WO2018076919A1 - 一种快速烧结系统及快速烧结方法 - Google Patents

一种快速烧结系统及快速烧结方法 Download PDF

Info

Publication number
WO2018076919A1
WO2018076919A1 PCT/CN2017/099293 CN2017099293W WO2018076919A1 WO 2018076919 A1 WO2018076919 A1 WO 2018076919A1 CN 2017099293 W CN2017099293 W CN 2017099293W WO 2018076919 A1 WO2018076919 A1 WO 2018076919A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
sintering
sample
sintered
furnace
Prior art date
Application number
PCT/CN2017/099293
Other languages
English (en)
French (fr)
Inventor
何玲玲
夏婉婷
郭颖
白莹莹
韩成玮
Original Assignee
辽宁爱尔创生物材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 辽宁爱尔创生物材料有限公司 filed Critical 辽宁爱尔创生物材料有限公司
Priority to KR1020197014871A priority Critical patent/KR20190077012A/ko
Priority to US16/346,092 priority patent/US11919818B2/en
Priority to EP17865657.5A priority patent/EP3534097B1/en
Priority to DK17865657.5T priority patent/DK3534097T3/da
Priority to ES17865657T priority patent/ES2841429T3/es
Publication of WO2018076919A1 publication Critical patent/WO2018076919A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B21/00Open or uncovered sintering apparatus; Other heat-treatment apparatus of like construction
    • F27B21/04Sintering pots or sintering pans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • A61C13/0006Production methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/08Artificial teeth; Making same
    • A61C13/083Porcelain or ceramic teeth
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • F27B17/02Furnaces of a kind not covered by any preceding group specially designed for laboratory use
    • F27B17/025Furnaces of a kind not covered by any preceding group specially designed for laboratory use for dental workpieces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B21/00Open or uncovered sintering apparatus; Other heat-treatment apparatus of like construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts

Definitions

  • the present application relates to the technical field of dental material preparation, and in particular to a rapid sintering system and a rapid sintering method.
  • Ceramic materials such as zirconia have good mechanical properties, chemical stability, biosafety, and aesthetic properties close to human natural teeth, and have become dental restoration materials widely used in clinical treatment.
  • a restoration prepared from a ceramic material needs to be sintered by a heat treatment apparatus such as a sintering furnace after being processed by a cutting device such as CAD/CAM.
  • the heat treatment apparatus sets a corresponding sintering temperature system according to the sintering temperature profile of the material.
  • the control device changes the temperature of the heating element by controlling the voltage and current, thereby changing the temperature in the furnace to control the sample to be sintered (product)
  • the sintering temperature at the time, and the temperature adjustment achieved by this takes a long time.
  • an existing silicon molybdenum rod or a silicon carbon heating element sintering furnace can achieve a temperature rise of about 20 degrees Celsius per minute at the fastest, so that the sample to be sintered (here, a zirconia ceramic dental bed is taken as an example) is introduced into the furnace.
  • the prior art products have a slow sintering rate and a low sintering efficiency.
  • the present application provides a rapid sintering system and a rapid sintering method to achieve rapid sintering of a sample to be sintered and improve the sintering efficiency of the product.
  • the specific technical solutions are as follows:
  • an embodiment of the present application provides a rapid sintering system including a furnace body and a lifting device
  • the furnace body includes a furnace and a furnace mouth communicating with each other
  • the lifting device includes a support and a sample stage, and the sample stage is disposed on the support
  • the rapid sintering system further comprising:
  • a temperature acquiring device disposed on the sample stage
  • control device disposed outside the furnace and electrically connected to the lifting device and the temperature acquiring device for controlling lifting of the lifting device according to a temperature acquired by the temperature acquiring device and a preset sintering condition
  • predetermined sintering conditions include: sintering temperature, heating rate, and holding time
  • baffle member disposed at a first end of the lifting device, a first space between the baffle member and the sample stage, wherein when the rapid sintering system is in a loading or unloading condition, A baffle member seals the furnace opening, wherein the first end is an end of the lifting device adjacent the sample stage.
  • the baffle member comprises: a plug and a support rod, the lower end of the support rod is fixedly connected to the lifting device, the upper end portion is fixedly connected with the plug, and the baffle member passes the A plug plugs the furnace opening.
  • the spacer member is a structure made of a high temperature resistant material, specifically a structure made of alumina ceramic fiber or a structure made of polycrystalline mullite fiber.
  • the temperature acquiring device is specifically: a thermocouple, a semiconductor thermometer or a solid thermometer.
  • control device is specifically: a single board machine, a single chip computer or a computer.
  • an embodiment of the present application provides a rapid sintering method using the above rapid sintering system, including:
  • step (a) includes:
  • the sample to be sintered is placed on the sample stage.
  • step (c) includes:
  • step (c2) includes:
  • a processing time slot Determining, by the control device, a processing time slot, wherein the processing time slot is a preset unit time for lifting and lowering the lifting device;
  • the real-time sintering temperature is compared with the preset temperature profile by the control device to determine the temperature to be reached at the end of the processing time slot, and Describe the temperature to be reached at the sintered sample as the target temperature;
  • the lifting and lowering of the lifting device is controlled by the control device, so that the temperature at the sample to be sintered reaches the target temperature after passing through the processing time slot until sintering is completed.
  • a rapid sintering system and a rapid sintering method provided by the embodiments of the present application can reduce the temperature of the sample to be sintered by using the temperature gradient of the furnace and the furnace mouth, thereby rapidly reducing the temperature of the sample to be sintered.
  • the sintering time of the sintered sample realizes rapid sintering of the sample to be sintered and improves the sintering efficiency of the product.
  • implementing any of the products or methods of the present application necessarily does not necessarily require all of the advantages described above to be achieved at the same time.
  • FIG. 1 is a schematic structural view of a rapid sintering system according to an embodiment of the present application.
  • FIG. 2 is a schematic view of a sample stage of a lifting device of a rapid sintering system according to an embodiment of the present application, which is lifted to a furnace mouth;
  • FIG. 3 is a schematic view of a sample stage of a lifting device of a rapid sintering system according to an embodiment of the present invention, which is lifted into a furnace;
  • FIG. 4 is a schematic flow chart of a rapid sintering method according to an embodiment of the present application.
  • 6 is a preset temperature profile of a sintered three-unit bridge of zirconia ceramics applied to the rapid sintering system of the embodiment of the present application.
  • loading or unloading conditions refers to the working condition of the rapid sintering system when the lifting device of the rapid sintering system is lowered to the loading or unloading position;
  • Working condition refers to the working condition of the rapid sintering system when the lifting device of the rapid sintering system is raised to the sintering position.
  • the "upper end” referred to herein is the end of the rapid sintering system near the furnace, and the “lower end” is One end of the rapid sintering system near the support.
  • an embodiment of the present application provides a rapid sintering system, and the structure thereof specifically includes:
  • the furnace body 110 includes a furnace 111 and a furnace opening 112 that communicate with each other.
  • the furnace body 110 of the rapid sintering system further includes a heat generating body (not shown), a heat insulating layer 113, and a protective casing 114, wherein the heat generating body is disposed on the furnace 111, and the heat insulating layer 113 is disposed on the heat generating body and Outside the furnace 111, the protective casing 114 is disposed outside the heat insulating layer 113.
  • the heat insulating layer 113 can reduce heat exchange between the furnace 111 and the outside when sintering the sample to be sintered, and ensure the temperature in the furnace 111.
  • the heating element of the embodiment of the present application is a silicon molybdenum rod heating element, a silicon carbon rod heating element, or any heating element that can be applied to a furnace to realize a heat generating function.
  • the heat insulating layer 113 and the protective outer casing 114 may be made of a high temperature resistant lightweight refractory material.
  • the protective outer casing 114 may be made of an alumina ceramic fiber refractory material, and the heat insulating layer 113 may be made of polycrystalline mullite fiber.
  • the material of the protective casing 114 and the heat insulating layer 113 is not specifically limited in the embodiment of the present application.
  • the lifting device 120 is disposed at one end of the furnace body 110 near the furnace opening 112.
  • the lifting device 120 includes a support 122 and a sample stage 121, and the sample stage 121 is disposed on the support 122.
  • the lifting device 120 further includes a lifting motor (not shown) disposed on the furnace body 110 or on the support 122.
  • the lifting motor includes an electric motor or a hydraulic machine.
  • the temperature acquisition device 130 is disposed on the sample stage 121.
  • the temperature obtaining device 130 is disposed on the sample stage 121 at a position close to the sample to be sintered, and there is a second interval between the temperature acquiring device 130 and the sample to be sintered, and the space formed by the second interval can ensure the normality of the sample to be sintered.
  • the sintering process is unaffected by the temperature acquisition device 130, and the temperature acquired by the temperature acquisition device 130 is maximally close to the true sintering temperature at the sample to be sintered.
  • the temperature acquisition device 130 can be a temperature sensor.
  • the control device 140 is disposed outside the furnace 111 and electrically connected to the lifting device 120 and the temperature acquiring device 130 for determining the temperature acquired by the temperature acquiring device 130, and controlling the lifting and lowering of the lifting device 120 according to the temperature and the preset sintering condition. .
  • the preset sintering conditions include: sintering temperature, heating rate and holding time.
  • the control device 140 is disposed outside the furnace body 110, on the protective casing 114 or at any position convenient for operating the control device 140, and is electrically connected to the lifting device 120 and the temperature acquiring device 130. Of course, it can also be connected by electric field coupling or any one.
  • the control device 140 transmits a control signal to the lifting device 120, and the control device 140 acquires a connection mode of the signal from the temperature acquiring device 130.
  • the control device 140 acquires the real-time sintering temperature sent by the temperature acquiring device 130 (the real-time sintering temperature is acquired by the temperature acquiring device 130 in real time), and controls the lifting and lowering of the lifting device 120 according to the real-time sintering temperature and the preset sintering condition to raise and lower the sample stage 121. Go to the furnace opening 112 (see Figure 2) or lift into the furnace 111 (see Figure 3).
  • the control device 140 can also be electrically connected to the furnace body 110, specifically to the heating element of the furnace body 110 for controlling the temperature of the heating element.
  • the partition member 150 is disposed at the first end of the lifting device 120, and the partition member 150 and the sample table 121 There is a first interval therebetween, and when the rapid sintering system is in the loading or unloading condition, the partition member 150 blocks the furnace opening 112, wherein the first end is an end of the lifting device 120 adjacent to the sample stage 121.
  • the temperature gradient is increased from the furnace opening 112 to the furnace 111, and there is a first interval between the partition member 150 and the sample stage 121, and the space formed by the first interval is used to ensure The spacer member 150 does not affect the mounting of the sample to be sintered on the sample stage 121, and minimizes the real-time sintering temperature at the sample to be sintered, which is affected by the temperature at other temperature gradients than the temperature gradient at which the sample to be sintered is placed.
  • the contact between the partition member 150 and the furnace opening 112 should be tight, that is, the partition member 150 and the furnace opening 112 can be in seamless contact, and does not affect the partition member 150 to slide up and down in the furnace opening 112, so that the partition member 150 is sealed.
  • the furnace opening 112 is blocked, the temperature in the furnace 111 can be maintained, and the temperature at the furnace opening 112 can be prevented from falling too fast, the heat exchange between the furnace opening 112 and the furnace 111 and the outside can be reduced, and the heat preservation and heating pressure of the heating body can be reduced.
  • the rapid sintering system of the embodiment of the present application by using the temperature gradient of the furnace and the furnace mouth, by controlling the position of the sample to be sintered, the temperature of the sample to be sintered is rapidly increased, the sintering time of the sample to be sintered can be reduced, and the rapid sintering of the sample to be sintered can be realized. Improve the sintering efficiency of the product.
  • the spacer member 150 includes: a plug 151 and a support rod 152.
  • the lower end of the support rod 152 is fixedly connected to the lifting device 120, and the upper end portion is fixedly connected with the plug 151.
  • the partition member 150 blocks the furnace opening through the plug 151.
  • the baffle member 150 includes a plug 151 and a support rod 152.
  • One end of the support rod 152 is disposed on the plug 151, and the other end of the support rod 152 is disposed on the lifting device 120.
  • the number of the support rods 152 is one or two. One or more.
  • the support rod 152 can also be replaced with a support body.
  • the lower surface of the support body is fixedly connected with the lifting device 120, and the upper surface of the support body is fixedly connected with the plug 151, and the number of the support bodies is one or When there are a plurality of supports, there should be a space between the supports to ensure heat exchange with the furnace or the furnace mouth at the sample to be sintered.
  • the spacer member 150 is a structure made of a high temperature resistant material, specifically a structure made of alumina ceramic fiber or a structure made of polycrystalline mullite fiber.
  • the spacer member 150 will enter the furnace 111, at which time the temperature at the spacer member 150 will reach 1600 ° C or higher. Therefore, the spacer member 150 is made of a high temperature resistant material. Specifically, the spacer member 150 may be made of alumina ceramic fiber or made of polycrystalline mullite fiber. Of course, because the spacer member 150 also has the effect of preventing a sudden temperature drop at the mouth 112, the thermal insulation properties of the material selected for the spacer member 150 can also be considered.
  • the spacer member 150 is made of a high temperature resistant material, which improves the service life of the spacer member 150 in a high temperature environment.
  • the temperature acquiring device 130 is specifically: a thermocouple, a semiconductor thermometer, or a solid thermometer.
  • the temperature obtaining device 130 is configured to obtain the real-time sintering temperature at the sample to be sintered. Since the sintering temperature of the sample to be sintered is very high (taking zirconia ceramic as an example, the highest sintering temperature is about 1600 ° C), the temperature acquiring device 130 must be able to Work in a high temperature environment.
  • the temperature acquisition device 130 is any temperature acquisition device capable of acquiring temperature at a high temperature, and may be, for example, a thermocouple, a semiconductor thermometer, or a solid thermometer.
  • the control device 140 acquires the thermoelectromotive force signal generated by the thermocouple, and determines the real-time sintering temperature by the thermoelectromotive force signal.
  • the temperature acquiring device 130 is a semiconductor thermometer
  • a voltage is applied across the semiconductor thermometer, and the resistance of the semiconductor thermometer is different at different temperatures, thereby causing a change in current
  • the control device 140 obtains the current output by the semiconductor thermometer, and determines the current through the current. Sintering temperature.
  • the temperature acquiring device 130 is a solid thermometer
  • the solid thermometer is connected to the gear
  • the gear is connected to the sliding piece of the sliding varistor
  • the voltage is applied to the sliding varistor
  • the volume of the solid thermometer is different at different temperatures
  • the volume change of the solid thermometer drives the gear
  • the rotation of the gear causes the change of the resistance of the sliding varistor to affect the current of the sliding varistor.
  • the control device 140 obtains the current through the sliding varistor and determines the real-time sintering temperature by the current.
  • the temperature obtaining device 130 can also work normally at a high temperature, which ensures normal acquisition of the real-time sintering temperature, high temperature resistance, and improves the service life of the temperature acquiring device 130 at high temperatures.
  • the control device 140 is configured to acquire a real-time sintering temperature, and control the lifting and lowering of the lifting device 120 according to the real-time sintering temperature and the preset temperature profile.
  • the control device 140 needs to have the capability of information processing, and may be any device capable of being applied to the information processing capability of the embodiment of the present application. Specifically, it can be: single board machine, single chip computer or computer.
  • FIG. 4 is a schematic flow chart of a rapid sintering method, and the steps thereof include:
  • step 401 the sample to be sintered is placed on the sample stage when the temperature in the furnace reaches the highest temperature required for sintering the sample to be sintered.
  • the temperature in the furnace is heated in advance to the highest temperature required for sintering the sample to be sintered according to preset sintering conditions.
  • Step 402 The temperature at the sample to be sintered is obtained in real time by the temperature acquiring device as a real-time sintering temperature, and the real-time sintering temperature is fed back to the control device.
  • the sample to be sintered is placed on the sample stage.
  • the temperature acquisition device is any temperature acquisition device capable of acquiring temperature at a high temperature, and may be, for example, a thermocouple, a semiconductor thermometer, or a solid thermometer.
  • a thermocouple the thermoelectromotive force generated by the thermocouple is different at different temperatures, and the temperature acquisition device feeds back the thermal electromotive force to the control device to feedback the real-time sintering temperature to the control device;
  • the thermoelectromotive force can be converted to other signals that the control device can recognize and sent to the control device.
  • the temperature acquiring device is a semiconductor thermometer
  • a voltage is applied across the semiconductor thermometer, and the resistance of the semiconductor thermometer is different at different temperatures, thereby causing a change in current, and the temperature acquiring device realizes real time by feeding back the current to the control device.
  • the sintering temperature is fed back to the control device; of course, the temperature acquisition device can also convert the current into other signals that the control device can recognize and send the signal to the control device.
  • the temperature acquiring device is a solid thermometer
  • the solid thermometer is connected to the gear
  • the gear is connected with the sliding piece of the sliding varistor
  • the voltage is applied to the sliding varistor
  • the volume of the solid thermometer is different at different temperatures
  • the volume change of the solid thermometer drives the gear. Rotation, the rotation of the gear will cause the change of the resistance of the sliding varistor, which in turn affects the current of the sliding varistor.
  • the temperature acquiring device feeds back the current to the control device by feeding back the current to the control device; of course, the temperature acquiring device can also The current is converted to other signals that the control device can recognize and sent to the control device.
  • the rise of the lifting device is started, and the temperature at the sample to be sintered is obtained in real time by the temperature acquiring device disposed on the sample stage as the real-time sintering temperature.
  • the real-time sintering temperature is fed back to the control device to control the lifting device to rise or fall.
  • Step 403 according to the preset sintering condition and the real-time sintering temperature obtained in advance, the lifting device is controlled by the control device to make the real-time sintering temperature of the sample to be sintered conform to the preset sintering condition, and the sintering of the sample to be sintered is completed.
  • the preset sintering conditions include: sintering temperature, heating rate and holding time.
  • the sintering of the sample to be sintered has a special temperature requirement, which is specifically related to the relationship between the sintering time and the sintering temperature. Before sintering the sample to be sintered, it is necessary to obtain the temperature required for the sintering of the sample to be sintered, the heating rate of the sample to be sintered, and the sintering to be sintered.
  • the sintering time required for the sintering of the sample is determined as the preset sintering condition, and the lifting and lowering of the lifting device is controlled by the control device according to the pre-acquired predetermined sintering condition and the real-time sintering temperature, so that the real-time sintering temperature and the preset sintering condition are obtained. Match.
  • the batch of the samples to be sintered is taken out for the next operation, and another batch of samples to be sintered can be placed on the sample stage. And began to sinter.
  • the maximum sintering temperature is about 1600 ° C. Therefore, after the sintering of a batch of products is completed, the sintering of the next batch of products can be directly performed. For example, after the zirconia ceramic crown is sintered, the temperature in the furnace of the rapid sintering system is kept constant, and the zirconia ceramic three-unit bridge is placed on the sample stage to start sintering.
  • the sample to be sintered is rapidly heated, the sintering time of the sample to be sintered can be reduced, the rapid sintering of the sample to be sintered is realized, and the product is improved. Sintering efficiency.
  • the step 401 includes:
  • the temperature in the furnace is kept constant while the temperature in the furnace reaches the maximum temperature required for sintering of the sample to be sintered.
  • the sample to be sintered is placed on the sample stage.
  • the temperature in the furnace of the rapid sintering system rises to the highest temperature required for sintering of the sample to be sintered (this maximum temperature can be determined according to preset sintering conditions).
  • this maximum temperature can be determined according to preset sintering conditions.
  • the temperature in the furnace is kept constant while the temperature in the furnace reaches the maximum temperature required for sintering of the sample to be sintered. It can prevent the normal sintering of the sample to be sintered from being affected by the excessive temperature in the furnace.
  • the energy consumption generated by the furnace insulation process is lower than the energy consumption generated by the heating process, which reduces the energy consumption of the rapid sintering system. Prevents the consumption of the heating element due to excessive temperature and increases the service life of the rapid sintering system.
  • step 403 includes:
  • the temperature curve required for sintering the sample to be sintered is determined according to the preset sintering condition obtained in advance as a preset temperature curve.
  • the lifting device is controlled by the control device to make the temperature curve of the real-time sintering temperature conform to the preset temperature curve, and the sintering of the sample to be sintered is completed.
  • the preset sintering condition is converted into a preset temperature curve.
  • the lifting and lowering of the lifting device is controlled, so that the temperature curve formed by the real-time sintering temperature is consistent with the preset temperature curve.
  • the lifting and lowering of the lifting device is controlled by the control device according to the preset temperature curve and the real-time sintering temperature, so that the temperature curve of the real-time sintering temperature is consistent with the preset temperature curve, and is completed.
  • the sintering of the sample to be sintered includes the following steps:
  • the processing time slot is determined by the control device, wherein the processing time slot is a unit time of the preset lifting device lifting.
  • the real-time sintering temperature is compared with the preset temperature curve by the control device, and the temperature to be sintered at the end of the processing time slot is determined, and the sample to be sintered needs to be reached.
  • the temperature is the target temperature.
  • the lifting device is controlled by the control device, so that the temperature at the sample to be sintered reaches the target temperature after the processing time slot, until the sintering is completed.
  • the processing time slot may be set in advance according to the sintering demand and the delay of the system, or may be determined by the rapid sintering system according to an instruction input by the user.
  • the processing time slot is a unit time for controlling the lifting and lowering of the lifting device, for example, 0.1 second or longer, 0.5 second or longer, or 1 second or longer.
  • the overall sintering time is divided into a plurality of processing time slots, and the control device determines the target temperature of each processing time slot based on the real-time sintering temperature and the preset temperature profile.
  • the control device determines the maximum temperature required for sintering the sample to be sintered in the current processing time slot according to the real-time sintering temperature and the preset temperature curve (the maximum temperature may also be determined in advance) As the highest target temperature, the lifting device is controlled by the control device so that the temperature at the sample to be sintered (real-time sintering temperature) reaches the highest target temperature after the processing time slot, until the temperature rising process is completed.
  • the control device determines the minimum temperature required for sintering the sample to be sintered in the current processing time slot according to the real-time sintering temperature and the preset temperature curve (the lowest temperature may also be determined in advance) As the minimum target temperature, the lifting device is controlled to rise and lower by the control device, so that the temperature at the sample to be sintered reaches the minimum target temperature after passing through the processing time slot until the cooling process is completed.
  • the control device controls the lifting device to stop lifting up to the next time.
  • a processing time slot begins. If the first processing time slot has ended and the temperature at the sample to be sintered has not reached the first target temperature, then in the second processing time slot, the lifting device is controlled to be lifted and lowered by the control device (can be sintered according to the end of the first processing time slot) The temperature at the sample, the difference from the first target temperature, increases the lifting speed), so that the temperature at the sample to be sintered reaches the second target temperature.
  • the first processing time slot is any one of the processing time slots
  • the first target temperature is the target temperature corresponding to the first processing time slot
  • the second processing time slot is the next processing time slot of the first processing time slot
  • the second target The temperature is the target temperature corresponding to the second processing time slot.
  • the smaller the processing time slot the smoother the temperature curve formed by the real-time sintering temperature and the closer to the preset temperature curve.
  • FIG. 5 is a preset temperature profile of a sintered zirconia ceramic crown applied to the rapid sintering system of the embodiment of the present application.
  • the maximum temperature required for sintering the zirconia ceramic crown is determined and determined according to preset sintering conditions. According to the maximum temperature, the temperature in the furnace of the rapid sintering system is heated to 1250 ° C to 1650 ° C in advance, for example, it may be 1250 ° C, 1300 ° C, 1400 ° C, 1500 ° C, 1600 ° C or 1650 ° C. When the temperature in the furnace is 1250 ° C - 1650 ° C, for example, it may be 1250 ° C, 1300 ° C, 1400 ° C, 1500 ° C, 1600 ° C or 1650 ° C, etc., the zirconia ceramic crown to be sintered is placed on the sample stage. The real-time sintering temperature at this time was 150 ° C by a temperature acquisition device (here set as a thermocouple). According to the preset sintering condition, the control device controls the lifting of the lifting device to start sintering.
  • the control device controls the lifting device to start to rise, so that the temperature at the zirconia ceramic crown is raised at a rate of 500 ° C / minute, and the temperature at the zirconia ceramic crown is raised to 1250 ° C.
  • the control device obtains the real-time sintering temperature feedback from the thermocouple at 1250 °C, and the control device controls the lifting device to stop rising, so that the zirconia ceramic crown is sintered in an environment of 1250 °C. 5 minutes.
  • the control device controls the lifting device to continue to rise, so that the temperature at the zirconia ceramic crown is raised at a rate of 150 ° C / minute, and the temperature at the zirconia ceramic crown is raised to 1580 ° C.
  • the control device obtains the real-time sintering temperature fed back by the thermocouple to 1580 ° C, and controls the lifting device to stop rising, so that the zirconia ceramic crown is sintered in an environment of 1580 ° C for 5 minutes.
  • the control device controls the lifting device to start to descend, so that the temperature at the zirconia ceramic crown is lowered at a rate of 200 ° C / minute.
  • the control device After 5 minutes, the sample stage is lowered to the bottom, and the control device obtains the temperature fed back by the thermocouple to 600. °C. After cooling for 3 minutes with the help of the fan around the sample stage, the control device obtains the temperature around the zirconia ceramic crown fed back by the thermocouple at 120 ° C, and removes the sintered zirconia ceramic crown for the next step. operating.
  • the zirconia ceramic restoration In order to apply the zirconia ceramic restoration to the chairside CAD/CAM system, it is necessary to reduce the sintering time of the zirconia ceramic restoration to less than 40 minutes, which is difficult to achieve in the existing sintering furnace. In the embodiment of the present application, it takes about 20 minutes from the setting of the zirconia ceramic crown to the sample stage to the end of sintering, from the setting of the zirconia ceramic crown to the sample stage, and the operation for the next step takes 23 minute. The sintering time of the zirconia ceramic crown is reduced, and the sintering efficiency of the zirconia ceramic crown is improved.
  • FIG. 6 is a rapid sintering system applied to an embodiment of the present application, and a sintered zirconia ceramic three.
  • the temperature in the furnace of the rapid sintering system is heated to 1250 ° C to 1650 ° C in advance, for example, it may be 1250 ° C, 1300 ° C, 1400 ° C, 1500 ° C, 1600 ° C or 1650 ° C.
  • the zirconia ceramic three-unit bridge to be sintered is set in the sample.
  • the real-time sintering temperature of the thermocouple feedback was 150 °C.
  • the lifting device is controlled by the control device to start the sintering.
  • the control device controls the lifting device to start to rise, so that the temperature at the three-unit bridge of the zirconia ceramic is raised at a rate of 500 ° C / minute, and the temperature at the three-unit bridge of the zirconia ceramic is raised to 1,250 ° C.
  • the control device obtains the real-time sintering temperature feedback by the thermocouple at 1250 °C, and the control device controls the lifting device to stop rising, so that the zirconia ceramic three-unit bridge is at 1250 °C. Sintered for 10 minutes in the environment.
  • the control device controls the lifting device to continue to rise, so that the temperature at the three-unit bridge of the zirconia ceramic is raised at a rate of 100 ° C / minute, and the temperature at the three-unit bridge of the zirconia ceramic is raised to 1,580 ° C.
  • the control device obtains the real-time sintering temperature feedback from the thermocouple to 1580 °C, and the control device controls the lifting device to stop rising, so that the zirconia ceramic three-unit bridge is at 1580 °C. Sintered for 10 minutes in the environment.
  • the control device controls the lifting device to start to descend, so that the temperature at the three-unit bridge of the zirconia ceramic is cooled at a speed of 150 ° C / minute.
  • the sample stage is lowered to the bottom, and the control device obtains the oxidation feedback by the thermocouple.
  • the temperature at the three-unit bridge of zirconium ceramic is 600 °C (when the three-unit bridge of zirconia ceramic is in the furnace and the furnace mouth, the cooling rate is limited, causing errors).
  • the control device obtains the temperature around the three-unit bridge of the zirconia ceramic feedback by the thermocouple at 120 ° C, and removes the sintered zirconia ceramic three-unit bridge.
  • the zirconia ceramic restoration In order to apply the zirconia ceramic restoration to the chairside CAD/CAM system, it is necessary to reduce the sintering time of the zirconia ceramic restoration to less than 40 minutes, which is difficult to achieve in the existing sintering furnace.
  • the three-unit bridge of the zirconia ceramic is set to the sample stage, and it takes about 33 minutes to complete the sintering, and the three-unit bridge of the zirconia ceramic is set to the sample stage, and the next step can be performed. The operation takes about 38 minutes. The sintering time of the zirconia ceramic three-unit bridge is reduced, and the sintering efficiency of the zirconia ceramic three-unit bridge is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Clinical Laboratory Science (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Furnace Details (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种快速烧结系统及快速烧结方法,该快速烧结系统包括:炉体(110),该炉体(110)包括相互连通的炉膛(111)和炉口(112);设置在炉口(112)下方的升降装置(120),包括支座(122)和样品台(121),样品台(121)设置在支座(122)上;温度获取装置(130),设置在样品台(121)上;控制装置(140),设置在炉膛(111)外,与升降装置(120)及温度获取装置(130)电连接,用于根据由温度获取装置(130)获得的温度和预设烧结条件,控制升降装置(120)的升降;隔板件(150),设置在升降装置(120)的第一端,隔板件(150)与样品台(121)之间有第一间隔,在快速烧结系统处于装料或卸料工况时,隔板件(150)封堵炉口(112)。该快速烧结方法采用该快速烧结系统。

Description

一种快速烧结系统及快速烧结方法
本申请要求于2016年10月31日提交中国专利局、申请号为201610930920.2发明名称为“一种快速烧结系统及快速烧结方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及牙科材料制备技术领域,特别涉及一种快速烧结系统及快速烧结方法。
背景技术
随着人们生活节奏的加快和椅旁CAD(Computer Aided Design,计算机辅助设计)/CAM(Computer Aided Manufacturing,计算机辅助制造)系统的出现,在目前的牙科修复领域,患者不仅要求牙科修复体具有良好的质量,同时也希望能够缩短花费于牙科治疗的时间。
氧化锆等陶瓷材料由于具有良好的机械性能、化学稳定性、生物安全性,以及接近人类自然牙齿的美学特性,而成为了目前临床治疗中广泛使用的齿科修复材料。然而,由陶瓷材料制备的修复体,在经过由CAD/CAM等切削设备的加工后,需要采用烧结炉等热处理设备进行烧结。现有技术中,热处理设备根据材料的烧结温曲线设置相应的烧结温度制度。目前,烧结炉的炉膛内大多利用硅钼棒或者硅碳棒发热体来加热,控制装置通过控制电压和电流来改变发热体的温度,从而改变炉膛内的温度,以实现控制待烧结样品(产品)处的烧结温度,而以此实现的温度调节需要较长的时间。例如,现有的硅钼棒或者硅碳发热体烧结炉最快可实现约20度(摄氏温度)/分钟的升温,这样从将待烧结样品(此处以氧化锆陶瓷牙床为例)升入炉膛内,到氧化锆陶瓷牙床烧结完成,至少需要80分钟的时间,产品的烧结效率低。总之,现有技术中产品的烧结速度慢,烧结效率低。
发明内容
本申请提供了一种快速烧结系统及快速烧结方法,以实现待烧结样品的快速烧结,提高产品的烧结效率。具体技术方案如下:
第一方面,本申请实施例提供了一种快速烧结系统,包括炉体和升降装 置,所述炉体包括相互连通的炉膛和炉口,所述升降装置包括支座和样品台,所述样品台设置在所述支座上,所述快速烧结系统还包括:
温度获取装置,设置在所述样品台上;
控制装置,设置在所述炉膛外,与所述升降装置及所述温度获取装置电连接,用于根据由所述温度获取装置获取的温度和预设烧结条件,控制所述升降装置的升降,其中,所述预设烧结条件包括:烧结温度、升温速率及保温时间;
隔板件,设置在所述升降装置的第一端,所述隔板件与所述样品台之间有第一间隔,在所述快速烧结系统处于装料或卸料工况时,所述隔板件封堵所述炉口,其中,所述第一端为所述升降装置中靠近所述样品台的一端。
可选的,所述隔板件包括:堵头和支撑杆,所述支撑杆的下端部与所述升降装置固定连接,上端部与所述堵头固定连接,所述隔板件通过所述堵头封堵所述炉口。
可选的,所述隔板件为耐高温材料制作的结构,具体为氧化铝陶瓷纤维制作的结构或多晶莫来石纤维制作的结构。
可选的,所述温度获取装置具体为:热电偶、半导体温度计或固体温度计。
可选的,所述控制装置具体为:单板机、单片机或计算机。
第二方面,本申请实施例提供了一种采用上述快速烧结系统的快速烧结方法,包括:
(a)在所述炉膛内的温度达到所述待烧结样品烧结所需的最高温度时,将所述待烧结样品设置在所述样品台上;
(b)通过所述温度获取装置,实时获取待烧结样品处的温度,作为实时烧结温度,并将所述实时烧结温度反馈给所述控制装置,其中,所述待烧结样品设置在所述样品台上;
(c)根据预先获取的所述预设烧结条件和所述实时烧结温度,由所述控制装置控制所述升降装置的升降,以使所述待烧结样品的实时烧结温度与所述预设烧结条件相符,完成所述待烧结样品的烧结,其中,所述预设烧结条件包括:烧结温度,升温速率及保温时间。
可选的,所述步骤(a)包括:
在所述炉膛内的温度,达到所述待烧结样品烧结所需的最高温度时,使所述炉膛内的温度保持恒温;
将所述待烧结样品设置在所述样品台上。
可选的,所述步骤(c),包括:
(c1)根据预先获取的所述预设烧结条件,确定所述待烧结样品烧结所需的温度曲线,作为预设温度曲线;
(c2)根据所述预设温度曲线和所述实时烧结温度,由所述控制装置控制所述升降装置的升降,以使所述实时烧结温度的温度曲线与所述预设温度曲线相符,完成所述待烧结样品的烧结。
可选的,所述步骤(c2),包括:
通过所述控制装置,确定处理时隙,其中,所述处理时隙为预设的所述升降装置升降的单位时间;
在烧结过程中,通过所述控制装置,将所述实时烧结温度与所述预设温度曲线进行对比,确定所述处理时隙结束时,所述待烧结样品处需要到达的温度,并将所述待烧结样品处需要到达的温度作为目标温度;
通过所述控制装置,控制所述升降装置的升降,使所述待烧结样品处的温度在经过所述处理时隙后,达到所述目标温度,直至烧结完成。
由上述的技术方案可见,本申请实施例提供的一种快速烧结系统及快速烧结方法,利用炉膛和炉口的温度梯度,通过控制待烧结样品的位置,实现待烧结样品快速升温,可以减少待烧结样品的烧结时间,实现待烧结样品的快速烧结,提高产品的烧结效率。当然,实施本申请的任一产品或方法必不一定需要同时达到以上所述的所有优点。
附图说明
为了更清楚地说明本申请实施例和现有技术的技术方案,下面对实施例和现有技术中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例的快速烧结系统的结构示意图;
图2为本申请实施例的快速烧结系统的升降装置的样品台,升降到炉口处的示意图;
图3为本申请实施例的快速烧结系统的升降装置的样品台,升降到炉膛内的示意图;
图4为本申请实施例的快速烧结方法的流程示意图;
图5为应用本申请实施例的快速烧结系统,烧结氧化锆陶瓷牙冠的预设温度曲线;
图6为应用本申请实施例的快速烧结系统,烧结氧化锆陶瓷三单位牙桥的预设温度曲线。
具体实施方式
为使本申请的目的、技术方案、及优点更加清楚明白,以下参照附图并举实施例,对本申请进一步详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,本文中所说的“装料或卸料工况”指的是快速烧结系统的升降装置下降到装料或卸料位置时,快速烧结系统的工作状况;所说的“烧结工况”指的是快速烧结系统的升降装置上升到烧结位置时,快速烧结系统的工作状况,本文中所说的“上端”为快速烧结系统中靠近炉膛的一端,所说的“下端”为快速烧结系统中靠近支座的一端。
参见图1,本申请实施例提供了一种快速烧结系统,其结构具体包括:
炉体110,该炉体110包括相互连通的炉膛111和炉口112。
当然,该快速烧结系统的炉体110还包括发热体(图中未示出)、隔热层113和保护外壳114,其中,发热体设置在炉膛111上,隔热层113设置在发热体和炉膛111外,保护外壳114设置在隔热层113外,隔热层113可以减少在烧结待烧结样品时炉膛111与外界的热交换,保证炉膛111内的温度。本申请实施例的发热体为硅钼棒发热体、硅碳棒发热体或任何可以应用于炉膛内能够实现发热功能的发热体。
隔热层113和保护外壳114可以由耐高温的轻质耐火材料制作而成,例如,保护外壳114可以由氧化铝陶瓷纤维耐火材料制作而成,隔热层113可以由多晶莫来石纤维耐火材料制作而成,本申请实施例中并不对保护外壳114和隔热层113的材料做具体限定。
升降装置120,设置在炉体110靠近炉口112的一端,该升降装置120包括支座122和样品台121,样品台121设置在支座122上。
该升降装置120还包括升降电机(图中未示出),该升降电机设置在炉体110上或支座122上,具体的该升降电机包括:电动机或液压机。
温度获取装置130,设置在样品台121上。
将温度获取装置130设置在样品台121上靠近待烧结样品的位置处,同时温度获取装置130与待烧结样品之间存在第二间隔,该第二间隔所形成的空间可以保证待烧结样品的正常烧结过程,不受温度获取装置130的影响,且温度获取装置130获取的温度最大限度的接近待烧结样品处的真实烧结温度。例如,温度获取装置130可以是一温度传感器。
控制装置140,设置在炉膛111外,与升降装置120及温度获取装置130电连接,用于确定由温度获取装置130获取的温度,并根据该温度和预设烧结条件,控制升降装置120的升降。
其中,预设烧结条件包括:烧结温度,升温速率及保温时间。
控制装置140设置在炉体110外、保护外壳114上或任意一个方便操作控制装置140的位置,与升降装置120及温度获取装置130电连接,当然也可以通过电场耦合连接或任意一种能够实现控制装置140向升降装置120发送控制信号,及控制装置140从温度获取装置130获取信号的连接方式。控制装置140获取由温度获取装置130发送的实时烧结温度(该实时烧结温度由温度获取装置130实时获取),根据实时烧结温度和预设烧结条件,控制升降装置120的升降,使样品台121升降到炉口112处(参见图2)或升降到炉膛111内(参见图3)。控制装置140还可以与炉体110电连接,具体的为与炉体110的发热体电连接,用于控制发热体的温度。
隔板件150,设置在升降装置120的第一端,隔板件150与样品台121之 间存在第一间隔,在快速烧结系统处于装料或卸料工况时,隔板件150封堵炉口112,其中,第一端为升降装置120中靠近样品台121的一端。
在本申请实施例的快速烧结系统中,从炉口112到炉膛111温度梯度式升高,隔板件150与样品台121之间有第一间隔,该第一间隔所形成的空间用于保证隔板件150不影响待烧结样品在样品台121上的安装,且尽量减少待烧结样品处的实时烧结温度受到除待烧结样品所处的温度梯度外的其他温度梯度处温度的影响。隔板件150与炉口112之间的接触应当紧密,即隔板件150与炉口112可以无缝接触,且不影响隔板件150在炉口112中上下滑动,这样隔板件150封堵炉口112时可以保持炉膛111内的温度,并且可以保护炉口112处温度不会下降过快,减少炉口112及炉膛111与外界的热交换,降低发热体的保温及升温压力,在提高快速烧结系统的使用寿命的同时,还可以隔离炉膛111内的高温直接热辐射到未烧结的待烧结样品。
通过本申请实施例的快速烧结系统,利用炉膛和炉口的温度梯度,通过控制待烧结样品的位置,实现待烧结样品快速升温,可以减少待烧结样品的烧结时间,实现待烧结样品的快速烧结,提高产品的烧结效率。
可选的,在本申请实施例的快速烧结系统中,隔板件150包括:堵头151和支撑杆152,支撑杆152的下端部与升降装置120固定连接,上端部与堵头151固定连接,隔板件150通过堵头151封堵炉口。
隔板件150,包括堵头151和支撑杆152,支撑杆152的一端设置在堵头151上,支撑杆152的另一端设置在升降装置120上,其中,支撑杆152的数量为一个、两个或多个。当然,支撑杆152还可以替换为支撑体,在隔板件150中,支撑体的下表面与升降装置120固定连接,支撑体的上表面与堵头151固定连接,支撑体的数量为一个或多个,当支撑体的数量为多个时,各支撑体之间应当具有间隔,以保证待烧烧结样品处与炉膛或炉口处的热交换。
通过本申请实施例,给出了隔板件150的具体设置方法,保证了隔板件150与样品台121之间的第一间隔。
可选的,在本申请实施例的快速烧结系统中,隔板件150为耐高温材料制作的结构,具体为氧化铝陶瓷纤维制作的结构或多晶莫来石纤维制作的结构。
由于在本申请实施例中,隔板件150会进入炉膛111,届时隔板件150处的温度将会达到1600℃或更高。因此隔板件150由耐高温材料制作而成,具体的,隔板件150可以由氧化铝陶瓷纤维制作而成或由多晶莫来石纤维制作而成。当然,因为隔板件150还有防止炉口112处温度骤降的作用,还可以考虑隔板件150所选用材料的保温隔热性能。
通过本申请实施例,隔板件150由耐高温材料制作而成,提高了隔板件150在高温环境下的使用寿命。
可选的,在本申请实施例的快速烧结系统中,温度获取装置130具体为:热电偶、半导体温度计或固体温度计。
温度获取装置130用于获取待烧结样品处的实时烧结温度,由于待烧结样品的烧结温度很高(以氧化锆陶瓷为例,最高烧结温度为1600℃左右),所以温度获取装置130必须能够在高温的环境下正常工作。温度获取装置130为能够在高温下获取温度的任意温度获取装置,例如可以为:热电偶、半导体温度计或固体温度计。例如当温度获取装置130为热电偶时,在不同温度下热电偶产生的热电动势不同,控制装置140获取热电偶产生的热电动势信号,通过热电动势信号确定实时烧结温度。当温度获取装置130为半导体温度计时,在半导体温度计的两端施加电压,在不同温度下半导体温度计的阻值不同,从而引起电流的变化,控制装置140获取半导体温度计输出的电流,通过电流确定实时烧结温度。当温度获取装置130为固体温度计时,将固体温度计与齿轮相连,齿轮与滑动变阻器的滑片相连,滑动变阻器上施加电压,在不同温度下固体温度计的体积不同,固体温度计体积的变化会带动齿轮的转动,齿轮的转动会导致滑动变阻器阻值的变化,进而影响滑动变阻器的电流,控制装置140获取通过滑动变阻器的电流,通过电流确定实时烧结温度。
在本申请实施例中,温度获取装置130在高温下也可以正常工作,保证了实时烧结温度的正常获取,耐高温能力强,提高了温度获取装置130在高温下的使用寿命。
控制装置140用于获取实时烧结温度,根据实时烧结温度和预设温度曲线控制升降装置120的升降。本申请实施例中,控制装置140需要具备信息处理的能力,其可以是能够应用于本申请实施例的任意具备信息处理能力的装置, 具体可以为:单板机、单片机或计算机。
参见图4,图4为一种快速烧结方法的流程示意图,其步骤包括:
步骤401,在炉膛内的温度达到待烧结样品烧结所需的最高温度时,将待烧结样品设置在样品台上。
在设置待烧结样品前,预先根据预设烧结条件,将炉膛内的温度加热到待烧结样品烧结所需的最高温度。
步骤402,通过温度获取装置,实时获取待烧结样品处的温度,作为实时烧结温度,并将实时烧结温度反馈给控制装置。
其中,待烧结样品设置在样品台上。
温度获取装置为能够在高温下获取温度的任意温度获取装置,例如可以为:热电偶、半导体温度计或固体温度计。例如当温度获取装置为热电偶时,在不同温度下热电偶产生的热电动势不同,温度获取装置通过将热电动势反馈给控制装置,以实现将实时烧结温度反馈给控制装置;当然温度获取装置还可以将热电动势转化为控制装置可以识别的其他信号,并向控制装置发送该信号。
当温度获取装置为半导体温度计时,在半导体温度计的两端施加电压,在不同温度下半导体温度计的阻值不同,从而引起电流的变化,温度获取装置通过将电流反馈给控制装置,以实现将实时烧结温度反馈给控制装置;当然温度获取装置还可以将电流转化为控制装置可以识别的其他信号,并向控制装置发送该信号。
当温度获取装置为固体温度计时,将固体温度计与齿轮相连,齿轮与滑动变阻器的滑片相连,滑动变阻器上施加电压,在不同温度下固体温度计的体积不同,固体温度计体积的变化会带动齿轮的转动,齿轮的转动会导致滑动变阻器阻值的变化,进而影响滑动变阻器的电流,温度获取装置通过将电流反馈给控制装置,以实现将实时烧结温度反馈给控制装置;当然温度获取装置还可以将电流转化为控制装置可以识别的其他信号,并向控制装置发送该信号。
将待烧结样品设置在样品台上之后,开始控制升降装置上升,由设置在样品台上的温度获取装置,实时获取待烧结样品处的温度,作为实时烧结温度。将该实时烧结温度反馈给控制装置,以控制升降装置上升或下降。
步骤403,根据预先获取的预设烧结条件和实时烧结温度,由控制装置控制升降装置的升降,以使待烧结样品的实时烧结温度与预设烧结条件相符,完成待烧结样品的烧结。
其中,预设烧结条件包括:烧结温度,升温速率及保温时间。
待烧结样品的烧结有特殊的温度要求,具体表现为烧结时间与烧结温度的关系,在烧结待烧结样品前,需要预先获取待烧结样品烧结所需的温度、待烧结样品的升温速率及待烧结样品烧结所需的温度各自对应的烧结时间,作为预设烧结条件,根据预先获取的预设烧结条件和实时烧结温度,由控制装置控制升降装置的升降,以使实时烧结温度与预设烧结条件相符。
当无法一次完成所有待烧结样品的烧结时,在一批待烧结样品烧结完成后,将该批次待烧结样品取下进行下一步操作,同时可将另一批待烧结样品设置在样品台上,并开始进行烧结。在目前的牙科修复领域,在利用氧化锆陶瓷材料烧结的牙具时,其最高烧结温度均为1600℃左右,因此在一批产品烧结完成后,可以直接进行下一批次产品的烧结。例如在氧化锆陶瓷牙冠烧结完成后,保持快速烧结系统炉膛内的温度恒定,将氧化锆陶瓷三单位牙桥设置在样品台上开始烧结。
通过本申请实施例,利用炉膛和炉口的温度梯度,通过控制待烧结样品的位置,实现待烧结样品快速升温,可以减少待烧结样品的烧结时间,实现待烧结样品的快速烧结,提高产品的烧结效率。
可选的,在本申请实施例的快速烧结方法中,步骤401包括:
在炉膛内的温度,达到待烧结样品烧结所需的最高温度时,使炉膛内的温度保持恒温。
将所述待烧结样品设置在所述样品台上。
在利用本申请实施例的快速烧结系统烧结待烧结样品前,需要预先将快 速烧结系统的炉膛内的温度上升到待烧结样品烧结所需的最高温度(该最高温度可以根据预设烧结条件确定)。当炉膛内的温度,达到待烧结样品烧结所需的最高温度时,使炉膛内的温度保持恒温。
通过本申请实施例,当炉膛内的温度达到待烧结样品烧结所需的最高温度时,使炉膛内的温度保持恒温。可以防止因炉膛内的温度过高,对待烧结样品的正常烧结产生影响。同时炉膛的保温过程所产生的能耗要低于升温过程所产生的能耗,减少了快速烧结系统的能耗。防止因温度过高对发热体造成的消耗,增加了快速烧结系统的使用寿命。
可选的,在本申请实施例的快速烧结方法中,步骤403包括:
第一步,根据预先获取的预设烧结条件,确定待烧结样品烧结所需的温度曲线,作为预设温度曲线。
第二步,根据预设温度曲线和实时烧结温度,由控制装置控制升降装置的升降,以使实时烧结温度的温度曲线与预设温度曲线相符,完成待烧结样品的烧结。
在本申请实施例中,为了更加具体的说明如何实现对待烧结样品处温度的控制,将预设烧结条件转换为预设温度曲线。根据该预设温度曲线,控制升降装置的升降,使实时烧结温度所形成的温度曲线与预设温度曲线相符。
通过本申请实施例,给出了对待烧结样品处温度的控制的具体方法,实现了到烧结样品的快速烧结。
可选的,在本申请实施例的快速烧结方法中,根据预设温度曲线和实时烧结温度,由控制装置控制升降装置的升降,以使实时烧结温度的温度曲线与预设温度曲线相符,完成待烧结样品的烧结,其步骤包括:
第一步,通过控制装置,确定处理时隙,其中,处理时隙为预设的升降装置升降的单位时间。
第二步,在烧结过程中,通过控制装置,将实时烧结温度与预设温度曲线进行对比,确定处理时隙结束时,待烧结样品处需要到达的温度,并将待烧结样品处需要到达的温度作为目标温度。
第三步,通过控制装置,控制升降装置的升降,使待烧结样品处的温度在经过处理时隙后,达到目标温度,直至烧结完成。
处理时隙可以为根据烧结需求与系统的时延提前设定的,也可以为快速烧结系统根据由用户输入的指令确定的。处理时隙为控制升降装置升降的单位时间,例如为0.1秒或更长,0.5秒或更长,或1秒或更长。在整个烧结过程中,把整体的烧结时间划分为多个处理时隙,由控制装置根据实时烧结温度与预设温度曲线,确定每个处理时隙的目标温度。
在升温过程中,当一个处理时隙开始时,由控制装置根据实时烧结温度与预设温度曲线,确定当前处理时隙待烧结样品烧结所需的最高温度(最高温度也可以为提前确定的),作为最高目标温度,由控制装置控制升降装置的升降,使待烧结样品处的温度(实时烧结温度)在经过该处理时隙后,达到最高目标温度,直至升温过程完成。
在降温过程中,当一个处理时隙开始时,由控制装置根据实时烧结温度与预设温度曲线,确定当前处理时隙待烧结样品烧结所需的最低温度(最低温度也可以为提前确定的),作为最低目标温度,由控制装置控制升降装置的升降,使待烧结样品处的温度在经过该处理时隙后,达到最低目标温度,直至降温过程完成。
因为系统误差等原因,例如,在第一处理时隙中,若第一处理时隙尚未结束,待烧结样品处的温度已经达到了第一目标温度,则由控制装置控制升降装置停止升降直至下一处理时隙开始。若第一处理时隙已经结束,待烧结样品处的温度尚未达到第一目标温度,则在第二处理时隙中,由控制装置控制升降装置升降(可以根据第一处理时隙结束时待烧结样品处的温度,与第一目标温度的差值,增加升降速度),使待烧结样品处的温度达到第二目标温度。其中,第一处理时隙为任意一个处理时隙,第一目标温度为第一处理时隙对应的目标温度,第二处理时隙为第一处理时隙的下一处理时隙,第二目标温度为第二处理时隙对应的目标温度。
可见在本申请实施例中,处理时隙越小,实时烧结温度所形成的温度曲线将越圆滑,也越接近预设温度曲线。通过处理时隙的设定,可以更加准确的控制待烧结样品处的温度,提高了待烧结样品烧结的品质。
参见图5,图5为应用本申请实施例的快速烧结系统,烧结氧化锆陶瓷牙冠的预设温度曲线。
获取并根据预设烧结条件,确定氧化锆陶瓷牙冠烧结所需的最高温度。根据该最高温度,提前将快速烧结系统的炉膛内的温度加热到1250℃-1650℃,例如,可以是1250℃、1300℃、1400℃、1500℃、1600℃或1650℃等。在炉膛内的温度为1250℃-1650℃时,例如,可以是1250℃、1300℃、1400℃、1500℃、1600℃或1650℃等,将待烧结的氧化锆陶瓷牙冠设置在样品台上,通过温度获取装置(此处设置为热电偶),获取此时的实时烧结温度为150℃。根据预设烧结条件,控制装置控制升降装置的升降,开始烧结。
首先,控制装置控制升降装置开始上升,使氧化锆陶瓷牙冠处的温度以500℃/分钟的速度升温,将氧化锆陶瓷牙冠处的温度提升到1250℃。在氧化锆陶瓷牙冠处的温度达到1250℃时,控制装置获取由热电偶反馈的实时烧结温度为1250℃,控制装置控制升降装置停止上升,使氧化锆陶瓷牙冠在1250℃的环境中烧结5分钟。然后,控制装置控制升降装置继续上升,使氧化锆陶瓷牙冠处的温度以150℃/分钟的速度升温,将氧化锆陶瓷牙冠处的温度提升到1580℃。控制装置获取由热电偶反馈的实时烧结温度为1580℃,控制升降装置停止上升,使氧化锆陶瓷牙冠在1580℃的环境中烧结5分钟。最后,控制装置控制升降装置开始下降,使氧化锆陶瓷牙冠处的温度以200℃/分钟的速度降温,5分钟后,样品台下降到最底部,控制装置获取由热电偶反馈的温度为600℃。在样品台周围的风扇辅助下,冷却3分钟以后,控制装置获取由热电偶反馈的氧化锆陶瓷牙冠周围的温度为120℃,将烧结完成的氧化锆陶瓷牙冠取下,进行下一步的操作。
为了使氧化锆陶瓷修复体在椅旁CAD/CAM系统上得到应用,需要把氧化锆陶瓷修复体的烧结时间降低到40分钟以内,而现有烧结炉很难达到。而在本申请实施例中,从氧化锆陶瓷牙冠设置到样品台,到烧结结束耗时约20分钟,从将氧化锆陶瓷牙冠设置到样品台,到可进行下一步的操作耗时23分钟。减少了氧化锆陶瓷牙冠的烧结时间,提高了氧化锆陶瓷牙冠的烧结效率。
参见图6,图6为应用本申请实施例的快速烧结系统,烧结氧化锆陶瓷三 单位牙桥的预设温度曲线。
获取并根据预设烧结条件,确定氧化锆陶瓷三单位牙桥烧结所需的最高温度。根据该最高温度,提前将快速烧结系统的炉膛内的温度加热到1250℃-1650℃,例如,可以是1250℃、1300℃、1400℃、1500℃、1600℃或1650℃等。在炉膛内的温度为1250℃-1650℃时,例如,可以是1250℃、1300℃、1400℃、1500℃、1600℃或1650℃等,将待烧结的氧化锆陶瓷三单位牙桥设置在样品台上,此时热电偶反馈的实时烧结温度为150℃。根据预设烧结条件,由控制装置控制升降装置的升降,开始烧结。
首先,控制装置控制升降装置开始上升,使氧化锆陶瓷三单位牙桥处的温度以500℃/分钟的速度升温,将氧化锆陶瓷三单位牙桥处的温度提升到1250℃。在氧化锆陶瓷三单位牙桥处的温度达到1250℃时,控制装置获取由热电偶反馈的实时烧结温度为1250℃,控制装置控制升降装置停止上升,使氧化锆陶瓷三单位牙桥在1250℃的环境中烧结10分钟。然后,控制装置控制升降装置继续上升,使氧化锆陶瓷三单位牙桥处的温度以100℃/分钟的速度升温,将氧化锆陶瓷三单位牙桥处的温度提升到1580℃。在氧化锆陶瓷三单位牙桥处的温度达到1580℃时,控制装置获取由热电偶反馈的实时烧结温度为1580℃,控制装置控制升降装置停止上升,使氧化锆陶瓷三单位牙桥在1580℃的环境中烧结10分钟。最后,控制装置控制升降装置开始下降,使氧化锆陶瓷三单位牙桥处的温度以150℃/分钟的速度降温,8分钟后,样品台下降到最底部,控制装置获取由热电偶反馈的氧化锆陶瓷三单位牙桥处的温度为600℃(氧化锆陶瓷三单位牙桥在炉膛和炉口内时,降温速度受到限制,造成误差)。在样品台周围的风扇辅助冷却5分钟以后,控制装置获取由热电偶反馈的氧化锆陶瓷三单位牙桥周围的温度为120℃,将烧结完成的氧化锆陶瓷三单位牙桥取下,进行下一步的操作。
为了使氧化锆陶瓷修复体在椅旁CAD/CAM系统上得到应用,需要把氧化锆陶瓷修复体的烧结时间降低到40分钟以内,而现有烧结炉很难达到。而在本申请实施例中,从将氧化锆陶瓷三单位牙桥设置到样品台,到烧结结束耗时约33分钟,从将氧化锆陶瓷三单位牙桥设置到样品台,到可进行下一步操作耗时约38分钟。减少了氧化锆陶瓷三单位牙桥的烧结时间,提高了氧化锆陶瓷三单位牙桥的烧结效率。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本说明书中的各个实施例均采用相关的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。
以上所述仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本申请的保护范围内。

Claims (9)

  1. 一种快速烧结系统,包括炉体和升降装置,所述炉体包括相互连通的炉膛和炉口,所述升降装置包括支座和样品台,所述样品台设置在所述支座上,其特征在于,所述快速烧结系统还包括:
    温度获取装置,设置在所述样品台上;
    控制装置,设置在所述炉膛外,与所述升降装置及所述温度获取装置电连接,用于根据由所述温度获取装置获得的温度和预设烧结条件,控制所述升降装置的升降,其中,所述预设烧结条件包括:烧结温度、升温速率及保温时间;
    隔板件,设置在所述升降装置的第一端,所述隔板件与所述样品台之间有第一间隔,在所述快速烧结系统处于装料或卸料工况时,所述隔板件封堵所述炉口,其中,所述第一端为所述升降装置中靠近所述样品台的一端。
  2. 根据权利要求1所述的快速烧结系统,其特征在于,所述隔板件包括:堵头和支撑杆,所述支撑杆的下端部与所述升降装置固定连接,上端部与所述堵头固定连接,所述隔板件通过所述堵头封堵所述炉口。
  3. 根据权利要求1所述的快速烧结系统,其特征在于,所述隔板件为耐高温材料制作的结构,具体为氧化铝陶瓷纤维制作的结构或多晶莫来石纤维制作的结构。
  4. 根据权利要求1所述的快速烧结系统,其特征在于,所述温度获取装置具体为:热电偶、半导体温度计或固体温度计。
  5. 根据权利要求1所述的快速烧结系统,其特征在于,所述控制装置具体为:单板机、单片机或计算机。
  6. 一种采用如权利要求1-5中任意一项快速烧结系统实施的快速烧结方法,其特征在于,包括:
    (a)在所述炉膛内的温度达到所述待烧结样品烧结所需的最高温度时,将所述待烧结样品设置在所述样品台上;
    (b)通过所述温度获取装置,实时获取待烧结样品处的温度,作为实时 烧结温度,并将所述实时烧结温度反馈给所述控制装置,其中,所述待烧结样品设置在所述样品台上;
    (c)根据预先获取的所述预设烧结条件和所述实时烧结温度,由所述控制装置控制所述升降装置的升降,以使所述待烧结样品的实时烧结温度与所述预设烧结条件相符,完成所述待烧结样品的烧结,其中,所述预设烧结条件包括:烧结温度、升温速率及保温时间。
  7. 根据权利要求6所述的快速烧结方法,其特征在于,所述步骤(a)包括:
    在所述炉膛内的温度达到所述待烧结样品烧结所需的最高温度时,使所述炉膛内的温度保持恒温;
    将所述待烧结样品设置在所述样品台上。
  8. 根据权利要求6所述的快速烧结方法,其特征在于,所述步骤(c)包括:
    (c1)根据预先获取的所述预设烧结条件,确定所述待烧结样品烧结所需的温度曲线,作为预设温度曲线;
    (c2)根据所述预设温度曲线和所述实时烧结温度,由所述控制装置控制所述升降装置的升降,以使所述实时烧结温度的温度曲线与所述预设温度曲线相符,完成所述待烧结样品的烧结。
  9. 根据权利要求8所述的快速烧结方法,其特征在于,步骤(c2)包括:
    通过所述控制装置,确定处理时隙,其中,所述处理时隙为预设的所述升降装置升降的单位时间;
    在烧结过程中,通过所述控制装置,将所述实时烧结温度与所述预设温度曲线进行对比,确定所述处理时隙结束时,所述待烧结样品处需要到达的温度,并将所述待烧结样品处需要到达的温度作为目标温度;
    通过所述控制装置,控制所述升降装置的升降,使所述待烧结样品处的温度在经过所述处理时隙后,达到所述目标温度,直至烧结完成。
PCT/CN2017/099293 2016-10-31 2017-08-28 一种快速烧结系统及快速烧结方法 WO2018076919A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197014871A KR20190077012A (ko) 2016-10-31 2017-08-28 쾌속 소결 시스템 및 쾌속 소결 방법
US16/346,092 US11919818B2 (en) 2016-10-31 2017-08-28 Rapid sintering system and rapid sintering method
EP17865657.5A EP3534097B1 (en) 2016-10-31 2017-08-28 Rapid sintering system and rapid sintering method
DK17865657.5T DK3534097T3 (da) 2016-10-31 2017-08-28 Hurtigsintringsystem og hurtigsintringsfremgangsmåde
ES17865657T ES2841429T3 (es) 2016-10-31 2017-08-28 Sistema de sinterización rápida y método de sinterización rápida

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610930920.2A CN108007203B (zh) 2016-10-31 2016-10-31 一种快速烧结系统及快速烧结方法
CN201610930920.2 2016-10-31

Publications (1)

Publication Number Publication Date
WO2018076919A1 true WO2018076919A1 (zh) 2018-05-03

Family

ID=62024331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099293 WO2018076919A1 (zh) 2016-10-31 2017-08-28 一种快速烧结系统及快速烧结方法

Country Status (8)

Country Link
US (1) US11919818B2 (zh)
EP (1) EP3534097B1 (zh)
KR (1) KR20190077012A (zh)
CN (1) CN108007203B (zh)
DK (1) DK3534097T3 (zh)
ES (1) ES2841429T3 (zh)
PT (1) PT3534097T (zh)
WO (1) WO2018076919A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3499163A4 (en) * 2016-08-10 2019-06-26 Liaoning Upcera Dental Co. Ltd. SINTER OVEN

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108007203B (zh) 2016-10-31 2019-11-22 辽宁爱尔创生物材料有限公司 一种快速烧结系统及快速烧结方法
CN109945642B (zh) * 2019-03-26 2023-10-24 杭州而然科技有限公司 一种金属氧化物陶瓷材料快速烧结炉及其烧结工艺
CN114353528B (zh) * 2022-01-13 2023-08-18 广东工业大学 一种多级压力快速烧结炉及其使用工艺
CN114608334B (zh) * 2022-03-10 2023-06-27 江苏乾鹏科技有限公司 无级变温快速烧结装置、方法、终端及可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195238A (ja) * 2004-01-07 2005-07-21 Murata Mfg Co Ltd 熱処理炉
CN101423220A (zh) * 2008-11-17 2009-05-06 上海普罗新能源有限公司 一种多温区硅材料提纯与铸锭的方法及其装置
CN105546985A (zh) * 2016-01-08 2016-05-04 天津市盛通达实验设备有限公司 一种微机高温显像炉

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3231546C2 (de) * 1982-08-25 1985-01-10 Dentsply International Inc., York, Pa. Verfahren und Vorrichtung zum Brennen dentaler, metallkeramischer Gegenstände
DE3831539C3 (de) 1988-09-16 2001-06-13 Kaltenbach & Voigt Steuerungsanordnung für einen Dentalofen, insbesondere einen mikroprozessorgesteuerten Vorwärmofen
CN1026805C (zh) * 1993-04-02 1994-11-30 山东大学 掺杂铌酸锂晶体极化方法和装置
DE19606493C1 (de) 1996-02-22 1997-09-11 Degussa Verfahren zum Brennen von dentalkeramischem Material und Brennofen hierfür
JPH10213376A (ja) 1997-01-29 1998-08-11 Murata Mfg Co Ltd 熱処理炉
US6004890A (en) * 1997-05-13 1999-12-21 Mitsubishi Chemical Corporation Heat-resisting material
JP3955134B2 (ja) * 1997-09-12 2007-08-08 株式会社デンケン 歯科用ポーセレン自動焼成装置
US6252202B1 (en) * 1998-02-10 2001-06-26 Jeneric/Pentron, Inc. Furnace for heat treatment of dental materials
DE19824497A1 (de) * 1998-06-02 1999-12-09 Dekema Dental Keramikoefen Gmb Brennofen für Zahnersatz oder-teilersatz
US8109761B1 (en) * 2006-02-13 2012-02-07 Whip Mix Corporation Dental furnace with cooling system
KR100862223B1 (ko) 2007-02-05 2008-10-09 성균관대학교산학협력단 열피로 시험장치 및 방법
DE202007008520U1 (de) * 2007-02-21 2008-07-03 Dekema Dental-Keramiköfen GmbH Brenngutträger
US20090079101A1 (en) * 2007-04-27 2009-03-26 Jurgen Laubersheimer Densification Process of Ceramics And Apparatus Therefor
US8487220B2 (en) * 2009-11-18 2013-07-16 Daniel F. Serrago Vacuum oven
KR101179501B1 (ko) * 2010-12-08 2012-09-07 김종택 치과용 소결장치
DE102010053873A1 (de) * 2010-12-09 2012-06-14 Dekema Dental-Keramiköfen GmbH Pressofen für Zahnersatz oder Zahnteilersatz
EP3470012B1 (de) * 2011-07-25 2021-04-07 Ivoclar Vivadent AG Dentalofen
DE102012213279A1 (de) 2012-07-27 2014-01-30 Sirona Dental Systems Gmbh Sinterofen für Bauteile aus einem Sinterwerkstoff, insbesondere für Dentalbauteile und Verfahren zur Sinterung derartiger Bauteile
US9664448B2 (en) * 2012-07-30 2017-05-30 Solar World Industries America Inc. Melting apparatus
CN203037063U (zh) * 2012-12-31 2013-07-03 秦皇岛爱迪特高技术陶瓷有限公司 一种氧化锆牙科修复体用烧结炉
CN103398581B (zh) * 2013-07-23 2014-09-24 中南大学 竖式环保型管式烧结炉
DE102013226497A1 (de) * 2013-12-18 2015-06-18 Sirona Dental Systems Gmbh Verfahren zur Planung einer Sinterung eines Zahnersatzteils
CN103759536B (zh) * 2014-02-20 2015-12-30 莱芜钢铁集团有限公司 一种烧结系统及其烧结终点控制方法
DE102015202600A1 (de) * 2015-02-12 2016-08-18 Sirona Dental Systems Gmbh Sinterofen für Bauteile aus Sinterwerkstoff, insbesondere Dentalbauteile
CN105466209A (zh) * 2015-12-30 2016-04-06 江苏和腾热工装备科技有限公司 氧化锆纤维板隔热的高效节能下出料立式真空煅烧退火炉
CN206019324U (zh) * 2016-08-10 2017-03-15 辽宁爱尔创生物材料有限公司 一种烧结炉
CN108007203B (zh) 2016-10-31 2019-11-22 辽宁爱尔创生物材料有限公司 一种快速烧结系统及快速烧结方法
CN206875940U (zh) * 2017-05-24 2018-01-12 尤根牙科医疗科技(北京)有限公司 一种两用烧结炉

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195238A (ja) * 2004-01-07 2005-07-21 Murata Mfg Co Ltd 熱処理炉
CN101423220A (zh) * 2008-11-17 2009-05-06 上海普罗新能源有限公司 一种多温区硅材料提纯与铸锭的方法及其装置
CN105546985A (zh) * 2016-01-08 2016-05-04 天津市盛通达实验设备有限公司 一种微机高温显像炉

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3534097A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3499163A4 (en) * 2016-08-10 2019-06-26 Liaoning Upcera Dental Co. Ltd. SINTER OVEN
US10995992B2 (en) 2016-08-10 2021-05-04 Liaoning Upcera Co., Ltd Sintering furnance

Also Published As

Publication number Publication date
KR20190077012A (ko) 2019-07-02
CN108007203B (zh) 2019-11-22
PT3534097T (pt) 2020-12-23
EP3534097A1 (en) 2019-09-04
EP3534097A4 (en) 2019-09-18
EP3534097B1 (en) 2020-10-07
ES2841429T3 (es) 2021-07-08
DK3534097T3 (da) 2021-01-11
CN108007203A (zh) 2018-05-08
US20200055782A1 (en) 2020-02-20
US11919818B2 (en) 2024-03-05

Similar Documents

Publication Publication Date Title
WO2018076919A1 (zh) 一种快速烧结系统及快速烧结方法
CN108700379B (zh) 用于对牙用替换部件进行热处理的感应炉和方法
AU2014368622B2 (en) Method for planning a sintering of a dental prosthesis part
US11650014B2 (en) Sintering furnace for components made of sintered material, in particular dental components
JP2019513028A5 (zh)
US10995992B2 (en) Sintering furnance
JP2008253770A (ja) マッフル検知
JP2010025452A (ja) セラミックスの緻密化方法およびそのための装置
US10260811B2 (en) Dental furnace
JPH1033564A (ja) 歯科用セラミック材料を焼成するための方法および焼成炉
KR101179501B1 (ko) 치과용 소결장치
TWI613316B (zh) 基板處理裝置,半導體裝置的製造方法及加熱部
CN210602851U (zh) 一种节能均衡加热全瓷义齿用氧化锆高温烧结炉
JP4422525B2 (ja) 半導体製造装置
CN220339073U (zh) 一种钟罩炉三相加热装置
RU2789656C1 (ru) Способ определения предела прочности при сжатии керамических и композиционных материалов при индукционном нагреве
JPH0645839Y2 (ja) 酸化雰囲気高温炉
CN210512631U (zh) 一种可接入保护气体的钴铬合金烧结保护机构
CN208282597U (zh) 一种用于制备氧化物陶瓷靶材的复合式微波烧结装置
JP2006313779A (ja) 熱処理装置および熱処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865657

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197014871

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017865657

Country of ref document: EP

Effective date: 20190531