측 단부와 외측 단부를 각각 상호 연결하는 복수의 연결패턴부를 포함하고, 상기 복수의 연결패턴부는 각각 복수 개씩 기준 턴이 통합되어 적어도 하나의 통합 턴을 갖는 적층형 스테이터를 제공한다.
상기 통합 턴은 상기 기준 턴보다 넓은 폭을 가지며, 상기 통합 턴은 2 내지 3개씩 기준 턴이 통합될 수 있다.
또한, 상기 복수의 연결패턴부는 각각 하나의 통합 턴으로 이루어질 수 있다.
상기 코일 패턴은 상기 다층 기판의 중앙부에 형성된 관통구멍의 외주에 돌기부와 요홈부가 반복되는 지그재그 패턴을 가질 수 있다.
상기 다층 기판의 각 기판 위에 형성된 복수의 코일 패턴은 각각 동일한 형상으로 이루질 수 있다.
또한, 본 발명에 따른 적층형 스테이터는 상기 다층 기판의 각 기판 위에 형성된 복수의 코일 패턴을 상호 연결하기 위한 점퍼선 배선을 더 포함할 수 있다.
상기 방사방향패턴부의 수는 로터 자극수와 동일한 수, 로터 자극수의 1/2 배수 및 로터 자극수의 2배수 중 어느 하나로 설정될 수 있다.
본 발명의 제3특징에 따르면, 본 발명은 회전축; 상기 회전축이 중앙부에 지지되고 다수의 N극 자석과 S극 자석이 교대로 배치된 로터; 상기 로터의 일단에 고정되고, 상기 로터와 함께 회전하는 임펠러; 상기 회전축을 회전 가능하게 지지하는 베어링; 상기 베어링을 수용하여 고정하는 베어링 홀더; 상기 베어링 홀더가 통과하는 관통구멍이 중앙에 형성된 적층형 스테이터; 상기 적층형 스테이터를 내부에 지지하는 하부 하우징; 상기 하부 케이스에 대향하여 배치되며 임펠러가 회전될 때 선단부로부터 차량의 실내 공기가 유입되며, 상기 임펠러와 대향한 부분에 유입된 공기가 배출되는 다수의 관통구멍을 갖는 상부 하우징; 및 상기 상부 하우징의 공기가 유입되는 기류 경로 내에 배치되어 흡입되는 공기의 온도를 측정하는 온도센서;를 포함하는 인카 센서를 제공한다.
본 발명에 따른 인카 센서는 상기 코일 패턴의 복수의 요홈부 중 하나에 형성되어 로터회전위치를 검출하기 위한 센싱 코일 패턴을 더 포함할 수 있다.
이 경우, 상기 모터구동회로는 상기 센싱 코일 패턴에 의해 형성되는 센싱 코일이 대향하는 로터의 자극에 대응하는 유도기전력을 발생할 때 상기 로터 자극에 대응하는 로터위치신호를 발생하는 로터위치신호발생부; 및 상기 로터위치신호발생부로부터 대향한 로터의 자극에 대응하여 발생되는 로터위치신호에 대응하여 상기 스테이터 코일에 인가하는 구동전류의 방향을 전환하는 스위칭회로를 포함할 수 있다.
상기 센싱 코일 패턴은 로터가 초기상태일 때 데드 포인트 방지 요크에 의해 위치설정된 로터의 자극 경계면으로부터 1/4 자극폭 또는 자극의 센터로부터 1/4 자극폭 만큼 편위된 위치에 위치설정될 수 있다.
상기 센싱 코일 패턴은 로터가 초기상태일 때 데드 포인트 방지 요크에 의해 위치설정된 로터의 자극 경계면으로부터 편위된 위치에 위치설정됨과 동시에 상기 방사방향패턴부 중 하나와 중첩된 위치에 배치될 수 있다.
또한, 상기 베어링 홀더는 상기 스테이터의 하부에 배치되고, 상기 데드 포인트 방지 요크가 내장되는 베이스 플레이트; 및 상기 베이스 플레이트로부터 상기 적층형 스테이터의 관통구멍을 통하여 상부로 돌출되고, 중앙부에 상기 베어링을 수용하여 지지하는 보스;를 포함할 수 있다.
이 경우, 상기 베이스 플레이트는 하부 하우징과 일체로 구성될 수 있다.
또한, 상기 로터는 링 형상으로 형성되고, 상기 링의 폭은 적어도 방사방향패턴부의 길이보다 더 크게 형성되며, 방사방향패턴부와 대향하도록 배치될 수 있다.
더욱이, 상기 코일 패턴의 복수의 요홈부 중 하나에 형성되어 로터회전위치를 검출하기 위한 센싱 코일 패턴을 다층 기판의 최상부면에 구비하고, 상기 코일 패턴에 구동전류를 인가하기 위한 모터구동회로를 다층 기판의 최하부면에 구비할 수 있다.
상기 다층 기판의 각층에 배치된 코일 패턴의 복수의 방사방향패턴부는 동일한 위치에 배치되고 동일한 방향으로 전류가 흐르도록 설정될 수 있다.
상기 복수의 코일 패턴은 직렬 접속, 병렬 접속 또는 직렬 및 병렬 혼합접속으로 연결될 수 있다.
상기한 바와 같이, 본 발명에서는 로터를 회전 구동시키기 위한 스테이터 코일을 다층 PCB에 형성된 도전성 패턴 코일을 이용하며 적층형으로 구현함에 의해 생산성 향상, 원가 절감이 가능한 슬림형 단상 모터를 구현할 수 있어, 이를 이용하여 인카 센서용 슬림형 어스피레이션 모터를 제공할 수 있다.
또한, 본 발명에서는 각 층의 코일 패턴이 토크 발생 효율을 극대화할 수 있는 방사방향으로 배향된 방사방향패턴부를 포함하여 토크 발생이 최대로 얻어질 수 있어 모터 효율 상승을 도모할 수 있다. 즉, 로터가 회전할 때 스테이터 코일(권선)의 방사방향패턴부와 자석이 대향하는 부분의 총면적을 증가시키는 코일 패턴을 설계하여 토크의 증가를 도모할 수 있다.
더욱이, 본 발명에서는 각 층의 코일 패턴을 다수의 연결패턴부와 방사방향패턴부가 교대로 연결된 지그재그 패턴을 갖도록 형성함에 의해 대향한 로터에 토크 발생이 최대로 얻어질 수 있다. 즉, 상기 방사방향패턴부는 방사방향으로 배향되어 있어 스테이터 코일이 통전될 때 접선방향의 힘이 발생되어 효과적인 토크가 얻어지게 된다.
이 경우, 홀센서를 로터가 초기상태일 때 데드 포인트 방지 요크에 의해 위치설정된 로터의 자극 경계면으로부터 편위된 위치에 위치설정하고 동시에 방사방향패턴부 중 하나와 중첩된 위치에 배치하면, 자석으로부터 발생되는 자기 플럭스가 최대이므로 홀소자는 가장 좋은 감도의 로터위치검출신호를 발생할 수 있고, 스테이터는 최대의 자기 플럭스를 발생하는 로터 위치에 방사방향패턴부 중 하나가 중첩되어 있어 가장 큰 자기장이 최대의 자기 플럭스와 상호 작용하여 로터를 기동시키는 데 필요한 최적의 조건을 갖게 된다.
더욱이, 본 발명에서는 박막형 스테이터를 이용하여 액시얼형(axial type) 구조를 채용함에 따라 레이디얼형(radial type) 모터에 채용되었던 코어형 스테이터를 제거한 공간과 코일 터미널 연결 부위를 생략할 수 있고, 이에 따라 얻어지는 공간을 활용하여 로터의 회전축을 지지하는 슬리브 베어링의 직경을 충분한 오일을 함유할 수 있도록 확장할 수 있어 신뢰성 및 내구성 향상을 도모할 수 있다.
또한, 본 발명에서는 각 층 PCB의 스루홀을 동일한 위치에 설정함에 의해 다수의 배선 패턴 PCB를 사용하지 않고 다층 구조의 코일 패턴을 직렬 또는 병렬 접속, 직렬 및 병렬 혼합 접속으로 연결하여 슬림형으로 적층할 수 있다.
본 발명에서는 방사방향패턴부는 미리 설정된 수의 기준 턴을 유지하여 토크를 발생시키고, 연결패턴부는 복수 개씩 기준 턴을 통합(즉, 단락(short-circuit))시켜서 넓은 폭을 갖도록 패터닝하여 코일의 저항을 최소화함에 의해 저항(resistance)과 동손(coil loss, copper loss)을 줄여서 코일 온도를 낮추고 효율은 증대시킬 수 있다.
본 발명에서는 방사방향패턴부는 코일을 구성하는 턴의 밀도를 최대한 높게 하여 토크를 증대시키고, 연결패턴부는 개별 턴을 통합(즉, 단락)시켜서 각 턴의 저항을 최소화할 수 있다.
특히, 복수의 내측 및 외측 연결패턴부를 각각 하나의 통합 턴으로 구성하는 경우, 방사방향패턴부의 내측 및 외측에 최소한의 공간으로 형성하는 것이 가능하여 방사방향패턴부의 길이를 최대로 길게 형성하는 것이 가능하다. 그 결과, 로터의 자석과 대향하는 방사방향패턴부의 총면적을 최대화할 수 있게 되어 토크 발생이 최대로 얻어질 수 있다.
또한, 상기 복수의 내측 및 외측 연결패턴부는 각각 동심상으로 배치된 내측 원주와 외측 원주에 간격을 두고 원주방향을 따라 배치되며, 인접한 방사방향패턴부의 내측 단부는 가능한 한 근접되게 배치하는 것에 의해 제한된 면적에 많은 코일 턴수를 갖도록 구성할 수 있으며, 그 결과 높은 RPM, 높은 토크값을 갖는 단상 모터를 구성할 수 있다.
더욱이, 본 발명에서는 로터위치검출용 홀소자를 사용하지 않고 로터와 대향한 최상층 PCB 중 패턴 코일이 형성되지 않은 빈 공간에 센싱 코일 패턴을 함께 배치함에 의해 저렴하고 간단하게 센서레스(sensorless) 모터구동회로를 구현할 수 있다.
도 1은 3각형 형상의 스테이터 코일을 사용하는 종래의 단상 모터에서 스테이터 코일과 자석 사이에 발생하는 힘의 벡터 합성을 설명하는 설명도이다.
도 2는 본 발명의 제1실시예에 따른 단상 모터용 적층형 스테이터를 나타내는 평면도이다.
도 3은 본 발명의 제1실시예에 따른 적층형 스테이터의 각 층별 코일 패턴을 나타내는 전개도이다.
도 4a 및 도 4b는 각각 제1 및 제4 PCB의 솔더링 패턴을 나타낸 평면도이다.
도 5는 본 발명에 따른 적층형 스테이터를 이용한 단상 모터의 동작을 설명하기 위한 설명도로서, 로터가 초기 위치에 있을 때 전류의 방향을 나타낸 설명도이다.
도 6a 내지 도 6d는 각각 로터의 회전 위치별 전류의 방향을 나타낸 설명도이다.
도 7은 본 발명의 제2실시예에 따른 단상 모터용 적층형 스테이터의 각 층별 코일 패턴을 나타내는 전개도이다.
도 8은 본 발명에 따른 단상 모터에서 자기기동용 데드 포인트 방지 요크와 홀소자와의 배치 관계를 설명하기 위한 설명도이다.
도 9는 본 발명에 따른 센서레스(sensorless) 모터구동회로를 구현하기 위해 필요한 센싱 코일 패턴을 코일 패턴과 함께 배치한 제1 PCB의 패턴도이다.
도 10은 본 발명에 따른 센서레스 단상 모터를 구동하기 위한 센서레스(sensorless) 모터구동회로의 회로도이다.
도 11은 본 발명의 제3실시예에 따른 단상 모터용 적층형 스테이터를 나타내는 평면도이다.
도 12는 본 발명의 제3실시예에 따른 적층형 스테이터의 각 층별 코일 패턴을 나타내는 전개도이다.
도 13은 도 11의 부분 확대도이다.
도 14는 본 발명에 따른 단상 모터에서 자기기동용 데드 포인트 방지 요크와 홀소자와의 배치 관계를 설명하기 위한 설명도이다.
도 15는 본 발명의 제4실시예에 따른 단상 모터용 적층형 스테이터의 각 층별 코일 패턴을 나타내는 전개도이다.
도 16은 본 발명에 따른 적층형 스테이터를 사용하여 구현된 슬림형 단상 모터를 나타내는 사시도이다.
도 17 및 도 18은 각각 본 발명의 슬림형 단상 모터를 이용하여 구현된 슬림형 인카 센서를 나타내는 축방향 단면도이다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 실시예를 상세히 설명한다. 이 과정에서 도면에 도시된 구성요소의 크기나 형상 등은 설명의 명료성과 편의상 과장되게 도시될 수 있다.
본 발명을 설명하기 전에 먼저 종래의 3각형 형상의 단일의 스테이터 코일을 사용하는 단상 모터를 도 1을 참고하여 설명한다.
종래의 어스피레이션 모터 등에 적용되는 단상 모터는 도 1에 도시된 바와 같이, 3각형의 코어레스/보빈레스 타입의 스테이터 코일(1)이 지지브라켓(5)에 설치되어 있으며, 스테이터 코일(1)과 간격을 두고 대향하여 N극 및 S극 자석(3)이 교대로 배치된 로터가 회전축(9)에 의해 회전 가능하게 지지되어 있다. 여기서, 부재번호 7은 슬리브 지지용 보스, 8은 슬리브 베어링을 가리킨다.
이러한 단상 모터에서 로터를 회전시키는 토크(Torque: τ)(즉, 회전 모멘트)를 구하면 하기 수학식 1과 같이 백터 곱으로 표현될 수 있다.
[수학식 1]
τ = r×F
여기서, F는 플레밍의 왼손법칙(F = Bil)으로 표현되는 힘(force)으로서, 자기장 속에 놓인 전류(i)가 흐르는 도선(여기서는 권선)에 발생하는 힘 벡터이고, r은 회전 중심(O)과 힘의 작용점 사이의 거리 벡터이다. 거리 백터(r)와 힘 벡터(F)는 항상 같은 회전하는 평면에 놓여 있으므로 토크(τ)의 방향은 항상 축방향이 된다.
도 1에서 스테이터 코일(1)은 3개의 직선부(1a)와 3개의 직선부를 연결하는 3개의 꼭지점(1b)을 갖는 3각형 형상의 스테이터 코일로 구성되어 있다.
스테이터 코일(1)의 직선부(1a)에서 자석(3)과 대향하는 부분(1c)(빗금친 영역)은 토크 발생에 필요한 자계를 형성하는 영역에 해당된다. 스테이터 코일(1)에 시계방향으로 전류가 흐르고 S극 자석(3)과 대향하는 경우 스테이터 코일(1)의 직선부(1a)와 직각방향으로 힘(F)이 발생된다. 이 경우, 힘(F)과 거리 벡터(r)가 이루는 내각이 θ 각도를 이루고 있기 때문에 로터를 회전시키는 토크(τ)는 Frsinθ(스칼라값)로 구하여진다.
여기서 토크(τ)가 최대로 되려면 힘(F)과 거리 벡터(r) 사이에 이루는 각도(θ)가 90°인 경우, 즉 스테이터 코일(1)의 직선부(1a)가 중심을 향하고 있을 때 직선부(1a)에 수직인 방향, 즉, 접선방향으로 힘(F)이 발생하므로 가장 큰 값의 로터(자석)를 회전시키는 회전력이 얻어지는 것을 알 수 있다.
이와 반대로, 스테이터 코일(1)의 꼭지점(1b)에서는 스테이터 코일(1)에 전류가 흐를 때 발생되는 힘(F)의 방향이 방사방향이므로, 힘(F)과 거리 벡터(r) 사이에 이루는 각도(θ)가 0°으로 되어, 로터(자석)를 회전시키는 회전 토크(τ)는 "0"이 된다.
따라서, 종래의 스테이터 코일(1)에서 발생되는 토크(τ)는 스테이터 코일(1)(권선)의 꼭지점(1b) 부분을 제외한 스테이터 코일(1)(권선)의 직선부(1a)와 회전되는 자석(3)이 대향하는 부분(1c)에 비례하여 발생되고, 자석(3)을 회전시키면서 자석(3)과 만나는 스테이터 코일의 면적의 합을 구하여 얻어진다.
따라서, 종래의 3각형 형상의 스테이터 코일(1)은 로터가 회전할 때 코일(1)(권선)의 직선부(1a)와 자석(3)이 대향하는 부분(1c)의 총면적이 작기 때문에 로터를 회전시키기 위한 토크는 작으며, 결국 3각형 형상의 스테이터 코일(1)은 토크를 효과적으로 발생시키기 위한 코일 패턴을 가지고 있지 못하다.
본 발명에서는 이러한 종래기술의 문제점을 해결하기 위하여 제안된 것으로 이하에 첨부도면을 참고하여 상세하게 설명한다.
본 발명에 따른 인카 센서에 적용되는 어스피레이션 모터도 단일 코일을 갖는 단상 모터가 사용되고 있으며, 슬림형이면서 토크 발생 효율을 극대화하여 모터 효율 상승을 도모하도록 다층 인쇄회로기판을 이용한 적층형 스테이터를 채용하고 있다.
도 2 내지 도 5를 참조하면, 본 발명의 제1실시예에 따른 단상 모터용 적층형 스테이터는 복수층이 적층되어 일체화되고 절연재료로 이루어진 복수의 기판(10); 스테이터 코일을 구성하는 데 필요한 복수의 턴(turn)을 형성하도록 상기 각층 기판 위에 적층된 동박을 패터닝하여 얻어진 나선형상의 도전성 패턴으로 이루어진 복수의 코일 패턴(21~25); 및 상기 복수의 기판(10)을 관통하여 형성된 관통홀에 도금되어, 상기 복수의 코일 패턴(21~25) 등을 연결하기 위한 복수의 스루홀(T1~T7);을 포함하고 있다.
상기 복수의 코일 패턴(21~25)은 각각 내측 원주와 외측 원주에 간격을 두고 원주방향을 따라 배치되는 복수의 내측 및 외측 연결패턴부(20a-20f); 및 상기 인접한 내측 연결패턴부와 외측 연결패턴부를 상호 연결하며 중심으로부터 방사방향을 따라 배치되는 복수의 방사방향패턴부(20g-20l)를 포함하고 있다.
상기 적층형 스테이터(110)는 각 층의 기판(10)에 동박이 적층된 동박적층판(CCL)으로 이루어진 다층 기판(10a)을 사용하여 구성될 수 있으며, 각층 기판의 동박을 패터닝하고 적층한 후, 도전성 스루홀을 형성하여 구성될 수 있다.
이하의 설명에서는 다층 기판이 동박적층판을 패터닝하여 코일 패턴을 형성하는 것을 예로 설명하나, 동박적층판을 사용하지 않고 일반 기판에 은-페이스트나 동-페이스트를 이용하여 코일 패턴을 인쇄하여 형성하는 것도 가능하며, 이 경우도 본 발명의 범위에 속하는 것으로 간주되어야 한다.
상기 기판(10)은 기판 재료가 예를 들어, 글래스 에폭시 라미네이트(glass epoxy laminate)로 이루어진 FR-4나 CEM-3와 같은 절연성 수지로 이루어질 수 있다. 다층 기판(10a)은 각 층의 기판(10)에 동박이 적층된 구조를 가지며, 다층 PCB를 구성할 수 있다면 어떤 절연성 수지도 기판의 재료로 사용할 수 있으며, 적층되는 기판의 층수는 단상 모터에 의해 구현되는 원하는 RPM에 비례하여 1층 내지 10층 범위 내에서 설정될 수 있다. 높은 RPM을 얻기 위해서는 높은 토크값이 얻어지도록 코일 턴수가 많은 것이 요구되므로, 복수의 코일 패턴(21~25)을 이용하도록 적층되는 PCB의 수를 증가시키는 것이 필요하다.
다층 PCB가 적층된 다층 기판(10a)을 사용하는 경우, 최하부의 PCB는 배면에 코일 패턴과 전자 부품을 상호 연결하기 위한 인쇄배선(17)이 형성되고, 각종 전자 부품(16)이 인쇄배선(17)에 실장되어 모터구동회로(30)를 형성하며, 인쇄배선(17)의 전원단자와 접지 패턴(GND)에는 구동전원(Vcc)이 연결된다.
본 발명에 따른 단상 모터용 적층형 스테이터(110)는 높은 RPM을 필요로 하지 않는 경우, 기판(10)의 양면에 동박이 적층된 양면 기판을 사용하여 구성될 수 있으며, 이 경우 기판(10)의 일면에 코일 패턴(21)이 형성되고, 배면에 모터구동회로(30)가 실장되는 구조로 구성될 수 있다.
이하의 실시예 설명에서는 도 3에 도시된 바와 같이 다층 기판(10a)이 4층 구조의 제1 내지 제4 PCB(11~14)가 적층된 것을 예로 들어 설명한다.
제1 내지 제3 PCB(11~13)에는 각각 기판(10)의 상부면에, 예를 들어, 별 형상을 갖는 제1 내지 제3 코일 패턴(21~23)이 형성되고, 최하층의 제4층 PCB(14)에는 각각 예를 들어, 부채꼴 형상의 제4 및 제5 코일 패턴(24,25)이 분리되어 형성되어 있으며, 예를 들어, 동박(Cu)과 같은 도전성 금속을 미세하게 패터닝하여 형성되어 있다. 각각의 PCB(11~14)는 예를 들어, 0.4mm, 0.8mm 등의 다양한 두께를 가지는 것 중에서 선택하여 사용할 수 있으며, 본 실시예에 적용된 코일 패턴(21~25)은 예를 들어, 패턴 폭이 0.12mm이고, 인접한 패턴 사이의 간격이 0.13mm로 패터닝한 것이다. 상기 코일 패턴의 폭과 패턴 사이의 간격은 필요에 따라 증가 또는 감소할 수 있다.
제1, 제3 코일 패턴(21,23) 및 제4 코일 패턴(24)은 각각 내측에서 외측으로 시계방향(CW)으로 나선형상을 가지도록 형성되고, 크게 보면 대략 별 형상을 이루도록 3개의 돌기부와 요홈부를 가지도록 지그재그 형태를 가지고 있으며, 제2 코일 패턴(22)과 제5 코일 패턴(25)은 각각 내측에서 외측으로 반시계방향(CCW)으로 나선형상을 가지도록 형성되고, 크게 보면 대략 별 형상을 이루도록 3개의 돌기부와 요홈부를 가지도록 지그재그 형태를 가지고 있다.
물론, 제1 내지 제3 코일 패턴(21~23)은 각각 나선형상을 가지며, 스루홀을 이용한 코일 패턴의 연결방식에 따라 내측에서 외측으로 또는 외측에서 내측으로 향하며, 시계방향(CW) 또는 반시계방향(CCW)으로 향하는 패턴을 조합하여 구성될 수 있고, 크게 보면 2개 이상의 돌기부와 요홈부를 가지도록 지그재그 형태를 가질 수 있다.
제1 내지 제3 코일 패턴(21~23)은, 각각 3개씩의 외측 및 내측 연결패턴부(20a~20c,20d~20f)와, 상기 외측 연결패턴부(20a~20c)와 내측 연결패턴부(20d~20f)를 연결하는 6개의 방사방향패턴부(20g~20l)가 교대로 연결되어 전체적으로 별 형상을 이루고 있다.
외측 및 내측 연결패턴부(20a~20c,20d~20f)는 각각 외측 원주와 내측 원주에 간격을 두고 원주방향을 따라 배치되어 있고, 6개의 방사방향패턴부(20g~20l)는 각각 전체적으로 기판(10)의 중심으로부터 방사하는 방향으로 설정되도록 내측 단부는 2개씩 서로 간격이 좁아지는 패턴 형상을 가지고 있다.
제1 및 제3 PCB(11,13)의 제1 및 제3 코일 패턴(21,23)은 동일한 형상으로 이루어지며, 제2 PCB(12)의 제2 코일 패턴(22)은 제1 및 제3 코일 패턴(21,23)과 동일한 형상으로 이루어지나 60° 위상차를 가지고 편위되어 있다.
그 결과, 제1 내지 제3 PCB(11~13)가 적층된 경우 제1 내지 제3 코일 패턴(21~23)에서 6개의 방사방향패턴부(20g~20l)는 동일한 위치에 배치된 구조를 가진다. 따라서, 후술하는 바와 같이, 3층의 PCB가 적층되는 경우 방사방향패턴부(20g~20l)는 각각 3층으로 적층된 코일 패턴이 로터의 자석과 동시에 대향하는 위치를 갖게 되고 전류의 흐름방향이 동일하게 설정됨에 따라 합력된 토크를 발생할 수 있다.
본 발명에 따른 스테이터(110)는 다층 PCB에 형성된 제1 내지 제5 코일 패턴(21~25)을 상호 연결하여 스테이터 코일을 형성하며, 스테이터 코일에서 방사방향패턴부(20g~20l)의 수는 로터 자극수와 동일한 수, 로터 자극수의 1/2 배수 및 로터 자극수의 2배수 중 어느 하나의 값을 가지며, 동시에 인접한 방사방향패턴부(20g~20l) 사이의 각도는 360/n(여기서, n은 로터 자극수와 동일한 수, 로터 자극수의 1/2 배수 및 로터 자극수의 2배수 중 어느 하나)으로 결정된다.
따라서, 6개의 방사방향패턴부(20g~20l)를 갖는 스테이터인 경우 인접한 방사방향패턴부(20g~20l) 사이의 각도는 60°이고, 단상 모터를 구성하기 위해 이에 결합되어 회전되는 로터의 자극(N극 자석과 S극 자석)의 수는 6극을 갖도록 구성된다.
제4 PCB(14)에는 단상 모터를 구동하는 데 필요한 구동회로(30)를 형성하도록 각종 전자 부품(16)을 실장하고 결선하는 데 필요한 인쇄 배선(17)이 도전성 패턴으로 형성되어 있다.
또한, 제4 PCB(14)에는 구동회로 부품을 실장하고 남는 공간을 활용하여 제1 내지 제3 코일 패턴(21~23)에 추가되는 제4 및 제5 코일 패턴(24,25)을 형성할 수 있으며, 제4 및 제5 코일 패턴(24,25)은 로터를 회전시키는 데 필요한 토크값에 따라 생략할 수도 있다.
도시된 제4 PCB(14)는 투시된 상태를 나타낸 것으로 각종 패턴, 즉, 제4 및 제5 코일 패턴(24,25), 인쇄 배선(17)과 이에 실장되는 전자 부품(16)은 기판(10)의 배면에 위치한 것을 나타낸 것이다.
상기 제4 코일 패턴(24)은 외측에서 내측으로 시계방향(CW)으로 나선형상을 가지도록 부채꼴로 형성한 패턴이고, 제5 코일 패턴(25)은 내측에서 외측으로 반시계방향(CCW)으로 나선형상을 가지도록 부채꼴로 형성한 패턴이다.
본 발명의 제1 내지 제4 PCB(11~14)가 적층된 경우 제1 내지 제5 코일 패턴(21~25)은 제1 내지 제7 스루홀(T1~T7)을 통하여 직렬 또는 병렬 방식으로 상호 연결되면 하나의 스테이터 코일을 형성한다. 제1 내지 제7 스루홀(T1~T7)은 홀 내부가 도전성 재료로 도금 또는 충전되어 있다.
본 발명에 따른 단상 모터용 스테이터는 각각 기판(10)의 상부면에 별 형상을 갖는 제1 내지 제3 코일 패턴(21~23)이 형성되는 제1층 내지 제3층 PCB(11~13)는 코일 패턴층을 형성하며, 제4층 PCB(14)는 모터구동회로(30)가 실장된 구동회로층을 형성한다.
본 발명에서는 도 4a와 같이 제1 내지 제4 PCB(11~14)의 동일한 위치에 7개의 스루홀(T1~T7)을 형성하고, 도 4b와 같이 솔더링 랜드(soldering land)(18)가 도전성 패턴으로 형성되어 있다. 도 1에 도시된 바와 같이 제1 내지 제5 코일 패턴(21~25)의 스타트 부분(S1~S5)과 엔드 부분(E1~E4)은 코일(권선)을 형성하는 부분보다 더 넓게, 예를 들어, 물방울(tear drop) 형태로 형성되어 있고, 스루홀(T1~T7)과 스루홀(T1~T7)을 둘러싸는 솔더링 랜드(soldering land)(18)가 배치되어 있다.
그 결과, 본 발명에서는 적층형 스테이터에서 각층 코일 패턴(21~25)의 굵기를 조절하여 스타트 부분(S1~S5)과 엔드 부분(E1~E4)은 코일(권선)을 형성하는 부분보다 더 넓게 설계해서 연결의 신뢰성 증대를 꾀할 수 있다.
즉, 코일 패턴의 스타트 부분과 엔드 부분은 물방울(tear drop) 형태로 형성하고, 스루홀과 스루홀을 둘러싸는 솔더링 랜드(soldering land)를 배치함에 의해 코일 패턴을 상호 연결하거나 배선 패턴 등과 연결이 쉽고 연결의 신뢰성을 보장할 수 있다.
또한, 신뢰성 증대를 위하여 각층에 스타트 부분과 엔드 부분을 연결하는 스루홀(T1~T7)은 적어도 1개 이상 복수로 형성하여 단선이나 스루홀의 불량에 따른 신뢰성 저하를 방지할 수 있다.
제2 PCB(12)에는 제4 PCB(14)의 상측과 하측에 분리되어 형성된 제4 코일 패턴(24)과 제5 코일 패턴(25)을 연결하기 위해 스루홀(T3)과 스루홀(T4)을 연결하는 제1점퍼선 패턴(J1)이 제2 코일 패턴(22)의 외곽에 형성되어 있고, 제3 PCB(13)에는 제4 PCB(14)에서 제5 코일 패턴(25)의 외부에서 내부의 스타트 부분(S5)을 연결하기 위해 제4스루홀(T4)과 제5스루홀(T5)을 연결하는 제2점퍼선 패턴(J2)이 제3 코일 패턴(23)의 외측에 형성되어 있다.
본 발명의 제1 내지 제4 PCB(11~14)가 적층된 경우 제1 내지 제5 코일 패턴(21~25)은 스루홀(T1~T7)과 제1 및 제2 점퍼선 패턴(J1,J2)을 통하여 상호 연결되어 하나의 스테이터 코일을 형성한다.
즉, 제1 PCB(11)의 제1 코일 패턴(21)은 엔드 부분(E1)이 제2스루홀(T2)을 통하여 제2 PCB(12)의 제2 코일 패턴(22)의 스타트 부분(S2)에 연결되고, 제2 코일 패턴(22)의 엔드 부분(E2)은 제6스루홀(T6)을 통하여 제3 PCB(13)의 제3 코일 패턴(23)의 스타트 부분(S3)에 연결된다.
또한, 제3 코일 패턴(23)의 엔드 부분(E3)은 제1스루홀(T1)을 통하여 제4 PCB(14)의 제4 코일 패턴(24)의 스타트 부분(S3)에 연결되고, 제4 코일 패턴(24)의 엔드 부분(E4)과 제5 코일 패턴(25)의 스타트 부분(S5)은 상기 스루홀(T3)과 스루홀(T4)을 연결하는 제1 점퍼선 패턴(J1)과 스루홀(T4)과 스루홀(T5)을 연결하는 점퍼선 패턴(J2)을 통하여 상호 연결이 이루어진다.
그 결과, 스테이터 코일의 일단, 즉 제5 코일 패턴(25)의 엔드 부분은 모터구동회로의 제1출력단자(Out1)에 연결되고, 스테이터 코일의 타단, 즉 제1 코일 패턴(21)의 스타트 부분(S1)은 제6스루홀(T6)을 통하여 모터구동회로의 제2출력단자(Out2)에 연결된다.
본 발명에서는 제1 및 제3 코일 패턴(21,23)의 외측 연결패턴부(20a~20c)의 내주부와 제2 코일 패턴(22)의 내측 연결패턴부의 외주부 사이, 그리고 제1 및 제3 코일 패턴(21,23)의 내측 연결패턴부(20d~20f)의 외주부와 제2 코일 패턴(22)의 외측 연결패턴부의 내주부 사이에는 코일 패턴이 상호 겹쳐지지 않는 6개의 스루홀 영역(R1~R6)이 존재하도록 제1 내지 제5 코일 패턴(21~25)의 폭을 설정하며, 제1 내지 제7 스루홀(T1~T7)은 6개의 스루홀 영역(R1~R6)과 제1 내 제5 코일 패턴(21~25)의 외측 공간(R10)을 활용하여 배치한다.
그 결과, 본 발명에서는 제1 내 제5 코일 패턴(21~25)의 내부에 배치된 스타트 또는 엔드 단자를 타층의 코일 패턴과 연결하려할 때 6개의 스루홀 영역(R1~R6) 중 하나를 이용하여 형성된 스루홀(T2,T3,T5~T7)을 이용할 수 있다.
본 발명에서는 상기 스루홀 영역(R1~R6)과 외측 공간(R10)을 적절히 활용하여 스루홀(T1~T7)을 배치함에 의해 별도의 배선 패턴 PCB를 사용하지 않고도 다층 PCB의 코일 패턴을 직렬 또는 병렬 접속으로 연결할 수 있다.
도 2에 도시된 제1실시예에서는 제4 PCB(14)에 단상 모터를 구동하기 위한 모터구동회로(30)가 실장되어 있는 것을 예시하고 있으나, 모터구동회로가 별도로 구성되는 것도 가능하다. 즉, 스테이터와 스테이터가 장착되는 지지부 사이에 충분한 공간이 확보되지 않는 경우에는 최소한의 구동회로 부품만이 제4 PCB(14)의 배면에 실장될 수 있다.
이하에 도 5 내지 도 6d를 참고하여 본 발명의 제1실시예에 따른 적층형 스테이터를 이용한 단상 모터를 설명한다. 도 5 내지 도 6d에서 로터의 회전 위치별 전류 흐름은 제1 PCB(11)의 제1 코일 패턴(21)과 제2 내지 제4 PCB(12-14)의 제2 내지 제5 코일 패턴(22~25)에 대한 전류 흐름은 동일하므로 제1층 PCB(11)의 제1 코일 패턴(21)만을 설명한다.
도시된 단상 모터(40)는 단상 모터로서 6슬롯-6폴 구조의 스테이터(110)와 로터(120)가 액시얼 타입으로 서로 대향하여 배치된 구조를 가지나, 도면에는 설명의 편의상 동일 평면에 함께 표현한 것이다.
단상 모터용 모터구동회로(30)는 예를 들어, 홀센서(H1)로부터 자석의 자극을 검출하여 서로 반대 극성의 한쌍의 제1로터위치검출신호를 발생할 때 이에 따라 제1 및 제2 스위칭 트랜지스터 중 하나는 턴-온되고, 다른 하나는 턴-오프되어, 제1 및 제2 스위칭 트랜지스터 사이에 연결된 스테이터 코일을 흐르는 전류의 흐름방향을 결정한다.
도 5 및 도 8과 같이, 도시된 실시예에서는 홀센서(H1)는 N극 자석(121e)과 S극 자석(121f) 사이의 경계면(121fg)으로부터 15°만큼 편위된 위치에 설치되어 있다. 홀센서(H1)의 설치위치에 대하여는 도 8을 참고하여 상세하게 설명한다.
도 5와 같이 로터(120)가 초기 위치(즉, 0°)에 있을 때, 모터구동회로(30)에 구동전원(Vcc)이 공급되면 홀센서(H1)는 로터(120)의 S극 자석(121f)을 인식하여 로터의 회전방향(즉, 반시계방향(CCW))을 내포하는 한쌍의 제1로터위치검출신호를 발생하여 모터구동회로(30)의 2개의 제1 및 제2 스위칭 트랜지스터에 인가하면, 제1 스위칭 트랜지스터는 턴-온되고 제2 스위칭 트랜지스터는 턴-오프되면서 스테이터 코일, 즉 제1 내지 제5 코일 패턴(21~25)에 대한 구동전류의 전류 흐름방향이 결정된다.
로터의 회전방향이 반시계방향(CCW)으로 결정됨에 따라 제1코일 패턴(21)의 스타트 부분(S1)으로부터 제5 코일 패턴(25)의 엔드 부분 방향으로 전류가 흐르게 되며, 전류가 흐르는 방향을 제1 내지 제5 코일 패턴(21~25)에 화살표로 나타내었다.
이 경우, 제1 내지 제5 코일 패턴(21~25)의 외측 및 내측 연결패턴부(20a~20c,20d~20f)는 거의 동심원 형태로 배열되어 있으므로 플레밍의 왼손법칙에 따라 발생되는 힘(F)의 방향이 방사방향으로 향하기 때문에 토크에 영향을 주지 못한다.
제1 내지 제5 코일 패턴(21~25)은 각각 동일한 위치의 방사방향패턴부에 흐르는 구동전류의 흐름 방향이 동일하도록 스루홀(T1~T7)과 점퍼선 패턴(T1,J2)을 통하여 상호 연결이 이루어진다.
예를 들어, 제1 코일 패턴(21)의 방사방향패턴부(20g,20h)는 제2 코일 패턴(22)의 방사방향패턴부(22g,22h), 제3 코일 패턴(23)의 방사방향패턴부(23g,23h), 제4 코일 패턴(24)의 방사방향패턴부(24g,24h)와 모두 동일한 방향으로 전류 흐름 방향이 설정된다. 그 결과, 방사방향패턴부(20g~20l)는 로터(120)의 회전방향(원주방향)과 직각인 방사방향(즉, 법선방향)으로 배향되어 있어 플레밍의 왼손법칙에 따라 반시계방향(CCW)으로 접선방향의 힘(F)이 발생된다.
따라서, 제1 내지 제5 코일 패턴(21~25)의 외측 및 내측 연결패턴부(20a~20c,20d~20f)은 단지 전류가 흐르는 경로 역할을 하고, 6개의 방사방향패턴부(20g~20l)으로부터 접선방향으로 힘(F)이 발생되어 로터(120)의 회전이 이루어지게 된다.
또한, 인접한 방사방향패턴부(20g~20l) 사이에 코일에 흐르는 전류의 방향은 반대로 설정되고, 이에 대응하는 로터(120)의 자석의 자극도 반대로 위치하게 되므로, 모두 동일한 방향으로 로터의 자석을 밀거나 끌어당기는 힘을 발생하게 되어 로터를 반시계방향(CCW)으로 회전시키게 된다.
상기한 바와 같이, 본 발명의 제1실시예에 따른 적층형 스테이터를 이용한 단상 모터에서 방사방향패턴부(20g~20l)는 동일한 방향으로 전류가 흐르도록 결선이 이루어지며, 전류 흐름에 따라 로터에 접선방향의 회전력을 발생할 수 있다.
이 경우, 제1 내지 제5 코일 패턴(21~25)의 외측 및 내측 연결패턴부(20a~20c,20d~20f)는 각 층별로 서로 반대방향으로 전류가 흐르도록 결선되어 있으나, 동심원 형태로 배열되어 있으므로 플레밍의 왼손법칙에 따라 발생되는 힘(F)의 방향이 방사방향으로 향하기 때문에 토크에 영향을 주지 못한다.
이어서, 로터(120)가 기계각으로 15°(전기각 45°) 회전한 경우가 도 6a에 표시되어 있고, 기계각으로 30°(전기각 90°) 회전한 경우가 도 6b에 표시되어 있으며, 기계각으로 45°(전기각 135°) 회전한 경우가 도 6c에 표시되어 있다.
도 6c의 위치에 로터(120)가 위치한 경우, 홀센서(H1)는 N극 자석(121a)과 S극 자석(121f)의 경계면(121g)에 위치하게 되어 자극을 인식하지 못하며, 전류의 흐름 방향을 결정하지 못한다.
회전 관성에 의해 로터(120)가 계속 회전하여 기계각으로 60°(전기각 180°) 회전한 경우가 도 6d에 표시되어 있다. 로터가 기계각으로 45°(전기각 135°)를 넘어서 회전하게 되면, 홀센서(H1)는 N극 자석(121a)을 인식하게 된다. 이 경우, 홀센서(H1)는 상기한 제1로터위치검출신호와 반대 극성의 한쌍의 제2로터위치검출신호 출력을 발생하여 제1 및 제2 스위칭 트랜지스터에 인가함에 따라, 제1 스위칭 트랜지스터는 턴-오프되고 제2 스위칭 트랜지스터는 턴-온되면서 스테이터 코일, 즉 제1 내지 제5 코일 패턴(21~25)에 대한 구동전류의 전류 흐름방향이 도 6d에 표시된 바와 같이 반대로 설정된다.
그 결과, 도 6d에 표시된 바와 같이 제1 내지 제5 코일 패턴(21~25)에 대한 구동전류의 전류 흐름방향이 반대로 설정되면, 방사방향패턴부(20g~20l)는 플레밍의 왼손법칙에 따라 반시계방향(CCW)으로 접선방향의 힘(F)이 발생되어 로터(120)의 회전이 이루어진다.
상기와 같이 모터구동회로(30)는 홀센서(H1)가 기계각으로 60°(전기각 180°) 회전할 때마다 로터의 자극을 검출하여 제1로터위치검출신호와 제2로터위치검출신호를 교대로 발생함에 따라 제1 및 제2 스위칭 트랜지스터는 교대로 턴-온과 턴-오프되면서 제1 내지 제5 코일 패턴(21~25)에 대한 구동전류의 전류 흐름방향을 변경한다.
상기와 같이 본 발명의 제1실시예에 따른 적층형 스테이터(110)는 스테이터 코일을 다층 PCB에 형성된 도전성 패턴 코일(21~25)을 이용하며 적층형으로 구현함에 의해 생산성 향상과 원가 절감이 가능한 슬림형 스테이터를 구현할 수 있다.
또한, 본 발명에 따른 적층형 스테이터는 각 층의 코일 패턴이 토크 발생 효율을 최대화할 수 있도록 방사방향으로 배향된 방사방향패턴부(20g~20l)를 포함하며, 로터(120)가 회전할 때 스테이터 코일(권선)의 방사방향패턴부(20g~20l)와 자석(121a~121f)이 대향하는 부분의 총면적이 최대화하도록 설계된다.
이 경우, 상기 로터(120)는 도 12 및 도 13과 같이 자석을 링 형상으로 형성하고, 상기 링의 폭은 적어도 방사방향패턴부(20g~20l)의 길이보다 더 크게 형성하여 방사방향패턴부(20g~20l)와 대향하도록 배치하면, 방사방향패턴부(20g~20l)와 자석(121a~121f)이 대향하는 부분의 총면적을 최대화할 수 있게 되어 토크 발생이 최대로 얻어질 수 있다.
이하에 도 7을 참고하여 본 발명의 제2실시예에 따른 적층형 스테이터를 설명한다.
먼저, 도 2에 도시된 제1실시예에 따른 적층형 스테이터(110)는 제1 및 제3 코일 패턴(21,23)과 제4 코일 패턴(24)은 각각 시계방향(CW)으로 나선형상을 가지도록 형성되고, 제2 코일 패턴(22)과 제5 코일 패턴(25)은 각각 반시계방향(CCW)으로 나선형상을 가지도록 형성되어 있다. 즉, 제1실시예에서 홀수층 PCB의 코일 패턴은 시계방향(CW)의 나선형상을 가지도록 형성되고, 짝수층의 코일 패턴은 반시계방향(CCW)의 나선형상을 가지도록 형성된다.
도 7에 도시된 제2실시예에 따른 적층형 스테이터는 제1 내지 제4 코일 패턴(21~24)은 모두 시계방향(CW)으로 나선형상을 가지도록 형성되고, 단지 제5 코일 패턴(25)만 반시계방향(CCW)으로 나선형상을 가지도록 형성되어 있다.
제2실시예에서 제1 내지 제3 PCB(11~13)의 코일 패턴(21~23)은 동일한 형상의 패턴으로 이루어져 있고, 시계방향(CW)의 나선형상을 가지도록 형성되어 있다는 점에서 제1실시예와 상이하다. 단, 제4 PCB(14)의 제4 및 제5 코일 패턴(24,25)은 선대칭 구조로 서로 대향한 위치에 배치되어 있으므로, 제1 및 제2 실시예 모두 제4 코일 패턴(24)은 시계방향(CW)으로 권선되고, 제5 코일 패턴(25)은 반시계방향(CCW)으로 권선된 패턴을 가진다.
제2실시예에 따른 적층형 스테이터는 모든 층 PCB의 코일 패턴(21~23)이 시계방향(CW)의 나선형상을 갖는 권선으로 형성될 때, 홀수층 PCB(11,13)의 제1 및 제3 코일 패턴(21,23)은 내측에 스타트 부분(S1,S3)이 배치되고, 외측에 엔드 부분(E1,E3)이 배치되며, 짝수층 PCB(12)의 제2 코일 패턴(22)은 외측에 스타트 부분(S2)이 배치되고, 내측에 엔드 부분(E2)이 배치되어 있다.
제2실시예에 따른 적층형 스테이터는 제1 내지 제3 PCB(11~13)의 코일 패턴(21~23)이 시계방향(CW)의 나선형상을 갖는 권선으로 형성한 후, 제11 내지 제18 스루홀(T11~T18)을 통하여 상호 연결이 이루어지고, 제4 PCB(14)의 제4 코일 패턴(24)과 제5 코일 패턴(25)을 연결하기 위해 제3 PCB(13)에 제3 및 제4 점퍼선 패턴(J11,J12)을 형성하고, 제4 PCB(14)에 제5 점퍼선 패턴(J13)을 형성한다.
또한, 본 발명의 제2실시예에 따른 적층형 스테이터는 제1 내지 제3 코일 패턴(21~23)이 동일한 형상으로 동일한 위치에 배치되므로, 제1실시예와 비교하여 각층의 코일 패턴을 상호 연결하는 데 사용되는 스루홀을 배치할 수 있는 공간이 더 넓게 확보할 수 있다.
제1 내지 제3 코일 패턴(21~23)에 제4 코일 패턴(24)과 제5 코일 패턴(25)이 오버랩된 영역을 제외한 나머지 부분이 제11 내지 제18 스루홀(T11~T18)을 배치할 수 있는 스루홀 영역(R11~R16)이 된다.
즉, 제1 PCB(11)를 기준으로 볼 때, 제1 내지 제3 코일 패턴(21~23)의 상측 돌기부의 좌/우측의 요홈부와 내측 영역의 일부, 하측 돌기부의 내측 영역과 요홈부의 일부가 스루홀 영역(R11~R16)에 해당된다.
상기한 스루홀 영역(R11~R16)에 제11 내지 제18 스루홀(T11~T18)을 배치하고 제3 내지 제5 점퍼선 패턴(J11~J13)을 이용하여 제1 내지 제5 코일 패턴(21~25)을 연결하면 하나의 스테이터 코일이 형성된다.
즉, 제1 PCB(11)의 제1 코일 패턴(21)은 스타트 부분(S1)에서 시계방향으로 권선이 이루어진 후 엔드 부분(E1)이 제12스루홀(T12)을 통하여 제2 PCB(12)의 제2 코일 패턴(22)의 스타트 부분(S2)에 연결되고, 제2 코일 패턴(22)의 엔드 부분(E2)은 제17스루홀(T17)을 통하여 제3 PCB(13)의 제3 코일 패턴(23)의 스타트 부분(S3)에 연결된다.
또한, 제3 코일 패턴(23)의 엔드 부분(E3)은 제11스루홀(T11)을 통하여 제4 PCB(14)의 제4 코일 패턴(24)의 스타트 부분(S4)에 연결되고, 제4 코일 패턴(24)의 엔드 부분(E4)과 제5 코일 패턴(25)의 스타트 부분(S5)은 제3 내지 제5 점퍼선 패턴(J11~J13)을 통하여 상호 연결이 이루어진다.
그 결과, 스테이터 코일의 일단, 즉 제5 코일 패턴(25)의 엔드 부분(E5)은 모터구동회로(30)의 제1출력단자(Out1)에 연결되고, 스테이터 코일의 타단, 즉 제1 코일 패턴(21)의 스타트 부분(S1)은 제18스루홀(T18)을 통하여 모터구동회로(30)의 제2출력단자(Out2)에 연결된다.
본 발명의 제2실시예에 따른 적층형 스테이터는 제4 PCB(14)에 실장되는 모터구동회로(30)의 일부가 좌측에 배치되고, 일부가 우측에 분산되어 배치되어 있다.
제4 PCB(14)의 모터구동회로(30)에 구동전원(Vcc)이 공급되면 상기한 제1실시예와 동일하게 제2실시예에 따른 적층형 스테이터는 대향한 로터를 회전시키게 된다.
즉, 제2실시예에 따른 적층형 스테이터는 제1 내지 제3 PCB(11~13)의 제1 내지 제3 코일 패턴(21~23)에서 6개의 방사방향패턴부는 동일한 위치에 배치되고, 적층된 코일 패턴이 로터의 자석과 동시에 대향하는 위치를 갖게 되어, 구동전원(Vcc)이 공급될 때, 동일한 위치에 적층된 코일 패턴간에는 전류의 흐름방향이 동일한 방향으로 설정됨에 따라 합력된 토크를 발생할 수 있다.
한편, 본 발명에 따른 적층형 스테이터를 이용한 단상 모터는 로터위치검출을 위해 하나의 홀센서(H1)가 스테이터를 형성하는 PCB에 배치되고, 자기기동 방안으로서 철판 또는 실리콘 스틸로 이루어진 데드 포인트(dead point) 방지 요크를 채용할 수 있다. 데드 포인트 방지 요크를 이용하면 로터의 초기 위치를 미리 설정된 위치에 정지하게 설정할 수 있으며, 홀센서를 로터의 초기 위치를 고려하여 데드 포인트를 방지할 수 있는 위치에 설치하면 자기기동 불능 현상을 피할 수 있다.
도 8은 본 발명에 따른 단상 모터에서 자기기동용 데드 포인트 방지 요크와 홀소자와의 배치 관계를 설명하기 위한 설명도이다.
도 17 및 도 18에 도시된 인카 센서와 같이, 본 발명에서 하나의 홀센서를 채용하면서 데드 포인트 방지 요크를 스테이터의 하측에 배치하여 채용하는 경우, 데드 포인트 방지 요크(170)는 로터의 자극 수(6극)와 동일하게 외주면이 육각형상을 이루며, 관통구멍의 내주면이 원형을 갖는 평판 플레이트로 구성되어 있다.
데드 포인트 방지 요크(170)는 요크(yoke) 역할을 수행할 수 있도록 규소강이나 순철과 같은 보자력이 낮은 연자성체를 사용하는 것이 바람직하다.
이 경우, 로터(120)가 초기상태일 때, 로터(120)의 자석(121)과 데드 포인트 방지 요크(170) 사이에는 자기현상에 의해 도 8과 같이 각 자석의 센터가 데드 포인트 방지 요크(170)의 실효면적 폭이 가장 넓은 지점(즉, 모서리)과 대향하여 위치하게 된다.
따라서, 홀소자(H1)는 자극의 경계면(121g)으로부터 1/4 자극폭(6극 로터인 경우는 15˚) 또는 3/4 자극폭 만큼 편이된 위치에 설치하는 것이 바람직하다. 홀소자(H1)를 자극의 경계면으로부터 1/4 자극폭 만큼 편이된 위치에 설치하는 이유는 이 지점이 자석으로부터 발생되는 자기 플럭스가 최대이므로 홀소자(H1)는 가장 좋은 감도의 로터위치검출신호를 발생할 수 있기 때문이다.
또한, 본 발명에서는 스테이터의 제1 내지 제3 코일 패턴(21~23) 중에 자극의 경계면(121g)으로부터 1/4 자극폭이 되는 지점에 홀소자(H1)를 배치함과 동시에 방사방향패턴부(20g~20l) 중 하나가 위치하도록 설정한다.
도 8과 같이 방사방향패턴부(20g~20l) 중 하나, 예를 들어, 방사방향패턴부(20l)가 홀소자(H1)와 일치하며, 자극의 경계면으로부터 1/4 자극폭이 되는 지점에 배치된 상태에서, 모터구동회로에 구동전원이 인가되어 로터의 기동이 이루어지면, 홀소자(H1)로부터 가장 좋은 감도의 로터위치검출신호가 얻어질 수 있고 자석(121f)으로부터 발생되는 자기 플럭스가 최대인 지점에 방사방향패턴부(20l)가 대향해 있기 때문에 보다 쉽게 자기기동이 이루어지게 된다.
또한, 로터의 회전 방향이 반시계방향(CCW)인 경우는 데드 포인트 방지 요크(170)의 6각형 모서리로부터 반시계방향으로 1/4 자극폭 지점에 홀소자(H1)가 설치되는 것이 바람직하고, 회전 방향이 시계방향(CW)인 경우는 데드 포인트 방지 요크(170)의 6각형 모서리로부터 시계방향으로 1/4 자극폭 지점에 홀소자(H1)가 설치되는 것이 자기기동 불능 현상을 피할 수 있게 된다.
한편, 도 9에는 본 발명에 따른 센서레스(sensorless) 모터구동회로를 구현하기 위해 로터위치를 검출하기 위한 센싱 코일 패턴(26)이 코일 패턴(21)과 함께 배치한 제1 PCB(11)에 형성된 변형예가 도시되어 있다.
센싱 코일 패턴(26)은 제1 PCB(11)의 제1코일 패턴(21)과 중복되지 않은 공간, 즉 별 형상을 이루는 3개의 돌기부 사이에 위치한 3개의 요홈 중에서 선택되어야 하고, 또한, 제1 내지 제5 코일 패턴(21~25)과 겹치지 않는 공간에 센싱 코일 패턴(26)의 양단부를 제4 PCB(14)로 인출하기 위한 한쌍의 스루홀(T8,T9)을 배치할 수 있어야 하며, 제4 PCB(14)에 형성되는 모터구동회로(30)와의 연결관계를 고려할 필요가 있다.
본 발명에 따른 센싱 코일 패턴(26)은 상기한 사항들을 고려하여 제1 PCB(11)의 요홈에 배치되고, 전체적으로 부채꼴 형상을 가지며 내측에서 외측으로 시계방향(CW)으로 나선형상으로 형성한 도전성 패턴으로 구성된다.
이 경우, 센싱 코일(Ls)을 구성하는 센싱 코일 패턴(26)이 스테이터(110)의 제1층 PCB(11)에 배치되며, 바람직하게는 센싱 코일 패턴(26)의 중간이 자극의 경계면(121g)으로부터 1/4 자극폭 만큼 편위된 위치에 설치한다.
센싱 코일 패턴(26)을 이 위치에 설치하는 이유는 로터(120)의 초기상태를 고려할 때, 이 지점이 데드 포인트를 피함과 동시에 자석(121)으로부터 발생되는 자기 플럭스가 최대이므로 센싱 코일 패턴(26)은 가장 좋은 감도의 로터위치검출신호를 발생할 수 있기 때문이다.
즉, 로터(120)의 초기상태를 고려하여 센싱 코일 패턴(26)은 자극의 경계면(121g)으로부터 1/4 자극폭(6극 로터인 경우는 15˚) 또는 자극의 센터로부터 1/4 자극폭(6극 로터인 경우는 15˚) 만큼 편위된 위치의 스테이터(110)에 설치한다.
상기와 같이, 센싱 코일 패턴(26)을 자극의 경계면(121g)으로부터 1/4 자극폭(6극 로터인 경우는 15˚) 또는 자극의 센터로부터 1/4 자극폭(6극 로터인 경우는 15˚) 만큼 편위된 위치에 설치하는 경우, 모터구동회로에 구동전원이 인가되어 로터의 기동이 이루어질 때, 센싱 코일 패턴(26)은 로터의 자극 경계면(즉, 중성점)을 벗어나 자석(121b)으로부터 발생되는 자기 플럭스가 최대인 지점에 센싱 코일 패턴(26)이 대향해 있기 때문에 쉽게 자기기동이 이루어지게 된다.
즉, 센싱 코일 패턴(26)을 로터가 초기상태일 때 데드 포인트 방지 요크(170)에 의해 위치설정된 로터의 자극 경계면(121g)으로부터 편위된 위치에 위치설정하고 동시에 방사방향패턴부 중 하나와 중첩된 위치에 배치하면, 자석으로부터 발생되는 자기 플럭스가 최대이므로 센싱 코일 패턴(26)은 가장 좋은 감도의 로터위치검출신호를 발생할 수 있고, 스테이터는 최대의 자기 플럭스를 발생하는 로터 위치에 방사방향패턴부 중 하나가 중첩되어 있어 가장 큰 자기장이 최대의 자기 플럭스와 상호 작용하여 로터를 기동시키는 데 필요한 최적의 조건을 갖게 된다.
도 9와 같이, 로터와 대향한 제1 PCB(11)에 센싱 코일 패턴(26)이 형성되어 있으면, 로터의 회전시에 센싱 코일 패턴(26)에 자석이 근접하면 센싱 코일 패턴(26)로부터 전자기 유도에 의해 유도기전력이 발생하며, 모터구동회로(30)는 이 유도기전력을 이용하여 스위칭소자를 턴온시킴에 의해 스테이터 코일에 흐르는 전류의 방향을 변경한다.
본 발명에서는 도 9와 같이 배치 프로세스에 의해 PCB 기판의 동박을 패터닝하여 스테이터 코일용 코일 패턴을 형성하면서 동시에 센싱 코일 패턴(26)을 함께 형성하는 것이 가능하므로, 제조비용의 증가를 야기하지 않는다.
이하에 도 10을 참고하여 센서레스 단상 모터를 구동하기 위한 센서레스(sensorless) 모터구동회로를 설명한다.
센서레스 모터구동회로(30)는 일측에 외부 전원(Vcc)이 인가될 때, 이로부터 후단의 비교기에 제공되는 일정한 구동전원(Vdd)을 발생하는 정전압회로(90)가 연결되어 있다.
센서레스 모터구동회로(30)는 연산증폭기를 이용하여 구성되는 제1비교기(OP1)를 포함하고 로터의 회전에 따라 주기적으로 하이레벨(H)과 로우레벨(L)이 반복되는 로터위치신호를 발생하는 로터위치신호발생부(31); 및 연산증폭기를 이용하여 구성되는 제2비교기(OP2)를 포함하고 로터위치신호발생부(31)로부터 입력되는 로터위치신호의 출력레벨에 따라 스테이터 코일(L1)로 흐르는 전류의 방향을 절환시키는 스위칭 회로(32)를 포함한다.
로터위치신호발생부(31)는 정전압회로(90)의 출력단자와 접지 사이에 저항(R3)와 저항(R6)에 의해 형성되는 전압분압회로가 병렬로 접속되어, 저항(R3)와 저항(R6)의 접속점으로부터 일정한 제1기준전압(Vref1)이 저항(R4)을 통하여 제1비교기(OP1)의 비반전입력단자(+)에 인가되고, 제1비교기(OP1)의 반전입력단자(-)에는 저항(R3)와 저항(R6)의 접속점으로부터 도 9에 도시된 센싱 코일 패턴(26)에 의해 구성되는 로터위치검출용 센싱 코일(Ls)을 통하여 제1기준전압(Vref1)에 센싱 코일(Ls)에 유도된 유도기전력이 부가되어 인가된다.
제1비교기(OP1)의 비반전입력단자(+)와 출력단자 사이에 연결된 저항(R7)은 제1비교기(OP1)의 출력을 정귀환시키기 위해서 사용된 것으로 제1비교기(OP1)의 출력이 구형파 형태로 출력되게 한다.
스위칭회로(32)는 반전입력단자(-)에 로터위치신호발생부(31)로부터 발생되는 로터위치신호가 인가되고, 비반전입력단자(+)에 전압분압회로의 저항(R3)와 저항(R6)의 접속점으로부터 일정한 제2기준전압(Vref2)이 저항(R5)을 통하여 인가된다. 제2비교기(OP2)의 비반전입력단자(+)와 출력단자 사이에 연결된 저항(R9)은 제2비교기(OP2)의 출력을 정귀환시키기 위해서 사용된 것으로 제2비교기(OP2)의 출력이 구형파 형태로 출력되게 한다.
스위칭회로(32)의 출력단자와 반전입력단자(-) 사이에는 제1 내지 제5 코일 패턴(21~25)에 의해 구성되는 스테이터 코일(L1)과 저항(R8)이 병렬로 접속되어 있다.
또한, 제2비교기(OP2)의 출력에는 FG(Frequency Generator)신호 출력부(34)가 연결되어 있으며, FG신호 출력부(34)는 모터의 속도를 제어하는 데 사용할 수 있도록 저항(R10)을 통하여 모터 속도를 피드백 받기 위한 FG신호 출력단자가 구비되어 있다. 미설명 부재번호 C1은 FG신호에 포함된 고주파 노이즈를 바이패스시키기 위한 용도로 사용된다.
상기와 같이 구성된 본 발명에서는 스테이터(110)의 제1 PCB(11)에 센싱 코일 패턴(26)이 배치되어 있기 때문에 N극 및 S극 자석이 교대로 배치된 로터(120)가 회전하여 먼저 N극 자석이 대향하게 되면 센싱 코일(Ls)로부터 전자기유도에 따라 유도기전력(즉, 역기전력(Back EMF))이 발생하며 센싱 코일(Ls)을 따라 흐르는 전류의 방향은 앙페르의 오른손법칙에 의해 결정된다.
이때, 대향한 N극 자석의 회전에 따라 센싱 코일(Ls)에 가해지는 자기력선속(자기장 세기)의 변화가 정현파 형태로 발생되고 이에 따라 센싱 코일(Ls)에 유도되는 유도기전력도 자기력선속의 변화와 1/4(90도)의 위상차를 가지고 정현파 형태로 변화가 발생된다.
따라서, 상기 센싱 코일(Ls)에 유도되는 유도기전력은 제1기준전압(Vref1)에 부가되어 제1비교기(OP1)의 반전입력단자(-)에 입력된다.
이에 따라 제1비교기(OP1)는 반전입력단자(-)의 전압이 비반전입력단자(+)에 인가된 제1기준전압(Vref1) 보다 더 크게 되므로, 제1비교기(OP1)의 출력에는 로우레벨(L)의 로터위치신호가 발생된다.
따라서, 제2비교기(OP2)는 반전입력단자(-)에 인가된 로우레벨(L)의 로터위치신호보다 비반전입력단자(+)에 인가된 제2기준전압(Vref2)이 더 크기 때문에 제2비교기(OP2)의 출력은 하이레벨(H)로 된다. 이에 따라 스테이터 코일(L1)은 제2비교기(OP2)의 출력측에서 제2비교기(OP2)의 반전입력단자(-) 방향으로 전류가 흐르게 된다.
그 후, 로터가 계속 회전하여 S극 자석이 대향하게 되면 센싱 코일(Ls)로부터 전자기유도에 의해 유도기전력(즉, 역기전력(Back EMF))이 발생되고, 센싱 코일(Ls)을 따라 흐르는 전류의 방향은 앙페르의 오른손법칙에 의해 N극 자석이 대향한 경우와 반대로 결정된다.
이때, 대향한 S극 자석의 회전에 따라 센싱 코일(Ls)에 가해지는 자기력선속(자기장 세기)의 변화가 정현파 형태로 발생되고 이에 따라 센싱 코일(Ls)에 유도되는 유도기전력도 자기력선속의 변화와 1/4(90도)의 위상차를 가지고 정현파 형태로 변화가 발생된다.
따라서, 상기 센싱 코일(Ls)에 유도되는 유도기전력은 제1기준전압(Vref1)에 차감되어 제1비교기(OP1)의 반전입력단자(-)에 입력된다.
이에 따라 제1비교기(OP1)는 반전입력단자(-)의 전압이 비반전입력단자(+)에 인가된 제1기준전압(Vref1) 보다 더 작게 되므로, 제1비교기(OP1)의 출력에는 하이레벨(H)의 로터위치신호가 발생된다.
이에 따라 제2비교기(OP2)는 반전입력단자(-)에 인가된 하이레벨(H)의 로터위치신호보다 비반전입력단자(+)에 인가된 제2기준전압(Vref2)이 더 작기 때문에 제2비교기(OP2)의 출력은 로우레벨(L)로 된다. 따라서, 스테이터 코일(L1)은 제2비교기(OP2)의 반전입력단자(-)에서 제2비교기(OP2)의 출력측 방향으로 전류가 흐르게 된다.
상기한 바와 같이, 본 발명에서는 센싱 코일(Ls)에 유도된 유도기전력(즉, 역기전력(Back EMF))에 의해 스테이터 코일(L1)에 흐르는 전류의 방향이 주기적으로 전환이 이루어짐에 의해 홀(Hall)센서와 같은 고가의 로터위치 검출센서를 사용하지 않고 모터구동회로(30)에서 스테이터 코일(L1)에 흐르는 전류의 방향을 주기적으로 전환할 수 있다. 그 결과, 로터는 회전하던 방향과 동일한 방향으로 회전이 지속되게 된다.
센싱 코일(Ls)을 사용하는 센서레스 단상 모터(40)는 홀센서를 사용하는 경우와 다르게 로터의 회전방향을 시계방향(CW))과 반시계방향(CCW) 중 어느 하나로 미리 결정하여 회전 구동할 수 없다.
따라서, 본 발명에서는 초기상태에서 로터의 기동이 이루어진 후, 로터가 시계방향(CW) 또는 반시계방향(CCW) 중 어느 하나의 방향으로 회전이 이루어지면 로터의 극성이 바뀔때 마다 주기적으로 스테이터 코일(L1)에 대한 전류의 흐름 방향을 변경시킴에 의해 로터가 회전되는 방향으로 계속 회전이 이루어지도록 한다.
전류가 흐를 때 제1 내지 제5 코일 패턴(21~25)의 외측 및 내측 연결패턴부(20a~20c,20d~20f)는 거의 동심원 형태로 배열되어 있으므로 플레밍의 왼손법칙에 따라 발생되는 힘(F)의 방향이 방사방향으로 향하기 때문에 토크 발생에 영향을 주지 못한다.
따라서, 제1 내지 제5 코일 패턴(21~25)의 외측 및 내측 연결패턴부(20a~20c,20d~20f)는 단지 전류가 흐르는 경로 역할을 하고, 6개의 방사방향패턴부(20g~20l)으로부터 접선방향으로 힘이 발생되어 로터(120)의 회전이 이루어지게 된다.
또한, 인접한 방사방향패턴부(20g~20l) 사이에 코일에 흐르는 전류의 방향은 반대로 설정되고, 이에 대응하는 로터(120)의 자석의 자극도 반대로 위치하게 되므로, 모두 동일한 방향으로 로터의 자석을 밀거나 끌어당기는 힘을 발생하게 되어 로터를 반시계방향(CCW)으로 회전시키게 된다.
더욱이, 모터구동회로(30)의 로터위치신호발생부(31)는 로터(120)가 기계각으로 60°(전기각 180°) 회전할 때마다 로터의 자극을 검출하여 하이레벨(H)과 로우레벨(L)의 로터위치검출신호를 교대로 발생함에 따라 스위칭회로(32)는 제1 내지 제5 코일 패턴(21~25)에 대한 구동전류의 전류 흐름방향을 변경한다.
이하에서는 상기한 제1 및 제2 실시예에 따른 적층형 스테이터에 대하여 스테이터 코일의 저항을 최소화함에 의해 상 저항과 동손(coil loss)을 줄여서 코일 온도를 낮추고 효율은 증대시킬 수 있는 구조를 제3실시예를 통하여 설명한다.
도 11 내지 도 14를 참조하면, 본 발명의 제3실시예에 따른 적층형 스테이터(110)는 상기한 제1 및 제2 실시예에 따른 적층형 스테이터와 기본적인 구조는 동일하며, 차이점은 복수의 코일 패턴(21~25)에 있다.
따라서, 제3실시예의 설명시에 제1 및 제2 실시예와 동일한 부분은 동일한 부재번호를 부여하고 이에 대한 상세한 설명은 생략한다.
제3실시예에 따른 적층형 스테이터(110)는 복수층이 적층되어 일체화되고 절연재료로 이루어진 다층 기판(10a); 스테이터 코일을 구성하는 데 필요한 복수의 턴(turn)을 형성하도록 상기 다층 기판 각각에 적층된 동박을 패터닝하여 얻어진 나선형상의 도전성 패턴으로 이루어진 복수의 코일 패턴(21~25); 및 상기 다층 기판(10a)을 관통하여 형성된 관통홀에 도금되어, 상기 복수의 코일 패턴(21~25) 등을 연결하기 위한 복수의 스루홀(T21~T27);을 포함하고 있다.
상기 복수의 코일 패턴(21~25)은 나선형상을 가지도록 패턴 형성되고, 크게 보면 복수, 예를 들어, 3개의 돌기부와 요홈부를 120도 간격으로 교대로 가지도록 원형 기판에 환형으로 배치되어 지그재그 형태를 가지고 있다.
그 결과, 상기 복수의 코일 패턴(21~25)은 각각 내측 원주와 외측 원주에 간격을 두고 원주방향을 따라 배치되며 곡선 형태로 이루어진 복수의 내측 및 외측 연결패턴부(20a-20f); 및 인접한 외측 연결패턴부(20a-20c)와 내측 연결패턴부(20d-20f)를 상호 연결하며 중심으로부터 방사방향을 따라 배치되는 복수의 방사방향패턴부(20g-20l)를 포함하고 있다.
상기 적층형 스테이터(110)는 각 기판(10)에 동박이 적층된 동박적층판(CCL)으로 이루어진 다층 기판(10a)을 사용하여 구성될 수 있으며, 각층 기판의 동박을 패터닝하고 적층한 후, 도전성 스루홀(T21~T27)을 형성하여 구성될 수 있다.
이하의 제3실시예 설명에서는 도 12에 도시된 바와 같이 다층 기판(10a)이 4층 구조의 제1 내지 제4 PCB(11~14)가 적층된 것을 예로 들어 설명한다.
제1 내지 제3 PCB(11~13)에는 각각 기판(10)의 상부면에 3개의 돌기부와 요홈부를 120도 간격으로 교대로 가지도록 원형 기판에 환형으로 배치되어 나선형으로 코일링된 제1 내지 제3 코일 패턴(21~23)이 각각 형성되고, 최하층의 제4층 PCB(14)에는 예를 들어, 부채꼴 형상의 제4 및 제5 코일 패턴(24,25)이 상하로 분리되어 형성되어 있으며, 예를 들어, 동박(Cu)과 같은 도전성 금속을 미세하게 패터닝하여 형성되어 있다.
제1 내지 제3 코일 패턴(21~23)은 각각 내측에서 외측으로 시계방향(CW)으로 나선형상을 가지도록 동일하게 형성되고, 제4 코일 패턴(24)은 내측에서 외측으로 반시계방향(CCW)으로 나선형상을 가지도록 형성되며, 제5 코일 패턴(25)은 외측에서 내측으로 시계방향(CW)으로 나선형상을 가지도록 형성되어 있다.
제1 내지 제3 코일 패턴(21~23)은, 각각 3개씩의 외측 및 내측 연결패턴부(20a~20c,20d~20f)와, 상기 외측 연결패턴부(20a~20c)와 내측 연결패턴부(20d~20f)를 연결하는 6개의 방사방향패턴부(20g~20l)가 교대로 연결되어 전체적으로 지그재그 형태를 이루고 있다.
또한, 외측 및 내측 연결패턴부(20a~20c,20d~20f)는 각각 외측 원주와 내측 원주에 간격을 두고 원주방향을 따라 배치되어 있고, 6개의 방사방향패턴부(20g~20l)는 각각 전체적으로 기판(10)의 중심으로부터 방사하는 방향으로 설정되도록 내측 단부는 2개씩 서로 간격이 좁아지는 패턴 형상을 가지고 있다.
제3실시예에서 제1 내지 제3 코일 패턴(21~23)은 예를 들어, 도 13과 같이, 각각 24턴(401~424)의 나선형 코일로 이루어져 있다. 이 경우, 제1 내지 제3 코일 패턴(21~23)의 방사방향패턴부(20g~20l)는 각각 미리 설정된 24개의 기준 턴(401~424)을 유지하여 토크를 발생시키고, 연결패턴부(20a~20c,20d~20f)는 24개의 기준 턴(401~424)을 예를 들어, 2개씩 통합(즉, 단락)시켜서 넓은 폭을 갖는 12개의 통합 턴(431~442)을 이루고 있다.
연결패턴부(20a~20c,20d~20f)에서 통합되는 기준 턴(401~424)의 갯수는 2개 내지 3개로 이루어지거나, 제4실시예와 같이 전체의 기준 턴(401~424)을 통합하는 것도 가능하다.
일반적으로 저항(R)은 길이(l)에 비례하고 단면적(S)에 반비례한다. 따라서, 통합 턴(431~442)의 폭이 기준 턴(401~424)의 2배인 경우, 즉 1/2 저항값을 가지는 경우, 연결패턴부(20a~20c,20d~20f)의 24개의 기준 턴(401~424)을 2개씩 통합시켜서 12개의 통합 턴(431~442)으로 설계하는 경우, 제1 내지 제3 코일 패턴(21~23)으로 구성되는 스테이터 코일의 전체 저항은 통합이 이루어지기 전과 비교할 때 대략 1/4로 감소하게 된다.
동손(copper loss, coil loss)은 저항 RΩ인 도체에 전류(I)가 흐를 때 (P = I2R)의 에너지가 열로 발생하기 때문에 생기는 현상으로, 에너지 손실은 온도 상승의 원인이 된다.
본 발명에서는 저항과 동손을 크게 줄여서 에너지 손실을 줄임에 의해 코일 온도를 낮추고, 그 결과 모터 효율은 증대시킬 수 있게 된다.
본 발명에서는, 제1 내지 제3 PCB(11~13)가 적층된 경우 제1 내지 제3 코일 패턴(21~23)에서 6개의 방사방향패턴부(20g~20l)는 모두 동일한 위치에 배치된 구조를 가진다. 따라서, 후술하는 바와 같이, 3층의 PCB가 적층되는 경우 방사방향패턴부(20g~20l)는 각각 3층으로 적층된 코일 패턴이 로터의 자석과 동시에 대향하는 위치를 갖게 되고 전류의 흐름방향이 동일하게 설정됨에 따라 합력된 토크를 발생할 수 있다.
본 발명에 따른 스테이터(110)는 다층 기판(10a)에 형성된 제1 내지 제5 코일 패턴(21~25)을 상호 연결하여 스테이터 코일을 형성하며, 스테이터 코일에서 방사방향패턴부(20g~20l)의 수는 로터 자극수와 동일한 수, 로터 자극수의 1/2 배수 및 로터 자극수의 2배수 중 어느 하나의 값을 가지며, 동시에 인접한 방사방향패턴부(20g~20l) 사이의 각도는 360/n(여기서, n은 로터 자극수와 동일한 수, 로터 자극수의 1/2 배수 및 로터 자극수의 2배수 중 어느 하나)으로 결정된다.
따라서, 6개의 방사방향패턴부(20g~20l)를 갖는 스테이터인 경우 인접한 방사방향패턴부(20g~20l) 사이의 각도는 60°이고, 단상 모터를 구성하기 위해 이에 결합되어 회전되는 로터의 자극(N극 자석과 S극 자석)의 수는 6극을 갖도록 구성된다.
제4 PCB(14)에는 단상 모터를 구동하는 데 필요한 구동회로(30)를 일체로 형성하도록 각종 전자 부품(16)을 실장하고 결선하는 데 필요한 인쇄 배선(17)이 도전성 패턴으로 형성되어 있다.
또한, 제4 PCB(14)에는 구동회로 부품을 실장하고 남는 공간을 활용하여 제1 내지 제3 코일 패턴(21~23)에 추가되는 제4 및 제5 코일 패턴(24,25)을 형성할 수 있으며, 제4 및 제5 코일 패턴(24,25)은 로터를 회전시키는 데 필요한 토크값에 따라 생략할 수도 있다.
도시된 제4 PCB(14)는 투시된 상태를 나타낸 것으로 각종 패턴, 즉, 제4 및 제5 코일 패턴(24,25), 인쇄 배선(17)과 이에 실장되는 전자 부품(16)은 다층 기판(10a)의 배면에 위치한 것을 나타낸 것이다.
상기 제4 코일 패턴(24)은 외측에서 내측으로 시계방향(CW)으로 나선형상을 가지도록 부채꼴로 형성한 패턴이고, 제5 코일 패턴(25)은 내측에서 외측으로 반시계방향(CCW)으로 나선형상을 가지도록 부채꼴로 형성한 패턴이다.
본 발명의 제1 내지 제4 PCB(11~14)가 적층된 경우 제1 내지 제5 코일 패턴(21~25)은 제3실시예인 경우, 제1 내지 제7 스루홀(T21~T27)을 통하여 직렬방식으로 상호 연결된 것을 연결패턴부(20a~20c,20d~20f)에 대해서는 24개의 기준 턴(401~424)을 2개씩 통합(즉, 단락)시켜서 12개의 통합 턴(431~442)을 이루도록 패터닝하여 하나의 스테이터 코일을 형성한다. 제1 내지 제7 스루홀(T21~T27)은 홀 내부가 도전성 재료로 도금 또는 충전되어 있다.
본 발명에 따른 단상 모터용 스테이터는 각각 기판(10)의 상부면에 제1 내지 제3 코일 패턴(21~23)이 형성되는 제1층 내지 제3층 PCB(11~13)는 코일 패턴층을 형성하며, 제4층 PCB(14)는 모터구동회로(30)가 실장된 구동회로층을 형성한다.
제3 PCB(13)에는 제4 PCB(14)의 상측과 하측에 분리되어 형성된 제4 코일 패턴(24)과 제5 코일 패턴(25)을 연결하기 위해 스루홀(T23)과 스루홀(T24)을 연결하는 제6점퍼선 패턴(J21)이 제3 코일 패턴(23)의 내주부를 따라 형성되어 있고, 또한 제5 코일 패턴(25)의 외부에서 내부의 스타트 부분(S5)을 연결하기 위해 스루홀(T25)과 스루홀(T26)을 연결하는 제7점퍼선 패턴(J22)이 형성되어 있으며, 제4 PCB(14)에는 스루홀(T24)과 스루홀(T25)을 연결하는 제8점퍼선 패턴(J23)이 제5 코일 패턴(25)의 외곽을 따라 형성되어 있다.
본 발명의 제1 내지 제4 PCB(11~14)가 적층된 경우 제1 내지 제5 코일 패턴(21~25)은 스루홀(T21~T27)과 제6 내지 제8 점퍼선 패턴(J21~J23)을 통하여 상호 연결되어 하나의 스테이터 코일을 형성한다.
즉, 제1 PCB(11)의 제1 코일 패턴(21)은 엔드 부분(E1)이 스루홀(T22)을 통하여 제2 PCB(12)의 제2 코일 패턴(22)의 스타트 부분(S2)에 연결되고, 제2 코일 패턴(22)의 엔드 부분(E2)은 스루홀(T27)을 통하여 제3 PCB(13)의 제3 코일 패턴(23)의 스타트 부분(S3)에 연결된다.
또한, 제3 코일 패턴(23)의 엔드 부분(E3)은 스루홀(T21)을 통하여 제4 PCB(14)의 제4 코일 패턴(24)의 스타트 부분(S3)에 연결되고, 제4 코일 패턴(24)의 엔드 부분(E4)과 제5 코일 패턴(25)의 스타트 부분(S5)은 상기 스루홀(T23)과 스루홀(T24)을 연결하는 제6 점퍼선 패턴(J21)과, 스루홀(T24)과 스루홀(T25)을 연결하는 제8 점퍼선 패턴(J23)과, 스루홀(T25)과 스루홀(T26)을 연결하는 제7 점퍼선 패턴(J22)을 통하여 상호 연결이 이루어진다.
그 결과, 스테이터 코일의 일단, 즉 제5 코일 패턴(25)의 엔드 부분은 모터구동회로(30)의 제1출력단자(Out1)에 연결되고, 스테이터 코일의 타단, 즉 제1 코일 패턴(21)의 스타트 부분(S1)은 스루홀(T27)을 통하여 모터구동회로의 제2출력단자(Out2)에 연결된다.
본 발명에서는 제1 내지 제3 코일 패턴(21~23)의 외측 연결패턴부(20a~20c)의 내주부와 외주부에 코일 패턴이 상호 겹쳐지지 않는 영역이 존재하도록 제1 내지 제5 코일 패턴(21~25)의 폭을 설정하여, 스루홀(T21~T27)을 배치한다.
그 결과, 본 발명에서는 별도의 배선 패턴 PCB를 사용하지 않고도 제1 내 제5 코일 패턴(21~25)의 내부에 배치된 스타트 또는 엔드 단자를 타층의 코일 패턴과 연결이 쉽게 이루어질 수 있다.
도 12에 도시된 제3실시예에서는 제4 PCB(14)에 단상 모터를 구동하기 위한 모터구동회로(30)가 실장되어 있는 것을 예시하고 있으나, 모터구동회로가 별도로 구성되는 것도 가능하다. 즉, 스테이터와 스테이터가 장착되는 지지부 사이에 충분한 공간이 확보되지 않는 경우에는 최소한의 구동회로 부품만이 제4 PCB(14)의 배면에 실장될 수 있다.
이하에 도 14를 참고하여 본 발명의 제3실시예에 따른 적층형 스테이터를 이용한 단상 모터를 설명한다. 도 14에서 로터의 회전 위치별 전류 흐름(화살표 참고)은 제1 PCB(11)의 제1 코일 패턴(21)과 제2 내지 제4 PCB(12-14)의 제2 내지 제5 코일 패턴(22~25)에 대한 전류 흐름은 동일하므로 제1층 PCB(11)의 제1 코일 패턴(21)만을 설명한다.
도시된 단상 모터(40)는 단상 모터로서 6슬롯-6폴 구조의 스테이터(110)와 로터(120)가 액시얼 타입으로 서로 대향하여 배치된 구조를 가지나, 도면에는 설명의 편의상 동일 평면에 함께 표현한 것이다.
단상 모터용 모터구동회로(30)는 예를 들어, 홀센서(H1)로부터 자석의 자극을 검출하여 서로 반대 극성의 한쌍의 제1로터위치검출신호를 발생할 때 이에 따라 제1 및 제2 스위칭 트랜지스터 중 하나는 턴-온되고, 다른 하나는 턴-오프되어, 제1 및 제2 스위칭 트랜지스터 사이에 연결된 스테이터 코일을 흐르는 전류의 흐름방향을 결정한다.
도 14와 같이, 도시된 제3실시예에서는 홀센서(H1)는 N극 자석(121e)과 S극 자석(121f) 사이의 경계면(121g)으로부터 15°만큼 편위된 위치에 설치되어 있다.
로터(120)가 초기 위치(즉, 0°)에 있을 때, 모터구동회로(30)에 구동전원(Vcc)이 공급되면 홀센서(H1)는 로터(120)의 S극 자석(121f)을 인식하여 로터의 회전방향(즉, 반시계방향(CCW))을 내포하는 한쌍의 제1로터위치검출신호를 발생하여 모터구동회로(30)의 2개의 제1 및 제2 스위칭 트랜지스터에 인가하면, 제1 스위칭 트랜지스터는 턴-온되고 제2 스위칭 트랜지스터는 턴-오프되면서 스테이터 코일, 즉 제1 내지 제5 코일 패턴(21~25)에 대한 구동전류의 전류 흐름방향이 결정된다.
로터의 회전방향이 반시계방향(CCW)으로 결정됨에 따라 제1코일 패턴(21)의 스타트 부분(S1)으로부터 제5 코일 패턴(25)의 엔드 부분 방향으로 전류가 흐르게 되며, 전류가 흐르는 방향을 제1 코일 패턴(21)에 화살표로 나타낸다. 제2 내지 제5 코일 패턴(22~25) 또한 제1 코일 패턴(21)과 동일한 방향으로 전류가 흐른다.
이 경우, 제1 내지 제5 코일 패턴(21~25)의 외측 및 내측 연결패턴부(20a~20c,20d~20f)는 거의 동심원 형태로 배열되어 있으므로 플레밍의 왼손법칙에 따라 발생되는 힘(F)의 방향이 방사방향으로 향하기 때문에 로터의 회전 토크에 영향을 주지 못한다.
제1 내지 제5 코일 패턴(21~25)은 각각 동일한 위치의 방사방향패턴부(20g~20l)에 흐르는 구동전류의 흐름 방향이 동일하도록 스루홀(T21~T27)과 점퍼선 패턴(J21~J23)을 통하여 상호 연결이 이루어져 있다. 그 결과, 방사방향패턴부(20g~20l)는 로터(120)의 회전방향(원주방향)과 직각인 방사방향(즉, 법선방향)으로 배향되어 있어 플레밍의 왼손법칙에 따라 반시계방향(CCW)으로 접선방향의 힘(F)이 발생된다.
따라서, 제1 내지 제5 코일 패턴(21~25)의 외측 및 내측 연결패턴부(20a~20c,20d~20f)은 단지 전류가 흐르는 경로 역할을 하고, 6개의 방사방향패턴부(20g~20l)으로부터 접선방향으로 힘(F)이 발생되어 로터(120)의 회전이 이루어지게 된다.
또한, 인접한 방사방향패턴부(20g~20l) 사이에 코일에 흐르는 전류의 방향은 반대로 설정되고, 이에 대응하는 로터(120)의 자석의 자극도 반대로 위치하게 되므로, 모두 동일한 방향으로 로터의 자석을 밀거나 끌어당기는 힘을 발생하게 되어 로터를 반시계방향(CCW)으로 회전시키게 된다.
상기한 바와 같이, 본 발명의 제3실시예에 따른 적층형 스테이터를 이용한 단상 모터에서 방사방향패턴부(20g~20l)는 동일한 방향으로 전류가 흐르도록 결선이 이루어지며, 전류 흐름에 따라 로터에 접선방향의 회전력을 발생할 수 있다.
이어서, 로터(120)가 회전되어 기계각으로 45°(전기각 135°) 회전한 경우, 홀센서(H1)는 N극 자석(121a)과 S극 자석(121f)의 경계면(121g)에 위치하게 되어 자극을 인식하지 못하며, 전류의 흐름 방향을 결정하지 못한다.
회전 관성에 의해 로터(120)가 계속 회전하여 기계각으로 45°(전기각 135°)를 넘어서 기계각으로 60°(전기각 180°) 회전하게 되면, 홀센서(H1)는 N극 자석(121a)을 인식하게 된다. 이 경우, 홀센서(H1)는 상기한 제1로터위치검출신호와 반대 극성의 한쌍의 제2로터위치검출신호 출력을 발생하여 제1 및 제2 스위칭 트랜지스터에 인가함에 따라, 제1 스위칭 트랜지스터는 턴-오프되고 제2 스위칭 트랜지스터는 턴-온되면서 스테이터 코일, 즉 제1 내지 제5 코일 패턴(21~25)에 대한 구동전류의 전류 흐름방향이 반대로 설정된다.
그 결과, 제1 내지 제5 코일 패턴(21~25)에 대한 구동전류의 전류 흐름방향이 반대로 설정되면, 방사방향패턴부(20g~20l)는 플레밍의 왼손법칙에 따라 반시계방향(CCW)으로 접선방향의 힘(F)이 발생되어 로터(120)의 회전이 이루어진다.
상기와 같이 모터구동회로(30)는 홀센서(H1)가 기계각으로 60°(전기각 180°) 회전할 때마다 로터의 자극을 검출하여 제1로터위치검출신호와 제2로터위치검출신호를 교대로 발생함에 따라 제1 및 제2 스위칭 트랜지스터는 교대로 턴-온과 턴-오프되면서 제1 내지 제5 코일 패턴(21~25)에 대한 구동전류의 전류 흐름방향을 변경한다.
상기와 같이 본 발명의 제3실시예에 따른 적층형 스테이터(110)는 스테이터 코일을 다층 PCB에 형성된 도전성 패턴 코일(21~25)을 이용하며 적층형으로 구현함에 의해 생산성 향상과 원가 절감이 가능한 슬림형 스테이터를 구현할 수 있다.
또한, 본 발명에 따른 적층형 스테이터는 각 층의 코일 패턴이 토크 발생 효율을 최대화할 수 있도록 방사방향으로 배향된 방사방향패턴부(20g~20l)를 포함하며, 로터(120)가 회전할 때 스테이터 코일(권선)의 방사방향패턴부(20g~20l)와 자석(121a~121f)이 대향하는 부분의 총면적이 최대화하도록 설계된다.
이 경우, 상기 로터(120)는 도 17과 같이 자석을 링 형상으로 형성하고, 상기 링의 폭은 적어도 방사방향패턴부(20g~20l)의 길이보다 더 크게 형성하여 방사방향패턴부(20g~20l)와 대향하도록 배치하면, 방사방향패턴부(20g~20l)와 자석(121a~121f)이 대향하는 부분의 총면적을 최대화할 수 있게 되어 토크 발생이 최대로 얻어질 수 있다.
도 14는 제3실시예에 따른 적층형 스테이터(110)를 사용한 단상 모터에서 자기기동용 데드 포인트 방지 요크와 홀소자와의 배치 관계를 설명하기 위한 설명도이다.
도 17에 도시된 인카 센서와 같이, 본 발명에서 하나의 홀센서를 채용하면서 데드 포인트 방지 요크를 스테이터의 하측에 배치하여 채용하는 경우, 도 14에 도시된 바와 같이 데드 포인트 방지 요크(170)는 로터(120)의 자극 수(6극)와 동일하게 외주면이 육각형상을 이루며, 관통구멍의 내주면이 원형을 갖는 평판 플레이트로 구성되어 있다.
이 경우, 로터(120)가 초기(정지) 상태일 때, 로터(120)의 자석(121)과 데드 포인트 방지 요크(170) 사이에는 자기현상에 의해 도 14와 같이 각 자석의 센터가 데드 포인트 방지 요크(170)의 실효면적 폭이 가장 넓은 지점(즉, 모서리)과 대향하여 위치하게 된다.
따라서, 홀소자(H1)는 자극의 경계면(121g)으로부터 1/4 자극폭(6극 로터인 경우는 15˚) 또는 3/4 자극폭 만큼 편이된 위치에 설치하는 것이 바람직하다. 홀소자(H1)를 자극의 경계면(121g)으로부터 1/4 자극폭 만큼 편이된 위치에 설치하는 이유는 이 지점이 자석으로부터 발생되는 자기 플럭스가 최대이므로 홀소자(H1)는 가장 좋은 감도의 로터위치검출신호를 발생할 수 있기 때문이다.
또한, 본 발명에서는 스테이터의 제1 내지 제3 코일 패턴(21~23) 중에 자극의 경계면(121g)으로부터 1/4 자극폭이 되는 지점에 홀소자(H1)를 배치함과 동시에 방사방향패턴부(20g~20l) 중 하나가 위치하도록 설정한다.
도 14와 같이 방사방향패턴부(20g~20l) 중 하나, 예를 들어, 방사방향패턴부(20l)가 홀소자(H1)와 일치하며, 자극의 경계면(121g)으로부터 1/4 자극폭이 되는 지점에 배치된 상태에서, 모터구동회로(30)에 구동전원이 인가되어 로터의 기동이 이루어지면, 홀소자(H1)로부터 가장 좋은 감도의 로터위치검출신호가 얻어질 수 있고 자석(121f)으로부터 발생되는 자기 플럭스가 최대인 지점에 방사방향패턴부(20l)가 대향해 있기 때문에 보다 쉽게 자기기동이 이루어지게 된다.
또한, 로터의 회전 방향이 반시계방향(CCW)인 경우는 데드 포인트 방지 요크(170)의 6각형 모서리로부터 반시계방향으로 1/4 자극폭 지점에 홀소자(H1)가 설치되는 것이 바람직하고, 회전 방향이 시계방향(CW)인 경우는 데드 포인트 방지 요크(170)의 6각형 모서리로부터 시계방향으로 1/4 자극폭 지점에 홀소자(H1)가 설치되는 것이 자기기동 불능 현상을 피할 수 있게 된다.
이하에 도 15를 참고하여 본 발명의 제4실시예에 따른 적층형 스테이터를 설명한다.
먼저, 도 11 및 도 12에 도시된 제3실시예에 따른 적층형 스테이터(110)는 제1 내지 제3 코일 패턴(21~23)은 각각 시계방향(CW)으로 나선형상을 가지도록 형성되고, 방사방향패턴부(20g~20l)는 24개의 기준 턴(401~424)을 유지하며, 연결패턴부(20a~20c,20d~20f)의 24개의 기준 턴(401~424)은 2개씩 통합시켜서 12개의 통합 턴(431~442)으로 설계한 것이다.
제4실시예에 따른 적층형 스테이터에서 제1 내지 제3 코일 패턴(21~23)은, 방사방향패턴부(20g~20l)는 24개의 기준 턴(401~424)을 유지하며, 연결패턴부(20a~20c,20d~20f)의 24개의 기준 턴(401~424)은 모두 하나로 통합시킨 것을 제외하고 나머지는 제3실시예와 동일한 구조이다.
제4실시예와 같이 연결패턴부(20a~20c,20d~20f)의 24개의 기준 턴(401~424) 모두를 기준 턴(401~424)으 4배 내지 6배 정도의 더 넓은 폭을 갖는 하나의 턴(450;451)으로 통합시킨 경우, 제1 내지 제3 코일 패턴(21~23)으로 구성되는 스테이터 코일의 전체 저항은 통합이 이루어지기 전과 비교할 때 1/4 이하로 크게 감소하게 된다.
그 결과 제4실시예에 따른 적층형 스테이터는 제3실시예보다 더 저항과 동손을 크게 줄여서 에너지 손실을 줄임에 의해 코일 온도를 낮추고, 그 결과 모터 효율은 증대시킬 수 있게 된다.
도 15에 도시된 제4실시예에 따른 적층형 스테이터는 제1 내지 제4 코일 패턴(21~24)은 모두 시계방향(CW)으로 나선형상을 가지도록 형성되고, 단지 제4 코일 패턴(24)만 5개의 방사방향패턴부(20g~20k)만 형성되고, 하나의 방사방향패턴부(20l)는 생략되고 그 자리에 모터구동회로(30)가 배치되어 있다.
제4실시예에서 제1 내지 제3 PCB(11~13)의 코일 패턴(21~23)은 동일한 형상의 패턴으로 이루어져 있고, 시계방향(CW)의 나선형상을 가지도록 형성되어 있다는 점에서 제3실시예와 동일하다.
제4실시예에 따른 적층형 스테이터는 제1 내지 제4 PCB(11~14)의 코일 패턴(21~24)이 시계방향(CW)의 나선형상을 갖는 권선으로 형성한 후, 4개의 스루홀(T31~T34)을 통하여 상호 연결이 이루어진다.
또한, 본 발명의 제4실시예에 따른 적층형 스테이터는 제1 내지 제4 코일 패턴(21~24)이 동일한 형상으로 동일한 위치에 배치되며, 스루홀(T31~T34)을 이용하여 제1 내지 제4 코일 패턴(21~24)을 연결하면 하나의 스테이터 코일이 형성된다.
즉, 제1 PCB(11)의 제1 코일 패턴(21)은 스타트 부분(S11)(즉, 스루홀(T31))에서 시계방향으로 권선이 이루어진 후 엔드 부분(E11)이 스루홀(T32)을 통하여 제2 PCB(12)의 제2 코일 패턴(22)의 스타트 부분(S12)에 연결되고, 제2 코일 패턴(22)의 엔드 부분(E12)은 스루홀(T33)을 통하여 제3 PCB(13)의 제3 코일 패턴(23)의 스타트 부분(S13)에 연결된다.
또한, 제3 코일 패턴(23)의 엔드 부분(E13)은 스루홀(T34)을 통하여 제4 PCB(14)의 제4 코일 패턴(24)의 스타트 부분(S14)에 연결되고, 제4 코일 패턴(24)의 엔드 부분은 연장배선에 연결된다.
그 결과, 스테이터 코일의 일단, 즉 제4 코일 패턴(24)의 엔드 부분은 연장배선을 통하여 모터구동회로(30)의 제1출력단자(Out1)에 연결되고, 스테이터 코일의 타단, 즉 제1 코일 패턴(21)의 스타트 부분(S11)은 스루홀(T31)을 통하여 모터구동회로(30)의 제2출력단자(Out2)에 연결된다.
본 발명의 제4실시예에 따른 적층형 스테이터에서 제4 PCB(14)에 실장되는 모터구동회로(30)는 전부가 좌측에 배치되어 있다.
제4 PCB(14)의 모터구동회로(30)에 구동전원(Vcc)이 공급되면 상기한 제1실시예와 동일하게 제4실시예에 따른 적층형 스테이터는 대향한 로터를 회전시키게 된다.
즉, 제4실시예에 따른 적층형 스테이터는 제1 내지 제4 PCB(11~14)의 제1 내지 제4 코일 패턴(21~24)에서 6개의 방사방향패턴부는 동일한 위치에 배치되고, 적층된 코일 패턴이 로터의 자석과 동시에 대향하는 위치를 갖게 되어, 구동전원(Vcc)이 공급될 때, 동일한 위치에 적층된 코일 패턴간에는 전류의 흐름방향이 동일한 방향으로 설정됨에 따라 합력된 토크를 발생할 수 있다.
한편, 도 9와 같이, 로터와 대향한 제1 PCB(11)에 센싱 코일 패턴(26)이 형성되어 있으면, 제3 및 제4 실시예에서도 로터의 회전시에 센싱 코일 패턴에 자석이 근접하면 센싱 코일 패턴으로부터 전자기 유도에 의해 유도기전력이 발생하며, 모터구동회로(30)는 이 유도기전력을 이용하여 스위칭소자를 턴온시킴에 의해 스테이터 코일에 흐르는 전류의 방향을 변경할 수 있다.
이하에 도 16 내지 도 18을 참고하여 적층형 스테이터를 사용하여 구현된 슬림형 단상 모터와 슬림형 인카 센서를 설명한다.
도 16은 본 발명에 따른 적층형 스테이터를 사용하여 구현된 슬림형 단상 모터를 나타내고, 도 17은 본 발명에 따른 슬림형 단상 모터를 이용한 슬림형 인카 센서를 나타낸다.
도 16 및 도 17에 도시된 바와 같이, 본 발명에 따른 슬림형 인카 센서(In-Car Sensor)(100)는 통형상의 하우징(200) 내부에 본 발명에 따른 적층형 스테이터(110)를 사용하여 구현된 단상 모터(40)가 수용되어 있다. 상기 단상 모터(40)는 인카 센서용 어스피레이션 모터를 구성한다.
하우징(200)은 일측에 공기가 흡입되는 흡입구(211)를 가지며 원통 형상으로 이루어진 상부 하우징(210)과, 상기 상부 하우징(210)의 하부에 상단부가 스냅결합되며 내부에 공간을 형성하면서 하부를 실링하는 하부 하우징(220)을 포함한다.
또한, 단상 모터(40)는 적층형 스테이터(110), 로터(120), 회전축(140), 슬리브 베어링(180) 및 베어링 홀더(300)를 포함한다.
하부 하우징(220)의 내부에는 적층형 스테이터(110)의 하부를 지지하는 단턱(222)이 돌출되어 있고, 하부 하우징(220)의 하부에는 터미널 조립체(160)를 수용하기 위한 터미널 가이드(221)가 연장되어 있다.
터미널 조립체(160)는 적층형 스테이터(110)에 일체로 형성된 모터구동회로(30)에 차량 내부의 공조제어장치(CCM: Climate Control Module)로부터 구동전원(Vcc) 등을 인가하고, FG(Frequency Generator)신호를 수신하기 위한 복수개의 터미널 핀(162)과 복수개의 터미널 핀(162)을 일체화하기 위한 터미널 지지체(161)를 포함하고 있다.
터미널 핀(162)은 터미널 지지체(161)에 의해 복수개가 일체화되어 있으며, 하단부는 하부 하우징(220)에 고정되면서 터미널 가이드(221)의 내부로 연장되고, 상단부는 적층형 스테이터(110)에 일체로 형성된 모터구동회로(30)에 전기적으로 연결됨과 동시에 다층기판(10a)을 관통하면서 물리적으로 고정되어 있다. 터미널 가이드(221)에는 공조제어장치(CCM)와 연결되는 외부 커넥터가 삽입되어 터미널 핀(162)과 연결된다.
상기 적층형 스테이터(110)의 상부에는 일정 갭을 두고 로터(120)가 액시얼 갭형으로 대향하여 배치되어 있으며, 저면에 N극 및 S극이 교대로 배치된 복수의 자석(121)이 환형으로 배치되고, 자석(121)의 상부에는 환형 백요크(122)가 배치되어 자기회로경로를 형성하며, 복수의 자석(121)과 백요크(122)은 로터 지지체(123)에 의해 환형으로 일체화된다.
로터 지지체(123)의 상부면에는 복수의 블레이드가 돌출되어 임펠러(130)가 일체로 형성되며, 중앙에는 회전축(140)의 상단부가 삽입되어 일체로 형성되어 있다.
로터(120)와 임펠러(130)를 일체로 형성하는 것은, 금형에 백요크(122), 자석(121)을 환형으로 배열하고, 중앙에 회전축(140)을 수직으로 배치한 후 인서트 사출 성형을 실시하면 로터 지지체(123)가 성형되면서 백요크(122), 자석(121) 및 회전축(140)이 로터 지지체(123)와 일체로 형성되고, 로터 지지체(123)의 상면에 둘레방향으로 임펠러(130)가 일체로 형성된다.
상기 로터 지지체(123)의 중앙부는 저면에 상방향으로 요홈(124)이 형성되며, 상기 요홈(124)에는 베어링 홀더(300)의 베이스 플레이트(310)로부터 상기 적층형 스테이터(110)의 관통구멍(15)을 통하여 밑에서 상부로 돌출되고, 중앙부에 슬리브 베어링(180)을 수용하도록 상측에서 하측 방향으로 요홈(331)을 갖는 원통형 보스(330)가 배치되어 있다.
원통형 보스(330)의 요홈(331)에는 슬리브 베어링(180)이 삽입되어 압착결합되어 있고, 슬리브 베어링(180)의 관통구멍에는 회전축(140)이 회전 가능하게 결합되어 있다.
또한, 원통형 보스(330)의 상부에는 회전축(140)의 회전에 따라 요홈(331)에 충진된 오일이 누설되는 것을 차단하기 위한 비산방지오일캡(340)이 결합되어 있다.
베어링 홀더(300)의 베이스 플레이트(310)는 원통형 보스(330)와 수직방향으로 배치되어 있고, 베이스 플레이트(310)의 중앙부에는 로터(120)의 회전축(140)을 지지하기 위한 스러스트 플레이트(thrust plate)(또는 베어링 시트)(320)가 배치되어 있고, 스러스트 플레이트(320)의 외측에는 데드 포인트 방지 요크(170)(도 8 참조)가 배치되어 있다.
상기 스러스트 플레이트(320)와 데드 포인트 방지 요크(170)는 베어링 홀더(300)의 베이스 플레이트(310)와 보스(330)를 사출성형할 때 인서트 몰딩방법으로 내장되어 일체화될 수 있다.
상부 하우징(210)의 하측부(217)에는 흡입구(211)를 통하여 유입된 공기를 측면 방향으로 배출하기 위한 다수의 관통구멍이 형성되어 있으며, 로터(120)와 일체로 형성된 임펠러(130)가 배치되어 있다.
상부 하우징(210)은 상측부(216)과 하측부(217)의 중간 부분에 온도센서(150)를 설치하기 위한 브리지(212)가 형성되어 있고, 브리지(212)의 중앙에는 흡입구(211)의 선단부로 온도센서(150)를 안내하여 지지하기 위한 온도센서 가이드(213)가 돌출되어 있다.
온도센서(150)는 리드 와이어(151)의 일단부가 적층형 스테이터(110)에 형성된 회로부에 연결되며, 일측 벽면에 형성된 관통구멍(214)을 통하여 상부 하우징(210)의 상측부(216)로 인출된 후, 브리지(212)와 온도센서 지지대(213)를 따라 흡입구(211)까지 연장되어 온도센서(150)가 흡입구(211)에 위치되게 한다.
이에 따라 온도센서(150)는 로터(120)와 함께 임펠러(130)가 회전함에 따라 차량 내부의 공기를 상부 하우징(210)의 흡입구(211)를 통하여 흡입할 때 유입된 공기의 온도를 보다 정확하게 측정하며, 측정된 온도값은 차량의 실내온도 조절에 이용될 수 있도록 터미널 핀(160)을 통하여 공조제어장치(CCM)로 전송된다.
상부 하우징(210)의 상측부(216)는 하측부(217)보다 직경이 작게 구성되어 있고, 상측부(216)와 하측부(217) 사이의 경계부에는 인카 센서(100)를 예를 들어, 자동차의 그릴 또는 인스트루먼트 패널 등의 배면에 설치하여 사용할 때 어스피레이션 모터(40)의 작동에 따라 발생된 소음이 그릴 또는 인스트루먼트 패널을 통하여 실내로 유입되는 것을 차단하기 위한 완충패드(218)가 배치되어 있다.
도 18을 참고하면, 본 발명에 따른 변형된 실시예를 나타내는 슬림형 인카 센서는 도 17에 도시된 실시예와 비교할 때, 일부를 제외하고 동일하다. 이에 따라 동일한 부분에는 동일한 부재번호를 부여하고 이에 대한 상세한 설명은 생략한다.
변형 실시예는 하부 하우징(220a)이 베어링 홀더(300)와 사출 성형에 의해 일체로 형성되는 점에서 도 17의 실시예 하우징과 차이가 있다.
도 17의 실시예 하우징(200)은 하부 하우징(220)이 베어링 홀더(300)와 터미널 조립체(160)를 수용하는 공간을 가지고 있으나, 도 18의 변형 실시예의 하부 하우징(220a)은 단지 터미널 조립체(160)를 수용하는 공간을 가진다.
도 18의 실시예는 도 17의 실시예와 비교할 때, 관리대상 부품 수가 1개 줄어든 것을 제외하고 동일하다.
본 발명의 일 실시예에 따른 슬림형 인카 센서(100)는 모터구동회로(30)에 의해 도전성 패턴 코일(21~25)에 전류가 흐르게 되면 로터(120)와 함께 임펠러(130)가 회전하면서 상부 하우징(210)의 흡입구(211)를 통하여 차량 내부의 공기를 흡입한다.
이에 따라 온도센서(150)는 유입된 공기의 온도를 정확하게 측정하며, 측정된 온도값은 터미널 핀(160)을 통하여 공조제어장치(CCM)로 전송된다.
본 발명의 일 실시예에 따른 인카 센서(In-Car Sensor)(100)는 단상 모터(40)가 적층형 스테이터(110)를 사용함에 따라 종래의 단상 모터와 비교할 때, 슬림형 구조를 실현할 수 있다.
또한, 적층형 스테이터(110)는 배치 프로세스(batch process)에 의해 한번에 다수개를 생산 가능하여 생산성이 높아 가격 경쟁력이 높고, 모터구동회로를 내장할 수 있어, 별도의 제어용 PCB를 줄일 수 있는 이점이 있다.
또한, 본 발명에 따른 적층형 스테이터(110)는 각 층의 코일 패턴이 토크 발생 효율을 최대화할 수 있도록 방사방향으로 배향된 방사방향패턴부(20g~20l)를 포함하고 있어, 토크 발생이 최대로 얻어질 수 있다. 그 결과 어스피레이션 모터에 의해 차량 내부로부터 흡입되는 공기의 흡입량이 증가되어 좀더 정밀한 온도 센싱이 이루어질 수 있다.
이상에서는 본 발명을 특정의 바람직한 실시예를 예를 들어 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.
본 발명은 대향한 로터에 토크 발생이 최대로 얻어질 수 있는 코일 패턴을 갖는 다층 인쇄회로기판(PCB)을 이용하여 슬림형으로 구현될 수 있는 적층형 스테이터, 이를 이용한 단상 모터, 어스피레이션 모터 및 인카 센서에 적용 가능하다.

Claims (20)

  1. 다층 기판;
    상기 다층 기판의 각 기판 위에 복수의 턴을 형성하도록 나선형상으로 형성되고 도전성 스루홀을 통하여 상호 연결된 복수의 코일 패턴;
    상기 다층 기판에 배치되며, 로터가 초기상태일 때, 로터 자극의 경계면으로부터 편위된 위치에 배치되어 로터의 자극을 검출하는 홀센서; 및
    상기 로터가 초기상태일 때 상기 홀센서가 로터의 자석 경계면으로부터 편위된 위치에 위치설정되게 상기 로터의 위치를 설정하는 데드 포인트 방지 요크;를 포함하며,
    상기 나선형상의 코일 패턴은 각각 방사방향을 따라 배치되어 로터를 회전시키는 토크를 발생하는 복수의 방사방향패턴부와 상기 복수의 방사방향패턴부를 상호 연결하는 복수의 내측 및 외측 연결패턴부를 포함하며,
    상기 코일 패턴은 단상 모터용 스테이터 코일을 형성하는 적층형 스테이터.
  2. 제1항에 있어서,
    상기 홀센서는 로터가 초기상태일 때 데드 포인트 방지 요크에 의해 위치설정된 로터의 자극 경계면으로부터 편위된 위치에 위치설정됨과 동시에 상기 방사방향패턴부 중 하나와 중첩된 위치에 배치되는 적층형 스테이터.
  3. 제1항에 있어서,
    상기 나선형상의 코일 패턴은 상기 다층 기판의 중앙부에 형성된 관통구멍의 외주에 돌기부와 요홈부가 반복되는 패턴을 갖는 적층형 스테이터.
  4. 제1항에 있어서,
    상기 다층 기판은
    복수의 코일 패턴이 각각 형성되는 복수의 기판; 및
    상기 복수의 코일 패턴에 구동전류를 인가하기 위한 모터구동회로가 실장된 최하층 기판;을 포함하는 적층형 스테이터.
  5. 다층 기판; 및
    상기 다층 기판의 각 기판 위에 복수의 기준 턴을 형성하도록 나선형상으로 패터닝되고 스루홀을 통하여 상호 연결된 복수의 코일 패턴;을 포함하며,
    상기 복수의 코일 패턴은 각각 방사방향을 따라 간격을 두고 배치되어 로터를 회전시키는 토크를 발생하는 복수의 방사방향패턴부와 상기 인접한 방사방향패턴부의 내측 단부와 외측 단부를 각각 상호 연결하는 복수의 연결패턴부를 포함하고,
    상기 복수의 연결패턴부는 각각 복수 개씩 기준 턴이 통합되어 적어도 하나의 통합 턴을 갖는 적층형 스테이터.
  6. 제5항에 있어서,
    상기 통합 턴은 상기 기준 턴보다 넓은 폭을 갖는 적층형 스테이터.
  7. 제5항에 있어서,
    상기 통합 턴은 2 내지 3개씩 기준 턴이 통합되는 적층형 스테이터.
  8. 제5항에 있어서,
    상기 복수의 연결패턴부는 각각 하나의 통합 턴으로 이루어지는 적층형 스테이터.
  9. 제5항에 있어서,
    상기 코일 패턴은 상기 다층 기판의 중앙부에 형성된 관통구멍의 외주에 돌기부와 요홈부가 반복되는 지그재그 패턴을 갖는 적층형 스테이터.
  10. 제5항에 있어서,
    상기 다층 기판의 각 기판 위에 형성된 복수의 코일 패턴을 상호 연결하기 위한 점퍼선 배선을 더 포함하는 적층형 스테이터.
  11. 제5항에 있어서,
    상기 방사방향패턴부의 수는 로터 자극수와 동일한 수, 로터 자극수의 1/2 배수 및 로터 자극수의 2배수 중 어느 하나로 설정되는 적층형 스테이터.
  12. 회전축;
    상기 회전축이 중앙부에 지지되고 다수의 N극 자석과 S극 자석이 교대로 배치된 로터;
    상기 로터의 일단에 고정되고, 상기 로터와 함께 회전하는 임펠러;
    상기 회전축을 회전 가능하게 지지하는 베어링;
    상기 베어링을 수용하여 고정하는 베어링 홀더;
    상기 베어링 홀더가 통과하는 관통구멍이 중앙에 형성된 적층형 스테이터;
    상기 적층형 스테이터를 내부에 지지하는 하부 하우징;
    상기 하부 하우징에 대향하여 배치되며 임펠러가 회전될 때 선단부로부터 차량의 실내 공기가 유입되며, 상기 임펠러와 대향한 부분에 유입된 공기가 배출되는 다수의 관통구멍을 갖는 상부 하우징; 및
    상기 상부 하우징의 공기가 유입되는 기류 경로 내에 배치되어 흡입되는 공기의 온도를 측정하는 온도센서;를 포함하며,
    상기 적층형 스테이터는 청구항 1 내지 청구항 11 중 어느 한 항에 따른 인카 센서.
  13. 제12항에 있어서,
    상기 코일 패턴의 복수의 요홈부 중 하나에 형성되어 로터회전위치를 검출하기 위한 센싱 코일 패턴을 더 포함하는 인카 센서.
  14. 제13항에 있어서,
    상기 모터구동회로는
    상기 센싱 코일 패턴에 의해 형성되는 센싱 코일이 대향하는 로터의 자극에 대응하는 유도기전력을 발생할 때 상기 로터 자극에 대응하는 로터위치신호를 발생하는 로터위치신호발생부; 및
    상기 로터위치신호발생부로부터 대향한 로터의 자극에 대응하여 발생되는 로터위치신호에 대응하여 상기 스테이터 코일에 인가하는 구동전류의 방향을 전환하는 스위칭회로를 포함하는 인카 센서.
  15. 제13항에 있어서,
    상기 센싱 코일 패턴은 로터가 초기상태일 때 데드 포인트 방지 요크에 의해 위치설정된 로터의 자극 경계면으로부터 1/4 자극폭 또는 자극의 센터로부터 1/4 자극폭 만큼 편위된 위치에 위치설정되는 인카 센서.
  16. 제13항에 있어서,
    상기 센싱 코일 패턴은 로터가 초기상태일 때 데드 포인트 방지 요크에 의해 위치설정된 로터의 자극 경계면으로부터 편위된 위치에 위치설정됨과 동시에 상기 방사방향패턴부 중 하나와 중첩된 위치에 배치되는 인카 센서.
  17. 제12항에 있어서,
    상기 코일 패턴의 복수의 요홈부 중 하나에 형성되어 로터회전위치를 검출하기 위한 센싱 코일 패턴을 다층 기판의 최상부면에 구비하고,
    상기 코일 패턴에 구동전류를 인가하기 위한 모터구동회로를 다층 기판의 최하부면에 구비하는 인카 센서.
  18. 제12항에 있어서,
    상기 로터는 링 형상으로 형성되고, 상기 링의 폭은 적어도 방사방향패턴부의 길이보다 더 크게 형성되며, 방사방향패턴부와 대향하도록 배치되는 인카 센서.
  19. 제12항에 있어서,
    상기 베어링 홀더는
    상기 스테이터의 하부에 배치되고, 상기 데드 포인트 방지 요크가 내장되는 베이스 플레이트; 및
    상기 베이스 플레이트로부터 상기 적층형 스테이터의 관통구멍을 통하여 상부로 돌출되고, 중앙부에 상기 베어링을 수용하여 지지하는 보스;를 포함하며,
    상기 베이스 플레이트는 하부 하우징과 일체인 인카 센서.
  20. 제12항에 있어서,
    상기 복수의 내측 및 외측 연결패턴부는 각각 동심상으로 배치된 내측 원주와 외측 원주에 간격을 두고 원주방향을 따라 배치되는 인카 센서.
PCT/KR2017/011842 2016-10-26 2017-10-25 다층 기판을 이용한 적층형 스테이터와 이를 이용한 인카 센서 WO2018080164A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780066256.4A CN109891708B (zh) 2016-10-26 2017-10-25 利用多层基板的层叠型定子和利用其的车载传感器
US16/345,004 US10778071B2 (en) 2016-10-26 2017-10-25 Stacking-type stator using multi-layered substrate, and in-car sensor using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020160140112A KR101817601B1 (ko) 2016-10-26 2016-10-26 다층 인쇄회로기판을 이용한 적층형 스테이터, 이를 이용한 어스피레이션 모터와 인카 센서
KR10-2016-0140112 2016-10-26
KR1020160176586A KR102563692B1 (ko) 2016-12-22 2016-12-22 다층 인쇄회로기판을 이용한 적층형 스테이터, 이를 이용한 단상 모터와 인카 센서
KR10-2016-0176586 2016-12-22

Publications (1)

Publication Number Publication Date
WO2018080164A1 true WO2018080164A1 (ko) 2018-05-03

Family

ID=62023783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011842 WO2018080164A1 (ko) 2016-10-26 2017-10-25 다층 기판을 이용한 적층형 스테이터와 이를 이용한 인카 센서

Country Status (3)

Country Link
US (1) US10778071B2 (ko)
CN (1) CN109891708B (ko)
WO (1) WO2018080164A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10135310B2 (en) 2017-01-11 2018-11-20 Infinitum Electric Inc. System and apparatus for modular axial field rotary energy device
WO2019190959A1 (en) 2018-03-26 2019-10-03 Infinitum Electric Inc. System and apparatus for axial field rotary energy device
US11283319B2 (en) 2019-11-11 2022-03-22 Infinitum Electric, Inc. Axial field rotary energy device with PCB stator having interleaved PCBS
US20210218304A1 (en) 2020-01-14 2021-07-15 Infinitum Electric, Inc. Axial field rotary energy device having pcb stator and variable frequency drive
CN115335928A (zh) * 2020-02-07 2022-11-11 系统、机器、自动化组件公司 具有可变节距印刷线圈的多层印刷线圈布置
CN114303307A (zh) * 2020-06-23 2022-04-08 庆鼎精密电子(淮安)有限公司 相机模组及其制备方法
JP2022043581A (ja) * 2020-09-04 2022-03-16 イビデン株式会社 コイル基板とモータ用コイル基板
US11777376B2 (en) 2021-01-07 2023-10-03 Kohler Co. Reluctance sensor for detection of position of a rotor in an electric machine
TWI773162B (zh) * 2021-03-02 2022-08-01 金昌泰科技股份有限公司 馬達線圈繞線結構及馬達
US11482908B1 (en) 2021-04-12 2022-10-25 Infinitum Electric, Inc. System, method and apparatus for direct liquid-cooled axial flux electric machine with PCB stator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09191623A (ja) * 1995-06-07 1997-07-22 Kollmorgen Corp アキシャルエアギャップ・ブラシなし電動モータ
KR20080092024A (ko) * 2007-04-10 2008-10-15 주식회사 아모텍 어스피레이션 모터용 스테이터, 이를 이용한 어스피레이션모터 및 인카 센서
KR200470057Y1 (ko) * 2009-05-11 2013-11-25 주식회사 모아텍 어스피레이션 모터의 핀 헤더
JP3189348U (ja) * 2011-01-25 2014-03-13 コリオリス パワー システムズ リミテッド 軸方向磁束電気機械
KR20140147976A (ko) * 2013-06-20 2014-12-31 주식회사 아모텍 어스피레이션 모터 및 이를 이용한 인카 센서

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3096455A (en) * 1962-03-08 1963-07-02 Basic Motor Developments Inc Printed disc electrical machinery
US3569753A (en) * 1968-07-02 1971-03-09 Sanders Associates Inc Self-starting single phase motor
US4803425A (en) * 1987-10-05 1989-02-07 Xerox Corporation Multi-phase printed circuit board tachometer
JP3189348B2 (ja) 1992-01-13 2001-07-16 松下電器産業株式会社 マルチメディア装置
WO2005089327A2 (en) * 2004-03-14 2005-09-29 Revolution Electric Motor Company, Inc. Commercial low cost, high efficiency motor-generator
US20120256422A1 (en) * 2011-04-05 2012-10-11 Fradella Richard B Broad-speed-range generator variations
US8932443B2 (en) * 2011-06-07 2015-01-13 Deca Technologies Inc. Adjustable wafer plating shield and method
US9464362B2 (en) * 2012-07-18 2016-10-11 Deca Technologies Inc. Magnetically sealed wafer plating jig system and method
US9083208B2 (en) * 2012-09-05 2015-07-14 The United States Of America As Represented By The Secretary Of The Army Ball bearing supported electromagnetic microgenerator
CN103986254B (zh) * 2013-02-07 2017-03-01 建准电机工业股份有限公司 薄形定子及其构成的马达
US9800109B2 (en) * 2015-10-02 2017-10-24 E-Circuit Motors, Inc. Structures and methods for controlling losses in printed circuit boards

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09191623A (ja) * 1995-06-07 1997-07-22 Kollmorgen Corp アキシャルエアギャップ・ブラシなし電動モータ
KR20080092024A (ko) * 2007-04-10 2008-10-15 주식회사 아모텍 어스피레이션 모터용 스테이터, 이를 이용한 어스피레이션모터 및 인카 센서
KR200470057Y1 (ko) * 2009-05-11 2013-11-25 주식회사 모아텍 어스피레이션 모터의 핀 헤더
JP3189348U (ja) * 2011-01-25 2014-03-13 コリオリス パワー システムズ リミテッド 軸方向磁束電気機械
KR20140147976A (ko) * 2013-06-20 2014-12-31 주식회사 아모텍 어스피레이션 모터 및 이를 이용한 인카 센서

Also Published As

Publication number Publication date
CN109891708A (zh) 2019-06-14
CN109891708B (zh) 2021-06-25
US10778071B2 (en) 2020-09-15
US20190273422A1 (en) 2019-09-05

Similar Documents

Publication Publication Date Title
WO2018080164A1 (ko) 다층 기판을 이용한 적층형 스테이터와 이를 이용한 인카 센서
WO2017164715A1 (ko) 다층 인쇄회로기판을 이용한 적층형 스테이터, 이를 이용한 단상 모터와 쿨링 팬
WO2017183837A1 (ko) 슬림형 스테이터, 이를 이용한 단상 모터 및 쿨링 팬
WO2017176062A1 (ko) 슬림형 스테이터, 이를 이용한 센서레스 단상 모터 및 쿨링 팬
WO2015069062A1 (ko) 모터와 그 제조 방법 및 세탁기
WO2018117629A1 (ko) 다층 기판을 이용한 적층형 스테이터, 이를 이용한 슬림형 모터와 공기 정화 시스템용 블로워
WO2016099051A1 (ko) 렌즈 구동장치
WO2019132338A1 (ko) 스테이터 및 이를 포함하는 모터
WO2021020862A1 (ko) 카메라 액추에이터
WO2019066487A1 (ko) 회전 전기기기
WO2021015482A1 (ko) 카메라 액추에이터, 이를 포함하는 카메라 모듈 및 카메라 장치
WO2021015545A1 (ko) 카메라 액추에이터
WO2021172793A1 (ko) 액시얼 갭 타입 전동기 및 이를 이용한 워터 펌프
WO2019231239A1 (ko) 렌즈 구동 장치, 및 카메라 장치, 및 이를 포함하는 광학 기기
WO2019004765A1 (ko) 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2021101123A1 (ko) 카메라 모듈 및 광학 기기
WO2019045305A1 (ko) 스테이터 및 이를 포함하는 모터
WO2021025361A1 (ko) 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2019045339A1 (ko) 렌즈 구동 장치 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2020111577A1 (ko) 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2021182924A1 (ko) 손떨림 보정을 위한 코일 기판
WO2022139500A1 (ko) 모터
WO2021141298A1 (ko) 센싱 장치
WO2021149992A1 (ko) 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2021149995A1 (ko) 모터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17866050

Country of ref document: EP

Kind code of ref document: A1