WO2018079349A1 - 自動変速機の制御装置および制御方法 - Google Patents

自動変速機の制御装置および制御方法 Download PDF

Info

Publication number
WO2018079349A1
WO2018079349A1 PCT/JP2017/037574 JP2017037574W WO2018079349A1 WO 2018079349 A1 WO2018079349 A1 WO 2018079349A1 JP 2017037574 W JP2017037574 W JP 2017037574W WO 2018079349 A1 WO2018079349 A1 WO 2018079349A1
Authority
WO
WIPO (PCT)
Prior art keywords
park
lock
range
cpu
state
Prior art date
Application number
PCT/JP2017/037574
Other languages
English (en)
French (fr)
Inventor
高輝 河口
史貴 永島
英晴 山本
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Priority to CN201780052032.8A priority Critical patent/CN109642662B/zh
Priority to US16/329,214 priority patent/US11371605B2/en
Priority to JP2018547586A priority patent/JP6596167B2/ja
Publication of WO2018079349A1 publication Critical patent/WO2018079349A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/16Inhibiting or initiating shift during unfavourable conditions, e.g. preventing forward reverse shift at high vehicle speed, preventing engine over speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • F16H61/28Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H63/34Locking or disabling mechanisms
    • F16H63/3416Parking lock mechanisms or brakes in the transmission
    • F16H63/3458Parking lock mechanisms or brakes in the transmission with electric actuating means, e.g. shift by wire
    • F16H63/3475Parking lock mechanisms or brakes in the transmission with electric actuating means, e.g. shift by wire using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H63/34Locking or disabling mechanisms
    • F16H63/3416Parking lock mechanisms or brakes in the transmission
    • F16H63/3483Parking lock mechanisms or brakes in the transmission with hydraulic actuating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/48Signals to a parking brake or parking lock; Control of parking locks or brakes being part of the transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/48Signals to a parking brake or parking lock; Control of parking locks or brakes being part of the transmission
    • F16H63/483Circuits for controlling engagement of parking locks or brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1256Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
    • F16H2061/126Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is the controller
    • F16H2061/1268Electric parts of the controller, e.g. a defect solenoid, wiring or microprocessor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/22Locking of the control input devices
    • F16H2061/223Electrical gear shift lock, e.g. locking of lever in park or neutral position by electric means if brake is not applied; Key interlock, i.e. locking the key if lever is not in park position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2312/00Driving activities
    • F16H2312/12Parking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H63/34Locking or disabling mechanisms
    • F16H63/3416Parking lock mechanisms or brakes in the transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H63/34Locking or disabling mechanisms
    • F16H63/3416Parking lock mechanisms or brakes in the transmission
    • F16H63/3491Emergency release or engagement of parking locks or brakes

Definitions

  • the present invention relates to a control device and a control method for an automatic transmission including a shift-by-wire park lock device.
  • a shift-by-wire parking lock device in which switching between a park lock state and a park unlock state is performed by an actuator in accordance with a driver's shift operation. Specifically, the shift operation of the driver is detected, and the actuator is operated in accordance with the detected shift operation, so that the park lock device is set to the park lock state or the park unlock state.
  • the operation of the actuator according to the shift operation is controlled by a controller having a CPU.
  • JP5733165B as a control device for an automatic transmission equipped with a parking lock device, when a CPU reset occurs during traveling at a medium vehicle speed or a high vehicle speed, a shift range after returning from the CPU reset is set to a P range (parking). If the CPU reset occurs while traveling at a low vehicle speed, the shift range after returning from the CPU reset is set to P. Setting to range is disclosed (paragraph 0010). JP5733165B lists a decrease in power supply voltage as a cause of CPU reset.
  • the shift range before the CPU reset is the N range (neutral range)
  • the shift range after the return is set to the P range. Therefore, if the CPU reset occurs during towing at low speed, the CPU reset When the parking lock is restored, the parking lock device is unintentionally switched to the parking lock state, and smooth running is disturbed or abnormal noise is generated.
  • the CPU reset is caused by the CPU's own judgment when a CPU error occurs in addition to the drop of the power supply voltage.
  • the CPU reset is stored in the CPU as before the CPU reset.
  • the shift range currently used is not necessarily reliable enough. It is also possible that the shift range stored in the CPU causing the error is incorrect.
  • a reset occurs due to a CPU error in spite of being in the garage in the R range (reverse range), the parking range is set to the P range after the return, the park lock is activated, and sudden braking It is feared that this will occur.
  • an object of the present invention is to operate a park lock device more appropriately when returning from a CPU reset.
  • a control device for an automatic transmission that includes a speed change mechanism and a park lock device that includes a rod member and a lock mechanism that restricts movement of the rod member when in a locked state.
  • the control device maintains the lock state of the lock mechanism after returning from the CPU reset when a CPU reset occurs in the control device when the lock mechanism is in the lock state.
  • a control method for an automatic transmission that includes a transmission mechanism and a parking lock device that includes a rod member and a lock mechanism that restricts movement of the rod member when in a locked state.
  • the control method according to the present embodiment maintains the lock state of the lock mechanism after returning from the CPU reset when a CPU reset occurs in the control device when the lock mechanism is in the lock state.
  • FIG. 1 is a configuration diagram schematically showing a vehicle drive system according to an embodiment of the present invention.
  • FIG. 2 is an explanatory view schematically showing a state of a park module of the park drive provided in the vehicle drive system.
  • FIG. 3 is an explanatory diagram schematically showing a state of the park module provided in the vehicle drive system in the same manner as when the park is unlocked.
  • FIG. 4 is a flowchart showing a basic flow of return control (reset return control) after CPU reset according to an embodiment of the present invention.
  • FIG. 1 schematically shows the overall configuration of a vehicle drive system according to an embodiment of the present invention.
  • the vehicle according to the present embodiment includes an internal combustion engine (hereinafter simply referred to as “engine”) 1 as a drive source, and the power of the engine 1 is driven to the left and right via a torque converter 2, a transmission mechanism 3 and a differential device 4. It is transmitted to the wheels 5 and 5.
  • the torque converter 2 and the transmission mechanism 3 constitute a transmission TM of the vehicle, and the operation of the transmission TM is controlled by a transmission control unit (ATCU) 10.
  • engine internal combustion engine
  • ATCU transmission control unit
  • the transmission TM includes a drive range (hereinafter referred to as “D range”), a reverse range (hereinafter referred to as “R range”), a neutral range (hereinafter referred to as “N range”), and a parking range (hereinafter referred to as “P range”). Is set).
  • the D range and the R range correspond to the travel range
  • the N range and the P range correspond to the non-travel range.
  • the shift range of the transmission TM is selected by the driver using the shift lever 6.
  • the shift lever 6 constitutes a shift instruction device.
  • the type of the shift lever 6 is not particularly limited.
  • As the shift lever 6 applicable to the present embodiment a momentary shift lever that automatically returns the lever 6 to its neutral position after the shift operation is used. It can be illustrated.
  • the transmission mechanism 3 is a stepped automatic transmission mechanism, and includes a planetary gear mechanism (not shown) and a plurality of friction engagement elements 33.
  • the friction engagement element 33 includes a clutch and a brake, and changes the combination of engagement and release of the friction engagement element 33 to switch the gear ratio via the planetary gear mechanism, thereby shifting the forward multiple speeds and the reverse one speed. A stage is achieved.
  • the transmission mechanism 3 further includes a control valve unit 31 and a park module 32.
  • the control valve unit 31 includes a plurality of solenoids that control the hydraulic pressure of the friction engagement element 33 provided in the transmission mechanism 3, and the park module 32 is configured to change the transmission mechanism when the transmission range of the transmission TM is the R range. 3 is mechanically engaged with the output shaft 3 to prevent its rotation.
  • the ATCU 10 includes a signal from the vehicle speed sensor 11 that detects the vehicle speed VSP, a signal from the oil temperature sensor 12 that detects the oil temperature T OIL of the transmission TM, and a park module 32 as various detection signals indicating the driving state of the vehicle. Signals from a parking position sensor 13 that detects the position of the driving member (park rod 323), a road gradient sensor 14 that detects the gradient of the road on which the vehicle is located, and the like are input.
  • the parking position sensor 13 is a stroke sensor.
  • signals from the SCU 20, ECU 30, BCM 40 and MCU 50 are input to the ATCU 10.
  • the ATCU 10 and these various control units 20, 30, 40 and 50 are connected to each other via a CAN (Control Area Network) standard bus 60 so as to be able to communicate with each other.
  • the ATCU 10, SCU 20, ECU 30, BCU 40, and MCU 50 are embodiments of an electronic control unit, and include a central processing unit (CPU), a storage device such as a ROM and a RAM, and an input / output interface.
  • CPU central processing unit
  • storage device such as a ROM and a RAM
  • the SCU 20 is a shift control unit, and generates a required range signal corresponding to the position of the shift lever 6.
  • the SCU 20 generates a requested range signal corresponding to the selected range based on the selected range signal that is a signal from the selected range detection switch 21, and outputs it to the ATCU 10.
  • the ATCU 10 sets the shift range of the transmission TM based on the request range signal from the SCU 20, and outputs a control command value corresponding to the shift range to the control valve unit 31.
  • the target shift speed is determined from the shift map based on the vehicle speed VSP and the accelerator opening APO, and a control command value for achieving the target shift speed is calculated. And output to the control valve unit 31.
  • the plurality of solenoids are controlled in accordance with the control command value, the hydraulic pressure of the friction engagement element 33 is adjusted, and the target shift stage is achieved.
  • the target shift speed is determined as the reverse speed, and a control command value for achieving the target shift speed is output to the control valve unit 31.
  • the other P range and N range are selected, all or part of the friction engagement element 33 is released to form a neutral state in which power transmission between the input and output shafts of the transmission TM is interrupted. A control command value for this is output to the control valve unit 31.
  • the ATCU 10 controls the park module 32 when the selected range is changed between the P range and a shift range other than the P range. As a result, the park lock is executed or the park lock state is released.
  • the ECU 30 is an engine control unit and controls the output (torque and rotational speed) of the engine 1.
  • the ECU 30 calculates the rotational speed NE, the accelerator operation amount APO, and the like of the engine 1 from the detection signals of the rotational speed sensor and the accelerator sensor (not shown) as the operating state, and outputs them to the ATCU 10.
  • the accelerator operation amount APO indicates the operation amount of the accelerator pedal by the driver.
  • the BCM 40 is a body control module and controls the vehicle side operation elements.
  • the vehicle body side operation element is, for example, a vehicle door lock mechanism or an ignition switch of the engine 1.
  • the BCM 40 outputs an on / off signal of a door lock switch for detecting the door lock state of the vehicle, an on / off signal of the ignition switch 15 of the engine 1, and the like to the ATCU 10.
  • the MCU 50 is a meter control unit and controls indicators such as instruments, warning lights, and displays provided in the passenger compartment. These indicators include a range indicator 51 that displays the current shift range of the transmission TM. Further, the indicator is not limited to the one that is visually recognized, and may include an alarm that promotes recognition by hearing.
  • FIG. 2 shows the park module 32 in the park lock state (park lock state).
  • Reference numeral 3 denotes a state (park unlock state) when the park module 32 is park unlocked.
  • the park module 32 constitutes a “park lock device” of the automatic transmission.
  • the park module 32 includes a parking gear 321, a parking pole 322, a park rod 323, a pole drive cam 324, a park actuator 325, a lock mechanism 326, a first actuator portion 327, and a second actuator portion 328.
  • the park rod 323 constitutes a “rod member” of the park lock device.
  • the park module 32 further includes a hydraulic unit 80.
  • the hydraulic unit 80 is a line pressure system having the line pressure of the speed change mechanism 3 as the hydraulic pressure P, and includes a line pressure adjusting valve for adjusting the line pressure in addition to the line pressure oil passage.
  • the hydraulic section 80 may further include an oil pump that supplies oil to the line pressure oil passage.
  • the hydraulic section 80 can be disposed in the control valve section 31.
  • the switching valve 328a, the control valve 328b, and the solenoid 328c can be disposed in the control valve section 31.
  • the parking gear 321 is fixed to the output shaft of the speed change mechanism 3 concentrically with the output shaft, and rotates or stops together with the output shaft.
  • recesses are formed at equal intervals over the entire periphery, and a flange formed at the tip of the parking pole 322 is engaged with these recesses.
  • the parking pole 322 swings in conjunction with the park rod 323.
  • the leading end of the parking pole 322 engages with the recess of the parking gear 321 (for convenience of explanation, hereinafter referred to as “the parking pole engages with the parking gear”) or this engaged state is Canceled.
  • the park module 32 is in the “park lock state” (FIG. 2), the free rotation of the output shaft of the speed change mechanism 3 is inhibited, and the movement of the vehicle is restricted. .
  • the park module 32 enters the “park unlock state” (FIG. 3). Free rotation of the output shaft is allowed and the vehicle movement restriction is released.
  • the park rod 323 also serves as a movable member of the park actuator 325, and is set to a length protruding from both sides of the park actuator 325 in the operation direction of the park actuator 325.
  • the park rod 323 is driven by the park actuator 325 and is selectively disposed at the park lock position shown in FIG. 2 and the park lock release position shown in FIG.
  • a pole drive cam 324 is attached to one end side of the park rod 323.
  • a first engagement portion 323a and a second engagement portion 323b with which the lock mechanism 326 (specifically, the hook 326a of the lock mechanism 326) is engaged are provided.
  • the first engagement portion 323a is an engagement portion with which the lock mechanism 326 engages when the park rod 323 is in the “park lock position” shown in FIG. 2, and the second engagement portion 323b This is an engaging portion with which the lock mechanism 326 is engaged when in the “park lock release position” shown in FIG. 3.
  • each of the first engaging portion 323a and the second engaging portion 323b is a concave portion formed continuously on the outer periphery of the park rod 323 along the entire periphery.
  • the first and second engaging portions 323a and 323b are not necessarily formed over the entire circumference as long as the lock mechanism 326 can be engaged, and further, the first and second engaging portions 323a and 323b are not necessarily formed.
  • the lock mechanism 326 (hook 326a) are not limited to the former being female and the latter being male.
  • the first and second engaging portions 323a and 323b may be formed by convex portions protruding from the outer periphery of the park rod 323.
  • the pole drive cam 324 contacts the parking pole 322 and swings the parking pole 322 in conjunction with the park rod 323.
  • the pawl drive cam 324 engages the parking gear 321 and the parking pawl 322 when the park rod 323 is in the park lock position, and causes the parking pawl 322 to move to the parking gear when the park rod 323 is in the park lock release position. It is made to detach
  • the park actuator 325 is a hydraulic actuator and drives the park rod 323.
  • the park actuator 325 moves the park rod 323 to the park lock position when the P range is selected, and moves the park rod 323 to the park lock release position when a shift range other than the P range is selected.
  • the park actuator 325 is configured in the form of a hydraulic cylinder, and includes a piston 325a, a cylinder 325b, and a return spring 325c.
  • the cylinder 325b forms a hydraulic chamber therein, and a piston 325a is accommodated in the hydraulic chamber, and is divided into two chambers before and after the operation direction by the piston 325a.
  • a park rod 323 is fixed to the center of the piston 325a in a penetrating manner.
  • the hydraulic pressure P is supplied from the hydraulic section 80 to the hydraulic chamber of the cylinder 325b via the switching valve 328a. In this embodiment, the hydraulic pressure P is supplied to the hydraulic chamber portion on the front side in the operation direction.
  • the return spring 325c is interposed between the park rod 323 and the cylinder 325b in a compressed state, and biases the park rod 323 forward in the operation direction, in other words, toward the park lock position.
  • the lock mechanism 326 determines whether the park module 32 is in the park lock state (FIG. 2) in which the park rod 323 is in the park lock position or in the park unlock state (FIG. 3) in which the park rod 323 is in the park lock release position. Fix it.
  • the lock mechanism 326 is engaged with the park rod 323 to stop the movement of the park rod 323 and mechanically fix the park rod 323.
  • the lock mechanism 326 includes a hook 326a and a spring 326b, and the hook 326a engages with the park rod 323.
  • the hook 326a is inserted into the first or second engaging portion 323a, 323b of the park rod 323, whereby the hook 326a is locked to the first or second engaging portion 323a, 323b, and the lock mechanism 326 is parked. 323 is engaged.
  • the spring 326b biases the hook 326a closer to the park rod 323, in other words, the direction in which the hook 326a is locked to the first or second engaging portion 323a, 323b.
  • the park rod 323 is in the park lock position, and the state in which the hook 326a of the lock mechanism 326 is locked to the first engagement portion 323a is referred to as the park lock state, and the park rod 323 is in the park lock release position.
  • a state in which the hook 326a of the lock mechanism 326 is engaged with the second engagement portion 323b is referred to as a park unlock state.
  • the first actuator unit 327 unlocks the lock mechanism 326.
  • the first actuator unit 327 is configured by a solenoid, and acts on the hook 326a in the unlocking direction as shown in FIGS. 2 and 3 when the power supply is in an on state.
  • the lock mechanism 326 is unlocked by disengaging from the first or second engaging portion 323a, 323b.
  • the second actuator unit 328 includes a switching valve 328a, a control valve 328b, and a solenoid 328c.
  • the switching valve 328a selectively supplies the hydraulic pressure P from the hydraulic section 80 to the park actuator 325 (cylinder 325b).
  • the switching valve 328a is a spool type valve device and includes a port A that is a pilot port.
  • the port A is connected to the hydraulic unit 80 via the control valve 328b, and a spring that biases the valve body of the switching valve 328a toward the port A side on the opposite side of the switching valve 328a from the port A. is set up.
  • the control valve 328b controls the hydraulic pressure supplied to the port A.
  • the solenoid 328c is a linear solenoid and drives the control valve 328b based on a command from the ATCU 10. The force that acts on the valve body of the switching valve 328a from the port A side is changed by the control valve 328b.
  • the switching valve 328a, the control valve 328b, the solenoid 328c, and the hydraulic unit 80 constitute a hydraulic control unit 329 that controls the hydraulic pressure that moves the park rod 323.
  • a configuration in which the hydraulic control unit 329 and the park actuator 325 are integrated is also possible.
  • the CPU reset occurs when the power supply voltage of the ATCU 10 is temporarily lowered (including a case where the power is cut off instantaneously) or when an error occurs in the CPU.
  • the former CPU reset is an accidental reset that does not depend on the intention of the CPU, and the latter CPU reset is an intentional reset by the CPU.
  • FIG. 4 is a flowchart showing the basic flow of reset return control.
  • S1 it is determined whether or not a CPU reset has occurred.
  • the CPU reset is executed by the ATCU 10 itself when an error occurs in the CPU by the ATCU 10, for example.
  • a known determination method can be applied to determine whether an error has occurred in the CPU. If an error has occurred in the CPU, it is determined that a CPU reset has occurred, and the process proceeds to S2. If no CPU reset has occurred, the control is terminated.
  • S3 it is determined whether or not the CPU is reset. For example, when the power is turned on again after turning off the power for resetting the CPU, it is determined that the CPU reset has been restored. When returning from the CPU reset, the process proceeds to S4. Otherwise, the process waits until returning.
  • the lock mechanism 326 is maintained in the locked state.
  • an instruction to maintain the lock state of the lock mechanism 326 is output to the first actuator unit 327.
  • the solenoid that is the first actuator unit 327 and the solenoid of the second actuator unit 328 are provided.
  • the power supply to 328c continues to be stopped.
  • the energization to the first and second actuator sections 327 and 328 is maintained until the shift range is instructed based on the driver's shift operation. In other words, energization of the first and second actuator sections 327 and 328 is permitted when the shift range change by the driver is confirmed.
  • the cylinder 325b of the park actuator 325 is drained when the supply of power to the solenoid 328c of the second actuator section 328 is interrupted by the CPU reset.
  • the movement of H.323 is automatically performed by the return spring 325c. Therefore, when the lock state of the lock mechanism 326 is released before the CPU is reset, the park rod 323 is in the park lock position when returning. Therefore, only by stopping energization to the first actuator unit 327 based on the instruction to set the lock state, the lock mechanism 326 is locked and the park lock state is formed.
  • the CPU of the ATCU 10 is intentionally reset due to a CPU error.
  • the CPU reset is not limited to this, and may occur when the power supply to the ATCU 10 is accidentally cut off. Even in this case, when the power is turned on again, an instruction to maintain the lock state of the lock mechanism 326 is output to the first actuator unit 327, so that the lock mechanism 326 is maintained in the lock state.
  • the reliability with respect to the state of the park lock device (in the present embodiment, the park module 32) after the return can be improved.
  • the park lock device 32 is switched from the park unlock state to the park lock state for some reason, and smooth running is disturbed or abnormal noise is generated. Can be avoided.
  • the speed change mechanism 3 is set to the neutral state, so that the safety after returning can be improved. For example, when a CPU reset occurs during entering the garage in the R range, it is possible to avoid sudden braking due to the shift range being erroneously set to the P range after returning. Further, it is possible to avoid the situation of reverse rotation due to a CPU reset occurring during traveling in the D range and erroneously setting the R range after the return. In the neutral state, coasting is possible due to inertia.
  • the park lock device 32 is set to the park lock state at the time of return, thereby further improving the reliability after the return. . If the CPU reset occurs during a change from the P range to a shift range other than the P range, it is only necessary to re-enter the shift range to be changed after returning, so the burden or discomfort given to the driver is suppressed. The On the other hand, if the shift range other than the P range is being changed to the P range, setting the park lock state after the return is only switching according to the driver's intention.
  • the transmission mechanism 3 constituting the transmission TM does not have to be a stepped transmission mechanism, and may be a continuously variable transmission mechanism.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gear-Shifting Mechanisms (AREA)
  • Control Of Transmission Device (AREA)

Abstract

本発明の自動変速機の制御装置は、変速機構(3)と、パークロック装置(32)とを備えており、パークロック装置(32)は、ロッド部材(323)およびロック機構(326)を備え、ロック機構(326)は、ロック状態にあるときにロッド部材(323)の移動を規制するものであり、CPUリセット(ATCU10を構成するCPUにリセット)が生じた場合、CPUリセットからの復帰後に、ロック機構(323)のロック状態を維持する制御装置である。

Description

自動変速機の制御装置および制御方法
 本発明は、シフトバイワイヤ方式のパークロック装置を備える自動変速機の制御装置および制御方法に関する。
 パークロック状態とパークアンロック状態との切換えを運転者のシフト操作に応じてアクチュエータにより実行するシフトバイワイヤ方式のパークロック装置が知られている。具体的には、運転者のシフト操作を検出し、検出されたシフト操作に応じてアクチュエータを作動させ、パークロック装置をパークロック状態としまたはパークアンロック状態とするものである。シフト操作に応じたアクチュエータの動作は、CPUを備えるコントローラにより制御する。
 JP5733165Bには、パークロック装置を備えた自動変速機の制御装置として、中車速または高車速での走行中にCPUリセットが生じた場合に、CPUリセットからの復帰後のシフトレンジをPレンジ(パーキングレンジ)以外のシフトレンジ(具体的には、CPUリセット前のシフトレンジ)に設定する一方、低車速での走行中にCPUリセットが生じた場合に、CPUリセットからの復帰後のシフトレンジをPレンジに設定することが開示されている(段落0010)。JP5733165Bには、CPUリセットが生じる原因として、電源電圧の低下が掲げられている。
 しかし、JP5733165Bでは、低車速での走行中に、CPUリセットからの復帰後のシフトレンジを常にPレンジに設定することから、パークロック装置がパークロック状態とされることに起因して、次のようなことが問題となる。
 第1に、CPUリセット前のシフトレンジがNレンジ(ニュートラルレンジ)であっても復帰後のシフトレンジをPレンジに設定するため、低速での牽引中にCPUリセットが生じた場合に、CPUリセットからの復帰に伴ってパークロック装置が意図せずにパークロック状態に切り換えられ、円滑な走行が阻害されたり、異音が発生したりすることである。
 第2に、CPUリセットは、電源電圧の低下によるほか、CPUエラーが生じた場合に、CPU自身の判断によっても発生するが、CPUエラーによるリセットの場合に、CPUリセット前のものとしてCPUに記憶されているシフトレンジに、必ずしも十分な信頼性があるとはいえないことである。エラーを生じたCPUに記憶されているシフトレンジが誤っていることも考えられる。
 例えば、Rレンジ(リバースレンジ)での車庫入れ中であったにも拘らずCPUエラーによりリセットが生じ、復帰後のシフトレンジがPレンジに設定されることで、パークロックが作動し、急制動が生じることが懸念される。
 以上の問題に鑑み、本発明では、CPUリセットからの復帰に際し、パークロック装置をより適切に作動させることを目的とする。
 本発明の一形態では、変速機構と、ロッド部材およびロック状態にあるときにロッド部材の移動を規制するロック機構を備えるパークロック装置と、を備える自動変速機の制御装置を提供する。本形態に係る制御装置は、ロック機構がロック状態にあるときに当該制御装置にCPUリセットが生じた場合に、CPUリセットからの復帰後、ロック機構のロック状態を維持する。
 本発明の他の形態では、変速機構と、ロッド部材およびロック状態にあるときにロッド部材の移動を規制するロック機構を備えるパークロック装置と、を備える自動変速機の制御方法を提供する。本形態に係る制御方法は、ロック機構がロック状態にあるときに当該制御装置にCPUリセットが生じた場合に、CPUリセットからの復帰後、ロック機構のロック状態を維持する。
 上記形態によれば、CPUリセットが生じた場合に、復帰後におけるパークロック装置の状態に対する信頼性を向上させることができる。
図1は、本発明の一実施形態に係る車両駆動系を概略的に示す構成図である。 図2は、同上車両駆動系に備わるパークモジュールのパークロック時の状態を模式的に示す説明図である。 図3は、同上車両駆動系に備わるパークモジュールのパークアンロック時の状態を模式的に示す説明図である。 図4は、本発明の一実施形態に係るCPUリセット後の復帰制御(リセット復帰制御)の基本的な流れを示すフローチャートである。
 以下、図面を参照して、本発明の実施形態について説明する。
 (車両駆動系の構成)
 図1は、本発明の一実施形態に係る車両駆動系の全体構成を概略的に示している。
 本実施形態に係る車両は、駆動源として内燃エンジン(以下、単に「エンジン」という)1を備え、エンジン1の動力は、トルクコンバータ2、変速機構3および差動装置4を介して左右の駆動輪5、5へと伝達される。トルクコンバータ2および変速機構3は、車両の変速機TMを構成し、変速機TMの動作は、変速機コントロールユニット(ATCU)10により制御される。
 変速機TMは、変速レンジとして、ドライブレンジ(以下「Dレンジ」という)、リバースレンジ(以下「Rレンジ」という)、ニュートラルレンジ(以下「Nレンジ」という)およびパーキングレンジ(以下「Pレンジ」という)が設定されている。DレンジとRレンジとは、走行レンジに相当し、NレンジとPレンジとは、非走行レンジに相当する。
 変速機TMの変速レンジは、シフトレバー6を用いて運転者により選択される。シフトレバー6は、変速指示装置を構成する。シフトレバー6の形式は、特に限定されるものではないが、本実施形態に適用可能なシフトレバー6として、シフト操作後、レバー6がその中立位置に自動的に復帰するモーメンタリ式のシフトレバーを例示することができる。
 変速機構3は、有段式の自動変速機構であり、図示しない遊星歯車機構と複数の摩擦係合要素33とを備える。摩擦係合要素33は、クラッチおよびブレーキを含み、摩擦係合要素33の締結および解放の組合せを変更して、遊星歯車機構を介するギヤ比を切り換えることで、前進複数段および後進1段の変速段が達成される。
 変速機構3は、コントロールバルブ部31とパークモジュール32とをさらに備える。コントロールバルブ部31は、変速機構3に備わる摩擦係合要素33の作動油圧を制御する複数のソレノイドを有し、パークモジュール32は、変速機TMの変速レンジがRレンジであるときに、変速機構3の出力軸に機械的に係合し、その回転を阻止する。
 (制御システムの構成)
 ATCU10には、車両の運転状態を示す各種の検出信号として、車速VSPを検出する車速センサ11からの信号、変速機TMの油温TOILを検出する油温センサ12からの信号、パークモジュール32の駆動部材(パークロッド323)の位置を検出するパーキング位置センサ13、車両が位置する道路の勾配を検出する道路勾配センサ14等からの信号が入力される。本実施形態において、パーキング位置センサ13は、ストロークセンサである。
 ATCU10には、以上に加え、SCU20、ECU30、BCM40およびMCU50からの信号が入力される。ATCU10と、これら各種のコントロールユニット20、30、40および50とは、CAN(Control Area Network)規格のバス60を介して相互通信可能に接続されている。ATCU10、SCU20、ECU30、BCU40およびMCU50は、電子制御ユニットの態様であり、中央演算装置(CPU)のほか、ROMおよびRAM等の記憶装置、入出力インターフェースを備える。
 SCU20は、シフトコントロールユニットであり、シフトレバー6の位置に応じた要求レンジ信号を生成する。SCU20は、選択レンジ検出スイッチ21からの信号である選択レンジ信号に基づき、選択レンジに応じた要求レンジ信号を生成し、ATCU10に出力する。
 そして、ATCU10は、SCU20からの要求レンジ信号に基づき、変速機TMの変速レンジを設定し、変速レンジに応じた制御指令値をコントロールバルブ部31に出力する。
 具体的には、運転者によりDレンジが選択された場合に、車速VSPおよびアクセル開度APOに基づき、変速マップから目標変速段を決定し、目標変速段を達成するための制御指令値を算出し、コントロールバルブ部31に出力する。これにより、複数のソレノイドが制御指令値に応じて制御されると、摩擦係合要素33の作動油圧が調整され、目標変速段が達成される。他方で、Rレンジが選択された場合は、目標変速段を後進段に決定し、目標変速段を達成するための制御指令値をコントロールバルブ部31に出力する。他のPレンジおよびNレンジが選択された場合は、摩擦係合要素33の全部または一部の締結を解除し、変速機TMの入出力軸間での動力の伝達を遮断したニュートラル状態を形成するための制御指令値を、コントロールバルブ部31に出力する。
 ここで、ATCU10は、選択レンジがPレンジとPレンジ以外の変速レンジとの間で変更された場合に、パークモジュール32を制御する。これにより、パークロックが実行されまたはパークロック状態が解除される。
 ECU30は、エンジンコントロールユニットであり、エンジン1の出力(トルクおよび回転速度)を制御する。ECU30は、運転状態として、図示しない回転速度センサおよびアクセルセンサの検出信号からエンジン1の回転速度NE、アクセル操作量APO等を算出し、ATCU10に出力する。アクセル操作量APOは、運転者によるアクセルペダルの操作量を示す。
 BCM40は、ボディコントロールモジュールであり、車体側動作要素を制御する。車体側動作要素は、例えば、車両のドアロック機構またはエンジン1のイグニッションスイッチである。BCM40は、車両のドアロック状態を検出するドアロックスイッチのオン・オフ信号、エンジン1のイグニッションスイッチ15のオン・オフ信号等をATCU10に出力する。
 MCU50は、メータコントロールユニットであり、車室内に設けられた計器類、警告灯およびディスプレイ等のインジケータを制御する。これらのインジケータには、変速機TMの現在の変速レンジを表示するレンジインジケータ51が含まれる。さらに、インジケータには、視覚的に認識されるものに限らず、聴覚による認識を促す警報等が含まれてよい。
 (パークモジュールの構成)
 図2および3は、本実施形態に係る車両駆動系に備わるパークモジュール32の動作を模式的に示しており、図2は、パークモジュール32のパークロック時の状態(パークロック状態)を、図3は、パークモジュール32のパークアンロック時の状態(パークアンロック状態)を、夫々示している。パークモジュール32は、自動変速機の「パークロック装置」を構成する。
 パークモジュール32は、パーキングギヤ321と、パーキングポール322と、パークロッド323と、ポール駆動カム324と、パークアクチュエータ325と、ロック機構326と、第1アクチュエータ部327と、第2アクチュエータ部328とを備える。パークロッド323は、パークロック装置の「ロッド部材」を構成する。パークモジュール32は、油圧部80をさらに備える。
 油圧部80は、油圧Pとして変速機構3のライン圧を有するライン圧系統であり、ライン圧油路のほか、ライン圧の調整を行うライン圧調整弁を備える。油圧部80は、ライン圧油路に油を供給するオイルポンプをさらに備える構成であってもよい。油圧部80は、コントロールバルブ部31に配設することが可能であり、切替弁328a、制御弁328bおよびソレノイド328cについても同様に、コントロールバルブ部31に配設することができる。
 パーキングギヤ321は、変速機構3の出力軸に、出力軸と同心に固定され、出力軸とともに回転しまたは停止する。パーキングギヤ321の外周には、全周に亘って凹部が等しい間隔で形成されており、これらの凹部に対し、パーキングポール322の先端に形成された鉤部が係合する。
 パーキングポール322は、パークロッド323に連動して揺動する。パーキングポール322が揺動すると、パーキングポール322の先端鉤部がパーキングギヤ321の凹部と係合し(説明の便宜上、以下「パーキングポールがパーキングギアに係合する」という)またはこの係合状態が解除される。パーキングポール322がパーキングギア321に係合することで、パークモジュール32が「パークロック状態」となり(図2)、変速機構3の出力軸の自由な回転が阻害され、車両の移動が規制される。他方で、先端鉤部が凹部から離脱し、パーキングギア321とパーキングポール322との係合状態が解除されると、パークモジュール32が「パークアンロック状態」となり(図3)、変速機構3の出力軸の自由な回転が許容され、車両の移動規制が解除される。
 パークロッド323は、パークアクチュエータ325の可動部材を兼ね、パークアクチュエータ325の作動方向において、パークアクチュエータ325の両側から突出する長さに設定されている。パークロッド323は、パークアクチュエータ325により駆動され、図2に示すパークロック位置と、図3に示すパークロック解除位置と、に選択的に配置される。
 パークロッド323の一端側には、ポール駆動カム324が取り付けられている。パークロッド323の他端側には、ロック機構326(具体的には、ロック機構326のフック326a)が係合する第1係合部323aおよび第2係合部323bが設けられている。第1係合部323aは、パークロッド323が図2に示す「パークロック位置」にあるときにロック機構326が係合する係合部であり、第2係合部323bは、パークロッド323が図3に示す「パークロック解除位置」にあるときにロック機構326が係合する係合部である。本実施形態では、第1係合部323aおよび第2係合部323bは、いずれもパークロッド323の外周上に、全周に沿って一続きに形成された凹部の態様である。第1および第2係合部323a、323bは、ロック機構326が係合可能であれば、必ずしも全周に亘って形成される必要はなく、さらに、第1および第2係合部323a、323bとロック機構326(フック326a)との関係は、前者が雌型であり、後者が雄型であるものに限られない。例えば、第1および第2係合部323a、323bは、パークロッド323の外周から突出する凸部により形成される形態のものであってもよい。
 ポール駆動カム324は、パーキングポール322に当接し、パークロッド323と連動して、パーキングポール322を揺動させる。ポール駆動カム324は、パークロッド323がパークロック位置にあるときに、パーキングギヤ321とパーキングポール322とを係合させ、パークロッド323がパークロック解除位置にあるときに、パーキングポール322をパーキングギア321から離脱させ、両者の係合を解除する。
 パークアクチュエータ325は、油圧式のアクチュエータであり、パークロッド323を駆動する。パークアクチュエータ325は、Pレンジが選択された場合に、パークロッド323をパークロック位置に移動させ、Pレンジ以外の変速レンジが選択された場合に、パークロッド323をパークロック解除位置に移動させる。
 本実施形態において、パークアクチュエータ325は、油圧シリンダの態様で構成され、ピストン325aと、シリンダ325bと、リターンスプリング325cと、を備える。シリンダ325bは、内部に油圧室を形成し、この油圧室にピストン325aが収容され、ピストン325aにより作動方向の前および後の2室に区画されている。ピストン325aの中央部には、パークロッド323が貫通した状態で固定されている。シリンダ325bの油圧室には、油圧部80から切替弁328aを介して油圧Pが供給される。本実施形態では、作動方向前側の油圧室部分に油圧Pが供給される。リターンスプリング325cは、パークロッド323とシリンダ325bとの間に圧縮状態で介装され、パークロッド323を作動方向前方、換言すれば、パークロック位置に向けて付勢する。
 ロック機構326は、パークロッド323がパークロック位置にあるパークロック状態(図2)か、パークロッド323がパークロック解除位置にあるパークアンロック状態(図3)か、でパークモジュール32の状態を固定する。ロック機構326は、パークロッド323と係合することで、パークロッド323の移動を制止し、パークロッド323を機械的に固定するものである。
 具体的には、ロック機構326は、フック326aとスプリング326bとを備え、フック326aは、パークロッド323との係合を行う。フック326aがパークロッド323の第1または第2係合部323a、323bに挿入されることで、フック326aが第1または第2係合部323a、323bに係止され、ロック機構326がパークロッド323と係合する。スプリング326bは、フック326aをパークロッド323に近付ける方向、換言すれば、フック326aが第1または第2係合部323a、323bに係止される方向に付勢する。本実施形態では、パークロッド323がパークロック位置にあり、ロック機構326のフック326aが第1係合部323aに係止された状態をもってパークロック状態といい、パークロッド323がパークロック解除位置にあり、ロック機構326のフック326aが第2係合部323bに係止された状態をもってパークアンロック状態というものとする。
 第1アクチュエータ部327は、ロック機構326のロック解除を行う。第1アクチュエータ部327は、ソレノイドにより構成され、電力の供給がオン状態にある通電時に、図2および図3に示すように、フック326aに対してロック解除方向に作用して、フック326aを第1または第2係合部323a、323bから離脱させ、ロック機構326のロック解除を行う。
 第2アクチュエータ部328は、切替弁328aと、制御弁328bと、ソレノイド328cと、により構成される。
 切替弁328aは、パークアクチュエータ325(シリンダ325b)に対して油圧部80から選択的に油圧Pを供給する。本実施形態において、切替弁328aは、スプール型の弁装置であり、パイロットポートであるポートAを備える。ポートAは、制御弁328bを介して油圧部80に接続されており、切替弁328aのポートAとの反対側には、ポートA側に向けて切替弁328aの弁体を付勢するスプリングが設置されている。制御弁328bは、ポートAに供給される油圧を制御する。ソレノイド328cは、リニアソレノイドであり、ATCU10からの指令に基づき制御弁328bを駆動する。ポートA側から切替弁328aの弁体に作用する力は、制御弁328bにより変更される。
 ポートA側から切替弁328aの弁体に作用する力が反対側から作用するスプリングの力よりも小さい場合は、図2に示すように、油圧部80とパークアクチュエータ325のシリンダ325bとの連通が切替弁328aにより遮断される。そして、この場合は、切替弁328aを介してシリンダ325bとオイルタンク(図2および3では、簡略化して示す)とが連通し、油圧室の油がオイルタンクに戻され、シリンダ325bがドレンされる。これにより、パークロッド323がリターンスプリング325cの弾性力によりパークロック位置に向けて移動する。パークロッド323がパークロック位置に達した後、第1アクチュエータ部327への通電を停止することにより、フック326aを第1係合部323aに係合させ、ロック機構326をロック状態とする。
 これに対し、ポートA側から切替弁328aの弁体に作用する力が反対側から作用するスプリングの力よりも大きい場合は、図3に示すように、切替弁328aを介して油圧室80とパークアクチュエータ325のシリンダ325bとが連通する。これにより、油圧室に油圧Pが供給され、パークロッド323がリターンスプリング325cの弾性力に抗してパークロック解除位置に向けて移動する。そして、パークロッド323がパークロック解除位置に達すると、第1アクチュエータ部327への通電を停止することにより、フック326aを第2係合部323bに係合させ、ロック機構326をロック状態とする。
 パークモジュール32において、切替弁328a、制御弁328b、ソレノイド328cおよび油圧部80は、パークロッド323を移動させる油圧を制御する油圧制御部329を構成する。油圧制御部329とパークアクチュエータ325とを統合した構成とすることも可能である。
 (リセット復帰制御の内容)
 本実施形態では、先に述べたパークロック装置32の基本的な制御に加え、ATCU10を構成するCPUにリセット(以下「CPUリセット」という)が生じた場合に、その後の復帰に際して以下のリセット復帰制御を実行する。
 CPUリセットは、ATCU10の電源電圧が一時的に低下した場合(瞬間的に生じる電源遮断の場合を含む)およびCPUにエラーが生じた場合等に発生する。前者のCPUリセットは、CPUの意図によらない偶発的なリセットであり、後者のCPUリセットは、CPUによる意図的なリセットである。
 図4は、リセット復帰制御の基本的な流れをフローチャートにより示している。
 S1では、CPUリセットが発生したか否かを判定する。CPUリセットは、例えば、ATCU10によりCPUに何らかのエラーが生じた場合に、ATCU10自身により実行される。CPUにエラーが生じたか否かの判定には、公知の判定方法を適用することができる。CPUにエラーが生じた場合に、CPUリセットが発生したと判断してS2へ進み、CPUリセットが発生していない場合は、制御を終了する。
 S2では、CPUにエラーが生じたとの判定を受け、所定のバックアップ処理を実行した後、電源を遮断する。これにより、第1アクチュエータ部327であるソレノイドおよび第2アクチュエータ部328のソレノイド328cに対する電力の供給が停止される。第1アクチュエータ部327への電力の供給が停止されることで、ロック機構がロック状態となる。
 S3では、CPUリセットから復帰したか否かを判定する。例えば、CPUリセットのための電源の遮断後、ATCU10に再度電源が投入された場合に、CPUリセットから復帰したと判定する。CPUリセットから復帰した場合は、S4へ進み、それ以外の場合は、復帰するまで待機する。
 S4では、ロック機構326をロック状態に維持する。本実施形態では、第1アクチュエータ部327に対し、ロック機構326のロック状態を維持する指示を出力することとし、具体的には、第1アクチュエータ部327であるソレノイドおよび第2アクチュエータ部328のソレノイド328cに対する電力の供給を引き続き停止したままとする。そして、CPUリセットからの復帰後、運転者のシフト操作に基づき変速レンジの変更が指示されるまで、第1および第2アクチュエータ部327、328への通電を停止した状態を維持する。換言すれば、運転者による変速レンジの変更が確認されたことをもって、第1および第2アクチュエータ部327、328への通電を許可する。
 これにより、パークロッド323がパークロック位置にある場合に(図2)、ロック機構326のフック326aがパークロッド323の第1係合部323aに係合している状態でCPUリセットが生じた場合は、CPUリセットからの復帰後もフック326aが第1係合部323aに係合した状態を維持する。一方で、CPUリセット前にパークロッド323がパークロック解除位置にあり(図3)、フック326aがパークロッド323の第2係合部323bに係合している状態でCPUリセットが生じた場合は、復帰後もフック326aが第2係合部323bに係合した状態を維持する。このように、CPUリセットからの復帰後もロック機構326のロック状態を維持し、CPUリセット前におけるパークロック装置32の状態(パークロック状態またはパークアンロック状態)を車速に拘らず維持するのである。
 本実施形態では、CPUリセットにより第2アクチュエータ部328のソレノイド328cへの電力の供給が遮断された場合に、パークアクチュエータ325のシリンダ325bがドレンされる構成であるので、パークロック位置へのパークロッド323の移動は、リターンスプリング325cにより自動的になされることになる。よって、CPUリセット前にロック機構326のロック状態が解除されていた場合に、パークロッド323は、復帰に際してパークロック位置にある。従って、ロック状態とする指示に基づき第1アクチュエータ部327への通電を停止するだけで、ロック機構326がロック状態となり、パークロック状態が形成されることになる。
 S5では、変速機構3を構成する摩擦締結要素33の全部または一部の締結を解除し、変速機構3をニュートラル状態として、変速機構3を介する動力の伝達を遮断する。
 本実施形態では、ATCU10のCPUをCPUエラーにより意図的にリセットする場合について説明したが、CPUリセットは、これに限らず、ATCU10に対する電力の供給が偶発的に遮断された場合にも生じ得る。この場合においても電源の再投入に際し、第1アクチュエータ部327に対してロック機構326のロック状態を維持する指示を出力することで、ロック機構326をロック状態に維持する。
 さらに、本実施形態では、パークロッド323の駆動に油圧とスプリングの弾性力とを併用する場合について説明したが、スプリングによらない形式として、例えば、アクチュエータによりパークロッド323を前進および後退させるものを採用する場合は、CPUリセットからの復帰に際し、パークロッド323をパークロック位置に移動させる指示をアクチュエータに出力し、その後、ロック機構326に対してロック状態とする指示を出力する。
 (作用効果の説明)
 本実施形態に係るパークロック装置32および自動変速機の制御装置(ATCU10)は、以上のように構成され、以下、本実施形態により得られる効果をまとめる。
 第1に、ATCU10にCPUリセットが生じた場合に、復帰後におけるパークロック装置(本実施形態では、パークモジュール32)の状態に対する信頼性を向上させることができる。CPUリセットからの復帰後もロック機構326のロック状態を維持し、パークロック装置32の状態変化を伴うパークロッド323の移動を規制することで、例えば、Nレンジでの低速牽引中またはRレンジでの車庫入れ中にCPUリセットが生じた後の復帰に際し、何らかの原因でパークロック装置32がパークアンロック状態からパークロック状態に切り換えられて、円滑な走行が阻害されたり、異音が発生したりするのを回避することができる。
 第2に、CPUリセットからの復帰後、変速機構3をニュートラル状態とすることで、復帰後の安全性を高めることができる。例えば、Rレンジでの車庫入れ中にCPUリセットが生じた場合に、復帰後、変速レンジが誤ってPレンジに設定されることによる急制動を回避することができる。さらに、Dレンジでの走行中にCPUリセットが生じ、復帰後に誤ってRレンジが設定されることによる逆回転の事態を回避することができる。ニュートラル状態とするのであれば、慣性により惰行走行が可能である。
 第3に、ロック機構326のロック状態が解除された状態でCPUリセットが生じた場合に、復帰に際してパークロック装置32をパークロック状態とすることで、復帰後の信頼性をさらに高めることができる。CPUリセットがPレンジからPレンジ以外の変速レンジへの変更中に生じた場合は、復帰後、変更しようとした変速レンジに再度入れ直せばよいだけなので、運転者に与える負担ないし違和感は抑制される。一方で、Pレンジ以外の変速レンジからPレンジへの変更中であれば、復帰後にパークロック状態とすることは、運転者の意図に沿った切換えに過ぎない。
 以上、本発明の実施形態について説明したが、本発明は、これに限定されるものではなく、特許請求の範囲に記載した事項の範囲内において、様々な変更および修正を成し得ることはいうまでもない。
 例えば、変速機TMを構成する変速機構3は、有段式の変速機構である必要はなく、無段式の変速機構であってもよい。
 本願は、2016年10月31日付けで日本国特許庁に提出された特願2016-213526号に基づく優先権を主張し、その出願の全ての内容は、参照により本願の明細書に組み込まれる。

Claims (4)

  1.  変速機構と、
     ロッド部材と、ロック状態にあるときに前記ロッド部材の移動を規制するロック機構と、を備えるパークロック装置と、
     を備える自動変速機の制御装置であって、
     前記ロック機構が前記ロック状態にあるときに当該制御装置にCPUリセットが生じた場合に、CPUリセットからの復帰後、前記ロック機構のロック状態を維持する、
     自動変速機の制御装置。
  2.  前記CPUリセット後の復帰時において、前記変速機構をニュートラル状態とする、請求項1に記載の自動変速機の制御装置。
  3.  前記ロック状態が解除された状態で前記CPUリセットが生じた場合に、前記CPUリセット後の復帰時において、前記パークロック装置を前記パークロック状態とする、請求項1または2に記載の自動変速機の制御装置。
  4.  変速機構と、
     ロッド部材と、ロック状態にあるときに前記ロッド部材の移動を規制するロック機構と、を備えるパークロック装置と、
     を備える自動変速機の制御方法であって、
     前記ロック機構が前記ロック状態にあるときに当該制御装置にCPUリセットが生じた場合に、CPUリセットからの復帰後、前記ロック機構のロック状態を維持する、
     自動変速機の制御方法。
PCT/JP2017/037574 2016-10-31 2017-10-17 自動変速機の制御装置および制御方法 WO2018079349A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780052032.8A CN109642662B (zh) 2016-10-31 2017-10-17 自动变速器的控制装置及控制方法
US16/329,214 US11371605B2 (en) 2016-10-31 2017-10-17 Control device and control method for automatic transmission
JP2018547586A JP6596167B2 (ja) 2016-10-31 2017-10-17 自動変速機の制御装置および制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-213526 2016-10-31
JP2016213526 2016-10-31

Publications (1)

Publication Number Publication Date
WO2018079349A1 true WO2018079349A1 (ja) 2018-05-03

Family

ID=62025017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037574 WO2018079349A1 (ja) 2016-10-31 2017-10-17 自動変速機の制御装置および制御方法

Country Status (4)

Country Link
US (1) US11371605B2 (ja)
JP (1) JP6596167B2 (ja)
CN (1) CN109642662B (ja)
WO (1) WO2018079349A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111173927A (zh) * 2018-11-09 2020-05-19 本田技研工业株式会社 驻车锁定控制装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6725615B2 (ja) * 2018-09-21 2020-07-22 株式会社Subaru パーキングロック装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03219165A (ja) * 1990-01-25 1991-09-26 Nissan Motor Co Ltd 自動変速機のシフト指示装置
JP2013104463A (ja) * 2011-11-11 2013-05-30 Toyota Motor Corp 車両の制御装置
JP2013199963A (ja) * 2012-03-23 2013-10-03 Fuji Heavy Ind Ltd シフトバイワイヤ制御システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502004007189D1 (de) * 2003-03-26 2008-07-03 Luk Lamellen & Kupplungsbau Vorrichtung und Verfahren zur Steuerung eines Parksperren-Haltemagneten eines Kraftfahrzeuggetriebes
JP2009275818A (ja) * 2008-05-14 2009-11-26 Denso Corp シフトバイワイヤ制御システム
JP5947086B2 (ja) * 2012-04-02 2016-07-06 ダイムラー・アクチェンゲゼルシャフトDaimler AG 車両の変速制御装置
JP6182311B2 (ja) * 2012-11-30 2017-08-16 日立オートモティブシステムズ株式会社 ブレーキ装置
JP5817747B2 (ja) * 2013-01-25 2015-11-18 株式会社デンソー レンジ切換装置
DE102013216365A1 (de) * 2013-08-19 2015-03-12 Volkswagen Aktiengesellschaft Verfahren zum Bedienen eines Fahrerassistenzsystems eines Kraftfahrzeugs mit wenigstens einer Bedienvorrichtung
KR102142832B1 (ko) * 2013-11-21 2020-08-10 현대모비스 주식회사 전자기계식 브레이크의 초기화 장치 및 방법
JP6429151B2 (ja) * 2015-03-23 2018-11-28 本田技研工業株式会社 自動変速機の油圧回路
JP6610456B2 (ja) * 2016-07-19 2019-11-27 株式会社オートネットワーク技術研究所 バックアップ電源装置およびバックアップシステム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03219165A (ja) * 1990-01-25 1991-09-26 Nissan Motor Co Ltd 自動変速機のシフト指示装置
JP2013104463A (ja) * 2011-11-11 2013-05-30 Toyota Motor Corp 車両の制御装置
JP2013199963A (ja) * 2012-03-23 2013-10-03 Fuji Heavy Ind Ltd シフトバイワイヤ制御システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111173927A (zh) * 2018-11-09 2020-05-19 本田技研工业株式会社 驻车锁定控制装置

Also Published As

Publication number Publication date
CN109642662B (zh) 2020-08-25
JPWO2018079349A1 (ja) 2019-06-24
US11371605B2 (en) 2022-06-28
JP6596167B2 (ja) 2019-10-23
US20190186629A1 (en) 2019-06-20
CN109642662A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
US8612108B2 (en) Entering and leaving a motor vehicle freewheel running condition with internal combustion engine off
JP5723312B2 (ja) 四輪自動車用のシフトバイワイヤ制御システム
JP4305556B2 (ja) 車両の制御装置
US20180066755A1 (en) Control device of automatic transmission which executes shift-by-wire control
US9643608B2 (en) Vehicular power transmission device
US7416514B2 (en) Method and system for controlling at least one actuator in the drive train of a motor vehicle
CA3064710C (en) Automatic parking control method and automatic parking control device for vehicles
US9758037B2 (en) Control system for four-wheel drive vehicle
US10837552B2 (en) Parking lock device
JP5612624B2 (ja) レンジ切替装置
JP6705707B2 (ja) パークロックデバイスの制御装置
US10408348B2 (en) Method for operating an automatic transmission apparatus and corresponding automatic transmission apparatus
JP6596167B2 (ja) 自動変速機の制御装置および制御方法
JP5151918B2 (ja) シフトセレクトシステム
JP6616741B2 (ja) パークロックデバイスの制御装置及びパークロックデバイスの制御方法
JP6626585B2 (ja) 車両の制御装置及び車両の制御方法
CN109642660B (zh) 车辆的控制装置及车辆的控制方法
KR101491285B1 (ko) Amt 차량의 비정상 엔진 정지시 비상 제어방법 및 시스템
JP2023132851A (ja) 車両の制御装置
WO2017134965A1 (ja) 変速装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864869

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018547586

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17864869

Country of ref document: EP

Kind code of ref document: A1